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Abstract 
 

Source-separated urine is rich in nutrients and provides numerous benefits, including: 

offsetting energy requirements at wastewater treatment plants; offsetting energy required to 

produce nitrogen and phosphorus fertilizers; reducing the environmental impact of fertilizer 

production; and providing an alternative source of fertilizer. Source-separated urine can contain 

chemical and biological contaminants that need to be managed prior to its use as a fertilizer. 

Bacteria, viruses, and extracellular nucleic acids, if present in fertilizer, all have the potential to 

impact the environment being fertilized and consumers of fertilized products. Thus, it is 

important to understand their behavior and fate in urine and urine-derived products. Information 

about the fate of chemical and biological contaminants can help inform appropriate treatment 

technologies that transform urine into useful products while mitigating public and environmental 

health exposures. 

         This dissertation is focused on microbiological contaminants that may impact public and 

environmental health. The presence of polyomavirus, a urinary tract virus, was evaluated in 

stored urine in which urea had been hydrolyzed and the solution pH was around 9.0. 

Polyomavirus infectivity measured through tissue culture assays was compared to its genome 

integrity measured through qPCR assays. The virus infectivity was also compared to two 

surrogate viruses, the bacteriophages MS2 and T3. The infectivity of polyomavirus decreased 

rapidly in stored urine within 1.1 - 11 hours, compared to surrogate virus infectivity, which 

remained stable for 3 - 5 weeks. In contrast, polyomavirus genomes were stable for more than 3 
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weeks despite this loss of infectivity. This led us to look at the fate of extracellular DNA, which 

may carry antibiotic resistance genes, in hydrolyzed urine. DNA transformation, integrity, and 

conformation were evaluated using transformation assays, qPCR assays, and gel electrophoresis. 

Based on filtered and pasteurization experiments, the loss in transformation efficiency correlated 

to plasmid linearization and appeared to be microbially driven, likely from organisms smaller 

than 0.22 µm or enzymes larger than 100 kDa.  Collectively, these results indicate that the 

microbial activity of hydrolyzed urine reduced viral infectivity and the transformation of 

extracellular DNA, decreasing both the risk of exposure to infectious polyomavirus and spread of 

plasmid- associated antibiotic resistance genes. Finally, urine-diverting toilets, which are used to 

collect urine separate from other wastes, were compared to conventional flush toilets in terms of 

virus exposure. Virus-laden droplets were detected at a higher frequency outside the 

conventional institutional high- flush toilet compared to a urine- diverting toilet, indicating an 

added benefit of urine- diverting toilets. We conclude that the conditions of hydrolyzed urine 

reduce the potential risk of polyomaviruses and plasmid- associated antibiotic resistance gene 

transfer, and that using urine- diverting toilets can reduce one’s exposure to viruses from 

flushing events. Because storage is a common pretreatment before other fertilizer conversion 

technologies, this work demonstrates that microbial risks may be low and further advances the 

possibility of recovering urine for beneficial reuse. 
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Chapter 1. 

Introduction 
 

Human activities influence carbon, nitrogen, and phosphorus biogeochemical cycles 

which can impact the planet in both positive and negative ways.  Human activities typically 

introduce nitrogen and phosphorus into the environment in forms that can have profound impacts 

on aquatic and terrestrial ecosystems. These nutrients come from a range of sources, including: 

fertilizer runoff from agricultural lands; nutrient infiltration into groundwater, municipal 

wastewater effluents; and stormwater runoff into receiving waters. Wastewater treatment plants 

located in nutrient-sensitive watersheds have stringent guidelines to reduce nitrogen and 

phosphorus in effluents, as even small amounts of these elements can cause potential 

eutrophication and harmful algal blooms. These outcomes can have a negative impact on both 

public health when they occur in surface waters that serve as drinking water sources, and on the 

ecological health of downstream ecosystems (Smith et al. 1998).  Engineering solutions have 

been implemented in an attempt to mitigate these problems; however, the problem of excess 

nutrient cycling through effluents and emissions persists. This dissertation focuses on alternative 

approaches to wastewater management through repurposing nutrients as a way to positively 

influence nutrient cycles. 

         Achieving efficient nutrient management is becoming increasingly necessary and has 

motivated innovative solutions of wastewater treatment that allow nutrients to be repurposed as a 

resource rather than a waste. Under the conventional paradigm, large amounts of resources, 
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(including energy) are required to remove nitrogen and phosphorus from municipal wastewater. 

For example, enhanced centralized nitrogen removal at advanced wastewater treatment plants 

can produce excellent effluent water quality but consume approximately 50% more energy than 

conventional treatment technologies (Programme 2012; Maurer et al. 2003). Similarly, the 

energy required to create fertilizers for food production is also significant. Conventional nitrogen 

fertilizer production uses the Haber–Bosch process, which fixes atmospheric nitrogen to produce 

usable nitrogen fertilizer. While this process has revolutionized the food production system, it 

requires high amounts of energy and thus has a large carbon footprint (45 MJ/kg of nitrogen) 

(Maurer et al. 2003). Energy is also required to recover non-renewable phosphorus fertilizers. 

Mining and extracting phosphorus are energy intensive processes (requiring 29 MJ/kg of 

phosphorus) (Maurer et al. 2003). Even still, phosphorus is projected to be depleted within 50-

100 years (Smil 2000). Increasingly, more complex extraction methods are required to recover 

the remaining phosphorus from a depleting resource and to remove heavy metals that 

contaminate the phosphate rock (Mew 2016). Taken together, the challenges associated with 

creating conventional forms of nitrogen and phosphorus fertilizers are not sustainable into the 

future. 

         The dual interest in reducing the energy requirements at wastewater treatment plants and 

identifying alternative and renewable fertilizer sources has led some to separate urine from the 

sewage (i.e., urine diversion) and repurpose it for its use as a fertilizer. Urine contributes the 

majority of the nitrogen, phosphorus, and potassium that are found in domestic wastewater but 

contributes less than 1% of the wastewater volume (Larsen & Gujer 2001; Otterpohl 2002; 

Maurer et al. 2006; Lienert et al. 2007; Meinzinger & Oldenburg 2009). Separating this 

concentrated stream of nutrients allows for its conversion into a useful fertilizer or fertilizer 
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precurors. Meanwhile, preventing nutrients from ever entering the wastewater streams would 

reduce the degree to which nutrient removal technologies need to be deployed at treatment plants 

and should reduce the mass of nutrients released to surface waters (Wilsenach & van Loosdrecht 

2006; Jimenez et al. 2015). Urine diversion offers additional advantages beyond nutrient 

recovery. For example, pharmaceuticals are found in high concentrations in urine (60-70% of 

excreted pharmaceutical residues) (Lienert et al. 2007) and could be managed more efficiently by 

treating in urine than as diluted constituents in sewage. Four out of five flushes are typically used 

for urinating events (Berndtsson 2006; Wilsenach & van Loosdrecht 2004). Typically, urine 

diverting toilets require minimal flushing, so a significant reduction in potable water needed for 

flushing can be achieved with urine diversion. 

While there are many benefits to recovering and repurposing nutrients in urine, several 

questions remain that require research before urine diversion can become a reality. Urine 

typically contains a number of chemical and biological contaminants that need to be managed 

prior to its use as a fertilizer. Varying technologies need to be evaluated to ensure a safe and 

useful product that can supplement current fertilizer needs.  A marketable product that gives 

consumers an economic incentive to purchase them is critical as environmental benefits alone 

will not make urine-derived fertilizers viable in the market. Infrastructure for safe and sufficient 

collection onsite and safe and easy transport of fertilizer products to the location of use must be 

designed, constructed, and implemented. Public perception about the use of human urine and the 

“real” risks compared to the “perceived” risks must be addressed, accounted for, and 

communicated clearly to users.  

This dissertation focuses on investigating the microbial contaminants in unprocessed 

urine that could pose risks in urine-derived fertilizers. In Chapter 3, the infectivity of a urinary 
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tract virus, polyomavirus, is evaluated over time in stored urine and compared to other surrogate 

viruses that are commonly used in studies on the environmental fate of viruses. Persistence of 

infectious virus measured through tissue culture methods was compared to persistence of genes 

measured through molecular methods. We saw that polyomavirus genes persisted for a longer 

period of time in urine than the infectious virus (Goetsch et al. 2018), which lead us to 

investigate the fate of other nucleic acids present in urine. Chapter 4 thus focuses on the fate of 

extracellular DNA in urine with a specific emphasis on the transformation of antibiotic resistance 

genes by soil bacteria. Chapters 3 and 4 focus on the fate of microbial contaminants as urine is 

stored and converted to fertilizer and thus focuses on the potential exposure of fertilizer handlers 

and consumers to biological contamiants in food fertilized by urine derived fertilizers. Chapter 5 

focuses on another potential area of exposure to microbial contaminants: at the source of urine 

collection in public restrooms. Release of bacteriophages in droplets were measured from a 

urine-diverting toilet and compared to a high-flush institutional (non urine-diverting) toilet. The 

measured release of these viruses were combined with literature values of urinary and enteric 

virus concentrations to compare exposures presented by toilets.  

This dissertation will advance our understanding of how to safely close the nutrient cycle 

by assessing potential exposure to biological contaminants during urine diversion and fertilizer 

production. Historically we have not considered microbial contaminants in urine as an important 

public health issue. This work will contribute to future risk assessments for consumers of eating 

food fertilized with urine-derived fertilizers and workers who handle urine and urine-derived 

fertilizers. This work also highlights the need for more research on urinary tract viruses and other 

types of pathogens that are present in urine. Finally this work demonstrates that more research is 
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needed to identify the biological agents that degrade extracellular DNA and to identify the 

environments where these agents are active.   
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Chapter 2. 

Background 

2.1 Converting source separated urine into fertilizer 

To be useful, fertilizer products must be high in nutrient content, be easy to use and 

transport, and contain minimal contaminants that introduce risks to public and environmental 

health when applied to the environment. Several aspects of urine make this challenging, 

including the odor and volatilization of ammonia in stored hydrolyzed urine, the storage capacity 

and transport necessary for large volumes of source-separated urine, and the microbial and 

chemical contaminants that are present in source-separated urine. A number of treatments and 

technologies have been developed to address one or several of these issues at the same time. 

 Storing urine in a sealed container is a simple way to convert fresh urine into fertilizer. 

The purpose of storage is to first allow urea in the urine to hydrolyze. Urea hydrolysis, which is 

facilitated by urease enzymes present in bacteria, converts urea to ammonia. The resulting high 

ammonia concentrations and high pH in the urine is harnessed for its sanitizing effect on 

microorganisms present in urine. The World Health Organization recommends storing urine for 

more than 6 months before use as a fertilizer to allow time for the microorganisms to be 

inactivated (WHO 2006). In addition to extended storage after hydrolysis, urine can also be 

sanitized through heat pasteurization. A drawback of using storage or pasteurization to produce 

fertilizer is that the large volumes of urine can be difficult to store and transport from the place of 

collection to the place of application.  

 



 

 9 

One approach to decreasing urine volume is to precipitate nutrients out of the urine as 

minerals. Struvite (NH4MgPO4 6H20), for example, is produced through chemical precipitation 

by adding a magnesium source. The resulting solid phosphorus fertilizer is easier to transport 

(Wilsenach, Schuurbiers, and van Loosdrecht 2007; Etter et al. 2011; Ronteltap, Maurer, and 

Gujer 2007). This approach, however, does not recover most of the nitrogen in the urine. Other 

approaches involve reducing the volume of liquid fertilizer by removing water through pressure 

(e.g., reverse osmosis), heat (e.g., distillation), or freezing (freeze-thaw cycles) (Maurer, Pronk, 

and Larsen 2006). 

Some methods prevent the loss of nitrogen by ammonia volatilization (i.e., nitrogen 

stabilization). The hydrolysis of urea by urease can be inhibited by acidifying the urine 

(Hellström, Johansson, and Grennberg 1999), increasing the pH of the urine (Randall et al. 2016; 

Dutta 2012), or by adding hydrogen peroxide at the beginning of collection (Zhang et al. 2013). 

Once hydrolyzed, urine can also be stabilized by aerobic treatment (Udert and Wächter 2012), in 

which ammonia is converted to nitrate and organic nitrogen. Likewise, reducing the pH can 

prevent nitrogen loss through ammonia offgassing. These methods have varying energy and 

material inputs that should be considered and compared. 

2.2 Microbial risks of urine-derived fertilizer 

Unprocessed urine has microbiological contaminants that can cause risks to human health 

and can impact the soil, plants, and water environments. Pathogens can be present in source-

separated urine due to fecal matter contamination as well as urinary tract infections. In terms of 

human pathogens, Clostridia, Salmonella enterica, Mycobacterium tuberculosis, Staphylococcus, 

Lactobacillus, and fecal streptococci have all been detected in source-separated urine (Chandran, 
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Pradhan, and Heinonen-Tanski 2009; Vinnerås et al. 2008; Hoglund et al. 1998; Karak and 

Bhattacharyya 2011; Lewis et al. 2013). 

Ideally, pathogenic organisms should be inactivated or removed before urine is applied as a 

fertilizer. Indicator organisms and surrogates have been used to determine contaminant fate 

through some urine treatment processes, which include pasteurization by storage and 

precipitation of struvite (Chandran, Pradhan, and Heinonen-Tanski 2009; Vinnerås et al. 2008; 

Hoglund et al. 1998; Wohlsager et al. 2010; Höglund et al. 2002; Decrey et al. 

2011).  Escherichia coli, Salmonella enterica, and MS2 coliphage, for examples, are enteric 

indicator organisms or phages that have been studied through fertilizer production.  Most 

research on microorganism fate has focused on storage as a treatment, and results suggest the 

majority of indicator organisms are inactivated within a week of storage, although Salmonella 

enterica was more persistent (Chandran, Pradhan, and Heinonen-Tanski 2009). Decrey et al. 

investigated the fate of human virus surrogate ϕX174 and Ascaris suum eggs through struvite 

precipitation and determined that air-drying with increased temperatures aids in inactivating both 

microorganisms (Decrey et al. 2011).  

The organisms studied thus far do not represent all microorganisms in source-separated 

urine. Lahr et al. enumerated total bacterial cells in fresh urine and urine-derived fertilizers and 

demonstrated that a number of bacteria survive the high ammonia and high pH environment of 

stored urine (Lahr et al. 2016). 16S sequencing of the bacterial community showed consistent 

changes in different urine samples through urine storage. Furthermore, there were groups of 

organisms in the stored urine fertilizer with associated opportunistic bacteria, but deeper 

sequencing is required to identify these organisms at the species level (Lahr et al. 2016). 
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2.2.1 Viral risks in urine 

Viruses can cause a range of human illnesses including respiratory infections, 

gastrointestinal illnesses, and others. Most research on viruses in source separated urine has 

focused on enteric viruses or viruses that are shed in the feces and tend to cause gastrointestinal 

illnesses.  Adenovirus, rotavirus, and norovirus genes have been detected in source-separated 

urine, however their infectivity states have not been assessed (Bischel et al. 2015). Viruses are 

also present in urine without fecal contamination.  Zika virus, for example, has been detected in 

the urine of infected individuals (Gourinat et al. 2015) and is known to cause microcephaly in 

newborns of infected mothers (Calvet et al. 2016). Similarly, cytomegalovirus (CMV) is shed in 

the urine of infected individuals and is a risk to infants of infected mothers as the virus can cause 

hearing and vision loss, as well as other developmental disabilities when fetuses are exposed in 

utero (Stagno et al. 1986).  

Polyomaviruses have received relatively little attention in source-separated urine 

research, despite the fact that they infect the urinary tract (Monini et al. 1995) and can be 

excreted in urine (Urbano et al. 2016; Antonsson et al. 2010). This non-enveloped, double-

stranded DNA virus readily infects a large percentage of the public asymptomatically (Dorries 

1998), but can cause severe diseases in immune-compromised individuals (Bofill-Mas, Pina, and 

Girones 2000). Polyomavirus primary infection often occurs during childhood, likely before the 

age of 5 years (Shah, Daniel, and Warszawski 1973; Knowles 2001).  While most people are 

infected, not everyone may be excreting polyomaviruses continuously (Ling et al. 2003).  

There are several members of the polyomavirus family that are excreted in urine. BK 

polyomavirus (BKPyV) has been found at concentrations of 107-1010 gene copies per mL in the 

fresh urine of infected renal transplant patients (Randhawa et al. 2004) and 100-104 gene copies 
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per mL in the urine of healthy individuals (Urbano et al. 2016). BKPyV is known to cause severe 

diseases in the liver and kidney, primarily in immune-compromised individuals. It can also cause 

hemorrhagic cystitis and nephritis in organ and bone marrow transplant recipients (Reploeg, 

Storch, and Clifford 2001; Arthur, Dagostin, and Shah 1989). JC polyomavirus (JCPyV) is also 

found in the fresh urine of healthy individuals at levels 104–107 gene copies per mL of urine 

(Urbano et al. 2016) and is known to cause progressive multifocal leukoencephalopathy, a rare 

but fatal viral disease that causes inflammation of the white matter in brain tissue (Astrom, 

Mancall, and Richardson 1958; Padgett et al. 1971). 

The structural elements of virus particles help provide stability in the environment. The 

viral genome is protected from the environment in a capsid that is comprised of proteins. Some 

viruses also have a lipid envelop outside the capsid. These structural elements can protect the 

virus from chemical and physical environmental conditions that could cause inactivation (Lucas 

2010). Polyomavirus has a unique structural element of disulfide bonds in its protein capsid that 

is typically thought to enhance virus stability (Walter and Deppert 1975). 

Research on viruses in the environment tends to utilize culture-based methods to detect 

infectious viruses of human health concern. In circumstances where these methods are 

unavailable, researchers rely on molecular techniques to detect nucleic acids of the virus. They 

also study the infectivity of culturable strains similar to the virus of interest (i.e. surrogates). As 

discussed above, most research thus far on microorganisms in urine have focused on enteric 

organisms that may not fully describe the risk that source-separated urine could pose. Additional 

research that includes culture based assays and molecular tools of index and model organisms are 

required for a better understanding of their fate in the environment. 
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2.2.2 Antibiotic resistance risk in urine 

Antibiotic resistance in the environment and the concern of anthropogenic activities 

contributing to this resistance has gained much recent attention (Pruden, Arabi, and Storteboom 

2012; Vikesland et al. 2017). Antibiotic resistant bacteria can adversely affect human health 

through more serious infections and decreased efficacy of antibiotics (Ventola 2015).  Bacteria 

can obtain resistance through the direct uptake of DNA that confers this resistance (antibiotic 

resistance genes (ARGs)), through mutations, or through environmental selective pressures 

(Ashbolt et al. 2013). Soil environments where manure and other treated wastewater products 

have been applied are particular areas of interest since these applied products contain antibiotics, 

antibiotic resistant bacteria, and ARGs (Heuer, Schmitt, and Smalla 2011; Storteboom et al. 

2010). 

Previous work suggests that numerous ARGs are present in fresh and hydrolyzed urine 

(Bischel et al. 2015). Preliminary metagenomic analyses on these urine samples suggest the 

relative abundances of various ARGs can decrease, increase, or stay the same with extended 

storage (Desta, in preparation). Aminoglycoside resistance genes, for example, decreased after 

storage, while beta-lactamase resistance genes were no longer detected in stored samples. 

Quinolone and macrolide resistance genes did not change in relative abundance, whereas some 

tetracycline and bacitracin resistance genes increased in relative abundance with storage.  These 

genes may persist and some may even flourish as urine is converted to fertilizer (Desta, in 

preparation). Impacts from the release of ARGs to the environment remain to be determined, yet 

there is general consensus that ARG release to the environment should be minimized.  

