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SUMMARY
A numerical algorithm is developed for estimating the Box-Cox transformation
parameter ,\ in a seasonal ARIMA model, jointly with other model parameters. The
algorithm is easily implemented and requires only modest modification of existing
Box-Jenkins computer programs. Use of the algorithm is illustrated in analysing a
time series of Chatfield and Prothero.
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1. INTRODUCTION
To APPLY the Box-Jenkins methodology to the analysis and forecasting of time series, a
preliminary transformation of the data is often employed. Evidence suggests that the choice
of this preliminary transformation is of critical importance, particularly for seasonal time
series. Chatfield and Prothero (1973a) used a log transformation for this purpose and did not
obtain a satisfactory forecasting model using Box-Jenkins methods. Several discussants of
this paper, Box and Jenkins (1973), Harrison (1973) and Tunnicliffe Wilson (1973), suggested
that a more flexible parametric family of transformations, introduced by Box and Cox (1964)
for the fixed effects analysis of variance model, could be used to improve forecasting perfor
mance. This family is given by:

Yit) = [{y(tW-l]/", "#O,}
(1)

yo(t) = lny(t),

where for our purposes yet), assumed to be positive, denotes a nonstationary time series and
" is the transformation parameter.

In using a maximum likelihood method for estimating ", however, computational difficulties
were experienced by Chatfield and Prothero (1973b), who indicated that over 40 minutes of
computer time were required. This paper presents a numerical algorithm for approximate
maximum likelihood estimation of the parameter " jointly with the other parameters of a
seasonal ARIMA model. The algorithm is computationally efficient, is easily implemented, and
requires only a modest modification of existing Box-Jenkins computer programs. On the
University of Michigan'S Amdahl 470 computer, the algorithm requires only about 10 per
cent more central processing unit time than Box-Jenkins estimation without the transforma
tion option.

Before developing the algorithm, we give a brief development of the likelihood function
associated with the Box-Cox transformation (1) for seasonal ARIMA time series. The use of
the algorithm is then illustrated for the seasonal time series of Chatfield and Prothero (1973a).

2. DEVELOPMENT OF THE LIKELIHOOD FUNCTION
We assume that for some value of the transformation parameter" the transformed observa

tions Yit) in (1) follow a seasonal ARIMA(p, d,q) x (P, D, Q) process. The random shocks aCt)
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are assumed normal with mean zero and variance a2• It should be noted that (1) necessarily
precludes negative values so that, strictly speaking, aCt) can be only approximately normal.
The notation of Box and Jenkins (1970) is adopted throughout this paper.

Since the Yit) form an ARlMA(p, d,q) x (P, D, Q) process, the backward differences,

wA(t)= VdVfYit) (2)

form an ARIMA(p,q) x (P, Q) process. The joint probability density of w" = (wil), ... , w,,(n))
is (Box and Jenkins, 1970, p. 273):

fn(w" Iep,e, 4»,e, 0, a2) = (27Ta2)-!nl Mn\!exp (-S/2a2) (3)

where

n
s=S(ep,e,4»,e,o)= ~ [E{a(t)lw A; ep,e, 4»,e , 0}]2,

1=-00
(4)

and where a2 M;;,1 = a2 M;;,I(ep, e, 4»,e) is the n x n covariance matrix of the differenced
series wit).

We assume that the initial d+sD observations y(O),y( -1), ... ,y(-d-sD+ 1) are fixed,
and we seek the joint probability density of the n most recent observations y = (y(n), ... ,y(l))
of the time series conditional on these values.

Two transformations must be considered in this derivation: the differencing transforma
tion (2), whose Jacobian is one, and the Box-Cox transformation (1), whose Jacobian, assum
ing the initial d+sD observations are fixed, is

J = I n(>'',y) = Ii IaY.\(t)I= IT {y(t)}"-I. (5)
1=1 aYCt) 1=1

The conditional joint density of the original (untransformed) time series y(1), ... ,y(n) is
therefore

hn{y Iy(O), ... ,y(-d-sD+ 1); ep,e, 4»,e, 0, a2, >..} = (27Ta2)-!nl Mnl! exp ( - S/2a2)J. (6)

From (6) the log likelihood is

L = const-!nlna2+llnIMnl-S/2a
2+1nJ. (7)

3. A NUMERICAL ALGORITHM FOR PARAMETER ESTIMATION

Following Box and Jenkins (1970, p. 213) we will assume that for moderate and large
values of n, the term! InIMn I in (7) is dominated by S/2a2. Discarding this term we approxi
mate (7) by

L *= const-In In a2- S/2a2+ InJ, (8)

and note that the solution to the normal equation obtained from (8) for a2 is

(12 = Sin. (9)

For fixed values of the remaining parameters we can maximize L * over a2 by substituting (9)
into (8), obtaining

L~ax = L~aX<ep, e, 4»,e, 0, >..) = const-lnlnS+lnJ. (10)

Maximization of L~ax remains complicated. Our approach is to re-express (10) as a mono
tonic function of a sum of squares, thus enabling the use of a nonlinear least-squares algorithm
for numerical solution.

We simplify the notation by abbreviating E{a(t)lw,,; ep,e, 4»,e, 0, >..} to [a(t)] and
E{wit)!wA; ep,e,4»,e, 0, >..} to [wit)]. Numerical values for [aCt)] in (4) are obtained from
the difference equations

ep(B) cf>(BB) [wit)] = 0+ 8(B) 0(BB) [aCt)]. (11)
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Following Box and Cox we now define an additional transformation

z),.(t) = [wit)]/)lln, t = 1, ... ,n;

outside the range 1, ... ,n we write

If we now write

alt) = [a(t)]IJlIn,

we can divide (11) by )lIn and obtain

ep(B) <D(BS) zit) = s,+ B(B) G(ES)ait)

where
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(12)

(13)

(14)

(15)

s, = suv« (16)

Given zil), ... ,z,,(n), it is clear that values of alt) are obtained from (15) in exactly the same
way that values of [aCt)] are obtained from (11).

