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Abstract. It is familiar knowledge that population dynamics occur in both time and space. In this work,
we incorporate three distinct but related theoretical schemata to qualitatively interrogate the complicated
structure of part of a real agroecosystem. The three schemata are first, local dynamics translated into
intransitive oscillators through spatial movement, second, stabilizing the system through spatial pattern,
and third, formation of a self-organized spatial pattern. The real system is the well-studied autonomous
pest control in the coffee agroecosystem, in which five insect species (one of which is a pest) are involved
in creating a complex community structure that keeps the pest under control (the five species are an ant,
Azteca sericeasur, a phorid fly parasitoid, Pseudacteon sp., a hymenopteran parasitoid, Coccophagus sp., a
beetle predator, Azya orbigera, and the pest itself, the green coffee scale, Coccus viridis). We use the qualita-
tive framing of the three theoretical schemata to develop a cellular automata model that casts the basic
predator/prey (natural enemy/pest) system as an intransitive oscillator, and then explore the interaction of
the two basic predator/prey systems as coupled oscillators within this model framework. We note that
Gause’s principle of competitive exclusion is not violated with this basic framing (i.e., the two control
agents cannot coexist theoretically), but that with a change in the spatial structure of the background habi-
tat, coexistence can be maintained through the tradeoff between regional dispersal and local consumption.
Finally, we explore how the other oscillator in the system (the ant and its phorid parasitoid) can act as a
pilot system, creating the spatial structure in which the other two oscillators operate, but only in the
context of disjoint time frames (between the two control agents and the pilot subsystem).
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INTRODUCTION

Ecological dynamics in space has been a major
theme in ecology for some time (Tilman and Kar-
eiva 1997, Cronin and Reeve 2005), employing a
variety of theoretical approaches (Pacala and Levin
1997, Massol et al. 2011). Here, we propose a
unique theoretical framing based on our qualita-
tive understanding of a particular subcomponent
of an ecosystem, the traditional shaded coffee

agroecosystem. Our framing differs from previous
literature in its qualitative nature based on obser-
vations and experiments in this real system over
the past 25 yr (Perfecto and Vandermeer 2015),
combining other well-known theoretical issues into
a coherent framework that corresponds to the
long-term observable dynamics in this system. The
theory is formed from previous literature on (1)
intransitive coupled oscillations, (2) spatial dynam-
ics, and (3) self-organization of spatial pattern.
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The coffee agroecosystem is regarded by some
as important both for its tractability in ecological
study (Greenberg et al. 2008, 2014, Perfecto and
Vandermeer 2008) and for its socio-economic
importance, reported to be one of the most traded
commodities in the world (Lashermes et al.
2008), and the base of economic support for 25
million small-scale farming families and many
national economies (Talbot 2004, Utting-
Chamorro 2005). The pest system in coffee is
large and highly variable. However, at any one
point in space and time, it is usually well defined
and less imposing than the 250 potential pests
reported for the species (Le Pelley 1968). In partic-
ular, we focus on one distinct pest, the green cof-
fee scale insect (Coccus viridis). A coffee bush may
be free of the scale insect pest, or it may have
populations of that pest on it, or the pest popula-
tion may be in a state of undergoing attack from
the hymenopteran parasitoid, Coccophagus sp.
The attack of the parasitoid is vigorous locally
(i.e., on a single coffee bush) such that all of the
scale insects on a given plant are killed rapidly
and the parasitoids then emerge and disappear
from the plant. In other words, the system moves
from empty plant to pest attacking the plant to
pest being attacked by parasitoid to empty plant,
evidently an intransitive oscillation, as explained
below. Clearly, such an oscillation can only occur
in a spatially extended system since migration of
both predator and prey are essential parameters.
The qualitative behavior of such a system when
extended in space closely mimics the classical
results of standard predator–prey theory.

The parasitoid Coccophagus sp. is thought to be
an effective biological control agent of the scale
insect. However, an additional control agent, a
coccinellid beetle, Azya orbigera, is also effective
(Liere and Perfecto 2008, Vandermeer et al.
2010). The combination of two control agents (a
parasitoid and a predator) acting directly on a
prey item in the same space presents us with a
classic case of two species occupying the same
niche, suggesting Gause’s principle may operate.
Yet in 25 yr of observations at the same site, both
parasitoid and predator have remained common
in the system. Part of the theory developed here
is aimed at proposing how the complexity of spa-
tial structure can explain this fact.

