## APPENDIX S1:

# Root endophytes and invasiveness: no difference between native and non-native *Phragmites* in the Great Lakes Region

Wesley A. Bickford<sup>1,2</sup>, Deborah E. Goldberg<sup>2</sup>, Kurt P. Kowalski<sup>1,3</sup>, Donald R. Zak<sup>2,3</sup>,

<sup>1</sup>U.S. Geological Survey – Great Lakes Science Center, Ann Arbor, MI, USA

<sup>2</sup>Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA

<sup>3</sup>School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA

## Ecosphere

#### Table S1: Site characteristics and environmental variables

| Site            | Coordinates       | Soil Map Unit      | Coastal<br>or<br>Inland | No.<br>Samples | Saturation Levels<br>(# of each) | Soil C (%)<br>mean (range) | Soil N (%)<br>mean (range) | Soil P (mg/kg)<br>mean (range) | Tissue C (%)<br>mean (range) | Tissue N (%)<br>mean (range) | Tissue P (%)<br>mean (range) |
|-----------------|-------------------|--------------------|-------------------------|----------------|----------------------------------|----------------------------|----------------------------|--------------------------------|------------------------------|------------------------------|------------------------------|
| Bullard Lake    | 42°38'36''N       |                    | T 1 1                   | 12             | Unsaturated (6)                  | 28.37                      | 1.76                       | 16.84                          | 38.00                        | 2.23                         | 0.15                         |
| Fen (BL)        | 83°42'10"W        | Houghton Muck      | Inland                  | 12             | Saturated (6)                    | (18.26 - 38.80)            | (1.03 - 2.73)              | (0.37 - 86.84)                 | (12.41 - 43.90)              | (0.78 - 3.24)                | (0.05 - 0.20)                |
| Chelsea         | 42°18'32''N       | Hanaldan Maala     | T., 1., .,              | 12             | Unsaturated (9)                  | 10.97                      | 0.60                       | 1.99                           | 41.49                        | 2.32                         | 0.15                         |
| Farm (CH)       | 84°03'25"W        | Houghton Muck      | Inland                  |                | Saturated (3)                    | (2.87 - 32.70)             | (0.08 - 2.13)              | (0.34 - 5.64)                  | (15.35 - 44.91)              | (0.88 - 3.54)                | (0.03 - 0.24)                |
| Cheboygan       | boygan 45°39'27"N | Histosols and      | Constal                 | 6              | Saturated (1)                    | 7.17                       | 0.32                       | 3.73                           | 41.78                        | 2.07                         | 0.11                         |
| Marsh (CM) 84°2 | 84°28'16"W        | Aquents            | Coastai                 |                | High Water (5)                   | (1.37 - 12.61)             | (0 - 0.61)                 | (0.21 - 11.50)                 | (40.20 - 42.90)              | (1.51 - 2.60)                | (0.09 - 0.13)                |
| Cecil Bay       | 45°44'52''N       | Stony I ake Beach  | Coastal                 | 6              | High Water (6)                   | 4.97                       | 0.23                       | 1.60                           | 42.39                        | 2.01                         | 0.11                         |
| (CB)            | 84°50'57"W        | Stony Lake Beach   |                         |                | High water (6)                   | (0.88 - 16.54)             | (0 - 0.85)                 | (0.70 - 4.35)                  | (41.03 - 44.00)              | (1.66 - 2.56)                | (0.09 - 0.15)                |
| Sturgeon        | 45°42'30"N        | Sandy Lake         | Constal                 | 2              | Saturated (2)                    | 1.32                       | 0.05                       | 1.74                           | 42.79                        | 1.37                         | 0.07                         |
| Bay (SB)        | 84°56'46''W       | Beach              | Coastal                 |                |                                  | (0.79 - 1.85)              | (0.02 - 0.07)              | (1.47 - 2.01)                  | (42.59 - 43.00)              | (1.30 - 1.44)                | (0.06 - 0.07)                |
| Point Le        | 45°50'51''N       | Histosols and      | Constal                 | 2              | Saturated (1)                    | 8.35                       | 0.38                       | 1.29                           | 41.78                        | 2.05                         | 0.12                         |
| Barb (PLB)      | 84°44'28"W        | Aquents            | Coastal                 | 2              | High Water (1)                   | (5.15 - 11.56)             | (0.20 - 0.55)              | (1.09 - 1.50)                  | (40.45 - 43.12)              | (1.70 - 2.40)                | (0.11 - 0.13)                |
| Pointe aux      | 45°54'46''N       | Leafriver mucky    |                         | 6              |                                  | 0.86                       | 0.02                       | 2.99                           | 43.57                        | 1.69                         | 0.08                         |
| (Rt2)           | 84°52'20"W        | peat               | Coastal                 | 6              | High Water (6)                   | (0.46 - 1.74)              | (0 - 0.07)                 | (1.16 - 6.66)                  | (42.95 - 44.14)              | (0.69 - 2.24)                | (0.03 - 0.12)                |
| Castle Rock     | 45°54'39"N        | Eastport-Leafriver | T 1 1                   | 6              | <b>0</b> ( ) ( 1(0)              | 12.58                      | 0.63                       | 12.64                          | 32.57                        | 1.59                         | 0.07                         |
| (CR)            | 84°44'18"W        | complex            | Inland                  |                | Saturated (6)                    | (3.68 - 23.41)             | (0.16 - 1.29)              | (0.07 - 45.83)                 | (9.88 - 43.59)               | (0.51 - 2.46)                | (0.01 - 0.12)                |

