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Abstract

Mechanistic modeling in ecological studies is always an intriguing but
challenging topic. On one hand, mechanistic models allow quantitative
analysis, provide better insight of the dynamic system and enable infer-
ence and prediction. On the other hand, however, it’s constrained by the
nonlinear, non-Gaussian feature of most of the ecological data. Panel data
is a common data type used in ecology. It contains multi-dimensional data
measured over time. Analyzing panel data incurs additional challenges
because of its high dimensional feature. In this study, we aim to prove the
viability and advance of mechanistic modeling on ecological panel data
with panelPOMP framework and the panel iterated filtering maximization
algorithm (PIF). We fit logistic growth model and predator-prey model
on Daphnia panel data collected by Searle et al. (2016) with 10 inde-
pendent time series, each including 10 data points. We perform PIF as
likelihood maximization and parameter estimation method and compare
two models using Akaike information criterion (AIC). The result shows
that predator-prey model has better AIC, which indicates prey of Daphnia
has a significant influence on Daphnia population dynamics. With this
example, we illustrate how a panelPOMP model overcomes the nonlinear-
ity and high dimensional structure in panel data analysis, highlight its
explanatory power on the latent process with no associated observable
data and emphasize quantitative insight it grants.
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1 Introduction
Mechanistic models, also known as hierarchical or multilevel explanatory models,
involves multiple biological organizations, where one is observable while other
organizations are unobservable. With the known process, they explain the
behavior of latent dynamics (Duarte et al., 2003). Mechanistic modeling in
ecology aims at describing the evolvement and relationship within a dynamic
system with mathematical models. As a quantitative tool, it allows scientists
to compare the explanatory powers of different theoretical models and estimate
the magnitude of parameters of interest. Mechanistic modeling has a long
history in scientific studies and has been widely used in social sciences, industrial
engineering, and physics. Nowadays, it has become more efficient with the
development of computing power. However, because of the non-stationary,
nonlinear and stochastic features of ecological data, traditional time series analysis
has limited explanatory power over it. Even though scientists have theoretical
models for their data, how to bridge models to data remains challenging. As
a result, mechanistic modeling only plays a limited role in ecological research
(Duarte et al., 2003).

Panel data or longitudinal data refers to a collection of independent outcomes
under certain treatment or exposures at multiple times points. As a common
data type in ecology, scientists collect panel data as a way to minimize the effect
of randomness, measure the change of individual unit and control the outside
effect. The analysis of panel data not only involves the nonlinear, non-Gaussian
properties of ecological data but also a high-dimensional structure. All the
features weaken the explanatory power of traditional time series analysis as
well as some Monte Carlo inference approaches. In this study, we aim to apply
mechanistic models on ecological panel data within panelPOMP framework and
use panel iterated filtering (PIF) as maximization algorithm (Bretó et al., 2018).
panelPOMP is an adaptation of partially observable Markov Process model on
panel data by constructing a POMP model on each unit. panelPOMP allows
testing whether each parameter in the chosen mathematical model is shared
or specific across the panel by calculating the maximum log likelihood of all
possible combinations with panel iterated filtering algorithm. Panel iterated
filtering derives from iterated filtering (Ionides et al., 2006) on single nonlinear
stochastic time series data. Besides filtering within each time series, it also cycles
through the panel to reach the highest likelihood, which both allows to apply
mechanistic models on panel data and reserve its high dimensional feature.

