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Abstract

In this report, we are interested in predicting the activation energy of a reaction based

on information about the reactants using machine learning techniques. Feature engineering

is always a key part of algorithm design in machine learning. We focused on structural

aspects of molecules that can be described by common mathematical structures such as

strings and graphs. The flexibility of kernel methods allowed us to make predictions based

on molecular similarities with a well defined kernel function. We implemented a pipeline

where several kernels were applied to our chemistry datasets and the prediction accuracy

was evaluated for each kernel.
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1 Introduction

Learning to predict quantities associated with chemical reactions including information about

final products, intermediate products, side reactions and other properties of the chemical system

is an important topic in computational chemistry. Among this variety of chemical quantities

to be predicted, the activation energy of a reaction is the one that closely relates reactants to

possible reactions since it measures the potential energy barrier between reactants and prod-

ucts and determines reaction rates via the well-known Arrhenius’ equation. Our prediction

of activation energy is based on the molecular structure of reactants. One may assume that

if the reactants of unknown reactions are similar to those of some known reactions, then the

products will also be similar. This idea is an extension of the similarity principle that structural

similarity of molecules results in similar activities and properties. The similarity principle has

been widely used in bioinformatics and chemoinformatics problems such as predicting protein

function (Borgwardt et al., 2005) and evaluating boiling point of alkanes (Gaüzere et al., 2012).

1.1 Kernel methods

Kernel methods are a powerful class of machine learning methods that can turn out to be very

useful in computational chemistry. Applying kernel methods to a computational chemistry

problem consists of two steps: 1) find a kernel function for measuring the structural similarity

between molecules; 2) apply kernelized algorithms to solve specific tasks. The core concept

is that the kernel function performs a mapping into an embedding feature space where linear

methods such as kernel ridge regression can be applied directly. A kernel k corresponds to a
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dot product in the feature space H via a map Φ, that is, we have a function

k : X × X → R, (x, x′) 7→ k(x, x′)

satisfying that for x, x′ ∈ X ,

k(x, x′) = 〈Φ(x),Φ(x′)〉.

Kernel methods allow flexible construction of algorithms in the feature space. What makes

a kernel function useful in practice is that we can compute it even when the mapping function Φ

is not given explicitly. The computation of inner product from the original space via the kernel

function is designed to be computationally efficient, making the method applicable. In order to

apply kernel methods, we usually construct the Gram matrix K first, given an adequate kernel

k and inputs x1, x2, ...xn. The Gram matrix is a n× n matrix with elements defined as

Kij := k(xi, xj).

The Gram matrix provides useful geometric information about feature space and is usually

the sole input required for many available classification or clustering methods.

1.2 Kernels for molecules

The choice of a representation of molecular structure is a critical problem in measurement of

similarities. In practice, the molecules can be converted to a structured data structure such as

strings, trees or graphs. Various kernel methods have already been developed based on these

representations. SMILES is a standard linear notation method to encode molecules with specific

characters representing atoms and bonds symbols and a few grammatical rules. Most string

kernels construct a feature space indexed by fixed-length tuples of characters. For example,

the spectrum kernel (Leslie et al., 2001) counts the number of occurrences of each potential

substring (without gaps), mismatch kernel (Leslie et al., 2004) counts the number of occurrences

of each substring up to given mismatches, and subsequence string kernel (Lodhi et al., 2002)

counts the number of occurrences of each subsequence that allows gaps, with a weight decaying

exponentially with the number of gaps.

In addition to a linear text representation, the structure of molecules can be naturally

encoded by a labeled graph G = (V, E , µ, ν), where V is a set of vertices representing atoms and

E is a set of edges representing bonds. Atom types (e.g., carbon, nitrogen, oxygen, etc.) and

bond types (single, double, triple or aromatic) correspond to vertex labels µ and edge labels ν,

respectively. In recent years, extensive research has been conducted to identify representations
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of molecular graphs for similarity comparison or information retrieval. Those representations

include vectors of descriptions (Cherqaoui and Villemin, 1994), adjacency matrix (Caelli and

Kosinov, 2004), edit distance (Neuhaus and Bunke, 2006) and a set of features from graphs.

