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SUMMARY

A multiple-imputation method is developed for analysing data from an observational study where some
covariate values are not observed. A hybrid approach is presented where the imputations are created under
a Bayesian model involving an extended set of variables, although the ultimate analysis may be based on a
regression model with a smaller set of variables. The imputations are the random draws from the posterior
predictive distribution of the missing values, given the observed values. Gibbs sampling under an extension
of the Olkin—Tate general location—scale model is used for the imputation. The method proposed is used to
analyse data from a population-based case—control study investigating the association between drug
therapy and primary cardiac arrest among pharmacologically treated hypertensives. The sensitivity of the
inference to the assumptions about the mechanism for the missing data is explored by creating imputations
under several non-ignorable mechanisms for missing data. The sampling properties of the estimates from the
hybrid multiple-imputation approach are compared with those based on the complete data and maximum
likelihood approaches through simulated data sets. This comparison suggests that much efficiency can be
gained through the hybrid approach. Also, the multiple-imputation approach seems to be fairly robust to
departures from the assumed normality unless the actual distribution of the continuous covariates is very
skew.

Keywords: Gibbs sampling; Logistic regression; Non-ignorable mechanism; Odds ratios; Olkin—Tate model;
Sensitivity analysis

1. Introduction

In many observational studies where the relationship between a binary outcome
variable such as disease status and an exposure variable is of interest, the logistic
regression model is used to eliminate the effect of confounding variables. This can be
difficult if the data on the confounding variables are not fully observed. Vach and
Blettner (1991) showed that various currently used ad hoc methods of correcting for
missing values in confounding variables can result in a biased estimation of the
regression coefficients of primary interest. In particular, the popular approach, the
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so-called complete case analysis, where the inference is based only on the individuals
that have fully observed values of the confounding variables, can be biased even
under reasonable assumptions about the missing data mechanism. For a 2 x 2 table,
Kleinbaum et al. (1981) showed that the complete case analysis can lead to unbiased
estimates of the odds ratio if the logarithm of the odds of missing either of the two
variables satisfies certain additivity properties.

Several researchers have developed methods for fitting a logistic regression model
when some covariate values are missing. Little and Schluchter (1985) used the EM
algorithm to fit a general location—scale model with missing values. The logistic
regression model is a particular case of the general location—scale model considered
by them. Dellaportas and Smith (1993) developed a fully Bayesian approach for a
generalized linear model by using Gibbs sampling which can be extended to deal with
missing values. Vach and Schumacher (1993) developed maximum likelihood, pseudo-
maximum-likelihood and probability imputation methods when all the covar-
iates are categorical variables. Robins et al. (1994) developed a weighted estimating
equation method where the weights are derived from an assumed missing data
mechanism. All these developments assume that the data are missing at random
(Rubin, 1976).

In this paper we develop a multiple-imputation approach, originally proposed by
Rubin (1987) in the context of non-response in sample surveys, for handling missing
data with an arbitrary pattern of missing data on both continuous and categorical
covariates. Under this scheme we replace each set of missing covariate values by
more than one plausible set of values. Each completed data set formed by combining
an imputed set of values with the observed data is analysed to obtain estimates and
the covariance matrix of the target quantities of interest. These estimates and the
covariance matrices are then combined to form a single inference as discussed by
Rubin (1987) and Li ez al. (1991). Though the primary focus of this paper is on fitting
logistic regression models, the results are easily extended to other types of model as
well.

We develop, like many other applications of the multiple-imputation technique, a
hybrid approach in this paper where a Bayesian model is used to create imputations
and then a likelihood-based analysis possibly based on a different model is performed
on each completed data set. The imputation model used to create imputations
usually may involve a larger set of variables than the analysis or the user’s ultimate
model. The central idea of this approach is to gain efficiency by borrowing strength
from the auxiliary variables. For example, suppose that the analyst is interested in
fitting a logistic regression model relating a binary variable D with a binary exposure
variable E adjusting for a set of confounders X with missing values. The database
may contain a set of auxiliary variables Z that may not confound the relationship
between D and E but may have predictive power for X. Our approach creates
imputations based on the specification of the joint distribution of (D, E, X, Z),
although the ultimate analysis of the completed data sets will involve (D, E, X).
These imputations may be more efficient as they borrow strength from the auxiliary
variables Z and hence the estimate of the regression coefficient for E obtained by
using this approach may be more efficient than, for example, the maximum
likelihood estimate based on the joint distribution of only (D, E, X). This is indeed
true and is demonstrated through simulations in Section 7.

The multiple-imputation approach also lends itself, as we show through an
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example, to a convenient sensitivity analysis with respect to the assumptions about
the missing data mechanism and the probability distribution for observables. For
instance, we can create several sets of imputations under a variety of model
specifications for either the missing data mechanism or the relevant joint distribution
for the observables. We can incorporate the uncertainty due to model misspecifica-
tions by combining the inferences under various distributional assumptions.

The rest of the paper is organized in seven sections. Section 2 describes the
population-based case—control study that investigated the association between the
current use of diuretics for the treatment of hypertension and primary cardiac arrest
(PCA). This example motivated the research, the results of which are presented in
this paper. Section 3 describes the model assumptions used to create multiple
imputations under ignorable missing data mechanisms. Given the model specifica-
tions and the observed data, the imputations are the random draws from the
posterior predictive distribution of the missing values using Gibbs sampling. Section
4 describes the various steps in Gibbs sampling. Section 5 provides the details on
combining inferences from completed data sets. Section 6 describes the application of
this procedure to the case—control study described in Section 2. This section also
discusses an ad hoc modification of the procedure to incorporate information about
the missing data mechanism and the model specifications for the observables. Section
7 presents the results from a brief simulation study. Finally, Section 8 is a discussion.

