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SUMMARY
Determining the nature of the connection between a number of factors and the spread of a directional
response in industrial experiments has not been considered much in the literature. Several dispersion
measures are explored and their relationships described. The circular variance is a good dispersion measure
that transforms the angular dispersion into a statistic measured on a linear scale. Once this transformation has
been performed, established techniques for analysis can be employed for analysing factor influences on the
directional dispersion. The method proposed is used to analyse data from an experiment involving the
balancing of automotive flywheels.
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1. Introduction

Studying factor effects on dispersion and improving quality through the reduction of
variation are the main ideas in robust parameter design that were popularized by
Taguchi (1986). In some applications, reducing the spread of the data by selecting an
optimal combination of factors is the primary goal of experimentation. In this paper
we examine techniques for analysing the influence of experimental factors on the
dispersion of a directional response located on a unit circle. How the treatment of
control and noise factors differs for the analysis is also explored.

For example, in the automotive industry, a number of rotating parts (such as
brake rotors, flywheels, crankshafts and tyres) need to be precisely balanced to
prevent excessive vibration. We can measure imperfection in the part by identifying
the direction, which is disproportionately heavy (or light), and the magnitude of the
imbalance. This paper considers analysing the spread of the directional component
only. If a combination of factors is found that locates all the imbalances close
together, then one of several strategies can reduce production costs. In some cases, a
global corrective action could be taken to adjust the process to reduce the number of
unbalanced parts. In other cases, the parts still may need to be individually corrected,
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but the related cost can be lowered simply by having the imbalances all located close
to one another on the part.

We now present some of the issues that arose from a real industrial experiment at
an automotive production plant involving the balancing of engine flywheels. The
response obtained from each flywheel was a location on the circumference of the part
where a corrective adjustment would be required to balance the part. In this case, the
particular location on the part where the corrections will be made is not critical, as
long as all the corrections can be made close to one identifiable point. Hence, this is
clearly a case where dispersion analysis alone is of primary interest.

The process of determining the location of the imbalance is quite precise and
uniquely determines a single point where the corrective action should be taken. A 24

full factorial experiment was run with 10 observations at each set of factor com­
binations. The four factors thought to influence the dispersion of the imbalance are
as follows:

(a) the location of a butt weld to the flywheel (factor A), either fixed (coded F) or
random (coded R)-in current production, the selection of the location for
joining these two critical pieces together was determined randomly;

(b) flywheel radius grade (factor B), either low (coded L) or high (coded H)­
current levels used the lower grade flywheels where a larger difference in radius
(larger than 0.005 units) was observed;

(c) flywheel thickness grade (factor C), either L or H - currently, the low grade
thickness was used with a larger difference in flywheel thickness deemed accep­
table; the new high grade requirement had less than a O.OOI-unit difference in
thickness;

(d) the size of the counter-weight attached at 0° (factor D), either Lor H. The size
of the counter-weight in production was at present at the low level.

In addition, a fifth factor E (ring gear imbalance) which is very difficult and expensive
to control was observed and a number of each of the three levels (L, M, H) were used
in each of the 16 factor combination groups. Typically, each of the groups consisted
of 1-3 low, 5-7 medium and 1-3 high observations. The data are provided in angular
form (measured in degrees) in Table 1 with the level offactor E in parentheses below.

As a preliminary test of group dispersion differences, Bartlett's test for homog­
eneity of von Mises concentration parameters as described in Stephens (1982) can be
used. Further details of the test are provided in Section 3. The test disregards
the structure of the factorial experiment and considers each combination of factors
as a different group. For the flywheel data, the significance level of this test is
approximately 0.0001. Hence, we conclude that there are real differences between the
dispersions of 16 factor combinations. Several questions arise from this conclusion,
which will be studied in the remainder of the paper.

(a) Can the relative importance of the four controllable factors be assessed to
determine how improvements to the process should be approached?

(b) Since factor C is actually expensive to control (and would greatly increase
production costs), can a combination of the other factors be found that is
robust to the different levels of this factor?