The last constitutes a major graph kernel family where walks, paths, subtrees (Ramon and

Gärtner, 2003), cyclic patterns (Horváth et al., 2004) or more general substructures form the

basis for constructing kernel functions. In recent years, data representations that derived from

3D geometrics were introduced including Coulomb matrices (Rupp et al., 2012) and atomic

distances (Schütt et al., 2017).

1.3 Preview

In our analyses, string kernels such as spectrum kernel, mismatch kernel and subsequence string

kernel, and graph kernels such as marginalized graph kernel and subtree kernel were used to

compute the similarities between molecular structures of reactants. Another group of encoding

is fingerprints including daylight fingerprints based on linear paths, Morgan fingerprints based

on circular paths and neural graph fingerprints as an extension of Morgan fingerprints. The

first two fingerprints were paired with Tanimoto kernel and the last one was used along with

neural networks. Kernel ridge regression was then applied to the regression problem where

the target was the activation energy of each reaction. All the methods were evaluated and

compared based on the accuracy of the prediction.

2 Methods

2.1 Data

The chemical data is prepared by our colloborators (Prof. Zimmerman’s lab) in University of

Michigan’s chemistry department and consists of five groups of reactants (names cl, da, ke, ene,

ene6) and the corresponding activation energies. Each group contain 1518 reactions. All the

reactions of five groups are similar in that they have only one reactant (reacting with itself).

Within each group, all the reactants share the same core fragment that involves in the potential

reactions. The additional atoms irrelevant to the reaction vary among each molecule of the same

group, but stay the same across the groups. The original datasets are in xyz format, which
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is a typical chemical file format that specifies molecular geometry. Graphical features such as

paths and walks can be derived from the format. The xyz format can easily be converted to

other formats such as smi and sdf.

2.2 SMILES

SMILES (Simplified Molecular Input Line Entry System) is a chemical notation system designed

for modern chemical information processing. The system represents the molecular structure

using a linear notation that comprises a series of characters, which is essentially the two-

dimensional valence-oriented picture chemists draw to describe a molecule (Weininger, 1988).

SMILES describing only the labeled molecular graph (i.e. atoms and bonds, but no chiral or

isotopic information). It is similar to natural language and has been a standard language for

chemical representation in academia and industry.

For example, the SMILES notation for isobutyric acid is CC(C)C(=O)O and for phenter-

mine is CC(C)(N)CC1=CC=CC=C1

Figure 1: The structure of isobutyric acid

Figure 2: The structure of phentermine

2.3 Fingerprints

2.3.1 Daylight Fingerprints

Fingerprints have been widely used to encode the structure of a molecule. The most common

type of fingerprints is generated by enumerating all labeled paths of the molecule graph up to
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a given length and then hashing each of the linear fragments into a bit-vector of a fixed size.

The binary bits in the vector represent the presence or absence of particular substructures in

the molecule.

Figure 3: Graphical abstraction of Daylight fingerprints
(Cereto-Massagué et al., 2015)

2.3.2 Morgan Fingerprints

There exist several generalized graph-based fingerprints that can be used as alternative choices

for structural comparisons. The ECFP categories (also referred to as circular fingerprints

or Morgan fingerprints) are the most popular ones. The main difference between Morgan

fingerprints and traditional fingerprints is that the former are generated by enumerating all

circular instead of linear fragments grown radially from each heavy atom of the molecule up to

the given radius (Rogers and Hahn, 2010). Each circular substructure gets an integer identifier

after hashing to indicate its presence. Circular fingerprints have been used successfully in the

field of drug discovery and virtual screening.

Tanimoto kernel (Ralaivola et al., 2005) is used to extract similarity from both Daylight fin-

gerprints and Morgan fingerprints. The two fingerprints are binary vectors, and Jaccard/Tanimoto

coefficients are well suited for similarity measuring.