2. Description of Data

Various studies have suggested that the aggressive use of thiazide diuretics to treat
hypertension might increase the risk of PCA, also known as sudden cardiac death.
PCA is operationally defined as a sudden pulseless condition in the absence of a
known non-cardiac condition to account for cardiac arrest. To investigate this
further, a population-based case—control study was conducted to examine the associ-
ation between the current use of diuretics to treat hypertension and the risk of PCA.

The details of the design were described by Siscovick et al. (1994). Briefly, the
population was defined by those enrolled in the Group Health Cooperative of Puget
Sound, a health maintenance organization with a current register of more than
350000, and who are resident in King County, the largest county in the state of
Washington. Each person enrolled has a primary care physician for the diagnosis and
treatment of common medical conditions. Group Health maintains a separate
medical care record for each person and a computerized pharmacy database that
covers all prescriptions filled at any Group Health pharmacy since March 1977.

The cases comprised all incident out-of-hospital PCA as identified by the incident
reports of the King County emergency medical services system and the Washington
state death tapes during the 14-year period (1977-90) of those enrolled by Group
Health at the time of arrest. The controls were a stratified random sample of those
who were treated for hypertension as identified by the pharmacy database and
medical record review. The stratification variables were age (in decades), gender and
calendar year of treatment. Each control was assigned a random index date from the
distribution of the event dates of the cases.

The cases and controls who were under 30 or over 79 years of age, or who had a
prior history of clinically diagnosed heart disease or any other life threatening
conditions such as cancer, liver disease, lung disease and end-stage renal disease as
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determined by the review of their medical records, were exciuded. To be eligible a
case (or control) should be exposed to the hypertensive drugs on the event (or index)
date. The final tally was 164 cases and 742 controls.

Exposure to hypertensive drugs was ascertained by using the computerized
pharmacy database. Since Group Health does not reimburse the cost of prescriptions
filled outside a Group Health pharmacy, almost all those enrolled receive their medi-
cation from a Group Health pharmacy. Thus, the exposure ascertainment on the
event or index date based on the pharmacy database is considered to be accurate. To
determine whether an individual was exposed on the event or index date, first a
compliance rate of chronic medication use for each individual was estimated; then
the estimated compliance rate was applied to the suggested frequency of use for the
most recent prescription before the event or index date to determine whether or not
the individual had taken the drugs on the event or index date.

To estimate the compliance rate, the following strategy was used. For any two
consecutive prescriptions for the hypertensive drugs, the difference between the start
date and the end date calculated on the basis of the dose and frequency of the first
prescription was expressed as a percentage of the difference in the two prescription
dates. These differences were then averaged over the entire time period of the
pharmacy history to obtain the overall compliance rate for that individual.

The exposure on the event or index date was divided into six categories: category 1,
thiazide-type diuretics alone; category 2, combined thiazide diuretic and a potassium
sparing agent; category 3, beta-blocker alone; category 4, thiazide-type diuretics with
other non-diuretic hypertensive drugs; category 5, combined thiazide and potassium
sparing agent therapy with other non-diuretic drugs; category 6, other non-diuretic
drugs. The three comparisons of interest were

(a) category 1 against 2,
(b) category 2 against 3 and
(c) category 4 against 5.

The hypothesis of main interest was that the exposure categories 2 and 5 may provide
a protection against PCA compared with exposure categories 1 and 4 respectively.
This is of interest as the depletion of potassium is thought to be one of the causal
mechanisms for PCA. Comparisons (a) and (c) address this issue. Beta-blockers are
another popular regimen to treat hypertension and are usually used as a second line
of therapy; hence the comparison was confined to users of a single drug. Since the use
of multiple drugs may be an indication of severe hypertension or lack of control of
blood pressure, the analysis separated single- and multiple-drug users.

The medical records of these cases and controls were abstracted to ascertain their
medical history and other confounding variables. Each subject was enrolled at Group
Health for at least a year or had four or more ambulatory care visits to a Group
Health clinic. The potential confounding variables were age, gender, years of hyper-
tension, smoking, pretreatment systolic blood pressure, pretreatment diastolic blood
pressure, pretreatment pulse, presence of diabetes, any electrocardiograph (ECG)
abnormality and three indices from the ECG: the cardiac injury infarction score
(CIIS), the left ventricular hypertrophy index (LVHI) and the QT-interval prolonga-
tion index QTI (QT-interval prolongation is the distance between the Q-wave and the
end of the T-wave in electrocardiograms). Other variables that are less likely to be
confounding variables but may be useful for predicting the missing confounding
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variables include marital status, occupation, number of visits to a Group Health clinic
in the previous year, height, weight, the last (before the event or index date) blood
pressure and pulse readings, serum potassium, glucose, uric acid and creatinine levels.

However, not all variables were available for every individual. Table 1 provides the
mean, standard deviation and percentage with missing values for each variable by
case—control status. For each potential confounding variable with missing values, a
logistic regression with the missing data indicator as a dependent variable and
completely observed variables including the case—control status and the dummy
variables for the exposure categories was performed. In several of these models, the
regression coefficients corresponding to the exposure status and the interaction
between the exposure status and the case—control status were significant thus
indicating that the complete case analysis may introduce bias in the assessment of the
disease—exposure relationship.

