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Abstract  

 

Although developmental plasticity facilitates the evolutionary origin of many traits, the role 

of plasticity in the origin of novel communication systems has received little attention. If plasticity 
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mediates the origin of new communication systems, exposure to a novel environment will induce 

new traits that could function as signals or receiver responses. Here, we test whether plasticity 

facilitates the origin of individual recognition. We reared a species of paper wasp that naturally lacks 

individual recognition (Polistes metricus) with a relative that has facial patterns that signal individual 

identity (Polistes fuscatus). We found P. metricus reared with individual identity signals learned 

unique wasp faces significantly more accurately than P. metricus  reared without individual identity 

signals. However, exposure to individual identity signals was not sufficient to induce individual 

recognition in social contexts. These results suggest that if variable facial patterns arose in P. 

metricus, wasps would immediately improve their ability learn variable facial patterns, thereby 

facilitating the origin of individual face recognition. Improved learning is an initial step toward 

individual recognition that would need to be refined by selection to produce an established signaling 

system. Developmental plasticity may be an underappreciated factor facilitating  the evolutionary 

origin of novel recognition systems. 

 

Introduction  

The origin of novel traits is a key issue in evolutionary biology. Many novel traits are thought 

to arise either as byproducts or via developmental plasticity (West-Eberhard 1989; Moczek 2008; 

Moczek et al. 2011; Laland et al. 2015). The ‘novelty as a byproduct’ hypothesis proposes that novel 

features originated for reasons unrelated to their current function, then a new selective 

environment shaped and elaborated the traits. For example,  feathers were originally involved in 

temperature regulation, water repellency, and communication before being  coopted for flight 

(Prum 1999). The ‘novelty through developmental plasticity’ hypothesis proposes that a new 

environment induces novel phenotypes that are later genetically assimilated via selection (West-

Eberhard 2003; Pigliucci et al. 2006). The classic example of developmental plasticity rapidly 

producing novel phenotypes is Waddington’s work on Drosophila wing evolution.  When raised at 

high temperatures, Drosophila express a new wing vein phenotype. The novel wing veins are initially 

induced by temperature stress, but rapidly became genetically  assimilated under selection such that 

all flies expressed the new phenotype across environments (Waddington 1953). Both byproduct and 

plasticity hypotheses pertain to the evolutionary origin of traits rather than the mechanisms that 

currently influence trait development. The key difference between the byproduct and plasticity 

hypotheses is that the byproduct hypothesis focuses on traits that are expressed in the current 



 

 

 
This article is protected by copyright. All rights reserved. 

 
 

environment, while the developmental plasticity hypothesis focuses on traits that are initially only 

expressed in novel environments.   

Previous work on the evolutionary origin of communication has focused on the ‘novelty as a 

byproduct’ hypothesis (Maynard Smith and Harper 2003; Searcy and Nowicki 2005). New 

communication systems can arise when traits that are neutral or functional in a different context 

become signals or influence receiver responses. From the signaler’s perspective, preexisting traits 

can be modified to act as signals, though the traits may be constrained by their original function 

(West-Eberhard 1989). For example, nests originated to hold eggs, but, in some species, this initial 

function has been modified such that nests also function as condition dependent indicators of male 

quality (Barber et al. 2001).  From the receiver’s perspective, preexisting receiver responses, like 

sensory bias, can facilitate the origin of communication systems (Endler and Basolo 1998; Kokko et 

al. 2003; Borgia 2006). For example, females may have a preexisting preference for the color red as a 

byproduct of the sensory system. If females benefit by mating with redder mates, the initial 

preference for red may be refined and lead to an established sexually selected system.  

Developmental plasticity could also contribute to the origin of novel communication 

systems, though this hypothesis has received little attention. If developmental plasticity facilitates 

the evolutionary origin of communication systems, we predict animals will respond to a new 

environment by developing novel traits that could function as signals or receiver responses. These 

traits are predicted to be absent in the current environment. As with the byproduct hypothesis, 

signals and receiver response induced by the novel environment need not be as sophisticated as 

traits in an established communication system. Instead, the novel environment exposes traits that 

are subsequently refined by selection.  