Table S2: PCR Conditions and Primer Sequences

| Primer Set     | Primer | Primer Sequence                    | Barcode | PCR Mastermix                                                                         | PCR Conditions                                                                                                                                          | Reference                |  |
|----------------|--------|------------------------------------|---------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| Fungi          | ITS1F  | 5'-CTTGGTCATTTAGAGGAAGTAA-3'       | 16 bp   | 2.5 uL 10x Buffer*<br>0.5 uL BSA<br>0.5 uL 20uM dNTPs<br>0.625 uL 20uM ITS1F          | Initial denaturation: 94 °C for 2<br>min, 25 cycles, denaturation: 94 °C<br>for 30 s, annealing: 55 °C for 30 s,<br>extension: 72 °C for 45 s (2 min    | White et al.<br>1990,    |  |
| i ungi         | ITS4   | 5'-TCCTCCGCTTATTGATATGC-3'         | 16 bp   | 0.625 uL 20uM 1184<br>0.5 uL Taq*<br>2 uL Template DNA**<br>17.75 uL H2O              | final extension)                                                                                                                                        | Gardes and<br>Bruns 1993 |  |
| Bacteria       | 27F    | 5'-AGAGTTTGATCMTGGCTCAG-3'         | 16 bp   | 2.5 uL 10x Buffer*<br>0.5 uL BSA<br>0.5 uL 20uM dNTPs<br>0.5 uL 20uM 27F              | Initial denaturation: 94 °C for 5<br>min, 25 cycles, denaturation: 94 °C<br>for 30 s, annealing: 55 °C for 60 s,<br>extension: 72 °C for 90 s (10 min   | Lane 1991                |  |
| Bacteria       | 519R   | 5'-GWATTACCGCGGCKGCTG'3'           | 16 bp   | 0.5 uL 20uM 519R<br>0.5 uL Taq*<br>2 uL Template DNA**<br>18 uL H2O                   | final extension)                                                                                                                                        | Lane 1991                |  |
| Oomycetes      | 5.8 SR | SR 5'-TCGATGAAGAACGCAGCG -3'       |         | 2.5 uL 10x Buffer*<br>0.5 uL BSA<br>0.5 uL 20uM dNTPs<br>0.625 uL 20uM 5.8 SR         | Initial denaturation: 94 °C for 5<br>min, 30 cycles, denaturation: 94 °C<br>for 30 s, annealing: 47 °C for 90 s,<br>extension: 72 °C for 60 s (10 min   | Vilgalys                 |  |
| (First round)  | LR7    | 5'-TACTACCACCAAGATCT-3'            | -       | 0.625 uL 20uM LR7<br>0.5 uL Taq*<br>2 uL Template DNA**<br>17.75 uL H2O               | final extension)                                                                                                                                        | and Hester<br>1990       |  |
| Oomycetes      | Oom1f  | 5'-GTGCGAGACCGATAGCGAACA-3'        | 16 bp   | 2.5 uL 10x Buffer*<br>0.5 uL 20uM dNTPs<br>0.625 uL 20uM Oom1f<br>0.625 uL 20uM Oom1r | Initial denaturation: 94 °C for 5<br>min, 30 cycles, denaturation: 94 °C<br>for 30 s, annealing: 58.4 °C for 30<br>s, extension: 72 °C for 30 s (10 min | Arcate et                |  |
| (Second Round) | Oom1r  | Oom1r 5'-TCAAAGTCCCGAACAGCAACAA-3' |         | 0.5 uL Taq*<br>1 uL Template DNA**<br>19.25 uL H2O                                    | final extension)                                                                                                                                        | al. 2006                 |  |