3. Complete Data Model Assumptions

Our strategy is to specify a joint distribution for all the observables and a prior
distribution for the parameters. Given this model specification, the imputations are

TABLE 1
Distribution of variables associated with the risk of PCAt

Variable Results for cases Results for controls
Mean  Standard error % missing Mean  Standard error % missing
Age 65 0.7 0 63 03 0
Gender (male, %) 58 4 0 53 5 0
Smoking (yes, %) 45 4 17 25 2 13
Pretreatment blood pressure
Systolic 173 3 32 166 1 30
Diastolic 103 1 32 102 1 30
Pretreatment
Heart rate 85 1.2 6 81 0.3 7
Diabetes (yes, %) 16 3 0 11 1 0
ECG (abnormal, %) 54 4 25 40 2 27
cus 74 0.9 30 3.6 0.4 29
LVHI 100 09 31 97 0.5 30
QTI 106.4 0.9 31 103.8 0.3
Years of hypertension 9.5 0.6 9 8.7 0.2 9
Recent blood pressure
Systolic 144 1.6 0 145 0.7 0
Diastolic 84 1.0 0 86 0.3 0
Glucose 124 45 9 111 1.6 8
Creatinine 1.16 0.03 11 1.09 0.02 11
Serum potassium 4.0 0.04 12 4.0 0.02 10
Uric acid 6.7 0.13 10 6.4 0.06 11
No. of visits in previous year 5.4 0.3 0 5.0 0.2 0
Height (in) 67 0.3 0 67 0.1 0
Weight (Ib) 173 28 0 173 1.7 0

+Number of cases, 164; number of controls, 742.
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then created by drawing values from the predictive posterior distribution of the set of
missing values given the observed values. For drawing values, we used the Gibbs
sampling technique (Gelfand and Smith, 1990). In this section, we describe the
complete data model and discuss the Gibbs sampling steps in the next section.

Let U denote a p-dimensional variable that is fully observed on all the individuals
in a given random sample of size n. Suppose that the variables that are missing for
some individuals consist of an r-dimensional continuous variable Y and a g-
dimensional categorical variable Z. The complete data model involves specifying a
joint distribution of (¥, Z) given U. A convenient representation of this joint
distribution is through the specification of the distribution of Z given U and then the
distribution of Y given Z and U.

Suppose that Z; has C; levels for j=1, 2, . . ., g. These categorical variables form
a contingency table with C = I1; C; cells. Let m = (iy, &, . . ., i;) denote a cell in the
g-way contingency table with C cells. Given a random sample of size n, the C-
dimensional vector of cell counts (n, = ny;,...4, m=1,2,...,C) forms a multi-
nomial random variable with cell probabilities 7 = (7 = mys,. i, m=1,2, ..., O).
Here we assume that n,,, the number of individuals with Z, =i, Z, =4, .. ., Z; =i,
where i; =1, 2, . . ., C;, is greater than or equal to 2 in most if not all the cells. Next
we specify the conditional distribution of Y given U and Z. Given Z, or equivalently
a specific cell m, the continuous responses (or their transforms) Yo, i=1,2, . . ., By,
are assumed to be identically and independently distributed normal random variables
with mean p,, and the covariance matrix ¥ is assumed to be the same across all the C
cells.

Even with a few categorical variables, the number of cells C can be very large. The
estimation of the cell probabilities may require additional structures such as a log-
linear model

T
log 7ri1i2...iq = Xl «,

where a is an s; x 1 vector of regression coefficients and X; is an appropriate design
matrix that may involve the known values U and log-linear parameters representing
the main and the interaction effects.

To reduce the dimensionality of the parameters further, the cell means u,, are
assumed to be normally distributed with mean V,,,7 and covariance matrix Q where 7
is an s, x 1 vector of regression coefficients and ¥, is an r x s, design matrix defined
by the categorical variables Z and the fully observed covariates U. This assumption is
in tune with an empirical Bayes model that borrows strength from the observations
in all the cells to estimate each cell mean u,,. The fully observed covarates are
assumed to have an arbitrary distribution.

The location model without any restriction on the parameters was first proposed
by Olkin and Tate (1961) for mixtures of continuous and categorical variables. Little
and Schluchter (1985) and Little and Rubin (1987) developed the EM algorithm to
estimate the parameters {m,, um, m=1,2,..., C, £} when data on Y or Z are
missing for some individuals. They also proposed certain restrictions by using the
log-linear and linear regression models to reduce the dimensionality of the param-
eters. For a similar model, Schafer et al. (1993) and Schafer (1994) developed the
Gibbs sampling approach to create imputations. The model described in this section
imposes additional structure by introducing random effects that allow for borrowing
strength across various cells formed by the categorical variables.
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Finally the prior distribution for the parameter w = (a, 7, Z, Q) is assumed to be
of the form

Pr(w) o |Z|71Q7®/2*) exp(tr(BQ™Y)},

i.e. a flat or non-informative prior for (e, 7, X) and a proper inverted Wishart prior
for Q. Technically, a proper prior distribution for Q ensures a proper posterior
distribution for © (Raftery and Banfield, 1991; DuMouchel and Waternaux, 1992).
The hyperparameters v (a scalar) and B (a matrix) may be chosen on the basis of
external information. By choosing the degrees of freedom » and the elements of B to
be close to 0 (subject to the condition that B is positive semidefinite), the prior
distribution can be made diffuse relative to the likelihood.