Developmental plasticity can produce many different phenotypes, some of which will 

facilitate the origin of new signals and some of which will not. For example, the origin of quality 

signals may be facilitated by plasticity that causes a preference for extreme phenotypes but not by 

plasticity that increases social affiliation with common phenotypes. The specific type of 

developmental plasticity that will facilitate the origin of new signals depends on the information the 

signal conveys because signals that convey different information have different signaler phenotypes 

and receiver responses (Tibbetts et al. 2017).  For example, quality signaling involves highly 

condition-dependent ornaments and receiver preferences for extreme phenotypes (Maynard Smith 

and Harper 2003; Searcy and Nowicki 2005). As a result, the evolutionary origin of quality signals 

could be facilitated if a novel rearing environment induces the development of elaborate, condition-
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dependent traits or receiver preferences for particular phenotypes. In contrast, individual identity 

signaling requires signalers with highly variable, multi-modal phenotypes and receivers that can 

learn and remember these phenotypes (Tibbetts and Dale 2007). As a result, the evolutionary origin 

of individual identity signals could be facilitated if a novel environment causes signalers to develop 

highly variable phenotypes or improves receiver ability to learn and remember conspecifics.   

Here, we test whether developmental plasticity could play a role in the evolutionary origin of 

individual recognition. We specifically test whether rearing wasps with individual identity signals 

influences receiver capacity to learn unique individuals. Individual recognition is a type of 

communication where receivers discriminate a signaler from other individuals based on the 

signaler’s unique characteristics, associate the unique characteristics with individual-specific 

information about the signaler, and recall the information during subsequent encounters (Cely and 

Tibbetts 2019).  Effective individual recognition requires receivers that can learn the unique features 

of conspecifics and recall that information during subsequent interactions (Tibbetts and Dale 2007). 

Therefore, we test whether wasps given experience with individual identity signals are better able to 

learn other wasps than wasps given no experience with individual identity signals.  

Polistes wasps provide a good model for studying the origin of individual recognition 

because there are multiple closely related Polistes that differ in their capacity for individual 

recognition.  Polistes fuscatus have variable facial patterns that signal individual identity (Fig. 1, 

(Tibbetts 2002). Wasps learn the unique facial patterns of conspecifics during social interactions, 

then recall this information during subsequent encounters. Individual recognition is beneficial in P. 

fuscatus because it reduces conflict and stabilizes social interactions in groups of cooperating queens 

(Tibbetts 2004; Sheehan and Tibbetts 2009). In contrast, a closely related species, Polistes metricus, 

lack individual recognition (Sheehan and Tibbetts 2010). P. metricus lack the type of variable facial 

patterns required for visual individual recognition (Fig. 1) and are unable to learn unique faces 

during training or social interactions (Sheehan and Tibbetts 2010, 2011). There is likely no social 

benefit associated with individual recognition in P. metricus because queens typically found nests 

alone rather than cooperating with other queens (Tibbetts 2004).  

We test if a novel rearing environment influences how well P. metricus learn and remember 

the unique facial patterns of other wasps. Specifically, we take a species that is normally unable to 

learn and remember individual wasps (P. metricus), and rear them with wasps that have variable 

signals of individual identity (P. fuscatus). We test whether rearing P. metricus with individual 

identity signals influences their ability to learn and remember unique individuals in two contexts: 
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during training and during social interactions.  If exposure to individual identity signals induces 

receiver capacity for learning unique individuals during training, we predict P. metricus reared with 

P. fuscatus will learn P. fuscatus faces better than P. metricus reared with conspecifics. If exposure to 

individual identity signals induces individual recognition in social situations, we predict P. metricus 

reared with P. fuscatus will be capable of learning and remembering unique individuals during social 

interactions. Specifically, P. metricus reared with P. fuscatus will be less aggressive and have more 

non-aggressive contacts when interacting with familiar wasps than when interacting with unfamiliar 

wasps.    