\*Roche Expand High Fidelity PCR System \*\*DNA was diluted to 5-10 ng per reaction

|                 | Native mean  | Non-native mean | Coefficient      | P-value |
|-----------------|--------------|-----------------|------------------|---------|
| Soil N          | 0.52 %       | 0.63 %          | T = 0.492        | 0.623   |
| Soil P          | 3.45 mg / kg | 8.98 mg / kg    | T = 1.089        | 0.29    |
| Soil Saturation |              |                 | $\chi^2 = 11.99$ | 0.005   |

Table S3: comparisons of environmental characteristics of patches by lineage.

Table S4: Results of 2-way ANOVA (Site x Lineage) for selected fungal response variables. Alpha diversity, community composition, phylum relative abundance, and genus relative abundance included. Bold indicates significance at the  $\alpha$ <0.05 level. Italics indicates significance at the  $\alpha$ <0.1 level.

|                  |    | Line  | eage   | S    | iite   | Site X Lineage |       |  |
|------------------|----|-------|--------|------|--------|----------------|-------|--|
|                  | df | F     | Р      | F    | Ρ      | F              | Р     |  |
| Colonization     | 35 | 24.57 | <0.001 | 6.52 | <0.001 | 1.78           | 0.122 |  |
| Shannon          | 31 | 0.02  | 0.894  | 1.58 | 0.178  | 0.80           | 0.596 |  |
| Chao             | 31 | 0.14  | 0.708  | 2.00 | 0.09   | 0.76           | 0.621 |  |
| Sobs             | 31 | 0.08  | 0.785  | 1.49 | 0.208  | 1.00           | 0.450 |  |
| PCoA Axis 1      | 31 | 0.68  | 0.416  | 5.08 | <0.001 | 1.14           | 0.362 |  |
| PCoA Axis 2      | 31 | 0.18  | 0.678  | 2.56 | 0.033  | 0.59           | 0.761 |  |
| Asco RA          | 31 | 0.34  | 0.566  | 2.16 | 0.066  | 1.38           | 0.250 |  |
| Basio RA         | 31 | 0.19  | 0.669  | 1.27 | 0.295  | 1.03           | 0.430 |  |
| Unclass RA       | 31 | 0.00  | 0.945  | 1.95 | 0.09   | 0.36           | 0.919 |  |
| Zygomycota RA    | 31 | 1.13  | 0.296  | 0.66 | 0.704  | 0.62           | 0.735 |  |
| Rozellomycota RA | 31 | 0.00  | 1.000  | 0.53 | 0.801  | 1.25           | 0.306 |  |
| Glomero RA       | 31 | 0.84  | 0.366  | 1.35 | 0.262  | 2.96           | 0.017 |  |
| Gib RA           | 31 | 0.58  | 0.452  | 2.64 | 0.029  | 0.61           | 0.746 |  |
| Micro RA         | 31 | 0.03  | 0.862  | 0.86 | 0.548  | 0.88           | 0.536 |  |
| Tetracladium RA  | 31 | 0.23  | 0.638  | 1.42 | 0.234  | 1.25           | 0.304 |  |
| Stagonospora RA  | 31 | 0.84  | 0.368  | 3.55 | 0.006  | 0.38           | 0.907 |  |
| Cadophora RA     | 31 | 0.45  | 0.509  | 0.56 | 0.781  | 0.78           | 0.607 |  |
| Path RA          | 31 | 1.20  | 0.281  | 3.45 | 0.008  | 2.10           | 0.073 |  |
| Sap RA           | 31 | 1.36  | 0.253  | 5.00 | <0.001 | 2.48           | 0.038 |  |
| Path-Sym RA      | 31 | 0.13  | 0.717  | 0.90 | 0.516  | 1.11           | 0.383 |  |
| Symbiotroph RA   | 31 | 0.02  | 0.889  | 1.09 | 0.391  | 2.27           | 0.055 |  |