In the case—control example, the variables with no missing values U consist of 18
variables: age, gender (male = 1, female = 0), case—control status (case = 1, control
= (), exposure status (five dummy variables), calendar year, diabetes (yes= 1, no =0),
compliance, number of visits in the previous year, height, weight, last systolic and
diastolic blood pressure and pulse readings and occupation (retired = 0, employed
= 1). The g = 2 categorical variables with some missing values Z consist of smoking
status (current smoker = 1, non- or ex-smoker = 0) (Z,), and ECG status (normal
= 0, abnormal = 1) (Z;) (thus C = 4) and the r = 11 continuous variables with some
missing values (Y) pretreatment systolic and diastolic blood pressure readings,
pretreatment pulse, years of hypertension, cardiac injury infarction score, LVHI,
QTI and the serum potassium, glucose, uric acid and creatinine levels.

The predictors (X;) in the model for the four cell probabilities (smoking statusx
ECG status) included an intercept term, U, the cross-product of the case—control
status with each of the five exposure dummy variables and the cross-product of the
case—control status and gender. Thus, the design matrix X, contained 25 columns.
This choice was the maximum number of regressors that could be used, given the
modest sample size (n = 806). The design matrix V,, included an intercept term, case—
control status, smoking status, ECG status and the two-factor cross-product terms
(thus a total of six dummy variables), the cross-product of the variables age, gender,
case—control status and exposure status with these six dummy variables and U. Thus
Vm had 73 columns. We fixed v = 3§ and B = 0.00017 where 7 is an r x r identity
matrix. Thus, our prior distribution is diffuse relative to the likelihood.

4. Gibbs Sampling

Gibbs sampling (Gelfand and Smith, 1990) has received much attention recently.
For example, Gelman and Rubin (1992), Gilks and Wild (1992), Raftery and Lewis
(1992), Ritter and Tanner (1992) and Smith and Roberts (1993) are a few references
in the vast literature that discuss several important computational aspects of this
approach.

In the present context, to create M imputations, we draw M values from the joint
posterior distribution of the missing set of covariate values and the parameters in the
complete data model specification, given the observed data. Briefly, Gibbs sampling
involves drawing from each univariate conditional distribution (or that of a sub-
vector) of the missing value or the parameter in a cyclic fashion each time replacing
the old values by the most recently drawn values. When the number of cycles tends to
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00, the most recent draw of the set of missing values can actually be considered as a
draw from the joint posterior predictive distribution of the missing values given the
observed values. In a practical setting, every Pth draw is taken as an approximately
independent draw from the joint posterior distribution. It is preferable to ignore the
initial few cycles to eliminate the effect of the starting values. Gelman and Rubin
(1992) also recommended that several parallel cycles with different starting values
be used to assess convergence and also to investigate whether the draws are truly
independent. Both Gelman and Rubin (1992) and Raftery and Lewis (1992) sug-
gested approaches for choosing P. Thus, to create M imputed sets of values, we draw
MP times from the relevant conditional distributions in the cyclic manner just
described.

We now describe the mechanics of Gibbs sampling in the present analysis. Suppose
that we have an initial draw of the missing values and the cell means u,,, m =
1,2, ..., C. The initial draw of the set of missing values can be obtained by using
simple techniques such as hot deck or random mean imputation (Rubin, 1987). After
filling in the set of missing values with the initial draw, the initial draw of the cell
means can be obtained by using the mean of a bootstrap sample of observations in
each cell.

For notational simplicity, we use the generic notation Rest to denote the values
that are being conditioned on, other than the argument of the posterior density. It is
straightforward to show that

(a) Q7 '|Rest ~ Wishart[{ B + Tp(ttm — VuT)(thm — ,,,T) Y, C+u,

(b) 7|Rest ~ normal(#, P) where P = (2, VIQ"! V,,,) and 7 = Px, VIQ 1y,

(©) =Y |Rest ~ Wishart[{Z,,( Y, — i) (Yo — tim)* } ', N — 2r + 2] and

(d) pm|Rest ~ normal(fin, S,) where S, = (n,X~! + Q"‘)'l and fim = Su(tm T Y,
+ Q'V,,7) where Y,, is the mean of the n,, Y-values in cell m.

To complete the Gibbs cycle, we need to draw the values of the parameters in the log-
linear model and then the missing values, given the drawn values of the parameters.
Given the initial draw of the missing categorical variables and U, we can fit a log-
linear model by using maximum likelihood. Let & denote the maximum likelihood
estimate and T denote the observed Fisher information matrix. We suggest
approximating the posterlor distribution of o given Rest by a multivariate normal
distribution with mean & and covariance matrix —7~!. This step results in draws
only from an approximate posterior distribution of «. Dellaportas and Smith (1993)
have discussed an approach to draw from the exact posterior distribution. We chose
this strategy, despite its approximate nature, to save computational time.