To better illustrate the advance of panelPOMP model, we constructed two
traditional ecological models: logistic growth model and predator-prey model
in panelPOMP framework and fitted them on Daphnia panel data provided
by Searle et al (2016). In their study, “Population Density, Not Host Com-
petence, Drives Patterns of Disease in an Invaded Community”, the authors
explored how host densities influenced the disease pattern by studying how one
invasiveDaphnia species affects one native Daphnia and its parasite. Their lab
experiment produced a typical ecological panel data, including multiple inde-
pendent replications under the same treatment, each of which contains a short
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nonlinear, non-stationary time series. Traditional mechanistic models fail to
directly explain these data. With the help of the panelPomp framework, we can
combine theoretical models with empirical data and extract the full information
contained in each time series. After fitting both models on Daphnia panel data,
we calculated their maximum log-likelihood and estimated the optimal param-
eter swarm via iterated filtering algorithm. Results showed the predator-prey
model has better performance, which indicates Daphnia’s prey, whose population
density is unobservable in data, also influences daphnia population dynamics. In
section 2.1 we will describe the Daphnia dataset in detail; in section 2.2–2.4 we
will explain the panelPOMP model and the model setup. Section 2.5 will explain
the inference methodology of panelPOMP: panel iterated filtering algorithm in
detail. In section 3, we will present and explain the result of this example. The
last section will include the significance of panelPOMP method in mechanistic
modeling and some future improvement for this example.

With this example, we hope to compare the explanatory power of two classic
ecological models on the Daphniapanel data, estimate the key parameters that
help understand the evolution of the ecological system, demonstrate the viability
and advance of mechanistic models in the ecological study and more importantly,
how panelPOMP models and PIF help overcome the internal difficulties of
ecological model fitting.

2 Methodology

2.1 Data description
Searle et al. (2016) first performed individual-level experiment to quantify the
host competence of a native and an invasive host species. Then they designed
a mesocosm experiment to capture community-level species interaction and
used a mathematical model to explain the role population density played in
disease patterns. They chose Daphnia dentifera as native species, Daphnia
lumholtzi as invasive species and fungus Metschnikowia bicuspidate as parasites
of this community. The experiment was conducted in indoor mesocosm, with
6 different treatments: native species only with and without parasite, invasive
species only with and without parasite and both species combination with and
without parasites. 45 Daphnia were added into 15L COMBO media at initiation
in all four single-species treatments. 35 native and 10 invasive species were
added in mix-species treatments. Each treatment was replicated 10 times. This
experiment lasted for 52 days and sampled every five days starting seventh days
after experiment started. On each sampling day, 1L out of total 15L solution
is removed as sample for each of the 10 replicates after vigorously stirring and
replaced by 1L of fresh COMBO media. Species, infection status, age, and sex
were recorded for each individual in the removed sample. Temperature in the lab
was kept constant and media solution in different replicates remains the same
over time.

In this study, we focused only on the native species, Daphnia dentifera, when

3



the parasite is absent. This panel data contains 10 independent time series of
dentifera adult population density, all collected at 10 same time points (figure
1). These data allow us to compare mechanistic models and test the impact of
their food, algae, on Daphnia population dynamics.

2.2 The panelPOMP model
A panel data with u independent time series has u units denoted as 1, 2, . . . , U ,
where each unit has n measurement collected at times (t1, t2, . . . , tNu

). These
measurement y∗u,1, . . . , y∗u,Nu

is generated by a stochastic observable process
Yu,1, . . . , yu,Nu

. PanelPOMP is an adaptation of partially observable Markov
process (POMP) (Bretó et al., 2018) on panel data analysis, involving construct-
ing POMP model on each unit and find the maximum likelihood with panel
iterated filtering algorithm. For each time series unit, we built a process model
and a measurement model as the skeleton of POMP framework(King et al.,
2016). Process model describes the real population dynamics with the one-step
transition densityfXn|Xn−1

(xn|xn−1; θ) and measurement model explains how
the latent real population density generates the observable time series data with
the measurement density fYn|Xn

(yn|xn; θ). In summary, the joint density will
be the product of the process model and the measurement model at each state
times the initial density fX0

(x0; θ). In this study, we want to fit and compare
two traditional ecological models, a logistic growth model and a predator-prey
model under panelPOMP framework.