Table S5: Results of ANCOVA for selected fungal response variables. Variables with a significant site effect in ST3 were included for ANCOVA analysis with environmental variables. Bold indicates significance at the  $\alpha$ <0.05 level. Italics indicates significance at the  $\alpha$ <0.1 level.

|              |             |             | r2          |        | Line  | eage   | Satu  | ration | Sc    | vil P  | So   | il N  | Sat  | ::Lin |
|--------------|-------------|-------------|-------------|--------|-------|--------|-------|--------|-------|--------|------|-------|------|-------|
|              | Residual df | Multiple r2 | Adjusted r2 | Ρ      | F     | Р      | F     | Р      | F     | Р      | F    | Р     | F    | Р     |
| Colonization | 31          | 0.7073      | 0.6601      | <0.001 | 19.97 | <0.001 | 23.47 | <0.001 | 29.67 | <0.001 | 1.24 | 0.274 | 0.58 | 0.454 |
| Shannon      | 31          | 0.1347      | -0.0048     | 0.454  | 0.16  | 0.685  | 4.26  | 0.047  | 0.07  | 0.790  | 0.10 | 0.756 | 0.22 | 0.638 |
| Chao         | 31          | 0.2068      | 0.0789      | 0.185  | 2.09  | 0.158  | 4.30  | 0.046  | 0.80  | 0.378  | 0.22 | 0.646 | 0.67 | 0.418 |
| Sobs         | 31          | 0.1319      | -0.0081     | 0.468  | 1.24  | 0.275  | 2.52  | 0.123  | 0.42  | 0.524  | 0.11 | 0.741 | 0.43 | 0.517 |
| PCoA Axis 1  | 31          | 0.4133      | 0.3186      | 0.004  | 0.04  | 0.840  | 21.10 | <0.001 | 0.25  | 0.620  | 0.44 | 0.511 | 0.01 | 0.940 |
| PCoA Axis 2  | 31          | 0.1315      | -0.0085     | 0.470  | 2.16  | 0.152  | 0.01  | 0.935  | 0.10  | 0.753  | 2.13 | 0.155 | 0.29 | 0.591 |
| Asco RA      | 31          | 0.1477      | 0.0103      | 0.393  | 0.35  | 0.558  | 2.72  | 0.109  | 1.72  | 0.200  | 0.00 | 0.965 | 0.58 | 0.452 |
| Gib RA       | 31          | 0.2101      | 0.0827      | 0.177  | 0.91  | 0.347  | 6.96  | 0.013  | 0.31  | 0.583  | 0.05 | 0.823 | 0.02 | 0.901 |
| Stag RA      | 31          | 0.2119      | 0.0848      | 0.172  | 0.06  | 0.804  | 6.83  | 0.014  | 0.04  | 0.837  | 0.37 | 0.547 | 1.02 | 0.321 |
| Path RA      | 31          | 0.2053`     | 0.1617      | 0.061  | 0.53  | 0.471  | 9.13  | 0.005  | 1.76  | 0.194  | 0.51 | 0.480 | 0.01 | 0.944 |
| Sap RA       | 31          | 0.3817      | 0.2819      | 0.008  | 0.74  | 0.396  | 14.63 | <0.001 | 2.02  | 0.165  | 1.56 | 0.221 | 0.19 | 0.668 |