2.3.3 Neural Graph Fingerprints

A recent work introduced the convolutional neural network (Duvenaud et al., 2015) that op-

erates directly on molecular graphs and returns fingerprints vectors called neural graph finger-

prints. Neural graph fingerprints are similar to circular fingerprints since they both first apply
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Figure 4: Graphical abstraction of Morgan fingerprints
(Rogers and Hahn, 2010)

local filters to each atom and iteratively to its neighborhood and a global function collects and

decodes the information from each substructure in the molecule in the end. Unlike circular

fingerprints that rely on hash operation to assign the indentifier for a neighborhood, neural

graph fingerprints use a single layer of a neural network aiming to make molecular structures

that have trivial differences get similar activations. Another modification is that neural graph

fingerprints replace the indexing operation with a softmax operation to convert all the substruc-

tures’ feature vectors to the final fingerprint. Instead of a binary vector, we get a real-valued

vector with neural graph fingerprints, hence the Tanimoto kernel is replaced with a neural net

for predictive tasks. The new fingerprints showed its advantage over other fingerprints in terms

of the interpretability and predictive performance.

2.4 Kernel ridge regression

Given a set of inputs (xi, yi), we have

X =



−xT1−

−xT2−
...

−xTn−


y =



y1

y2
...

yn


Recall that in ridge regression, the estimate of β can be obtained by minimizing the following

function:

β̂MAP = argminβ
1
2 (y −Xβ)T (y −Xβ) + λβTβ.
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If we take the derivative with respect to β and set it to zero, we get:

β̂MAP = (XTX + λI)−1XT y.

Note that XTX + λI is always invertible since λ is specified to be positive. In order to

kernelize it, we start from:

(XTX + λI)β̂MAP = XT y.

With some simple computation, we get:

β̂MAP , XTα,

where α = λ−1(y −Xβ̂MAP ). After replacing β̂MAP into the definition of α, we have

α = (K + λI)−1y.

Hence we can apply the kernel trick to avoid directly using the mapping of X in the feature

space. In order to make predictions from new dataset Xnew (assuming that it consists of row

vectors), we have

ynew = Xnewβ̂ = XnewX
T (K + λI)−1y.

Only inner products of x are left in the final equation so that only gram matrix is required to

apply kernel ridge regression. The input of kernel ridge regression in our analysis is computed

based on similarities between molecules using three different graph kernels.

3 Results

3.1 Setup

Kernel ridge regression was tuned by 5-fold cross validation to optimize λ. For each kernel

method, there exist tunable arguments or other factors that affect the results. For instance,

the size of bit-vector, the maximal length of path or the radius of the node, and even the

hashing functions all affect the Tanimoto kernel. The parameters were set based on convention

and some experiments so as to ensure that the final result is near optimal. The arguments of

all methods except neural graph fingerprints were set to be the same for five datasets after we

found that the optimal value of one group works well in other datasets as well. For neural graph

fingerprints, we tuned the neural parameters while training. The meaning of each parameter

will be explained in the user manual section.
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kernel types arguments
spectrum length(k) = 4
mismatch length(k) = 5, mismatch(m) = 1
subsequence length(p) = 4, lambda = 0.8
marginalized stopP = 0.1
subtree depthMax = 3, lambda = 0.1
Daylight fps maxPath = 5, vectorSize = 2048
Morgan fps radius = 2

Table 1: Argument Values

3.2 Activation energy prediction

cl da ke ene ene6
spectrum 86.92% 68.42% 90.29% 68.41% 48.63%
mismatch 77.83% 58.72% 88.09% 70.71% 70.38%
subsequence 82.67% 73.16% 80.28% 77.17% 63.80%
marginalized 85.31% 76.25% 77.66% 76.25% 47.68%
subtree 78.88% 72.70% 73.49% 72.70% 57.96%
Daylight fps 94.22% 86.24% 63.56% 86.24% 83.68%
Morgan fps 95.58% 87.25% 60.31% 87.25% 89.85%
neural graph fps 88.68% 81.69% 73.70% 78.83% 76.62%

Table 2: R2 for activation energy prediction

Different kernel methods perform differently over different datasets. In general, the Tani-

moto kernels with two fingerprints outperformed other kernels except for ke dataset and they

got very similar results. Although the neural graph fingerprints were expected to exceed linear

fingerprints and circular fingerprints, it turned out that the latter two did better in this case.

However, neural graph fingerprints had more stable performance. The method achieved decent

accuracy when other two fingerprints performed poorly in ke. The simple spectrum kernel

showed poor predictive power, but succeeded in ke. The performance of three string kernels

varied among different datasets and there were no significant difference in predictive power

between the three string kernels and two graph kernels.