DNA in urine released to the environment may undergo many fates. Extracellular DNA 

can be degraded by nucleases, chemically modified, sheared, or stabilized by binding to mineral 
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surfaces or humic substances (Nielsen et al. 2007). Exposure to high temperatures can lead to 

single-stranded and fragmented DNA molecules (Bauer et al. 2003). DNases are found in most 

microbial habitats (Blum, Lorenz, and Wackernagel 1997; Novitsky 1986; Paul et al. 1989; Turk 

et al. 1992), and the majority of the nuclease activity in soil is likely from bacteria. Blum et al. 

suggested that nucleases associated with the active microbiological community are responsible 

for most of the observed degradation of DNA in nonsterile soil (Blum, Lorenz, and Wackernagel 

1997). Although disinfection processes in drinking water and wastewater treatment are designed 

to remove pathogenic organisms, ARGs could retain biological activity, remaining available for 

recipient cells in exposed environments (Dodd 2012). The same could be true for treatments used 

to prepare urine-derived fertilizers. 

ARGs are commonly monitored in environmental samples with qPCR. Although qPCR 

does detect specific DNA sequences in genes related to antibiotic resistance in organisms, the 

genes detected may not be expressed, may have mutated and thus no longer confer resistance, 

may be present in an inactivated cell or present outside of a cell, or may not be part of complete 

resistance genes (Luby et al. 2016). Other studies have used markers to track the transfer of 

antibiotic resistance by using plasmids, integrons and transposons (Nandi et al. 2004; Binh et al. 

2008; Musovic et al. 2014; Klümper et al. 2015). In each of these methods, the qPCR technique 

does not assess the transferability of the ARG to other bacteria in the environment.  

Even when genes are present as extracellular DNA, the genetic material can be picked up 

by other bacteria via transformation. Transformation assays assess this ability of bacteria to take 

up and incorporate extracellular DNA.  For a bacterial cell to take up this extracellular DNA, the 

recipient cell must be competent.  At least 80 strains of bacteria are naturally competent, 

including strains found in the soil bacteria genera Azotobacter and Acinetobacter (Lorenz and 
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Wackernagel 1994). Natural transformation studies using strains from these genera have 

determined transformation efficiencies in lab scale microcosms of groundwater and biofilms 

growing in river environments (Lorenz, Reipschl, and Wackernagel 1992; Williams et al. 1996). 

A better understanding is needed on how DNA that contains ARGs persists through fertilizer 

production, and on how ARG data collected with conventional qPCR methods relates to the 

actual transferability of ARGs in the environment. 

2.2.3 Other exposure risks associated with source-separated urine and toilet flushing 

Thus far, risks associated with source-separated urine have focused on converting 

collected urine into fertilizer and applying urine-derived fertilizers (Höglund, Stenström, and 

Ashbolt 2002). These health risks can come from exposures to pathogenic organisms by direct 

and indirect sources, including direct exposure from accidental ingestion during fertilizer 

processing or application, or indirect exposure from ingestion of contaminated drinking water, 

breathing in aerosols from fertilizer application, or consumption of food fertilized with urine-

derived fertilizers. 

Exposures to infectious organisms can also occur as the urine is collected for fertilizer 

production.  For example, toilet flushing can generate infectious aerosols and droplets that can be 

harmful to human health (Darlow and Bale 1959). Likewise, bathroom surfaces such as door 

handles, flush handles of toilets, etc. have been connected with the transmission of enteric 

viruses (Gallimore et al. 2008).  

In terms of exposure from flushing, several studies have examined the contamination of 

surfaces by enteric and indicator viruses and bacteria after toilet flushing.  In one study, 

bacteriophage MS2 and E.coli were seeded into household toilets and the microorganisms 

remained in the bowl after multiple flushes (Gerba, Wallis, and Melnick 1975). The researchers 
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concluded that the microorganisms had adsorbed to the porcelain surface of the toilet bowl and 

were gradually eluted from the flushing mechanism. Droplets produced by flushing harbored 

both the bacteria and viruses. Bacteria and viruses were detected on surfaces in the bathrooms 

after flushing, indicating a possible transmission route (Gerba, Wallis, and Melnick 1975). Jessen 

found that after seeding different types of toilets (cistern-fed, gravity-flow, and mains-fed 

pressure-valve), bacteria were present several minutes after the first flush (Jessen 1955). As 

expected, with increasing flushing energy, the amount of bioaerosols generated increased (Jessen 

1955). In another study using spiked bacteriophage MS2 and Serratia marcesens, the first flush 

reduced viable microorganisms, but the microorganisms persisted on toilet bowl surfaces and in 

the bowl water (Barker and Jones 2005). These studies confirm that microorganisms excreted 

into toilets can persist on the toilet bowl surface and in the bowl water, and are disseminated into 

the air with toilet flushing. 

  The most significant toilet plume airborne infection risks are likely from viruses (Johnson 

et al. 2013). Norovirus accounts for most of the nonbacterial gastroenteritis outbreaks 

worldwide, has a low infectious dose, and can be transmitted by aerosols (Atmar and Estes 2006; 

Teunis et al. 2008). Some coronaviruses are also shed in feces and are believed to be transmitted 

through aerosols (Hung et al. 2004; Liu et al. 2004; Booth et al. 2005; Olsen et al. 2003). 

Nonenteric viruses that are shed in urine have not been extensively studied or monitored in 

bathroom settings. 

Culture-independent techniques that rely on PCR are commonly used to measure 

pathogens in bioaerosols, including toilet aerosol studies (Peccia and Hernandez 2006). RT-PCR 

and qPCR were used to detect and measure norovirus, enterovirus, rhinovirus, rotavirus, and 

Torque teno virus from numerous surfaces and in collected air samples in offices and a hospital. 
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The surfaces with the most viruses were door handles, followed by toilet flushing handles, toilet 

seats, and toilet covers (Verani, Bigazzi, and Carducci 2014). 

A limited number of urine-diverting toilet technologies exist in Europe and the U.S., and 

more are under development. In the U.S., the Wostman EcoFlush and the WC Dubbletten are 

available but are configured differently. The Wostman toilet has an S-bend for odor control 

during urine collection, while the Dubbletten has a plastic membrane in the urine-collecting bowl 

instead to prevent odors. The urine diverting toilets use less water to flush (Wostman, 1 L; 

Dubbletten, 0.5 L) in comparison to standard public toilets that use 11- 26 L per flush and newer 

dual-flush toilets that use no more than 4.8 L per flush (USEPA).  Urine-diverting toilets 

typically collect urine in a drain that is separated from the water reservoir where feces are 

collected. The urine drains immediately from the toilet and into a separate piping system. Feces 

and toilet paper typically go in the back bowl filled with water, similar to more conventional 

toilets (Figure 2-1). This reservoir is drained with a flush mechanism, much like a traditional 

toilet, and the drain is typically connected to the sewer system. Because of the different toilet 

configurations, exposures to urine-borne and fecal borne microorganisms may be different. 

However these exposures have not yet been evaluated and are important to be considered for 

future toilet use. 
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Figure 2-1. Schematic of toilet bowls for (A) conventional toilets and (B) urine-diverting toilets. Urine-diverting toilet 
bowls are separated into a front bowl where urine is collected and the back bowl that is connected to the existing sewer 
plumbing. 

2.3 Conclusions 

These research gaps focus on exposures to pathogens found in urine through collection 

via toilets and throughout processing into fertilizer. The fate of microbial contaminants not yet 

studied in urine (i.e., urinary viruses and extracellular DNA) throughout storage need to be better 

understood. The determined fates can help inform more comprehensive risk assessments of using 

urine-derived fertilizers. Beyond the exposure of unmanaged microbial contaminants in urine, 

human health could also be impacted by exposures to pathogens from toilet flushing. Urinary 

pathogens have historically not been evaluated in flushing, and their potential for transmission 

should be explored. The exposures from source-separating toilets have also not been evaluated or 

compared to existing toilet infrastructure.   

A" B"
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Chapter 3. 

Fate of the Urinary Tract Virus BK Human Polyomavirus in Source-

Separated Urine 
 
Reprinted with permission from (Heather E. Goetsch, Linbo Zhou, Mariah Gnegy, Michael J. 
Imperiale, Nancy G. Love, and Krista R. Wigginton, Fate of the urinary tract virus BK human 
polyomavirus in source-separated urine, Applied and Environmental Microbiology, 2018, 84 (7) 
1-12), Copyright (2018) American Society of Microbiology 
 

3.1 Introduction 

Enteric viruses that arise from fecal contamination have long been known to be of serious 

concern for public health. Viruses that infect the urinary tract of humans can also be shed in high 

quantities yet their concentrations and fate in the environment are unclear. Zika virus, for 

example, is excreted in urine (Gourinat et al. 2015) and can cause microcephaly in newborn 

children of infected mothers (Calvet et al. 2016). Similarly, cytomegalovirus (CMV) is shed in 

the urine of infected individuals and is a risk to infants of infected mothers as the virus can cause 

hearing and vision loss and other developmental disabilities (Stagno et al. 1986).  

Polyomaviruses are another class of emerging pathogens that commonly infect the 

urinary tract of humans (Monini et al. 1995; Urbano et al. 2016; Antonsson et al. 2010). These 

non-enveloped, dsDNA viruses readily infect a vast majority of the public asymptomatically 

(Dorries 1998; Kean et al. 2009), but can also cause severe diseases in immunocompromised 

individuals (Bofill-Mas et al. 2000). Primary infection occurs in childhood, and the viruses 

persist for the entire life of the individual, mainly in epithelial cells in the kidneys and urinary 

tract and leukocytes in the blood (Antonsson et al. 2010; Dorries 1998; Bofill-Mas et al. 2000; 
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Ling et al. 2003; Dolei et al. 2000; Dorries et al. 1994). BK polyomavirus (BKPyV) and JC 

polyomavirus (JCPyV) are most commonly found excreted in urine (Knowles 2006; 

Bialasiewicz et al. 2009). The excretion of BKPyV by healthy individuals is asymptomatic, but 

in transplant patients, replication can cause severe disease (Reploeg et al. 2001; Bressollette-

Bodin et al. 2005; Hirsch et al. 2002). JCPyV and BKPyV concentrations have been reported as 

high as 1010 gene copies/mL in the urine of sick individuals, with healthy adults typically 

excreting lower concentrations (Randhawa et al. 2004; Urbano et al. 2016).  

Despite the potential for abundant polyomavirus gene copies in excreted urine, its 

transmission pathways have not yet been fully determined. Respiratory and fecal-oral routes of 

transmission have been proposed for BKPyV (Goudsmit et al. 1982; Monaco et al. 1998; Bofill-

Mas et al. 2001; Rachmadi et al. 2016), and urine may play a role (Bofill-Mas 2017). Ingestion 

of contaminated water and food has been implicated as an exposure route (Bofill-Mas et al. 

2001), indicating the potential significance of polyomavirus transmission via the environment. 

The need to better understand polyomavirus transmission by urine is underscored by the 

growing trend of diverting urine from the waste stream and capturing nutrients in urine-derived 

fertilizers. Urine diversion can provide several environmental benefits, including a sustainable 

source of phosphorus (Larsen & Gujer 2001; Maurer et al. 2006; Meinzinger & Oldenburg 2009), 

reduction in costs and pollution associated with wastewater treatment (Wilsenach & van 

Loosdrecht 2006; Jimenez et al. 2015), a potential reduction of water usage (USEPA n.d.), and 

more efficient treatment of contaminants. Despite the benefits of diverting urine, biological 

contaminants need to be managed before urine can be reused. Biological contaminants in urine 

are mitigated with a number of treatment technologies, including long-term storage for several 

months, pasteurization, or by nutrient precipitation (e.g., struvite) (WHO 2006; Larsen et al. 
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2013; Ronteltap et al. 2007).  

When urine is stored in sealed containers to inactivate biological contaminants, the urea 

in urine is hydrolyzed, resulting in high pH (~9) and an increase in aqueous ammonia 

concentrations (2000-8000 mg N/L) (Udert et al. 2006; Höglund et al. 2000). This transition to 

hydrolyzed urine can occur within a few hours or days depending on urease enzyme activity in 

the urine. The high pH and high aqueous ammonia levels have a biocidal impact on indicator 

organisms (Chandran et al. 2009; Warren 1962; Schonning & Stenstrom 2004).  

Research on biological contaminants in source-separated urine has primarily focused on 

the presence and fate of enteric pathogens (Höglund, Ashbolt, et al. 2002; Chandran et al. 2009; 

Decrey et al. 2011; Hoglund et al. 1998; Höglund, Stenström, et al. 2002; Vinnerås et al. 2008; 

Wohlsager et al. 2010). Many enteric viruses are single-stranded RNA (ssRNA) viruses, so 

ssRNA viral surrogates are often used to predict enteric virus fate in urine. Inactivation of the 

ssRNA bacteriophage MS2, for example, correlated well with aqueous base (e.g. NH3, OH-) 

activity, suggesting that inactivation is caused by transesterification of the ribose in RNA 

(Decrey et al. 2014). Other ssRNA viruses are susceptible to ammonia activity, whereas the 

single-stranded DNA (ssDNA) bacteriophage �X174, the double-stranded RNA (dsRNA) 

reovirus, and the double-stranded DNA (dsDNA) human adenovirus and bacteriophage T4 were 

not susceptible to the same transesterification inactivation pathway (Decrey et al. 2016). These 

results suggest that although common enteric ssRNA viruses are susceptible to the conditions in 

hydrolyzed urine, viruses commonly found in the urinary tract (polyomavirus, cytomegalovirus, 

etc.) may be stable in the high aqueous ammonia concentrations found in hydrolyzed urine and 

could therefore pose risks in urine-derived fertilizers.  
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To identify the potential transmission risks that polyomavirus may pose in source-

separated urine and urine-derived fertilizer production, we tracked the presence and fate of 

human polyomavirus in fresh and hydrolyzed urine using molecular and culture-based methods. 

We compared these results to the behavior of common bacteriophage surrogates in an effort to 

better understand how well surrogate infectivity predicts environmental virus fate and how 

capsid characteristics may influence inactivation in environmental matrices. 

3.2 Materials and Methods 

3.2.1 Urine collection and characterization 

Urine was collected from men and women at nine public events in Vermont, 

Massachusetts, and Michigan, USA. After collection, urine was stored in sealed containers at 

room temperature to minimize ammonia off-gassing. Specific urine samples were also 

pasteurized by heating to 80° C for at least 3 minutes. Nutrient content (total ammonia nitrogen, 

total phosphorus, total nitrogen) of hydrolyzed urine was evaluated using Standard Methods 

(4500-NH3 F; 4500-P J and 4500- P E; 4500-N C and 4500-NO3
- C) (APHA; AWWA; WEF 

2005). Details on collection location, event type, number of donors, and characteristics of the 

urines used in this study are provided in Table 1. Experiments with urines are described by the 

collection event (A-I), followed by the treatment the urine has undergone (fresh, hydrolyzed, 

pasteurized), and the length of time after that treatment. For example, urine collected from a rural 

festival in Vermont (event A; Table 3-1) and used for an experiment 10 months after it 

underwent hydrolysis was referred to as “A – hydrolyzed 10 months.” 

Table 3-1. Characteristics of urines used in experiments. Standard deviations are reported for > 2 measurements. 

Urine 
Label 

Collection 
Location Event Type 

No. of 
Donors 

Total 
Phosphorus 

(mg P/L) 

Total 
Nitrogen 
(mg N/L) 

Total 
Ammonia 
Nitrogen 
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(mg N/L) 

A Vermont Rural 
Festival 300 410±1 4700±170 5000±260 

       

B Massachusetts Male rest 
stop >100 240±24 4400±170 4300±210 

       

C Vermont 
Combination 
of parade 
and festival 

>300 400±9 7100±430 5700±60 

       
D Michigan University 200 850±210 7400±270 5600±200 
       
       

E Michigan Outdoor 
Theater 80 490±4 6300±230 5600±250 

       

F Michigan Outdoor 
Theater 60 320 ±1 4600±230 4800±640 

       
G Michigan University 10 700±10 9700±1000 6300±110 
       

H Vermont 
Urine 
Community 
Collection 

>100 450±1 6400±400 5800±320 

       

I Vermont 
Urine 
Community 
Collection 

>100 460±10 4900±600 6300±100 

 

3.2.2 Bacteriophage and virus strains 

Bacteriophages used as surrogates for human viruses included Escherichia coli non-

enveloped bacteriophages T3, MS2, and Q�. Bacteriophage T3 (38.2 kbp) is a dsDNA virus 

that has dimensions of 50 × 20 nm in size and was used as a surrogate for polyomaviruses, which 

are dsDNA viruses. Bacteriophages MS2 (3.6 kbp) and Q� (4.2 kbp) are both ssRNA viruses 

and 25 nm in diameter, but Q� has  disulfide bonds in its capsid, and MS2 does not. These two 
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viruses were studied to help explain differences observed in the inactivation kinetics of BKPyV 

and T3.  

The BK polyomavirus Dunlop variant was used to study the fate of BKPyV. This genetic 

variant was chosen since it can be propagated at a high titer (~108 IU (infectious unit) mL-1) to 

provide maximal experimental sensitivity and range. BKPyV (dsDNA) has a 5.1 kbp genome 

and is approximately 45 nm in diameter (Krumbholz et al. 2009).  

Bacteriophages MS2 and T3 were propagated in their E. coli hosts (ATCC 15597 and 

11303). The viruses were extracted from cellular material with a chloroform extraction method 

(Agency 2001) and purified with an Econo Fast Protein Liquid Chromatography system (BioRad, 

USA) equipped with a HiPrep Sephacryl S-400 column (GE, USA).  The purified virus fraction 

was concentrated with 100 kDa Amicon ultracentrifugal filters and filter-sterilized with 0.22 �

m polyethersulfone (PES) membrane filters (Millipore, USA).  The final MS2 and T3 stocks 

(~1011 PFU mL-1) were stored in phosphate buffer (5 mM NaH2PO4 and 10 mM NaCl, pH 7.5) at 

4 °C.  Bacteriophage Q�was propagated in its E. coli host (ATCC 15597) and purified similar 

to MS2 and T3, except the protein chromatography step was excluded.  The Q� stocks (~1011 

PFU mL-1) were stored in phosphate buffer at 4 °C for immediate use in infectivity experiments. 

The bacteriophages were enumerated by the double layer plaque assay (Agency 2001). Briefly, 

aliquots of each virus were serially diluted, and 100 �L of final serial dilutions were combined 

with 100 �L of an overnight culture of their respective E. coli hosts and 5 mL of soft agar.  

Plaques were enumerated after overnight incubation at 37 °C. 

BKPyV was propagated in Vero and 293TT cells using previously published methods 

(Broekema & Imperiale 2012; Jiang et al. 2009). Briefly, Vero and 293TT cells were grown to 

70% confluency, infected with BKPyV crude lysate at MOI 0.1 IU cell-1, and incubated at 37 °C 
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for three weeks (Vero cells) or 10 days (293TT cells). Virus lysates were purified over density 

CsCl gradient centrifugation, and the collected virus fraction was dialyzed overnight in buffer 

(10 mM HEPES, 1mM CaCl2, 1 mM MgCl2, 5 mM KCl, pH 7.9).  