Coffee is traditionally planted under the
canopy of shade-trees, a natural procedure given

coffee’s origin as an understory plant in the first
place. As has been demonstrated (Vandermeer
et al. 2008), the shade-tree nesting ant, Azteca
sericeasur, moves its nest from shade-tree to
shade-tree, presumably in response to a fly para-
site in the family Phoridae (Pseudacteon sp). The
ants forage in the nearby coffee bushes (a single
nest in a shade-tree typically forages on 5–10 sur-
rounding coffee plants). Thus, with respect to
this ant species, at the level of a given coffee bush
there is an expected cycle of coffee bush without
ants, which becomes occupied by Azteca ants,
which get attacked by Phorid flies, which render
the bush free of Azteca ants—another intransitive
loop. This loop actually creates pattern in the
background habitat, which, we argue, could
form the background pattern necessary for coex-
istence of the two biological control agents.
It is notable that in this particular real-world

system there is a mutualistic ant/hemipteran sys-
tem, the Azteca ant and the scale insect, in which
the ant forages on the honeydew produced by
the scale insect and while doing so attacks the
natural enemies of the scale insect, to the mutual
benefit of both scale and ant (Vandermeer and
Perfecto 2006, Jha et al. 2012). It is thus most nat-
ural that farmers view the ant as a pest also. Yet,
as we show in this model exercise, it is the spatial
extension of the system that allows the two bio-
logical control elements to persist in the long
run, effecting autonomous biological control over
the scale insect over the entire farm, thus sacri-
ficing a small percentage of the farm (from 3% to
7%) as effective spatial repositories of the pest,
which keeps the biological control agents alive
over the entire region.
The spatial dynamics of this system can be

understood through a three-part theoretical
framing: (1) the basic nature of spatial predator/
prey systems forming intransitive loops, (2)
heterogeneity of spatial structure stabilizing a
coupled system of predator–prey loops, and (3)
the self-organization of that spatial structure,
through a pilot pattern formation from a distinct
species group.

THE THEORETICAL FRAMING

The existence of intransitive oscillations in
competitive communities was noted theoretically
in 1975 (May and Leonard 1975) and claimed to
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be widespread in plant communities in 2015
(Soliveres et al. 2015), although much earlier
Gary Polis noted the general existence of what he
called “loops,” in his Coachella Desert food web
(Polis 1991), clearly referring to their intransitive
nature (species 1 beats species 2 which beats spe-
cies 3 which beats species 1, a structure similar to
the children’s game of rock, scissors, paper).
Although the original analysis of intransitive
competition was based on the classical Lotka-
Volterra phenomenological competition equa-
tions, it is also the case that intransitivity emerges
easily when competition is framed mechanisti-
cally (i.e., a consumer/resource or predator/prey
dynamic), (Durrett and Levin 1994a, b) and the
rather large literature on intransitive competition
theory (Frean and Abraham 2001, Kerr et al.
2002, Laird and Schamp 2006, Allesina and
Levine 2011) is not compromised. However, spa-
tially distributed predation may have an intransi-
tive structure in and of itself, if the scale of
interaction is sufficiently small such that preda-
tor and prey cannot coexist in perpetuity at an
individual isolated site. That is, if an empty space
is occupied by a prey item which in turn is occu-
pied by a predator of that prey, and if the preda-
tor overexploits the prey (which inevitably
happens if the local space in which dynamics
occur is small), there is a basic intransitive struc-
ture—empty, prey, prey/predator, empty. This
structure, which undoubtedly, is common in nat-
ure, we refer to as an intransitive oscillator.

For example, the famed Huffaker experiment
(Huffaker 1958) is most often cited as an example
of how spatial extension can induce stability in a
predator–prey system. Oranges provided the
substrate for a predator–prey pair. Following an
individual orange through time, the pattern was
consistently one of an empty orange receiving
migrating prey individuals, giving rise to an
orange containing a population of prey individu-
als. Subsequently, individuals from the predator
population arrived, giving rise to an orange con-
taining populations of both prey and predators.
The predators quickly eliminated the prey, giving
rise to an empty orange again. Thus, on a single
orange the pattern through time is (1) empty
orange gives rise to (2) orange with a prey popu-
lation, gives rise to (3) orange with both predator
and prey populations, gives rise to (4) an empty
orange. As long as there are both prey and

predators migrating, this cycle repeats itself as
an evident intransitive oscillation. The key result
of the experiment is that when a group of
oranges is arranged in a spatial pattern, the basic
intransitive oscillation creates a sustained oscilla-
tion of predator and prey when averaged over
the whole array of oranges, even though each
individual orange is unstable.
Since both classical predator–prey theory and

this spatial formulation are oscillatory, when two
distinct oscillations occur in the same space, they
are likely to interact with one another, which is to
say be coupled. The vast literature on coupled
oscillators thus becomes relevant (Strogatz and
Stewart 1993, Vandermeer 1993, 2004, 2006), and
questions of coexistence emerge, depending on
the nature of the coupling. Specifically, when two
predators are coupled through a single prey (two
consumers through a single resource), the expecta-
tion is that Gause’s principle will come into play.
An additional feature of the Huffaker study is

that the predator–prey system induced a spatial
structure, wherein distinct patches of prey and
predators meander over the space, suggesting that
there was something about the pattern or patchi-
ness that is related to the fact that the instability at
a small scale became stable at a large scale. Sub-
sequently, a related theoretical literature has
evolved, commonly associated with the insights of
Alan Turing (1952), in which the prey acts as if it
were an activator and the predator a repressor, a
metaphorical framing that places the spatial
predator–prey system in the general category of
reaction–diffusion. Initial theoretical explorations
(Segel and Jackson 1972, Levin and Segel 1976,
1985, Levin 1979) have given rise to what seems
like a major generalization in ecology (Alonso
et al. 2002, McGehee and Peacock-L�opez 2005,
Vandermeer et al. 2008, Bendahmane et al. 2016,
Peng and Zhang 2016), that predator–prey sys-
tems in physical space will tend to form clusters
that are Turing-like. This generalization seemingly
holds well when the system is cast as a simple
intransitive loop, with the additional provision
that the spatial structure can form a background
pattern that is essential for the persistence of other
systems living therein, as described below.
Finally, much of the literature on both intransi-

tive cycles and coupled oscillators in space is
framed in terms of a regular background, effec-
tively a regular lattice forming the environmental
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network upon which the population dynamics
unfolds. We note first that fundamental ques-
tions of coexistence require a patterned back-
ground rather than a regular lattice (Horn and
MacArthur 1972, Levin 2000) and finally note
that a patterned background itself may emerge
from independent intransitive oscillators.

