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ABSTRACT

The booming of e-commerce is placing an increasing burden on freight transport system

by demanding faster and larger amount of delivery. Despite the variety in freight trans-

port means, the dominant freight transport method is still ground transport, or specifically,

transport by heavy-duty vehicles. Roughly one-third of the annual ground freight transport

expense goes to fuel expenses. If fuel costs could be reduced, the finance of freight trans-

port would be improved and may increase the transport volume without additional charge

to average consumers. A further benefit of reducing fuel consumption would be the related

environmental impact. The fuel consumption of the heavy-duty vehicles, despite being the

minority of road vehicles, has a major influence on the whole transportation sector, which

is a major contributor to greenhouse gas emissions. Thus, saving fuel for heavy-duty trucks

would also reduce greenhouse gas emission, leading to environmental benefits.

For decades, researchers and engineers have been seeking to improve the fuel economy

of heavy-duty vehicles by focusing on vehicles themselves, working on advancing the ve-

hicle design in many aspects. More recently, attention has turned to improve fuel efficiency

while driving in the dynamic traffic environment. Fuel savings effort may be realized due

to advancements in connected and automated vehicle technologies, which provide more

information for vehicle design and control. This dissertation presents state-of-the-art tech-

niques that utilize connectivity and automation to improve the fuel economy of heavy-duty

vehicles, while allowing them to stay safe in real-world traffic environments. These tech-

niques focus on three different levels of vehicle control, and can result in significant fuel

improvements at each level.

xv



Starting at the powertrain level, a gear shift schedule design approach is proposed based

on hybrid system theory. The resulting design improves fuel economy without comprising

driveability. This new approach also unifies the gear shift logic design of human-driven

and automated vehicles, and shows a large potential in fuel saving when enhanced with

higher level connectivity and automation. With this potential in mind, at the vehicle level,

a fuel-efficient predictive cruise control algorithm is presented. This mechanism takes into

account road elevation, wind, and aggregated traffic information acquired via connectivi-

ty. Moreover, a systematic tool to tune the optimization parameters to prioritize different

objectives is developed. While the algorithm and the tool are shown to be beneficial for

heavy-duty vehicles when they are in mild traffic, such benefits may not be attainable

when the traffic is dense. Thus, at the traffic level, when a heavy-duty vehicle needs to

interact with surrounding vehicles in dense traffic, a connected cruise control algorithm

is proposed. This algorithm utilizes beyond-line-of-sight information, acquired through

vehicle-to-vehicle communication, to gain a better understanding of the surrounding traffic

so that the vehicle can response to traffic in a fuel efficient way. These techniques can

bring substantial fuel economy improvements when applied individually. In practice, it is

important to integrate these three techniques at different levels in a safe manner, so as to

acquire the overall benefits. To achieve this, a safety verification method is developed for

the connected cruise control, to coordinate the algorithms at the vehicle level and the traffic

level, maximizing the fuel benefits while staying safe.

xvi



CHAPTER 1

Introduction

Research is to see what everybody else has seen,

and to think what nobody else has thought.

ALBERT SZENT-GYORGYI

1.1 Necessity for Fuel-efficient Freight Transport

A large percentage of freight transport is carried by heavy-duty vehicles (HDVs). Ac-
cording to data released in February 2015 for the 2012 commodity flow survey [2], HDVs
provide around 70% of the domestic freight transport in the U.S., in terms of both value
and weight (see Figure 1.1). This dominance has been consistent and, with the growing
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Figure 1.1: Domestic freight transport characteristics by mode of transportation. Source:
2012 commodity flow survey (released February 2015)
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Figure 1.2: Petroleum consumption in the transportation sector. Data source: transportation
energy data book edition 35, 2016

economy, is likely to increase. Given this dominance, HDV freight transport accounts for
a significant portion of energy consumption. According to the U.S. Department of En-
ergy [3], in 2016, more than 10 million HDVs were registered in the U.S. Although this
amounts to less than 4% of all vehicles (249 million), HDVs are responsible for 18% of the
petroleum consumption in the transportation sector (see Figure 1.2). Thus, more efficient
freight transport would greatly contribute to the overall energy efficiency of the transporta-
tion sector and could yield large environmental benefits.

Looking at energy consumption from an operational perspective, fuel cost accounts for
a large percentage of HDV fleet operation costs. According to a 2016 survey on trucking
operational costs [4], fuel cost contributed one fourth of the annual operation cost of heavy
duty trucks (see Figure 1.3). This percentage was 40% in 2012, when the fuel prices were at
their highest. Given this high and fluctuating cost, improving fuel efficiency would improve
the finances of the trucking industry and fleet operations.

In response to the need for better fuel efficiency, in 2009 the U.S. Department of Energy
(DOE) launched the SuperTruck initiative with the goal of developing and demonstrating
a 50 percent improvement in overall freight efficiency for class 8 heavy-duty trucks. The
main goals of this initiative were to develop new technologies for engines and powertrain-
s, to improve aerodynamics, to reduce weight and tire rolling resistance, and to optimize
energy management systems. This initiative was led by four industry teams: Cummin-
s/Peterbilt, Daimler, Volvo, and Navistar. In June 2016, DOE announced that all four teams
have been successfully meeting or exceeding the 50 percent improvement goal, with some
of the technologies close to being commercialized [5].
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Figure 1.3: Share of annual operation cost for HDVs. Source: American Transportation
Research Institute Analysis of the operational Costs of Trucking 2016

Despite the success of the program, challenges remain in the area of reducing techno-
logical costs as well as improving reliability. To address these challenges, in August 2014,
DOE launched the SuperTruck II program to drive progress toward more specific products
and closer-to-market commercialization. Besides the bold goal of achieving greater than
100 percent improvement in freight efficiency [6], the participants in the DOE initiative are
required to develop technologies that can reach the market quickly, while saving money
and delivering the same or better performance than that of the 18-wheelers of today.

Among many prospective technological directions for the SuperTruck I and II initia-
tives, the technology for optimizing energy management systems is of particular interest,
because it can lead to applications beyond super trucks in the near future. This technolo-
gy focuses on optimally utilizing the given powertrain systems, both for the well-designed
powertrain system for the SuperTruck initiatives, and for the traditional ones used by cur-
rent in-production vehicles. Thus, such technology could be used to improve fuel efficiency
of currently operating fleets, bringing day-one benefits to the trucking industry and the w-
hole transportation sector.

1.2 Eco-Driving: Fuel-Efficient Transport in Practice

The practice of optimally utilizing the given powertrain systems of automobiles and trucks
has often been referred to as eco-driving, and has been studied over the past few decades.
Indeed, many experiments have shown that given the same route, truck drivers have very
different driving profiles (e.g., in terms of speed and gear engaged), resulting in a large
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variation in fuel consumption [7]. This points to the large potential of eco-driving for fuel
savings.

Since its early stage, considerable eco-driving research has been focused on driver edu-
cation or online advice [8]. These studies generally offer empirically-based advice, such as
driving at an economical cruise speed, and accelerating or decelerating less aggressively.
Although this may lead to significant fuel efficiency improvements in the short term [9],
degradation in the long term due to human behavior variations has remained an issue [10].
Thus, recently researchers have been relying on increasing levels of longitudinal automa-
tion, such as cruise control and adaptive cruise control.

