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1. INTRODUCTION

In this report a technique will be discussed which offers
hope for investigating and simulating tire models which can be
considerably more complex than existing models used in connection
with the study of tire shear force generation. The simulation of
the behavior of two different tire models will be discussed in this
report. Reference [1] gives a concise description of this investi-
gation. As often is the case, tackling a problem becomes easier
when using a method which comes closer to the way nature "solves"
the problem. Frank (Ref. [2]) was the first to recognize the
potentials of following a material element of the tire in its motion
through the contact range and the rest of the tire circumference.
The material element he elected to follow was part of the beam
or string.v The differential equation governing this motion has an
unstable solution and a special iterative method was devised fbr
obtaining a solution that fits the boundary conditions. Frank
restricted himself to pure sideslip (no braking or driving force)
and a constant friction coefficient. In his doctoral thesis,
Willumeit proposed following a certain element of tread during
its motion through the contact patch (Ref. [3]). The base of the
elastic element is assumed to move along a stralght line and the
tire model that is assumed 1s essentially a brush type with rigid
carcass. The friction coefficient was considered in Willumeit's
study to vary with sliding sceed and both longitudinal and lateral
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re taken into account. The resulting equations of motion
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The "tread element following" method has been adopted in modified
form for our investigation and it has been extended to a model |
exhibiting carcass elasticity. The hybrid computer appears to be
the computational device best sulted to solve the problem. In addition

to steady-state motions, transient motions may be considered.

First, a relatively simple model which is idehtical to the model
developed in Reference [4] and which will be designated as the
brush type model, will be considered. In thé present study the
pressure distribution and friction coefficient can be chosen according
to -experimental findings;¢ By proper selection of parameter values
the model is expected to give satisfactory results. These parameters
may be taken as functions of vertical load, speed of travel, and

road contamination state.

This relatively simple model is thought to be useful mainly in
conneétion with the simulation of the motion of a complete vehicle.
The relatively slowly varyiég motions of the automobile may be
calculated by the digital computer when the hybrid configuration
is used. The rapid motions of the tread element when running through
the contact area 1s simulated by the analog computer. Some of the
functions used in the latter simulation may also be computed by
the digital computer. For example the vertical pressure distribution
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and thus with load transfer. When the speed of travel varies
considerably during one simulation run, also the coefficient of

-

fricticon function would be updated during that run.
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parameters. The effect of such parameters as carcass geometry

and material properties 1is represented by an influence or Green
function. It will also be demonstrated that the response to

camber angle can be simulated by this medel in a natural manner.
Moreover, the introduction of carcass compliance creates the
possibility of examining the response to time-varying wheel-axle
motion inputs. The wavelength should be chosen large with respect
to the contract length. By increasing the number of tread ele-
ments which are followed simultaneously during one passage and

by considzring more than one row of tread elements each exhibiting
different contact lengths and pressure distributions (functions

of vertical load, slip angle, camber angle, etc.), the model
approaches the nearly perfect represéntation of the real tire.
Note, howéver, that mass and hysteresis of the tire body has

not been inclﬁded. High frequency motions are as yet dis-
regarded. The approximate theory of high frequency response de-
veloped in Reference 5] may give an indication in which directilon
‘the model must be modified in order to cover also this aspect of tire

response.



2. DBRUSH-TYPE TIRE MODEL

The first model to be treated consists of a rigid carcass
provided with a row .of elastic tfead elements which contact the road
surface over the length where the vertical pressure possesses a
positive value. Of the large number of elements present in the
contact range only one will be followed during its'passage through
the contact patch. TFor steady-state motions the deflections and
éhear forces at a x-coordinate (i.e., at a certain distance behind
or ahead of the vertical plane through the wheel-axle) do not
change with time. Conseqﬁently, the integral of shear forces
encountered by one element when running through the contact patch
produces the total forces and moment acting from ground to tire.
Under the influence of longitudinal and lateral slip, the element
(Figure 1) which may show different stiffnesses in lateral (y)
and longitudinal (x) directions, undergoes a complex variation of
deflections. The decaying Pfriction coefficient function (Figure 2)
causes the motion to become unstable. In practice, this is reflected
in the often observed slip-stick phenomenon. The model's tread
element exhibits both mass (necessary for an oscillating motion)
and damping (for stabiliiing the motion). For the sake of simplicity,
it is assumed that u is a continuous function of sliding speed, Vs’

and approaches zero when V_-0.

The base point, B, of the elastic element which is the point

where the element 1s attached to the carcass (Figure 3), moves in




longitudinal shift ﬁc of the contact léngth may occur due to a
driving or braking force. The influence of these shifts is felt
in the resulting aligning tof&uéw(aboﬁf the vertical axis thrbugh
the wheel center). ‘These uniform carcass deformations will be
held constant during each run of the element through the contact
patch ag@ updated at the end of each fun. Only an effective
fraction of the carcass deflection (ﬁc, ﬁc) may be taken into
account due to the fact that the center of vertical pressure is

not shifted over the same distance.

Iy

Figure 1.  Tread Element.
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Figure 2. Coefficient of Friction.
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Figure 3. The Rigid Carcass (Brush-Type) Tire Model

The center of the wheel has a speed V. Slip angle a indicates
the angle between speed direction and (vertical) wheel center
plane. We have a lateral speed, Vy’ which is equal to the lateral

slip or creep speed, ch:

Vy = ch =V sin o (1)

The longitudinal speed of the wheel center becomes:




V. = Vcosa ' (2)

The wheel rotates about its axle (y-axis) with a speed -Q When

-
under free rolling conditions and a=0 the effective radius is
denoted by Reo = V/IQYOI, we define the speed of rolling under .
general conditions: |

Ve o= el Ry (3)

and the longitudinal slip speed:

v = V.-V, . (1)
We introduce the two quantities which define the state of slip
i%under straight line rolling, viz., the longitudinal slip Sy and

the lateral or side slip syz

w
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1 - szy/szyo | : (5)
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tan o (6)

In general, also a turn slip due to a rotational speed 2, about

the vertical z-axis will occur.

