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Optima and Proxima in Linear Sample Designs

By LESLm KISHt

University ofMichigan

SUMMARY

The distinct problems of allocating I m; sampling units are stated jointly as
minimizinga: V~/m.) a: m.), when either term is fixed, where var (ji) = I V~/m.+ Vo
and cost (y) = I c. m;+CO. The nlm; and the c. m, are variance and cost
components (strata, stages, phases, etc.); these are affected by the allocation of the
mi; but the Vo and Co are not. The Lagrange identity yields the general relative loss
function: 1+L = (I u.k.) <I U.lk.), where L is the relative loss, due to relative
departures k, oc mT[m; from the optimal L = 0, where the mT oc V.Nc., and the
U. = V.~c./I V.~c. are relative measures of the components. Solutions are applied
to the distinct problems of sample designs. Tables are given of the loss L for useful
models of U. and k.. The method also leads to useful compromises among the
conflicting aims of multipurpose samples, and to measures of relative losses for
those aims, e.g. in the conflict between domains and overall means.

Keywords: OPTIMAL ALLOCATION; MULTIPURPOSE ALLOCATION; SAMPLE DESIGNS;
OPTIMAL SAMPLING; EFFIcmNT DESIGNS; LINEAR DESIGNS; STRATIFIED ALLOCATION;

RELATIVE PRECISION; LAGRANGE IDENTITY; DOMAIN ALLOCATION

1. BASIC DEFINITIONS AND A1Ms
IN the literature of survey sampling diverse problems of optimal allocation are treated
separately. Yet they can usefully be viewed as distinct examples of the same simple expressions
for the total variance and cost of the sample statistic ji:

var(ji) = V+ Vo= ~ VUm,+Vo (1.1)
and

cost(y")= C+Co = ~cim,+CO' (1.2)

These linear forms occur in stratified, multistage and multiphase sampling, and other
related techniques. Of several applications in Section 7, consider two specific examples.
(a) For a stratified sample of elements the variance of the mean ji = ~Wijii is:

var(ji) = ~ (WiSi)2/mi-~ (WiS-t>2/M",

where mi' M", Wi and S~ are respectively the sample and population sizes, the weights and
element variances in the ith stratum. The first term, V, depends on the allocation of the mi;
the second, Vo does not. (b) For two-stage random subselection of b from B elements within
each of a random selections from A clusters, the variance of the mean is:

var(y") = (1-a/A)S~a+(1-b/B)SUab = S~/a+SUab-S~/A.

Here S~ = S~-SUB; V comprises the first two terms, with m1 = a and m2= ab; the last
term -S~A = Vo does not depend on the mi' The cost is caa+cbab+CO'

Definitions and restrictions seem desirable here.
(1) The statistic ji denotes an estimate of a mean or of an aggregate. Possible extensions

to other estimates are not attempted here.
(2) The ith component of the variance, VUmt, denotes a constant V~ in the design, a

unit variance, divided by the number mi of sampling units for that component. We prefer
V~ to Vi to denote unit variances that are commonly defined with squared values.
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(3) The ith component of cost, Ci mi' denotes the unit cost Ci multiplied by the same
number mi of units as in (2).

(4) Components may refer to strata or stages or phases of sampling; generality is the
essence of our approach. Components here represent additive sources of variation and cost.

(5) The constants J1 and Ci are parameters for which values are assumed or guessed for
numerical solutions of allocation problems. We take Vi~o and ~Ci~O (hence V~ and Ci)
for allocating the mi' For non-triviality two pairs at least of the Vi and Ci should be positive.
Negative values of V~ may be encountered, as with S~ above; we then redefine the problem
to facilitate a practical solution; for an example see Section 7.3.

(6) The constants "Va and Codo not affect optimal allocations ofthemi; their effectson losses
in proximal allocation are shown in Section 3. Co is non-negative in practice, but Vo is often
negative, as above.

(7) For practical values of mi we want positive integers. Also 0< mi ~Mt" where Mt,
denotes the number of units in the population for the component; and mi~2 for computing
variance components. Frequently, allocation formulae yield some optimal values of mt >Mt,;
when these are reset to mi = Mt, the other optimal values of mt < Mt, can be recomputed with
(5.4) and (5.5).

(8) It would seem more realistic to guess distributions for V~ and Ci' rather than single
values, and a Bayesian treatment of design will probably be worth while. But that is beyond
our scope here, and I dread a complex procedure out of the reach of survey practitioners.
Furthermore, its relative losses would probably not differ much from ours, because losses
are insensitive to moderate departures from the guesses.

(9) In some applications, especially for some stratified samples, differences between the
ci are disregarded. Hence, the cost constraint becomes Clc = m = ~mi' Then the ~Ci should
be omitted from the allocation formulae. Instead of Co use Co/c, where C is a common
(average) unit cost.

(10) This last point callsattention to the dimensional (unit) homogeneity of all the formulae.
To find optimal values mt cc VJ~Ci for the mi we minimize the product

VC = (~ J1/mi) (!: Ci mi),

when either Vor C is fixed at Vi or Ct. This results in the same optimal values as

var (j) x cost (j) = (V+ "Va) (C +Co),

because in (V+VJCt or in V,cC+Co) the second terms are unaffected by optimal allocation;
their effects on proxima are more easily treated separately (Section 3). To use the product
VC rather than some other function seems reasonable: an increase (or decrease) in cost by
some factor should be equivalent to a decrease (or increase) in variance by the same factor.
The product form leads directly to expressions for loss functions (1 +L) and relative losses (L)
that are our goals here. For brevity, I use "loss" for L that represents relative increase of
variance or cost, without limits.