The rest of this paper is organized as follows:
First, we explore the basic dynamics of placing
the intransitive cycles in space and coupling
them together (in this case the scale insect
attacked by the parasitoid and the predator). Sec-
ond, we explore the nature of the underlying
spatial structure and the spatial scale of disper-
sion scale, casting the problem as a network-
transforming issue. Third, we examine the nature
of the self-organized pilot pattern formation, in
which an additional intransitive oscillator (in this
case the ant/phorid predator–prey system) cre-
ates the spatial structure on which the original
two oscillators can coexist.

THE DYNAMICS OF COUPLED SPATIAL
INTRANSITIVE OSCILLATORS

The green coffee scale insect, Coccus viridis, a
pest of coffee throughout the world (Coleman
and Kannan 1918, Le Pelley 1968), is one of the
key components of this system (Vandermeer and
Perfecto 2006, Vandermeer et al. 2010, Perfecto
and Vandermeer 2015). It attaches mainly to the
midrib of the leaves of coffee trees, penetrating
the leaf tissue with a sharp proboscis and suck-
ing material out of the leaf. It is basically sessile
as an adult but produces crawlers as juveniles.
The crawlers are dispersed by wind and must
disperse from leaf to leaf on a tree and from plant
to plant on a larger scale, plausibly on a regular
lattice pattern, but more often than not in a non-
random clustered pattern, depending on the spa-
tial nature of the coffee plantings. A well-known
parasitoid on the scale is a wasp, Coccophagus sp.
(Mani et al. 2008). The idealized version of the
system is, at the level of an individual plant (1)
an individual plant without scales is (2) infested
by the crawler stage of the C. viridis and rapidly
forms local populations on the plant, which (3)
attracts the parasitoid Coccophagus sp. which
eliminates it from the plant, rendering the plant
free of scales once again. More generally, an
empty site is colonized by a prey item which is

subsequently colonized by a predator item which
eliminates it, thus returning the site to an empty
state (as outlined in Fig. 1).
We model this basic system as a cellular

automaton. Consider a nxn lattice with three
variables: S (for empty space), P (for predator
and prey together), and V (for prey or victim
alone), all of which are binary, and ki (x,y) is a
binary number indicating presence or absence of
the ith variable at the point {x,y}. The number of
each of the variables in the Moore neighborhood
(the surrounding eight cells) is given as

Niðx; yÞ ¼
X
M

kiðx; yÞ

where i = S, P, or V and M indicates summation
in the Moore neighborhood around the point {x,
y}. Thus, for example, NS(x,y) is the number of
empty cells in the Moore neighborhood around
point x,y. The transformation rules for each lat-
tice cell are as follows:

S changes to V with probability mNV/8
V changes to P with probability aNP/8
P changes to S with probability d

The parameters m, a, and d have clear biologi-
cal meanings: m = migration rate of the prey,
a = migration rate of the predator, and d = feed-
ing rate of the predator (visualized in Fig. 1).
Over the whole lattice, we expect qualitative

results that are likely to result from simple quasi-
quantitative reasoning (and correspond to classi-
cal results): (1) If the predator’s death rate is
extremely low but its attack rate is extremely

Fig. 1. The basic framework of the model system
(note its intransitive nature).
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high, we expect that the predator will eliminate
all prey and then itself go extinct from a lack of
food, thus the elimination of the entire system
(the takeover by empty spaces); (2) if the preda-
tor death rate is extremely high and the attack
rate extremely low, the predator will be elimi-
nated from the system and the prey increase to
take over the entire lattice (approach its carrying
capacity); (3) with intermediate values of preda-
tor attack and death rates, the system will be
maintained, as an intransitive loop in space. The
detailed nature of these three outcomes will
depend on parameter values, but it is worth
emphasizing that the overall average behavior of
the system is expected to mirror the classical
results of predator–prey theory. Results from
simple simulations on a 100 9 100 lattice are
presented in Fig. 2.

