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SUMMARY
It is shown that an asymptotically precise one-term correction to the asymptotic dis-
tribution function of the classical Cramér-von Mises statistic approximates the exact
distribution function remarkably closely for sample sizes as small as 7 or even smaller. This
correction can be quickly evaluated, and hence it is suitable for the computation of
practically exact p-values when testing simple goodness of fit. Similar findings hold for
Watson’s rotationally invariant modification, where a sample size of 4 appears to suffice.
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1. ASYMPTOTIC THEORY FOR u?

Let Xi, ... X, be independent identically distributed random variables with
pertaining sample distribution function F,(x) =n"'#{1 <k <nm X, <x},x€R.
The Cramér-von Mises statistic for testing whether the random variables have
distribution function F{ ), assumed to be a continuous function on the real line R, is

Wr=n r {Fy(x) - Fx)}’ dF(x) =n JI{G,,(s) — s} ds,
—00 0

where G,(s)=n"'#{1 <k <n: U <s}, 0<s < 1, is the empirical distribution func-
tion of the independent random variables U, = F(X Dy - - - Uy = F(X,), uniformly
distributed in the interval [0, 1]. If Uy, < ... < Up, denote the corresponding
uniform [0, 1] order statistics, then the latter form can be integrated out to obtain

1 2k—1 n
—_ < - = .. .
12n + E ( ) <3 n=12, ... (1.1)

where the bounds are achieved with probability 0, the upper bound n/3 when either
U, = 0 or Uy, = 1. Hence for the distribution functions V,(x) = P{w? < x}, x € R,
we have V,(x) =0 if x < 1/12n and V,(x) = 1 if x > n/3.

Statistics similar to w2 were proposed by Cramér (1928), pages 145-147, and von
Mises (1931), pages 316-335. The distribution-free variant ? itself was introduced
by Smirnov (1936, 1937), giving credit to V. 1. Glivenko in a footnote on p.974 in
the 1937 paper. With i denoting the imaginary unit, Smirnov proved that, for all
teR,
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: : N (=2in'2 "
lim [E{exp(inw)}] = lim { Jl/m exp(irx) dV,,(x)} = {W} = (1)

= r exp(itx) dV(x). (1.2)
0

A related result is by von Mises (1947) for his version of w?. Smirnov’s result in
equation (1.2) implies that lim, . {V,(x)} = V(x), x € R, where V(x) =0 if x <0,
and () was also inverted by Smirnov (1936, 1937), obtaining the first formula

V) =1 —Zi(* 1y rk" exp(—#x/2) .
T

@k—1yr (—u sin u)'?

1 XTk+3) 12 (4k + 1)? (4k + 1)?
=7r3/2x1/2; o G+ D e"p{” 16x K‘/“{ 16x

2L wf =3 (4k + 1) 4k + 1
—ﬂl/le,.a;(—l)(k)em{—w D_yp 257 ) x>0,

(1.3)

where I'(y) = [$w~! exp(—u)du, y > 0, is the usual gamma function and X,(),
v > —3, is a modified Bessel function of the third kind (Watson (1966), p.172):

7l.I/Zyu J'OO

T +D o exp (— y cosh u) sinh® (u) du, y >0, (1.4)

K.(y) =

and D,(u), u € R, is the parabolic cylinder function of index v € R (Abramowitz and
Stegun (1973), p. 687). The second formula is due to Anderson and Darling (1952),
who also identified ¥() as the distribution function of the random variable u? =
|4 B¥(s)ds, where {B(s): 0 < s < 1} is a Brownian bridge, and compiled the first
table of quantiles of V. The third line in equation (1.3) results from the second by the
case / = 1 of the identity

ef =12\ _ Tk +1/2) B B
(—1)( ; )——k!I‘(l/Z)’ k=0,1,2,..., 1=1,2, ... (1.5)

and that I'(1) = 7'/, and by the first of the identities D_;/2(2u"/2) = u!/*Kya(u)/7'/?,

3/4
Dy (2u'?) = %/—2 {Kija(w) + K3/4(w)},
(1.6)

w5/
Dsp(2u'?) = —— {2K1/a(u) + 3K3/4(u) — Ks/a(u)}
Y

for all u > 0 (Abramowitz and Stegun (1973), p. 692). The most extensive table for
the values of V() to date has been computed by Martynov (1978), pages 63—64.
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For possible refinements of the limit theorem A, = sup{|V,(x) — V(x)|: x € R}
— 0, Darling (1960) proposed, without proof, the expansion E{exp(-zw})}
~ E{exp (—zw?)} + a(z)n™", z > 0, where extending ¢( ) in equation (1.2) for com-
plex arguments and setting (z) = ¢(i2),