Our principal aim goes beyond optimization of linear forms, to a simple and coherent
treatment of their proximization. We provide convenient forms, in terms of useful parameters,
for relative losses incurred by proxima achieved with proximal allocations.

To proximize has the same flavour as Herbert Simon's "to satisfice," but I prefer here the
former's neutrality, flexibility and its several forms resembling those of optimize. With these
neologisms I want to emphasize a statistical approach, as complementary to the mathematical
concept of optimization. Since we cannot attain full optima with designs based on guessed
parameters, it is equally important to guess relative losses due to expected sets of departures
from optimal allocations. Here we view the optimum as the limit 1 for the loss function
(l +L) as L approaches 0, and how that approach is made. Two designs, one that loses
2 per cent and the other 50, are both non-optimal by strict "optimist" standards; but a
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"proximist" would usually class a 2 per cent loss with the optimal, to distinguish both from
larger losses like 50 per cent.

This illustrates that for statisticians "The perfect is the enemy of the good" (proximized
from Voltaire). Conflict appears frequently; optimization for one convenient variable often
usurps the place of proximization for multipurpose allocation. Proximal methods are seen
to be particularly adaptable to multipurpose allocation in Sections 6 and 7.6, and fulfil our
second aim.

Further, we also present Section 5, a compact, simple and general formulation of optimal
allocations for diverse sampling methods. Instead of solving each separately, we merely
substitute appropriate symbols for the optimal values mt oc ViNci' This is obtained with the
simple Cauchy inequality. This unified and simple treatment has heuristic and pedagogic
merit. Applications in Section 7 cover the diversity of sampling methods. Sections 2 and 3
develop methods of proximization, and Section 4 contains convenient tables for relative
losses L.

2. GENERAL FORMULATION

Our principal result (2.3) expresses the relative loss (L) in two parameters: Ui , the relative
"sizes" of the components; and ki oc mt/mi' the relative departures of the sample sizes mi
from optimal allocations mt. First (2.1), the product VC to be minimized is divided by
('1:, Yt~Ci)2; this ratio will be shown to have minimal (optimal) value of 1. It expresses the
relative loss L for any allocation of the mi (> 0), by compensating for the units of measurement
of the V~ and Ci' Next (2.2), the mi are stated in terms of relative departures ki ocmtImi
from their optimal values mt; these will be shown to be mt ocViNCi' Hence we substitute
mi ocYtN(ci) ki to obtain (2.2); the factors ofproportionality cancel. Finally, (2.3) for generality
and brevity we substitute the relative "sizes" Ui = Yt~cil'1:, Yt~Ci'

1+L = VC/(~ Yt~CJ2 = C£ VUmJ (~cimJ/('1:,Yt~Ci)2, (2.1)

= {~Yt~(CJki}('1:, Yt~cilkJ/(~ Yt~Ci)2, (2.2)

= (~ o, ki) (~ UilkJ, (2.3)

where Ui = Yt~ci/~ Yt~Ci and ki oc YtN(ci)mi' We take the ki and Ui to be positive and finite.
We have ~ Ui = 1; and we may also use any convenient U~ oc Ui' if we divide by '1:, U~. Note
that we need only the relative values of ki , and we can use Aki , with A any positive and finite
constant. Furthermore, the form of (2.3) shows that the k i may be replaced by their reciprocals;
they may refer to ratios of oversampling, as well as undersampling. With this flexibility we
can use min (ki ) = 1, as we do in Table 1 for convenience.

The minimal value of 1 for (2.3) is obtained with all ki = k* equal. This may appear
obvious, or seen with the Lagrange identity in (5.1).

Examples may be useful here.
(a) Consider the variance of the mean ~ WiYi for two strata where m= 0,2, m= 0.8,

51 = ~ = S2 and Cl = C2 = c. Then U, = J¥; ex: Jij, and Us : U2 = 1 ; 4. This implies (5.3)
that optimal allocation of sample sizes should be in the ratio of stratum sizes Wi, hence
ms = 4ml' If samples of equal sizes, ml = m2' are taken, this implies a departure factor of
4; we can use simply k l = 1 and k 2 = 4. The consequent relative loss L would be given
by (2.3) as 1+L = (0'2 xl +0·8 x !)(0'2 xl +0'8 x 4) = 1·360.

(b) To illustrate the effect of the U, on the loss L: suppose now 51 = 4~, and Cl = 4C2' Since
SUCl = ~/C2' optimal allocation is still 1 : 4. But now U, = WiSi~Ci/~ WiSi~Ci' hence
Ul = U2 = 0'5. Therefore the relative loss L from equal sample sizes now would be given
by 1 + L = (0'5 x 1+ 0·5 x !) (0'5 x 1+ 0'5 x 4) = 1'5625.

(c) To illustrate a conflict in allocation: suppose that, as in (a), 51 = ~ and Cl = C2, but that
now we want to minimize the variance of the difference of means (Yl- Y2)' Now
U, = U2 = 0·5. Optimal allocation is at ml = m2' Departure from this in the ratio 1 : 4
to satisfy (a) would result in 1+ L = (0,5 x 1 + 0·5 x 4) (0,5 x 1 + 0·5 x 1) = 1·5625.
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Note that these answers can also be found in Table 1 in column K = 4 for relative departures.
The size of U of one component is 0·2 for (a), and 0·5 for both (b) and (c), in the top two rows.
Results for (a) and (c) illustrate common conflicts between totals and domains, treated in Section
7.6, and in Table 5(A).