The nature of the coexistence parameter space
is complicated but intuitive and simple simula-
tions reveal a host of potentially interesting tem-
poral behaviors and spatial patterns on the
lattice. However, there is an interesting general-
ization that can be gleaned from Fig. 2. Taking
prey migration rate as a tuning parameter,
whence the overall behavior of the system is
complete extinction of the whole system when
the prey migration is too low (that which would
happen if the parameter were to the left of the
left-hand panel of Fig. 2) ranging to complete
coexistence of both predator and prey (that
which would happen if the parameter were to
the right of the right-hand panel of Fig. 2).
Between these two predictable circumstances,
the system will be more unpredictable, yet with a

clear statistical pattern, as illustrated in Fig. 2. If
either of the other two parameters are taken as
tuning parameters, the qualitative results are
equally intuitively obvious. And if we construct
a parameter that simultaneously increases preda-
tor attack rate while decreasing predator death
rate, the system will go from complete elimina-
tion of the predator and persistence of the prey
over the whole lattice to a state of emptiness (nei-
ther predator nor prey survive and the whole lat-
tice is empty). In all of these qualitative
observations, it is important to note that the
three-element persistent solution is always an
intransitive loop.
Corresponding to the framework we seek to

study (coupled intransitive oscillators) the green
scale insect has another important predator, a
lady beetle, Azya orbigera. It is qualitatively clear,
if difficult to measure quantitatively, that the
lady beetle and the parasitoid have different dis-
persal qualities and different attack rate proper-
ties (Jha et al. 2012, Liere et al. 2012), yet the
basic idea of the two together corresponds to the
theoretical structure of coupled oscillators
(Fig. 3), a framework that has given rise to a sub-
stantial literature (Strogatz and Stewart 1993,
Vandermeer 1993, 2004, 2006). In accord with
this recent literature, it is of interest to query the
current framework with respect to a second
predator in the system, effectively a situation of
competition with the two predators seeking sus-
tenance from the same food source, and concep-
tually fitting into the category of a system of
coupled oscillators. The two predators are, struc-
turally, in competition with one another.

Fig. 2. Parameter space study of long-term outcome of cellular automata model, plotting predator attack rate
(abscissa) vs. predator death rate (ordinate), with proportional bubbles representing coexistence (prey/pred), or
predator extinction and prey survival (prey = K) or extinction of the whole system (empty). Axes on each graph
range from 0 to 1.
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Thus, expanding the original model, we have,

S changes to V with probability mNV/8
V changes to P1 with probability a1NP1/8
V changes to P2 with probability a2NP2/8
P1 changes to S with probability d1
P2 changes to S with probability d2

as the fundamental model (illustrated in
Fig. 3). However, in running the model there is
another emergent state, P1P2. So as to avoid an
unnecessary additional time step, we transform
P1P2 to S during the same time step (i.e., the rule
P1P2 ? P1 with probability a and P1P2 ?P2 with
probability 1�a, generates what is effectively a
new nonlinear element into the model which mit-
igates against the simplicity of the original formu-
lation, adding an additional parameter, a).

Extensive simulations support what we believe
is intuitive, that P1 and P2 should form a kind of
stochastic extinction in this system. That is, the
long-term coexistence of P1 and P2 is not possi-
ble, regardless the values of the tuning parame-
ters (if a is added as an additional parameter (see
discussion in previous paragraph), there are
knife-edge sections of the parameter space that
allow for coexistence—we ignore those situations
as probably uninteresting). Similar formulations
in the literature generate identical results (e.g.,
Frean and Abraham 2001), which reflect the clas-
sic notion of Gause’s principle.

Strict cellular automata rules are quite restric-
tive when a second predator is added, especially
in the light of the much-discussed competition/
migration tradeoff. That is, the need for only local
interactions (any given cell receives migrants only
from its immediate neighbor cells) mitigates
against a framework in which either predator or
prey can engage in long-distance migration, even

though local parameters are tunable. This restric-
tion can be seen as an obvious mechanism of
why the two predators are unable to coexist, sort
of a spatial form of Gause’s exclusion principle.
And it is also the case that creating a situation
where one predator is a poor feeder but migrates
rapidly, while the other predator is a poor migra-
tor but feeds rapidly (in search for the ecologi-
cally proverbial tradeoff), does not dampen the
apparent result that the two predators will not
coexist except at knife-edge sections of parameter
space (structurally similar to the famous survival
of the weakest, in which a genotype of a weaker
competitor will exclude the genotype of a stron-
ger competitor due to spatial constraints; Frean
and Abraham 2001). However, this result
depends on what we argue is an overly restrictive
constraint on the background habitat—that it is a
regular network (Newman 2010).

THE STRUCTURE OF THE BACKGROUND
HABITAT

A convenient tool for examination of underly-
ing geometry, without imposing strict point-to-
point dynamics, is found in the burgeoning field
of network theory. Indeed, if the probability of
migration as a function of distance is strongly
convex (in the sense that probability is close to 1.0
for close distances and falls rapidly toward zero
at some critical distance), we can think of the geo-
metric space as a network. The coffee plants are
nodes, and any pair of plants closer than the criti-
cal distance is connected by an edge. The back-
ground on which the dynamic process operates is
thus a formal network with nodes and edges. In
the real system, although plants may be concen-
trated in rows, or on hillside contours, in more
traditional systems they frequently seem more
like a natural plant population. That is, the distri-
bution of plants on the ground is far from a regu-
lar lattice, even though such a planting pattern
may have been the original intent of the farmer.
In Fig. 4, we show the distribution of coffee
bushes in a small (20 9 20 m) plot, in southwest-
ern Chiapas, Mexico, illustrating the combination
of regularity (from the original intention of the
farmer in planting the bushes) plus irregularity
(from random deaths and subsequent replant-
ing). Thus, we have a network that could be
ideally considered a regular lattice, although its

Fig. 3. Coupling two intransitive loops.
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deviation from regularity suggests other idealiza-
tions could be possible, as discussed later. The
dynamics of the scale insect population and its
predators operates on a network like this.