The base point B of the tread element (Figs. 1,3) has

speed components:
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Vex = Vex T Ve, (7)

Vv

"
-

By cy + (x + ﬁC)QZ | (8)

The sliding speed of the contact point (tip of element relative

to the road) is given by:

VSX = VCX - [ﬁc + V)QZ +u , ‘ v (9)

v

f

sy ch + (x + u, + u)QZ + v . (10)
For motions with relatively long wavelengths, the terms with
2, may be neglected. Henceforth we shall disregard the influence

of the rotational speed and use the equations:

Vo=Vt )

VSy = VCy + v . : (12)
The tread element moves through the contact range with a
speed equal to the rolling speed Vr‘ The contact length is

denoted by L = 2a and the time for one run through the contact

patch becomes

At = L/Vr (13)




[

Note that the run time tends to infinity when the wheel is locked.
This limits the analog simulation to Sy values smaller than unity.
As soon as the element has reached the end of the contact length
(trailing edge) a new element is assumed to enter at the leading
edgé. The i-th run starts at the instant t, ; and ends at

t. = t.

i j-1 At e

Coordinate x of the base of the element is determined

by:

1 )
x = FL-V.(t-t ) (14)

The eiemenf has stiffnesses kx and ky and damping coeffi-

‘cients Cyx and Cy in x and y direction, respectively. At the tip
of the element a concentrated mass, m, is considered to be present.

The quantities kX and k s andvcy, and m are taken per unit

y’
‘length of circumférence. The same holds for the shear force

~components q and q_ and the vertical pressure distribution q,-

Y

The following equations govern the motion of the element.

m i + c, u k. u-= Ay (15)

(16)
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The initialvconditions of the deflections and the time rate of
change of the deflections of the tread element at t = t;_q are

assumed to be equal to zero.

When the resulting shear force opposes the sliding speed,

we have:

ae = =q V  /Vg N G : (17)
4y = "a Vgy/Vs , A R | (18)

with
. V. = vax + Vsy B - . (19)

-

Due ‘to the friction law assumed (Fig. 2), we have always:

qQ = ugq, (20)
and the functions
o= ow (V) (1)

g, = q, | (22)

The vertical pressure distribution may be taken as a function of

‘the vertical load |F [.
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The forces and the moment acting on the éarcass (i.e., on
the wheel) are equal to the integral of the contributions of the
internal forces per unit length (acting in spring plus damper of

Fig. 1). i | 4 : )
Q'y = cyu+ ku - (23)

(24)

<le
+
et
<

! =
Ty = 577 %
Figure 4 gives a simplified diagram of the analog éircuif which

! 1
produces the q X and q v

The respective integrals determining longitudinal force,

lateral force, vertical load and aligning torque read:

: a t. . i w
- A _ i : :
Px = {a q'x,dx = Vr tf q'x dt . (25)
i-1 '
F. = [ ' dx =V o q' dt 26
y F oy &=V t{ a'y (26)
_ . i-1
a ti
—PZ = {a q, dx = Vr i q, dt (27)
i-1
ty
= 13 ' - - 1
Mz = Vr € {(x + a. + u)q y (VC + Vv)q x}dt (28)
i-1

11




Eqs. (15,23)

L X B -9
v - +/\/SX ()2 A , }‘
ex V. [ro—— }l q“
+ 54 V)om z
V‘Y"_—'L\Vsy 3 { P(S) X v
dv, ™~ ' () . {
" (=0 for ' ‘ . X 2 -9
o B |
viov
; 2l
..qy P‘O"ﬂ%—‘—— > qyy
Eqs.(16,24)

Figure 4. Simplified diagram of computer circuit for the
simulation of tire tread element dynamics.
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The effective uniform carcass deflections are defined by

the relations:

=

"
m .
o

1]

8.F /K i T )

<
1

o)

<
"

ByFy/Ky S (30)

where Kx and Ky are the carcass stiffnesses andBx and By the
effective fractions which take into account the longitudinal
and lateral rolling deformation of tire with respect to rim and

road (displacement of vertical pressure center).

The moment may be rewritten now as follows:

-

-

t. < B, B
_ 1 ) _ X - ’
M, = V. tf {(x+ ugq'y v q' Jdt + (K; KX)FXFY (31)

i-1 . o Y

The values of Fx’ Fy and Fz are available at the end of each run.
Since at that instant the prodqct FXPy is available, the moment

MZ can also be computed in one run. Figure 5 gives the simplified
diagram for the forces and moment generation. The input quantities
V,}a and s, are either given in the digital program (result from
an input matrix or from the instantaneoué conditions of a digital
‘vehicle motion simulation) or are read from voltages (set by |
ﬁotentiometer, or resulting from an analog motion simulation). As
soon as comparator 1 gets low (logic 1 at complementéd output),

the run through the contact patch is terminated and the digital

13
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Figure 5. Generation of forces Fx‘and Fy and moment M, .

computer puts the analog computef in Hold. The integrated out-
puts are read by the analog to digital converters (ADC's) together
with possible new V, o and Sy values. The values of Fx, PY and

Mz and the input quantities are stored on tape orvprinted out

directly and the computed values of V., V X and ch are set by

c
the digital to analog converters (DAC's). Subsequently, the
Initial Condition and then the Operate state of the analog

- computer are called after which the next run starts.



Figure 6 gives the results in graphic form. The complete
traction field is shown for a particular tire model and road surface
combination. A good qualitative correspondenée with known
experimental curves appears to arise. The influence of’changing
the lateral tread element stiffness is shown in the upper right

diagram.

The relative simplicity of the circuit and the qualitatively
correct results makes the concept interesting for use in connection

with automobile motion simulation.

15
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3. MODEL WITH FLEXIBLE CARCASS

Figure 7 depicts the tire model showing a carcass which
can not only deform sideways and in longitudinal direction, but
which can also show a curved deflection line governed bf‘external
forces and by the flexural properties of the tread band and “

elastic properties of its foundation.

 wheel spin axis

deformed
carcass line

Figure 7. The tread element attached to the LT LD
deflected flexible carcass

17




In contrast to the motion of the elements of the rigid
carcass model, the base, B, of the element will move along a
curvilinear path. The speed of B is influenced by the varying
slope of the center line of the carcass. As Before, the carcass
is assumed to be inextensible in longitudinal direction. It may,
however, show a uniform longitudinal deflection ﬁc'undef the

action of EX.