1

az) = 1l2 [E(z) - { 3+ 572 cosh (22)1/2} £@) - { % + %cosh (8z)‘/2} gs(z)] . QD

Then, in the period 1965-74, improving results for the rate of convergence were
obtained in the form A, = O(r,), with r, = (log n)~"/* by Kandelaki, r, = n"'/1® and
r, =nV/¢ in two papers by Sazonov, r, = (log n)**n~'/ by Rosenkrantz, r, =
(log n)*/*n~1/4 by Kiefer, r, = (log n)**n~"/* by Nikitin, r, = n*"!/ by Orlov, for any
e>0, and finally r, = (log m)n~'/? in Csérgé (1976) that contains the seven
references. The last r, is still far from accurate. Csorgé (1975, 1976) also established
an expansion for E{exp(—zw?)} with a formal inversion for ¥,(). The former is
claimed for all complex z with real part R(z) > 0. However, an inspection of the
proof shows that it holds at best for real z > 0. As a result of this, some terms are
missing in the expansion for V().

Finally, the expansion

Vo(x) = V(x) + Zr:wj(x)n'j +0m™" ), x€R,
=

was established by Gotze (1979) for every fixed integer r > 1 and for some coefficient
functions ¥,( ), ¥2(), . . ., where the remainder term is uniform in x. Whereas some
basic techniques for estimating the remainder term are due to van Zwet (1977),
Gétze’s basic innovation was the application of powerful Hilbert space ideas. In
particular, A, = O(1/n) as n — oo, and this rate is unimprovable. For closely related
theoretical results the reader is referred to Bentkus and Zitikis (1988), Zitikis (1988,
1989) and Bentkus et al. (1993).

Gétze (1979) provided a general mathematical description of the coefficients, but
the theoretical determination of 1,( ), 13(), . . . in terms of numerically computable
functions appears to be hopeless. Therefore, we must resort to the one-term special
case

Vi(x) = V(x) + ’p‘rfx) + o(%), x€R. (1.8)

We shall claim that this should be sufficient for practical purposes. For this, with ¢( )
as in equation (1.2), Gotze determines the Fourier-Stieltjes transform 4,(f) =

[ exp (tx) dupy (x) as

1 —2it 1, 1 . . 7cosh(=2in"? ,

D) = 75 90 — D7 Y0 — 3 £ — 5 V() - ——2—— &) (19)
for all t € R. For later reference, we note that if we extend Darling’s function a( ) in
equation (1.7) by considering a(z), R(z) = 0, given by his formula, and put ¥(¢) =
a(—i?) then 9() # ¥,() on R. Therefore, there is no theoretical basis for using an
inverted form of Darling’s (1960) heuristic approximation for the approximation of

V.0
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As stated by Erdélyi et al. (1954), p. 246, equation (9), or Oberhettinger and Badii
(1973), p.259, equation (5.94), for all complex z with R(z) > 0 and any constants
A>0and v eR,

2712 —A? A
/2y _ =
Z’exp(—Az/") = L exp(— zx){ pery i exp( 8x )D20+1(21/2x1/2)}dx-

Using this, Gotze (1979) also gave a formula for ¥(x) + v(x)n~! in equation (1.8).
However, his inversion is in error. For the leading term his formula gives half of what
is in the third line of equation (1.3), and other terms also turned out to be similarly
incorrect. Hence we must reinvert equation (1.9) here. Following Anderson and
Darling’s (1952) example 1, for all the terms in equation (1.9), with the simplification
provided by the inversion formula above, we obtain

i) =75 V) ~ g 3/42( 1)( %) P{-(“%ﬂ}um(i‘gxf—j)
1447:/2x3/42( 1 (‘%) { (41«1;1) }sz(“fx—TJ)
1447r17/2x3/4z( I (—k%) exp{ (4]::5) }Dl/z(%-:'/;>
7z7ruzxs/42( (7 %) (4k+1)} 3/2(521_‘:;_/21)

for all x > 0. Although this formula lends itself to numerical computation in
principle, most software packages do not contain built-in routines for the functions
D,(), whereas many such packages have routines for the Bessel functions K,() in
equation (1.4). Using now the identities (1.5) and (1.6) and a standard property of the
gamma function,