The time complexity of each algorithms relies on the parameters chosen. In practice, string

kernels took longer time, especially the mismatch kernel and string subsequence kernel. Daylight

fingerprints and Morgan fingerprints were much faster than other kernels and provided better

results in our case, which made them the optimal choice for measuring molecular similarity.

Neural graph fingerprints required more time, but still exceeded other kernels. For a dataset
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containing more than one thousand molecules, methods other than the three fingerprints may

take hours to finish.

4 Discussion

Although SMILES is a simple, user-friendly and machine-friendly chemical language, it remains

a challenging task to extract and process important information about chemical structure such

as branches if we use a string representation. Previous reserach showed that string kernels

achieved decent performance in text analysis and protein classification, but it remained doubtful

whether it is suitable for SMILES notation considering the properties of the language. In our

analysis, string kernels lagged behind other kernels.

Tanimoto kernel and marginalized graph kernel are both computed based on detection of

linear features of graphs. One major drawback of marginalized kernel is the phenomenon of

“tottering”, that is, the kernel counts common walks that exist repetitions of vertices. Recall

that how a random walk is generated, one may notice that a walk can come back to the vertex

it just visited. Hence a small common substructure can cause very large similarity, while

the molecules are indeed very different. Methods have been come up to prevent tottering.

However, the empirical evidence showed that it did not lead to significant improvement (Mahé

et al., 2004). Hence, we did not use the modified version. The definition of tree pattern for

subtree kernel indicates that it also allows for repetitions of vertices, we tested the kernel based

on non-tottering tree pattern and found that it did not improve the regression results, but

dramatically increased the computing time.

Tanimoto kernel is not the only kernel that uses measures of similarity between fingerprints.

If the binary path indicators are replaced with path counts, we get MinMax kernel (Ralaivola

et al., 2005). One may argue that the path counts are more reliable than binary indicators,

but our experiment results showed that MinMax kernel had much worse performance. It was

consistent with the fact that Tanimoto kernel is the most widely used kernel for fingerprints.

In addition to the kernel methods we investigated, there exist a large number of graph kernels

for defining similarity that tackle the same problem from different approaches. The connection

between an atom and its neighbors was used as a notion to measure similarity (El-Atta et al.,

2015). Edit-distance-based kernels, for instance, are highly tolerant towards structural errors
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(Neuhaus and Bunke, 2007). A combination of deep learning techniques and kernel methods

(Yanardag and Vishwanathan, 2015) has become very popular in recent years. We tried the

graph neural fingerprints with neural network this time, yet we did not investigate how the

model architecture influenced the prediction results and why such method failed to provide

superior performance using our datasets. As methods based on local patterns tend to overlook

global information of a graph, it remains a challenge to see how more advanced graph kernels

perform in our experiment.

Another major issue is that we conducted the experiment from the statistical perspective,

hence we lacked the chemistry knowledge to interpret the results and understand why specific

methods are more appropriate for some datasets. The relation between chemical features and

kernel methods is worth further investigation.

5 User Manual

Our application requires a csv file as input file. It should contain the SMILES representation of

molecules and the corresponding label (activation energy in our case). The format need to be

consistent with the example file (one molecule and one label per line). The path of input file,

the feature name (usually ”smiles”), and the label name should be specified before execution.

The class Kernel is the main part of the project. There are two customized ways to

initialize it: 1) through computation using SMILES, 2) precompute the gram matrix and read

from existing files. The second method is used for sepctrum kernel, marginalized kernel and

subtree kernel since there are R packages available for their implementation. The class Kernel

allows the user to apply kernel ridge regression and evaluate the prediction with gram matrix.

The normalized version are used for all kernels. Given input x and y, we have:

Knorm(x, y) = K(x,y)√
K(x,x)·K(y,y)

.

We used packages such as Kernlab, Rchemcpp and RDKit for kenrel computation and finger-

prints generation. We used OpenBabel for file format conversion. The implementation of neural

graph fingerprints is available at: HIPS/neural-fingerprint. We slightly modified their code for

computing R2. Our code can be accessed at: chemical-kernels. Before running the program,

make sure that you have installed the following packages in your Python or R environment:
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Python Numpy, Scipy, Sklearn, RDKit, Autograd

R kernlab, Rchemcpp, MASS

5.1 String Kernels

Define the input space X of all finite length sequences of characters from an alphabet A, |A| = l.