The weights Ui are convenient for design; based on population parameters, we may call
them population weights. However, when dealing with sample results it may be more convenient
to use sample weights, based on sample sizes: Ui = UJki. Then (2.3) may be written as

1+L = (~uik¥) (~ui),

= 1+(~uikV}:,ui-k2)/f{2 = l+Q,

= 1+}:, ui(ki/k-1)2/~Ui'

= 1+}:, (ki/k-1)2 mi cil}:' mi Ci'

(2.4)

(2.5)

(2.6)

(2.7)

c~ is the relative variance (relvariance) of the k i with sample weights Ui around their mean
k = }:, uikil}:' Ui = 1/~ ui' Here larger ki > 1 represent larger weights to compensate for under­
sampling proportionately to their reciprocals. The Ui= UJk",are proportional to Cimi because
the Ui = Y.t~cJ~ Y.t~Ci oc cimf oc Cimiki'

3. ON PROXIMAL ALLOCATION

Extreme departures from optimal values of mt can result in large relative losses measured
in either cost or variance. However, small or even moderate departures from the optimal mt
lead only to negligible or small relative losses. These vague precepts of practising statisticians
are given formal and practical expressions (2.4)-(2.7) in terms of the relative loss (L) compared
to optimal allocation.

Departures from optimal allocation have several causes. In actual surveys some departures
are unavoidable because the true and exact values of V~ and Ci are not available. Second, we
may further depart from indicated optimal values mt to convenient proximal integers, or to
convenient sampling fractions. Third, surveys generally have several or many purposes, for
which the optimal allocations are different. Fourth, the nature of the sampling frame and
of the data collection may force departures from optimal selection probabilities; sometimes
we are forced to accept unequal selection probabilities when equal probabilities would be
close to optimal. Fifth, mistakes in design may be added to the list of good reasons. And
sixth, departures from computed values mt may be forced by the constraints mi:::;:; Aft and
mi";:!; 2, as noted above.

Thus on many occasions we find it useful to have simple formulations for the relative losses
brought about by a set of departures from the optima. We can give useful approximations in
terms of the factors k i of relative departures, and of the weights, for different components i
of the sample.

When the frequencies for the ki are given or estimated in sample proportions Ui' then
(2.5)-(2.7) yield readily the loss L in terms of the relvariance C~ of the k l values. One of these
formulae may be most convenient for judging the losses from actual sample results.

However, for comparing designs of planned samples the frequencies may be more con­
veniently stated in terms of the population weights Ui. Formula (2.3) can be readily computed
for moderate numbers of components. Furthermore, the simple models of Table 1 can often
give instant answers for approximate distributions. I have often found these answers close
and adequate for planning designs.

Computations of the relative loss L in our formulae and tables take account of the factors
V and C in the minimized function VC, but they neglect the constants Vo and Coin the total
variance and cost (1.1 and 1.2) However, this neglect may be corrected with translations of
L into L' that does take into account the constant factors Voand Co' If Vmin is the optimal V
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for fixed C, then the ratio of the attained proximal variance to the optimal variance is

(I+L) Vmin +Vo = 1+L/(l +VoIVmi~ = 1+L'. (3.1)
Vmin+Vo

Thus the adjusted actual relative loss L' differs from that indicated by L; since VO is often
negative, L' can be somewhat greater than L. For a Croin found for a fixed Vf' the adjusted
relative loss L' may be somewhat less than L due to a positive Co in

L' = L/(l +CoIC~. (3.2)

4. TABLES OF LoSSES FOR MODEL DISTRIBUTIONS

For a variety of simple models we can give instant answers about expected losses. Actual
population distributions can usually be matched against one of these models so as to provide
useful approximations of the expected losses.

The losses are given in terms of departures k i from optimal allocations for the relative
weights Ui in the models, and the k i range from min (ki) = 1 to max (kJ = K. The simplest
model consists of two components U and (1- U), where the relative departures from optimal
sample sizes are in the ratio k1 : k2 = 1 : K. The loss for two components may be expressed
(7.4) as

L= U(1-U)(K-l)2/K. (4.1)

The dichotomous models represent maximal losses for ranges of departures fixed at 1 to K.
Thus losses for large values of K are much greater in the top three rows of Table 1 than further
down where five other models are shown.

The five models represent diverse frequency distributions for the population weights Ui;
and for each model both discrete and continuous versions are shown. In the discrete versions
the relative departures ki take K integral values from 1 to K, and the relative weights Ui
are concentrated at those values. In continuous versions the departures ki and relative weights
Ui vary continuously from 1 to K. Frequencies are divided by their sums to produce relative
frequencies Ui'

Note that the loss L is both very small and uniform for all models for small K; for K = 1·3,
La = 0·017 and Lc = 0'006; for K = 1'5, La = 0·04 and Lc = 0·014. (Note that for La the ki
take only two values: 1andK = 1·3 or 1,5). FromK = 2toaboutK = 5 the losses are moderate
and fairly similar for the five models. The Lc are lower than the La, though in an irregular
ratio. Below K = 10 we can make fairly good guesses about L just from the range 1 to K,
without knowing much about the.U..-if this is not dichotomous or U-shaped.

However, beyond K = 10 the losses L increase and diverge. Three of the models show
rather similar losses, but for the model Ui oc l/ki the losses are much larger. And this model,
may often resemble actual frequencies. The fifth has much lower losses, but it is not realistic,
I think.

From the models one can also make conjectures about actual distributions that differ
somewhat from them. For example, a rectangular distribution for integral values of ki from
1 to 5 has La = 0·370; more than five values evenly spaced within the same range to 1 to 5
would have a loss between that value and the continuous loss L; = 0·207. On the other hand,
for only three values of ki from 1 to 5 and Ui = 1, the loss (actually 0'533) is above 0'370,
but below the dichotomous value of 0'800 in Table 1.