It is reasonable to suggest that the background
habitat is viewed differently by the three players
in our real-world system. For example, the para-
sitoids are likely to disperse locally and build up
high population densities locally (Compton
2002). The beetles, however, fly actively and are
known to disperse widely (Liere et al. 2012). It
might then be reasonable to suggest that the par-
asitoids are local dispersers and view the habitat
as a lattice (perhaps with some of the nodes clus-
tered), while the beetles, flying widely searching
for scale insects, view the habitat differently.
While many spatial models in ecology presume a

regular Euclidean space as the underlying spatial
geometry, the geometry faced by most systems in
nature does not conform to this idealization. The
migration distance and/or the geometric position
of occupation sites may alter the dynamic rules.
For example, if one of the predators is a long-dis-
tance migrator, that effectively changes the regu-
lar lattice network to what is effectively a small-
world network. Similarly, if nodes are clustered
in space, or the rules of migration effectively
make them so, the background habitat is a clus-
tered distribution (which may or may not be
scale-free, i.e., the distribution of number of con-
nections per node may or may not be a power
function). Although other framings are possible,
we find it convenient to begin with a regular lat-
tice and consider modifications in (1) physical

Fig. 4. Distribution of coffee trees on a 20 9 20 m plot in Mexico, illustrating both the original intention of
planting trees in rows, but, because of deaths and replanting, also the non-regular nature of the distribution.
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positions of the nodes (habitat spaces) and (2)
local vs. long-distance connections (small-world
structure). We summarize our categorization
scheme in Fig. 5.

With this framing, we note that the failure of
the dispersal/competition tradeoff paradigm to
stabilize the system (make it persistent) takes on
a slightly more complicated form. As noted
above, with a simple modification of the rates of
migration and attack rates of the two predators
in the simple CA model, it is not possible to
maintain both predators in the system. In the
context of our actual system, we examine the
consequences of assuming one predator operates
on a strict lattice structure (as we expect of the
parasitoid in the running example) while the
other exists on a small-world network, resulting
from its long-distance dispersal (as we expect of
the beetle predator in our running example).
Thus, our framework generates a system struc-
tured such that a clustered lattice underlays the

dynamics of one species (i.e., Fig. 5c), while a
clustered small-world pattern underlays the
dynamics of the other species (i.e., Fig. 5d). With
proper parameter settings, it is evident that both
intransitive loops could coexist in perpetuity, an
expectation that is revealed in simple simulations
(e.g., Fig. 6).

SELF-ORGANIZED STRUCTURE OF THE
BACKGROUND HABITAT

Extensive simulations repeat the pattern
shown in Fig. 6, namely, on a regular lattice with
or without small-world connections, the two spe-
cies are unable to persist together, but on a clus-
tered lattice with small-world connections, there
are extensive areas of parameter space that per-
mit coexistence, apparently in perpetuity. The
coexistence arrives through the standard mecha-
nism of a tradeoff between dispersal and compe-
tition (Levins and Culver 1971, Cadotte et al.
2006), with the strong competitor (low predator
dispersal rate and high attack rate) dominating
the larger clusters of available sites while the
strong disperser (low predator attack rate and
high dispersal rate) dominates the smaller iso-
lated available sites. Thus, we see the coupled
intransitive loops reflect the underlying structure
assumed to exist regularly in both theory and in
real systems.
There is another intransitive loop in the sys-

tem. Most farms are managed with shade-trees
above the coffee bushes. As noted above, the
arboreal Azteca ant locates its nesting sites in
those shade-trees and forages on the nearby cof-
fee trees. As its colony grows, it buds, forming
new colonies in nearby shade-trees, thus forming
clusters of nests (Vandermeer et al. 2010, Jackson
et al. 2014). But the ant is attacked by a parasitic
fly (Pseudacteon spp.) that effectively causes the
clusters of nests to disappear (either all nests in
the cluster are moved far away or they die).
Thus, we have the intransitive loop of (1) empty
coffee bush is found by (2) an Azteca colony
(nesting in a nearby shade-tree), which ulti-
mately is (3) attacked by the fly parasitoid, even-
tually abandoning its nesting site (or dying). As
argued elsewhere (Vandermeer et al. 2008), this
system is similar to the classic Turing mechanism
in that the phorid acts as a repressor and the ant,
by moving its nests and occupying other trees, is

Fig. 5. The four qualitatively distinct network struc-
tures considered. (a) A regular lattice where the small
circles are the habitats which the predators and prey
may occupy (coffee bushes in the present context), and
the connections represent the possible migration path-
ways. (b) The regular lattice in (a) with two connec-
tions randomly broken and randomly reattached,
creating a small-world structure. (c) A clustered pat-
tern of habitats. (d) The same clustered pattern in (c)
but with a random two connections broken and ran-
domly reattached to create a clustered small-world
spatial pattern. In all cases, there are 25 nodes (coffee
bushes) and 40 connections (dispersal pathways).
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the activator, with the whole system operating
on the background network of shade-trees that
are potential sites for the ant nests. This Turing-
like mechanism creates clusters of nests in an
otherwise relatively uniform environment
(Fig. 7). Most importantly, as noted elsewhere
(Jackson et al. 2014), any other organisms that
use the ant nests as background habitat will
respond to particular critical distances according
to their own biological properties.