T(k+3)Ax(x) | Bu(x) } x>0, (1.10)

’(/)1(X) 12 V( ) +=75 3/2 Zk' { 576x3/2 + 2304x5/2

by lengthy but straightforward algebra, where, setting G(y) = — exp ( — »){Ki/4(»)+
Ks/4(y)} and H(y) = exp (— p){Ks/4(y) — 3 K3/a(y) — 2K174(»)} for all y > 0, we have

_ 32 o f (4K + 1y } 32 { (4k + 3)° }
Ai(x) =74k + 1) G{ RT3 +16(4k +3)"° G Tex
32 - f (4k + 5) }
+7(4k +5) G{ ==
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and

2 2
Bi(x)= I‘(k + )(4k+ 1Y*H {(4""1:;) } +24 I‘(k+ )(4k+ 5Y*H {(4"1%5)}

2. EXACT THEORY FOR u?

Introduce the simplex S, = {(x1, . . ., X,): 0 < x; < ... < x, < 1}, sitting in the
unit cube of the n-dimensional space R" and let B.{c, p} denote the n-dimensional
closed ball with centre ¢ € R” and radius p > 0. Let vol,[ | denote the n-dimensional

Lebesgue measure. Since the joint density function of Uy, . . ., Uy, is n! on S, and 0
otherwise, it follows from equation (1.1) that
Va(x) = n!j - J dx; . .. dx, = n!vol,[S, N B,{cs, pn(%)}] Q.1
SnNBn{cn.pn(x)}

for every x > 0, where ¢, = (1/2n, 3/2n, . . ., 2n —1)/2n) and p,(x) = {max (0, x—
1/12n)}172, Thls was noticed by Marshall (1958) who has given exact formulae for
V1() and ¥3(), and some indication for ¥3(), where the analytical details are already
quite formidable.

Little is known analytically about V,() for n > 3. Pearson and Stephens (1962)
have given the first four moments for any ». Thelr and Tiku’s (1965) approximations
for the exact quantiles are discussed by Stephens and Maag (1968), whose lower tail
probabilities are partially reproduced in equation (2.4) later. The approximate
quantiles in Pearson and Stephens (1962), Stephens and Maag (1968) and Stephens
(1970) are discussed by Knott (1974). Prokhorov (1968) proved that sup{[1 — ¥;(x)]:
n > 1} < Cexp(—Kx) for all x > 8/n% ~ 0.8106, where C = 1 + exp (5/12)/m/2 ~
1.3415 and K = 3/(32exp 2) = 0.0126. Since Cexp (— Kx) < 1 only for x > 23.3165,
this bound is non-trivial only for » > 70. But, it turns out, 1 — V,(x) is practically 0
for any x > 1, say, for n so large.

The deﬁmtlve paper on the distribution of w? for small sample sizes is by Knott
(1974). His first step determines @,(f) = E{exp (1tw2)} numerically for a large and
sufficiently fine grid of ¢-values, based on equation (1.1) and numerical integration in
the resulting recursion

Lijni(t, x) = (k+1) J" exp {lt (J’ - 2k2—:1) } L(t, y)dy,

teR, xe0,1], k=1,...,n—1,
giving ¢,(f) = exp (it/12n) I ,(¢, 1), where

X ) 1 2
Lt x)= Jo exp {1t (y — Zz-) } dy
and

X Xk x k _
I,,At,x):k!JJ ...Jzexp{itZ(x,—ijn—l) }dxl...dxk, k=2,...,n,
0

0J0 j=1

and where we also correct some misprints in formulae (3.4)—(3.6) in Knott (1974). A
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more general form of this recursion, attributed to Knott, is also given by Durbin
(1974), pages 27-28. The second step then uses the calculated complex values of
() in a numerical inversion formula to calculate a distribution function ¥,(}; ),
depending on a parameter A > 0, for which lim,_ ,.{¥,(}; x)} = Vi(x), x €R. A
suitable choice of A > 0 yields a numerical approximation of ¥,(). Knott has
accomplished this programme for n=2, ..., 7. With the choice of A =2, his
formula for the approximation of ¥, when4 <n<7is

200 .
Vi)~ V) = 4 2 M {w(’%)} 0<x<2, (22
j_l

where V,(x) < V¥(x) < Va(x) +1 = V,(2) for all 0 < x < 2. The functions V() and
V,() are also available from Marshall (1958) exactly, allowing for the misprint in
V() spotted by Marshall and reported in a footnote in Pearson and Stephens (1962),
p. 400.