(c) How can the information about the noise factor E be incorporated to give
greater insight into the working of the process?
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TABLE 1
Automotive flywheel data

Group A B C D Data (deg) (with levels of E)

R L L L 133 175 178 178 153 190 221 177 281 190
(L) (M) (M) (M) (M) (M) (M) (M) (H) (H)

2 R L L H 139 61 109 187 74 351 309 236 69 320
(L) (L) (M) (M) (M) (M) (M) (M) (H) (H)

3 R L H L III 122 105 49 189 188 177 151 62 329
(L) (L) (M) (M) (M) (M) (M) (M) (H) (H)

4 R L H H 170 19 337 171 114 341 10 266 201 162
(L) (M) (M) (M) (M) (M) (M) (H) (H) (H)

5 R H L L 127 215 125 188 187 175 162 172 169 82
(L) (L) (M) (M) (M) (M) (M) (M) (H) (H)

6 R H L H 150 84 113 318 84 353 301 12 82 351
(L) (L) (M) (M) (M) (M) (M) (M) (H) (H)

7 R H H L 152 164 180 187 159 149 127 148 175 201
(L) (L) (M) (M) (M) (M) (M) (M) (H) (H)

8 R H H H 184 128 177 186 163 178 196 155 150 120
(L) (L) (L) (M) (M) (M) (M) (M) (H) (H)

9 F L L L 154 200 147 133 171 318 100 108 86 73
(L) (L) (M) (M) (M) (M) (M) (M) (H) (H)

10 F L L H 165 31 51 314 84 267 135 318 14 198
(L) (M) (M) (M) (M) (M) (M) (H) (H) (H)

11 F L H L 345 43 4 295 75 138 149 141 198 175
(L) (L) (M) (M) (M) (M) (M) (M) (H) (H)

12 F L H H 153 194 136 144 206 151 202 104 188 207
(L) (L) (M) (M) (M) (M) (M) (H) (H) (H)

13 F H L L 140 170 62 109 127 132 116 94 183 134
(L) (M) (M) (M) (M) (M) (M) (M) (M) (H)

14 F H L H 340 III 128 327 81 301 3 335 215 334
(L) (L) (M) (M) (M) (M) (M) (M) (H) (H)

15 F H H L 160 152 187 158 143 91 200 143 84 191
(L) (M) (M) (M) (M) (M) (M) (M) (H) (H)

16 F H H H 171 156 171 195 159 153 188 125 107 98
(L) (L) (M) (M) (M) (M) (M) (M) (H) (H)

Before addressing these experiment-specific questions, some more fundamental
issues need to be discussed. We begin with a brief review of notation and basic
quantitites for directional data. Consider the simplest situation of a single population
of directional data responses located on the circumference of the circle. From this
population we obtain a sample, ((}1, ..., (}n). The (); can also be identified as vectors
of unit length starting at the origin and pointing in the direction of their angle, with
the usual convention that 0° points horizontally to the right, with positive angles
rotating counter-clockwise. The vector that corresponds to angle (); is called U;, and
from this vector representation we can calculate the resultant vector by summing the
vectors. The overall resultant vector U. of the sample has length R == (2 + ;)1/2,
where c = 1:; cos (}i and s = 1:; sin ();. Another quantity of interest is R = R[n, the
standardized length of the resultant vector. The average direction for the sample,
frequently called the mean direction, is defined to be the angle of the resultant vector.
See Fisher (1993), p. 31, for details.

A common choice for a distribution on the circle is the von Mises distribution with
mean direction f.l, and concentration parameter k, denoted VM(f.l" k). It has many of
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the desirable properties associated with the normal distribution for linear data
(Mardia (1972), pages 55-58) and has the probability density

I
1(0) = 271" Io(k) exp{k cos(O - /-L)},

where Io(k) is the modified Bessel function with k ~ 0 and 0 E (-71",71").
The remainder of the paper seeks to develop a method for studying dispersion for

a directional response and to provide answers to the specific questions for this
industrial problem. Section 2 discusses several dispersion statistics and outlines their
relative strengths and some distributional results. Section 3 outlines a strategy for
modelling the dispersion for a factorial experiment with replication and discusses two
models with desirable intuitive interpretations that are often suggested by the
strategy. Section 4 provides details about how to incorporate noise factor effects into
the model. Finally, Section 5 illustrates the technique by analysing the flywheel
experiment data.