Thus, the basic intransitive spatial structure of
the Azteca ant, the phorid fly, and the empty trees
gives rise to clustering in space, and each cluster
of ant nests represents a connected component in
the context of network theory. The dependence
of the scale/parasitoid complex on this structure
represents a spatial structure created by one sys-
tem (the Azteca/Phorid system) in which the
other system (the scale/parasitoid/beetle system)
is forced to exist. Yet in another sense, the system
is composed of three coupled intransitive loops
as illustrated in Fig. 8—the empty site may be (1)
occupied by the scale insect (the prey) and then

attacked by the wasp (predator 1), or (2) occu-
pied by the scale insect (the prey), and then
attacked by the beetle (predator 2), or (3)
occupied by the Azteca ants (alternative prey)
and then attacked by the phorid parasitoid
(alternative predator).
The scale insect is strongly influenced by the

Azteca ant (the alternative prey of Fig. 8), a major
element in this system, extensively studied ear-
lier (Vandermeer et al. 2010). The ant makes its
nests in the shade-trees in coffee farms and tends
scales on the nearby coffee bushes, which is to
say prevents the two predators from attacking
the scale insects. Thus, there are alternative effec-
tive habitats in which the scale insect may occur:
(1) coffee trees associated with a nest of the ant,
Azteca sericeasur, and (2) coffee trees not associ-
ated with the ant—either of the predators have
complete access to the scale insects in those areas
in which the ants are absent, but greatly reduced
access when the ants are present. Consequently,
the ants occupying shade-trees effectively create
a network on which the two natural enemy

Fig. 6. Exemplary simulation results on a regular 100 9 100 lattice with one predator a long-distance migrator
(predator 2) and the other a strong competitor (predator 1). (a) On a regular lattice, one of the predators always
goes extinct (which one depends on parameters), regardless of the parameter tradeoff of dispersion vs. competi-
tion. (b) With a fixed non-random background habitat representing a clustered small-world habitat (as in
Fig. 5d), a variety of parameter combinations allows for such coexistence.
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systems must operate, that is, all the area in the
coffee farm that is without ant nests. For this rea-
son, we add a third intransitive loop to the sys-
tem (Fig. 8), the ant/phorid system. Note that
one of the intransitive loops (the alternative
prey/alternative predator loop of Fig. 8), through
the Turing mechanism (Vandermeer et al. 2008)

forms the clustered spatial pattern in which the
other two predators must exist, thus creating a
basic self-organizing process whereby the system
as a whole may persist.
Expanding the basic CA model to include this

third loop, we have two new variables, A = oc-
cupied by Azteca ants, and P3, occupied by
Azteca ants and their parasitic phorid flies, and
the CA model becomes,

S changes to V with probability m1NV/8
V changes to P1 with probability a1NP1/8
V changes to P2 with probability a2NP2/8
P1 changes to S with probability d1
P2 changes to S with probability d2
S changes to Awith probability m2NA/8
A changes to P3 with probability a3P3/8
P3 changes to S with probability d3

There is an inherent conflict in the structure
of the system regarding the switch from S to V
vs. the switch from S to A. In this model, we
first consider the S to A switch, which, if it
happens, makes the cell unavailable for the S to
V switch.
The subcomponent of this model that includes

only the loop, S to A to P3, is similar to the model

Fig. 8. The three connected intransitive loops with
alternative prey.

Fig. 7. Three snapshots of a 45-hectare plot in a Mexican coffee farm. (a) Theoretical distribution of 6700 trees
arranged in a regular lattice, as would be (and was) the underlying assumption from a simple cellular automata
model of the system. (b) The actual distribution of shade-trees (about 6700) on the farm in 2014, showing the
obvious deviation from the regular lattice. (c) The distribution of shade-trees that contained Azteca nests in 2014,
illustrating the clustered nature of the nest distribution.
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we studied earlier, and results in spatial clusters
of ant nests on the grid. Thus, this third loop is
expected to create a spatial pattern within which
the first two loops (S, V, P1, and S, V, P2) exist,
what we call a “pilot pattern” (taking a very
approximate metaphorical clue from so-called
pilot wave theory of particle physics, e.g., Valen-
tini 2010) that will permit the coexistence of the
other two predators and their intransitive loops,
much like the fixed clusters did, as, for example,
Fig. 6b. However, it is evident that the pilot pat-
tern created by this third loop can take a variety
of forms, three examples of which are illustrated
in Fig. 9. Note that the clusters where the other
two loops must exist are the open spaces.