When sample weights ui = Ui/ki seem more convenient, the relative loss L may be estimated
by the relvariance C~ of the k i , with weights Ui (2.7). Formulae and tables can be constructed
for such relvariances, if we begin with the means M and variances u2 of convenient distri­
butions from 0 to 1 (Kish, 1965, p. 262). To obtain the relvariances C~, those variances are
multiplied by the new (range)" = (K-l)2 and divided by the new (meanj' = {M(K-l)+ 1}2;
thus C~ = a2(K-l)2/{M(K-l)+ 1}2. Table 3 notes six useful examples.
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TABLE 2

Formulaefor loss functions (l +L) due to relative departures kifor five models,
for both discrete and continuous

[part 1,

Models u, cc 11K ViocK+I-k; Vi cc us, U, oc Ilk~ Vi cc k,

Discrete K+I !! 2(K+2) (k!!_I_) K! I/i2 ! Iii.! I/i3 K-I
I+Ld 2K i 3 i K+I <! I/i)2 <! I/i2)2 1+ 3(K+ 1)

Continuous K+I 2(K+2)2_3 ( K-I) (K-I)2 K+I (K-I)2
I+Lo 2(K-l) InK 3(K+I)(K-l) InK- K+I K(ln K)2 2(K-l) inK 1+ 3(K+I)2

TABLE 3

Losses L for six models ofsample weights Ui = Ui/ki; the departures ki ~ 1
from 1 to K represent compensationsfor undersampling

1 2 3 4 5 6

Lb ~~
1 K 1 K 1 Kl K

S?( K-l )2 oI+3Q( K-I )2 !(K-I)2 !(K-I)2
P K+Q/P 3P K+l+2Q/P 2 K+2 2 K+I

1 2 C

DO~:::O
1 K

I+2/C(K-l)2
3 K+I

L
1 K

!(K-I)2
6 K+I

Losses (L) can get large for models 1 and 2 when both K and Q are great: for K = 20 and Q = lOPthe L
is 4·011 for 1 and 2·219 for 2. For the other models losses remain moderate.

5. ON OPTIMAL ALLOCATION

The Lagrange identity is a basic tool of great utility, and it may be stated here simply.
Assume Xi and Yi (i = 1,2, ... , n) finite and real; but here we need only non-negative values.
Then

(~X~)(~Y~)= ~x~Y~+ ~x~yj
i¥o1

=~~~+~~~~~+~~~-~~~~~
i,pj i# i#

= (~x'tYi)2+ ~(XiYj-XjYi)2. (5.1)
i<j

The second term has a minimum of 0, when Yi = FXi' F constant. The first term alone is
the lower bound of the Cauchy-Schwartz inequality. If we take in (5.1) Xi = ~(Ui/ki) and
Yi = ~(Uiki) = kiXi we now rewrite (2.3) as

1+L = (~Uiki)(~ Ui/ki) = ~ Y~ ~ x~

_ UiUj 2 I

- 1+ ~<J0 k.k. (ki-kj) , (5.1)
• • 3

with (~XiYi)2 = (~Ui)2 = 1. The minimal value is 1, when the second term is 0, because
all ki are equal.
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Now let Xi = ~(VUmi) and Yi = ~(cimi)' with V~ and Ci as assumed parameters and mi as
variables (all ~ 0). The minimal value of

VC= (~VUmi)(~cimi)~(~v..~Ci)2, (5.2)

a Cauchy-Schwartz inequality, is obtained when ~(cimt) = F ~(VUmt). Then

mf = Fv..NCi (5.3)

are the optimal values of the mr that obtain the

minimal VC = (~v..~Ci)2. (5.3')

The constant F can be determined from either C, or Vt fixed. With C, = ~ Cimr = F~ v..~Ci

one uses F= CtI~ v..~Ci' For lif = ~ VUmr note that v..~Ci = FVUmr and ~ v..~Ci = FVt ;
hence F = (~ v.. ~Ci)/Vr'

Further VC/(~ v..";Ci)2 = 1 yields either Vmin for C, or Cmin for Vt. The minimal value of 1
is viewed as the limiting value of (1+L), as the second term approaches zero and as the mi
approach the optimal values mr. The relative size of the second term is seen, when divided by
the minimal first term (~V.~Ci)2, as the relative loss L, due to proximization.

This formulation of the relative loss is the principal advantage of the Lagrange identity
over the Cauchy-Schwartz inequality, which has been used for optimizing stratified samples
(Stuart, 1954; Sukhatme, 1970); also over the method of Lagrange multipliers, generally
used in sampling literature as F(fflf,)= ~ VUmi+;>"(~cimi-C), to obtain the same optima.
This method, however,can deal with more complex functions, such as C = Co~ml+C1 ml+C2 m2•

The optimal formulae may give unacceptable answers when high values of v..NCi result
in mf >~, the population of units of the ith component. For example, this occurs often in
strata with high values of Si; also when subsamples from clusters must be confined to the
cluster size (Section 7.3). For such components set mr = ~; we may also do this arbitrarily
for components when mr > M i12, for example. However, changing only those mr to mi = M;
would cause the constraint Vt or C, to be missed. To re-establish the constraint we must
recompute for the other values of mr new, higher values mi proportional to them.

Consider the components VUmi and Cimi divided into two sets: the complete (q), where
mi = Mi; and the partial (p), where mi<Mi; denote the sets as ~i = ~q+ ~p. The complete
components ~q are transferred to the constant factors Voand Co: where mi = M; the mi cease
to affect the allocation, because components of the variance with the form V~(llmi-l/~)

vanish for mi =~. Thus

(5.4)

and

cost(ji)= ~cimi+Co=~cimi+Co+~ciMi' (5.5)
i p q

Then we may solve (5.2) and (5.3) with only p components in one of the first terms above and
in ~ v..~Ci' We compute the residual constant either as Vp = var(Y)- Vo-~q VUMi, or as
Cp = cost(ji)-Co-~qCi~' .