2. Measures of Dispersion

In this section we consider some dispersion statistics which might be suitable for
studying the spread of the observed directional data. It is desirable that the statistic is
a simple, intuitively pleasing and a computationally convenient measure of the
spread of the data, regardless of the shape or distribution of the original data. In
addition, it would be advantageous if the measure has known and manageable
distributional properties under more restrictive assumptions about the original data.

The standardized length of the resultant vector R is the natural measure of
dispersion for directional data. Hence, functions of R are considered. The circular
variance So = I - R is a common dispersion statistic used to quantify directional
variability. It ranges in value from 0 to 1. A value of 0 corresponds to no variation in
the data, whereas So = I means that the data are uniformly distributed on the circum­
ference of the circle. It follows the usual convention that a small value for the
variance means that the data are concentrated near the average, but unlike the
variance obtained for linear data it has a finite maximum. As well, it is more
distributionally robust than the von Mises concentration parameter k suggested by
Fisher and Lee (1992), which does not describe a general characteristic of the data
without the von Mises assumption.

Calculation of R, and hence the variance, is straightforward and well defined for
all data sets. Rivest (1982) noted that for highly concentrated samples the circular
variance properly normalized has approximately the same distribution as the linear
variance of the angles measured on a (0,271") scale. Mardia (1972), p.l13,
summarized results about the expectation and variance of So under the von Mises
assumption, whereas Watson and Williams (1956) showed that

2k(n - R) = 2nk(1 - R) rv ~-l

for concentrated von Mises data. To improve this approximation for small concen­
trations and sample sizes which are typical of industrial data, the method of
matching the first two moments of the circular variance is used. We assume that
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,(1 - R) ,....., X}, for some multiplicative coefficient, and approximate degrees of
freedom f Solving for the optimal values of these parameters yields

and

2nk(1- A) - 1
, = ---:-----.,.---

k(1 - A2) - A - 1/4nk

f=,(I-A--
1-)

2nk

(1)

(2)

where A = A(k) = II (k) /Io(k), the quotient of modified Bessel functions.
It is easy to show that ,/2nk --+ 1 andf/(n -1) --+ 1 as n --+ 00 and k --+ 00. So

equations (1) and (2) can be viewed as an improvement and extension to the X2
­

approximation of Watson and Williams (1956). For k ~ 2 and n ~ 10, these two
ratios are close to 1 as shown in a numerical study reported in Anderson and Wu
(1994). Therefore, in these situations, the X~_I-approxim~tion is adequate. For k < 2
or n < 10, it is advisable to use the approximation 1 - R ,....., X}/,.

The circular variance is a good dispersion statistic for a large number of distri­
butions. It is simple and has manageable distributional properties for data
originating from a von Mises distribution. Hence, the circular variance or its
monotonic transformation satisfies the criteria established earlier.

The circular standard deviation is another alternative statistic to the circular
variance. Unlike the linear case where the standard deviation is simply the square
root of the variance, for directional data, the form of this new statistic is So =
{-210g(1 - SO)}1/2, where So is the circular variance. Hence it can be simplified to
(-2 log R)I/2.

The circular standard deviation is a non-negative statistic ranging from 0 for no
dispersion in the data to 00 for the data uniformly distributed around the circle. Less
is known about the distributional properties of this statistic than the circular variance
even when the data come from a von Mises distribution, and hence Mardia (1972),
p. 24, commented that the circular variance is 'more useful than So for theoretical
investigations'.