Infectious BKPyV was enumerated in renal proximal tubule epithelial (RPTE) cells with 

immunofluorescence assays (IFAs) (Broekema & Imperiale 2012). When RPTE cells in the 

wells of 24 well plates reached 70-80% confluency, serial dilutions of the BKPyV virus samples 

were added to the cells. Following a one-hour infection at 4° C, the cells were further incubated 

at 37° C for two days. Cells were then fixed with 4% paraformaldehyde for 20 minutes, washed 

three times with phosphate-buffered saline (154 mM NaCl, 5.6 mM Na2HPO4, 1.06 mM KH2PO4, 

pH 7.4, PBS), washed with a 0.1% Triton detergent solution, rinsed with PBS, and then washed 

with a 5% goat serum blocking solution. To identify infected cells, the cells were treated first 

with a 1:200 dilution of antibody pAB416 (Harlow et al. 1986) in 5% goat serum, and then with 

a 1:200 dilution of polyclonal goat anti-mouse IgG FITC antibody (Sigma) in 5% goat serum. 

The virus titer was determined by counting the individual fluorescent cells. At least nine random 

fields of view with at least five positive cells each were averaged to obtain the titer values (IU 

mL-1) in each well. Duplicate wells were prepared for each sample and their titer values were 

averaged (Jiang et al. 2009). 

3.2.3 Virus inactivation in urine and buffer  

All inactivation experiments were conducted at room temperature in the dark. T3 

bacteriophage was spiked into 10-50 mL of hydrolyzed urine (n=3) at concentrations of 108 – 109 

PFU mL-1 to evaluate the inactivation rate of the human dsDNA virus surrogate.  

Bacteriophages MS2 and Q� were spiked into 10 mL of hydrolyzed urine (n=2) to evaluate the 

inactivation rates of the bacteriophages with (MS2) and without (Q�) disulfide bridges in the 
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protein capsid. Both surrogates were spiked into hydrolyzed urine at an initial concentration of 

108 – 109 PFU mL-1. Infectious particles were quantified over time with plaque assays. 

In the BKPyV inactivation experiments, 50 �L of stock BKPyV was spiked into 1 mL of 

urine or buffer at a concentration of 5×105- 1×106 IU mL-1.  At various time points, 50 �L 

aliquots were removed and spiked into 450 �L of tissue culture media (renal epithelial growth 

medium, REGM).  The samples were then frozen at -80° C until enumerated with the tissue 

culture assays. Infectious BKPyV could be detected at concentrations as low as 3 × 102 IU mL-1. 

The BKPyV stock was spiked into buffers, hydrolyzed urine, pasteurized urine, and 

filtered urine to evaluate the role of solution characteristics on inactivation rates. Pasteurization 

consisted of heating urine to 80° C for at least 3 minutes. Urine was filtered through a 0.22 �m 

PES syringe filter. BKPyV inactivation was also measured in buffer solutions with various pH 

and ammonia concentrations (Table S2). These included phosphate carbonate buffers with and 

without ammonia (147 mM, consistent with levels found in hydrolyzed urine) and adjusted to pH 

7 and 9, described as PC7, PC9, AmPC7, and AmPC9 (Decrey et al. 2016). 

3.2.4 Polyomavirus qPCR conditions 

Endogenous BKPyV DNA concentrations in collected urine samples and Dunlop BKPyV 

DNA concentrations in spiked urine were evaluated using qPCR (conditions described in Table 

S1). DNA was extracted from all urine samples (100-300 �L) for qPCR analysis with Maxwell 

Total Viral Nucleic Acid Extraction kits (Promega) using the Maxwell 16 instrument (Promega). 

Primers (5’ to 3’) specific for endogenous BKPyV were selected to target the large T-antigen 

(152 bp; forward: AAGGAAAGGCTGGATTCTG; reverse: TGTGATTGGGATTCAGTG 

(Bennett et al. 2015)) and primers specific for the Dunlop BKPyV strain were designed to target 
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the VP2 protein region of the Dunlop strain (900 bp; forward: 

ATTTCCAGGTTCATGGGTGCT; reverse: AGGCAACATCCATTGAGGAGC). The 10 �L 

reactions included 5 �L 2X Biotium Fast-Plus EvaGreen Master Mix, 0.5 �M primers, 0.625 

mg/mL bovine serum albumin (BSA), and 1 �L of DNA template (0.5 to 5 ng). Standard curves 

were prepared between 101-108 gene copies mL-1. All efficiencies were greater than 70%, and R2 

values were greater than 0.99. 

3.2.5 Experiments to study polyomavirus sorption  

Control experiments were conducted to determine if the measured decreases in BKPyV 

concentrations were due to the sorption of viruses to particles found in hydrolyzed urine. In these 

experiments, 50 �L of stock BKPyV was spiked into 1 mL of urine at a concentration of 5×105-

1×106 IU mL-1 and briefly mixed. The solution was then incubated for various amounts of time 

to allow particles in the urine to settle. At predetermined times, two 50 �L aliquots were 

removed, including one from the top of the sample to avoid settled particles and one of the mixed 

sample. All aliquots were spiked into 450 �L of tissue culture media (REGM). Infectious 

BKPyV levels in the supernatant were compared to levels in the mixture.  

3.2.6 Experiments to study polyomavirus genome degradation 

To assess BKPyV genome stability, 50 �L of stock BKPyV was spiked into 1 mL of 

hydrolyzed urine at a concentration of 5×105-1×106 IU mL-1. 50 �L aliquots were removed 

from the mixture at different time points up to 27 days and added to 450 �L of tissue culture 

media (REGM).  The samples were stored at -80° C until viral DNA extraction, and then qPCR 

was conducted on a 900 bp region of the genome (Table S1).  
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To estimate the reaction rate constants for the entire BKPyV genome, we first 

extrapolated the concentrations measured for the 900 bp amplicon to the entire 5.1 kbp genome 

with the following relationship (Pecson et al. 2011): 

!"# !
!!
= !"# !

!!
× !"#$%"!!"#$
!"#$%&!"!!"#$   (Equation 1) 

where !!!is the extrapolated concentration of the entire genome and !!!  is the measured 

concentration of the 900 bp amplicon.  First order rate constants for the BKPyV genome were 

estimated by conducting linear regressions of ln(N/N0) versus time. This extrapolation assumes 

that the reactions in the genome are uniformly distributed. 

The ability of the BKPyV Dunlop strain qPCR method to detect small decreases of the 

900 bp gene copy concentrations in hydrolyzed urine was tested by diluting the spiked urine 

solutions by 10% and 20% (i.e. 0.9× and 0.8×) with nuclease free water. The undiluted, 0.9× and 

0.8× samples were extracted five times each, and then the 900 bp targets were quantified with 

qPCR. The measured gene copies in the 0.9× and 0.8× samples were compared to the measured 

gene copies in the undiluted sample. 

3.2.7 Experiments to study polyomavirus capsid disassembly 

To evaluate protein capsid stability in hydrolyzed urine, BKPyV proteins were separated 

with SDS-PAGE gels, and the VP1 capsid proteins were visualized by western blotting (Jiang et 

al. 2009). Specifically, 50 �L of stock BKPyV was spiked into 1 mL of hydrolyzed urine at a 

concentration of 5×105-1×106 IU mL-1.  Immediately after adding the virus to the urine and then 

again after 24 hours, 80 �L aliquots were removed from the mixture. To preserve the disulfide 

bond configuration of BKPyV in the urine samples, 80 �L aliquots were combined with 1.6 �L 

of freshly prepared  1 M N-ethylmaleimide (Sigma),  diluted in 100% ethanol. This mixture was 
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incubated on ice for 45 minutes and stored at -80 °C until viral proteins from the BKPyV capsid 

were separated using 8% SDS-PAGE gels. In the SDS-PAGE analysis, 80 �L sample aliquots 

were added to 20 �L of reducing buffer (250 mM Tris-HCl pH 6.8, 50% glycerol, 10% SDS, 

250 mM dithiothreitol, 0.025% bromophenol blue) or  20 �L nonreducing buffer (250 mM Tris-

HCl pH 6.8, 50% glycerol, 10% SDS, 0.025% bromophenol blue). Samples in reduced 

conditions were diluted 1:20 to have similar signal strength as non-reduced samples for western 

blot visualization. After buffer addition, all samples were heated to 42° C for 5 minutes and 

resolved on an SDS-PAGE gel.  Under non-reducing conditions, the capsid proteins will enter 

the gel only if the disulfide bridges were broken in the experiments. Control samples were 

prepared in reduced conditions to evaluate the total amount of VP1 proteins in the samples. After 

separation, VP1 proteins were wet-transferred to a nitrocellulose membrane in buffer (25 mM 

Tris, 192 mM glycine, 20% methanol) at 60 V overnight. Membranes were blocked in 2% nonfat 

dry milk diluted in 0.1% Tween 20 prepared in phosphate buffer (PBS-T), stained with 1:2000 

VP1 primary antibody diluted in 2% nonfat dry milk solution, stained with 1:2000 anti-mouse 

HRP secondary antibody (Amersham) diluted in 2% nonfat dry milk solution, and washed with 

PBS-T.  

3.2.8 Viability of bacteria in urine 

Bacteria with intact and damaged cell membranes in duplicate urine samples were 

quantified using BacLight “Live/Dead” stain (Molecular Probes) according to the manufacturer’s 

protocol. Viable (fluorescent green) cells were counted and compared to cells with damaged 

membranes (fluorescent red) using fluorescence microscopy and averaging counts over 10 

random fields of view. 
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3.2.9 Data Analysis 

 Virus inactivation was modelled with first order kinetics. Rate constants k were 

calculated with linear regressions of natural log concentration and time using the Data Analysis 

plugin for Microsoft Excel. The reported errors correspond to 95% confidence intervals.  The T90 

values, or time required for 90% reduction in infectivity or gene copies, were calculated as the 

reciprocal of the first order rate constants.  

Student T-tests were used to compare bacteria live/dead ratios, changes in the 900 bp gene 

copy concentrations after storage in hydrolyzed urines, and to test the sensitivity of our DNA 

extraction and qPCR assays. ANOVA multiple linear regression analysis was used to compare 

the inactivation kinetics of two model viruses, MS2 and Q�, and to assess the impact of urine 

pasteurization and filtration on virus inactivation kinetics.  p-values are provided for all statistical 

analyses. 

3.3 Results and Discussion 

3.3.1 Polyomavirus concentrations in urine and urine-derived fertilizers 

Infectious polyomaviruses present in urine cannot be enumerated due to a lack of a 

compatible tissue culture for studying urine isolates. Consequently, BKPyV DNA concentrations 

in the collected urine before and after hydrolysis and pasteurization were enumerated by qPCR. 

The endogenous BKPyV DNA concentration in freshly collected source-separated urine A prior 

to hydrolysis was 7.0 × 105 gene copies mL-1 (Figure 3-1) which is consistent with reported 

concentrations in urine of healthy individuals (5 × 100  – 1.24 × 108 gene copies mL-1) (Urbano et 

al. 2016). This data is based on one fresh urine sample, as it is difficult to collect large fresh 

urine samples since hydrolysis can happen quickly. The average BKPyV gene copy 

concentration in hydrolyzed urines A, B, C was 3.8 × 106 gene copies mL-1 and 1.2 × 107 gene 
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copies mL-1 in pasteurized urines A, B, C (Figure 3-1) These data suggest that the 

polyomaviruses, or at least the polyomavirus DNA, survive the harsh conditions of hydrolyzed 

urine storage and pasteurization.  

 

Figure 3-1. BKPyV gene copy (152 bp) concentrations detected by qPCR in urine A (fresh, hydrolyzed for 10 months, and 
pasteurized after hydrolyzed for 10 months) and urine B and C (hydrolyzed 1 month and after 10 months, respectively, 
and pasteurized after the same amount of hydrolysis time). Fresh urine was only available for urine A due to rapid 
hydrolysis in urines B and C. 
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Table 3-2. First order rate constants and T90 values for BKPyV and bacteriophages T3, Qβ, and MS2 in hydrolyzed urines. 95% confidence intervals are reported for 
the linear regression analyses. 

 
BKPyV T3 Q� 

 
MS2 

 
dsDNA –  

disulfide bonds 

dsDNA  
 

ssRNA –  

disulfide bonds 

 
ssRNA 

Urine 
(hydrolysis 
time) 

k (hour-1) T90 
(hours) 

k (hour-1) T90 
(hours) 

k (hour-1) T90 
(hours) 

k (hour-1) T90 
(hours) 

D (< 1 week) 
  

1.7 ✕ 10-3 ±3.1 ✕ 10-4 590 
    

         

E (4 months) 
  

2.2 ✕ 10-3 ±9.5 ✕ 10-4 450 
    

E (8 months) 
0.67±0.97* 1.5   

    

E (9 months) 
    

0.16±0.33 6.3 0.11±0.011 9.1 

E (15 months) 
0.28 ±0.51* 3.6 

  
    

F (4 months) 
  

9.0 ✕ 10-4 ±5.0✕ 10-4 1100 
    

F (8 months) 0.40 ±3.1* 2.5 
      

F (11 months) 0.90±0.41 1.1 
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G (11 months) 4.7 ✕ 10-3 
±7.6✕ 10-3* 

210 
      

H (3 months) 
    

0.13±0.033 7.7 0.11±0.019 9.1 

H (9 months) 0.17±0.060 5.9 
      

I (2 months) 0.45±0.048,  2.2 
      

I  (2 months), 
pasteurized 

0.26±0.045 
 

3.8 
      

I (2 months), 
filtered 

0.31±0.037 
 

3.2 
      

         
I (10 months) 0.16 ±0.037  6.3       
I (10 months), 
pasteurized 

0.078±0.16* 13       

I (10 months), 
filtered 

0.079±0.21* 13       

I (11 months) 0.094±0.030 11 
      

I (11 months), 
pasteurized 

0.045±0.027  22 
      

I (11 months), 
filtered 

0.036±0.009  28 
      

 

* Indicates not statistically different from zero 
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3.3.2 BKPyV and bacteriophage T3 inactivation in hydrolyzed urine 

The gene copy concentrations measured by qPCR do not necessarily correspond to the 

concentrations of infectious viruses. Although infectivity assays for the polyomaviruses found in 

urine are not possible at this time, certain polyomavirus genome variants, such as BKPyV 

Dunlop can be enumerated in vitro. BKPyV Dunlop is a rearranged variant of the archetype that 

is present in humans. This variant differs in the non-coding control region of the genome and is 

easily grown in cell culture models (Broekema et al. 2010). The variant viral particles are 

structurally identical to the viruses found in urine. BKPyV Dunlop was spiked into various 

hydrolyzed urine samples, and inactivation kinetics were then measured. Source-separated urine 

characteristics vary depending on the donors’ age, nutrition, amount of physical exercise, etc. 

(Rose et al. 2015). We therefore utilized a number of source-separated urines collected from 

different regions of the United States and stored for different amounts of time to capture these 

variations. 

Control experiments confirmed that the unspiked urine samples contained no culturable 

BKPyV. In the spiked hydrolyzed urine samples, BKPyV inactivation rates ranged from 4.7× 10-

3 – 0.90 hour-1, corresponding to T90 values from 1.1 – 210 hours (Figure 3-2 and Table 3-2). 

Most of the urine samples exhibited rapid inactivation rates (E, F, H, and I), with T90 < 11 hours, 

but BKPyV was much more stable in urine G. Urine G did not differ from the other urine 

samples in its ammonia concentration (Table 3-1), but was collected from fewer donors than 

urines E, F, H, and I.   
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Figure 3-2. Infectivity of BK polyomavirus in hydrolyzed urine samples (E - I) measured over time. Initial infective virus 
concentrations in urine were 5 ✕  105-1 ✕  106 IU (infectious units) mL-1. Experiments were conducted until the  detection 
limit was reached (3 × 102 IU mL-1). Left panel A shows variability in kinetics across different urine aged between 8-11 
months. Right panel B shows kinetic changes with hydrolysis time. 

In addition to different urine samples exhibiting different inactivation rates, the same 

collected urine sample hydrolyzed for different amounts of time exhibited different BKPyV 

inactivation rates (Figure 3-2B and Table 3-2). Our previous work demonstrated that the 

bacterial community changes as the urine is stored (Lahr et al. 2016). Other work has shown that 

microbial activity can play a role in virus inactivation, particularly for DNA viruses that 

experience slower abiotic inactivation or in matrices with higher microbial activity (Decrey & 

Kohn 2017). We therefore hypothesized that the microbial activity was influencing inactivation, 

and that the variation of inactivation kinetics was due to different microbial activities in the urine 

samples. 

Microbial activity was thus evaluated in urine samples that exhibited slow and fast virus 

inactivation rates (urines G – hydrolyzed 11 months and I – hydrolyzed 2 months) with BacLight 

viability staining. The average urine I ratio (0.66) was larger than the average urine G ratio 

(0.085, p = 0.0194). Interestingly, the higher live/dead bacteria ratio was measured in the sample 
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that inactivated the virus at a significantly faster rate. This supported our hypothesis that 

microbial activity played a role in the different observed polyomavirus inactivation rates.  

Other dsDNA viruses are stable in human excreta and animal manure with high ammonia 

and high pH (Decrey et al. 2016). T4 (dsDNA), ΦX174 (ssDNA), and rhesus rotavirus (dsRNA) 

are stable in urine with T90 values of 12.5 days, 7 days (Decrey & Kohn 2017), and 35 days at 

20° C (Höglund, Ashbolt, et al. 2002),  respectively, while human adenovirus (dsDNA) is less 

stable, with T90 values ranging from 2-24 hours (Decrey & Kohn 2017). We used another dsDNA 

virus bacteriophage T3 to confirm that our observation was not unique to the urine samples 

tested. The dsDNA bacteriophage T3 was spiked into various urine samples, and the 

concentration of infectious T3 particles was measured over time. T3 was much more stable than 

BKPyV in hydrolyzed urine (Table 3-2), with an average first order rate constant of 1.6× 10-3 

hour-1 and an average T90 equal to 630 hours (n = 3). T3 is also stable in other aquatic 

environments, remaining infectious in a wide pH range (5-9.2) and in wastewater matrices for at 

least 48 hours (Jończyk et al. 2011; Ye et al. 2016). T3 and BKPyV exhibited very different 

inactivation kinetics despite having the same genome type. This suggests that the inactivation 

mechanism for BKPyV is different than the inactivation mechanism for bacteriophage T3. We 

next sought to determine why BKPyV was susceptible to the conditions of hydrolyzed urine. 

3.3.3 Attributes of polyomavirus leading to inactivation 

Inactivation of non-enveloped viruses can be due to damage to the capsid structure or 

damage to the genome (Ward et al. 1986; Roy et al. 1981; Kim et al. 1980; Brien & Newman 

1979). To assess if inactivation in the urine was due to degradation of the polyomavirus genome, 

a 900 bp region of the BKPyV genome was monitored by qPCR as the virus was incubated in 

hydrolyzed urine I. The 900 bp amplicon covered ~20% of the BKPyV genome, and controls 
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confirmed that unspiked urine did not contain the amplicon sequence.  After 27 days we detected 

no significant decrease in gene copies based on both linear regressions of the entire data set and a 

student T-test of the gene copy concentrations at time = 0 and time = 27 days. Our qPCR assay 

could effectively detect a 20% decrease in the initial gene copy concentration of BKPyV (student 

T-test, p=0.0062); this means that the reaction rate constant for the 900 bp amplicon in urine was 

< 0.0083 day-1 (T90>120 days). Extrapolating this rate constant to the entire genome using 

equation (1) results in a genome rate constant k < 0.047 day-1 and a T90 value greater than 21 

days. For comparison, the infectivity T90 for this same urine sample was 6.3 hours (Table 3-2). 

These data verify that reactions in the dsDNA polyomavirus genomes are not responsible for 

virus inactivation in the hydrolyzed urine. 