|                         |    | Lin   | eage  | S     | ite    | Site X Lineage |       |  |
|-------------------------|----|-------|-------|-------|--------|----------------|-------|--|
|                         | df | F     | Р     | F     | Р      | F              | Р     |  |
| Shannon                 | 33 | 1.83  | 0.185 | 12.98 | <0.001 | 2.32           | 0.046 |  |
| Chao                    | 33 | 1.03  | 0.318 | 2.84  | 0.020  | 1.62           | 0.163 |  |
| Sobs                    | 33 | 1.72  | 0.198 | 10.30 | <0.001 | 2.20           | 0.060 |  |
| PCoA Axis 1             | 33 | 0.01  | 0.913 | 44.76 | <0.001 | 1.19           | 0.338 |  |
| PCoA Axis 2             | 33 | 4.29  | 0.046 | 1.55  | 0.185  | 1.32           | 0.274 |  |
| Proteo RA               | 33 | 5.86  | 0.021 | 1.36  | 0.257  | 1.37           | 0.250 |  |
| Firm RA                 | 33 | 1.44  | 0.238 | 1.16  | 0.352  | 1.70           | 0.143 |  |
| Bacteroidetes RA        | 33 | 8.05  | 0.008 | 9.40  | <0.001 | 1.83           | 0.114 |  |
| Actinobacteria RA       | 33 | 0.26  | 0.611 | 2.36  | 0.045  | 4.46           | 0.001 |  |
| Pseudomonas RA          | 33 | 7.16  | 0.012 | 5.55  | <0.001 | 2.84           | 0.020 |  |
| Flavobacterium RA       | 33 | 0.95  | 0.337 | 5.66  | <0.001 | 1.78           | 0.125 |  |
| Janthinobacterium RA    | 33 | 0.30  | 0.590 | 2.30  | 0.050  | 0.35           | 0.924 |  |
| Rhizobium RA            | 33 | 5.83  | 0.021 | 7.68  | <0.001 | 1.60           | 0.70  |  |
| Duganella RA            | 33 | 3.18  | 0.084 | 1.79  | 0.123  | 0.15           | 0.992 |  |
| Trichococcus RA         | 33 | 0.91  | 0.346 | 1,72  | 0.139  | 1.69           | 0.147 |  |
| Aeromonas RA            | 33 | 1.73  | 0.197 | 1.99  | 0.086  | 1.38           | 0.245 |  |
| Aerobe RA               | 33 | 0.01  | 0.917 | 3.88  | 0.003  | 3.85           | 0.004 |  |
| Facultative Anaerobe RA | 33 | 0.41  | 0.528 | 4.88  | <0.001 | 1.78           | 0.124 |  |
| Anaerobe RA             | 33 | 0.226 | 0.616 | 1.88  | 0.105  | 2.60           | 0.030 |  |

Table S6: Results of 2-way ANOVA (Site x Lineage) for selected bacterial response variables. Alpha diversity, community composition, phylum relative abundance, and genus relative abundance included. Bold indicates significance at the  $\alpha$ <0.05 level. Italics indicates significance at the  $\alpha$ <0.1 level.

Table S7: Results of ANCOVA for selected bacterial response variables. Variables with a significant site effect in ST5 were included for ANCOVA analysis with environmental variables. Bold indicates significance at the  $\alpha$ <0.05 level. Italics indicates significance at the  $\alpha$ <0.1 level.