To estimate the distribution of So, we exploit its relationship to the circular
variance. Using Taylor expansions, we obtain

(3)

where So = 1 - R is assumed to be small. This supports the conclusion drawn in
Mardia (1972), p.24, that for small values of So the circular standard deviation
reduces to a multiple of the square root of the variance. However, for data from a
von Mises distribution with moderate concentration parameters (say k E (1, 20», the
additional terms of the expansion will not be negligible and will influence the shape
of the distribution. Simulated von Mises data show that the distribution of the
circular standard deviation is quite nearly normal for a variety of sample sizes and
dispersions. See Anderson (1993).

The circular standard deviation and the circular variance are two strong choices
for a dispersion modelling, both satisfying the criteria established earlier. It will
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subsequently be convenient to utilize the connection between them, namely So ~

../(2So) for concentrated data. In the next section, we examine how the dispersion
measures can be utilized for understanding variation.

3. Dispersion Modelling

Analogously to the study of dispersion effects for linear data as described by Nair
and Pregibon (1988) and Box (1988), this section describes a method for determining
the effects of factor levels on the spread of directional data.

First, we determine whether there are significant differences between the estimates
of dispersion for the groups. Stephens (1982) described Bartlett's test for the homog­
eneity of concentration parameters for von Mises data. For each of the groups in a 2'
factorial design with m replicates, define Q/ = mS/ and qi = m - 1 where I ranges
from 1 to 2' for the various groups and S/ is the circular variance of group l. We also
define T = b/ Q/ and t = b/ qt. The test statistic for testing whether there is a
difference between groups is ZIC, where

and

Z = t log T - L q/log Q/ - t log t + L q/ log q/
/ /

1 ( 1 1 )C-l+ ---
- 3(s - 1) ~ q/ t '

(4)

(5)

where s = 2' is the number of groups.
The test statistic ZIC is approximately X2 with s - 1 degrees of freedom under the

null hypothesis of no difference between groups. Therefore, for a test of size 1 - a,
we would reject that hypothesis if

P(X~S-I) ~ ZIC) :::; a. (6)

However, it is important to note that Bartlett's test is sensitive to assumptions of
normality, here data originating from a von Mises distribution. Therefore, this test
should be viewed primarily as a diagnostic method for determining whether there are
large differences between groups. If there is no evidence against the hypothesis that
the variance estimates for all groups are constant, then the remaining analysis will
probably not bear fruitful results. However, if differences between group dispersions
are noted, as in the flywheel example, we proceed with further analyses.

Using the circular variance as our starting point for the choice of a dispersion
measure, we obtain the resultant length for each combination of factors in the
experiment and calculate the circular variance. A suitable transformation of the data
is sought by using the one-parameter Box-Cox power transformation family of the
form

(7)

where>. is the transformation power (if>' = 0, then the natural logarithm is used). X
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is the design matrix, I is the vector of parameters and E '" MVN(O, dl In) is the vector
of error terms. Because we are using a dispersion statistic measured on a linear scale,
the model has the same form as dispersion analyses for traditional linear data and the
error term can be assumed to be normal, rather than from a directional distribution.
This transformation to a linear scale is essential, because we typically have little
intuitive feel for dispersion measures on a directional scale, and we can use the
existing methods for a linear response.

The approach of Box and Cox (1964) to data transformations strives to balance
three separate goals: simplicity of structure, variance homogeneity and normality.
Some simplifying assumptions about the model may be required to have some
degrees of freedom available for estimating an error term. For example, only the
main effects and two-factor interation terms may be considered for the initial choice
of transformation. Once an optimal transformation has been identified, the full
model can be examined to determine the relative importance of the factors and their
interactions. Because the circular variances can be reasonably approximated by a X2

­

distribution in many cases, the optimal choice of the power transformation param­
eter will frequently lie in >. E (-1, 1) (Hawkins and Wixley (1986) showed that the
optimal transformation for X2-distributions with at least 10 degrees of freedom
is >. =4.) As a result, >. =0 and>. =! may frequently be contained in the 95%
confidence interval.