The lateral force distribution q'y causes the carcass to

deflect. The influence of the moment distribution, q'yu - q"xv,
upon the deflection is neglected. It is assumed that the elastic
properties of the carcass can be considered linear. We may then
describe the elastic field of the carcass by.means of influence
(Green) functions G(&,x). This function gives the deformatioﬁ at
coordinate & due to a unit force acting at coordinate x. The

~ lateral deformation d vC(E) due to a lateral force q'y(X)dx becomes

-~

d v () = G(&,x) q', (x)dx (32)
The deflection due to the complete force distribution over the
contact length is found by the integral:

a
ve(8) = 1 G(E,x) q'y(x)dx (33)

-a

The velocity of the base point, B, of the element with

respect to the road surface becomes:

18




di
Ye

Vex = Vex - VX, * g (34)
. dvc |
VBy B ch ¥ (X+uc)Qz Y I (35)

The lateral speed of B with respect to the wheel plane is given
by the time derivative of Ve This deformation is both a function

of time, t, and coordinate, Xx.

c . .y _c¢ i |
aT - Ve 3t oo (36)

In case we deal with a cambered wheel with angle of tilt vy,
the carcass center line is already deflected with respect to the
x-axis (defined as line of intersection of wheel center plané
and road surface) when loaded on a perfectly slippery surface
(u=0). This deflection will be approximated by a parabola (cf.
Fig. 8): .

de = -(C, + 12 A )y (37)
The additional deflection Ve exhibited by the‘carcass when rolling
over a rough surface is bfought about by frictional forces qy. The
expression'for the lateral velocity of base point B must now be
extended with the terms Vr Bdc/ax - adc/at of which the last
term may be neglected for slowly varying camber angles. The last
term of (34) and (36) will, in general, be small too. We retain
the latter, however, because it has a favorable effect on the

stabilization of the analog solution.

19
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- Figure 8. Deflections due t6 camber

- The sliding speed of the tip of the element with deflections
(u,v) reduces to the following form after retaining only the more
important terms (relatively slowly varying wheel motions,

8, >0, di/dt >0, 3d /ot > 0):

_ du _
Ygx - VBX‘+ dt ~ ch Iz (38)

v =v. + .oy . (v EZS - EX_) -V A » by
sy By dt = “cy T 9% at ‘&=x XY T aE

(39)

The terms ch’ ch and VTAYXY represent the input quantities to

the tire system. The last terms in (38) and (39) are a result

20



of tread element dynamics governed by Eqs. (15) through (22).
The remaining terms of (39), which represent the time rate of
change of carcass deflection at the moving point B, also given

by (36), are governed by the function (33).

The deflections VC(E) can be calculated from (33) once

© the q'y distribution is known. On the other hand, from the

Eqs. (39) and (15) through (24), it is clear that q'y(x) can

only be calculated for a known carcass deflection VC(E). Evidently,
some kind of iteration process is required for solving the problem.
An obvious procedure would be to leave VC(E) and all input quantities
constant during the time interval needed for the element to

travel through the contact zone. The q'y distribution can then be
calcuiated during this run. By simultaneously computing the
integral (33) at a sufficient.number of points along the contact
line, the new VC(E) may be found at the end of the run by infer4
polation . between the vc's ébmputed at these points. From the
interpolation formula, the slope BVC/Bg may be obtained as a
function of x. During the next run Vc(a) is kept constant and

the function for the slope is used in Eq. (39) for the calculation
of the new q'y(x). This iteration procedure, however, is bound

to diverge for tire models with tread element lateral stiffness

per unit length much larger than the resulting carcass lateral

stiffness divided by the contact length, as usually is the case

in practice (see discussion in Section 4.2).
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In order to avoid this oscillatory divergent result, we
may try to more closely approach the way the real tire finds the
solution. The carcass deflection will not be held constant
during a passage but is allowed to change as a resuit of the

difference of q'y(x) with respect to the q'y(x) encountered in |

the previous run. The following eduations apply for the i-th

Tun:
: Aq y(X) = q Y(XJ q yi_l(X) | (40)
t .
vc(E,t) = Vr tfv G(&,x) Aq'y(x)dt v () (41)
i-1 1-1
with -
1. ) ' | .
x = 3 L Vr(t ti»l) | (42)

At each instant, the VC(E) is available and is a result of the
new q'y distribution generated over the x range already covered
by the moving element plus the old q'y distribution of run i-l
over the range not yet covered by the element. The instantaneous
value of the slope BVC/BE at £=x may be calculated and fed into

Eq. (39).

Since the carcass deflection changes in time due to the
difference Aq'y(x), a finite value of avc/at at &=x will be
found. When the element is moved over a distance (-dx), the

increment in carcass deformation at £=x due to Aq'_ reads:

22



dvC = G(x,x) Aq'y(—dx) o ; | (43)

so that, in view of (42), the partial derivative with respect

to time (§ fixed)lbecomes: o B _ .

avc

-a—t-'-) £=X = V‘r G(X,X) Aq y : | . (44)

This term, although small, may be retained'in the computation
as it turns out to be of great value for the stabilization of

the iteration.

The generation of the difference Aq'y byvthe hybrid
computer, using Eq. (40), requires a memory device. We havg
chosen to use the digital computer forsthis purpose. The passage
time is divided up in N (say 20) equal steps. At the end of each
step (k) the q'y value ié transmitted to the digital computer
and stored in the first ldcation of an array. Before this is done,
ali the N elements of the array containing the q'y values obtainéd
at the ends of the previous steps are shifted one location down-
wards so that the first location becomes empty and is ready to
receive thewnew q'y value. Before this shift is executed, the
last two values of the array are read and transmitted to the analog
~computer. These two values are the q', values of the previous
run at thelbeginning and end of the next step (k+1). By linear

interpolation between these two values, the old q'y value
i-1

23
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Interpolation yields:

2

v.(E) = a; + a;f + a,t (48)

The slope at £=x reads:

9V ) :
' 'g—g-‘— : = al + Zazx (49)
=X

The coefficients are found by satisfying the deflection (46).

A more stable solution for large numbers of runs through the
contact patéh may be obtained by taking the slope (49) at &=a
equal to -Vcl/c. The length o is determined from the almdsty
exponential shape of the outer portion of the Green function.
Calculation of only vcl and V., may be sufficient in this case
(cf. discussion in Sec. 4.3). With (44) and‘(49), the "remaining"
terms of'the formula for the sliding speed in lateral direction

(39) have been determined.

The forces Fx’ Fy and Fz and the moment MZ may be obtained =
by conducting the integrations (25) through (28) and updating
at the end of each run. Since we have now the increment Aq'y

at our disposal, we may as well generate a more continuous varia-

+3~An Af T Wyr ammTavrdane the inteacsrals
Cdowad o *y LJJ N add _A_U/ _¢.Aa.o [N _I.AA!.V‘.ro-v-._.-
t .
F = V. f Ag' (x)dt + F (50)
y I, y ¥i-1
i-1 1
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where Fy represents the value of Fy at the end of the previous
i-1 : ;
passage (i-1).