|                         |             | r2          |                |        | Lineage      |       | Saturati | Saturation |      | Soil P |      | Soil N |      | t:Lin |
|-------------------------|-------------|-------------|----------------|--------|--------------|-------|----------|------------|------|--------|------|--------|------|-------|
|                         | Residual df | Multiple r2 | Adjusted<br>r2 | Р      | F            | Р     | F        | Р          | F    | Р      | F    | Р      | F    | р     |
| Shannon                 | 32          | 0.189       | 0.0623         | 0.220  | 0.04         | 0.841 | 2.57     | 0.119      | 1.15 | 0.290  | 3.48 | 0.071  | 0.21 | 0.650 |
| Chao                    | 32          | 0.1677      | 0.0376         | 0.293  | 2.33         | 0.137 | 0.28     | 0.601      | 2.19 | 0.149  | 1.63 | 0.211  | 0.02 | 0.877 |
| Sobs                    | 32          | 0.164       | 0.0334         | 0.307  | 0.04         | 0.840 | 1.43     | 0.240      | 2.03 | 0.164  | 2.73 | 0.108  | 0.05 | 0.830 |
| PCoA Axis 1             | 32          | 0.4889      | 0.4091         | <0.001 | 0.01         | 0.910 | 26.37    | <0.001     | 0.53 | 0.471  | 3.22 | 0.082  | 0.48 | 0.494 |
| PCoA Axis 2             | 32          | 0.3694      | 0.2709         | 0.009  | 4.92         | 0.034 | 4.62     | 0.039      | 0.32 | 0.574  | 7.47 | 0.010  | 1.41 | 0.244 |
| Proteo RA               | 32          | 0.1479      | 0.0147         | 0.374  | 3.89         | 0.057 | 0.36     | 0.555      | 0.13 | 0.722  | 1.16 | 0.290  | 0.02 | 0.891 |
| Firm RA                 | 32          | 0.1334      | -0.002         | 0.442  | 0.85         | 0.363 | 0.05     | 0.823      | 0.34 | 0.565  | 3.09 | 0.088  | 0.60 | 0.444 |
| Bacteroidetes RA        | 32          | 0.1312      | -0.005         | 0.453  | 2. <b>99</b> | 0.094 | 1.39     | 0.247      | 0.05 | 0.822  | 0.26 | 0.615  | 0.14 | 0.706 |
| Actinobacteria RA       | 32          | 0.122       | -0.015         | 0.500  | 0.00         | 0.987 | 0.04     | 0.834      | 0.03 | 0.856  | 0.23 | 0.631  | 4.13 | 0.050 |
| Pseudomonas RA          | 32          | 0.1561      | 0.0242         | 0.339  | 1.74         | 0.197 | 3.48     | 0.071      | 0.33 | 0.570  | 0.37 | 0.547  | 0.00 | 0.959 |
| Flavobacterium RA       | 32          | 0.114       | -0.0245        | 0.542  | 1.67         | 0.206 | 1.90     | 0.177      | 0.00 | 0.957  | 0.01 | 0.920  | 0.53 | 0.472 |
| Janthinobacterium RA    | 32          | 0.2577      | 0.1418         | 0.076  | 0.08         | 0.773 | 3.66     | 0.065      | 2.85 | 0.101  | 4.01 | 0.054  | 0.50 | 0.483 |
| Rhizobium RA            | 32          | 0.319       | 0.2126         | 0.025  | 2.42         | 0.130 | 9.58     | 0.004      | 0.21 | 0.652  | 0.46 | 0.504  | 2.33 | 0.137 |
| Duganella RA            | 32          | 0.1156      | -0.0226        | 0.534  | 3.12         | 0.087 | 0.11     | 0.739      | 0.05 | 0.831  | 0.90 | 0.350  | 0.00 | 0.978 |
| Trichococcus RA         | 32          | 0.1866      | 0.0595         | 0.228  | 1.28         | 0.267 | 0.58     | 0.453      | 0.31 | 0.584  | 3.73 | 0.062  | 1.45 | 0.237 |
| Aeromonas RA            | 32          | 0.2406      | 0.122          | 0.101  | 2.06         | 0.161 | 1.33     | 0.257      | 0.37 | 0.546  | 4.57 | 0.040  | 1.80 | 0.189 |
| Aerobe RA               | 32          | 0.1733      | 0.0413         | 0.272  | 0.12         | 0.729 | 2.37     | 0.133      | 0.37 | 0.549  | 3.83 | 0.059  | 0.02 | 0.884 |
| Facultative Anaerobe RA | 32          | 0.1324      | -0.0032        | 0.447  | 0.01         | 0.943 | 3.34     | 0.077      | 0.08 | 0.781  | 0.28 | 0.603  | 1.18 | 0.285 |
| Anaerobe RA             | 32          | 0.1558      | 0.0239         | 0.340  | 0.27         | 0.604 | 0.58     | 0.453      | 0.27 | 0.608  | 3.56 | 0.068  | 1.23 | 0.276 |