When>' = 0, the model has multiplicative effects and multiplicative errors on the
circular variance, since log(l - R) = Xl + E can be re-expressed in the form (here
for the two-way case)

1 - Rijk = exp 0"0 exp Ai exp B, exp(ABij) exp Eijk

*A*B*AB* *= 0"0 i j ijEijk, (8)

where O"t is the base-line measure of variability of the data and A~, Bj* and ABt are
the main and interaction effects of the factors. To interpret the factor effects, if
Ai < 0, and hence A~ < 1, then level i offactor A decreases the circular variance. For
highly concentrated data, the circular variance is approximately proportional to the
usual variance for the data projected onto a straight line. In this situation, using the
logarithmic transformation coincides with the method commonly used to model
dispersion for linear data.

Because the range of So is restricted to the range 1 - R E [0, 1], we have an
additional concern for this modelling, not present for traditional linear data where
the variance has no finite upper bound. For directional data, 10g(1 - R) E (-00, 0]
which means that the linear combination of factor effects must also be restricted to lie
in this range. For a general linear model, there is no convenient way to adjust the
range of the Xl to accommodate this restriction, since extrapolation into some
regions ofthe design space could lead to an expected value oflog(1 - R) which might
be positive and hence lie outside the interpretable range of values. McCullagh and
Neider (1989) commented that a transformation is less desirable if there is a possi­
bility of obtaining a value for Xl outside defined boundaries. However, the
boundary of the range corresponds to the uninteresting extreme of the data being
uniformly distributed around the circle. This corresponds to the least desirable case
for variation reduction strategies.
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For several industrial examples considered by the authors, the common range for
the resultant vector length is (0.45, 0.95), which corresponds roughly to the von
Mises concentrations parameter k E (1, 20) and circular variances of (0.05, 0.55).
This yields a log So range of (- 3.0, - 0.6) which is a reasonable distance from the
problem area near O. In these cases with a noticeable gap between the edge of the
projected region and 0 relative to the expected spread of the data, obtaining estimates
of log So outside the acceptable range would probably not be a major problem for
interpolating between the high and low levels of the factors. In addition, if we are
doing a dispersion analysis with the goal of variance reduction, then the problem
area lies at the opposite extreme to our desired target region of minimal variance. As
1 - R decreases, log(l - R) -+ -00, which is in a stable area away from the
boundary. In this region we can expect the variance estimates for different factor
combinations to be well defined.

If .A = 4, then instead of modelling the square root of the circular variance we may
choose to exploit the relationship between So and the circular standard deviation. As
demonstrated in the previous section, for concentrated data, the two are nearly
proportional. The advantage of using the standard deviation is ease of interpretation.
This model yields an additive model with an additive error on a known dispersion
quantity,

So = XY+E, (9)

rather than considering the square root of the circular variance, which has no
inherent meaning, as the basis for the linear model.

In different industrial applications, one of the models described above may concur
more closely with the physical understanding of the process, and hence be preferable.

After a suitable transformation has been selected, a half-normal plot of the factor
effects can provide insights into the relative influence of different factors on
dispersion and to suggest a suitable combination of factor levels to attain minimum
variation.

4. Incorporating Noise Factor Effects

We now address a further enhancement for addressing the robustness of the
process to changing noise factor levels. Factors can often be broken into two
categories. Control factors are those which are relatively easy to adjust (or control).
Noise factors, in contrast, are expensive or impractical to control in production but
can be controlled or measured during experimentation. Desensitizing the process to
noise variation is the objective of robust design.

Two common choices of general designs are available. The first involves genuine
replicates for the observations at each factor combination, whereas the second
involves sampling across a variety of noise factor levels to determine what levels of
control factors are robust to changes in the noise factors. If the data are of the first
form, then our dispersion measures within each cell give an indication of the short­
term variation in the system but may not give an accurate assessment of variation
over the total range of production conditions. The second approach strives to
simulate a range of possible operating conditions by changing the levels of some
factors which are known to be variable but are typically difficult to control in
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production. This approach gives a more realistic assessment of long-term variability
in the process and allows the experimenter to gain information about what com­
binations of the control factors might reduce this variability. Both approaches are
easily incorporated within the dispersion modelling framework previously described
by careful selection of the repeated observations for each combination of the control
factors.