Longitudinal automation, in particular, enables cooperative control of the engine and
transmission, while taking the propulsion demand related to road elevation into considera-
tion [11]. This may lead to fuel efficient driving profiles (including speed profiles and gear
shift profiles). Since first studied, the problem of achieving fuel efficient driving profiles
has been formulated as an optimal control problem. Over time, simple problems with sim-
ple linear vehicle dynamic models and elevation profiles models [12], [13] have developed
into nonlinear, more complex, and more realistic models, which include detailed engine
dynamics, gear shift dynamics, and aerodynamics [14]. To solve these complex optimal
control problems in a reasonable amount of time (that enables real-time implementation),
different techniques have been utilized, including analytical approaches [12,15,16], primi-
tive sampling approaches [17, 18], direct “discrete and optimize” approaches [19], indirect
necessary condition based approaches [20], dynamic programming based approaches [21]
and stochastic dynamic programming approaches [22]. Typical improvements in fuel econ-
omy resulting from the these studies are around 10% over constant speed cruise control.

Improvements in fuel economy attributable to eco-driving design have been reported
based on numerical studies on standard driving cycles, and/or real experiments carried out
in isolated environments. Typically, the above solving techniques rely on many parameters
that are tightly related to the testing scenario, and whose values may significantly affect
the solutions. As a result, the parameters are extensively tuned for the testing scenarios.
The resulting eco-driving designs with such parameters usually could not perform well
for general scenarios because of such sensitivity on parameters. Thus, a real challenge
in implementing the eco-driving design is to develop a systematic tools that allows the
algorithms to be responsive to parameter changes. This issue will be revisited in Section
1.4.2.

Moreover, in the literature, the proposed eco-driving frameworks that incorporate en-
gine and transmission control usually focus on fuel performance. For an automotive sys-
tem, of equal, if not greater, importance are the safety and stability of the incorporated
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system. These two aspects, however, tend to be overlooked, and no systematic and theo-
retical approach is available in the literature that provides safety and stability guarantees of
the incorporated system. This issue will be revisited in Section 1.4.1.

1.3 Opportunities with Connected Automated Vehicle (CAV)
Technology

While HDVs with eco-driving technologies can potentially gain as high as 10% fuel saving
without traffic perturbations, the benefit may not be attainable in real traffic, where HD-
Vs need to respond safely to their environment, including surrounding vehicles. In fact,
studies designed to generate fuel efficient driving profiles have rarely considered road el-
evation information together with local dynamic traffic information, partially due the lack
of technologies that can provide such traffic information in real time.

Recent developments in communication technologies [23], [24] can provide ground ve-
hicles with increasing levels of connectivity. This connectivity enables more information
sharing among the vehicles and the transportation infrastructure. Specifically, connectivity
can be used to enhance automation by providing more information about local traffic envi-
ronment. This may allow optimization of the vehicle powertrain for better fuel efficiency
in a real, dynamic traffic environment. For example, vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communication may be used to obtain real-time traffic information
to optimize speed profiles and gear changes. Such systems have a clear advantage com-
pared to sensory systems that only provide information about the immediate surroundings
of the vehicle [25] (e.g., about vehicle immediately ahead). V2V and V2I communication
can also provide information with a relatively small latency compared to a service based
on remote data aggregation (e.g., Google Maps). Specifically, V2V communication can
provide data on the motion of multiple vehicles ahead, enabling unique beyond-line-of-site
perception. Given these benefits, V2V communication devices that utilize various commu-
nication protocols (e.g., DSRC [26], C-V2X [27], 5G [28]) are starting to be available not
only on new cars and new trucks, but also on existing ones [29]. Thus, traffic information
acquired via connectivity is becoming increasingly available.

To utilize the information acquired from connectivity for safety and better fuel econ-
omy, some researchers have been focusing on designing centralized and cooperative con-
trollers for platoons of automated vehicles [30]. For example, cooperative adaptive cruise
control (CACC) establishes a fixed communication structure over a chain of automated
vehicles following each others that share information within the group, and control their

5



motion cooperatively generating smoother driving patterns for all vehicles [31–33]. It has
been demonstrated experimentally that such CACC system may bring fuel savings at the
platoon level [34]. For HDVs, platoons formulated using CACC system may provide extra
benefits; bringing trucks close to each other dramatically reduces the air resistance of the
vehicles within the platoon [35, 36]. However, for platoons to be effective, the penetration
rate of capable automated vehicles needs to be high [37]. Currently, the penetration rate is
far from high enough.

Instead of relying on cooperation with other capable automated vehicles, over the past
few years, to improve fuel economy, some researchers have focused on individual vehicles
with communication capability that can incorporate forward traffic information acquired
through connectivity. One popular approach has been optimizing fuel economy in a re-
ceding horizon optimal control (RHOC) framework (often called model predictive control
or MPC) [38], [39], [40], [41], [42]. In the receding horizon approach, an optimization
problem is formulated and solved to obtain fuel efficient actions, assuming the availabili-
ty of perfect (or close to perfect) predictions about the motion of the vehicle immediately
ahead. The advantage of this method is that multiple design objectives such as fuel econo-
my, driving comfort, response to elevation, and safety can be explicitly incorporated. Fuel
improvements resulting from the RHOC framework reported in the literature have been
based on such accurate predictions over a long enough time horizon. In practice, however,
a prediction is typically only available for a few seconds with limited accuracy [43]. Giv-
en the importance of accurate predictions, it is not clear how these RHOC-based methods
would perform in terms of fuel economy in real traffic under inaccurate predictions, as fuel
economy improvement may be compromised and safety hazards may occur. We will revisit
this issue in Section 1.4.3.

To improve the fuel economy of an individual vehicle utilizing connectivity, it is also
possible to directly include the motion information from multiple preceding vehicles in the
feedback structure to obtain a connected cruise controller [44]. A vehicle driven by such
a cruise controller is referred to as a connected automated vehicle (CAV) in the reminder
of this dissertation. Recent studies have suggested that CAVs can improve traffic safety
and efficiency, even for low penetration [45, 46]. More importantly, CAVs can achieve
better fuel economy by tuning the feedback gains in a simple yet systematic manner [47],
[48], [49]. Yet the question remains whether such a simple feedback controller can indeed
save more fuel in real traffic. Further, it is unclear whether the performance is improved
compared to the popular RHOC approach. Finally, there is the issue of safety concerns,
as well as the matter of considering elevation information, both of which are nontrivial for
such control frameworks and to date few studies have been presented along these directions.
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We will also pick up these issues in Section 1.4.3.

1.4 Dissertation Contributions and Outline

Looking at the status of the research on fuel saving for heavy duty vehicles using connec-
tivity and automation, this dissertation groups the potential issues found at three different
levels as follows.

1. At the powertrain level, how to design the powertrain for an automated vehicle with
engine and transmission control that is not only fuel efficient, but also safe and stable.