The k-spectrum of an input text refers to the set of all the contiguous sequences (substring) of

length k that it contains, given a k ≥ 1. In comparison, a subsequence of length k is any ordered

sequence of k characters occurring in the input text though not necessarily contiguously.

5.1.1 Spectrum Kernel

The spectrum kernel (Leslie et al., 2001) is a simple string kernel that computes similarities

between two inputs based on counts of common contiguous sequences. The feature space is

indexed by all possible sequences a of length k from alphabet A. The embedding from X to

Rl
k

is defined as:

Φk(x) = (φa(x))a∈Ak ,

where φa(x) is the number of times substring a occurs in x ∈ X . The k-spectrum kernel is

defined as:

Kk(x, y) = 〈Φk(x),Φk(y)〉.

In our R script, we define a function spectrum , relying on R package kernlab.

Arguments

k length of substring

input path path of input file, the file should be in smi format

output path path of output file

Examples

spectrum(4, ”data/cl.smi”, ”data/spectrum.txt”)

5.1.2 Mismatch Kernel

The feature space of mismatch kernel (Leslie et al., 2004) is the same as that of spectrum

kernel. Compared with spectrum kernel, mismatch kernel allows some degree of mismatching

and is therefore more flexible. We first introduce the (k,m)-pattern on a, which is the set of
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all k-length sequences b from A that differ from a by at most m mismatches. Hence we define

Φk,m on a by:

Φk,m(a) = (φb(a))b∈Ak .

The mapping on x ∈ X is defined as:

Φk(x) =
∑
a∈x Φk,m(a).

So we have the (k, m)-mismatch kernel:

K(k,m)(x, y) =
〈
Φ(k,m)(x),Φ(k,m)(y)

〉
.

In our Python script, we define a class Kernel where mismatch kernel can be initialized by

calling Kernel.from smi(*,’mismatch’).

Arguments

smiles input array, in SMILES format

y true target array

k length of substring, default = 5

m number of mismatches allowed, default = 1

Return Value

The Kernel class object

Examples

Kernel.from smi(smiles, y true, ”mismatch”, k=4, m=2)

5.1.3 String Subsequence Kernel

The string subsequence kernel (Lodhi et al., 2002) counts common subsequences (allowing

gaps) rather than substrings. Instead of weighting the occurrence equally, it assigns higher

weights to subsequences that are more contiguous with by means of the decay factor λ ∈ (0, 1).

Hence, higher degree of contiguity and more subsequences in common results in higher similarity

between two strings.

Let i = (i1, ...in) be a set of indices (sorted in ascending order) in string s and a subsequence

is given by u = s(i), length of subsequence in s is l(i) = in − i1 + 1. The mapping is:

φpu(s) =
∑
i:u=s(i) λ

l(i)

for every subsequence u of length p in s.

The SSK then is given by:

Kp(x, y) = 〈φp(x), φp(y)〉 =
∑
u φp(x)φp(y).
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In our Python script, we define a class Kernel where mismatch kernel can be initialized by

calling Kernel.from smi(*,’subsequence’).

Arguments

smiles input array, in SMILES format

y true target array

p length of subsequence, default = 4

lamda decay factor, default = 0.8

Return Value

The Kernel class object

Examples

Kernel.from smi(smiles, y true, ”subsequence”, p=3, lambda=0.7)

5.2 Graph Kernels

All the graph kernels introduced in this analysis are molecular fragments based. The similarity

of molecular structures is evaluated based on graphical features such as walks (marginalized

kernel), paths(Tanimoto kernel) and trees(subtree kernel).

5.2.1 Marginalized Kernel

Marignalized graph kernel (Kashima et al., 2003) counts the number of common label sequences

weighted by the probability of the corresponding walk. It is also called random walk kernel

because of the mechanism of generating walks.

Given a graph x, a label sequence h is generated in the following way: the starting point h1 is

sampled from the initial probability distribution ps(h1), which is usually uniform distribution.