 

Methods 

Wasp nests used in these experiments were collected from areas surrounding Ann Arbor, 

Michigan in late June, just prior to worker emergence. After collection, wasps and their nests were 

housed in the lab and given access to water, rock candy, and ad lib Galleria mellonella caterpillars. 

All wasps used in these experiments were workers that eclosed before males. Females that emerge 

after males are potential reproductives and were not used in these experiments.  

Nests were checked daily for newly eclosed adults. At eclosion, wasps were uniquely marked 

and placed in one of three treatments.  1) Inexperienced with individual identity signals, housed with 

nestmates: P. metricus were marked, then returned to their natal nest to live with their nestmates. 

P. metricus naturally lack individual identity signals (Sheehan and Tibbetts 2010), so P. metricus that 

live with nestmates have social experience but  no experience with identity signals. 2) Inexperienced 

with individual identity signals, housed with non-nestmates: P. metricus  were marked and placed 

with 2 P. metricus from different nests in a new container with an orphaned nest. These P. metricus 

lack experience with individual identity signals just like treatment 1. Their adult social experience is 

similar to treatment  3 because they are housed with 2 non-nestmate adults on an orphaned nest. 3)  

Experienced with individual identity signals: P. metricus  were marked and placed with 2 P. fuscatus 

in a new container with an orphaned nest. P. fuscatus have variable facial patterns that function as 

individual identity signals, so the experienced P. metricus were exposed to individual identity signals 

for their entire adult life. Wasps remained in their treatment for at least 5 days before being used in 

experiments.  
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Training 

P. metricus were trained to differentiate between pairs of P. fuscatus face images using 

established methods (DesJardins and Tibbetts 2018). 18 P. metricus inexperienced with individual 

identity signals housed with nestmates (treatment 1), 18  P. metricus inexperienced with individual 

identity signals housed with non-nestmates (treatment 2), and 26 P. metricus experienced with 

individual identity signals (treatment 3). were trained to discriminate wasp face images. Face images 

used for training were photographs of P. fuscatus from Michigan, USA that showed the face and 

antenna. Wasps were trained on one of three unique pairs of face stimuli (Suppl Fig. 1). All images 

were printed at life size using a commercially available Sony Picture Station photo printer.  

During training, wasps were placed in a 2.5 x 4 x 0.7 cm wood and plexiglass box with six 

identical faces glued to the inside walls. In half the bouts, the focal wasp was placed in a box with 

negative stimuli and received a mild electric shock from an electrified pad for two minutes. The 

electrified pad was made of anti-static conductive foam electrified by two copper wires connected to 

a Variac transformer. In the other half the bouts, the wasp was placed in a similarly sized box with 

neutral faces and the pad was not electrified for two minutes.  Between each bout, the wasp was 

given a one minute break in a holding container. For example, a wasp trained to discriminate 

between face A and B would experience the following training. First, the wasp was placed with face  

A and received a shock for two minutes. The wasp was removed and given a 1 minute break. Then, 

the wasp was placed with face B and did not receive a shock for two minutes. The wasp was 

removed and given a 1 minute break. This process was repeated 5 times per wasp, so wasps saw 

face A and B 5 times each. 

After training, the wasp was given a 45 minute break in a holding container with food and 

water. Then, learning was tested by measuring whether the wasp approached the neutral or 

negative  stimuli over 10 trials.  Testing occurred in a 3 x 10 x 0.7cm rectangle. One end of the 

rectangle had neutral stimuli and the other end of the rectangle had the negative stimuli. The entire 

floor of the rectangle was electrified except the 2.25cm closest to the neutral stimuli, the ‘safety 

zone’. Most of the rectangle was electrified because shock motivates wasps to move.  The neutral 

stimuli was associated with safety to ensure learned preferences from the initial training were not 

extinguished during the 10 trial test. Receiving a shock while choosing a preferred stimuli can rapidly 

extinguish learned preferences. 