The final step is to draw the missing values, given the parameters. First we draw
the missing categorical outcome variable Z; for an individual. Given o and the
observed values of Z, k # j, the previously drawn values of the missing Z;, k # j and
U, we can compute the conditional probability that Z; takes on a value j; given Z,
k #j and U for an individual who 1s missing Z; where i=1,2, ... C,. Specifically,
this conditional probability is ¢, it ity erdy = Tty ey g /7r,l, .i, Where the
asterisk in the subscript denotes summation over the particular margln The drawn
value is then a result of a multinomial experiment with these conditional prob-
abilities. Next, to draw the missing continuous variables, note that given all the
categorical variables we then know precisely the cell in which the individual i
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belongs. For notational brevity, we shall use obs C {1, 2, . . ., p} to denote the indices
of the observed continuous variables and Y; o5 and Y; ;s to denote the observed and
missing continuous variables respectively on individual i. The predictive distribution
of Y; mis 1S a multivariate normal with mean

-1
Hm, mis + 2:mis,obszobs,obs(Yi, obs — l/'m,obs)

and covariance

Emis,mis - 2:mis, obs Z;I:s,obs Eobs, mis»

where X, 5 denotes a submatrix of ¥ formed by the row indices in 4 and column
indices in B.

5. Multiple-imputation Inference

This section briefly describes the methods for obtaining inferences from a multiply
imputed data set. Suppose that a data analyst wants to fit a logistic regression model
with the case—control status as the dependent variable and k independent variables.
This model is repeatedly fitted to M completed data sets. Let 4; denote the estimate of
the regression coefficients y and §; and 5; be the score vector and the observed Fisher
information matrix respectively based on the /th completed data. The multiply
imputed estimate of v is 4 = X;4,/M. By the strong law of large numbers,

"’? - E(7I U’ Zobs, Yobs)" =

J Y L(7I U, Z, Y) Pr(Zmis, YmisIU, Yobs, Zobs) d'Y d Ymis dZmis

/'Y_

j LU, Z, ¥) Pr(Zuiss YoislUy Yoty Zote) dy A Vinis dZis

converges to 0 as both the number of imputations M and the sample size n tend
to oo, where L(y|U, Z, Y) is the complete data logistic model likelihood, Y,
Zovs, Ymis and Z,;; denote the observed and missing components of the data and
Pr(Ymis, ZmislU, Yobs, Zons) 18 the joint posterior density of the missing values under
the model assumptions stated in Section 3. Thus the multiply imputed estimate can
be viewed as an approximate Bayes estimate with a flat prior for v and the predictive
distribution for the missing values given the observed values as specified in Section 3.
To obtain the information matrix based on the observed data (U, Ygps, Zobs), WE
can use the representation of the observed data information matrix in terms of the
complete data score vector and information matrix given by Louis (1982),

Iobs = E(BI U, Yobs, Zobs) - E(SSTIU, Yobs, Zobs)

Where B =*{log L(y|U, Y, Z)}/8y0y" and S = d{log L(|U, Y, Z)} /5~ are the com-
plete data information matrix and the score vector based on the particular logistic
model. Again, by the strong law of large numbers, » = X,0;/M and S = %,557 /M
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approximate the first and second term on the right-hand side respectively. Thus the
appronmate asymptotic covariance matrix of the multlple 1mputat10n estimate is
= (0 — 5. An alternative approximation of the covariance matrix is given by

V=30 M A+ MY Y G- G- (M - 1).
1

1

If M < k, then the second term on the right-hand side may not be positive semi-
definite in which case the covariance matrix is taken to be

Vi=+rn)d /M,
I

where ryy = (1 + M) 5,d)/k(1 — M~Y) and d; = (§; — 9) 051 — 5).
For testing the hypothesis Hy: Ay =19 where A4 is a w x k matrix of known
constants, Wald’s test statistic

Dy = (4% — o) (AV"LTY (45 — no)/w

is referred to an F-distribution on w and v = 4 4+ (¢ — 4){1 + (1 — 2¢7')/ra)* degrees
of freedom where ¢ = w(M —1). If t < 4, then the number of degrees of freedom for
the denominator is v’ =1(M — H)(w+ 1)(1 + 1/ry)’. For a justification see Rubin
(1987), Rubin and Schenker (1986) and Li et al. (1991).

6. Results from Data Analysis

In the case—control example, 100 imputations were obtained, taking every 200th
draw in each of the 10 parallel Gibbs sequences. The choice of 200 was made on the
basis of the convergence statistic R defined by Gelman and Rubin (1992) (p. 461) for
each parameter or missing value. After creating multiply imputed data sets, a logistic
regression model was fitted with the case—control status as a dependent variable, and
the exposure status, pretreatment systolic blood pressure and pulse, smoking, ECG
abnormality, diabetes, age, gender and years of hypertension as independent vari-
ables. The adjusted odds ratios for exposure categories 1 and 3 using the exposure
category 2 as the reference group (for comparisons (a) and (b)) and for comparison
(c) the adjusted odds ratio for exposure category 4 relative to 5 were obtained. The
confidence intervals for the adjusted odds ratios were obtained by using the normal
reference distribution and ¥ as the approximate covariance matrix of the regression
coefficients. The other two covariance matrices (¥ or V") or the ¢ reference distri-
bution resulted in the same interval estimates up to two decimal places.