If the spatial pattern formed by the pattern-
forming intransitive loop (the pilot intransitivity)
were to remain constant, clearly that would be
no different than fixing an arbitrary background
as we did in the case of Fig. 6b. With a com-
pletely connected network (e.g., Fig. 9a), as
already mentioned, the background is essentially
a single background habitat and the results
reported above are repeated (i.e., extinction of
one of the original predators). With an uncon-
nected patchy network (e.g., Fig. 9b), the big
patches favor the non-dispersing predator and

the small patches favor the dispersing predator,
and for many parameter combinations, we
should expect the two predators will coexist (as
happened above with the fixed spatial pattern).
However, extensive simulations with this situa-
tion show that coexistence of the original two
predators is impossible. When the generated
pilot pattern is continually changing, the system
effectively merges all the patches stochastically,
and the average over time essentially becomes a
single patch.
Thus, we see that as long as the constructed

spatial system of permitted sites is not a com-
pletely connected network (e.g., if it is as in
Fig. 9b), and as long as the pattern is fixed, coex-
istence is possible (e.g., Fig. 6b). But with a
dynamic system, even though seemingly favor-
able patchiness is created by the third (pilot pat-
tern) loop, coexistence is impossible (data not
shown). Thus, at one extreme, if the system that
generates the pattern (the alternative prey/alter-
native predator; Fig. 8) operates at the same tem-
poral scale as the original coupled system (prey/
predator 1/predator 2), coexistence is impossible,
but at the other extreme, if the temporal scale is
very long (i.e., the constructed pattern is con-
stant), coexistence is common. The question thus

Fig. 9. Examples of the structure generated by the empty space/prey/predator intransitive loop, where the
empty patches are the constructed habitat created for the original coupled intransitive loop system. (a) Large
patches at a parameter setting with a spanning cluster (of white) and a completely connected network (of white),
effectively creating a single patch and the effective structure of a simple lattice. (b) More constrained patches
where both large and small patches exist, creating the background for a sustained coexistence of both original
intransitive loops, where one predator is a good competitor and the other a good disperser, just on the boarder of
a spanning cluster. (c) Highly isolated patches.
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arises as to what happens at intermediate tempo-
ral scales.

Let the temporal scale of the constructing sys-
tem be s. If s ! 1 the constructed space is fixed
for the original coupled system, whereas if s = 1,
the constructing system has the same time scale as
the original coupled system. So, with s ! 1, the
background system is constant and the two preda-
tors coexist (with proper parameter values, e.g.,
Fig. 6b). If s = 1, the background system changes
at the same rate as the original coupled system
changes and effectively creates a single average
environment, leading to the inevitable extinction
of one or the other predators (data not shown).

Clearly, a value of s > 1 but <1 can result in
either result and we can imagine a critical value,
scrit, above which the original coupled two preda-
tor system will persist in perpetuity and below
which competitive exclusion will result. Several
relevant time series are illustrated in Fig. 10 and
snapshots of one of the spatial patterns that
emerges when s > scrit is illustrated in Fig. 11.
Thus, a clustered spatial structure created by

an independent intransitive loop can create per-
sistence of a distinct set of coupled intransitive
loops, but only if the former has a disjointed time
frame, that is, only if the pilot pattern-forming
loop operates in a longer time frame than the

Fig. 10. Exemplary time series of predators with the dispersion/consumption tradeoff, with the Azteca/Phorid
system creating pattern. (a) Illustration of the operation of the Azteca/Phorid system for the first 50 time steps with
the resulting spatial structure remaining constant after that point. Note the persistence of both predators in the
system. (b) Same as a, but the Azteca/Phorid system remaining in the dynamic structure throughout. Note the
extinction of predator 1 at time step 100. (c) Four examples of the parameter s, illustrating the persistence of the
system for s = 10 and above. Note how the dynamic pattern of both predators reflects the particular value of s.
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coupled system living in that spatial structure.
There are parameter combinations where the
relationship between the time frame difference
(s) seems to form a proportional relationship to
the time to extinction (T) estimate (Fig. 12), but
other combinations where there is an accelerat-
ing relationship between s and T (Fig. 12). Most
importantly, there seem to be some parameter
combinations for which the function that relates
T to s diverges at some critical s (scrit), as illus-
trated in Fig. 12. It is also the case that the time
to extinction scales as the inverse of the critical
point, which is to say, the equation,

T ¼ f�
1� s

scrit

� (1)

describes well the time to extinction (T) relative
to the scaling parameter (f) and the critical expo-
nent (z), according to the dynamic scaling
hypothesis (Djurberg et al. 1997).

CONCLUSION

Herein we argue that a spatially explicit intran-
sitive system consisting of empty cell giving rise
to cell with prey giving rise to cell with prey/
predator giving rise to empty cell is a good model
for at least the system we model here, the pest
system of a Mexican coffee agroecosystem. For
the actual system being modeled, the prey is a