To investigate if capsid disassembly plays a role in polyomavirus inactivation, western 

blots were employed to monitor the disulfide bonds that provide stability to the protein capsid 

structure. VP1 is the major structural protein in the polyomavirus capsid.  The capsid is 

composed of 72 pentamers of this protein (Rayment et al. 1982) connected with inter- and 

intrapentameric disulfide bridges (Walter & Deppert 1975). The presence of disulfide bridges 

sets polyomavirus apart from the other dsDNA viruses that have been tested in hydrolyzed urine 

and human excreta at combined high pH and ammonia levels. To investigate the stability of the 

capsid structure, SDS-PAGE western blots were conducted on BKPyV proteins after the viruses 

were stored in urine. If the disulfide bonds are intact, the virus is unable to enter the SDS-PAGE 

gel. Results confirmed protein structural changes following incubation in hydrolyzed urine 

(Figure 3-3). Immediately after BKPyV was added to urine, minimal VP1 pentamers, dimers, or 

monomers were visible; therefore, most of the BKPyV particles were intact and too large to enter 

the non-reducing SDS-PAGE gel. After BKPyV was incubated in hydrolyzed urine for 24 hours 
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and inactivated, VP1 monomers were detected; therefore, the BKPyV capsid was disassembling. 

Control samples at time = 0 and after 24 hours, in which the VP1 protein disulfide bonds were 

reduced experimentally prior to electrophoresis, confirmed that the increase in signal observed in 

Figure 3-3 was due to disassembly of BKPyV in urine and not due to different amounts of added 

virus capsids. These results, coupled with the relatively slow T3 inactivation kinetics and the 

relatively slow genome reaction kinetics, suggest that something about the capsid structure of 

BKPyV renders it susceptible to disassembly and rapid inactivation in hydrolyzed urine.  

 

Figure 3-3. Western blot of BKPyV proteins separated under non-reducing (left) and reducing (right) conditions. BKPyV 
proteins were analyzed after addition to buffer (neat), immediately after addition to hydrolyzed urine (0 hour) and after 
incubating for one day in hydrolyzed urine (24 hour). The reduced samples were diluted to 5% of the experimental 
concentration to allow visualization on the same gel as the non-reduced samples. The BKPyV VP1 monomer size is 42 kD. 
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To explore the role of disulfide bonds when viruses are inactivated in hydrolyzed urine, 

two related model viruses (MS2 and Q�) were added to hydrolyzed urine, and infectivity was 

measured over time. These two ssRNA viruses have similar RNA sequences (up to 80% 

similarity in the replicase subunit) and capsid size (25 nm), but differ in that the capsid proteins 

of Q� are connected with disulfide bridges. Bacteriophage Q� inactivated at a significantly 

faster rate in hydrolyzed urine than MS2 (p = 0.00105) (Table 3-2 and Figure S1).  The RNA 

genome of Q� is longer than MS2 (4.2 kbp vs. 3.6 kbp), and based on a model developed by 

Decrey et al., we compared the expected ssRNA transesterification rates in Q� and MS2 based 

on their genome sizes (Decrey et al. 2014). The k{NH3} for Qβ was predicted to be 1.17× larger 

than the k{NH3} for MS2. Our inactivation rate constant for Q� was 1.32× larger than that of 

MS2. Consequently, if mechanisms beyond RNA transesterification inactivate Qβ, such as 

disruption of the capsid structure, these mechanisms are minor. Additional viruses that contain 

disulfide bonds will need to be studied in hydrolyzed urine to better define the role these bonds 

play in virus inactivation. 

3.3.4 Hydrolyzed urine characteristics that influence BKPyV inactivation rates 

To understand why different hydrolyzed urine samples exhibited different rates of 

BKPyV inactivation, we explored which characteristics of the hydrolyzed urine contributed to 

BKPyV inactivation. We first hypothesized that the BKPyV particles adsorbed to large 

particulates in the urine and then settled out rapidly before aliquots were collected for culturing. 

Control experiments were therefore conducted in which particulates in the urine were allowed to 

settle and inactivation of BKPyV was measured in the supernatant. The rate constant with 

particulates (0.40±0.12 hour-1) was not statistically different from the rate constant without 
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particulates (0.39±0.12 hour-1, p = 0.90). Sorption to particulates and settling was therefore ruled 

out as a significant contributing factor in the observed inactivation rates. 

We next tested the impact of the high pH and ammonia levels in the hydrolyzed urine 

samples, as these conditions are biocidal to many organisms, including RNA viruses (Decrey et 

al. 2014). Linear regressions conducted on BKPyV concentrations over time in buffers with pH 

and ammonia levels similar to hydrolyzed urine were not significantly different from zero (n=3). 

This demonstrated that the BKPyV was not losing infectivity due to the elevated pH and high 

ammonia concentrations in hydrolyzed urine. 

Finally, we tested the role of microbial activity. Microorganisms can contribute to virus 

inactivation in some environments (Nasser et al. 2002; Ming Yi Deng & Cliver 1992; Decrey & 

Kohn 2017). To evaluate if the microorganisms present in hydrolyzed urine impact the 

infectivity of BK polyomavirus, BKPyV was added to hydrolyzed urine, hydrolyzed urine that 

was recently pasteurized, and hydrolyzed urine that was recently filtered through filters with 0.22 

�m pores. ANOVA multiple linear regression analyses suggested that BKPyV was inactivated 

at slower rates when urine I (hydrolyzed 11 months) was either pasteurized or filtered (Table 3-2, 

Figure 3-4, p = 0.0014 for pasteurized urine, p = 9.7 × 10-5 for filtered urine). This experiment 

was repeated in urine I (hydrolyzed 2 months) and urine I (hydrolyzed 10 months) with similar 

results (Table 3-2). Inactivation was not completely prevented after filtration and pasteurization; 

therefore, additional unknown factors contributed to BKPyV inactivation in the hydrolyzed urine. 
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Figure 3-4. Infectivity over time of polyomavirus BKPyV spiked into urine I samples that had been hydrolyzed for 11 
months, pasteurized, and filtered. Initial BKPyV concentrations were 5×105-1×106 IU mL-1. Experiments were conducted 
until the detection limit was reached (3 × 102 IU mL-1).   

This work demonstrates that the urinary tract virus BKPyV is rapidly inactivated in most 

hydrolyzed urine samples. It is therefore likely that short-term storage of urine (< 1 month) is 

adequate for mitigating risks associated with polyomavirus. We ruled out the role of elevated 

ammonia and pH levels in BKPyV inactivation and provided evidence for the role of microbial 

activity. The specific inactivation mechanism most likely involves capsid damage, since the 

DNA was not degraded over long periods of time and the capsid proteins disassembled. We 

hypothesize that the disulfide bonds in BKPyV make it more susceptible to inactivation in the 

hydrolyzed urine because the dsDNA bacteriophage T3 was very stable. Inactivation 

experiments with MS2 and Qβ were not able to support this hypothesis due to the rapid RNA 

transesterification reactions that inactivated both viruses.  

Our results are a reminder that positive qPCR measurements do not indicate the presence 

of infective viruses. BKPyV DNA genes persisted for months, but infective viruses persisted for 
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only hours to days. Employing bacteriophage surrogates to predict pathogen behavior is ideal for 

viruses that are not culturable; however, our results underscore the fact that bacteriophages are 

often inappropriate surrogates for human viruses even when they contain the same genome type. 

Using the inactivation behavior of bacteriophage T3 to predict polyomaviruses would greatly 

overestimate the BKPyV risk posed by urine-derived fertilizer.  

It is, of course, impractical to test the survivability of every human virus in every 

environmental condition with culture assays, especially when a number of human viruses do not 

have readily available culture systems (e.g., human norovirus). Instead, the environmental 

virology community should aim to understand how the chemical, structural, and biological 

characteristics of viruses impact their environmental fate. This requires studying the mechanistic 

fate of a broad range of viruses in various environmental conditions. Our results suggest that the 

capsid of BKPyV is disassembled in hydrolyzed urine samples despite the common assumption 

that disulfide bridges have a stabilizing effect on protein structures. It remains to be seen whether 

this effect influences the stability of other important human viruses with disulfide bonds in 

capsid proteins including HIV, Hepatitis B, and Hepatitis C (Ivanov et al. 2007; Wynne et al. 

1999; Blanchard et al. 2002). Once we identify the protein characteristics that drive inactivation 

in hydrolyzed urine and other environmental matrices, we will be able to select more appropriate 

process surrogates for specific human viruses.  

Finally, microbial activity appears to contribute to the BKPyV inactivation, although the 

specific mechanism by which microorganisms inactivate the virus remains unclear. Viral 

inactivation in environmental matrices often depends on a variety of factors, and the components 

leading to inactivation can vary from sample to sample. The varied inactivation rates observed 

amongst the urine samples may be due to the prokaryotic and eukaryotic levels and communities 
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in the urine samples. Our earlier work revealed that bacterial communities in several collected 

urine samples converge to have similar structures at the 16S level when stored (Lahr et al. 2016). 

Identifying the specific prokaryotic and eukaryotic organisms responsible for the inactivation of 

viruses in urine samples and other environmental matrices will be necessary to more 

systematically evaluate the risks that they pose.   
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Chapter 4. 

A mechanistic study of DNA persistence, conformation changes, and 

transformation ability in source-separated urine 

4.1 Introduction 

Collecting and treating source-separated urine for fertilizer use is a promising technology 

that addresses several environmental challenges. The majority of nitrogen and phosphorus found 

in wastewater is from urine (Larsen & Gujer 2001; Otterpohl 2002; Maurer et al. 2006; Lienert et 

al. 2007; Meinzinger & Oldenburg 2009). Thus, nitrogen and phosphorus could be recovered 

from urine before being diluted into the rest of the wastewater stream, offsetting energy intensive 

traditional fertilizer production processes (Maurer et al. 2003). The recovery of these nutrients 

can reduce the need for nutrient removal at wastewater treatment plants (Wilsenach & van 

Loosdrecht 2006; Jimenez et al. 2015) and prevent nutrients from ending up in waterways, where 

they can cause harmful algal blooms and eutrophication (Smith et al. 1998). To harness these 

benefits, urine is collected separately before entering the wastewater stream. This source-

separated urine can be converted into fertilizer through multiple methods. The simplest process is 

by storing urine for long periods of time (WHO 2006). As urine is stored in a sealed container, 

the nitrogen present in fresh urine as urea is hydrolyzed to ammonia and the pH rises to ~9, 

resulting in an environment that can be difficult for some bacteria to survive.  

Stored urine still contains microorganisms and extracellular DNA. In terms of viral DNA, 

the dsDNA genome of a urinary tract virus, BK polyomavirus, persisted in hydrolyzed urine for 

more than three weeks despite the virus’ loss of infectivity within several hours (Goetsch et al. 
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2018). Previous work suggests that bacteria persist and remain active during the storage of urine 

(~ 108 – 109 cells per mL of urine), and the bacterial communities change throughout storage 

(Lahr et al. 2016). Urinary tract bacterial infections are often treated with antibiotics, and this can 

lead to an enrichment of antibiotic resistant organisms in urine (Foxman 2010). In fact, antibiotic 

resistance genes have been detected in source-separated urine collected for fertilizer use. Bischel 

et al. detected sul1, a sulfonamide resistance gene, in bacterial extracts from urine sampled from 

urine storage tanks throughout eThekwini, South Africa (Bischel et al. 2015). It is worth noting 

that as bacteria, viruses, and other microorganisms in urine are inactivated, they can degrade and 

release their nucleic acids. Consequently, ARGs present in source-separated urine may be 

present both within organisms and as extracellular DNA.  

Bacteria can obtain antibiotic resistance through vertical gene transfer where genetic 

information is passed to daughter cells, or through horizontal gene transfer where organisms that 

do not express resistance obtain genetic information from their environment. Horizontal gene 

transfer can occur through three mechanisms: conjugation, where cell to cell contact allows the 

transfer of genetic information; transduction, where bacteriophages transfer genetic information 

into host cells; and transformation, where organisms take up and express DNA from the 

surrounding environment (Thomas & Nielsen 2005; Levy & Marshall 2004). In the case of 

transformation, the DNA from the environment is extracellular, and thus not incorporated in 

viable or infective organisms.  

Both culture-based and molecular methods are commonly applied to study the presence 

and transfer of ARGs. Culture methods detect the presence of culturable resistance but many 

resistant bacteria are not culturable or are susceptible to a viable but nonculturable state (Oliver 

2005). Molecular methods like quantitative PCR detect sections of resistance genes that may or 
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may not be in viable bacteria. In fact, Chang et al. demonstrated that when plasmid DNA was 

treated with UV254, the rate constants for plasmid transformation loss as detected from qPCR 

were 2-7x larger than the rate constants measured with transformation assays. In other words, 

these methods that detect DNA do not capture the gene’s ability to be transformed (Chang et al. 

2017). Thus multiple methods are required to understand antibiotic resistance gene fate in the 

environment. 

Due to the observed persistence of DNA in urine and the presence of antibiotic resistance 

genes detected with qPCR, there is a need to better understand whether genes present in urine 

fertilizers can spread antibiotic resistance when the fertilizer is applied in the environment. This 

study evaluates the fate of DNA in hydrolyzed urine and its potential to be transferred and 

expressed by competent bacteria. Plasmid DNA was added to hydrolyzed urine, and its ability to 

transform Acinetobacter baylyi was evaluated over time. We employed A. baylyi as a model 

organism because it is common in soils, is highly competent for natural transformation (Young et 

al. 2005; Vaneechoutte et al. 2006), and is relevant for opportunistic infections (Chen et al. 2008). 

This plasmid-bacteria system has relatively high transformation rates, and this allowed us to 

measure up to a 99% loss in transformation efficiency. As plasmids lost their ability to transform 

resistance to A. baylyi, qPCR was used to measure gene concentration, and gel electrophoresis 

was used to assess plasmid DNA conformation. We also studied the impact of urine chemistry 

and microbiology on the DNA fate. This study provides insight into how the conditions found in 

hydrolyzed urine change extracellular DNA and may result in reducing the risk of spreading 

antibiotic resistance genes. 
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4.2 Materials and Methods 

4.2.1 Urine collection and characterization 

Urine was collected from over 100 female and male donors in Vermont. The >100 L of 

collected urine was stored at room temperature in a sealed plastic container. All hydrolyzed urine 

used in this study was stored between 5 months and 1 year. Total ammonia nitrogen levels were 

measured with Standard Method 4500 - NH3 (APHA; AWWA; WEF 2005). Measured ammonia 

concentrations (6,000 ± 100 mg N /L ammonia; standard deviation for n ≥ 2) were consistent 

with concentrations reported in previous studies (Udert et al. 2006; Höglund et al. 2000). 

4.2.2 General experimental approach 

DNA stability was tested in a number of experimental solutions, including: hydrolyzed 

urine; hydrolyzed urine that was filtered through 0.22 µm membrane filters (PES, Dot 

Scientific); hydrolyzed urine that was filtered through centrifugal ultrafilters with 100 kDa pores 

(Amicon Ultra centrifugal filter units, Millipore-Sigma); hydrolyzed urine that was filtered 

through 0.22 µm membrane filters and heated to 75 °C in a water bath for 10 minutes; and 

nuclease free water. Plasmid pWH1266 was used as a model DNA molecule and was spiked into 

each solution at a final plasmid DNA concentration of 7-8 ng/µL, as measured with a Qubit 2.0 

fluorometer (Invitrogen).  The spiked solutions were stored in the dark at room temperature for 

the duration of the experiments. Aliquots were removed immediately after DNA was added to 

the solutions and after two subsequent incubation times that ranged from 10 to 48 hours. Plasmid 

DNA in the aliquots was tested for transformation efficiency using transformation assays, for 

gene concentrations by qPCR, and for plasmid DNA conformation by gel electrophoresis. 

Aliquots collected for qPCR and gel electrophoresis were frozen and stored at -20 °C until they 
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were analyzed. Aliquots collected for transformation efficiency measurements were assayed 

immediately.  

4.2.3 Model transformation system 

We employed plasmid pWH1266 as a model DNA molecule and studied its 

transformation of Acinetobacter baylyi. Plasmid pWH1266 is a construct of plasmids pBR322 

and pWH1277. pBR322 is an Escherichia coli plasmid that includes a tetracycline and ampicillin 

resistance gene (Hunger et al. 1990; Cooksey et al. 1985; McNicholas et al. 1992). pWH1277 is 

an A. lwoffi plasmid, and its sequence was not available prior to this study. We conducted the 

primer-walking method with Sanger sequencing to obtain the sequence of the pWH1277 region 

in pWH1266 (provided in Appendix B). A. baylyi is a naturally competent bacterium known to 

take up pWH1266 and express resistance to tetracycline and ampicillin when transformed.  

4.2.4 Plasmid extraction 

Plasmid DNA pWH1266 was propagated in E.coli strain TOP10, which was kindly 

provided from Dr. Chuanwu Xi at the University of Michigan. Frozen cultures of E. coli were 

inoculated on LB broth (Lennox) media agar with tetracycline (10 µg/mL) overnight (Chang et al. 

2017). A single colony was selected and inoculated in liquid LB media with tetracycline (10 

µg/mL). E. coli was grown overnight at 37 °C with shaking (180 rpm). The following morning, 

cultures were centrifuged to achieve a ~2x concentration, and plasmid DNA was extracted using 

QIAprep Plasmid Spin mini-prep kits per the manufacturer’s instructions (Qiagen). DNA 

concentrations in the plasmid extract (~50-100 ng/µL) were measured with a Nanodrop 1000 

spectrophotometer.  
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4.2.5 Transformation assays 

Frozen aliquots of A. baylyi were inoculated on LB media agar and incubated overnight 

at 30 °C. A single colony was selected from the agar plate, inoculated in liquid LB media, and 

incubated 30 °C with shaking (240 rpm) until it reached stationary phase (16-18 hours). The 

cultures were diluted 10x in LB media and incubated at 30 °C with shaking at 240 rpm. After 

two hours, they reached early exponential phase and were competent for transformation. At this 

point, a 480 µL aliquot of competent cells was combined with 20 µL of the experimental 

solutions (hydrolyzed urine or nuclease-free water spiked with plasmid DNA) in culture tubes. 

The mixture was incubated for 24 hours at 30 °C with shaking (240 rpm). Following incubation, 

the sample was serially diluted and plated on LB media agar and on selective LB media agar that 

contained either tetracycline (10 µg/mL) or ampicillin (100 µg/mL). After overnight growth at 30 

oC, colonies were counted on all plates. Transformation assay conditions, including the optimum 

plasmid concentration, the point in the A. baylyi growth curve that plasmids were added, and the 

incubation time for the plasmid and bacteria, were determined previously (Chang et al. 2017). 

The shaking speed was optimized in this study (Appendix B section B1). Transformation 

efficiencies (cfu/cfu) were calculated by dividing the number of colonies counted on LB media 

with antibiotics (cfu) by the number of colonies counted on nonselective LB media (cfu), 

accounting for dilutions.  Using a culture-based control eliminated the effects of a viable but 

non-culturable state that may have been present during the experiment.   

4.2.6 Gel electrophoresis 

The conformation and integrity of plasmid DNA was evaluated using gel electrophoresis. 

Frozen 10 µL control samples (plasmid DNA in nuclease free water) and experimental samples 

were thawed, mixed with 6X blue loading dye (Promega), and loaded onto 0.5% agarose 
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(Biorad) gels diluted in 1X TAE buffer (Biorad). The Biorad PowerPac Basic gel electrophoresis 

system was run at 40V for 80-120 minutes. DNA bands were visualized with SYBR safe DNA 

gel staining (Life Technologies), and the molecular mass of the plasmid DNA was confirmed 

with GeneRuler 1 kb DNA ladders (ThermoFisher Scientific).  