For linear data, it is well established that in many situations the use of a robust
design can give an overall reduction in response variability without having to control
the levels of noise factors. Two major approaches are taken to study possible
exploitable relationships between control and noise factors (Shoemaker et aI., 1991):

(a) loss modelling involves studying a measure of the dispersion as a function of
control and noise effects to determine an optimal setting for control factors
levels;

(b) examining the response directly can provide insights into specific relationships
between control and noise factors.

For directional data, no location model for exploring the factor effects of a factorial
design currently exists (see Anderson (1993) for an explanation of the difficulties
associated with such a model). However, the two methods for examining the
dispersion effects can be extended to the circular data situation, even in the absence
of a working model.

We now clarify how the control and noise factors are incorporated directly. If we
have control factors C and noise factors N, we can choose an orthogonal array with
factor effects of interest for the control factors (called the control array) and a similar
array for the noise factors. Subsequently, the noise array is run for each row of the
control array, to give the product array. Ideally, it would be desirable to have
replicates at each combination of factors. Once the standardized length of the
resultant vector and hence the circular variance have been calculated for each
combination, the analysis of control, noise and control-by-noise factor effects could
be studied directly. However, this replication may not be feasible if the cost of
multiple runs is prohibitive.

If only one observation is available from each combination of the product array,
then the standardized length of the resultant vector for all observations at a given
control factor setting is calculated and an overall estimate of the circular variance is
obtained across all noise level settings. In this way, a measure is taken of how the
variation of the process behaves under a wide variety of noise conditions. Once the
circular variances have been obtained for each of the combinations of the control
array, we model the dispersions by using the procedure outlined earlier. For this
model we attempt to minimize the spread of the data across the range of the noise
array.

The second approach parallels the examination of control-by-noise interactions
for linear data, but because of the absence of a model a quantitative assessment of
control-by-noise interactions using the response model approach is not possible.
However, a qualitative comparison of different relationships between control and
noise factors can give insight into these relationships and suggest dispersion
reduction strategies. The key to these qualitative methods is an interaction plot for
this type of response (see Fig. 4, later, and Anderson (1994». As Shoemaker et al.
(1991) noted, the absolute magnitude of the control-by-noise interaction is not of
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primary interest, but rather the existence of a control factor combination which gives
responses that are robust to changes in the noise factor levels.

Recall that, for the linear case, interest lies not in the particular slopes of the
interaction lines but rather with the overall range of responses across all noise
combinations for a given set of control factor levels. A qualitative graphical analysis
of the range of data over the set of noise levels considered allows us to assess
robustness. Because of the lack of an underlying model for the directional response
from a multiway design, the loss model approach is superior. It gives a quantitative
assessment of which control factor combinations are best for minimizing the spread
of the data over the range of noise factor levels. However, analysing dispersion
through a single statistic, like the circular variance or the circular standard deviation,
can sometimes disguise interesting attributes in the data. The graphical presentation
of control-by-noise interactions can complement the more formal quantitative
methods obtained by modelling a function of the dispersion directly.

5. Automotive Example

In this section we consider a complete analysis of the flywheel data and illustrate
the previously described techniques. As noted in Section 1, because interest lies in
reducing the variation in the process, the focus of the analysis is strictly on the
dispersion attribute of the data. For further details about how location effects could
be measured for data of this form, see Anderson and Wu (1995).

Because of the strong evidence obtained by applying Bartlett's test (here ZjC ~ 44
with significance level 0.0001; see Section 1), we proceed with the formal analysis to
determine the specificinfluence of individual factors. First, the standardized resultant
length R (Table 2) for each of the factor combinations is obtained, and the circular
variance calculated.