2. At the vehicle level, how to enable the application of fuel-efficient driving profile
optimization based on elevation and traffic preview using connectivity, and how to
efficiently carry out parameter analysis to maximize the benefit.

3. At the traffic level, how to utilize beyond line-of-sight information through connec-
tivity to achieve safe and fuel-efficient longitudinal automation.

Correspondingly, this dissertation makes contributions by providing techniques to solve
these issues at each level. The main contributions for each level are summarized as follows.

1.4.1 Powertrain level

In Chapter 3, the design of a safe, stable and fuel-efficient powertrain with internal com-
bustion engine and discrete gearbox for an automated vehicle is studied. Particularly, we
focus on the design of transmission gear shift schedule (see Figure 1.4).
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Figure 1.4: Powertain level: designing gear shift schedule
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To design the gear shift schedules, the dynamics of an automated vehicle with engine
and transmission control is first modeled as a hybrid system that contains dynamic vari-
ables of both discrete and continuous type. Using the theory of hybrid systems, Chapter
3 gives the rules by which a gear shift schedule design can ensure the safety and stabili-
ty (in the sense of Lyapunov) of the integrated powertrain system. Based on these rules,
a fuel-optimal gear shift schedule design is proposed and is compared with the current
in-production design in terms of both fuel economy and towing ability.

1.4.2 Vehicle Level

Relying on the fuel efficient powertrain, Chapter 4 studies the design of eco-driving sys-
tems that generate fuel-efficient driving profile based on elevation and traffic preview using
connectivity (see Figure 1.5). A design framework of eco-driving that incorporates gener-
al geographic information (e.g., elevation, wind), traffic information, and travel concerns
(e.g., speed limit, travel time limit) is proposed, and formulated as a multi-objective op-
timal control problem. Also proposed is a systematic approach for analyzing the optimal
trajectory for fuel efficient driving while varying parameters. Thus, such an approach en-
ables quantification of the trade-offs among different objectives by setting parameters, and
thus escalates industrial application of the eco-driving framework.
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Figure 1.5: Vehicle level: optimizing speed profile while considering elevation and traffic
information

1.4.3 Traffic level

Building upon the eco-driving framework, Chapter 5 and 6 propose safe and fuel efficient
algorithm that can handle local dynamic traffic (see Figure 1.6). This enhancement would
intervene only if the eco-driving framework fails to give safe commands.
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Specifically, in Chapter 5, the source of fuel consumption reduction in traffic is first
studied using a series of experiments. Based on these findings, the connected cruise con-
troller is designed that directly feeds back the beyond line-of-sight information acquired
through connectivity. Then, a data-driven optimization procedure is proposed which im-
proves the fuel-economy while driving the vehicle in traffic. A comparison study between
the proposed method and the RHOC approach is carried out to demonstrate the effective-
ness of the proposed design.

In Chapter 6, the connected cruise controller is further enhanced with safety guaranteed
features using the novel notion of the safety chart and the notion of minimal intervention.
Such minimal intervention could maximize the usage of vehicle level fuel-saving which
assumed sparse traffic.

……

……

Figure 1.6: Traffic level: safe and fuel efficient connected cruise control strategy that also
responds to elevation.

1.5 Statement of Impact

This dissertation presents the state-of-the-art application of connectivity and automation in
improving fuel economy. Specifically, this dissertation is one of the first few that deals with
real experimental data collected using vehicle communication devices. This dissertation
also presents the novel utilization of different theory in dynamics and control in automotive
engineering, including classical and modern nonlinear control theory, hybrid control theory,
optimal control theory, and analysis of dynamical system with delays.

1.6 Publications

The results in this dissertation can be also found in the following publications:
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CHAPTER 2

Modeling

All models are wrong, but some are useful

GEORGE E. P. BOX

In this chapter we introduce the models that are involved in the connected automated
truck design. The models presented in this chapter serve as the basis for analysis and con-
trol design in the following chapters. We start with formulating the longitudinal dynamics
of the vehicle in Section 2.1. Then, we take a close look at the elevation modeling in Sec-
tion 2.2, which is a major contribution to the external forces on the longitudinal dynamics
of heavy duty vehicles. In Section 2.3 a simple powertrain model is presented to describe
the internal forces that drive the vehicle, and we also characterize the corresponding energy
consumption. In Section 2.4 a simulation model is introduced, which is used at the pow-
ertrain level and the vehicle level design evaluation. In Section 2.5 a high fidelity model
is presented, which is used for evaluating the traffic level design. Finally, a summary in
Section 2.6 concludes this chapter.

2.1 Vehicle Dynamics

The longitudinal dynamics of the HDV is derived using classical mechanics, with the as-
sumption that no slip occurs on the wheels and that the flexibility of the tires and the
suspension can be neglected. These assumptions are made typically for modeling oriented
at fuel consumption optimization, and were shown valid and effective in the literature [35].

Based on the typical tractor and trailer configuration of the class 8 heavy duty truck,
here we consider a model consist of 5 rigid bodies (1 driving axle , 2 front axle , 3 trailer
chassis and body, 4 tractor chassis and body, and 5 rear axle) as shown in Figure 2.1, with
the center of masses (Gi, i = 1, . . . , 5) marked as black dots, and dimensions marked by
grey. The masses and mass moment of inertias of these five parts are denoted by mi and
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JGi, i = 1, . . . , 5, respectively. The truck is driving straight on a slope with inclination
angle φ. The direction of gravity (g) is indicated by the purple arrow. An Euclidian frame
is formulated with x along the slope surface while y perpendicular to the slope surface.
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Figure 2.1: Conceptual figure of a heavy duty vehicle model, with five rigid bodies (1
driving axle, 2 front axle, 3 trailer chassis and body, 4 tractor chassis and body, and 5 rear
axle).

All external forces and torques that are of interest are marked as green arrows in Figure
2.1. Ta denotes the axle torque on driving axle, which is the sum of the driving torque Td,
and braking torque Tb. The driving torque comes from the powertrain, while the braking
torque comes from brake module, both of which will be introduced in Section 2.3. There
are two types of resistance considered in the model, both are important contributors to the
fuel consumption of heavy-duty trucks [35]. Fa is the air resistance force parallel to the
ground surface at the height h4 off the ground. The rolling resistance torque for each wheel
is denoted as Mri, i = 1, 2, 5. Their expressions will be introduced later in this section.

The free body diagrams for each rigid body are shown in Figure 2.2. In each free body
diagram, the forces and torques are marked as green arrows. The speed and acceleration
of the center of mass are marked as blue and red arrows, respectively. The reaction forces
between rigid bodies are denoted as Ki, the normal forces from the ground to the wheels
are denoted as Ni, while the traction and friction forces are denoated as Ci. With these
diagrams, the Newton-Euler equations can be given for each rigid body.