Assuming that Darling’s approximation above equation (1.7) is valid, and in fact
that it holds for all complex z with R(z) = 0, Knott (1974) supposed that for n > 8,
say, o(t) +9(On! is a good approximation of ¢,(¢), t € R, where 9(¢) = a(—is).
So he also inverted ¢()+ Y¥()n~!, using the second step above, to obtain an
approximation to ¥,( ) for n > 8. As pointed out following equation (1.9), the correct
function to do this is not () +9( ! but () +9,()n~!. This means that all
Knott’s (1974) considerations in his section 4, including hlS Table 1 and its
discussion, are in error, as are all the percentage points given for n =8, 9, 10, 20, 50,
200 and 1000 in his Table 2 in section 5.

Returning to exact distributions, set Ax(c, p) = voli[Sk N Bx{c, p}] for some ¢ € R*
and p>0,k=1,2,...,so that V,(x) = n! A,{cs, pu(x)}, x = 0, by equation (2.1).
Let ¢y = c,—14 be the orthogonal projection of ¢, onto the (n — 1)-dimensional
hyperplane in which the kth face S,-; x of S, lies, let oy = a,—1 4 be the n-dimensional
distance between ¢, and ¢ = ¢p_1 4, and put A,y x(ck, p) = VOly_1[Sp-1x N Bu-1{ck, p}]
forany p=0,k=1, ..., n+1. Our method of computing ¥,() is based on the
following recursive formula given in Cs6rgé and Stacho (1980): for every integer
n>=>land x >0,

/2 ntl @ a2
An{Cny Pu(3)} = p:(x)(F—(n%_-i—-_ﬂ— S J;’" A1 k[Cks {inyil o)} dy).
k=1

2.3)

The same applies to all of A, ,k{ck, pe(»)} for the radii m(y) =
{max (0, y* — o:,{)}l’2 0<y<px),k=1,... n+1, reducing the dimension to
n—2, and so on.

Of course, we recognize that

pr(x)n/?

.I_m = VOl,,[Bn{cm pn(x)}]’

and all the integrals in equation (2.3) are 0 if x is so small that p,(x) < ok = Ap-14,
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k=1,... n+1. Itis easy to see that, in a suitable listing of the faces, a,_1; =
On12=1/2nand a,_13= ... = @p_1an = 1/ny/2. Thus, solving p,(x) = 1/2n, it
follows that
nl /2 1 \"? 1 n+3
n = - , — € XKL . 2.4
W) =tz (x 12n) 12n 7S T2m 4

Finally, let d(n) = [n/2] — 1, where [n/2] is the smallest integer not smaller than
n/2. The corollary in Csorgd and Stacho (1980), or its proof as applied to formula
(2.3), implies that function V() is exactly d(n) times continuously differentiable on R.
That the result is unimprovable follows from equation (2.4). Generalizations can be
found in Bentkus and Zitikis (1988) and Bentkus et al. (1993). (The original result is
incorrectly stated in Csorgé and Staché (1980), claiming that ¥,() is |{n/2] times
continuously differentiable, where |n/2] is the usual integer part of n/2.) Note that
d(1) = d(2) =0, so ¥V, and ¥V, are only continuous, d(3) = d(4) = 1, d(5) = d(6) = 2,
d(7) = d(8) = 3, and so on.

3. RESULTS AND DISCUSSION FOR u?

The linking approximation (1.8) requires only the direct computation of the
functions ¥(x) and 1,(x). Working with the second formula in equation (1.3) and with
equation (1.10), large precision numerical stability sets in for any x > 0, using just a
few terms of the infinite series. As a by-product, we found all five digits in Martynov’s
(1978) Table 1 to be precise for all 250 values ¥(0.000) = 0.00000, ¥1(0.005)=
0.00000, ¥(0.010)=0.00001, . . ., ¥(0.995)=0.99747, V(1.00)=0.99754, V(1.02) =
0.99779, . . ., ¥(1.98) = 0.99999 given there. In contrast, the integrations in the
geometric recursion (2.3) for the exact distribution function ¥,(x), 1/12n < x < n/3,
must be done numerically and each evaluation of the integrand then requires a further
numerical integration and so on. As discussed earlier, the integrands are not smooth
and we cannot determine in advance the points at which discontinuous derivatives
occur, so we can do no better than a crude trapezoidal rule for the numerical
integrations. The speed of the computation is heavily dependent on x. As x becomes
larger the ball intersects the simplex in an increasingly complicated way and the
recursive numerical integrations become more extensive.