 The center of the rectangle had two removable, clear partitions that confined the wasp. At 

the beginning of each trial, the wasp was placed in the center of the rectangle between the clear 
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partitions, the electric shock was turned on for five seconds, both partitions were removed 

simultaneously, and the wasp was free to walk through the rectangle. Wasps who learned typically 

turned toward the neutral stimuli while confined in the center of the rectangle. When the partitions 

were removed, the wasp quickly walked toward the neutral stimuli.  A wasp was scored as making a 

choice when its head and thorax move beyond the partition placed 2.5cm from each end of the 

rectangle. After a wasp made a choice, it was removed from the rectangle and given a one minute 

break in a holding container. The placement of the neutral and negative stimuli (right or left side) 

was determined randomly and changed between trials. This ensures that wasps did not associate a 

particular direction with correct choices. The particular face images that were neutral vs. negative 

was also swapped across wasps.  

Statistical analyses were performed in SPSS v. 24. We measure learning as the total number 

of correct choices. We tested whether wasps learned by comparing the number of correct choices 

vs. incorrect choices to the 50:50 random expectation with a binomial test. The binomial test 

provides an exact test of whether the distribution of two groups differs from the theoretically 

expected distribution. We tested whether rearing environment influenced how well P. metricus 

learned faces by comparing the number of correct choices in the three developmental environments 

with a mixed linear model. Adult housing group was included as a random effect in the model to 

address any potential similarity in learning within wasps housed in the same group. LSD posthoc 

tests were used for posthoc pairwise comparisons between the three treatments. A total of 62 

wasps were trained from 31 nests (26 experienced with individual identity signals, 18 inexperienced 

with individual identity signals housed with nestmates, and 18 inexperienced with individual identity 

signals housed with non-nestmates). 

 

Social individual recognition 

We assessed the social recognition abilities of P. metricus reared with P. fuscatus by staging 

contests between pairs of wasps with and without a prior history of social interactions. This study 

used the same sample size and methods used previously to test individual recognition in a range of 

social insects, including Polistes fuscatus (Tibbetts 2004; D'Ettorre and Heinze 2005; Injaian and 

Tibbetts 2014; Souza et al. 2017) and to show that Polistes metricus naturally lack individual 

recognition (Sheehan and Tibbetts 2010).  
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In each trial, a P. metricus reared with P. fuscatus was paired with a P. fuscatus who was 

reared with 1 P. fuscatus and 1 P. metricus. P. metricus were paired with P. fuscatus to ensure their 

social partner had the type of variable facial patterns required for visual individual recognition. 

Paired wasps had not encountered each other prior to the trials.  

All wasps used in the social individual recognition experiment were removed from their natal 

nest at eclosion and placed in the ‘Experienced with individual identity signals group’.  For this 

treatment group, one P. metricus  was marked and placed with 2 P. fuscatus in a new container with 

an orphaned nest. 30 of the 78 P. fuscatus used in this experiment were from the interspecific 

groups created for the training experiment described above. The other P. fuscatus and all 26 of the 

P. metricus were from interspecific groups created only for the social recognition experiment. 

During the contests, we scored the occurrence and intensity of aggressive interactions as 

well as displays of nonaggressive behavior. On the first day (day 0), we placed a P. metricus reared 

with P. fuscatus with an unfamiliar P. fuscatus in a small plexiglass container (8 × 8 cm). After filming, 

the wasps were housed together until the next day (day 1), at which point they were separated and 

returned to their initial housing. One day later, the same two wasps were filmed interacting again 

(day 2). To ensure that any changes in aggression between days 0 and 2 were a consequence of 

recognition and not a change in behavior or motivation over time, we paired the wasps with other 

unknown social partners on the day before and after (days 1 and 3). The first half hour of all 

interactions was videotaped for later analysis of behavior. 26 sets of trials were performed.  

Start date was staggered across trials to ensure that differences in behavior across days 

were caused by experimental treatment rather than day-specific effects (e.g. any slight differences in 

temperature, humidity across days). For example, on a particular date, some focal wasps 

experienced the day 0 treatment, while others experienced the day 3 treatment.  