2.3 Process model
Process models show how the states of the latent process are updated and how
the dynamic systems evolve. The process model of logistic growth model is
represented by the following stochastic equation:

dS

dt
= (r + noiG)S(1− S

K
)− δS

This model contains one state variable Daphnia population density(S) and 3
parameters: r, K and σG. r represents the growth rate of Daphnia. K is the
carrying capacity of this ecosystem in terms of density. δ denotes the sampling
rate in the experiment. Out of dimension reduction concern, we fixed δ as a
constant equal 0.013 as in Searles et al. (2016). noiG is a noise term added
to population growth to allows for random variation in the dynamic. In this
case, we assure noiG follows a Normal distribution with 0 mean and a standard
deviation of σG.

noiG ∼ N(0, σG)

This classic ecological model is designed to capture the change of growth speed
of Daphnia population in a relatively close lab environment, where maximum
capacity restricts the highest possible density. As population density(S) approach
K the growth speed of population size keeps decreasing and reaches 0 when S
equal to K. The population will shrink if S exceeds K.
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The alternative model aims at describing the relationship between algae
and Daphnia population density with the predator-prey model. This model has
two state variables: algae density(F ) and Daphnia density(S), where Daphnia
population generated an observable measurement but algae didn’t. The stochastic
equations are as follows:

dF

dt
= (α+ noiB)F (1− F

kf
)− βSF

dS

dt
= (θ + noiG)SF − γS − δS

This model includes 7 parameters: α, kf , β, γ, θ, σB, and σG. Parameter
α denotes the growth rate of algae. kf is the carrying capacity of algae. β
represents the intake rate of algae by Daphnia, θ is the growth rate of Daphnia
given algae and γ is the Daphnia’s death rate. Same as the logistic model, we
treat δ as a constant equal to 0.013 to keep the simplicity of the model. noiB
and noiG are noise terms added to algae (F ) growth and Daphnia (S) growth
to induce random variation to this system. Both of them are generated by a
normal distribution with 0 mean,

noiB ∼ N(0, σB)

noiG ∼ N(0, σG)

This model allows us to test the impact of algae on Daphnia population dynamics.
Since no other factors such as invasive species, parasite or low temperature can
affect this treatment, if the alternative explains the data well, we can conclude
that algae play an important role in Daphnia population dynamics.

2.4 Measurement model and initiation of dynamic
The measurement model demonstrates the process that latent real population
density generates observable data. In this case, it involves drawing samples from
the Daphnia population distribution. According to Searles et al. (2016) , on
each sampling day, 1L of sample is removed from 15L solution after stirring and
the sampling rate is 0.013. Since the number of Daphnia and algae is restricted
to be positive integers, we treated the process as binomial distributions with
success probability (p) equal to sampling rate (δ) for both the logistic growth and
the predator-prey panelPOMP models. In the logistic model, the measurement
model is:

F ∼ binomial(n = nearbyint(1/δ ∗ S), p = δ)

Where S is the real population density and nearbyint(1/δ ∗ S) is the approxi-
mate real quantity of Daphnia adult in 15L media. F denotes the observable
sample generated from latent population density. Since algae have no observable
sample from the data, in predator-prey pomp object, we only constructed the
measurement model for Daphnia population, which is the same as that of the
logistic model.

F ∼ binomial(n = nearbyint(1/δ ∗ S), p = δ)
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2.5 Panel iterated filtering (PIF)
Panel iterated filtering (PIF) derives from IF2 algorithm for POMP likelihood
maximization (Ionides et al., 2015). PIF treats each unit in a panelPOMP
model as a time-inhomogeneous POMP model. Given a POMP skeleton and
the initial guess of parameters, the algorithm cycles through the panel from the
first unit to the last in each iteration to reach the maximum likelihood. That
means the initial parameter swarm of unit u is simulated with the best parameter
swarm of unit u− 1. Since PIF allows every parameter either share the same
value across the panel or achieve different value in each unit, each model has 2n
different combination during parameter estimation, where n denotes the number
of parameters. To estimate the best parameter values, we tested all possible
situations. We performed 10 replications of PIF with 250 iterations and 10,000
particles for each situation, chose the best log likelihood in those replications
and recorded its optimal parameter swarm for that situation. All the code
can be found in online repository https://bitbucket.org/xiaotongyang/daphnia-
panelpomp.