The results are summarized in Table 2. The top entry in each group is the lower
95% confidence limit, the middle entry is the adjusted odds ratio and the bottom
entry is the upper 95% confidence limit. The first set of three rows is based on the
complete case analysis, whereas the remaining sets provide the results for various
values of the number of imputations. The complete case analysis differs somewhat
from the multiple-imputation analysis. On the basis of the complete case analysis, we
would conclude that the risk associated with a beta-blocker is similar to the risk
based on combined therapy, whereas all the multiple-imputation analyses suggest
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TABLE 2
Adjusted odds ratios (and their 95% confidence limits) comparing different regimenst

Method Odds ratios for the following comparisons:
Risk of thiazide Risk of beta-blocker Risk of thiazide
compared with compared with compared with
combined therapy combined therapy combined therapy
(single drug) (single drug) (multiple drug)
Complete case analysis (cases, 66; controls, 316) 1.38 0.54 0.64
391 2.01 2.22
10.94 7.34 7.84
Multiple imputation (M = 5) 1.21 0.92 0.86
3.22 2.32 2.95
12.24 9.33 8.97
Multiple imputation (M = 15) 1.34 0.98 1.11
3.22 2.95 3.01
7.23 8.12 7.57
Multiple imputation (M = 50) 1.32 0.98 1.12
3.23 2.99 3.01
721 7.97 7.12
Multiple imputation (M = 100) 133 0.98 1.11
3.21 2.99 3.01
7.22 8.11 7.11

+Number of cases, 164; number of controls, 742; the top entry of each group is the lower 95% confidence limit, the
middle entry is the adjusted odds ratio and the bottom entry is the upper 95% confidence limit.

that there may be a modest risk associated with beta-blockers compared with the
combined therapy. Similarly, the complete case analysis also underestimates, though
to a lesser extent, the risk of PCA when using thiazide with supplemental non-
diuretic drugs compared with the combined therapy with supplemental non-diuretic
drugs. All the analyses show that people on thiazide alone have a significantly higher
risk of PCA compared with the combined therapy alone. The multiply imputed
confidence intervals are much shorter than the complete case analysis confidence
intervals. This is hardly a surprise, given that 40% of the cases and 43% of the
controls were deleted from the analysis. Also, the multiple imputations with M = 15,
M = 50 and M = 100 give similar results.

A sensitivity analysis was also conducted by creating imputations under certain
non-ignorable missing data mechanisms. While imputing the smoking status, it was
assumed that the smokers are less likely to have their smoking status missing and an
individual with a missing ECG value would be more likely to be normal. Dropping
the subscripts for brevity, conditionally on the covariate, let ¢; denote the probab-
ility of being a smoker under an ignorable model. For imputing the smoking status,
0, = 6:¢, was used as the probability of being a smoker where §; < 1. For ECG
status, & < 1 was used where 6, = 6,¢,. Also, while imputing the continuous
variables, it was assumed that those individuals lacking these variables are likely to
be different from those predicted under the ignorable model by a factor of 4s.
Specifically, again dropping subscripts for brevity, suppose that Y are to be drawn
from an 11-variable normal distribution with mean y and covariance matrix X under
the ignorable model. The imputations were created by drawing values from a normal
distribution with mean é;u and the covariance matrix X.
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TABLE 3
Adjusted odds ratios (and their 95% confidence limits) for five sets of values of the parameters for non-
ignorabilityt

Parameters of non-ignorability Odds ratios for the following comparisons:
Risk of thiazide Risk of beta-blocker Risk of thiazide
compared with compared with compared with
combined therapy combined therapy combined therapy
(single drug) (single drug) (mudtiple drug)
6 =0.75,6,=0.75, 6, =1.25 1.08 0.75 0.78
3.37 1.96 2.74
8.11 8.36 8.69
6 =0.75, 6, = 0.75, 6, = 0.75 1.50 1.11 1.02
3.62 2.85 2.62
8.12 9.94 8.25
& =0.50, 6 =0.50, &3 = 1.25 1.70 1.12 1.01
3.85 2.96 2.57
7.02 8.31 7.98
6 =0.50, 6, = 0.5, 5 = 0.75 1.52 1.16 1.02
3.72 3.11 291
7.08 8.03 8.26
6, =050,6,=0.5,8,=1.5 1.64 1.22 1.12
3.13 3.19 3.29
7.29 8.74 8.79

tNumber of cases, 164; number of controls, 742; the top entry in each group is the lower 95% confidence limit, the
middle entry is the adjusted odds ratio and the bottom entry is the upper 95% confidence limit.

The results similar in format to Table 2 are summarized in Table 3 as a function of
61, 6; and ;. 15 imputations were used in all these cases. Apparently, there is some
sensitivity to the ignorability assumption. The evidence in favour of combined
therapy seems to be stronger in all the cases. The conclusion regarding the combined
therapy alone when compared with thiazide alone remains the same at least quali-
tatively.

Another important component of the analysis is to explore the sensitivity with
respect to the normality assumption of the continuous variables Y. The entire
analysis just described was repeated assuming normality on the log-scale and also on
the square-root scale. For the CIIS, which can take negative values, a large positive
constant was added before taking logarithms or square-roots. The inferences
obtained were very similar. At least in the example considered, the multiple-
imputation inference seems to be less sensitive to normality than to the assumption of
the ignorability of the missing data mechanism. This issue can be addressed more
meaningfully by applying the method to simulated data sets generated under various
distributional assumptions that deviate from the assumed normality.

7. Simulation Study

This section describes the results from a simulation study evaluating the sampling
properties of the hybrid approach presented in this paper. The two objectives of the
simulation study are
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(a) to compare the sampling properties of the point and the interval estimates of
the regression coefficient by using the hybrid multiple-imputation approach
with those obtained by using the complete case and maximum likelihood
approaches, and

(b) to investigate the robustness of the multiple-imputation approach to the
distributional assumptions in the imputation model.