For convenience, since the mr are already in the right proportions, instead of recomputing
(5.2) and (5.3) we may merely increase the mr proportionately to the new values mi in the
subset ~p. Thus: for fixed partial cost Cp, increase the mt to mi = mr(Cp/~pci mt), or
for fixed partial variance Vp, increase the mf to mi = mt(~p V~/mt)/Vp.

Note also that optimal values Vm in and Cmin obtained with (5.2) without these adjustments
should be recomputed to obey the constraints mi ~Mi' These enforced departures from the
optimal mr will tend to increase the V or C that can be considered as attainable under the
restraints. This will affect the relative loss, as Vo and Co are treated at the end of Section 3.
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6. MULTIPURPOSE ALLOCATION

Sample surveys are typically multipurpose in nature, and it seems imperative to extend
the methods of allocation to multipurpose designs. For lack of these methods univariate
allocation dominates our literature and theory of sampling; practical work is also affected,
but less often. The methods for optimization and proximization developed here seem
particularly adaptable to multipurpose design. The general form Z VUmi for variances can
serve well the many purposes of a sample survey; for the gth purpose the variance will be
denoted by ~i V;i/mi'

The many purposes of a single survey may have several sources: (1) A single variable may
result in several statistics; e.g. the mean and median of incomes can benefit from different
allocations (Kish, 1961). (2) Most surveys obtain results for several variables on a single
subject. (3) Furthermore, some surveys are multisubject in character; e.g. with economic,
demographic, social variables. (4) Results for subclasses and for their comparisons may be
as important as results based on the entire sample. Designs for subclasses often point to
different designs and allocations than those for the entire sample. (5) The common but
neglected conflict between designs for comparisons between domain means and for the
combined mean for the entire sample is developed in Section 7.6.

Suppose a sample is allocated optimally for variate ji' with m~ proportional to V~N<,

but optimal allocation for another variate ji would be mi ex: ~NCi' The loss incurred for ji
can be measured with the departures ki = mi/mi = (~fVi) (~ciNci) and with weights
Ui = ~~Ci/~ ~~Ci in formula (2.3). We are mostly concerned with allocation of the mi within
one survey sample, so that ~ciNci = 1. Then the loss function for ji due to optimization for
ji' may be represented by

I+L(mi) = (Z q~Ci/Vi)(~Vi~Ci)/(Z~~Ci)2

= ~ (;~:~~ir/(;~f~~J
This may be regarded as the relvariance of ki = ~/Vi with weights ut= Vi~Ci (2.7). Often
the cost factors are constant or disregarded, and (6.1) has a particularly simple form

(6.1')

If the mi allocated for one survey with ci are used for another with Ci=? ci, then we rewrite
(6.1), with Vi~cJ~ci in place of Vi, as

(6.2)

(6.3)

Now consider a loss function for several variates indexed with (g = 1,2,3, ... ). The loss
function, for a fixed cost C, = ~ Ci mi' may be expressed for each as 1+Lg = (~ V;JmJfVgmin'

where the denominator denotes the minimal variance attainable and computed for the gth
variate. Assign the weights I g (Z 19 = 1) to denote the relative importance of the lost precision
of the gth variate. Then consider the total expected loss as a linear function of the quadratic
loss functions (for a fixed set of mi) of the variances

1+L(mi) = 719(1 +Lg) = 1+719LuCmi) = 719{(~ v:i/mi) / Vgmin }

= ~~~lg V:i =~z~,
i mi g Vgmin i mi

where Z~ = ~glg V:i/Vgmin• Changing the order of summation permits defining this ith
component that can be computed. For the multipurpose joint allocation we may compute
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(6.4)

I+L(mr) = Vmin = (~Zi~Ci)2/Cf' (6.5)

From the multipurpose optimal allocations mr* we may compute the loss function
1+Lg(mr*) for the gth variate considered separately. For each of these we can use (6.1) with
Vi = Vgi, V~ = Zi' kgi = Vgi/Zi and Ugi = Vgi~Ci/~ Vgi~Ci' These may be averaged with the
weights 19 to obtain the joint loss function (6.3) of 1+L(mr) with the multipurpose optimal
allocations mr.

This however may be obtained more directly from (6.4) or (6.5). Thus

I+L(mr*) = ~ ~~i: = (~Zi~Ci)2/Cf
~ mi ~

=~{~J(~1g V~~Ci)}2. (6.6)c, ~ g Vgnnn

When we accept (from (5.2) Vgmin = (~Vgi~ci)2fCf' we obtain a simpler form, because
V~i Ci/Vgmin = (Vgi ~Ci/~ Vgi ~Ci)2. Thus the jointly determined minimal loss function becomes

I+L(mr) = [~J{ ~1g(Vgi~Ci/~Vgi~Cir}]2

= {~J(~1gU~i)r (6.7)

The minimal and optimal values may be unobtainable, due chiefly to the constraints
mr :::::; M; (Section 5). In that case the above loss function overestimates the losses incurred
over obtainable values of Vgmin. Note also that using these leads to Zi~Ci = ~(~g1g U~i)~Cf'
hence to

~(~l U 2 .) Coptimal (m'!'*) = U g~ -1 (6.8)
~ ~~(~ 19 U~J Ci'

These can be seen applied in Section 7.6 to the important and frequent conflict between
allocations for weighted totals and for comparisons of domains. Two examples are shown in
Table 7.5. Note in the last column of Table 5(B) how encouragingly insensitive are the values
of (6.7) for moderate differences in the assignments of 19•

The weighted mean of relative quadratic losses (6.3) is a modified version of a function
proposed by Dalenius (1957, Chapter 9). Another version (yates, 1960; Cochran, 1963) uses
~g1~ ~i V~Jmi the weighted average of variances. Our (6.3) can be easily adapted by using
T~ = ~gI~ V;i instead ofZ~; in this formulation the weights I~ = 19/Vumin include the minimal
variances. This may appear simpler, but it is less explicit.