4.2.7 qPCR measurements 

The concentrations of pWH1266 segments were measured throughout the experiments 

with qPCR. Three regions of the pWH1266 plasmid were quantified, namely the tetA gene (1191 

bps), blaTEM-1 gene (861 bps), and the origin of replication (ori) gene (901 bps). Primers were 

designed to cover the entire resistance gene sequences and the entire origin of replication 

sequence. Primers (5’ to 3’) for the tetA and blaTEM-1 genes were obtained from Chang et al. 

(Table 4-1) (Chang et al. 2017). Primers (5’ to 3’) for the ori gene were designed using the NCBI 

Primer-Blast tool (Table 4-1).  qPCR was conducted with a Mastercycler RealPlex 2 system 

(Eppendorf, Hamburg, Germany) with Fast EvaGreen qPCR Master Mix (Biotium). Standard 

curves were conducted in duplicate, with concentrations ranging from 103 to 108 gene copies/mL. 

The 10 µL standard reactions and sample reactions included 5 µL 2X Biotium Fast EvaGreen 

master mix, 0.05 µL of each forward and reverse 100 µM primers, 0.13 µL of 50 mg/mL bovine 

serum albumin, 3.77 µL nuclease free water, and 1 µL of DNA template (0.5- 5 ng). qPCR 

efficiencies were greater than 70%, and R2 values were greater than 0.991. 

 

Table 4-1 Primers of pWH1266 used 

Gene 
Length of 
amplicon Forward primer (5’ to 3’) Reverse primer (5’ to 3’) 

tetA 1191 CGTGTATGAAATCTAACAATGCGCTa CCATTCAGGTCGAGGTGGCa 

blaTEM-1 861 TTACCAATGCTTAATCAGTGAGGCa ATGAGTATTCAACATTTCCGTGTCGa 

ori 901 AGGCGGTAATACGGTTATCCACb GAGATAGGTGCCTCACTGATTAAGb 
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aChang et al. 2017 
bDesigned using NCBI Primer Blast 
 

The sensitivity of the qPCR methods to detect small decreases in amplicon concentrations 

(tetA, blaTEM-1, ori) was tested by diluting the plasmid by 10%, 20% and 25% (i.e., 0.9x, 0.8x, 

and 0.75x the plasmid concentrations in the urine at t = 0) with nuclease free water (n = 5). The 

undiluted and diluted samples were then quantified with qPCR. 

4.2.8 Data analyses 

Statistical analyses were completed in GraphPad Prism software. Student t-tests were 

used to compare transformation efficiencies at different plasmid incubation times in hydrolyzed 

urine. Linear regressions were employed to determine if slopes of the experimental data deviated 

from zero. P values were evaluated at a 95% confidence level. 

4.3 Results and Discussion 

4.3.1 Plasmid DNA stability in hydrolyzed urine measured with transformation assays  

The detection limits of the transformation efficiencies (i.e., fraction of A. baylyi cells that 

could have been transformed) on the ampicillin and tetracycline selective media ranged from 1.4 

x 10-8 – 5.0 x 10-7, and our initial transformation efficiencies were in the range of 6.3 x 10-7 – 1.2 

x 10-5. We were therefore able to observe approximately 2-log of transformation efficiency loss 

in our assays. When incubated in hydrolyzed urine, the transformation efficiency of plasmid 

DNA did not decrease significantly after 10 hours (student t-test; tetracycline, p = 0.1553; 

ampicillin, p = 0.5023). After 24 hours of incubation, the plasmid transformation efficiency had 

decreased by approximately 99% (student t-test; tetracycline, p = 0.0208; ampicillin, p = 0.0003; 

Figure 4-1). This trend suggests a lag in plasmid DNA degradation or structure, followed by a 
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faster rate; consequently, the data did not follow first order kinetics and could not be 

characterized with first order rate constants.  

 

 

Figure 4-1. Transformation efficiency relative to the initial efficiency for tetracycline (circle) resistance and ampicillin 
resistance (square) of the pWH1266 plasmid in hydrolyzed urine (n=3) 

4.3.2 Plasmid gene stability in hydrolyzed urine measured with qPCR 

We first hypothesized that inactivation of the transformation efficiency was due to 

modifications in the resistance genes and that the damage was detectable with qPCR. After 24 

hours in urine, the concentrations of tetracycline and ampicillin resistance genes on the plasmid 

as measured by qPCR, did not decrease statistically (Figure 4-2; student t-test: p = 0.9741 for 

tetA, tetracycline; p = 0.9708 for blaTEM-1, ampicillin; p = 0.9807). We therefore concluded that 

the transformation loss was not due to detectable damage on the antibiotic resistance genes. It 

should be noted that tetracycline and ampicillin resistance genes were not detected in the 

hydrolyzed urine samples before plasmid pWH1266 was added (data not shown). 
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We next hypothesized that inactivation of the plasmid transformation efficiency was due 

to damage incurred throughout the plasmid, that the damage was normally distributed across the 

plasmid, and that the damage was detectable with qPCR. The plasmid was approximately 8.9 

kbps, and each of the three measured qPCR regions was approximately 1000 bp. Consequently, 

each qPCR assay could only detect approximately one-ninth of the overall plasmid damage at 

any given point in an experiment, given the damage was normally distributed across the plasmid. 

We next calculated the extent of damage incurred by each qPCR region after a 99% loss in 

plasmid transformation efficiency, given the damage was normally distributed across the entire 

plasmid and detectable with qPCR, based on the following relationship (Pecson et al. 2011): 

 

!"# !!!
= !"# !

!!
× !"#$%&'!!"#$
!"#$%&'(!!"#$ 

 

where N/N0 is the concentration of the entire plasmid (8.9 kbps) and n/n0 is the concentration of 

the measured regions of the plasmid. Based on this relationship, a 99% loss of transformation 

efficiency (i.e. decrease in total plasmid concentration) would correspond to a 46% decrease in 

the tetracycline resistance gene concentration, a 36% decrease in the ampicillin resistance gene 

concentration, and a 37% decrease in the ori gene concentration.  

To assess if we could detect these concentration differences in our three qPCR assays, we 

determined the sensitivity of each qPCR assay to small decreases in the amplicon concentrations. 

Based on student t-test results of 5 replicates, qPCR analyses could detect statistical differences 

with a 25% decrease of the tetA gene concentration (student t-test, p = 0.0247), a 20% decrease 

of the blaTEM-1 gene concentration (student t-test, p = 0.0342), and a 25% decrease of the ori 

gene concentration (student t-test, p = 0.0158). This suggested that following incubation in 
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hydrolyzed urine for 24 hours, the tetracycline resistance gene concentration, the ampicillin 

resistance gene concentration, and the ori gene concentration had not decreased by more than 

25% and 20%, and 25%, respectively. Furthermore, the sensitivity results suggest that if the 

damage incurred in the plasmid was normally distributed and detectable by qPCR enzymes, the 

qPCR assays should have detected concentration decreases in the three regions when 99% of 

transformation efficiency was lost.  

 Taken together, these results suggest that either the inactivating modifications in the 

plasmid DNA are not normally distributed across the entire plasmid sequence and are outside the 

tet, blaTEM-1, and ori genes, or that the polymerase enzyme used in qPCR does not detect the 

DNA modifications that inactivate the plasmid.  

 

Figure 4-2. Normalized concentration of tetracycline resistance gene copies (tetA), ampilcilin resistance gene copies 
(blaTEM -1), and the origin of replication gene copies (ori) on the pWH1266 plasmid in hydrolyzed urine at different 
experimental time points. Triplicates experiments were conducted. 

Previous research has demonstrated that the rate of extracellular DNA degradation 

depends on the environmental conditions. Plasmid DNA in activated sludge degraded within 6 

hours of incubation, based on a PCR assay of a 1042 bp DNA region. The authors attributed the 
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rapid loss of PCR signal to both endo- and exonuclease activity in wastewater (Worthey et al. 

1999). In groundwater, extracellular DNA can bind to aquifer material, making it resistant to 

DNases. As a result, DNA in groundwater environments tends to be stable and retain its ability to 

be transformed by bacteria (Romanowski et al. 1993). Likewise, the integrity and transformation 

ability of plasmid DNA added to soil microcosms can be retained for long periods of time due to 

adsorption to soil particles. For example, a DNA segment that was ~2 kbps was detected with 

PCR and gel electrophoresis after 40 days in soil (Widmer et al. 1996) and could be transformed 

up to 15 days in soil (Gallori et al. 1994). In another study, Southern hybridization was employed 

to determine plasmid conformation after incubation in soil. In that case, plasmid DNA, which is 

naturally supercoiled, had relaxed into its circular or linear form after only 1 hour in soil. After 2 

to 5 days, the full length DNA molecule could no longer be detected; the specific time point at 

which it degraded depended on the soil type (Romanowski et al. 1992). To our knowledge, the 

fate of DNA in urine has not previously been explored. 

Our transformation and qPCR data suggest that the reactions that caused a decrease in 

plasmid transformation efficiency either occurred outside of the three measured regions or that 

the polymerase enzyme used in qPCR does not detect the DNA modifications that inactivate the 

plasmid. In a previous study, a 900 bp region of the BK polyomavirus dsDNA genome (5.1 

kbps) remained intact in hydrolyzed urine for more than three weeks despite the rapid loss of 

virus infectivity within 11 hours (Goetsch et al. 2018). In that case, the viral dsDNA was initially 

encapsidated, but the protein capsid eventually disassembled. The viral DNA was stable despite 

the fact that the capsid was no longer protecting the genome. Instead of modifications to the 

dsDNA, the inactivation mechanism was attributed to protein capsid modifications. Here, we 

were dealing only with dsDNA, so inactivation must be due to plasmid DNA modifications. The 
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loss of antibiotic resistance transfer ability, as measured by plasmid transformation, did not 

correlate with degradation of the corresponding antibiotic resistance gene, as measured by qPCR. 

We therefore hypothesized that DNA conformation changes were contributing to the loss of 

transformation in hydrolyzed urine.  

4.3.3 Plasmid DNA conformation in hydrolyzed urine measured with gel electrophoresis 

We next evaluated the conformation and integrity of plasmid DNA in hydrolyzed urine 

by gel electrophoresis over the same timescale studied in the transformation experiments. Gels 

conducted with the plasmids in nuclease free water controls demonstrated that the supercoiled 

conformation exhibited an apparent size of 5 kbps (Figure 4-3). The reason that the 8.9 kbps 

plasmid appears at 5 kbps is because supercoiled DNA appears smaller than linear DNA on gels. 

This same supercoiled plasmid band is visible in the hydrolyzed urine samples immediately 

following the spike addition of the plasmid DNA (0 hour samples).  

Following 10 hours of incubation in the hydrolyzed urine, the 5 kbps band lightened, and 

a band representing an apparent size of ~8.9 kbps appeared. This 8.9 kbps band corresponds to 

the plasmid in a linear form. Following 24 hours of incubation in hydrolyzed urine, the 

supercoiled plasmid band disappeared, and the band at 8.9 kbps was the only band remaining 

(Figure 4-3). Based on these results, the linearization of the plasmid DNA occurred over the 

same timeframe that the plasmid transformation efficiency was reduced 99%. Previous research 

has demonstrated that linearized plasmids have lowered transformation efficiencies. For instance 

Bacillus subtilus was not transformed with either linearized or nicked plasmid DNA (Contente & 

Dubnau 1979). Likewise, Chang et al. observed a loss in transformation efficiency when plasmid 

DNA was cut either inside or outside of the tetA gene region with restriction enzymes (Chang et 

al. 2017). 



 

 70 

 

Figure 4-3. Plasmid DNA conformation changes over time in unfiltered, hydrolyzed urine. Gel electrophoresis shows 
plasmid pWH1266 supercoiled in positive controls time over time and no plasmid in hydrolyzed urine in the negative 
controls (lane to the left of the plasmid in urine samples). pWH1266 is supercoiled at time 0 hour in urine, but it begins to 
linearize after 10 hours in urine. As transformation frequency goes down, the plasmid linearizes in unfiltered urine. 

 DNA damage was not detected in the three regions measured with qPCR, but the gel 

results demonstrate that the plasmid was cut. Together, these results suggest that linearization 

was inhibiting plasmid transformation, but that the cuts were occurring outside of the three 

measured amplicon regions. We next sought to determine the attributes of hydrolyzed urine that 

caused the DNA linearization and the loss in transformation efficiency. 

4.3.4 Impact of filtration and pasteurization of hydrolyzed urine on plasmid DNA fate 

In our prior work on the fate of urinary tract virus polyomavirus in hydrolyzed urine, 

virus inactivation was prevented when the hydrolyzed urine was filtered through a 0.22 µm filter 

(Goetsch et al. 2018). In that study, we concluded that the virus inactivation was due to microbial 

activity. To test if a similar phenomenon was taking place with extracellular plasmid DNA, we 

spiked the plasmid into hydrolyzed urine that was pre-filtered through a 0.22 µm membrane filter. 
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The transformation efficiencies of the unfiltered urine were below the assay detection limits 

within 24 hours, in agreement with the previous experiments with unfiltered urine (Figure 4-1 

and Figure 4-4). In the filtered urine (0.22 µm), we observed a ~1-log statistically significant 

decrease in transformation efficiency after 24 hours (student t test; p = 0.0001 (tetracycline), p = 

0.0268 (ampicillin), Figure 4-4). After 48 hours, we observed a ~2-log decrease in 

transformation efficiencies (student t test; p = 0.0001 (tetracycline), p = 0.0067 (ampicillin), 

Figure 4-4). These data suggest that particles smaller than 0.22 µm pores are playing a role in the 

loss of plasmid transformation efficiency when incubated in hydrolyzed urine.  

Next, transformation efficiency was evaluated in ultrafiltered (100 kDa cut-off) 

hydrolyzed urine. In contrast to the membrane filtered samples, there was no significant decrease 

in transformation efficiency over the entire timescale of the experiment, based on student T-test 

statistical comparisons between time 0 and 24 hours (p = 0.1281 (tetracycline), p = 0.0875 

(ampicillin), Figure 4-4) and between 0 and 48 hours (p = 0.7528 (tetracycline), p = 0.1698 

(ampicillin), Figure 4-4). These results suggest that the material responsible for loss of 

transformation in hydrolyzed urine is larger than 100 kDa and smaller than 0.22 µm. This is in 

contrast to RNA, which undergoes base-catalyzed transesterification reactions that are driven by 

soluble species in hydrolyzed urine, such as NH3 and OH- (Decrey et al. 2014). 

 

Figure 4-4. Transformation efficiency for pWH1266 in A. baylyi conferring A) tetracycline resistance and (B) ampicillin 
resistance. The number of colonies on the selective agar plates (i.e. transformants) was normalized by the total number of 
viable cells culturable on nonselective LB media (transformation efficiency). Transformation efficiency over time (N) is 
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normalized to the transformation efficiency at the beginning of the experiment (N0). Experiments were conducted in 
nuclease free water control, unfiltered urine, hydrolyzed urine filtered through 0.22 µm pore filters, and hydrolyzed urine 
filtered through 100 kDa pore filters. Transformation efficiencies at levels below assay detection limits for unfiltered 
urine are depicted with red arrows. 

In soil, plasmid DNA degradation and the loss of transformation ability has been 

attributed to microorganisms (Romanowski et al. 1991). Bacteria, for example, can metabolize 

DNA for microbial growth (Finkel & Kolter 2001) and produce enzymes that disrupt DNA 

(Priest 1977; Flenker et al. 2017). Here, removing material greater than 0.22 µm did have a 

significant impact on the inactivation of the plasmid over time. Although most bacteria are larger 

than 0.22 µm, some are small enough to pass through 0.22 µm pores (Wang et al. 2007). 

Extracellular nucleases are naturally excreted from bacteria and can exist after the bacteria are 

removed (Flenker et al. 2017). Nuclease enzymes can range in size (~20 kDa up to 400 kDa) (Xu 

& Schildkraut 1991; Boyer 1971; Arber & Linn 1969), structure, and function (Yang 2011). 

They are also heat sensitive, and lose their ability to cut nucleic acids at elevated temperatures.  

To assess the potential role of small bacteria or extracellular enzymes in the hydrolyzed 

urine, we heated the filtered (0.22 µm) urine to 75 °C for 10 minutes and evaluated the impact 

this had on the inactivation of plasmid DNA. This temperature treatment should inactivate any 

remaining bacteria, and nuclease activity (e.g., BamHI, HindIII, EcoRI, PstI, DNase I, etc.) is 

irreversibly inhibited when the enzymes are heated above 60 °C (Pohl et al. 1982).  

Heating and then cooling the filtered hydrolyzed urine prior to adding the plasmids had a 

significant impact on the plasmid transformation. Specifically, no significant decrease of 

transformation efficiencies was detected after incubation in the heated and cooled urine (Figure 

4-5) for 24 hours. Without heating, the transformation efficiencies were below the detection limit 

after 24 hours. Due to the observed impacts of heating and filtering the hydrolyzed urine, we 

conclude that the inactivation of the plasmid DNA in hydrolyzed urine is microbially driven. The 

processes could be due to either intact bacterial cells that pass through 0.22 µm pores (Wang et al. 
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2007), or due to extracellular nucleases that are greater than 100 kDa.  Extracellular enzymatic 

activity has been hypothesized for impacting plasmid DNA transformations elsewhere 

(Romanowski et al. 1991; Chang et al. 2017).  

We do note differences in kinetics of loss of transformation in filtered (0.22 µm) urine 

samples (Figure 4-4 and Figure 4-5). Transformation efficiency was below the detection limit 

after 24 hours in one sample (Figure 4-5) but was still detectable after 24 hours in urine samples 

used in previous experiments (Figure 4-4). We observed similar variability in the inactivation 

kinetics of polyomavirus in different urine samples (Goetsch et al. 2018) and hypothesized that it 

was due to differences in the microbial communities (Lahr et al. 2016).  

 

Figure 4-5. Transformation efficiency for pWH1266 in filtered urine (0.22 µm) with and without heat treatment. 
Transformants were counted on tetracycline (10 ug/mL) (A) and ampicillin (100 ug/mL) (B) plates and normalized to 
total viable cell counts on LB media. Triplicate experiments are shown (n=3). Transformation efficiency below detection 
for unfiltered urine is depicted as orange arrows.  

4.3.5 Plasmid DNA conformation, integrity, and stability in filtered and pasteurized urine 

We next sought to assess plasmid conformation, integrity, and gene concentration after 

incubation in the filtered urine and the filtered urine that was also heated. Both tetracycline and 

ampicillin resistance genes concentrations decrease over time in filtered urine, but the gene 
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concentrations remained stable in urine that was filtered and heated (Figure 4-7). Gel 

electrophoresis of samples in the filtered urine show smearing of the plasmid band following 24 

and 48 hours of incubation (Figure 4-6).  Furthermore, the supercoiled plasmid band at 5 kbps 

disappeared after 24 hours of incubation in hydrolyzed urine. In the heated samples, the 

supercoiled plasmid band was stable following 48 hours of incubation and smearing was not 

observed following either 24 hours or 48 hours of incubation. These results suggest the plasmid 

is fragmenting over time, as noted through a decrease in signal in the gel and a decrease in gene 

copy concentrations through qPCR. The smearing observed in the gel suggests that the plasmid 

DNA is cut in several locations on the plasmid; if the DNA were cut in only one or a few 

locations, one would observe clear bands with specific sizes.  Plasmids were stable in urine that 

had been both filtered and heated. These results further demonstrate that heat sensitive microbial 

material is responsible for plasmid inactivation.  