Driving Axle (rigid body 1)

x : C1 −K1x −m1g sinφ = m1a1, (2.1)

y : N1 −K1y −m1g cosφ = 0, (2.2)

z : C1R +Mr1 − Ta = JG1α1, (2.3)
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Front Axle (rigid body 2)

x : − C2 −K2x −m2g sinφ = m2a2, (2.4)

y : N2 −K2y −m2g cosφ = 0, (2.5)

z : − C2R +Mr2 = JG2α2, (2.6)

Trailer (rigid body 3)

x : K4x +K5x −m3g sinφ = m3a3, (2.7)

y : K4y +K5y −m3g cosφ = 0, (2.8)

z : K4yd3 +K4x(h3 − h2)−K5y(l1 + d1 − d3)−K5x(h3 −R) = 0, (2.9)

Tractor (rigid body 4)

x : − Fa −m4g sinφ+K1x +K2x −K4x = m4a4 (2.10)

y : K1y +K2y −K4y −m4g cosφ = 0, (2.11)

z : M0 + Fa(h1 − h4) +K4y(l2 − d1 − d2)−K4x(h4 − h2)

−K1y(l2 − d2) +K1x(h4 −R)

+K2yd2 +K2x(h4 −R) = 0. (2.12)

Rear Axle (rigid body 5)

x : − C5 −K5x −m5g sinφ = m5a5, (2.13)

y : N5 −K5y −m5g cosφ = 0, (2.14)

z : − C5R +Mr5 = JG5α2, (2.15)

The rolling resistant for each wheel is given by

Mri = γ0RNi, i = 1, 2, 5. (2.16)

where γ0 is the rolling resistance coefficient and it is assumed to be the same for each
wheel R is the wheel radius, while Ni are the normal forces. Since all the rigid bodies are
traveling together and no suspension dynamics are considered, they should have the same
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Figure 2.2: Free body diagrams

acceleration at the center of mass. That is,

ai = a = v̇, i = 1, . . . , 5, (2.17)

where a and v are the longitudinal acceleration and speed of the truck. Since we assume
that the wheels are all rolling without slipping, we have

αi = α =
a

R
, i = 1, 2, 5. (2.18)

After substituting (2.17),(2.18) into (2.1)-(2.18), the 15 unknowns are

C1, C2, C5, K1x, K2x, K4x, K5x, K1y, K2y, K4y, K5y, N1, N2, N5, a. (2.19)

First plugging (2.2),(2.5),(2.14),(2.8) into (2.11), one gets

( 5∑

i=1

mi

)
g cosφ = N1 +N2 +N5. (2.20)

Then plugging (2.1),(2.4),(2.13),(2.7) into (2.10), one gets

( 5∑

i=1

mi

)
a = C1 − C2 − C5 −

( 5∑

i=1

mi

)
g sinφ− Fa. (2.21)

Substituting C1, C2, C5 with the expression generated from (2.3),(2.6),(2.15), and using
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(2.20), one gets

Ta

R
− γ0

( 5∑

i=1

mi

)
g cosφ− JG1 + JG2 + JG5

R2
a−

( 5∑

i=1

mi

)
g sinφ− Fa =

( 5∑

i=1

mi

)
a.

(2.22)
If we define

m =
5∑

i=1

mi, and m̄ = m+
JG1 + JG2 + JG5

R2
, (2.23)

the longitudinal dynamics are given by

m̄a = −mg sinφ− γ0mg cosφ− Fa +
Ta

R
, (2.24)

where Ta is the axle torque. Air resistance force is modeled as

Fa =
1

2
ρCdA(v + vw)2 := k(v + vw)2, (2.25)

where Cd is air drag coefficient, ρ is the air density, A is the frontal area, and vw is the
headwind speed. Therefore, one has the longitudinal dynamics as

m̄v̇ = −mg sinφ− γ0mg cosφ− k(v + vw)2 +
Ta

R
. (2.26)

Alternatively, one can use the power law and obtain the same longitudinal dynamics, see
[44].

2.2 Elevation

Based on (2.26), the variation of elevation (often called the grade) is an important con-
tributor to the external resistance forces. This is true especially for heavy duty vehicles
considering their large mass and limited engine power.

The elevation h is available from GPS coordinates and can be converted to data in
terms of either direct distance d or the distance travelled (arclength) s. This leads to a func-
tion h(d) illustrated in Figure 2.3. Equivalently, h(s) can be obtained using the arclength
parametrization d(s), for an alternative elevation description. Using the function h(s), the
inclination angle φ can be calculated as h′(s) = sinφ, that is, the sinφ term in (2.26) can
be substituted by h′(s). One the other hand, for the road in the real world, φ is usually
small (|φ| < 0.05 [rad]). Thus, the approximation cosφ ≈ 1 is usually used in (2.26).

In practice, the h(d) function would be available in discrete GPS data. Suppose we
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Figure 2.3: Elevation h as function of distance d and arc-lengths s.

have N pairs of such data, we use the following conversion to get a mesh for h(s):

[
d0 d1 d2 . . . dN

h0 h1 h2 . . . hN

]
∆si=
√

(di+1−di)2+(hi+1−hi)2

⇐⇒
si+1=si+∆si, i=0,...,N

[
0 s1 s2 . . . sN

h0 h1 h2 . . . hN

]
. (2.27)

We remark that the mesh for d may not be uniformly distributed, and thus, s would not
be uniformly distributed either. Linear interpolation can be used to fill the gaps in h′(s).
Considering the scale of the route length versus the scale of GPS resolution, the error
resulted from discretization and linear interpolation of the elevation profile may be ignored.

2.3 Vehicle Powertrain

The conceptual figure of a powertrain propelling a HDV is shown in Figure 2.4. It consists
of an engine, a clutch, transmission shafts including gearbox, propeller shaft, final drive,
and drive shaft, and wheels. General powertrain modeling can be carried out in various
ways depending upon the purpose of study [50]. Our objective is to model the power flow
from the engine to the drive shaft. Each component is described briefly in the reminder of
this section and the powertrain model for the HDV is constructed. The notation for torques
and angular speed used in this section is given in Figure 2.5, and will also be explained
below.

Engine

The engine considered here is a diesel engine, a type of internal combustion engine where
very highly compressed air and fuel are mixed in a combustion chamber, and the com-
bustion resulted produces power [35]. The produced power drives the crankshaft and the
clutch that connects to the flywheel at the end of crankshaft. Here, for simplicity, we do not
consider the internal dynamics which characterizes the relation between the combustion,
the injected fuel, and the power produced. Instead, a static fuel consumption map is used
to describe the relation between the engine speed ωe, the engine torque Te, and the fuel
consumption rate q(ωe, Te). Considering the time scale of combustion versus the time scale
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Figure 2.4: A conceptual plot of an HDV powertrain. (The pictures of the components are
acquired online based on specification of a Navistar ProStar HDV)
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Figure 2.5: Components of the powertrain with notation for torques and angular velocities
after each component.

of powertrain/vehicle speed control, such static model for fuel consumption is reasonable,
and it is a common approach used in the literature [11]. Given a certain engine torque
produced by combustion, the Newton-Euler equation of the angular motion lead to

Jeω̇e = Te − Tc,in, (2.28)

where Te is the net engine torque output at the crankshaft, Tc,in is load torque from the
clutch, and Je is the moment of inertia of the engine including the flywheel.