[EIN,

Figure 9 gives a diagrammatic picture of the hybrid
computer circuit for the generation of carcass deflectfbn and
side force. Appendix IV presents the complete diagrams and
digital program in its most recen£ form after the modifications
dis;ussed in Section 4.4 have been introduéed. " The influence
functions Gl’ GO’ and G2 employed’are assumed identical except
that they are shifted sideways over a distance, a = % L, with
respect to each other. In reality, for a loaded tire, the
function GO measured at the center may differ from the other two
which are measured at the ends of the contdct patch. A method
for measuring influence functions of ldgded tires has been
developed by Savkoor/[é]. Note that for our purpose the tread
rubber should be buffed off first. rThe Green functions used
are in Appendix IV (Fig. 25). They are taken from deflection
curves shown by Frank [2] for a radially unloaded tire. The
tire was axially loaded by a concentrated force. In'general,
the Green functions will change when a radial load is applied

as well.
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Figure 9. Simplified block diagram of circuit for generation of
carcass deflection and side force. The diagram must be
used in connection with the diagram shown in Fig. 5.
The moment M, will be computed in a slightly different
way, however. At the end of each step (signalized by
comparator 2) integrator 12 is set in Initial Condition
and the remaining integrators in Hold. The last two
elements are read and transmitted to the DAC's for the
generation of the q', of the previous run. Then the
array is shifted oneyplace, the now empty first array
element is then filled with the new q',, obtained from.
the ADC. At the end of these operations, the system is
set 1n Uperate and the subsequent step begins. At the
end of the run indicated by fomparqtor 1 (Fig. 5) (make
a, slightly less than XVI= L) the procedure as des-
cribed in the caption of Fig. 5 is followed in addition
to operations done at the end of each step with the
exception that after the shift, the last element of the
array is made equal to zero representing the q', value
at the beginning of the contact patch. The integrators
7, 9, 10 and 11 remain in the Hold state before calling
Operate.

The flow diagram of the digital program shown in
Flg. 10 clarifies the situation.
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cALL HYBRID ' S
CALL INITIATE ’ -

“cacL 1.C. (ALL INTEGRATORS)
CALL Run '
seT ALL DAC's = 0
make M(3)=0, J=1,...N

. N Y
- DETERMINE
INPUT QUANTITIES .

<—== INPUT V, @, Sy, T°

Y

SeT DAC's FoRr
Vex? ch' Voo Ay
. |
cALL OPERATE

caLL Howp - 'wi";J’%‘f T eaLL How
(o, 12 v 1.C.) S e 12 1w 1LCY)

_ Vv '
Read Fy, Fy, 1y \@EAD q'y FROM ADQ/

caLL [.C,
(EXCEPT NO.
-7,9,10,11)

T < ~\ -sev DAC's | |
HN)=0 M(N-1), M)

fFroM ADC's

L K0 READ Q' )
' FROM ADC SHIFT MEMO
ARRAY M(J)
(
srbC's/ | 0 | MD=q,

Foo M,

Figure 10. Flow diagram of digital computer program. The
inputs may be entered through ADC's, key-board
or may be listed in the digital program.
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Two collections of computer results have beén shown in
Figures 11 and 12. They present the complete stéady-state
traction fields for two different p functions. Figure 11 shows
the five related: diagrams (Fy - oc), (Fy - FX), (FX - sx),

wm_ - FX), (Mz - a). In the (FY - o) diagram the curve produted

z
By a combination of camber angle y and slip angle o has been
shown. Also, the influence of lowering the carcass foundation
stiffness (Green functions‘larger) and at Sy = 0.2 the influence
of a change in longitudinal stiffness K¢ have been indicated.

The (Fy - P*) diagram shows curves for constant values of o and
Sy At 1owAslip angles the a-curves tend to rise at increasing
braking force until a maximum is reached. The carcass flexibility
appears to enhance this phenomenon (compare Fig. 6). The sign
change of MZ which occurs beyond a certain braking fqrce range

is dﬁe to the displacement of the line of action of Fx which
could already be accomplished with the simpler model (Fig. 6).
Experiments substantiate this phenomenbn. The realistic
appearance of the responses to step functions of the slip anglé
shown in Figure 11 suggests that the model’is capable of simu-
lating a tire's transient behavior. Figure 12 presents curves
which may be encountered on wet slippery roads (dashed p-curve

of Fig. 24). Again, experiments substantiate the qualitative
aspects of the theoretical results. The increase in FY and M,
at small a-values as a result of an increase in V ié caused

- by the presence of damping in the tread elements. The decaying
p-function is responsible for thg sign change of Mz at larger
values of o (also when 5S¢ = 0). Appendix IV presents parameter

values and functions used in these calculations.

29




W

Il\“

os| 075] ]llf

‘x='°25‘
: |

o o & g 12 16" o 20°

l ' J ', . . : q’ )
DRIVING g BRAKING . | ..--ullllll“ A Al'\ A‘\

F’ ’ x=2"

=

[} hmo

VHWMWNWW\

0 time
- l "-‘ l
M, \G'sx2 B
( .
Y.
A}
\
\
034 \
\
\
\ ) " 5
\ V,lV, -
N
N x‘:-.2
AN =.05
‘\
Y 0 h o
-] ‘c ‘\ ,20 ha o d
N 05

Fig.1l

Traction field for flexible carcass tire model (computed with G and G,
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Fig.l2 Traction field on surface with sharply decaying p-curve. Parameters _
as in Fig. 7 except cx=cy=6 qzo/vo' Influence of variables a, Sy and V.
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4. INSTABILITIES

In this section we shall deal with instabilities which
turned up during the calculations and which are partly due to
model properties and partly due to computational methods which

have been adopted.

4.1 SLIP-STICK

The elastic tread element which slides over the ground is
capable of showing an unstable oscillatory motion when the
coefficient of friction exhibits a decaying function with sliding

| speed (Fig. 2), i.e., when the derivative .
= < 0’ (51)

and, moreover, when it does not have sufficient internal damping

to suppress this instability.

The equation for the element shown in Figure 1 reads

when only lateral motions are considered (VCX = VBx = 0).

my o+ kv o+ =
\ yV ot eV =gy

wW1lth

{w



The sliding speed equals

at the steady-state speed VS = VBy‘ Around this equilibrium
situation we have consequently:
) =u_.-bv

L= oy - b(Vs -V

o By

' The equation of motion reads now (assume VS > 0):

mv + (ky - qu)v + cyv = 1,4, ' (52)

Hence instability will arise for

k. < bq

y (53)

z
The qu distribution observed for zero or small damping coeffi-
cient cy indeed showed oscillations which were pérticularly
violent when the dashed u—function of Figure‘24 was used. Figure
13 shows an example. In the actual calculations the damping

has been made sufficiently large in order to suppress thé

oscillations.
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time
1 run

- Figure 13. Slip?stick observed at low damping c

-
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4.2 INSTABILITY OF ITERATION PROCEDURE

Computations carried out with the simple brush-type model
have indicated that no computational instabilities whatever occur.
This seems logical because the force generation at a particular

run does not depend on the results of the previous run.