7.1.  Simulation Condition

We considered a situation with binary disease (D) and exposure (E) variables that
are known for all the individuals, a continuous confounding variable (Y) that may
have missing values and a continuous variable (C) which is related only to Y and is
also known for all the individuals. The ultimate user or the analyst is interested in
fitting a logistic regression model with D as the dependent variable and E and Y as
independent variables. The estimand of interest is the regression coefficient for £ in
the above logistic regression model.

A data set with 500 individuals was generated as follows. For each individual,

(a) C was generated as an independent standard normal deviate,

(b) Y was defined as (1 + p*)~"/*(C + pz) where z is an independent random
variable,

(c) E was defined as an independent Bernoulli random variable with

logit(Pr{E = 1|C]) = —log 4 + Ylog 3

and finally
(d) D was defined as an independent Bernoulli random variable with

logit(Pr[D = 1|E, Y]) = —log 4+ Elog 3 + Ylog 2.

Thus the true value of the estimand is log 3. From these data, a data set with missing
values was generated by deleting the value of Y based on a Bernoulli experiment with

logit(Pr{missing Y|D, E]) = —log 2 + Elog(2/7) + Dlog 4.

This logit model for the missing data resulted in the approximate missing data
percentages among exposed cases, exposed controls, unexposed cases and unexposed
controls of 5.5%, 1.5%, 9% and 19% respectively.

Four possible distributions for the random variable z in step (b) above were
considered:

(i) a normal distribution with mean 0 and variance 1,

(i1) a r-distribution with 3 degrees of freedom,

(iii) a translated log-normal distribution with mean 0 and variance 1 and
(iv) a translated exponential with mean 0 and variance 1.

Four possible values for R? = 1/(1 + p?) of 0.8, 0.5, 0.3 and 0 were used to represent
a range of predictive power of C for Y. For R? = 0, the random variables Y and C
were generated as independent random variables. Thus this simulation study can be
considered as a 4% factorial experiment. For each of the 4> = 16 combinations, 10000
data sets with missing values were generated.
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7.2. Analysis
Each data set was analysed by using three methods:

(a) the complete case analysis based on the individuals on whom Y is observed,

(b) the method of maximum likelihood as discussed by Little and Schluchter
(1985) using a general location—scale model for the joint distribution of (D, E,
Y) and

(c) the multiple-imputation analysis described in this paper.

The imputation model assumed that the conditional distribution of Y given C,
D=iand E=j as a normal distribution with mean u; + p1,;C and variance o2
where p; = (uoy, 115) are independent bivariate normal random variables with mean
(ko> 1) and covariance matrix 2. As in the example, a diffuse prior distribution

Pr(uo, w1, 0, ) o« 07272 exp{0.0001 tr(~")}

was used. 50 imputations were created by drawing values from the posterior pre-
dictive distribution of Y given D, E and C via Gibbs sampling. Every 100th draw in
10 parallel Gibbs cycles was stored as an approximately independent draw. In each
Gibbs cycle, the first 1000 draws were ignored to eliminate the effect of initial values.
We chose P = 100, although the Gelman—Rubin convergence statistic R (Gelman
and Rubin (1992), p. 461) suggested that every 60th draw should be adequate. Similar
results were obtained using P = 50, 60, 80 and 90. Each completed data set was then
analysed by fitting the logistic regression model relating D to E and Y. The
completed data set estimates and the covariance matrices were combined as discussed
in Section 5.

7.3.  Results

The bias, the mean-square error and the exact coverage of the nominal 95%
confidence interval for the three methods are displayed in Table 4. The mean-square
errors of the three estimates are expressed as percentages of the mean-square errors
of the estimates based on the complete or full data sets, i.e. before certain values were
deleted to simulate data sets with missing values. Expressing the mean-square error
as a percentage provides a useful yardstick to measure the loss of precision due to
missing values for the three methods. Also, a comparison of these percentages for the
multiple-imputation and the maximum likelihood methods allows us to measure the
extent to which the loss of precision is mitigated by using the auxiliary variables.

Overall, the bias, the mean-square error and the confidence coverage are similar
across the three distributions for z: normal, ¢; and log-normal. However, both the
bias and the mean-square error are large and the exact coverage is smaller than the
nominal coverage when the actual distribution of z is exponential. Thus both the
multiple imputation and the maximum likelihood methods may be sensitive to
extreme skewness of the actual distribution of the continuous variable.

The complete case estimates are severely biased and the exact coverages of the
confidence intervals are far below the nominal level. This is expected because the data
are not missing completely at random. Also, the complete case estimates have very
large mean-square error because almost a third of the data have been ignored. Both
the hybrid multiple imputation and the maximum likelihood estimates (ignoring C)
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Characteristics of three different estimates of the logistic regression coefficients for the simulated data setst