Dividing the fuel consumption rate with the engine power Pe = Teωe, we obtain the
brake specific fuel consumption (BSFC):

BSFC =
q(ωe, Te)

Teωe

. (2.29)

that is used to evaluate the fuel economy of an engine, Small BSFC values typically imply
good fuel economy [51] and it will be used in the fuel consumption design later.
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Clutch

The clutch involves two frictional discs, one connects to the engine flywheel and the other
to the gearbox’s input shaft to enable gear shifts. Clutches are commonly found in vehicles
equipped with manual gearbox (MT) or automated manual gearbox (AMT). When the two
discs are pressed, the clutch is engaged. We assume negligible torque loss and speed dif-
ference at the connection point. Thus, we assume the connection between gearbox and the
engine fly wheel through the clutch to be stiff, which can be modeled as

ωe = ωc,

Tc,in = Tc,
(2.30)

where Tc,in and Tin are the input and output torque from the clutch respectively, and ωc is
the output angular speed from the clutch.

Gearbox

The gearbox uses gears (cogwheels) and gear trains to provide speed and torque conver-
sions from a rotating power source to another device. In motor vehicles, gearbox connects
the clutch and the propeller shaft. With a set of properly designed gears, the gearbox en-
ables an engine to drive the vehicle at a large speed range. The speed conversion depends
on which gear is engaged, and it is modeled as a ratio γg for each gear. For torque conver-
sion, typically a slight drop arises when the gear is engaged due to frictional losses which
are modeled as an efficiency ηg for each gear. Hence, at a given gear, the conversion due to
gearbox is given as

Tg = γ(i)
g η(i)

g Tc,

γ(i)
g ωg = ωc,

(2.31)

where Tg is the torque output and ωg is the output angular speed from the gearbox, while
index i corresponds to the gear index.

In this dissertation, gear shifts are assumed to happen instantaneously. Mathematically,
such gear shift process is described as

Tc =
T

(i)
g

γ
(i)
g η

(i)
g

=
T

(j)
g

γ
(j)
g η

(j)
g

,

ωc = γ(i)
g ω(i)

g = γ(j)
g ω(j)

g ,

(2.32)
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where index i, j corresponds to the gear indexes. Considering the time scale of the op-
eration at vehicle level (few hundreds seconds) versus the gear shift duration (less than 1
second), such assumption is reasonable. For the design at powertrain level, such assump-
tion facilitates the design and stability analysis, but neglects the fuel consumption during
gear shift. Removing such assumption requires a more detailed modeling of dynamic pro-
cesses during the gear shift (e.g. clutch engage and disengage process, fuel injection and
torque generation for speed matching between engine flywheel and gearbox input shaft),
and it is beyond the scope of this dissertation.

Final Drive

The final drive connects to the gearbox through the propeller shaft and to the wheel-
s through the drive shaft. It is needed to change the torque direction so that the engine
crankshaft can spin in a different direction than the driving axle (as indicated in Figure
2.4). Similar to the gearbox, the final drive is characterized by a conversion ratio γf and
an efficiency ηf . The conversion ratio is designed such that the vehicle could travel at a
reasonable fast speed while still get sufficient propulsion torque from the engine. Since the
final drive is connected to the wheel directly, the output speed of the final drive is the wheel
speed ωw. Neglecting all inertia, and assuming negligible frictional losses in the propeller
shaft and final shaft, the following relation between the torque and angular velocities at the
input and the output of final drive can be given as:

Td = γfηfTg,

γfωw = ωg.
(2.33)

Brake

Typical brake system for HDVs is the S-cram drum brake that uses air brake chambers and
an “S” shaped linkage to press the brake shoes against the surface of the brake drum. The
brake system is located within the wheel such that the brake is applied directly to the driven
wheels. Thus, the braking is modeled as a single torque Tb applied to the driving axle.

At the Driving Axle

To conclude this part of powertrain modeling, we combine (2.28),(2.30),(2.31) and (2.33)
to obtain the driving torque produced by the powertrain:

Td = γgγfηfηgTe − Jeγ
2
gγ

2
f ηfηgω̇w. (2.34)
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Thus, combining with the braking torque, the total axle torque in (2.26) is given by

Ta = Td + Tb = Tb + γgγfηfηgTe − Jeγ
2
gγ

2
f ηfηgω̇w (2.35)

We define the total effective mass is given as

meff(η) = m̄+
Jeγ

2
gγ

2
f ηfηg

R2
, (2.36)

where η = γgγfηfηg is defined to imply the the dependency of meff on gear. Combining
(2.26) with model of powertrain, the longitudinal dynamics is given as

meff(η)v̇ = −mg sinφ− γ0mg cosφ− k(v + vw)2 +
ηTe + Tb

R
. (2.37)

2.4 Simulation Model

Based on (2.37), a simulation model for the connected automated truck is built. The axle
torque Ta is the control input in the simulation. When a particular gear is assigned, Te and
ωe can be determined based on the current gear and torque required at the axles Ta at the
current speed:

ωe =
γgγf

R
v , Te =

Ta

γgγfηfηg

. (2.38)

Then the fuel consumption can be calculated based on fuel consumption map q(ωe, Te).
Gearshifts are modeled to happen instantaneously along iso-power curves. That is, when
shifting from i-th gear to i+1th gear (or i+ 1-th gear to ith) gear, we have

T (i)
e ω(i)

e = T (i+1)
e ω(i+1)

e ,
ω

(i)
e

γ
(i)
g

=
ω

(i+1)
e

γ
(i+1)
g

, T (i)
e η(i)

g γ(i)
g = T (i+1)

e η(i+1)
g γ(i+1)

g . (2.39)

In practice, gearshift map is expressed as function of driver command CMD and the vehicle
speed. Since axle torque demand is given at a given gear, the driver command is interpreted
as

CMD =
Ta

Te,max(ωe)η
. (2.40)

where Te,max(ωe) is the maximum available engine torque as a function of engine speed.
An in-production gear shift design is shown in Figure 2.6 [52]. The blue curves denote the
upshift curves while the red dashed curves denote downshift curves. In the simulation, an
upshift happens if the (v,CMD) pair crosses the upshift curve from left to the right while
an down shift happens if the (v,CMD) pair crosses the downshift curve from right to the
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Figure 2.6: An in-production gear shift design of Navistar truck ProStar 2012, where the
blue curves denote the upshift curves while the the red dashed curves denote downshift
curves.

left.
The control of the automated truck that follows a reference speed profile vref(t) can be

achieved by a simple PI controller

Ta = meff(η)R
(
KP(vref − v) +KIe

)
,

ė = vref − v,
(2.41)

whereKP andKI are the control gains. This PI controller will be used in the simulations for
design validation at the powertrain level, where the truck is expected to follow a reference
speed profile.

In the following chapters, we omit the dependency of meff on η in the design process
by setting Je = 0 for simplicity. Such assumption will not change the design principle and
will not change the results qualitatively. In the simulation model, on the other hand, Je is
set to the real values. This simulation model is primarily used in Chapter 3 and 4.