This is quite different with the more complex model which
exhibits carcass flexibility. Three kinds of instability may
arise. The first one has been avoided from the outset. This is
the oscillatory instability which will occur when the "direct"
iteration procedure is chosen which has been outlined before. The

deflection of the carcass is obtained directly from the
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fo£c¢ distribution, q'y, which results frdm the previous run

- where the.carcass defiection has been kept constant. That
ingféﬁility is expected to occur for tire models exhibiting a
lateral stiffness of the tread element'per unit length which is
considerably greater than the lateral carcass stiffness divided
by the contact length (which is usually the case with feal tires)
-can ‘be explained by considering the simple two-sprihg system
shown in Figure 14a. During the first run the carcass deflection
will be kept equal to zero. The deflections of the tread.
elements are governed by the slip angle considered. The side
force distribution Tesulting in Fyl produce the relatively large
carcass deflection used in the second run. With the same slip
angle the tread element deflection will now most probably be
directed in the opposite sense. Consequently, the carcass deflec-
tion for the third run will flip over to fhe other side. The
subsequent carcass deflection of.the fourth run will become
larger than the deflection of the second run. Obviously, an

oscillatory instability arises.
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Figure 14. Explaining oscillatory instability occurring
with "direct" iteration procedure

This instability is avoided by not integrating q'y times
the Green function but the difference of q'y with respect to

the one encountered at the ‘previous run, Aq' times the Green

y?
function considered, and then adding the resulting increment

in deflection to the deflection found at the end of the previous
run (the latter is accomplished by keeping fhe integrators 7,

9, 10 and llJin Hold when going from one run to the next run,

Fig. 9). In this way the carcass deflection is built up gradually,
much like the real tire does. Already during the first run the

. carcass deflection starts to develop (see typical variation of

quantities shown in Fig. 15).
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4.3 MODEL INSTABILITIES

In the original configuration, the carcass deflection is
calculated by means of a parabolic interpolation between carcass
deflections at the.leading edge, in the middle, and at the trailing
edge. As has been shown in Figure 15, an instability of the
shape of the contact line shows up after about 60 runs. The
;Q'y.tendsuto.dégrﬂase at the leading portion of the contact
length and finally changes sign and grows in the other direction.
This turns out to be due to the fact that a smaller ) (leading
edge) leads to a steeper slope of the carcass deflection in the
leading contact range. With the slip angle remaining the‘same,
the tread element deflections at the leading range will now
become smaller. The rgsulting smaller q'y in this range causes
a further reduction of the deflection Ve and an increase in

slope. Eventually, V., may change sign.

This phenomenon becomes more severe at smaller slip angies
and lower stiffness of the carcass. In order to suppress this
kind of instability, we tried to relate the slope at the leading
edge to the deflection Ver From the Green function (= deflec-
tion due to concentrated lateral unit force) we found that the
deflection varies approximately exponentially. This indicates

that the relation

cl
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Q Q
%| 2
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~

i

[
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Q|

<

(54)
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between slope and deflection may be used. ;The length o can
be determined from the Green function shownfin Figure 25. We

found ¢ = 2L = 4a,.

o ‘
AT

This additional condition calls for a éubic instead of a
parabolic interpolation. As has been shown in Figure 15, the
same kind of instability still shows up but;now more towards the
‘middle of “the contact length. 'The deflectién Vi does not change
in sign but still decreases bringing about a larger slope near
the contact center which lowers the q'y in %hat range and
thereby pushes back the Vo (and to a much lesser extent the

Voo and VCZ).

Finally, we tried a simpler‘ihterpolaf;on by using onlj the
deflections .at the .leading edges and, furthérmore, the tangent
relation (54) at the leading edge. The modél turns out to be
now essentially stable. The parabolic intefpolation with tangent
relation has been used for the calculation of the graphs 11 and

1z2.

4.4 DRIFT

Some drift, however, still remains. This slowly developing

deviation of deflections and side force could not be explained

is belicved to be causcd by small

Foram mAAAT AN APt A
44 N A ~

A - T+
tJJ-\Jf\JJ. P o

error voltages which continuously built up. Insufficient feedback

in the system is responsible for this weak instability.
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The simple rigid carcass model did norisuffer from this

phenomenon. There, the q‘y is integrated @irectly, whereas

it

the iteration procedure adopted for the fléiible carcass model

I

A slight systematic erro

integrates Aq' in the memory process

v
which produces q'

Y’ the q'y distributioééof the previous run,
gives rise to a non-zero Aq‘y also when theésteady-state has

been attained. This obviously causes a dri%t of side force and
deflections. In order to avoid this driftgéan artificial feed-
back is constructed by integrating q'y dur?%g individual runs
distributed over the total computing time.?gThis is accompliéhed |
by intrdducing switches in the analog circﬁit which in the normal
situation make connections so that Aq’y isjintegrated and, after
a command from the digital computer atjtheﬂbeginning of a rﬁn,
change the circuit in order to integrate qf;. At the same time,
the integrators for Fy and the vc's are segfin Initial Condition
and the values for FY and .the Vc's computed at the end of the
previous run are stored in DAC's. Additional switthes.connect
the wires which came from the original Fy éﬁd v. outputs to these:
DAC outputs. At the end of these direct ihtegration runs, the

original situation will be restored. In the schemes of Figures

21 and 22, the switches and the accompanying logic are shown.

Figures 17 and 18 present results forffhe configuration
with switches. After each fifth run, the SWitches change

connections and the direct integrations are conducted. The -
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computations are now complétely stable.‘ The discontinuities in
the Fy trace point to a slightly incorrect return of the q'y
.distribution of the previous run. An improvement of the memory
process will certainly improve the results and the switch con-
figuration may even prove to be unnecessary. A continuous

memory device like a magnetic tape recorder seems to be most

promising.

The instabilities described in Section 4.3 seem to be due
‘to the fact that only a limited number of deflections along the
contact length has been computed. The required tangent relation
at the léading edge (which is certainly not an elegant solution)‘
would not have been necessary if we had at our disposal a greater
number of calculated deflections near éhe front edge. The real
tire which '"calculates' the carcass deflection continuously along

the contact line manages to get a stable solution.