It is worth noting that the qPCR and transformation results in the second round of 

experiments (Figure 4-5 and Figure 4-7) differed from the first round of transformation in the 

unfiltered samples (Figure 4-1 and Figure 4-2). Specifically, in the first experiment, the gene 

copy concentrations in unfiltered urine did not decrease over 24 hours but the transformation 

efficiency decreased by 99% (In Figure 4-2). In the second round of experiments, the gene copy 

concentrations did decrease significantly after 48 hours of incubation in the hydrolyzed urine that 

had been filtered (0.22 µm). We propose that this is due to the greater loss in transformation 

efficiency observed in the second round of experiments, where the assay detection limits were 

reached after 24 hours.   
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Figure 4-6. Gel electrophoresis of filtered and heat denatured samples with pWH1266. The plasmid remains supercoiled 
over time in filtered and heated urine (FH, bottom row), as the band remains ~5000 bp for 48 hours. After 24 hours in 
filtered urine (F, top row) the bands start to smear, while the darkest band remains at ~9800 bp, the size of the plasmid. 

 

 

Figure 4-7. Normalized gene copy levels for the tetracycline (tetA) and ampicillin (blaTEM-1) genes of pWH1266 in 
filtered (0.22 µm) urine with (green squares) and without heat treatment (orange squares) Gene copy levels are 
normalized to the initial gene copy concentrations at time 0. Triplicate experiments are shown (n=3). 
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4.3.6 Summary and conclusions 

We have evaluated the fate of plasmid DNA in stored hydrolyzed urine, as urine storage 

for long periods of time is a simple way to convert urine into fertilizer (WHO 2006). The 

resulting high ammonia and high pH environment in stored urine is known to have a biocidal 

impact on some bacteria (Chandran et al. 2009; Warren 1962; Schonning & Stenstrom 2004), 

reducing the risk of these bacteria to the applied environment. However, whether this biocidal 

impact applies to plasmid DNA had not been evaluated prior to this study. Based on the above 

results, if extracellular antibiotic resistance genes are released in hydrolyzed urine, they will 

likely lose their ability to transform new bacterial species. We also determined that the loss of 

transformation was microbially driven.  

In light of these results, it is important to note the limitations of the study. We employed 

the model A. baylyi plasmid system to track the loss of natural transformation efficiency of 

plasmid DNA. It is possible that other extracellular DNA may retain its transformation ability 

and that other bacteria may have different tolerances for the modified plasmids. In this work, we 

assumed that the polymerase enzyme employed in qPCR detected all important DNA 

modifications at the primer-binding site and within the amplicon. This study focused on the 

horizontal gene transfer mechanism of transformation, yet transduction via bacteriophages may 

also occur in hydrolyzed urine, and future work is required to understand how microbial activity 

impacts transduction. While we only evaluated storage of urine as a treatment, pasteurization 

through heating is another common method used to create fertilizer (WHO 2006), and further 

research is needed to understand how heating impacts the ability of extracellular DNA in 

hydrolyzed urine to transform bacteria.  
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Future research should seek to identify the specific organisms and enzymes that degrade 

nucleic acids in hydrolyzed urine and other environments. Our previous work suggests that 

bacterial communities shift as urine hydrolyzes and is subsequently stored (Lahr et al. 2016). The 

bacterial communities in source-separated urine samples from different sources are quite diverse, 

but tend to converge after several weeks of storage. Hydrolyzed urine can be considered an 

extreme environment for bacteria, given its high pH, ammonia concentration, and salinity. 

Extremophiles in other environments are the source of unique enzymes, although most of the 

detected enzymes are proteases, dehydrogenases, and cellulases and do not necessarily degrade 

DNA (DasSarma & DasSarma 2015; Van den Burg 2003). Our model system of plasmid DNA in 

hydrolyzed urine suggests that heat sensitive, large enzymes (>100 kDa), or small bacteria are 

responsible for inactivating plasmids, and that inactivation occurs within the same timeframe as 

plasmid linearization based on gel electrophoresis results. Linearizing plasmid DNA reduced 

transformation to competent bacteria, reducing the spread of antibiotic resistance from plasmid 

DNA.  
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Chapter 5. 

Toward a virus exposure assessment from urine-diverting and 

conventional toilet flushing 

5.1 Introduction 

Viruses can be transmitted in a number of ways, including direct contact of an infected 

person, direct ingestion of contaminated food, inhalation of aerosols, or touching contaminated 

surfaces such as door handles, toilet flush handles, telephones, etc. (Gallimore et al. 2008). Toilet 

flushing is suggested to be the most common process for generating infectious aerosols and 

droplets that can be harmful to human health (Darlow and Bale 1959). Several studies have 

focused on the potential spread of aerosol contamination of surfaces after flushing toilets from 

enteric viruses and bacteria. Spiked bacteriophage MS2 and E. coli adsorbed to the surface of the 

toilet bowl and remained infectious in the toilet bowl after subsequent flushing (Gerba, Wallis, 

and Melnick 1975). The same phenomenon was observed with other organisms like Serratia 

marcesens (Barker and Jones 2005). Droplets produced by flushing can harbor MS2 and E. coli 

as detected by presoaked gauze stretched over the toilet seat (Gerba, Wallis, and Melnick 1975). 

S. marcescens was also detected on agar-filled settle plates arranged on the floor outside 

different types of toilets (cistern-fed, gravity-flow, and mains-fed pressure-valve) indicating 

flushing of different toilets produce bacteria filled droplets (Jessen 1955). These studies confirm 

that microorganisms persist on the toilet bowl surface and in the bowl water and can be 

disseminated into the air by further flushes.  
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Most toilet flushing virus exposure studies focus on potential risk from enteric viruses 

that are excreted in feces; however, a number of viruses can infect the urinary system and are 

excreted in urine. Polyomaviruses, for example, infect the urinary tract (Monini et al. 1995) and 

can be excreted in urine (Urbano et al. 2016; Antonsson et al. 2010). This non-enveloped, 

double-stranded DNA (dsDNA) virus readily infects a large percentage of the public 

asymptomatically (Dorries 1998), but can cause severe diseases in immune-compromised 

individuals (Sílvia Bofill-Mas, Pina, and Girones 2000). Even for individuals who do not exhibit 

symptoms, polyomaviruses BK and JC can be present in urine at high gene copy levels (100-104 

BK gene copies per mL of urine; 104-107 JC gene copies per mL of urine) (Urbano et al. 2016). 

It is not fully understood how these polyomaviruses are transmitted. Due to the potential role that 

urine exposure could play in viral transmission (Silvia Bofill-Mas 2017), polyomavirus exposure 

from toilets should be better understood. 

Although usually treated as a waste, urine can be separated from the rest of the waste 

stream and converted to fertilizers. Indeed, the majority of nitrogen and phosphorus found in 

municipal wastewater comes from urine (Larsen and Gujer 2001; Otterpohl 2002; Maurer, Pronk, 

and Larsen 2006; Lienert, Bürki, and Escher 2007; Meinzinger and Oldenburg 2009). 

Recovering nitrogen and phosphorus from urine can offset some of the intensive energy used in 

synthetic fertilizer production processes (Maurer, Schwegler, and Larsen 2003) and also reduce 

the required nutrient removal at wastewater treatment plants (Wilsenach and van Loosdrecht 

2006; Jimenez et al. 2015). If not removed from municipal wastewaters, nutrients can end up in 

waterways where they can cause harmful algal blooms and eutrophication (Smith, Tilman, and 

Nekola 1998). Separating urine from the wastewater streams and using it as fertilizer introduces 

a number of risks, however, including risks associated with the pathogens and pharmaceuticals in 
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the source-separated urine. Thus far, studies evaluating risks associated with source-separated 

urine have primarily focused on risks encountered downstream of urine collection (e.g., urine 

treatment and food fertilized with urine) and mitigating these risks through treatment processes 

(Höglund, Stenström, and Ashbolt 2002; Decrey et al. 2011; Bischel et al. 2015). However, we 

have not found published studies on risks associated with the collection of urine, such as the use 

of source-separating toilets.  

Urine can be collected from source-separating toilets that have different plumbing than 

traditional toilets. For example, the Wostman EcoFlush and WB Dubbletten are urine-diverting 

toilets that can connect to existing sewer plumbing but also collect urine. These toilets have a 

separator in the main bowl of the toilet that collects urine in the front portion and collects feces 

and toilet paper in the back portion. The front bowl is plumbed to collect urine, while the back 

bowl connects to the sewer like conventional toilets. Furthermore, the flushes of these toilets 

involve different volumes of water; in fact, some involve no flushing at all following a urinating 

event. Due to the different designs and flushing characteristics, the exposure of toilet users to 

viruses while flushing may be different between conventional toilets and source-separating 

toilets. Given the importance that flushing plays in the generation of aerosols, this is an 

important consideration when evaluating the risks associated with urine diversion.  

In this study, we examine the release of viruses from urine-diverting toilets and 

conventional toilets when flushed. We employed single-stranded RNA (ssRNA) and dsDNA 

surrogate viruses to represent enteric and urinary viruses and measured the amount of infectious 

particles in droplets that are released with flushing using settling plates. To better understand 

how urinary viruses are transmitted via toilet flushing, we validated a swabbing protocol that has 

been used elsewhere to measure endogenous polyomavirus in university bathroom surfaces 
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(Julian et al. 2011). We ultimately used this experimental data, along with information in the 

literature to estimate urinary virus exposures from toilet flushing. 

5.2 Materials and Methods 

5.2.1 Toilets 

A conventional flush toilet and a source-separating urine-diverting toilet were used in 

these experiments. The conventional flush toilet (Kohler model 4330-0) was installed in 2016 

and has both a low flush (4.83 L per flush) and high flush (6.1 L per flush) option.  The urine-

diverting toilet (Wostman Ecoflush) was installed in 2016 and has a 2.5 L (“large”) flush option. 

While this toilet is not designed to need a flush with a urinating event, the facility it is currently 

installed in requires toilet paper to be flushed rather than disposed in garbage cans in stalls. Thus, 

every urinating event results in a flush. While most of the water goes down the back of the toilet, 

we determined that 380 mL of flush water enters the small bowl and is thus collected with the 

urine after each urinating event.  The tested toilets were located in two different female 

restrooms in a university building.  Sodium thiosulfate (Fisher Scientific) (10,000 mg/L) was 

used to quench residual chloramine in the toilet bowls before virus addition. Total combined 

chlorine readings (Hach) were measured before and after quenching to ensure chloramine 

concentrations were below the detection limit and thus not inactivating the added virus. 

5.2.2 Virus surrogates and their hosts 

Bacteriophages MS2 and T3 were used in flushing experiments to represent 

nonenveloped, ssRNA and dsDNA viruses present in urine and feces. MS2 is an E.coli 

nonenveloped ssRNA bacteriophage (3.6 kbps, 25 nm) and is often used as a surrogate for 

ssRNA enteric viruses (e.g., poliovirus, norovirus). T3 is an E.coli nonenveloped dsDNA 



 

 87 

bacteriophage (38.2 kbps, 50 by 20 nm). In this case we are using this dsDNA bacteriophage as a 

surrogate for enteric and urinary tract viruses that contain dsDNA (e.g., adenovirus, 

polyomavirus). MS2 and T3 were propagated in their E.coli hosts (ATCC 15597 and 11303). 

They were extracted using a chloroform extraction method (USEPA 2001) and purified with an 

Econo fast protein liquid chromatography system (Bio-Rad, USA), with a HiPrep Sephracyl S-

400 column (GE, USA). The purified virus fraction was concentrated using a 100 kDa Amicon 

ultracentrifugal filter and was filter sterilized with 0.22 µm polyethersulfone (PES) membrane 

filters (Millipore, USA). The final MS2 and T3 stocks (1011 plaque forming unit (pfu) /mL and 

1010 pfu/mL) were stored in phosphate buffer (5 mM NaH2PO4 and 10 mM NaCl, pH 7.5) at 

4 °C.  

BK polyomavirus was used to validate a swabbing protocol published previously for 

detecting bacteriophage MS2 and MS2 RNA on polyvinyl chloride (PVC) plastic and stainless 

steel surfaces (Julian et al. 2011). The culturable BK polyomavirus Dunlop variant is a genetic 

variant to endogenous polyomavirus that can be propagated at a high titer. It was propagated and 

purified using previously published methods (Broekema and Imperiale 2012; Jiang et al. 2009). 

Briefly, polyomavirus was propagated in 293TT cells. After cells were grown to 70% confluence, 

they were infected with BKPyV crude lysate at a multiplicity of infection (MOI) of 0.1 infectious 

unit per cell, and incubated at 37 °C for 10 days. Virus lysates were purified over density CsCl 

gradient centrifugation, and the collected virus fraction was dialyzed overnight in buffer (10 mM 

HEPES, 1 mM CaCl2 , 1 mM MgCl2, 5 mM KCl, pH 7.9). 

5.2.3 Virus exposure from toilet flushing experiment 

Bacteriophages MS2 and T3 were added to toilet bowl reservoirs to quantify the viruses 

that are released in droplets by flushing. Viruses were diluted in phosphate buffer (5 mM 
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NaH2PO4 and 10 mM NaCl, pH 7.5), resulting in a final concentration of 109 pfu/mL (MS2) and 

108 pfu/mL (T3). Bacteriophages MS2 (1010 pfu) and T3 (109 pfu) were added to each toilet at 

levels similar to what can be shed in infectious diarrhea (e.g., 1010 – 1011 infectious enteric 

viruses (norovirus, rotavirus, and adenovirus) per gram of feces) (C. Haas, Rose, and Gerba 

2014). This virus solution was added to the liquid containing part of the toilet bowl to mimic the 

typical use for a conventional flush toilet and as a worst-case scenario of use of the urine 

diverting toilets (Figure C-1 and Figure C-2).  After approximately 1 minute, the toilet was 

flushed (6.1 L conventional toilet flush and 2.5 L urine-diverting toilet flush).  

Samples of the bowl water were taken before adding virus to the toilet, immediately after 

adding virus to the toilet, one minute after flushing, and five minutes after flushing. Petri dishes 

with 10 mL of phosphate buffer (5 mM NaH2PO4 and 10 mM NaCl, pH 7.5) were placed around 

the toilet in six different locations (on the floor: left, front, right, front left, and front right; and 

back of the toilet). A schematic of the location of the petri dishes is provided in Figure C-1 and 

Figure C-2. The dishes on the floor were located 20-30 cm from the base of the toilet. The dishes 

on the backside of the toilet were located at the same elevation of the toilet seat. For the urine-

diverting toilet, the dishes were taped on top of the back of the seat. For the conventional toilet, 

the dishes were 3-6 cm from the edge of the toilet seat. Two sets of petri dishes for each location 

were placed to capture droplets that spend different amounts of time in the air. The first set of 

petri dishes were covered after 1 minute post flushing; the second set of petri dishes were 

covered after 5 minutes post flushing. At the conclusion of the experiment, liquid was collected 

from the petri dishes and pipetted into 15 mL falcon tubes. The tubes were placed on ice, and 

plaque assays were completed within 30 minutes. Two sets of petri dishes with 10 mL of 

phosphate buffer were also placed on the floor of the adjacent stall (55-60 cm from the base of 
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the flushed toilet) and on the sink surfaces in the bathroom as negative controls and covered at 

the same time intervals as the experimental dishes.  

5.2.4 Virus plaque assay 

Bacteriophages were enumerated by the double-layer agar plaque assay (USEPA 2001). 

In brief, 100 µL of the recovered flushing experiment solution was combined with 100 µl of an 

overnight culture of the bacteriophage’s respective host E.coli and 5 mL of soft agar media. 

Plaques of MS2 and T3 were enumerated after overnight incubation at 37 °C. 

5.2.5 Virus swabbing recovery experiments 

Virus swabbing experiments were based on a method developed previously for 

recovering MS2 on PVC and stainless steel surfaces (Julian et al. 2011). To first validate the 

swabbing method for our purposes, purified BK polyomavirus Dunlop strain (BKPyV) was 

added to surfaces and then recovered. In these experiments, two ~10 cm x  ~10 cm squares were 

outlined with tape on stainless steel and black epoxy coated silica lab bench surfaces to recover 

added BKPyV (positive) and nuclease free water (negative). The surfaces were cleaned with 

ethanol, 10% bleach, and MilliQ water prior to adding virus solution and nuclease free water. 

The virus was diluted in nuclease free water to a final concentration of 108.2 gene copies/mL. 0.7 

mL of virus solution and 0.7 mL of nuclease free water was added to each square. The virus 

solutions and nuclease free water dried for several hours, until all visible droplets had 

disappeared. The surface was swabbed with sterile polyester-tipped swabs (BD Company) that 

had been wetted in 1.5 mL of phosphate buffer solution (pH 7.4) (Gibco). Phosphate buffer 

solution was selected for recovering the virus based on successful virus recoveries reported 

elsewhere (Julian et al. 2011; Foulongne et al. 2011). Constant and consistent pressure was 

applied to the surface, sweeping back and forth, up and down, and diagonal across the surface for 
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20-30 seconds total. The swabs were then placed in a 15 mL falcon tube with 1.5 mL of 

phosphate buffer solution (pH 7.4) and capped. The 15 mL tubes were then vortexed for 1 

minute. Swabs were removed, and 300 µL aliquots were used for viral DNA extraction.  

5.2.6 Viral DNA extraction 

Viral DNA extraction was completed using Maxwell total viral nucleic acid extraction 

kits (Promega) with a Maxwell 16 instrument (Promega). 100-300 µL of sample were used for 

extractions. Extracted samples were measured for polyomavirus using qPCR.  

5.2.7 qPCR reactions 

Polyomavirus was quantified using established qPCR reactions. Primers (5’ to 3’) 

specific for endogenous BKPyV and the Dunlop strain were selected (152 bp; forward, 

AAGGAAAGGCTGGATTCTG; reverse, TGTGATTGGGATTCAGTGCT) (Bennett et al. 

2015). The 10 µL reaction mixtures included 5 µL 2X Biotium Fast EvaGreen master mix, 0.5 

µM primers, 0.625 mg/mL bovine serum albumin (BSA), nuclease free water, and 1 µL of DNA 

template (0.5 ng to 5 ng). Temperature conditions consisted of initial denaturation at 95 °C for 2 

minutes, 40 cycles of denaturation at 95 °C for 5 seconds, annealing at 56 °C for 5 seconds, and 

extension at 72°C for 25 seconds. Standard curves were prepared between 103 and 108 gene 

copies per mL. All efficiencies were greater than 93%, and R2 values were greater than 0.994.  

The qPCR method quantification limit (MQL) was determined by measuring at least 7 replicates 

of diluted standards (103 – 101 gene copies/mL) and determining the relative standard deviation. 

The lowest standard with a relative standard deviation below 25% was considered the method 

quantification limit. 
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5.2.8 Comparative exposure assessment parameters and estimation 

An exposure assessment was conducted to estimate the exposure of enteric and urinary 

tract viruses from conventional flush toilets. Literature based parameters were used to estimate 

polyomavirus and norovirus exposures and were combined with the fraction recovered from the 

virus exposure experiment. First, the numbers of urination and defecation events occurring at a 

workplace were estimated. Based on four of five total flushes attributed to urination and one for 

defecation, assuming three out of those five total flushes occurring at work, and interpolating the 

4:1 flush ratio, and we assume a 2:0.85 urination to defecation ratio per person (Wilsenach and 

van Loosdrecht 2004; Berndtsson 2006). Polyomavirus is a urinary tract virus that can be present 

in urine of healthy individuals between 100-104 gene copies per mL of urine (Urbano et al. 

2016); we used 104 gene copies per mL of urine in our calculations. Enteric viruses (norovirus, 

adenovirus, rotavirus) can be found in stool samples at 1010 infectious units per gram of stool (C. 

Haas, Rose, and Gerba 2014). Urinating and defecation volumes and masses were estimated 

using literature values. It was assumed that a person will urinate ~250 mL during each event 

(Rauch et al. 2003; Fewless, Sharvelle, and Roesner 2011; WHO 2006). For defecation events, 

32 grams per capita per day was assumed (Rose et al. 2015).  