The lower numbers in the double entries in Table 1 for n =2, . . ., 8 are obtained
by the exact geometric recursion described above, except for those printed in italics
or marked by an asterisk. For n = 2 we used Marshall’s (1958) explicit formula, with
the correction in Pearson and Stephens (1962) referred to earlier, and for certain
small values of p we used equation (2.4) directly. Whenever the numbers from the
geometric computation are present in Table 1, they agree with the exact results in
Table 2 of Knott (1974) for 2 < n < 7 and 0.01 < p < 0.99 within three units in the
fifth decimal place, except in a few cases of small x, where it was easy to see that
Knott’s numbers are incorrect since only the volume of the ball is needed. The
computational cost to achieve this accuracy became too great for the missing values,
so the italic numbers appearing in Table 1 are taken from Table 2 of Knott (1974),
which he obtained by using his formula (2.2) above. However, the accuracy of
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Knott’s computation is independent of p or x, and hence it can be safely supposed
that none of these italic numbers are in error, either, by more than three units in the
fifth decimal place. Whenever we decided to report one of Knott’s numbers, we
approached sufficiently close to it until it became clear that finer grids of the
numerical integrations and weeks of additional computer time would give that
number.

To check on this point further and to produce some more ‘exact’ values for
comparison for n =8, 9, 10, as well as a new column for the very extreme case of
p = 0.999 which is not covered by Knott (1974), we have also conducted a rather
large scale, and much cheaper, simulation study. For each n =2, . . ., 10 as sample
sizes, 99999 pseudo-independent replicas of w? were simulated and quantiles were
estimated from the sorted statistics. This was repeated 4000 times, over which these
quantiles were averaged to produce the final estimated quantiles. For p = 0.999 and
n=_§, 9, 10, these appear in Table 1 with four decimal places and marked by
asterisks. The standard error was no more than 0.00008 for p < 0.999 and no more
than 0.00024 for p = 0.999. The simulation results confirm all the exact numbers up
to n =8 in Table 1 to their fourth decimal.

For a given n and 0 < p < 1, the approximate p-quantile of w? provided by the
one-term linking approximation (1.8) is the x = x(n, p) for which n V(x) + ¥, (x) =
np. There is a unique root xp so that ¥(xo) = 0, ¥1(x) < 0if x < xo and ¥;(x) > 0 if
x > xo. We obtain xy = 0.26702 and py = V(x,) = 0.83208. So the py-quantiles given
by the approximation and by the asymptotic distribution are the same. If p < p,
then the approximation corrects the asymptotic p-quantile by producing a greater
value, and if p > p, then the corrected value is smaller than the asymptotic p-
quantile. The upper numbers in the double entries in Table 1 for n=2,.. ., 10
and the single entries for n > 20 are those obtained by the one-term hnkmg
approximation.

As can be seen from Table 1, the linking approximation agrees closely with the
exact values even for very small n. Fig. 1 shows the accuracy of this approximation
forn=2,3,4,5. We plot n{¥,(x) — V(x)} on the vertical axis to examine how closely
this is approximated by 11(x). For n = 7, the largest deviation between the exact and
the corrected asymptotic p-quantiles is 0.00016 for p < 0.9, and it is 0.00237 for
0.9 < p < 0.99. For large p the small error will lead to slightly conservative p-values.

4. WATSON'’S STATISTIC &2
Watson’s (1961) modification of the Cramér-von Mises statistic w? is

00 2
g=n [F,,(x) -Fw - [ B0 - F) dF(y)] dF),

for which, with the continuity assumption on F and the notation in Section 1,

1 1 & 2% — n
<= £ E -5) <5 n=L2...
on <S4 =1 n+Z<Uk’" ) ( Uk ) iz "=1b2
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Fig. 1. Comparison of the linking approximation to the exact distribution for w2: - =2y ,
n=3}--—n=4——n=S5 s $1(x)

The ‘correction for the mean’ makes > rotationally invariant in that, when it is
adapted for testing goodness of fit on the unit circumference of a circle, it is
independent of the origin of polar co-ordinates, the starting point for cumulating
distributions. Setting W,(x) = P{1? < x} and W(x) = P{s* < x}, where

2 = J; B(s)ds — { j: B(s) ds}2

for a Brownian bridge B() and x € R, Watson (1961) proved that
lim {W,(x)} = Wx) =1+2_ (-1exp(-2K’s"x),  x>0.
n—0o0 =1

A table for W() is given in Martynov (1978), p. 70.