The full model to be fitted to the data follows equation (7) where X is the design
matrix with a column for the overall mean plus 15 orthogonal columns, one for each

TABLE 2
Flywheel dispersion summaries by group

Group R So log So So Predicted So

1 0.812 0.188 -1.672 0.645 0.261
2 0.203 0.797 -0.228 1.783 0.858
3 0.510 0.490 -0.713 1.161 0.551
4 0.054 0.946 -0.055 2.418 0.438
5 0.815 0.185 ~ 1.687 0.640 0.177
6 0.434 0.566 -0.568 1.293 0.581
7 0.936 0.064 -2.752 0.363 0.123
8 0.915 0.085 -2.460 0.423 0.098
9 0.604 0.396 -0.925 1.005 0.261

10 0.154 0.846 -0.168 1.933 0.858
11 0.234 0.766 -0.267 1.703 0.551
12 0.836 0.164 -1.806 0.599 0.438
13 0.845 0.155 -1.863 0.581 0.177
14 0.349 0.651 -0.429 1.452 0.581
15 0.809 0.191 -1.653 0.652 0.123
16 0.861 0.139 -1.972 0.547 0.098
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Fig. 1. Box-Cox maximum likelihood estimate of A

main and interaction effects. To implement the Box-Cox procedure, we must make a
few simplifying assumptions about the model. If we assume the full model with all
possible effects, no degrees of freedom are available for an error estimate and the
model for any value of A will fit the data perfectly. If we eliminate only the four-way
interaction, that gives only 1 degree of freedom for error, and we have most probably
overfitted the data with too complicated a model. Therefore, to carry out the method
we consider two possible design matrices:

(a) only the four main effects and
(b) the four main effects and their six two-way interaction terms.

Fig. 1 shows the plot of two Box-Cox transformation analyses for the flywheel
data assuming models (a) and (b). For model (a), the maximum value for the
likelihood occurs for A = 0.09 with the 95% confidence intervals covering the range
(-0.56, 0.83). For model (b), the maximum value occurs at A = 0.32 and the 95%
confidence interval includes (- 0.28, 0.95). The difference between the two curves for
any given A gives the improvement in the likelihood function by extending the model
to include the two-way interactions. Both the circular standard deviation and the log­
transform models lie well within the confidence intervals for acceptable values for A
and have sensible interpretations. The fourth and fifth columns of Table 2 contain
the log-circular-variance and circular standard deviation values. The current levels of
production correspond to group 1, with a resultant length for the group of size 0.812.
This is the seventh smallest dispersion of the 16 groups, so there is promise of
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TABLE 3
Dispersion analysis

ANDERSON AND WU

Source log So So

Sum of squares Rank Sum of squares Rank

A 0.069 (12) 0.004 (14)
B 3.563 (1) 1.909 (1)
C 1.071 (4) 0.337 (8)
D 0.924 (5) 0.706 (3)
AB 0.263 (10) 0.114 (10)
AC 0.015 (15) 0.057 (12)
AD 0.632 (7) 0.380 (5)
BC 1.123 (3) 0.524 (4)
BD 0.091 (11) 0.001 (15)
CD 2.004 (2) 1.029 (2)
ABC 0.872 (6) 0.355 (6)
ABD 0.418 (8) 0.343 (7)
ACD 0.371 (9) 0.299 (9)
BCD 0.016 (14) 0.011 (13)
ABCD 0.021 (13) 0.080 (11)

possible improvement by selecting an optimal set of factor combinations.
With the set of transformations selected, we revert to the full model including all

main effects and interactions. When the logarithm of the circular variance (log So)
and the standard deviation So are modelled separately against the 15 effects we obtain
the analysis-of-variance results summarized in Table 3. The half-normal plots for the
factor effects (Figs 2 and 3) for the respective analyses show considerable overlap of
dominant factors. Engineers involved with the flywheel process felt that the multi­
plicative model for the variance matched their intuition of the mechanism explaining
variation more closely than did the circular standard deviation model. Therefore, for
the remainder of the analysis, log So was used.

Lines have been drawn for each plot showing one approach to identifying impor­
tant factors. Both of these lines appear to indicate that only factor B is important.
However, the choice of line and which factors are judged to be significant is quite
subjective, and hence here a final model has been selected to balance both adequate
fit and parsimony. For both transformations, factor B is the most influential effect,
with the two-way interaction CD also appearing to contribute significantly. Assum­
ing that a hierarchical model is suitable, we would include the main effects B, C
and D, with the two-way interaction CD. Since these effects represent four of the five
largest effects, we also consider including the third-largest factor effect, interaction
BC.