pest species, the green coffee scale insect. There
are two predators, a wasp parasitoid and a beetle,
and coupling them together creates a situation in
which, theoretically, coexistence is impossible. We
note that the general qualitative framing here is
hard to ignore as basically identical to the opera-
tion of the system in nature (individual coffee
trees that get attacked by scale insects, but then
the scale insects are attacked by both of these bio-
logical control agents). Yet our generalization that
such a coupled intransitive system cannot persist
is inconsistent with the clear observations in nat-
ure over the past 20 yr that both of these biologi-
cal control agents persist in the system, indeed
are responsible for maintaining this pest below
significant damage thresholds (Vandermeer et al.
2010). Adding the underlying non-regular pattern
of the cells in the system (the coffee bushes on the
farm) enables the co-persistence of the two bio-
logical control agents. But that underlying spatial
pattern is itself a consequence of a distinct intran-
sitive oscillator, what we call the pilot system. As
noted by Barab�as (personal communication), this
metaphor is perhaps stretched, in that the system
forming the pattern is doing nothing more than
that. To liken it to the dynamic process in the De
Broglie-Bohm theory is certainly very approxi-
mate, yet the underlying consequences of both
the original pilot wave and our pilot pattern are
similar and we argue that this approximate meta-
phor is potentially useful.

Fig. 11. Spatial structure emerging from three interpenetrating intransitive loops, where prey 2 and predator 3
(coupled with empty sites) are the members of the intransitive loop that provides the pilot pattern in which the
other two intransitive loops live. (Parameter set is the same as parameter set b in figure 9, with s = 25).
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The so-called pilot system in this case has been
elaborated extensively elsewhere (Vandermeer
et al. 2008, Philpott et al. 2009, Perfecto and Van-
dermeer 2015, Li et al. 2016), whereby the Azteca
ants that form a spatial patchwork in the system
(Fig. 7c) actually restrict the operation of the two
predators locally (within a patch of Azteca), but
also, through their mutualistic effect on the scale
insects, supply the source of scale insects that
migrate into the empty cells (the coffee plants
unaffected by the Azteca ants). It is thus ironic
that the protectors of a pest (the Azteca ants pro-
tect the scale insects) are actually the keepers of
the source of that pest, but also responsible for
the underlying spatial pattern, both of which are
necessary to maintain the pest’s natural enemies

over the whole farm. Only a small percentage of
shade-trees contain Azteca nests, but those are
sources of the scales that help maintain the
predators over the rest of the farm. Furthermore,
the time frame of the systems corresponds quali-
tatively with the idea of dynamic scaling (Eq. 1).
The Azteca ants operate on a time scale of from
months to years, while the parasitoid and beetle
are on a week to month time schedule.
Thus, it is (1) the demographic parameters of

the coupled predator/prey systems, (2) the struc-
ture of the background habitat, (3) the construc-
tion of that structure by a distinct predator/prey
system (the pilot system), and (4) the disjoint
time frame between the pilot system and the bio-
logical control systems, which collectively gener-
ate the ultimate result of persistence of the
system. This ultimately intuitive structure seems
to be responsible for maintaining the control of
the potentially important pest, the green coffee
scale, in perpetuity. It is ironic that some farmers
view the Azteca ants as themselves pests since
they are mutualistically associated with the scale
insects. Yet it is clear from the basic intransitive
structures embedded in the system that the
Azteca ants are crucial for maintaining control
over this pest over a large area—a complex web
of ecological interactions is thus responsible for
control of a pest in one of the most important
crops in the world.
There may be a generalization here. That

dynamic interactions among organisms can cre-
ate the habitats in which other organisms exist, a
pilot pattern, is certainly not new. For example,
in 1926 Tansley and Chipp, noted:

. . . it is really the whole of the living organisms
together, plus the inorganic factors working upon
them, which make up,. . . a ‘system’. . . But such a ‘sys-
tem’ considered fundamentally. . . must include the
‘inorganic’ factors of the habitat and these obviously
cannot be considered as ‘members’ of the community;
and if we take the inorganic factors as external, why
not biotic factors such as grazing animals?

and even earlier Darwin’s humblebees found
refuge in old mouse nests. More recent literature
repeats, in one form or another, a similar idea
(e.g., Wu and Loucks 1995, Holt and Keitt 2000),
in one case even referring to the cells of the
environment being caused by other organisms
(Caswell 1978).

Fig. 12. Time to extinction vs. s on a 100 9 100 lattice.
Open symbols for parameter set A and closed symbols
for parameter set B. Note the open symbols follow a lin-
ear relationship with s (line is best fit linear least-squares
regression), while the closed circles fit well the equa-
tion T = 146.77/(1-s /scrit)

4.209 where the divergence is
scrit = 25.15. For the parameter set B, any value of s larger
than scrit is expected to be “stable” in the sense that the
expected time to extinction approaches infinity. Equation
graph is from the dynamic scaling hypothesis (Eq. 1).
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While such work treats the issue generally,
the notion of a pilot pattern as guiding spatial
structure fits in with these basic insights. If graz-
ing animals avoid the edge of a forest for fear of
predators lurking there, the grasses they feed on
receive a spatial respite. The grasses care not
whether the herbivore-free patch is caused by
an underlying edaphic factor (inorganic) or by
the threat of predators. Thus, the pilot pattern
for the grass is caused by the grazing animals
and their predators. Our results suggest that,
while this framework seems to make sense, at
its simplest level there must be some disjunction
in the time frame of the pilot system vs. the time
frame of the responsive system. If the pattern
shifts in the same time scale as the responsive
system, it cannot operate as a pilot, at least in
our simple model. We propose that this is a gen-
eral rule.
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