Results on the exact distribution of 2 for a finite sample size n have been obtained
by Pearson and Stephens (1962), Stephens (1963, 1964, 1970) and Tiku (1965). These
approximations are either based on moments or are empirical. Of more importance
for our purposes is that, by an ingenious geometric insight, Stephens (1963, 1964)
could give exact formulae for W(), W3() and W,(). In contrast, again as a special
case of a complete asymptotic expansion, Go6tze (1979) established that
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W (x) = W(x) + M + 0( ) x€R, 4.1)

where the remainder term is uniform in x and, with w() = W’() denoting the density
function of W() and w'() standing for the derivative of w(),

w09 = (15~ 13 %) W) - 52 W)

L ) (Sx 4k27r2x2——)k2exp( o).
k=1

The coefficient functions of n2, n=3, . . . in Gétze’s full expansion are not known
explicitly, but it will be suggested again that the one-term expansion in equation (4.1)
is all that is needed. Limited information on this has already been given by Gétze
(1979) himself.

The lower numbers in the double entries in Table 2 for n =2, 3, 4 are obtained
from programming Stephens’s (1963, 1964) exact formulae. Here we use the occasion
to point out a misprint in Stephens’s (1964) formula on p.396 for n =4 on the
interval [7/48, 1/3], where 1/48 in the argument of the second inverse tangent should
be 7/48. The other exact five-decimal lower numbers for n =25, . . ., 9 have been
obtained by using Stephens’s (1964) exact lower tail formulae on p. 397; these have
also been recomputed because the corresponding numbers in Table 2 of Stephens
(1964) contain only four decimal places. The accompanying simulation study went as
for w2, but here the procedure was repeated only 1000 times instead of 4000 because
the s1mulat10n for 12 was less variable. The corresponding estimated quantiles appear
as the lower numbers in Table 2 for n = 5, ..., 10, with four decimal places and
marked by asterisks. For n = 2, 3, 4, the largest diﬁ'erence between the recorded exact
numbers and their simulated counterparts was 0.00009 for p < 0.99 and 0.00016 for
p = 0.999. In the whole simulation, the standard error was no more than 0.00004 for
p < 0.999 and no more than 0.00016 for p = 0.999. None of the simulated numbers
are thought to be in error by more than one unit in the fourth decimal place.

Working with equation (4.1), we found all five digits in Martynov’s (1978) Table
11 to be precise for all 200 values W/(0.000) = 0.00000, 1#(0.002) = 0.00000, . . .,
W(0.298) = 0.99442, W(0.300) = 0.99464, W(0.305) = 0.99514, . . ., W(0.545) =
0.99996 given there. Again, for a given n and p € (0, 1), the approx1mate p-quantile
of 2 provided by the linking apprommatlon (4.1) is the y = y(n p) for which
nW( y) +Y¥(y) = np. The upper numbers in the double entries in Table 2 for
n=2,..., 10 and the single entries for n > 20 result from this. As for «?, there is a

“unique root y, so that ¥(y) =0, ¥(y) < 0 if y < yy and ¥(y) > 0 if y > y,, where
Yo = 0.10938 and W(y,) = 0.76949.

The approximation of the exact percentage points is close even for n = 4. Fig. 2
plots ¥(x) and n{W,(x) — W(x)} for n =2, 3, 4, 5 to see this. For n = 4, the largest
deviation between the exact and the corrected asymptotic p-quantiles is 0.00074 for
p <09, and it is 0.00446 for 0.9 < p < 0.99. The corresponding deviations for
n =17, using the original simulated numbers before rounding off, are 0.00012 and
0.00283. The accuracy is better for n =4 and is about the same for n =7 in
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Fig.2. Comparison of the linking approximation to the exact distribution for 2: - ,M=2----~ y
n=3;_——,n=4;_—"n=5; ,"»b(x)

comparison with the corresponding accuracy for w?. Also, for large p the small error
will again lead to slightly conservative p-values.

Since the one-term linking approximations may be computed in a few seconds on
modern equipment, accurate p-values for the Cramér-von Mises and Watson
statistics may be obtained quickly for the sample sizes that would be considered in
practice. The programs computing V(x) + ¥(x)n~! and W(x)+ ¥(x)n~! for any
given x>0 and x=x(n, p) and y=y(n, p) solving nV(x)+1,(x) =np and
nW(y) + ¥(y) = np for any given 0 < p < 1 and n will be made available publicly.
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