Behavior in all videos was scored by a research assistant who was blind to experimental 

predictions and treatment. Cooperative and aggressive behaviors were ranked as follows: (0) 

nonaggressive bodily contact (partners within one body length of each other, but no darts, bites, 

grapples or mounts occurred); (1) dart (rapid body movement towards partner); (2) dart with open 

mandibles (rapid body movement towards partner with open mandibles); (3) bite (mandibles closing 

on body of partner); (4) grapple/mount (wrestling/bodily contact that forces partner to accept 

submissive positioning). For each trial, we summed the ranks of cooperative and aggressive 

behaviors. We then divided the sum by the number of total interactions per tape to calculate an 

aggression index (Dreier et al. 2007). The aggression index standardized behavior by taking into 
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account the number and intensity of interactions of each pair, which allowed behavior to be 

compared across trials. The aggression index has been used to measure individual recognition 

behavior in multiple studies (Dreier et al. 2007; Sheehan and Tibbetts 2008; Sheehan and Tibbetts 

2010; Injaian and Tibbetts 2015). If the wasps are able to recognize and remember social partners, 

they should be less aggressive and have more non-aggressive contacts when they interact with a 

known individual (day 2) than when they interact with an individual they encounter for the first time 

(days 0,1,3).  

Statistical analyses were performed in SPSS v. 24. Aggression index and number of non-

aggressive contacts were compared across trials using Friedman’s ANOVA  using asymptotic 

estimation for the exact test. Friedman’s ANOVA is a non-parametric test that is similar to the 

parametric repeated measures ANOVA. It tests whether there are differences in behavior across 

days 0, 1, 2, or 3. Posthoc pairwise analyses were not performed because the overall ANOVA found 

no significant differences in behavior across days. The aggression index or number of nonaggressive 

contacts were the dependent variables. A non-parametric analysis was used because the dependent 

variables were an index and non-normally distributed count data. We also analyzed the data using 

general linear models, a parametric analyss,  for comprehensiveness (Supplemental material). The 

results of the parametric analysis do not differ from the non-parametric analysis. 26 trials were 

performed, with 4 contests per trial.  The trials involved 26 P. metricus from 14 nests and 78 P. 

fuscatus from 33 nests. 

 

Results  

Experience with individual identity signals significantly influenced P. metricus face learning 

(Fig. 2, F2,59=5.1, p=0.0092). P. metricus experienced with individual identity signals learned to 

discriminate between unique face images significantly more accurately than inexperienced P. 

metricus (Fig. 2, experienced vs inexperienced housed with nestmates p=0.041, experienced vs 

inexperienced housed with non-nestmates p=0.003). There was no difference in face learning 

between inexperienced P. metricus housed with nestmates vs non-nestmates (p=036). Experienced 

P. metricus also learned to discriminate faces significantly more accurately than expected by chance 

(p=0.004). However, inexperienced P. metricus who had not previously encountered individual 

identity signals did not learn to discriminate facial patterns, as they chose the correct face no more 

often than expected by chance (inexperienced, housed with nestmates p=0.82, inexperienced, 

housed with non-nestmates p=0.41).  

https://en.wikipedia.org/wiki/Parametric_statistics
https://en.wikipedia.org/wiki/Repeated_measures
https://en.wikipedia.org/wiki/ANOVA


 

 

 
This article is protected by copyright. All rights reserved. 

 
 

Experienced P. metricus were not able to learn and remember unique wasps during social 

interactions. Aggressive and nonaggressive behaviors were not influenced by a previous history of 

social interactions. First, there was no difference in aggression between any days of the social 

recognition experiment (Fig. 3, χ23=2.6, p=0.45), indicating that new social partners and wasps who 

interacted  previously were similarly aggressive. When the aggression initiated by each wasp was 

analyzed separately (SFig. 2), there was still no evidence that aggression differed between any days 

of the social recognition experiment. Experienced P. metricus directed a similar amount of 

aggression toward familiar and unfamiliar P. fuscatus  (χ23=5.8, p=0.12). P. fuscatus directed a similar 

amount of aggression toward familiar and unfamiliar P. metricus  (χ23=1.57, p=0.67). Second, the 

number of non-aggressive contacts did not change over time (Fig. 3, χ23=3.3, p=0.54). Overall, there 

was no evidence that aggression or non-aggressive interactions differed between pairs of familiar 

and unfamiliar wasps. Parametric statistical analysis yielded similar results (Supplemental material). 