The optimal allocation of mr OCZJ~Ci can also be obtained with Lagrange multipliers
applied to the function

F(mi) = ~ 19~ v:i/mi Vgmin + A~ Ci mi' (6.9)
g ~

With Lagrange multipliers we also investigated two other loss functions: the product,
IT (1+Lg), and the sum of the relative precisions, {~(1 +Lg)-l}-l. But the results seem less
crucial than good choices for the weights 19 of relative importance.
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Our methods here aim to minimize the first term of V+Vo for fixed Ct. In situations
where Vo is considerable, the actual loss should be modified to L' = L/(1 +Vo/VmiJ, as noted
in Section 3. Furthermore, I consider fixing C, more practical than trying to fix values for a
set of Vg and then to minimize Ct. This problem seems to have been solved with "convex
programming" on several separate occasions (Srikantan, 1963, and Hartley, 1965, for example),
but I do not find this approach useful.

7. SEVERAL ApPLICATIONS

7.1. Stratified Element Sampling
In this common application the variance and cost functions can be written, with ~ ~ = 1,

as V+VO=~(WiSi)2/mi-~(~Si)2/Mi and C+CO=~cimi+CO' Here Vi=~Si and
Ui = ~Si~Ci/~ ~Si~Ci' Often the Ci and sometimes the Sr are treated as equal among
strata; then the Ui = ~Si/~ ~Si or Ui =~. To these parameters the earlier results on
optima and proxima can be applied.

For a fixed m = ~mi = ~mt, disregarding differences in the Ci' the loss function (2.7)
with sample weights becomes (also shown in Cochran, 1963, 5A.l), with di = (mf -mi)/mi:

L= VaotUal_l =~mi(m't-2mJ2=!~(m't-mJ2=(1/m)~midr. (7.1)
Vmin m mi m mi

7.2. Two Components; Subsampling Non-responses
For only two components (e.g. two strata or two stages) we can obtain several convenient

applications. Optimal numbers of units stand in the ratio

(7.2)

Optimal allocations result in

either V~in = (VI ~CI+V2~CJ2/Ct or Cmin = (Jil ~CI+V2~CJ2/Vt. (7.3)

Now let U = Jil ~CI/(VI ~CI+V2~C2) and (1- U) denote the two population weights; and
let K = k2/kl denote the relative departure from optimal numbers, so that ml/m2 = Kmt/m~.
Choosing the order of components is immaterial for expressing the loss L (from (2.3)), due
to departure from optimal, as

1+L = (UK+ 1- UHU/K+ 1- U) = 1+ U(1- U){(K-l)2/K}. (7.4)

For computing the weights we may use any of the relationships

U Jil~~ mt~ ml~--=-/-=-*-=K-=r; then U=r/(I+r). (7.5)
1- U V2VC2 m2 c2 m2c2

The loss is greatest with U = 0·5 for fixed K. It is modest for 0·5 < k < 2, but rises sharply
for extreme values of K (see Table 1). For example, for a stratified sample we may often
assume S2Nc2= SINcI' and optimal allocation would be m~ /mt = (1- WJ/WI • But if we
actually have sample numbers in the ratio mJml = 4(1- WI)/WI, the departure K = 4 results
in the loss (9/4) fJi(1- WJ. See column K = 4 of Table I; also example 2(a) in Section 2.

A ready application is to subsampling of non-responses. Suppose that m questionnaires
are mailed out for a total cost of com; that Rm respond to several mailings for a further cost of
c.Rm; and that a fraction l/k of the (I-R)m non-responses are interviewed for a cost of
cn(1-R)m/k.

Thus,

cost Ij') = (co/R+cr)Rm+cn(1-R)m/k. (7.6)
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Assume either that the m were selected with srs or that design effects are included. Denote
with S~ and S~ the element variances of response and non-response. The variance may be
written, without the constant factor for finite population, approximately as

R2S2 (I-R)2S2
var(ji) = Rm

r +(l-R)m/k' (7.7)

From (7.2) we get

. I k* - s,J( cn )optima - Sn colR +cr .

7.3. Two-stage and Multistage Selection
In two-stage random selection without replacement from equal clusters we have

var(ji) = (1-~) S~+(I_!:) sg = (S~-SUB)+ sg_ S~, (7.9)
Aa Bab a abA

where the last term denotes the constant Yo; and cost(ji) = caa+cbab+Co' Using (7.2) the
ratio m~Imt = ab]a yields

optimal b* = ~:J(~:), (7.10)

where S~ = S~ - SUB yields a shorter form that is meaningful: the cluster variance additional
to average random variance of its B elements. S~ ~O would cause a mathematical dilemma
because we have assumed positive components, but in practice it leads to taking all B elements,
selecting complete clusters. This design b = B also serves when (7.10) yields b*>B; and it
may be a practical solution even when b* is a large fraction of B. In some situations one
could search for a new definition of larger clusters. These departures from optimal b* interfere
with attaining the optimal values of Vmin and Croin (see Section 5).