Table S8: Results of 2-way ANOVA (Site x Lineage) for selected oomycete response variables. Alpha diversity, community composition, and genus relative abundance included. Bold indicates significance at the  $\alpha$ <0.05 level. Italics indicates significance at the  $\alpha$ <0.1 level.

|                |    | Line | eage  | S    | ite   | Site X Lineage |       |  |
|----------------|----|------|-------|------|-------|----------------|-------|--|
|                | df | F    | Р     | F    | Р     | F              | Р     |  |
| Shannon        | 32 | 1.97 | 0.170 | 0.09 | 0.997 | 0.14           | 0.990 |  |
| Chao           | 32 | 3.76 | 0.061 | 0.18 | 0.980 | 0.27           | 0.944 |  |
| Sobs           | 32 | 4.22 | 0.048 | 0.16 | 0.985 | 0.08           | 0.998 |  |
| PCoA Axis 1    | 32 | 1.44 | 0.239 | 1.47 | 0.219 | 2.65           | 0.033 |  |
| PCoA Axis 2    | 32 | 0.48 | 0.492 | 1.03 | 0.422 | 0.72           | 0.637 |  |
| Pithium RA     | 32 | 0.10 | 0.750 | 1.79 | 0.132 | 0.82           | 0.563 |  |
| Uncultured RA  | 32 | 0.09 | 0.764 | 1.79 | 0.133 | 0.82           | 0.560 |  |
| Phytopthora RA | 32 | 0.78 | 0.384 | 0.69 | 0.656 | 1.11           | 0.376 |  |
| Lagena RA      | 32 | 0.05 | 0.820 | 0.51 | 0.797 | 0.70           | 0.650 |  |
| Saprolegnia RA | 32 | 0.22 | 0.646 | 1.38 | 0.252 | 0.80           | 0.580 |  |
| Albugo RA      | 32 | 0.49 | 0.491 | 0.80 | 0.580 | 0.80           | 0.580 |  |

Table S9: Results of ANCOVA for selected oomycete response variables. Variables with a significant site effect in ST7 were included for ANCOVA analysis with environmental variables. Bold indicates significance at the  $\alpha$ <0.05 level. Italics indicates significance at the  $\alpha$ <0.1 level.

|             |             | r2          |                |       | Lineage |       | Saturation |       | Soil P |       | Soil N |       | Sat:Lin |       |
|-------------|-------------|-------------|----------------|-------|---------|-------|------------|-------|--------|-------|--------|-------|---------|-------|
|             | Residual df | Multiple r2 | Adjusted<br>r2 | Р     | F       | Р     | F          | Р     | F      | Р     | F      | Р     | F       | Р     |
| Shannon     | 29          | 0.1662      | 0.0224         | 0.354 | 1.84    | 0.185 | 0.86       | 0.363 | 2.14   | 0.154 | 0.41   | 0.525 | 0.53    | 0.474 |
| Chao        | 29          | 0.2521      | 0.1232         | 0.116 | 4.64    | 0.040 | 0.16       | 0.691 | 4.57   | 0.041 | 0.40   | 0.532 | 0.00    | 0.949 |
| Sobs        | 29          | 0.2545      | 0.126          | 0.126 | 6.24    | 0.018 | 0.25       | 0.621 | 2.73   | 0.109 | 0.68   | 0.416 | 0.00    | 0.946 |
| PCoA Axis 1 | 29          | 0.2902      | 0.1678         | 0.064 | 4.89    | 0.035 | 4.11       | 0.052 | 1.05   | 0.314 | 0.93   | 0.343 | 0.87    | 0.358 |
| PCoA Axis 2 | 29          | 0.1495      | 0.0028         | 0.424 | 0.01    | 0.938 | 1.93       | 0.176 | 0.20   | 0.656 | 2.62   | 0.116 | 0.34    | 0.565 |