Based on these assumptions, we calculated the expected amount of deposited viruses in 

terms of gene copies or infectious units per flushing event. We also use the virus fraction 

recovered from the virus exposure experiment to estimate exposure of urinary tract viruses from 

flushing and compare this to the polyomavirus swabbing results. 

5.2.9 Data Analysis 

Student t-tests were used to determine significance of plaques detected outside the toilet 

from the virus exposure experiment. Plaques detected outside the conventional and urine-
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diverting toilets were compared; plaques detected at different locations around the toilets were 

compared; and plaques detected at different collection times were also compared. P values were 

evaluated at the 95% confidence interval. 

5.3 Results and Discussion 

5.3.1 Virus droplets outside flushing toilet  

Both bacteriophages MS2 and T3 were detected in petri dishes after flushing the 

conventional toilet (Figure 5-1). Specifically, an average of 5600 total MS2 pfu were detected 

outside the toilet, whereas 1010 pfu were added to the toilets. For T3, a total of 1700 pfu were 

detected on average in the plates outside the toilet, whereas 109 pfu were added to the toilet 

bowls. The fraction of the viruses recovered outside of the toilet after flushing was calculated for 

MS2 (5.6 x 10-7) and T3 (1.7 x 10-6) (calculations in section C.1). Other studies using MS2 for 

similar flushing exposure assessments observed varying recoveries of virus-laden droplets 

(Gerba, Wallis, and Melnick 1975; Barker and Jones 2005). For example, Barker and Jones 

measured MS2 on semi-solid agar plates placed on the floor around the toilet, the toilet seat, and 

the cistern and a shelf at the back of the toilet. The average total number of plaques detected was 

365 pfu when 1010 pfu were added to the toilets, which shows a recovery (fraction recovered was 

3.7 x 10-8) one to two orders of magnitude smaller than what we observed (Barker and Jones 

2005). Differences in these outcomes could be attributed to methodological variations (liquid 

buffer instead of agar to capture virus), the number of plates used to measure droplets outside of 

the toilet, and the flushing velocity of the different types of toilets. Gerba et al. observed 

fractions closer to our observed values, but they measured MS2 from flushed droplets by 

applying gauze over the top of the toilet to capture a larger fraction of what could be dispersed 
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(Gerba, Wallis, and Melnick 1975). When 1010 MS2 pfu was added to the toilet and then flushed, 

~103 pfu could be recovered in the gauze, a value similar to our MS2 results.  

Few significant differences across locations around the conventional toilet were observed. 

Using student T-tests to compare counted plaques at different locations, the only statistical 

difference was detected between the front and back plates for T3 (p = 0.0497) and between the 

front and right front plates for T3 (p = 0.0427). All other locations detecting T3 and all of the 

locations outside the toilet detecting MS2 were statistically similar (p values located in the Table 

C-1) indicating that viral deposition was generally equal around the toilet. No statistical 

difference was observed between plaques collected after 1 minute or 5 minutes post flushing 

which may be in part due to the method of where the plates were placed.  

 

 

Figure 5-1. Plaque forming units (pfu) collected from 10 mL of buffer in petri dishes collected 1 minute and 5 minutes 
around a conventional toilet after flushing. Gray circles indicate T3 pfu recovered; black squares indicate MS2 pfu. 
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Median values are shown and error bars report standard deviation for three replicate experiments. The limit of 
quantification (100 plaque forming units) is shown on each graph. 

 

Fewer virus plaques were detected around the urine-diverting toilet than the conventional 

flush toilet. In fact, plaques were detected in only one plate along the backside of the urine-

diverting toilet, with 200 MS2 pfu detected five minutes post flushing when 1010 pfu were added 

to the toilets (Figure 5-2). Thus the average fraction of MS2 recovered from the three 

experiments was 6.7 x 10-9 pfu/pfu (MS2). For all other conditions, no plaques were detected in 

all three replicate flushing experiments of the urine-diverting toilet (Figure 5-2). Because 109 T3 

pfu was added to the toilets, we estimate the fraction of recovered T3 to be < 3.3 x 10-8 pfu/pfu 

(section C.1). Using student T-tests comparing the sum of all plaques counted outside the 

conventional toilet and the urine-diverting toilet, there is a significantly higher plaque count 

outside the conventional toilet compared to the urine-diverting toilet (p = 0.0073 (T3) and p = 

0.0267 (MS2)). Control samples, which consisted of petri dishes placed on the floor of the next 

stall over and on a neighboring sink, contained no culturable bacteriophages following the 

conventional and urine-diverting toilet flushing experiments (data not shown).  
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Figure 5-2. Plaque forming units (pfu) collected from 10 mL of buffer in petri dishes collected 1 minute and 5 minutes 
around a urine diverting toilet after flushing. Gray circles indicate T3 pfu recovered; black squares indicate MS2 pfu. 
Median values are shown, and error bars report standard deviation for three replicate experiments. The limit of 
quantification (100 plaque forming units) is shown on each graph. 

Toilet flushing has been considered an important infection hazard since droplets and 

aerosols of infectious particles can land outside of the toilet (Gerba, Wallis, and Melnick 1975; 

Darlow and Bale 1959; Hutchinson 1956). While future work must investigate aerosolized 

viruses, our data demonstrates that the specifics of the flush will impact the amount of virus-

laden droplets that are released from the toilet. Specifically, the urine diverting toilet, even when 

flushed, results in less virus-laden droplets; consequently, the exposure via contact with 

pathogenic viruses on surfaces is likely less. In this experiment, we added virus to the toilet bowl 
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toilet is flushed. This experiment provides a worst-case scenario for determining viruses released 

from urine-diverting toilets, when both urine and feces are deposited in the back of the toilet. In 

other words, these results suggest that an added benefit to using source-separating technologies is 

a lower exposure to viruses from flushing. This is particularly important in areas of sensitive 

populations such as hospitals, where opportunistic urinary tract infections might be prevalent. 

5.3.2 Comparative exposure assessment of enteric and urinary tract viruses in conventional 

toilets 

As described above, people use toilets for urination more frequently than they use toilets 

for defecation. We therefore estimated the exposure loads released from a single toilet for a 

urinary tract virus versus a fecal-borne virus. We used literature values to calculate the expected 

exposure during each type of flushing event with the assumption of worst-case concentrations of 

viruses in urine and feces separately. Thus, for each urinating event of 250 mL volume of urine 

and 104 gene copies of polyomavirus per mL of urine, we estimate 2.5 x 106 gene copies per 

person per flush is entering the toilet (calculation in section C.2). We did the same calculation for 

enteric viruses and defecating events to estimate enteric viruses entering the toilet from one 

person (i.e., 0.85 flushes for defecation per day, multiplied by the 109 infectious particles per 

gram of stool, multiplied by the 32 grams of stool per flushing event) and estimated 2.7 x 1010 

infectious particles per flushing event (calculation in section C.2).  These potential exposures 

were then multiplied by the fraction of exposures determined from the spiked bacteriophage 

experiment according to the genome type (T3 for dsDNA polyomavirus and MS2 for ssRNA 

enteric virus). Even if accounting for more frequent flushes for urinating events (we assumed 

two flushes per day in this calculation), we predict that enteric viruses could be found outside the 

conventional flush toilet 3 orders of magnitude higher than urinary viruses.  Of course not every 
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fecal event results in levels near 109 infectious units per gram of stool. When we assume a higher 

polyomavirus concentration of infected individuals being excreted (1010 gene copies/mL of 

urine) (Randhawa et al. 2004), urinary viruses are found 3 orders of magnitude higher than 

enteric viruses. Thus, our assumptions in this calculation of worst case-scenarios, how often a 

diarrheal event may occur, and that gene copies are equivalent to infectious units are important 

when making predictions for urinary virus fate in bathrooms. 

5.3.3 Polyomavirus swabbing of surfaces 

We next sought to measure actual urinary viruses on bathroom surfaces. A viable method 

to recover polyomavirus was first verified by spiking a lab variant of BK polyomavirus (Dunlop) 

to two lab surfaces (stainless steel and epoxy-lined silica lab bench surfaces), air-drying for 

several hours, swabbing using PBS buffer, and analyzing by qPCR. Of the 108 gene copies of 

polyomaviruses added to the surfaces, 47 ± 25% were recovered from the stainless steel surface 

and 51± 7.2% were recovered from the black epoxy coated silica surface. This particular 

swabbing method recovered 40% of infectious MS2 and 7% of MS2 RNA in a previous report 

(Julian et al. 2011). In that study, the swabbing material (cotton-tipped, polyester-tipped swabs, 

and antistatic cloth), different eluents (0.85% saline, one-quarter-strength Ringer’s solution, and 

viral transport media), and different surfaces (PVC plastic and stainless steel) were tested for 

infectious MS2 and MS2 RNA recovery, and the polyester-tipped swabs with saline solution or 

Ringer’s solution swabbing method had the highest recoveries from non-porous fomites (Julian 

et al. 2011).  

Once we established that the swabbing method recovered BK polyomavirus variant, we 

employed it to monitor endogenous BK polyomaviruses on bathroom surfaces. Specifically, the 

floor, toilet seat, stall wall, and sink surfaces were swabbed once to measure polyomavirus in 
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three different university female bathrooms. One of the bathrooms swabbed was the same 

bathroom where the conventional toilet flushing experiment was conducted. Polyomavirus genes 

were below the qPCR MQL on the swabbed university bathroom surfaces (qPCR MQL 103 gene 

copies/mL corresponded to <250 gene copies in the 100 cm2 surface swabbed). It is worth noting 

that the surfaces were swabbed in bathrooms on a university campus in the summer when 

university occupancy is low. Consequently, the polyomavirus concentrations on surfaces may 

not be representative of what is present in a busy, public bathroom with traditional flush toilets. 

Our ongoing efforts include monitoring for polyomavirus at different times of the year and in 

different bathrooms with different types of flush toilets.  

In an effort to predict the amount of polyomavirus that could be present on surfaces next 

to a conventional toilet, we assumed a concentration of BK polyomavirus found in urine of 

healthy individuals (104 gene copies/mL) and used fractions determined from the virus 

deposition data experiments with dsDNA T3. Based on these assumptions, we predict ~4 gene 

copies of virus to land within the area we measured outside the toilet per flush (calculations 

described in section C.2). Because we detected less than 250 gene copies on a 100 cm2 swabbed 

surface in the swabbing experiment, we next determined the number of flushes that would need 

to occur to be able to detect more than 250 gene copies per 100 cm2 swabbed surface. In this 

calculation we assumed 1 m2 total surface area outside of the toilet within the toilet stall cubicle. 

Based on these assumptions, we calculate that nearly 6000 flushes are required to be able to 

detect BK polyomavirus above the qPCR MQL (calculations described in section C.3). This 

analysis was done using the dsDNA bacteriophage T3 fraction data to predict the fraction of the 

dsDNA polyomavirus that may be deposited outside the toilet. Of course, not all viruses of 

similar genome type behave the same way, and we have seen examples of polyomavirus 
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behaving differently from other dsDNA viruses (Goetsch et al. 2018). Therefore using the 

fraction of T3 to determine the expected amount of virus outside of the toilet may not apply to 

polyomaviruses. When we use the deposited fraction determined for MS2, we would predict ~1 

gene copy landing outside the toilet per flush, resulting in ~18,000 flushes required to be able to 

detect polyomavirus outside the toilet. Because it is likely that bathroom surfaces will be cleaned 

more often than the time required for 6000 flushes to occur, we would hypothesize BK 

polyomavirus exposure from bathroom surfaces after flushing is low or that our limit of detection 

is too high to detect this potential exposure route. JC polyomavirus is another polyomavirus 

found in high concentrations in urine (Urbano et al. 2016) and should also be monitored on 

bathroom surfaces in future studies. More importantly, to truly evaluate the risk of polyomavirus, 

future research is required to determine the infectious dose of polyomavirus and if this dose is 

lower than our method detection limit.  

5.3.4 Summary and Conclusions 

Most research thus far on virus exposure from toilet flushing has focused on enteric virus 

fate. Given the viral presence in urine, the frequency of urinating events compared to fecal 

events, and the corresponding number of flushes for urine that could lead to virus-laden droplets, 

we need to have a better understanding of urinary virus fate after flushing. This work employs a 

swabbing method to quantify the urinary tract virus polyomavirus on bathroom surfaces. This 

work also compares the potential exposure of viruses after flushing urine-diverting toilets and 

conventional toilets. We find that the estimated numbers of ssRNA and dsDNA bacteriophages 

found outside of a conventional toilet are significantly higher than bacteriophages found outside 

the urine-diverting toilet, indicating an added benefit of using urine-diverting toilets.  Further 

research is needed to fully determine polyomavirus exposures in bathrooms, the infectious state 
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of the virus to determine if toilet flushing could be a potential route of transmission, and the 

potential role aerosolized viruses could play in exposure.   
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Chapter 6. 

Conclusions and Engineering Significance 

6.1 Overview 

This work evaluated the fate of microbial contaminants as unprocessed urine is collected 

and converted to fertilizer. This research contributes to the broader goals of evaluating the risks 

of using source-separated urine for fertilizer production. Ultimately, the risks and benefits of 

source separation can be compared to risks and benefits of conventional toilet use and fertilizer 

production.  

Chapters 3 and 4 of this dissertation focused on the fate of microbial contaminants in 

source-separated urine after collection and the exposures of these contaminants to people who 

handle fertilizer or who consume food fertilized with urine-derived fertilizers.  We demonstrated 

that a common urinary tract virus is rapidly inactivated in hydrolyzed urine and that extracellular 

DNA carrying antibiotic resistance rapidly loses its ability to convey antibiotic resistance to 

environmental bacteria. In Chapter 5, we focused on another potential interaction between people 

and urine, namely when the public uses urine-diverting and conventional flush toilets. Exposures 

between urine-diverting toilets and conventional toilets were compared, and we demonstrated 

that using urine-diverting toilets leads to less virus-laden droplets being released from the toilet. 

There are a number of aspects of this research that set it apart from other work that has 

been conducted on the exposures associated with the source separation of urine. First, it takes a 

conservative approach to understanding exposure by integrating both culture-based and 

molecular-based methods, whereas most research tends to use only qPCR or culturing. The 
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research employed real urine samples collected for fertilizer production instead of synthetic 

urine, and multiple urine samples were collected from hundreds of donors with functional urine-

diverting toilets rather than a single collection from limited users. This strengthens the research, 

as the results are more likely representative of other urine samples collected with urine-diverting 

toilets.  

6.2 Main findings and significance 

One focus of this dissertation research was polyomavirus, a urinary tract virus found in 

high abundance in urine that has not yet been studied in source-separated urine.  Polyomavirus 

genes were detected for long periods of time in hydrolyzed urine, yet infectivity assays indicated 

a loss in infectivity within several hours due to the protein capsid breaking apart. The results in 

this dissertation suggest that microbial agents are responsible for the polyomavirus inactivation. 

While the role of microbes in virus inactivation has been previously suggested (Decrey & Kohn 

2017), the outcomes of this study confirm the importance of understanding factors that inactivate 

microbes. Perhaps most importantly, the polyomavirus results underscore the limits of using 

pathogen surrogates to predict the behavior of specific pathogens in the environment. In this 

case, the bacteriophage T3 surrogate behaved entirely differently than polyomavirus, despite 

having the same genome type. This study suggests that other characteristics beyond genome type 

are important to consider when choosing surrogates for environmentally relevant viruses. For 

polyomavirus, the disulfide bonds found in the polyomavirus capsid, which are generally thought 

to have a stabilizing effect in virus capsids (Walter & Deppert 1975), could have caused 

polyomaviruses to have a higher susceptibility to inactivation compared to the surrogate. A range 

of surrogates and pathogenic viruses with various genome types, genome sizes, envelope 
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presence/absence, and capsid features should be studied in the future to identify the 

characteristics that dominate virus fate.  

This dissertation research suggests that dsDNA is extremely stable inside the 

bacteriophage T3 and polyomavirus capsids. Interestingly, naked plasmid DNA lost its ability to 

be transformed to competent bacteria in hydrolyzed urine within a day and was fragmented due 

to microbial activity. Beyond the insights to the mechanistic inactivation of extracellular DNA, 

this work demonstrates that encapsidated DNA is protected from the microbial activity that 

degrades extracellular DNA, even after the virus had been inactivated. 

Both of these studies underscore the importance of method limitations when tracking 

microbial contaminants.  qPCR is useful for measuring gene presence and concentrations in 

environmental samples, and is especially important when culture-based methods are not 

available (Allen et al. 2010). Nonetheless, qPCR assays repeatedly overestimated the presence of 

infectious viruses and transferable antibiotic resistance genes (Luby et al. 2016). In the 

polyomavirus study, large sections of the genome remained intact for several weeks after the 

infectivity assays demonstrated that the virus had lost its infectivity. Likewise, antibiotic 

resistance gene copies measured with qPCR did not correlate to the gene’s ability to be picked up 

by other bacteria, as measured in transformation assays. It is therefore critical to use multiple 

methods to evaluate the potential risk of exposure or spread of microbial contaminants.  

  This work suggests that urine-diverting toilets may decrease the exposure of viruses that 

are released from flushing toilets, thus adding to the benefits of using urine-diverting toilets. This 

is particularly interesting for the case of urinary tract viruses, due to the fact that urination takes 

place more frequently in toilets than defecation. The urinary tract virus polyomavirus, for 

example, infects large percentages of the public asymptomatically, and its transmission is poorly 
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understood. No polyomaviruses were detected when bathroom surfaces were swabbed and 

analyzed by qPCR, but this may be due to the low volume of toilet users during the time of 

sample collection.  

6.3 Recommendations for Future Research 

The results from this dissertation identify a number of additional research questions and 

directions that should be explored in the future. First, this work focused primarily on urine 

storage as a means of creating fertilizer. The fate of microbial contaminants will need to be 

studied with other methods used to make fertilizer, such as acid (Hellström et al. 1999) or base 

(Randall et al. 2016; Dutta 2012) addition to prevent urea hydrolysis, struvite precipitation, 

reverse osmosis, distillation, pasteurization, etc. We can hypothesize from this work that in the 

case of high pH environments, it is likely that viruses will be inactivated and that the enzymes 

that are likely responsible for virus inactivation and DNA degradation may also be inactivated.  

Future work should also explore the microbial processes that drive both polyomavirus 

inactivation and plasmid DNA transformation loss. Here, we hypothesized that the disulfide 

bonds present in the polyomavirus capsid were susceptible to microbial activity. Additional 

research is required to identify the microbial agents that drove capsid disassembly.  This 

information will be useful for predicting the fate of other environmental viruses, especially those 

that share the disulfide bridge characteristic (e.g., HIV, hepatitis B, and hepatitis C) (Ivanov et al. 

2007; Wynne et al. 1999; Blanchard et al. 2002). Enzymatic activity likely plays a role in the 

degradation of extracellular ARGs in many environments, and future research should identify the 

organisms and enzymes responsible in different environments, including hydrolyzed urine. 

Future work should determine how other plasmid DNA-bacteria models are impacted by 

microbial activity in urine and other environments (Lorenz & Wackernagel 1994).  
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In terms of the bathroom exposure study, further work is needed to determine if 

polyomaviruses are present on bathrooms surfaces, and the potential role of toilet flushing on 

polyomavirus transmission should also be studied in more detail. Whereas this study focused on 

viruses in droplets from flushing, future work should study the role of aerosols in polyomavirus 

transmission (Gerba et al. 1975; Jessen 1955; Atmar & Estes 2006; Teunis et al. 2008; Hung et 

al. 2004; Liu et al. 2004; Booth et al. 2005; Olsen et al. 2003).  Finally, for a quantitative 

microbial risk assessment of polyomavirus and other viruses released from flushing, dose-

response relationships must be established for each of the viruses of interest.  