3 Results
Allowing parameters to be shared or specific incur different dimension of each
model. Since the panel has 10 units, one more shared parameter increases
the dimension of the model by 1 while one specific parameter incurs 10 more
dimensions. We faced the trade-off between goodness of fit and simplicity during
model selection. Therefore, we used Akaike information criterion (AIC) to
compare models with adjustment of dimension. We estimated parameters and
maximum log-likelihood with panel iterated filtering and calculated AIC for both
models (Table1&2). As shown in tables, the predator-prey model with α, kf
specific and all other parameters shared yield the best AIC 2263.51. The logistic
growth model with k specific and all other shared has the smallest AIC 2543.04.
We can safely conclude predator-prey model has better performance than logistic
growth model on fitting Daphnia panel data: AIC of the former is 279.53 units
better than that of the later. This result suggests latent process algae does affect
the population dynamic of Daphnia. The fluctuation of Daphnia population
density is mainly caused by the interaction between algae and Daphnia.

Parameter estimates and confidence intervals are shown in table 3. α and
kf vary across the panel while other parameters are constant across units . α
and kf are two main constraints of algae population dynamics, where α describe
its growth rate and kf is the maximum capacity. Their variation in different
units is probably caused by the different density of algae’s food: higher α and kf
indicates one unit has more adequate food for algae than others. Level of algae’s
food is difficult to control in practice. By affecting the density of algae, they
indirectly change the performance of Daphnia, resulting in different dynamics
across the panel.

For the best model fit, we plot 20 simulations on each time series in this
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panel data using the parameters estimated by PIF (Figure 2). From the figure,
all but three simulations capture the data well.

4 Discussion
In their study, Seales et al. (2016) described Daphnia population dynamic
without parasite using logistic growth model. However, our result indicates that
algae at least partially influence the density of Daphnia by affecting its growth
rate. This suggests the dynamic of algae is responsible for the fluctuation of
Daphnia density even when the parasite is incurred in the system. With more
time, we could apply the predator-prey model to single species with parasite
treatments and mixed species treatments to test how algae and parasite affect
Daphnia.

One concern about the model fitting is that simulations on three units in the
panel failed to completely capture the data: unit 5, unit 7, and unit 8 (figure
2). Their time series all contain an extreme peak. This phenomenon might
results in the measurement error during sampling. Since samples are collected
every 5 days and each time series only has 10 data points, with one or two
outliers, the trend of the whole time series could be changed. Another possible
explanation is the algae density also contributes to the death rate of Daphnia. In
the predator-prey model, the prey affects the predator only through the growth
rate θ and death rate γ of predator is independent of algae dynamics. When
the prey density is low, the growth speed of predator decreases or even turns
negative but predator’s death rate won’t be affected by starvation. In this panel,
all three units involve sharp drops in Daphnia density, but the change in growth
rate itself failed to perform the decrease fast enough. In this case, the reduction
can be caused by a combination of lower growth rate and higher death rate,
which exceeds the explanatory power of the predator-prey model. Limited by
time, the modification of death term in this model remains as future work.

With Daphnia panel data, we demonstrated how a panelPOMP model
allows mechanistic modeling in ecological studies. R package panelPomp has
been developed based on panelPOMP model and PIF algorithm (Bretó et al.,
2018). Compared with traditional qualitative analysis, panelPomp package
provides us access to latent state variables such as algae. We can test different
models with or without their influence on the dynamic system by comparing
maximum log likelihoods calculated with PIF. The quantitative approach also
enables parameter estimation and hypothesis testing. With the knowledge of the
direction and magnitude of each parameter of interest, scientists will have better
insight on the contribution of each factor on the whole system and predict its
evolution in the future state. The package also makes simulation possible, which
works as another powerful tool for scientists to test the goodness-of-fit of their
chosen models and parameters.In summary, gathering ecological data can be
difficult and costly, mechanistic modeling under a panelPOMP framework digs
more information from limited data, which can largely increase the efficiency of
ecological experiments.
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Appendix

Figure 1: Adult Daphnia population density time series plot in native species
only without parasite treatment. There are 10 replications in this treatment,
denoted as A to J. Their plots are arranged from left to right, top to bottom.