~
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APPENDIX I
LIST OF TERMINOLOGY
half contact length
camber deflection coefficient

base-point of tread element

damping coefficient -of tread elements in X,y

direction

contact center

longitudinai'force acting from road to tire
lateral force acting from road to tire
vertical force (= -wheel load)‘

Green function (influencé function)

number of current run

number of current step

longitudinal, lateral stiffness of tread element.

longitudinal, laferal carcass stiffness
contact length

effective mass of tread

aligning torque

number of steps in one run
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q shear force from ground to tire'(per unit

contact length)

qx,y x and y component of q

q'x,y x and y component of force at base-point B '

q'yi-1 q'y in previous run

q, “vertical pressure distribution (> 0)

Aq'y difference of q'y with respect to previous run

o effective rolling radius at freg rolling and a=0

Sx,y . longitudinal slip (= ch/V cos a), lateral
slip (= tan o)

t time ) i

At time needed for element to travel through
contact length

u | | longitudinal deformation of tread element

ﬁc longitudinal uniform déformation of carcass

\ lateral deformation of tread element

V. %ateral deformation of carcass

Vc lateral uniform deformation of carcass

\Y speed of contact center (or of wheel center)

VB speed of base-point |

v, slip speed (vc =V -ivr)

ch,y x and y components of VC
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SX,Y

XY

reference speed (100 ft/sec)

speed of rolling = (effective rolling radius at
FX=0) x (speed of revolution)

sliding speed of tip of tread element
sliding speed in x,y direction

longitudinal, lateral component of wheel center

speed

longitudinal coordinate (direction)
x at end of k-thH™step
lateral coordinate (direction)

slip angle .

-

reduction factors for effective longitudinal and

lateral carcass deflgctions
camber (inclination) angle
coefficient of friction

relaxation length of free carcass lateral
deflection

‘rotational speed of wheel about wheel axle (< 0)

rotational speed about vertical axis

longitudinal coordinate
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APPENDIX II
NON-DIMENSIONAL QUANTITIES

The actual calculations have been conducted with the aid of
non-dimensional equations. We introduce the average vertical
load per unit contact length

F
q = Lzl
Z0 L

where IFZ] is the vertical tire load and L the contact length.

Furthermore, we introduce a reference speed

VO = 100 ft/sec -

With the aid of these quantities, we define the following

non-dimensional quantities:

vertical load/unit length az =q,/q,,
horizontal load/unit length EH = ay/a,,
Green function G =G - 4,
sliding speed, etc. VS = V. /V,
time t = Vot/L
machine time T = uT?
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derivative
1ongitudiha1 deflection

lateral deflection .
etc.

longitudinal coordinate
lateral total force
longitudinal total force
aligning moment

mass per unit 1ength
damping per unit length
Stiffness per unit lehgth
carcass stiffnesses
friction coefficient

camber coefficient

(1) =d()/ar
u = u/L
v = v/L
X = x/L
F} = F/[F,|
Fo = B/IF,|

- M /(L [F,])
m = mVOZ/(qZo + L)
E%,y ) Csc,yvo/qzo
Ei,y - kx;yi/qzo
Kk’y = Kx’yL/IFZI
R, = VA,
K, =LA

In the following and in the computer circuits the bars

will be omitted.

NON-DIMENSIONAL EQUATIONS

For the flexible carcass model we obtain the following

équations (bars omitted):
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m oo vV o+ ap V¥ kyv = qy
mop U+ c aT<ﬁ + k= gy
Ay =~ Vex/Vs » 9y T 7 9
ay = ¥ 9 , a4, = 9,(x)
po=u (V) =0 ) ANVg) or =
A 2
Vs = Vex * Vsy
st - ch ot
. dvC ‘
VSY = VCY + OLT v - Vr('asc'— + AYYX)
V. =V cos o
X
ch = V151n a
Vex = sxvx
v =V_-V
T X cX
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x = 0.5 - V_t/og {f 0.5
T . E_. 5
t =T - (i-1)AT
AT = aT/Vr
Ax = 1/N
x, = 0.5 - k Ax K =1,2,...
Q'y = ¢y o v+ kv

MEMORY ARRAY M

at x = x4 (start of step k):

q' = M(N)
Vi-1, k-1
q', = M(N-1)
Yi-1, k-1
shift of array
M(1) = q =q'
Yi k-1 Y
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Yi-1, Yi-1, k-1
q' =q' *gxy_ g - x)
Yi-1 o Yi-1, k-1 k-1
Ag! = t - 1
qy qy q)’i_l
, Vr T
v .= —/[ G.(x) Aq'_(x)dt + v _. j =1,2
€ 8py 1 7 “Ji-1
parabolic interpolation with tangent relation at x
¥ =8 (a +a; £ +a,£)
o y* o 1 2
a5 = (Bvey +vq/o v )/4
41 T Ve1 T Ve2
8y % 5 Ve T Ve/9 Ve,
at £ = X
dvC
I = @1t Zayx - G(x,x)Aq'y
Ue © Bxe/Kx
F_=F
S B

53
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JaF. = Lo x)dt
o] “T o X
Vr t
F = — [ Aq' (x)dt + F
Y °T o Y i-1
MZ = MZ
i-1
t Vr t _
J dM_ = = J {(x+ a_ o+ u) q'y(x) - (vC + V) q'X(X)}dt
0 T o
at x = - 0.5 (end of run i):
Vcli S ’ VCZ = Ve2
t ’ t
F = [ dF F = F M = [ dM
X; o X ’ Y3 y °’ Zs o yA
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APPENDIX III

DIGITAL PROGRAMS, ANALOG AND LOGIC CIRCUITS

The 1isting of the digital computer program for the
rigid carcass model is presented on page 57 and 58. It con-
tains a DO-loop which automatically provides a matrix of .input
values. This is accomplished by entering 1 on the keyboard. By
entering 2 another portion of the program is followed which makes
use of input ﬁalues set by the potentiometers and read by the
ADC's. Entering 3 results in exit from the computer. The analog

and logic circuits are given in Figures 19 and 20.

The listing for the flexible carcass model is given on pages
61, 62, and 63. The program provides fer a sweep in a. The’
slip angle starts at the value given by potentiometer 007. The
slip angle o will be incremented with 3° after NN runs have .
taken place at constant o.  The new series of runs starts with
the carcass deflections found at the end-of the previous series.
The number NN has been taken large enough in order to attain
steady-state for each a-value. The value of NN is taken smaller
for larger a. After the maximum of 20°‘the slip angle drops
each time with 3.01°. After a series of runs for a certain a
has started, the switches in the analog circuit (Fig. 16) are in
- position A (full lines) so that Aq‘y is integreted. After each

‘run the switches will be set in position B (dashed lines). This
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i; controlled by the digital computer with the control line
register (= M1(=1) when in A and =M2(=0) when in B). After
omitting the framed portions indicated in the program, the
version without the sweep is obtained. Statement 80 gives the
probability to stop the series of runs. When sense line 4 is
high, the series is stopped, the output is printed and new input
falues may be entered (after statement 8). Statement

CALL TSCAL(L,1) causes the system (except integrators 310, 320
and 330, see logic diagram) to speed up with a factor ten. The
flow diagram of Figure 10 may clarify the digital program. Note:

Figure 10 does not include the sweep and the switches.