The vehicle model (2.37) is only as good as the knowledge of all the vehicle param-
eters, which is summarized in Table 2.1. In fact, only the gearbox ratios and final drive
ratio is known to be static. The inertias and efficiencies may vary based upon operating
conditions which affect the lubrication. The wheel radius may vary based on air temper-
ature and pressure as the tire is deforming while driving. The rolling resistance torque
also depends nonlinearly on the vehicle speed. External factors such as road resistance
and wind are hard to know accurately. However, considering daily operation of heavy duty
vehicle, the dominant uncertainty is the vehicle mass (specifically m3 in Figure 2.1) as the
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Parameter Value
Mass (fully loaded) (m) 29484 [kg]

frontal Area (A) 10.68m2

Tire Rolling Radius (R) 0.504 [m]
Tire Rolling Resistance Coefficient (γ) 0.006

Air Density (ρ) 1.20 [kg·m−3]
Air Drag coefficient (CD) 0.6

k = 1
2
ρCDA 3.84 [kg/m]

Maximum Acceleration (amax) 2 [m/s2]
Rotational Element Inertia (Jw) 39.9 [kg·m2]

Engine Inertia (Je) 3.43 [kg·m2]
Gravitational Constant (g) 9.81 [m/s2]
Number of Forward Gears 10
1st Gear Ratio/Efficiency 12.94/0.97
2nd Gear Ratio/Efficiency 9.29/0.97
3rd Gear Ratio/Efficiency 6.75/0.97
4th Gear Ratio/Efficiency 4.9/0.97
5th Gear Ratio/Efficiency 3.62/0.97
6th Gear Ratio/Efficiency 2.64/0.97
7nd Gear Ratio/Efficiency 1.90/0.97
8rd Gear Ratio/Efficiency 1.38/0.98
9th Gear Ratio/Efficiency 1/0.99
10th Gear Ratio/Efficiency 0.74/0.98

Final Drive Ratio /Efficiency 3.73/0.96

Table 2.1: Nominal parameter values of a 2012 Navistar Prostar truck [1].
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freight transport operations involve usually loading and unloading at multiple locations.
The uncertainty on this mass is generally several orders of magnitude larger than the other
parameters. Thus, we lump all the above uncertainties in the mass, which is a common
approach in the literature [35].

2.5 High Fidelity Simulation Model with TruckSim

To evaluate the performance of a heavy-duty truck under higher-level controllers (e.g.,
connected cruise controller) in real traffic, we build a high-fidelity model in TruckSim
based on a 2012 Navistar Prostar truck [1], and establish a co-simulation platform with
MATLAB/Simulink. It captures primarily the longitudinal motion of the simulated heavy-
duty truck. The configuration seen in Simulink is shown conceptually in Figure 2.7.

High-Level Controller

Lower-level
Controller

Throttle

Brake
Pressure

eω eT Fuel
Map

fmTruckSim

s

da

v

s v

s v

n, . . . , v1v

n, . . . , s1sDelay
Information

iξ

Figure 2.7: Structure of the high-fidelity simulation platform using TruckSim and MAT-
LAB/Simulink to obtain the speed response and energy/fuel consumption of a truck responding
to traffic perturbations.

The block “TruckSim” is a Simulink S-function that interacts with the high-fidelity
model in TruckSim. The high-fidelity TruckSim model is built from the tractor-trailer
model with the default class 8 sleeper cab tractor and a default trailer. The specifications
of a Prostar 2012 shown in Table 2.1 are used for exterior, aero dynamics, and powertrain
specifications. An engine throttle map based on the measurement of an in-production en-
gine is integrated in the TruckSim model as well. For those dynamical specifications that
do not appear in Table 2.1 (e.g., the brake actuator response curve), default data sets for
the class 8 truck in TruckSim are used. As a result, this high-fidelity model takes throttle
percentage and brake pressure as inputs, and reports the dynamic response of the truck with
over a hundred states, including the longitudinal position s and speed v. With the states of
engine speed (ωe) and engine torque (Te), the truck’s fuel consumption can be obtained
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using the same fuel map q(ωe, Te) as in the simulation model. Compared to the simulation
model in the previous section, the TruckSim model not only has a more detailed vehicle
dynamic model, but also has a more detailed dynamic model about engine dynamics and
clutch dynamics. Thus, the fuel consumption during gear shift is also estimated, provid-
ing a better fuel consumption estimation compared to the simulation model in the previous
section.

The real traffic data collected using V2V devices are processed to describe the position
(s1, . . . sn) and speed (v1, . . . , vn), of up to n preceding vehicles (n is adjustable) at a given
time moment. An information delay block is applied to these position and velocity infor-
mation before it goes to the controllers, simulating the real V2V communication behavior.
In this co-simulation, the delay is set to be 0.1 second unless being specified otherwise.
The higher level controller takes the host vehicle states (e.g., position s speed v) as well as
the information about preceding vehicles, and command a desired acceleration ad. Then,
the acceleration command is converted by a lower-level controller into throttle and brake
commands, based on the simple dynamics (2.37), and the throttle and brake maps used in
the TruckSim model.

Once the control algorithm in the higher level controller block is specified, the co-
simulation is capable of estimating the fuel performance when the heavy duty vehicle is
driving in the real traffic. This model is primarily used in Chapter 5.

2.6 Summary

In this chapter, a series of models are presented to facilitate the control design and evalu-
ation in the following chapters. First, a nonlinear model was derived that considered the
external forces and powertrain mechanism. This model laid down the basis for the design
and analysis in future chapters. Then, two simulation models were developed for differ-
ent purposes. A simple simulation model was developed based on the derived nonlinear
model while also taking into account idealized gear shift actions. This model is primarily
used for the performance evaluation of the powertrain and of the vehicle level design. A
high-fidelity model using TruckSim and MATLAB/Simulink co-simulation was also devel-
oped that takes into account more detailed powertrain and vehicle dynamics. This model is
primarily used for the performance evaluation of the traffic level design.
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CHAPTER 3

Fuel Efficient Gear Shift Schedule Design

Nothing is more practical than a good theory

KURT Z. LEWIN

In this chapter, the study at powertrain level is carried out. Hybrid system theory is
applied to design a gear shift schedule that is fuel-efficient but can guarantee safety and
stability of the powertrain.

Most ground vehicles are propelled by powertrains that use transmissions to match the
vehicle state with the state of the engine. Transmissions enable reasonable sized engines
to drive the vehicles in a wide range of speed. Ground vehicles driven on the US roads are
typically equipped with automatic transmission (AT) or automated manual transmission
(AMT) which shifts gear in response to driver command [53]. Designing the gear shift
schedule appropriately allows one to improve the fuel economy, therefore it is a key com-
ponent of transmission design. Traditional gear shift schedules are typically designed as a
static map on the plane of the driver command (throttle/pedal position) and vehicle speed.