## SUPPLEMENTAL FIGURES



Number of Sequences Sampled



**Fig. S1:** a) Rarefaction curve and b) Good's Coverage by site for bacteria. Colors represent sites (blue = BL, red = CB, green = CH, coral = CM, black = CR, brown = PLB, gray = Rt2, purple = SB).



**Fig. S2:** a) Rarefaction curve and b) Good's Coverage by site for fungi. Colors represent sites (blue = BL, red = CB, green = CH, coral = CM, black = CR, brown = PLB, gray = Rt2, purple = SB).



a)

Number of Sequences Sampled



**Fig. S3:** a) Rarefaction curve and b) Good's Coverage by site for oomycetes. Colors represent sites (blue = BL, red = CB, green = CH, coral = CM, black = CR, brown = PLB, gray = Rt2, purple = SB).



Fig. S4: Principle component analysis for environmental variables at all sampling sites Tissue nutrients not shown because there was low variability by sample (Supplementary Table 1).



Fig. S5: Linear regressions of environmental variable against all Fungal response variables included in the ANCOVA analysis. Regression lines indicate significant relationship at the  $\alpha$ <0.1 level.

Fig. S5 (cont): Linear regressions of environmental variable against all Fungal response variables included in the ANCOVA analysis. Regression lines indicate significant relationship at the  $\alpha$ <0.1 level.



Fig. S6: Linear regressions of environmental variable against all bacterial response variables included in the ANCOVA analysis. Regression lines indicate significant relationship at the  $\alpha$ <0.1 level.



Fig. S6 (cont): Linear regressions of environmental variable against all bacterial response variables included in the ANCOVA analysis. Regression lines indicate significant relationship at the  $\alpha$ <0.1 level.





Fig. S6 (cont): Linear regressions of environmental variable against all bacterial response variables included in the ANCOVA analysis. Regression lines indicate significant relationship at the  $\alpha$ <0.1 level.

Fig. S6 (cont): Linear regressions of environmental variable against all bacterial response variables included in the ANCOVA analysis. Regression lines indicate significant relationship at the  $\alpha$ <0.1 level.





Fig. S7: Linear regressions of environmental variable against all oomycete response variables included in the ANCOVA analysis. Regression lines indicate significant relationship at the  $\alpha$ <0.1 level.



Fig. S8: Relative abundance of bacterial genera by lineage. Significance tested by ANOVA

Relative abundance

Fig.S9: Relative abundance of fungal phyla by plant lineage. Significance determined by ANOVA



Relative abundance

Fig.S10: Relative abundance of Fungal genera by plant lineage. Significance determined by ANOVA



Relative abundance

Fig. S11: Relative abundance of Oomycete genera by plant lineage. Significance determined by ANOVA



Relative abundance

### LITERATURE CITED

- Arcate, J. M., M. A. Karp, and E. B. Nelson. 2006. Diversity of Peronosporomycete (oomycete) communities associated with the rhizosphere of different plant species. Microbial Ecology 51:36–50.
- Gardes, M., and T. D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Molecular Ecology 2:113–118.
- Lane, D. J. 1991. Nucleic acid techniques in bacterial systematics. Pages 115–175 in E. Stackebrandt and M. Goodfellow, editors. Nucleic Acid Techniques in Bacterial Systematics. New York.
- Vilgalys, R., and M. Hester. 1990. Rapid genetic identification and mapping of several *Cryptococcus* species. Journal of Bacteriology 172:4238–4246.
- White, T. J., T. Bruns, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315–322 *in* M. Innis, D. Gelfand, J. Sninsky, and T. White, editors. PCR protocols: a guide to methods and applications. Academic Press, Inc., New York.