Therefore, P. metricus reared with P. fuscatus did not remember other unique individuals during 

social interactions. 

 

Discussion 

Our results indicate that plasticity may play a role in the evolutionary origin of individual 

recognition. Learning and remembering the unique features of conspecifics is the cornerstone of 

individual recognition (Tibbetts and Dale 2007). P. metricus  typically lack individual recognition and 

are unable to learn the unique faces of other wasps during training (Sheehan and Tibbetts 2011) or 

social interactions (Sheehan and Tibbetts 2010). However, capacity for learning other wasps  is 

induced when P. metricus are reared with wasps that have variable facial patterns that signal 

individual identity (this study). Therefore, the ability to learn the unique features of other wasps is 

developmentally plastic and can be induced by experience with individual identity signals. Learning 

unique facial patterns is an initial step toward individual recognition that would need to be refined 

and shaped by selection to produce an established social signaling system. 

Although exposure to wasps with facial patterns that signal individual identity induced P. 

metricus face learning, exposure alone was not sufficient to produce individual recognition in social 

contexts. P. metricus do not naturally learn and remember individual conspecifics during social 

interactions (Sheehan and Tibbetts 2010). After experience with individual identity signals, P. 

metricus were still unable to learn and remember familiar individuals during social interactions (this 

study). Instead, wasps treated known and unknown individuals similarly. Learning and remembering 
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individuals during social interactions is cognitively challenging (Seyfarth and Cheney 2015), so it is 

not entirely surprising that exposure to wasps with variable facial patterns is not sufficient to induce 

social individual recognition in P. metricus. 

If experienced P. metricus can be trained to discriminate between unique wasp faces, why 

don’t experienced P. metricus discriminate between individual wasps during social interactions? One 

possibility is that learning and remembering unique individuals in social contexts is more cognitively 

challenging than learning unique wasp face images during training, so experienced P. metricus lack 

the cognitive capacity for social individual recognition. Alternatively, experienced P. metricus may 

have the capacity to learn and remember individuals, but lack the motivation or attention to learn 

individuals. Wasps are motivated to learn faces during training because individuals that make 

incorrect choices receive an electric shock. There may be no similar reinforcement for learning other 

wasps during social interactions. Some of our previous work suggests P. metricus may pay attention 

to conspecific color patterns during social interactions (Sheehan et al. 2013). When P. metricus are 

placed in groups of conspecifics with experimentally increased facial variation, they treat individuals 

with unique faces differently than individuals with a common appearance. The slight difference in 

aggression toward unique individuals in a new environment could be another example of plastic 

behavioral response that provides a small, initial step toward individual recognition when the 

environment changes.  However, P. metricus do not learn and remember unique individuals during 

social interactions (this study, (Sheehan and Tibbetts 2010), suggesting that individual recognition 

requires receiver adaptations beyond a general capacity to perceive and learn stimuli. Future 

research will be valuable to explore the receiver adaptations that facilitate social individual 

recognition in taxa with established signaling systems like P. fuscatus.  

Plasticity in receiver response may resolve a major challenge associated with the origin of 

signals: the interdependence of signaler and receiver (Maynard Smith and Harper 2003; Searcy and 

Nowicki 2005).  Effective communication depends on signalers having variable phenotypes that 

convey information to receivers and receivers attending to these phenotypes and respond 

appropriately. Either component alone is not effective, so the origin of new communication systems 

presents a causality dilemma (Scott-Phillips et al. 2012). The origin of new signaling systems is easier 

to understand if receiver behavior changes as soon as new signaler phenotypes arise. Consistent 

with this hypothesis, we found that receiver responses are flexible such that rearing wasps with 

individual identity signals immediately alters receiver capacity to learn and remember unique 

individuals. These results suggest that if variable facial patterns arise in P. metricus, wasps would 
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immediately improve their ability learn variable facial patterns, thereby facilitating the origin of 

individual face recognition.  