A recent trend in gear shift schedule design is to focus on better interpretation of the
driver’s intention and estimation of road environment [54–60]. However, including driver
demand in the gear shift schedule design explicitly can make the design very challenging
and optimality may be difficult to achieve. For connected and automated vehicles, axle
torque demand is explicitly assigned, and thus can be met by setting the engine torque and
the gears appropriately while bypassing the need for monitoring driver demand. The gear
shift schedule design can be carried out based on torque demand and vehicle speed, while
the design parameters have clear physical meanings and can be adjusted according to driv-
ing conditions; see Figure 3.1. With a properly designed pedal-torque map, the same gear
shift schedule can also be used in human driven mode. Moreover, the automated vehicle
may utilize traffic information to meet the torque demand while minimizing fuel consump-
tion, so that the drivability and towing ability of the vehicle are not compromised. Meeting
all these requirements in a reliable manner requires a rigorous mathematical approach.
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Figure 3.1: Gear shift schedule implementation for automated vehicles, where Ta is the
required axle torque, v is the speed of the vehicle, Te is the engine torque, ωe is the engine
speed, and u is the commanded acceleration of the vehicle.

The dynamics of an automated vehicle with AT/AMT can be modeled as a hybrid sys-
tem which contains dynamic variables of both discrete and continuous types [61,62,63].
Analyzing the dynamics of these systems is challenging especially when the governing e-
quations are nonlinear [64–66], and this is certainly the case for automobiles and trucks.
Driver as an advanced controller can handle many complicated scenarios. Integrating con-
trollers over a powertrain designed for a human driven vehicle may require a lot of efforts
on testing and tuning in order to make a safe overall system for an automated vehicle. To
bypass this, we take a simplified approach that is primarily tailored for automated vehicles
as suggested by Figure 3.1. Specifically, we propose a framework for gear shift schedule
design for AT/AMT, that is based on a first principle dynamic model and direct optimiza-
tion. By using methods from hybrid systems we prove the stability of the gear shift design
under state and input constraints. Based on our analysis, we improve the fuel economy of
a class 8 heavy duty truck.

The remainder of this chapter is organized as follows. In Sections 3.1 we describe the
modeling framework that leads to a hybrid system. Then we present the shift schedule
design framework in Section 3.2 and prove that it can be used to achieve stable operating
points in Section 3.3. In Section 3.4 we apply the proposed design to a heavy-duty vehicle
and demonstrate the effectiveness of our proposed framework under different requirements.
Finally, we summary this chapter.

3.1 Vehicle Dynamics With Gear Changes

In this section we describe the longitudinal dynamics of the vehicle with gear shift. We
study forward driving only, therefore we develop the model for nonnegative vehicle speed.
We then rewrite the equations using engine-based quantities to include the gear change
explicitly. In order to make the problem analytically tractable, the longitudinal motion of
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the vehicle is modeled by differential equations, the engine fuel consumption is calculated
using a static map, and the gear shifts are considered to be instantaneous.

3.1.1 Modeling Vehicle Dynamics

Here we use the longitudinal vehicle model from [44,35]. Neglecting the flexibility of the
suspension and the tires, Newton’s second law yields

meff v̇ = −mg sinφ− γ0mg cosφ− k0(v + vw)2 +
ηTe + Tb

R
, (3.1)

where meff = m + J/R2 is the effective mass, containing the mass of vehicle m, the
mass moment of inertia J of the rotating elements, and the wheel radius R. Also, g is the
gravitational constant, φ is the inclination angle, γ0 is the rolling resistance coefficient, k0

is the air drag constant, vw is the velocity of the head wind, η is the gear ratio. Since we
assume the vehicle is traveling forward, we have η > 0. Finally, Te is the engine torque, Tb

is the braking torque, which are the control inputs that we need to design. For simplicity,
we assume the vehicle is traveling on a flat road with no headwind, i.e., φ = 0 and vw = 0.
Thus, we have

v̇ = −γ g − k v2 + u, (3.2)

where
γ =

m

meff

γ0, k =
k0

meff

, u =
ηTe + Tb

meffR
, (3.3)

and the input u has unit [m/s2], so it can be considered as the commanded acceleration.
In general, the control may lead to v < 0. Here we design a controller that ensures the

invariance of the region v ≥ 0. In particular, we specify the control law at v = 0 such that,
if u ≥ γg, v̇ is still given by (3.2), while if u < γg, we select u such that v̇ = 0. This is
equivalent to

v̇ = −f(v) + u, (3.4)

where

f(v) =




γg + kv2 , v > 0 ,

min{γg, u|v=0} , v = 0 .
(3.5)

In order to start the vehicle at v = 0, one needs u > γg to obtain v̇ > 0, otherwise the
vehicle remains stand still. On the other hand, when v = 0, for u < γg, f(0) could take
values such that v̇ = 0, which makes the graph of f(0) a line section instead of a single
point.
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For simplicity, the control input u is given by the PI controller

u = KPẇ +KIw ,

ẇ = vr − v .
(3.6)

Thus, equations (3.4,3.5,3.6) give the closed-loop dynamics

v̇ = −f(v) +KP(vr − v) +KIw,

ẇ = vr − v ,
(3.7)

that can be rewritten in terms of the variables v and u as

v̇ = −f(v) + u,

u̇ = −KP

(
− f(v) + u− v̇r

)
−KI (v − vr) .

(3.8)

When considering constant reference speed vr(t) ≡ v∗r > 0, system (3.8) possesses the
equilibrium

v∗ = v∗r ,

u∗ = f(v∗r ) .
(3.9)

Remark 1. All the analyses in this chapter can be extended to f(v) that satisfies

f(v) > 0,
df

dv
> 0,

d2f

dv2
> 0, ∀ v > 0, (3.10)

as no analysis uses explicitly the detailed form of f .

3.1.2 Introducing Gear Change

Assume that the transmission system hasN gears, i.e., η ∈ {ηi | i ∈ {1 , 2 , · · · , N}}. Then
with i-th gear applied, the angular speed of the engine and the engine torque are given by

ωe =
ηi
R
v , Te =

meffR

ηi
u, (3.11)
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that defines a linear transformation from the (v, u)-space to the (ωe, Te)-space. Henceforth,
the closed-loop dynamics (3.8) can be rewritten as

ω̇e =ηi
R
f
(
R
ηi
ωe

)
+

η2
i

meffR2Te,

Ṫe =− meffRKP

ηi

(
−f
(
R
ηi
ωe

)
+ ηi

meffR
Te − v̇r

)

− meffRKI

ηi

(
R
ηi
ωe − vr

)
.

(3.12)

With gear change, this can be written into the compact form

[
ω̇e(t)

Ṫe(t)

]
= Fi

(
ωe(t), Te(t), vr(t)

)
, if [ω̇e(t), Ṫe(t)] ∈ Xi,



ωe(t

+)

Te(t
+)

i(t+)


 = S

(
ωe(t

−), Te(t
−), i(t−)

)
, if [ωe(t

−), Te(t
−)] ∈ ∂Xi(t−),

(3.13)

for i ∈ {1, · · · , N}. The function Fi represents the right hand side of (3.12) and it de-
scribes the continuous time dynamics for gear i when the state evolves inside the set Xi.
Moreover, S represents the gear shift schedule to be designed and describes the switches
at the boundary of the set Xi (denoted by ∂Xi) while t− and t+ denote the moment right
before and right after a gear shift, respectively. In Section 3.2, we design the gear shift
schedule to achieve optimal fuel consumption while in Section 3.3 we formally prove that
the proposed design guarantees the stability of the overall hybrid system (3.13), that is, the
stability of the equilibrium (3.9) of system (3.8) under gear change.