9



Figure 2: Simulations of the predator-prey model with α and kf specific and the
rest of parameters shared on each unit of Daphnia panel data. From left to right,
top to bottom are unit 1, unit 2, . . . unit 10. In each plot, y-axis is Daphnia
adult density in each unit and x-axis is time in days. The blue line represents
data and red lines denotes 20 simulations with parameter swarm yield by PIF.
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Specific parameters dimension maximum log-likelihood AIC

α+ kf 25 -1106.76 2263.51
α+ β + kf 34 -1103.92 2275.85

α 16 -1122.15 2276.30
β + kf 25 -1114.36 2278.73

α+ β + γ + kf 43 -1100.04 2286.07
α+ kf + γ 34 -1112.00 2292.00

α+ β + γ + θ + kf 52 -1094.90 2293.80
θ + kf 25 -1131.60 2313.19
α+ θ 25 -1138.08 2326.16

all specific 70 -1099.39 2338.78
β + θ 25 -1145.69 2341.40
kf 16 -1157.30 2346.60

β + σB 25 -1149.37 2348.74
kf + σG 25 -1157.37 2364.73
θ + σG 25 -1157.51 2365.02
γ 16 -1166.73 2365.46
β 16 -1167.40 2366.80

γ + kf 25 -1159.05 2368.10
kf + σB 25 -1159.83 2369.66
α+ β 25 -1165.81 2381.61
θ 16 -1176.68 2385.35

β + σG 25 -1176.02 2402.04
γ + σB 25 -1181.15 2412.29
α+ σG 25 -1182.47 2414.94
β + γ 25 -1189.78 2429.57
θ + σB 25 -1212.12 2474.24
γ + θ 25 -1222.61 2495.22
σB 16 -1242.07 2516.14
α+ γ 25 -1234.12 2518.24
σB + σG 25 -1236.74 2523.47
σG 16 -1249.57 2531.15

γ + σG 25 -1251.52 2553.04
all shared 7 -1349.28 2712.56
α+ σB 25 -1334.27 2718.55

Table 1: Predator-prey models with different choices of parameters, dimensions,
maximum log-likelihood and AIC. In each model, parameters listed in "specific
parameters" are specific for each unit and the rest parameters are shared across
the panel. The table is arranged by from smallest (best) AIC to largest (worst)
AIC. From the table, predator-prey model with α and kf specific and the rest of
parameters shared has the best performance.
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Specific parameters dimension maximum log-likelihood AIC

K 12 -1259.52 2543.04
K + σG 21 -1257.07 2556.13
all shared 3 -1328.33 2662.67

σG 12 -1366.98 2757.97
r +K 21 -2011.87 4065.75
r + σG 21 -2112.44 4266.87
r 12 -2139.59 4303.19

Table 2: Logistic growth models with different choices of parameters, dimensions,
maximum log-likelihood and AIC. In each model, parameters listed in "specific
parameters" are specific for each unit and the rest parameters are shared across
the panel. The table is arranged by from smallest (best) AIC to largest (worst)
AIC. From the table, predator-prey model with K specific and the rest of
parameters shared has the best performance.

unit α kf β γ θ σB σG

A 0.571 256.575 0.00388 0.0254 0.000799 0.00931 1.112e-05
B 0.758 269.797 0.00388 0.0254 0.000799 0.00931 1.112e-05
C 0.935 321.890 0.00388 0.0254 0.000799 0.00931 1.112e-05
D 0.640 273.102 0.00388 0.0254 0.000799 0.00931 1.112e-05
E 0.0158 28.650 0.00388 0.0254 0.000799 0.00931 1.112e-05
F 0.874 301.145 0.00388 0.0254 0.000799 0.00931 1.112e-05
G 0.729 287.445 0.00388 0.0254 0.000799 0.00931 1.112e-05
H 0.316 176.087 0.00388 0.0254 0.000799 0.00931 1.112e-05
I 1.017 344.067 0.00388 0.0254 0.000799 0.00931 1.112e-05
J 1.216 388.110 0.00388 0.0254 0.000799 0.00931 1.112e-05

Table 3: Parameter swarm that yields best AIC among predator-prey models,
where α and kf are specific in each unit and the rest parameters are shared.
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