Figures 21 and 22 present the complete_analog and logic
circuit for the flexible tire model. The simplified versions
shown in parts in Figures 4, 5 and 9 clarify the course of

computations.
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o
%

/7 0B ? 2 20 DEC 71 11.663 HRS

// FOR NMOO1 20 DEC 71 11663 HRS
*0ONE WORD INTEGERS:
*IOCS(TYPEWRITER.KEYBOARD)

/‘

 %.IST SOURCE PROGRAM

Fk MOVING TREAD ELEMENT TIRE MODEL WITH RIGID CARACASS

DIMENSION ALFA(S)s SX(6)s IFD(4)s LFO(4)s ISO(3)s LSO(3),
2 LSI(3)s LFI(3) '

DATA ALFA/ Oes 263 4oy Besy 16e/

DATA SX/ Oes «0255 «059 «0759 els 25/
DATA 1S0/1153, 1155, 1157/

DATA IF0/11524+115441156+1158/

DATA 1S1/3216/

DATA IF1/3248/

CALL HYBON

CALL NOTST(14+3)

CALL INITA(Ls0)

CALL RUN(L)

CALL TSCAL(Ls1) :

10 CALL IC(L) ‘ -
CALL SENSW(O,L) -
WRITE(15,.1000) :
'READ(17,3000)1G0

- GO TO (20430+40),1IG0

20 V=65
DO 80 1I=1,5
ALF=3.1416%ALFA(I)/180C.
VX=V%COS(ALF) )
VCY=V%SIN(ALF)

DO 80 J=1,6
VCX=SX(J)%VX

VR=V X-VCX
LSO(1)=VCX*10000
LSO(2)=VCY*100004
LSO(3)=VR*1000«

CALL STBLK(ISDsLSOs3)
LFO(1)=VR*1000«
LFO(2)=VR*1000.
LFO(3)=VR:*1000«
LFO(4)=VR%1000.

CALL STBLK(IFO,LFO,4)

. CALL OP(L)

50 IF (ITEST(L+044)) 60,604+10

60 IF (ITEST(L+0s+1)) 50,50,70

70 CALL HOLD(L)

CALL SCANH(IFILLFI,3)
FX=LFI(1)/10000.
FY=LFI(2)/10000

XMZ=LFI(3)/10000.
CALL IC(L)
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CALL SENSW(0,L)
WRITE(15,2000)ALFA(I)sSX(J)sFXsFYsXMZ
WRITE(15,4000)
READ (1753000 )IPD
80 CONTINUE
GO TO 10
30 CALL SCANH(ISI,LSI,3)
V=LSI(1)/10000.
ALFAI=LSI(2)/100,
SXI=LSI(3)/10000,
ALF=3.1416%ALFAI/180
VX=V*COS(ALF)
VEY=V#STN (ALF)
VCX=SX I%VX
VR=VX=VCX
LSO(1)=VCX#10000.
LSO(2)=VCY*10000s
LSO(3)=VR%1000,
CALL STBLK(ISO,LS0,3)
LFO(1)=VR%1000.
LFO{2)=VR*1000 «
LFO(3)=VR*1000. S
LFO(4)=VR*1000 i i
CALL STBLK(IFOsLFOs4) L
. CALL OP(L)
90 “IF (TTEST(L+0s4)) 1005100410
100 IF (ITEST(L+0s1)) 90,990,110
110 CALL HOLD(L)
CALL SCANH(IFIsLFI,3)
FX=LFI(1)/10000
FY=LFI(2)/10000. -~
XMZ=LFI(3)/10000,
CALL 1C(L) . -
WRITE(154+2000)ALFAI sSXI+FXsFYysXMZ
GO TO 10 S
40 CALL IC(L)
“CALL LOAD(L)
CALL HOFF(Ls0)
CALL EXIT
1000 FORMAT (/'ENTER 1y 2 OR 3')
2000 FORMAT({/' ALPHA = ',F6e2s' SX = ",F6e2/' FX = V4FBelyt FY
2 FB8ebs! MZ = 1,F84¢5)
3000 FORMAT(I1)
4000 FORMAT L /W XX XKKXKAKAR )

END
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;s J0OB
4/ FOR HPOO1

? ? 18 OCT 71 114373 HRS
18 OCT 71 11373 HRS

¢ ONE WORD INTEGERS

+ 1OCS(TYPEWR
sL1ST SOURCE
#% HRPOO1 MOV

I TER,KEYBOARD)

PROGRAM .
ING TREAD ELEHENT TIRE MODEL WITH FLEXIBLE CARCASS

D IMEN
+LFO (6
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
N=20
NO=16
TOL=1
DX=1s
ALFT

,:

SION M(20),P(20)y - LSI(4)sI0U(6)sLSO(6)LFI(7),
)+ 100(3),LA0(3),IF0(6) :
IFD/11568,1159,11605116151162,11637

1IN/3216/

I0U/115341155,1152+115441156,51157/
100/1154.1165.1166/

IF1/3280/

1Q1/3250/

IXK/1166/

IVR/1167/

Oo B .
/N :

=1le

=e7

Mi=1
M2=0
8 CALL
WRITE
1000 FORMA

‘ READ(
2000 FORMA
GO TO

9 CALL
CALL

CALL

CALL

CALL

CALL

LL=0

. DO 40
40 LFO(J
ALPHA

DO 50

50 M(J)
CALL
NOo= 1
LXK=5
=65
v=LSI
ALF=23
SX=LsS
GAMMA

IC(L)

(15,1000)

T(/'ENTER 1-TO EXECUTE'./"ENTER 2 TO EXIT!)
1752000) 1GO

T(11)

(95300),1G0

HYBON

NOTST(1,y3)
INITA(L,0)

RUN{L)

TSCAL(Ls1)

SCANH{ TIN ,LSIy4)

J=146
)=0 -
=LS1(2)/7100.
J=1,20

=0 : .