While little previous work has examined plasticity in individual recognition, much more is 

known about plasticity in quality signaling systems (Jennions and Petrie 1997; Rodríguez et al. 2013). 

Receiver responses to sexually selected ornaments are often influenced by the developmental 

environment (Bailey and Zuk 2008; Cornwallis and Uller 2010). For example, when female spiders 

are reared with males that have brown coloration, the females prefer to mate with brown males as 

adults (Hebets 2003). Signaler phenotypes also change in response to the developmental 

environment (Griffith and Sheldon 2001; Cotton et al. 2004). For example, juvenile male crickets 

exposed to conspecific songs during development are more likely to use song to attract females than 

juvenile crickets who are not exposed to conspecific songs during development (Bailey et al. 2010). 

Such plasticity in signaler phenotypes and receiver responses could play an important role in the 

origin of novel sexual signaling systems. For example, if female preference for male traits is induced 

by rearing with individuals that have a particular phenotype, the origin of a new ornament would 

immediately alter female preferences, thereby facilitating the origin of new sexual signaling system.   

P. metricus naturally lack individual recognition because it provides little social benefit. 

Experimental and comparative work in P. fuscatus indicates that individual recognition is beneficial 

for P. fuscatus nest-founding queens because it reduces aggression and minimizes and cost of 

conflict in groups of cooperating queens (Tibbetts 2004; Sheehan and Tibbetts 2009). P. metricus 

typically found nests alone, so there is no need for individual recognition to manage social 

relationships among foundresses. While P. metricus do interact as workers, previous work indicates 

that individual recognition does not seem to play an important role in worker-worker interactions on 

queenright nests (Tibbetts et al. 2018).  

One challenge of studying the origin of communication systems is that ancestral states are 

no longer available. P. metricus were used for this study because they lack individual recognition and 

are unlikely to have an evolutionary history of individual recognition. P. fuscatus are the only species 

with individual recognition in the Polistes. Further, although P. metricus and P. fuscatus are closely 

related, they are not sister taxa (Santos et al. 2015; Sheehan et al. 2015). Additional work on the 

plasticity of recognition in additional species will be useful to understand the scope of plasticity 

across the genus.  

Overall, the results of this study indicate that receiver behavior is flexible and rapidly 

changes in response to novel signaler phenotypes. We found that exposure to individual identity 
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signals immediately alters receiver behavior by improving P. metricus’ ability to learn and remember 

wasp facial patterns. However, experience alone was not sufficient to induce social individual 

recognition, suggesting that plasticity is an initial step that would need to be refined by selection to 

produce a stable signaling system. Reconstructing the evolutionary origin of complex traits like 

communication systems is notoriously difficult.  Our results suggest developmental plasticity may be 

an underappreciated factor facilitating  the evolutionary origin of recognition systems. However, 

additional work across different types of signals and taxa will be useful to test the role of plasticity in 

the origin of novel communication systems.  
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Fig. 1, Portraits illustrating facial variation in a) P. fuscatus and b) P. metricus 
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Fig. 2 Mean ± SE correct choices in P. metricus trained to discriminate pairs faces. Wasps 

were: 1) Inexperienced with individual identity signals, housed with nestmates (trmt 1),  

Inexperienced with individual identity signals, housed with non-nestmates (trmt 2), or Experienced 

with individual identity signals (trmt 3). * indicates wasps learned to discriminate face images, as 

they chose the correct image more often than expected by chance. Dotted line shows the 50:50 

random expectation. The box reflects the first quartile, median, and third quartile. The whiskers 

denote minimum and maximum values. 
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(b)  

 

Figure 3. Mean ± SE (a) aggression index and (b) nonaggressive contacts per day. On days 0, 1 and 3, 

focal wasps interacted with individuals that they had not previously encountered. On day 2, wasps 

interacted with a previously encountered partner. There are no differences in behavior across days. 

The box reflects the first quartile, median, and third quartile. The whiskers denote minimum and 

maximum values. Outliers are represented by circles (<1.5× interquartile range) and asterisks (>3× 

interquartile range).  

 

 