Using (14), the sum of squares S can be written

where

n n
S = ~ [a(t)]2 = J2/n ~ {az(t)}2 = J2/n s,

1=-00 1=-00

n
s, = ~ {az(t )}2.

1=-00

(17)

(18)

Finally, using (17) in (10), we obtain

L~ax = const-lnln(J2/n Sz)+lnJ = const-!n In Sz. (19)

The problem of maximizing (8) is now reduced to that of minimizing Sz in (18) with respect to
cp, 6, cI», e, 0z' and A. From the estimates 8z and :\ we then obtain

8 = JlIn(:\) 8z. (20)

We have developed an algorithm which involves the minimization of the nonlinear sum of
squares function Sz in (18). Because any computer program for Box-Jenkins estimation will
contain both a nonlinear least squares routine and a routine for solution of difference equa
tions of the form (15), our algorithm can be incorporated in such a program with a minimum
amount of modification. A flow chart for the major steps involved appears in the appendix.

The Box-Jenkins program used by the authors employs the nonlinear least squares
algorithm of Marquardt (1963). This program was adapted as described above to minimize
Sz simultaneously over all the parameters including .\, and has proven efficient over a wide
range of ARIMA models. Our experience with a variety of time series has indicated that the
sum of squares Sz is well behaved and approximately quadratic in .\.

4. AN EXAMPLE

We apply our results to the analysis of the sales data discussed by Chatfield and Prothero
(1973a, b), in which monthly data for January 1965 through May 1971 are given. All 77
observations from this time series are used in this illustration.

(a) Identification. Identification of (p, d,q) and (P, D, Q) may change for various choices
of the parameter A. An effective strategy is to choose an initial value for .\ which seems
reasonable from an examination of the raw data, and, based on this initial transformation, to
carry out the usual Box-Jenkins identification prodecure to find p, d, q, P, D, Q and initial
estimates of the parameters.
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Our experience with several time series indicates that the identification of (p, d,q) and
(P, D, Q) is not affected by the initial choice of the parameter Aover a wide range of values.
Moreover, except for the constant term, initial estimates of other model parameters appear to
be relatively insensitive to the choice of A.

Using an initial logarithmic transformation (AO = 0), the Chatfield-Prothero series was
tentatively identified as an ARIMA (1,1,0) x (0,1,1) model, with initial parameter estimates
1>0 = -·6 and 0° = ,6. This is the same class of model as that of Model A in Chatfield and
Prothero (1973a).

(b) Estimation. Approximate maximum likelihood estimates and 95 per cent confidence
intervals were obtained using our algorithm and are shown in Table 1. Standard errors were

TABLE 1

Parameter estimates, standard errors and confidence intervals

Parameter Estimate

4> -·506
o '799
,\ ·274

Standard error

'110
·052
'086

Approximate (2 std error)
95% confidence interval

( - '726, - '286)
('695, '903)
('102, '446)

calculated by inverting the estimated information matrix (see Box and Jenkins, 1970, p. 227).
In addition, a2 was estimated for this model to be ,490. Note that for these data the confidence
interval for Adoes not contain 0.

Fig. 1 gives a plot of the log likelihood L (maximized over 1> and 0) against A. This figure
shows L is approximately quadratic near the maximum and that the function is well behaved
and unimodal.
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FIG. 1. Log likelihood against '\.

Residual autocorrelations were calculated for lags up to 36 and in only one case (lag 11)
exceeded two standard errors. The autocorrelation for lag 24 equalled two standard errors.
Cross-correlations between residuals and the series showed no irregularities. The Q statistic
for the first 36 autocorrelations was not significant at the ·05 level.

The value A= ·274 is close to the value A= ·24 obtained by Chatfield and Prothero
(1973b). We believe the difference is attributable to slight differences in the likelihood functions
used.
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Box and Jenkins (1973) and Tunnicliffe Wilson (1973) each suggested that use of the Box
Cox transformation resulted in improved forecasting for this time series. Although we have
also noted improvements through its use in forecasting several other time series, the value in
practice of the Box-Cox transformation for forecasting time series remains to be established.
The ease of implementing the algorithm presented here should facilitate a thorough investiga
tion of this issue.

ApPENDIX

Flow Chart for Modification ofEstimation Program
The two flow charts in Fig. 2 compare the major steps involved in standard Box-Jenkins

estimation and in estimation of the transformation parameter ,\ simultaneously with other

IDifferencingI

J,
Modified

estimation

J, 1IDifferencing I

J,
Non-
linear

~ least (Non- squares
linear algorithm
least

squares J,algorithm

~
18 = J"-(>.) 8,I

t J,

J,

Box-Jenkins
standard estimation

FIG. 2. Flow chart for modification of estimation program.

model parameters using the algorithm developed in this paper. The principal differenceis that
in estimating '\, the series must be transformed and differenced before each evaluation of the
sum of squares within the nonlinear least squares algorithm.

In practice, the modified procedure may be made still more efficientby testing for a change
in ,\ prior to transformation and differencing. The Marquardt algorithm, for example,
calculates several values of S; for a fixed value of ,\ at each iteration, corresponding to per
turbations of the other model parameters. In this case, the previously calculated transformed
and differenced series may be used without recalculation.
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