Overall, the results presented in this dissertation suggest low microbial risks associated 

with collecting and storing urine for fertilizer production. Consequently, the research strengthens 

the arguments for implementing urine diversion to recover nutrients and close the nutrient cycle.  
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Appendix A Supplementary Material for Chapter 3 

 

Fate of the Urinary Tract Virus BK Human Polyomavirus in Source-

Separated Urine 

 

Table A-1. qPCR temperature conditions and duration 

Step No. 

cycle 

BKPyV 

(152bp) 

BKPyV  

(900 bp)  

Initial 

denaturation 

 95° C for 2 

minutes 

95° C for 2 

minutes 

Denaturation 

40 x 

95° C for 5 

seconds 

95° C for 5 

seconds 

Annealing 56° C for 5 

seconds 

52.2° C for 5 

seconds 

Extension 72° C for 25 

seconds 

72° C for 1 

minute 

R2  >0.996 >0.999 

Efficiency  96-97% 70% 
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Table A-2.  Buffer composition used for polyomavirus inactivation. 

Buffer Name pH* Na2PO4 2H2O Na2CO3 NaCl NH4Cl 

PC7 7 60mM 50mM 1770mM  

PC9 9 60mM 50mM 1770mM  

AmPC7 7 60mM 50mM 1770mM 147mM 

AmPC9 9 60mM 50mM 1770mM 147mM 

* adjusted with HCl/NaOH 
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Figure A-1. Inactivation of Qβ (black) and MS2 (red) in different ages of urines E (n=2) and H (n=2) over time. Virus was 
added to hydrolyzed urine at 108 – 109 pfu mL-1, and infectious virus particles were measured over time 
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Appendix B Supplementary Material for Chapter 4 

 

A mechanistic study of DNA persistence, conformation changes, and 

transformation ability in source-separated urine 

 

Section B.1 Sequence of pWH1277.  
pWH1277 (4578 bp) is inserted into pBR322 between the two PvuII restriction sites (CAG’CTC).  
PvuII is italicized and bolded. 
 

CAGCTGCtGCtGtTGCTGCTGTTCAaGTGTCaATTGCTCTACTCTGTTGCTCGTCTCAATG
ATAGACATATCAAGCCTTTCAGCTTTTTTATTGCGCTTTTTGATTTCATCATTACGCTT
GACGATCTCCAGTTCCTCCCCCCTGCGCTTGGCGTGGGTGGCTTCAAGTCCCTCCTTG
AATGTCGGCTCGATGTCTAGTCCACGATCCTTATGACTGCGGTGATCAACTCTCACC
TCAAGCCCTGCTCGCTCTAGGTGGACGTTCGTCAGATCCGCCACTTTTTCCCTGATTT
TTTTCAGCGTTGAGTTCTGATCTAGCTCCCTGACTTTCTTCCCTAGCCCTTGCGGTGT
AAGGCTTCTTGTTGTCATTAGTATGTGGGCGTGATGGTTTCTTTCATCACTTCCCCCA
TGCACATGAGGGGCATGGATCGCTACGTCCACCGCCACTCCATAGGCTTTAACTAAG
GACTGGCACAACTCGGTAACAAGTGCCTGACGCTGTGTCTTATCCAGTTCATGCGGC
AATGCTATCTCTACTTCCTTTGCTAATCTTGCCTCCTGTTTGATGTCACCGTTCTTTTT
TAGTTCGGATTGCTCTACCCGATTCCATAGGGTTTGACGATCTAACATGTCAGGACT
TGCCCCAGTTGGGGCAAAAATTTGGGTGTATTCAATGCCTGTTTTTTTGGTGTAGTCC
TGCTCTTTTCCGTACGTATCACAGTACAATTTTTCGCCTGCTCGGTATGCTGCACATG
CCACGATTGAGCGACCATCTGACCTCGAAATGTTCTGCATTTCACAaTGGTaAATTGC
CATTTTCATCACCTG-TTTATTAACAGCCGCCCC-AAGTTTT-GGGC-
GGTTGGGGTGTCGGGG-TTTCCCTGA-CCGTACTTG-
CAAAATTTGGCGTAGCAAAAATTTTGCGTAAGTGCGCCCTTCGGGAACTCTGCGAGG
CTAAAAGCAAAAGCAAGAGCAATAAGGCTTTGACTTTGTTTTTTGATTTTGCTCGCT
GCGCTCGGATCTTGATGTAAGTCGAGTTTTTGAAGTAGAACACTTTTCACATTGATG
ATGGTTCATACTTCGGAAAATAGGTTGAGACACAGGCATTAAAAATGGTCAAAAAA
ACAGCTATGGAATTGGGTCAAATGCTCGATGAAGAAAAGGAAAAATTGGAACGTCA
GGAAAAGGCAAGAAAGGATCTAGCTGACGCTGTGGTGAAAGGTCGAGAGCAAAAA
CAGGCAAGGTCAGACGATGCAAAACGCAAGATCCTGATCGGGGCTTACTTACTGAA
GAAACATGATAATGACATCAAGAAACTTGTGGAACAAAACCCCGATTTTATTGGGT
ACATTAGAGAAAATGATAAGCACTTATTTTCATAGGCATTAGTAGTTATAAAAAACC
CTCATAAATCGAGGGTTTCTTTTTTATCTGCATTACTTTTTGAATCAATGTACTTTTTT
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AGCTTGCTATTTTTCACTGCATACAGCCGCTTATACTCTTTCTCAATCAATGCGGTCA
AAATGGCTTTTTGGCTCTCCCCTGCTGCGCCCACCATGTCCGCAAGCATATCCGACA
CACCCTTATCTATAAACACCTCCAAACGTTGACTATCAAGGCTTTTGCGTTTTTCACG
ATATGCTTTTTGTCGTTCGGCATTGGTTTTTGGCGGCTCTTTTAGCATGTCCTGYGTTT
TTCTGATCGTTCGGGTCTTTCaTGTCTTTAACTCCCATATAGTATATCATAGTTACAGG
ATAACATTGTTTTTAGTTACAGGATAACTTTTT-ATAAAATTTATTTGT-
AAAAATTTATGCTATCCTGCAACTATTTTTAAATTACAGGATAACTATTTAACGTTAC
CCTGTAACTATAGTTATCCTGTAACGCTAAATTAATTACCCTGTAACATATATTTTGT
TATCCTGTAACAACTAAATATTGAAATAATACTACCAAAGTTACCCTGTAACGAAAA
TAACTAGGTTAAAAAATGATCGGATTTTAACATTTTGCGTTGTTCCAAAAGTTATCA
ACAGCCTAGAACGTCATAGGAAGCGATTACAGACACTTTATAGCTATCAGCATGGG
AACATAAGGGCAGGATGAAATATGGGTCTTAAAACGCAAATGGTGAGGTTTTAGAG
GTATTTTTTGAAGATGATTAAGGCGGTTTGTTTTTAAAATTTTTGGCGGCTCTCAGGC
TGCTTACATTTTAACCAGTTCAGTGAAAAGTTCTTTTTCAGCAAATTTCTGTTTAGCA
CCATAGCTAAAACTTGCGTGGAACATATTAAGAATTGACCGAAATGACACAATCTC
AATTATATTTTTTTTGAAAAGTTTTCTTTATCAAATATTTTAAATCATTGATTTATATA
TAAGTATACATTCATTTTAATAATTAATCTTTATTTAACAATGATTTATCTATATTCA
ATTGTTTAATTATTCTTACTAATATTATCTCTATATCAATATTTTTTATTTAAAAACAT
ATGTTTAGTAGTGCTTTTGATTAAAGTACCAGAGGGAGGGAGCAGAGCTGAATGGG
NAAATACTCACCCTAGAGCGATTCTTAAAAaTCA-
CCCTAAAGTATTCCCATTCGATGTACCGTCGG-
TCGGTCGCTTTCGCATCAGGGATGACATCACTGTATCAAGCTGCCACTGTTATGATT
ACGATTGATAGCACCGCCTGAACACGCTCATAACCGCCAATTAAATGACTACTCATT
GCGTCCGCTACTCTGTTCAGTTCCCCTAGTAATAGCGTTTTTCCGATGTGTGCTAGCG
TCACTGTACCTCATCACCCACACATGGACAGATTGAGTTACAGACATTGGCTAAATT
TTTGGGGTCTATGCTTGACAAAGCGAGTTAAAACCTTAGAATTTAAGACAGGTACAT
TAAGCCCCTGTGGTGAAATCATTAGCGGTCGTCAAACCTTAATGCTTTCGATTGCCG
ATATGTCAGTATCGAAGATCTGTACCCCATAAATTACGGTAAAGCCCCAAGCAATTG
CAAGGGGCTTTTATCTTTTTTAACAAAAAAAATTTATAAATCAGGATTTTATAACAC
TAAATAATCCAAAGTACATGAGTAAGTCATGACCACTCCTGCGATGTGTGTAGCACT
CTGAGTATCCGTATTATATCAGTGATGTCATATACAACCACATAATGCGGATGTATC
ACTAACTCCCTAGTATCTTTCTGTCTGCCTGTGCGCCCCATCAGTCGATTATCAACAA
GTAAATCTGTCTTTTCTTCAATTAAATCATCAATTTCAATAGCTGCTATAGGGTTGCG
TTCTTCAAGATAATCATAGATATTTCTACGATCTTGGCGAGCTGTTTCAGTCCACTCA
ATCTTCATTCTTCGCTGCCAGGTTTCGCCAATGTTGCAGCACGTCTAGCGGC-
AACTCTGCCTTTACGTCCTCATGTGGAATCAACTTGCCTG-
CATTGGCTTCATTTAAGCCGA-TCTGTACCTGCTG-CTTG-
AACCATTTGTCATAGTCTGCGGCTTCCTGTTGCTTCTTAACAAAGTCACGCATGAAGT
CACGGATTAGCTGCGCCCCCGACCGATCAACAGTCTTAGCAAGGCTTGAAAATTCTT
GCTTTAGGTCATGGTCTACCCGAAAGGTAAAAGTCGCTTCTGTCATGTTTTTCACTCC
AATGTGTTACATTTGAATGCTATTGTAACACATTAAAAAGTTAGGTCATTGTCTTTTT
TCGGCTTAGGCTGTTCTTGGTCATAACGT-
GGTTTAAATGATGGCTGTCGCTCATTCTCAAGTAAAATTTTCCGTTT-ATTAACAG-
CCTGTTGCATCTGCTCATAGTAAGGCATCAACTGCGGTAAAATATCAGCAAGTGCCT
GTCTGTCTTTATCCAGGATACGGCTCAATTGCCCGATTTTTTTCAAGTCACGCTCATA
GGCTATTCTGTCGCTGATCTGCTCGTATTTTTGCTTTGAACACCTTATGTACTCTTGC
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ATATCGTTACTTGCCCATGCCTGCGCCTGAAGACGTGTAAACATGGAAATGTCTGAA
GCAACATGGTCGCTGATATGGTCATACTCAGCATCTTTGACATAGCCGTATTTTGAT
AAATATCTTTCATAGTCCTGCCGTTTCTTTTTGTCATCTTCCTGTTTTTGTTTAGTTTCT
CTTTCTATCTGCTGTTGTTTTCGTTGCTGTTCCTGTTGCTCCTCTTTTATCTCTCTGTGA
TAAATGGAAAGGCTAGATTGATCATTATCCCAACGTGTGAGCATGTCCTCAAAGCCG
TAATAATCAGCACTAAACCAACCTG-
TTTTCACTTTCACTGGTGGCGGCAGTGGCTCTCC-
GATCTcCCTTAGCAGTGCTGTAGCTGCTCGT-
CCCTCTTTGATCACTTTATCAAGCTGCAAGCGGTCGATATTGTCTTGC-
AAAGCCTTGTAAAATCTATGCTCTGCTCGC-TTCTCATCC-GTTTTTACTTCAATC-
AAATACACATCTATAAGCGTTTGGCGGTGTTGTTGGTGGTCGTATAGTGCCTGTTGT
GCGGTGGCATAGACTGCGGGGGCTTGGTCTACGGCATCCTCCAGCTG 
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Section B.2 Optimization of Transformation Assay Conditions. 

The purpose of the optimization was to increase the transformation efficiency capabilities to 

account for the hydrolyzed urine chemical conditions impacting transformation efficiency. 

Optimized conditions from Chang et al. were used initially. The shaking speed parameter was 

changed to increase transformation efficiency. Acinetobacter baylyi was grown in LB broth at 30 

deg C with shaking at 240 rpm. Growth curves were conducted to identify the new timing of log 

and stationary phases (Figure S1). Based on these results, plasmid DNA with urine solutions 

were added to bacteria two hours after a stationary cell culture was diluted in LB broth.  

 

Figure B-1. Growth curves of Acinetobacter baylyi (n=2) 
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Appendix C Supplementary Material for Chapter 5 

 

Towards a virus exposure assessment from urine-diverting and conventional 

toilets 
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Figure C-1. Urine-diverting toilet with petri dish layout to collet virus-laden droplets.  Two dishes for each location 
(starting at the back of the toilet and rotating clockwise: back, right, front right, front, front left, left) are used to collect 
samples 1 minute and 5 minutes after flushing.  Experiments were completed in triplicate. Urine diverting toilets differ 
from conventional toilets with a separate front bowl and plumbing to collect urine. The mesh screen shown here was 
added to the toilet to prevent other items besides urine from entering the bowl and provide easier cleaning for when this 
occurs. 

  



 

 122 

 

Figure C-2. Conventional flush toilet with petri dish layout to collet virus-laden droplets.  Two dishes for each location 
(starting at the back of the toilet and rotating clockwise, back, right, front right, front, front left, left) are used to collect 
samples 1 minute and 5 minutes after flushing. Experiments were completed in triplicate. 
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Table C-1. P values of student-t test comparing T3 and MS2 plaques counted at different locations around the toilet. 

! T3! ! ! ! ! !

! Left! Right! Front! Back! Left!Front! Right!Front!

Left! ! 0.3763! 0.1421! 0.3044! 0.401! 0.228!

Right! 0.3763! ! 0.0563! 0.7342! 1! 0.401!

Front! 0.1421! 0.0563! ! 0.0497& 0.0588! 0.0427&

Back! 0.3044! 0.7342! 0.0497& ! 0.7872! 0.6643!

Left!Front! 0.401! 1! 0.0588! 0.7872! ! 0.5413!

Right!Front! 0.228! 0.401! 0.0427& 0.6643! 0.5413! !

!
! ! ! ! ! !

!
! ! ! ! ! !

!

MS2! ! ! ! ! !

!

Left! Right! Front! Back! Left!Front! Right!Front!

Left! ! 0.6926! 0.3751! 0.251! 0.1913! 0.3239!

Right! 0.6926! ! 0.2957! 0.4397! 0.3383! 0.5651!

Front! 0.3751! 0.2957! ! 0.2008! 0.1859! 0.2198!

Back! 0.251! 0.4397! 0.2008! ! 0.6642! 0.6341!

Left!Front! 0.1913! 0.3383! 0.1859! 0.6642! ! 0.2909!

Right!Front! 0.3239! 0.5651! 0.2198! 0.6341! 0.2909! !
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Section C.1. Calculations of the fraction recovery for T3 after flushing conventional 
toilet: 
 

!"#$%&'(!!"#$%"!&! !3 = !1700!!"#10!!"# = 1.7×10!! 

 

Fraction recovery for MS2 after flushing conventional toilet: 

 

!"#$%&'(!!"#$%"!&! !"2 = !5600!!"#10!"!"# = 5.6×10!! 

 

Fraction recovery for T3 after flushing urine-diverting toilet (100 pfu is the lowest amount to be 

detected, averaged over three replicates): 

 

!"#$%&'(!!"#$%"!&! !3 < !100/3!!"#10!!"# = 3.3×10!! 

 

Fraction recovery for MS2 after flushing urine-diverting toilet: 

 

!"#$%&'(!!"#$%"!&! !"2 = !200/3!!"#10!"!"# = 6.7×10!! 
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Section C.2. Calculations estimating urinary and enteric viruses outside the toilet 

Polyomavirus gene copies added to toilet assuming 250 mL of urine per flushing event and 104 

gene copies per mL of urine: 

 

!"!!"#!!"#"!!"#$%&
!"#$! = !"#!!"!!"#$%

!"#$!!"#!!"!#$×
!"!!"#"!!"#$%&!!"!!"!!"#

!"!!"#$% = !.!×!"!!!"#"!!!"#$%!!"!!"#$%
!"#$!   

 

Estimated polyomavirus recovered outside of a conventional toilet: 

 

!"!!"#!!"#"!!"#$%&
!"#$ℎ ×!"#$%&'(!!"#$%"!"&! !3

= 2.5×10!!!"#"!!"#$%&!!"!!"#$%
!"#$ℎ ×1.7×10!! = 4!!"#"!!"#$%&!!"!!"#!!"#$%&'!!"#$%!

!"#$ℎ  

 

For multiple flushes for urinating events during the day assuming 2:0.85 ratio of urinating to 

defecating rate: 

= 2!!"#$ℎ!"!!"#!!"#$%&#$'
!"#!!"!"#$ × 4!!"#"!!"#$%&!!"!!"#!!"#$%&'!!"#$%!!"#$ℎ

= 8!!"#"!!"#$%&!!"#!!"#$%& 

 

Enteric virus added to toilet assuming 0.85 flushes for defecating per day, 32 grams of stool per 

flushing event, and 109 infectious particles per gram of stool: 
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!"#$%&!'()!!"#$%&'()
!"#$! = !"!!"#$%!!"!!"##$

!"#$!!"#!!"!#$ × !"!!"#$%&!'()!!"#$%&'()
!"#$!!"!!"##$ × !.!"!!"#$!!"!!"#!!"#!"#$%&'!!"!!"#$

!"#$!!"!!"#!!"#"$%&'() =

!.!×!"!"!!"#$%&!'()!!"#$%&'()
!"#$!   

 

Estimated enteric virus recovered outside of conventional toilet: 

 

!"#$%&!'()!!"#$%&'()
!"#$ℎ ×!"#$%&'(!!"#$%"!"&! !"2

= 2.7×10!"!!"#$%&!'()!!"#$%&'()
!"#$ℎ ×5.6×10!!

= 1.5!×10!!!"#$%&!'()!!"#$%&'()!!"#$%&'!!"#$%!
!"#$ℎ ! 
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Section C.3. Calculations of the number of flushes required to detect above 250 gene 
copies per 100 cm2 swabbed surface. 
 

!"#$%&!!"!!"#$ℎ!" > !
250!!"
100!"!× 100!!"

!
!
×1!!

!"#!$#%&'%("#
!"#$ℎ ×!"#$%&'(

 

 

Using the fraction of dsDNA T3 bacteriophage recovered outside of the toilet (1.7 x 10-6)  

 

!"#$%&!!"!!"#$ℎ!" > !
250!!"
100!"!× 100!!"

!
!
×1!!

2.5×10!!"#"!!"#$%&!!"#!!"#$%&
!"#$ℎ ×1.7×10!!!"#/!"#

= 6000 

 

Using the fraction of ssRNA MS2 bacteriophage recovered outside of the toilet (5.6 x 10-7)  

 

!"#$%&!!"!!"#$ℎ!" > !
250!!"
100!"!× 100!!"

!
!
×1!!

2.5×10!!"#"!!"#$%&!!"#!!"#$%&
!"#$ℎ ×5.6×10!!!"#/!"#

= 18000 

 

 