Each subsequent vertex is sampled subject to the transition probability pt(hi|h(i−1)) at i-th

step, which is usually uniform distribution over the adjacent vertices, and the walk stops with

probability pq(h(i−1)), which is usually between 0.1 and 0.2. After this process, the walk l is

generated and the corresponding labels are described as vh1
,eh1

,vh2
,eh2

,vh3
...

The mapping is given by:

Φp(x) =
∑
l∈L(x) wl(x)1(l = p),

where L(x) is the set of all possible walks of graph x, and wl(x) is the probability that the walk

l occurs in x. The indicator function 1(l = p) shows whether the atoms and bonds of the walk
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l match the given walk p.

The marginalized kernel is:

Kp(x, y) = 〈Φp(x),Φp(y)〉.

We directly use the Rchemcpp package here. In most cases we are interested only in the

argument stopP.

Examples

mat = sd2gram(”data/cl.smi”, stopP=0.1)

write.matrix(mat,”data/cl randomwalk 0.1.txt”)

5.2.2 Subtree Kernel

Significant information loss occurs when graphs are described by only linear features. In com-

parison, tree structure has better expressivity since physicochemical properties of atoms are

known to be related to their topological environment.

A tree pattern (Mahé and Vert, 2009) is define to be a combination of graph vertices that can

be arranged in a particular tree structure in a labeled directed graph. A tree-pattern counting

function returning the number of times a tree-pattern occurs in a graph. Given two graphs x

and y, the subtree kernel is defined as:

K(x, y) =
∑
t∈T w(t)ψt(x)ψt(y),

where T is a set of all possible subtrees, w : T → R+ is non-negative weighting functional and

ψt is the tree pattern counting function.

Two types of subtree kernel are introduced based on different weighting functional. The

first one is called size-based balanced tree-pattern kernel, which is defined as:

Kh
size(x, y) =

∑
t∈Bh

λ|t|−hψt(x)ψt(y).

Another is called branch-based balanced tree-pattern kernel, which is defined as:

Kh
branch(x, y) =

∑
t∈Bh

λbranch(t)ψt(x)ψt(y),

where Bh refers to the space indexed by the set of balanced trees of order h. The size |t| of a

tree t means the number of nodes. The branch cardinality branch(t) of a tree t is defined as

its number of leaf nodes minus one. Larger size or higher branch cardinality indicates higher

complexity of a tree. The increasing complexity of a tree pattern is penalized by a value of λ

smaller than 1.

Similar to marginalized kernel, We directly use the Rchemcpp package here. In most cases
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we are interested in two arguments depthMax and lambda. We used size-based balanced

tree-pattern kernel in our analysis, but one can easily switch to branch-based by setting ker-

nelType.

Examples

mat = sd2gramSubtree(”data/cl.smi”, depthMax = 3, lambda = 0.1)

write.matrix(mat,”data/cl subtree 3 0.1.txt”)

5.2.3 Tanimoto Kernel

Tanimoto kernel (Ralaivola et al., 2005) is a method to measure similarities between molecules

using fingerprints. The embedding Φp(x) is given by indicator function 1(p ∈ x), showing

whether labeled path p occurs in the graph x or not.

The associated kernel is defined as:

K(x, y) =
∑
pinP Φp(x)Φp(y),

where P is the set of all possible labeled paths (up to a given length).

The Taminoto kernel usually refers to the normalized version:

KTanimoto(x, y) = K(x,y)
K(x,x)+K(y,y)−K(x,y) .

For Daylight fingerprints, you may want to change the argument maxPath.

Arguments

smiles input array, in SMILES format

y true target array

maxPath maximum length of path enumerated, default = 5

Return Value

The Kernel class object

Examples

Kernel.from smi(smiles, y true, ”linear fp”, maxPath = 7)

For Morgan fingerprints, you may want to change the number of iterations or maximum

radius by the argument radius. Note that we usually set radius to 2 since two iterations is

typically sufficient for fingerprints that will be used for similarity or clustering (Rogers & Hahn,

2010).
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Arguments

smiles input array, in SMILES format

y true target array

radius maximum radius of circular fragments, default = 2

Return Value

The Kernel class object

Examples

Kernel.from smi(smiles, y true, ”morgan fp”, radius = 2)
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Cereto-Massagué, A., Ojeda, M. J., Valls, C., Mulero, M., Garcia-Vallvé, S., and Pujadas, G.
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