STBLK (IFO0,LF0,6)
6e%(1e~ALPHA/20 ¢ )% ( le—=ALPHA/206)%(1e~ALPHA/204)
000 '

(1)/10000.
¢ 1416%ALPHA/180.
1(3)710000.

=LSI(4)/100.

VX=VxCOS(ALF)
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VEY=VXSIN(ALF)
VCX=SX#%VX
VR=VX=VYCX
VRAT=VR/ALFT
LSO(1)=VCX%10000s
LSO{2)=VCY*10000
Cs0(3)= AG*GAMVA#100009*301416/180.'
LSO(4)=VR*%10000
LSO(5)=VRAT*10000 s
LSO(6)=VRAT* 1000
LVR=VRAT*10000.

LFI(5)=0 “
CALL STBLK( I0U +LS0:6)
CALL STINH(IXKsLXK)
CALL STINH (IVR,LVR)
M(N)=0
CALL READH(IQI;IQK)
CALL IC(L)
S K=1
*  CALL SETWD (0,Mi)
KL=1
GO TO 210
80 IF(ITEST(Ls,0+4)) 85,85,800 _
85 IF (ITEST(Ls0,1)) 90590,100 -
90, IF (ITEST(Ls0,2)) 80,80,200 :
100 CALL HOLD(L)

FY=LFI(5) =
CALL SCANH (IFILLFI7) g s
LFO(1)=LFI(1) ' - ’
LFO(2)=LFI(2)

LFO(3)=LFI(3)

TEMP=LFI(4) P

LFO(4)=VRATXTEMP coT

LFO(S)=LFI(5) ‘ S . omit when moe
TEMP=LFI(6) S . e sweep desired

LFO(6)=VRATXTEMP

NN=NO 2VR /VX+5 +xcod—4ooo

IF (NN=-K) 101,101,110

101[VC1=LFB(1)/10000.

' VCO=LFO(2)/10000
VC2=LF0(3)/10000.
FX=LFO(4)/1000
FY=LFO(5)/10000
XMZ=LFO(6)/10000
FZ=LFT1(7)%VRAT/1000

. IF(ALPHA--1.) 999,900,900
900 IF(LL-0) 901,901,906
901 - IF(ALPHA=20.) 902:9064906

902 ALPHA=ALPHA+3.
GO TO 2500

906 ALPHA=ALPHA-3.01
LL=1
GO TGO 2500

999 GO TO &8

IIOlCALL STBLK (IrD»LF096)

XK=0 o5
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K=K+1
IF (KL)120,119,120
119 CALL SETWD. (0sM1)

120 IF (KL-4)122,121,121
121 CALL SETWD (0yM2)

KL=0

GO TO 124
122 L1=NN=-1

IF (L1~-K)121,121,123
123 KL=KL+1
124 M(N)=0 .

CALL READH (1QI,IQK) . =

CALL IC (L)
GO TO 210
200 CALL HOLD (L)
CALL READH.(1QI,1QK)
210 LG=2%(M(N=1)=M{(N))
. LH=M(N)
DO 220 J=1,19
KK=21=J
220 M(KK)=M(KK-1)
M(1)=1QK
XK=XK-DX
LXK=10000 ¢ %XK . .
LQO(1)=LG . g
LQO(2)=LH . ’ o
LQO(3)=L XK . : »
CALL STBLK (I1IQ0,LQO,3)
CALL SENSW (0yMM)
CALL OP (L)
GO TO 80

-

800 WRITE(15,103)V, ALPHAoSX,GAMMAoKyFZ

DO 102 J=1,20
102 P(J)=M(J)/10000,

103 FCRMAT(/'V=1,F642y" ALPHA=',F6029' SX=14
+154Y FZ=1'4FBe4) ’
105 FORMAT( /'Y FX=1,F8e49" FY=V1,F8e4y

WRITE(1S9105)FXyFY s XMZ.
GO TO 8
300 CALL IC (L)
CALL LOAD (L)
CALL HOFF (L +0)

‘CALL EXIT :
END

VoXMZ=

sF6e2s!

"FSoS)

GAM=1,F 642!

K=t
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APPENDIX IV
FUNCTIONS AND PARAMETERS

The vertical pfessure distribution, Ez,'friction coefficient
functions, and the Green functions, G, which have been used in
the analysis are shown in Figures 23, 24, and 25. The parameter

and potentiometer values are listed in Table 1.
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Figure 23. Pressure distribution
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Figure 24. Coefficient of friction
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Figure 25. Green functions

68



TABLE 1

PARANETER VALUES
FLEXIBLE RIGID
CARCASS CARCASS
Ll i ) '
NON-DIMENSIONAL] ALL
COEFFICIENT | POT. NO. |CASES|| v, |y \v | [__ VS |REMARKS
v 004
Sy 006
/100 007
013 1.0
014 1.0
A u /10 015 0.0353 0.42 .|0.0353
/100 017
020 1.0
u /10 022 0.1
024 1.0
B 1 /10 025 0.0 |o0.5 [o0.0
026 0.1
027 1 0.1 }o.1 [o.2
| 220 0.01
1/(10 m arp) 222 1.0 | 1.0 |o0.5% 1/(20 m o)
1/(2 ag) 223 0.5
X, /50 | 226 0.8 |o0.8 |1.0* | k., /25
/
10 227 0.3 | 0.6 |0.3% c. /5
cy/ | y/
230 0.495
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TABLE 1 (Continued)

PARAMETER VALUES
FLEXIBLE RIGID
CARCASS CARCASS
NON-DIMENSIONAL ALL H U
COEFFICIENT POT. NO.| CASES Vg V| |__V,|REMARKS
1/(10 m ar) 232 1.0 |
1/(5 ar) 233 0.2
k_/20 234 1.0
X .
c, /10 235 0.2 0.6 0.2
202 | 0.01 -
244 1.0 | -
245 | 1.0 -
6 (x,X) 246 0.128 | 0.05% | - More stable
108 /K, 247 0.227 - -
253 0.05
254 1.0
257 0.5
272 0.1 -
316 1.0 -
322 0.1 -
324 0.1 -
327 1.0 -
332 0.1 -
333 0.1 -
| 346 0.8
347 0.02 0.02 0.04




TABLE 1 (Continued)

PARAMETER VALUES

FLEXIBLE RIGID
_ CARCASS CARCASS
NON-DIMENSIONAL ALL P H ﬁ\, H
COEFFICIENT POT. NO. ! CASES v, V. V | REMARKS
-8 /X - - .04
B /Ky By/ky 350 0.0
(3 + 1/0)/4 354 0.875 -
355 0.25 -
356 1.0 | -
374 0.5 -

(1 + 1/0)/2 375 0.75 1 -