Extensions to three (or more) stages are not difficult:

( _) (S~-SUB) (sg-s~/C) S~ S~
var y = a + ab +abc-7

S2 S2 S2 S2= -.!! + -Y!+ _c _-..!!
a ab abc A'

(7.11)

(7.13)

7.4. Two-phase Sampling
Suppose a large sample of size nL is selected (with srs) from N in the first phase, and a

sample of size n in the second phase. The cost function may be written as

cost(ji) = CO+cn+cLnL, (7.12)

where CL and nL denote unit cost and numbers for the large first phase sample, and C and n
for the smaller second phase.

When used for proportionate stratification, n = 1; nh' and the variance is to a good
approximation

( -) _ "" W 2S~ 1 "" W; (y;- iT\2 1; W~ S~ 1; Wh(1'h- 1')2var y - k./ h-+-k./ h h-.J. J •
nh nL Nh N

When fixed n = 1;nh is allocated optimally according to nVn = WhShl1; WhSh> Vmi n
becomes

(7.14)
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Allocation of (7.2) and (7.3) between the two cost components of C = cn+cLnL yields

optimal;; = J{'L,(~hC::;J)2 C:} and Vmin = ['L, WhSh~C+~{'L, WiYh- Y) 2Ch}]2/Cf·

(7.15)

If the cost factors Ch vary among the H strata, the optimal n~ should be made proportional
to WhshNch' We may solve directly for the (H+ 1) unknowns (nh and nL) by applying (5.2)
and (5.3) to C= ~nhch+cLnL'and to (7.13). The first term becomes ~WhSh~Ch in Vmin•

In two-phase sampling for regression estimation, the variance may be expressed to a good
approximation as

V
2 _ S2(I-R~x)+~xS2
Iii> - n --n;;-' (7.16)

Allocation of the two cost components yields

optimal nL = ~1~Yi2 ic
and Vmin = S2N(I-R~x)~c+Ryx~cL}2/Cf' (7.17)

n yx VCL

7.5. Weights in Estimation
Our emphasis has been in the allocation of units mi in selection, but the method can also

be applied to the allocation of weights Wi in linear estimation. Let Yi (i = 1,2, ... ,n) be
independent estimates of Y, with var(Yi) = u~ (with 0< Ui < (0). Suppose one estimates
Y with a weighted mean y = ~WiYi, with the constraint ~ wi = 1. How to choose the Wi to
minimize the variance of ~ wiYi? We denote var(~WiYi) = ~ w~ u~ = V, and corresponding
to VC we form the product

VW= ('L,w~U~)('L,Wi)= ('L,Wiui~Wi)2+ 'L,(WiUi~Wj-WjUj~Wi)2. (7.18)
i<j

The optimal values wi are reached when ~wi Ui = F, thus

wi = F2/u~ and ~wi = F2'L, l/ut = 1.

Then

Vmin = ~ wi F2 = F2 = ('L, l/u~)-l and wi = ~~~~r

The relative loss L may be found from

wl!
1+L = VfVmin = ('L, l/u~) ('L, w~ u~) = ~--1.

Wi

Thus

(7.19)

(7.20)

(7.21)

with 'L, wi ki = 1, since 'L, wi = 'L, Wi = 1. The loss appears as the relvariance of the relative
departures ki (from mean of 1) with weights wi-see applications to standardization by Kalton
(1968).

For equal variances, u~ = u2, the optimal values are also equal, wi = l/n, and Vmin = u2/n,

and the loss function becomes 1+L = (1+ C~), where C~ is the relvariance among the relative
departures. When there are only a few values of k i with relative frequencies fJi, use
(l +L) = ('L, Wik~)/('L, fJiki)2.
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The loss due to unequal weights, C~, represents the discrepancy between them. Therefore,
when random replication is used to obtain integral weights (machine cards) from fractions
k + W, the weighting should be confined to successive integers; with k applied to (1- W)
and (k + 1) to W of the elements, we have (1-' W) k + W(k + I) = k + W cards. The variance
is increased by

(1- W)k2+ W(k+l)2 W(1- W)
I+L = (k+ W)2 = 1+ (k+ W)2'

Duplicating for non-response is common, with k = 1. The loss then is

L = W(1- W)/(1 + W)2;

its maximum is 0,125, when W = t. The case of k = 0 would refer to eliminating (1- W),
leading to a loss of L = (1- W)/W. Note that eliminating a small fraction (1- W)
surprisingly appears only a little worse than duplicating a similarly small fraction W. For
example, eliminating 0·05 results in L = 0·056; duplicating 0·05 results in L = 0·046. Hence
to equalize several groups with k;, that differ only slightly, instead of duplicating up to the
highest response, one may reduce L by eliminating from the groups with the highest response.

7.6. Allocation Conflict between Totals and Independent Domains
Serious conflict often exists between reducing the variance for the combined mean ~ ffiYi'

and equal precision desired for the means Yi of H independent domains that differ greatly in
relative sizes ffi(~ Wi = I). The domains may be the regions or provinces of a country, etc.
This common example of multipurpose allocation deserves special attention.

The combinedmean variance~ = ~ W~ Sijmi is minimal when the optimal m;;, ex: ffiSiNci'
However, mU ex: SiNci are optimal for obtaining equal precision for each of the H domain
means; also to obtain equal precision for the H(H-1)/2 possible comparisons of domain
means. Thus we can denote an average domain variance Vd = (~Sijmi)/H2 for the variance
of ~Yi/H.The conflict between the purposes is represented in the above two optimal values
for mt by the presence of the weights ffi for the combined mean, and their absence for the
domain means. Thus the loss function (2.3) for the combined mean, due to allocations
mi ex: SiNci' has the departures kci = mtJmi = ffi, and the weights Uci ex: ffiSi~Ci' The loss
function for the average domain means, due to allocations mi ex: ffiSi~Ci' has the departures
kdi = I/Wi and the weights Udi ex: Si~Ci'

To see clearly the effects of variation in the domain sizes ffi, we make some simplifying
assumptions that are often approximated in practical situations. Assume that the Si
incorporate the effects of complex designs, and that they are constant across domains, as
are the Ci' Further, suppose that mt ~M; in all domains. We shall also neglect effects of the
constants Vo and Co on the loss functions.