This yields a final model of the form

log(1 - R) = -1.34 - O.94Bi - O.52Cj +0.48Dk +O.78(CD)jk +O.56(BC)ij + Eijkl

(10)

where the indicator variables have value 0 at the low level and 1 at the high level of
each factor. The final column of Table 2 gives the predicted values of the circular
variance under this model. The optimal choice is high-high-high for BCD, which
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Fig. 2. Half-normal plot of effects from the log So model

yields a predicted value of - 2.325. Ifthese levels of the factors are selected, we would
expect the circular variance to be 0.098. Alternatively, if the present production levels
are used the resultant length is 0.812. By changing from the current production levels
to the new set of factor combinations, we would be able to reduce variation from
0.188 to 0.098, a 48% reduction. By examining the two combinations offactors with
the HHH for BCD we find that their average circular variance is 0.109, still a 42%
reduction from current levels. Therefore, a substantial saving can be realized as a
result of this study.

We return now to the questions raised in Section 1. By using the dispersion
modelling approach outlined here, the relative influence of the factors can be
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Fig. 3. Half-normal plot of effects from the so-model
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assessed. Factor B is the most influential in affecting the dispersion of the response.
Both C and D are also influential, whereas A is relatively unimportant.

Given that factor C is expensive to control, we can alternatively treat it as a noise
factor and plot some of the control-by-noise interactions and see whether it may be
possible to exploit one of them. We have already identified an interaction effect for
the change in dispersion for combinations of factors CD and now examine the CD
control-by-noise interaction plot (shown in Fig. 4), which examines the difference in
location for the combinations of factor effects. In this plot the resultant directions of
the four factor combinations are shown, along with an asterisk indicating the mean
direction of the entire data set. It suggests a level of control factor that will reduce the
range of values obtained for the angles, and hence reduce the overall variability of
the process by limiting the range of responses to be expected in production where the
noise factor will not be controlled by the experimenter. Recall that the goal of
examining this plot is to identify whether one level of the control factor (here D)
gives a smaller range of values across the noise factor (here C). Clearly, the range of
the low level of factor D gives a much smaller range of responses and hence would be
preferable if it were too expensive to control the level of C in production. Recall that
factor C identified the amount of thickness variation that would be tolerated in the
flywheel, with the low level reflecting a lower grade. One possible interpretation for
the fact that the smaller counter-weight (low D) might be more robust to variation in
factor C may be tied to the fact that we do not have access to where that difference
lies. If there was a systematic location for the large and small thicknesses on the part,
then the positioning of the counter-weight may magnify or decrease the effect of the
thickness difference. The smaller counter-weight will have a less dramatic effect on
the location of the imbalance in the presence of a thickness difference, and hence a
more robust part is produced. Clearly this is an area where further understanding of
the process could yield a greater improvement to the model.

This illustrates why both loss modelling and the control-by-noise interaction plots
are usefully applied to the same data, since one may provide insights that are not
revealed by the other. In this case, different results are obtained if factor C will be
controlled in production or not. Hence, whereas the overall optimal combination of
factors for interaction BCD is high-high-high, if factor C is not controlled in
production, then D at the low level is a superior choice. As can be seen from Table 2,

o

Fig. 4. Circular plot of interaction CD: --, D low, C low; , D low, C high; - - - -, D high,
C low; -, D high, C high
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all four circular variance estimates for interaction BD at the high-low combination
(groups 5, 7, 13 and 15) are consistently small.

The estimates of variability obtained here are based on knowledge that noise
factor E has been allowed to vary across its usual range of values within each group.
Hence this assessment of the dispersion will probably be more indicative of the true
variability than if E had not been incorporated and only pure replicates under an
unmonitored range of noise factor levels were used.

This example demonstrates the methods described and also gives some practical
illustrations of the insights that may be gained about the process through this type of
analysis.
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