Distribution of z R*(%) Characteristics Results for the following methods:
Complete Maximum Multiple
case likelihood imputation
Normal 80 Bias 0.363 0.0091 0.0088
MSE 460 145 108
Coverage 95% 80 94 96
50 Bias 0.401 0.0112 0.0089
MSE 449 139 118
Coverage 95% 78 95 96
30 Bias 0.383 0.0082 0.0087
MSE 450 142 127
Coverage 95% 80 94 96
0 Bias 0.393 0.0092 0.0089
MSE 442 137 141
Coverage 95% 80 95 96
t (3 degrees of 80 Bias 0.343 0.0082 0.0081
freedom) MSE 421 148 107
Coverage 95% 82 96 96
50 Bias 0.386 0.0092 0.0095
MSE 439 142 117
Coverage 95% 81 96 96
30 Bias 0.363 0.0072 0.0068
MSE 442 139 128
Coverage 95% 82 96 97
0 Bias 0.383 0.0079 0.0073
MSE 434 136 140
Coverage 95% 80 95 97
Log-normal 80 Bias 0.399 0.0162 0.0172
MSE 390 165 115
Coverage 95% 80 94 94
50 Bias 0411 0.0152 0.0152
MSE 449 169 126
Coverage 95% 78 94 93
30 Bias 0.393 0.0142 0.0129
MSE 450 164 146
Coverage 95% 80 94 94
0 Bias 0.397 0.0152 0.0133
MSE 448 166 171
Coverage 95% 80 94 94
Exponential 80 Bias 0.443 0.0392 0.0399
MSE 489 175 169
Coverage 95% 80 92 93
50 Bias 0.401 0.0302 0.0394
MSE 449 185 176
Coverage 95% 78 91 92
30 Bias 0.399 0.0292 0.0399
MSE 450 184 178
Coverage 95% 80 92 92
0 Bias 0.413 0.0402 0.0444
MSE 462 199 203
Coverage 95% 80 91 91

+MSE, mean-square error as a percentage of the mean-square error of the estimate for the complete data; coverage

95%, exact coverage of the nominal 95% confidence interval.
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are almost unbiased. The hybrid multiple-imputation estimates are more efficient
than the maximum likelihood estimates except when R? =0. This is expected
because when R? =0 we are introducing noise in the imputed values and con-
sequently the estimates are more variable. The nominal and the exact coverage are
similar for both the multiple-imputation and the maximum likelihood interval
estimates, although the multiple-imputation intervals are slightly conservative.

8. Discussion

We have developed a hybrid multiple-imputation approach where a Bayesian
model based on an extended set of variables is used to create imputations, although
the ultimate analysis may be based on a different set of variables. This approach is
particularly useful if the same data were to be used by several investigators with
differing statistical skills. Once the imputations have been carefully orchestrated,
only some complete data analysis software and a module to combine the completed
data inferences are needed. Of course, the adoption of the multiple-imputation
technique is not paramount for borrowing strength from an extended set of
variables. In some instances, the EM algorithm, for example, can be used to estimate
the parameters of the larger model and then we can construct the estimates of the
parameters in the smaller model from the estimates of the parameters in the larger
model. The level of statistical sophistication required of the ultimate user to adopt
this approach, however, is considerable.

The multiple-imputation approach can also be easily modified to explore sensi-
tivity to the assumption about the ignorability of the missing data mechanism by
creating imputations under a variety of non-ignorable missing data mechanisms. The
approach used in the data analysis, though ad hoc, is appealing from a practical point
of view and can be generalized to a more complicated setting. By combining the
completed data inferences, where the imputations have been created under a variety
of non-ignorable missing data mechanisms, we can incorporate the uncertainty due
to the process creating the missing data.

An important issue that needs further attention is the effect of various choices of
Vm, X1 and U in the imputation scheme on the results of the ultimate user. If some
important variables have been left out from V,,, X; or U, then it will introduce bias
(due to underfitting) in the imputed values and which in turn may bias the estimates
of the coefficients in the logistic model. In contrast, if irrelevant predictors are
included in the model, then it can result in a loss of efficiency. In choosing the model,
we may want to sacrifice efficiency for bias by using a big model although it may
contain irrelevant predictors. We have also assumed that the covariance matrix T of
Y is the same across all the cells formed by the categorical variables. The bias and the
loss of efficiency may also result when this assumption is violated.

The model discussed in Section 3 may need modifications in certain instances. For
example, the log-linear model for the cell probabilities may have to be modified to
accommodate structural 0s. For instance, the question of frequency of smoking is
asked only to those who are current smokers and hence the cell probability
corresponding to the frequency of smoking is structurally 0 for non-smokers. There
is also asymmetry in the model structure for the continuous and categorical
variables. We have assumed a hierarchical model structure only for the cell means
1. But the estimation of the cell probabilities can be improved by imposing a similar
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random effect structure on, say, the logit of the probabilities especially with sparse
data. This, however, increases the computational complexity. The example consid-
ered in this paper has only two binary variables with missing values (i.e. four cells in
the multinomial part of the model) and hence the random effect structure was not
considered. Also, an investigation of the residual deviances from the fitted log-linear
model did not warrant the need for a random effect structure or an overdispersion
parameter to explain any excess variability. Further studies are needed to develop
algorithms and to investigate the improvement in the estimation process when
random effect structures are imposed on both the cell means u, and the cell
probabilities .

Evidently, there is an increase in computational complexity and storage space
required. All the computations discussed in this paper were performed on a 486
personal computer using GAUSS programming language (Aptech Systems, 1992).
Alternative Monte Carlo methods can be used for drawing values from the posterior
predictive distribution. We chose Gibbs sampling because of its ease of imple-
mentation for the particular model considered in this paper. Computational time
may perhaps be saved by adopting more efficient strategies for drawing values.
Finally, though the emphasis in this paper was on the analysis of data from a
particular case—control study, the methods are easily extended to the analysis of data
from a cohort study with binary, polytomous, count or continuous outcomes.
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