Under these conditions we may omit, for brevity, the constants S2 and C from the formulae,
and we allocate the total sample size m = ~mi among the domains. For ~ ffiYi the optimal
mt = mffi, with departures kci = mtJmi = mWJmi and weights Uci = ffi, the loss function
I+Lc= m ~ Wijmi is minimal at mVcmin = 1. For ~Yi/H the optimal m~i = mlH, weights
Udi = I/H, with departures kdi = mjHms and the loss function 1+Ld = mH-2~ I/mi is
minimal at mVdmin = 1 also.

In Table 4 for loss functions (1+Lc) the minimal value 1 appears with mi ex: ffi for ~ ffiYi'
and with mi o: l/H for ~Yi/H. The other allocations produce relative losses (L>O) that
increase with diversity among the relative sizes ffi; and C~ denotes their relative variance,
H2 var (*i).

Jointly for the two purposes, we can find optimal allocation and the loss function with
(6.3). For any allocation mi, the joint function is

1+Lj(mu = Icm~ WUmi+IdmH-2~ I/mi = m~{Ic Wi+IdH-2)/mi = m~tUmi' (7.23)
i

4
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ti = ~(Ie W~+IdH-2) = ~(IeD~+I~/H = ~(IeN~+IdR2)/N.

Here 0 < Ie < 1 is the relative importance for the combined mean variance and Id = I - Ie
for the mean domain variance. We may find it convenient to use D; = HJli with mean Jj = 1,
or Ni = NJli when these denote domain sizes and N = ~ Ni = HR.

We can find the joint optimal allocations mt* = mtJ~ ti simply with (5.3), but also as an
illustration of (6.8).

TABLE 4

Conflict of Combined Mean (~ WiYi) and Average Domain Mean ('.L.Yi/H)
(S~ and Ci are assumed constant and omitted)

Loss function (1+L) for the combined mean, for the average domain mean, and for
a weighted joint function

Note ti = ~(Ie W~+IdH-2) = ~(IeD~+Id)/H

Loss functions (l +L) for

(1+L) = mV2

Allocation of m;
mWi

m/H
mti/~ ti

~ w.s.
m~ W~/mi

1
H~ W~ = l+e;
a; W~/ti) a; ti)

~Yi/H
mH-2~ l/mi

H-2~ I/Wi

1
H-2a; l/ti ) (~ t i )

Io~ WiYi+I"'~Yi/H

m~t~/mi

10+1", H-2 ~ I/Wi

IoH~ W~+I",H-l

a; ti )2

TABLE 5

Loss functions (1+L) for two populations

(A) (B)
(I+L)jor Wl/W2 = 4 (1+L) for 133 countries: 0·2 to 100 mm

Joint with weights

Allocations m, ~ WiYi ~Y;/2 Joint ~WiYi ~Y;/133 1: 1 10/1",: 1

mWi 1 1'56 1·28 1 6·86 3·93
m/H 1-36 1 H8 3-34 1 2·17
ex: "/Wi 1-08 H25 H02 1'35 1'54 1'44
ex: ../(W~+H-2) 1-116 1'080 1·098 1·31 1·28 1·295
ex: '/(0'5 W~+H-2) 1·47 1-17 (1'32) 1'27
ex: ../(2W~+H-2) 1·20 1-44 (1'32) 1'28
ex: ./(4WHH-2) H2 1-66 (1'39) 1·23

In (A) there are two strata and domains (Wl = 0'8 and W2 = 0'2); note that the allocation m; = ';Wi
does almost as well for the joint loss as the optimal.

In (B) we have the populations of 133 countries, ranging in size from 0·2 to over 100 millions, a range
of 500 in relative sizes. From this problem of allocation (for the World Fertility Survey) we omitted, for
practical reasons, the four largest countries and a few under 0·2 millions. Their inclusion would raise the
variance of relative sizes, Wi, from 2·5 to 12, and would make the results more dramatic. Note that the
.j Wi allocation reduces losses quite well. Some compromise is better than none. But the optimal allocation,
.j(W:+H-2), is considerably better. Different values of 10/1", (= 1/2, 2/1 and 4/1) increase slightly the
variance of the joint loss function with (1 : 1) weights; but they remain steady for joint loss functions with
their own weights 10/1", : 1.
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The multipurpose allocation mt* can also be shown (5.2) to produce the multipurpose
minimal variance

(7.24)

When we use the multipurpose optimal mt* ex:: ti we can determine the loss functions
(l +L) incurred for the variances of ~ ffiYi and '.£Yh/H; we use (6.1) or (6.2) with
kci ex: VdV~ ex: ffi/ti and k di ex: Vdi;V~ ex:: IjHti respectively. These (1+L) are shown on the
bottom row of Table 4. The last column shows the effects of the three different allocations
on the joint multipurpose loss function 1+L/mi)'

Two numerical problems illustrate the method in Table 5. In (A), for two domains having
sizes WJW2 = 4 : 1, are shown the loss functions for three purposes-total, domain and joint
-under diverse allocations. In (B) the method is applied to the 133 countries of the world,
omitting the four largest, over 200 millions, and a few smallest, under 0·2 millions. Including
them would be more dramatic but less realistic.
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