3.2 Gear Shift Schedule Design

In this section we explain the gear shift design process. For simplicity, we assume that the
efficiency coefficients of torque delivery at different gears are the same. As shown by the
numbers in Table 2.1, this is a very good approximation.

3.2.1 Design Process

The goal of gear shift schedule design is to select the gear that minimizes the fuel con-
sumption while allowing the transmission to deliver the acquired torque/power. The fuel
consumption can be quantified by measuring the mass flow rate of fuel ṁf = q(ωe, Te)

as a function of the engine speed ωe and engine torque Te. To determine how efficiently
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Figure 3.2: Conceptual BSFC map. The blue contours correspond to the constant levels of
BSFC g(ωe, Te) = c, the grey curves represent the iso-power curves and the black curves
represent the limitation of the engine. Since the grey region is only accessible in certain
gears, the blue region is considered as the engine operating region.

the engine uses fuel while producing power P = ωeTe, one can use the brake specific fuel
consumption (BSFC) defined by

BSFC = g(ωe, Te) =
ṁf

P
=
q(ωe, Te)

ωeTe

, (3.14)

see [51]. Therefore, minimizing BSFC increases fuel efficiency. In practice, the function
g(ωe, Te) is nonlinear and does not have an analytical expression, but it may be acquired
experimentally and one may use interpolation to obtain the value of g for combination of
(ωe, Te) where measurements are not available.

In Figure 3.2, the contours of a conceptual BSFC map are plotted as blue curves, to-
gether with the maximum and minimum constraints on the engine torque and engine speed,
i.e., C(ωe) ≤ Te ≤ C(ωe) and ωe ≤ ωe ≤ ωe. Note that the grey region is only accessible
in certain gears (i.e., a gear change would lead to a working point where the engine limita-
tion is exceeded) and it is typically very small in practice. Thus, to simplify the derivation,
we use the iso-power curve corresponding to Pmax to bound the blue operating region that
is given by

ωe ∈ [ωe, ωe], Te ∈ [C(ωe), C(ωe)], Teωe ≤ Pmax. (3.15)

We assume that g(ωe, Te) has a minimum in the operating region (3.15).
Also note that an engine can output negative torque, but the maximum absolute value of

the negative torque is much smaller than that of the positive torque. As fuel consumption
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Figure 3.3: Gear shift concept. (a) Magenta contours, blue contours and purple contours
represent the BSFC level sets as functions of the vehicle speed v and commanded accel-
eration u at the (i − 1)-st, i-th and (i + 1)-st gear, respectively. Connecting the intersec-
tions of BSFC contours results in the ideal shift curves hi−1,i = hi,i−1 and hi,i+1 = hi+1,i

shown as green curves that bound the ideal working region for i-th gear highlighted as blue.
(b) Capping the ideal shift curves with constraints due to engine limitations (cf. (3.15)).
The resulting constrained working region for the i-th gear is bounded by the green curves
H0
i−1,i = H0

i,i−1 and H0
i,i+1 = H0

i+1,i, and is shaded as blue. Moving the upshift curves to
Hε
i,i+1 and Hε

i−1,i, as shown by the blue curves, while leaving the downshift curves intact,
i.e., having Hε

i,i−1 = H0
i,i−1 and Hε

i+1,i = H0
i+1,i to the right, as shown by the red dashed

curves, generate overlap regions between adjacent gears. The union of the blue and the red
shading is the actual working region for the i-th gear denoted by Xi.
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measurements are typically available for positive torque values only, we assume that the
fuel consumption is zero along the minimum torque curve C(ωe) and use interpolation to
obtain the fuel consumption for negative torque values. Still, for Te ≤ 0 we use the strategy
designed for small Te > 0 in order to avoid difficulties due to singularity of the BSFC at
Te = 0; cf. (3.14).

We assume that the gear ratio is monotonically decreasing and no gear skipping is
possible, that is,

η1 > η2 > · · · > ηN ,

i(t+) ∈ {i(t−)− 1, i(t−) + 1},
(3.16)

for i ∈ {1, · · · , N} and k = 1, 2, . . . We also assume that shifting happens instantaneously
along the iso-power curves shown as light grey curves in Figure 3.2. Mathematically, such
gear shift process is described as

meff u v = Te,iωe,i,
ωe,i

ηi
=
ωe,i+1

ηi+1

, Te,iηi = Te,i+1ηi+1 , (3.17)

for i ∈ {1, · · · , N − 1}.
Our gear change strategy is to choose the gear with smallest BSFC value, which is

shown graphically in (v, u)-space in Figure 3.3a. The blue contours correspond to g
(
ηiv
R
, meffRu

ηi

)
=

g
(
ωe,i, Te,i

)
= c, the purple contours correspond to

(
ωe,i+1, Te,i+1

)
= g
(ηi+1v

R
, meffRu

ηi+1

)
= c,

while the magenta contours correspond to g
(
ωe,i−1, Te,i−1

)
= g

(ηi−1v
R
, meffRu

ηi−1

)
= c. The

ideal upshift curve hi,i+1(v) from gear i to gear i+ 1 is determined by the solution of

g

(
ηiv

R
,
meffRhi,i+1(v)

ηi

)
= g

(
ηi+1v

R
,
meffRhi,i+1(v)

ηi+1

)
, (3.18)

that is visualized in Figure 3.3a by the green curves obtained from intersections of blue
and purple contours (green dots). To be able to solve (3.18) for the function hi,i+1(v), the
conditions for implicit function theorem are assumed to hold. Crossing this curve to the
right, i.e., shifting one gear up, shall give a smaller BSFC value. Note that this is also the
ideal downshift curve from gear i + 1 to gear i, that is, hi+1,i(v) = hi,i+1(v). Similarly,
between the i-th and (i − 1)-st gear, we can construct hi−1,i(v) = hi,i−1(v) and define the
operating region for the i-th gear, which is shown as the shaded blue in Figure 3.3a.

The ideal curves should be further tuned to satisfy the constraints given by the engine
(cf. (3.15)), as indicated in Figure 3.3b. These constraints include minimum and maximum
speed constraints (vi = ωeR/ηi and vi = ωeR/ηi), engine maximum torque and minimum
torque (Ci(v) and Ci(v)), and maximum power Pmax. The modified curves are denoted by
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H0
i,i+1 = H0

i+1,i and H0
i−1,i = H0

i,i−1, where the superscripts refer to the fact that the curves
are given in the form H0

j,k(v, u) = 0. These green curves bound the new ideal working
region of the i-th gear, indicated by blue shading in Figure 3.3b. Note that depending on
the engine specification, some of the constraints above may not be part of the boundary of
the working region.

The above ideal working regions will lead to ambiguity in gear selection for (v, u)

pairs that sit exactly on the curve H0
i,i+1 = H0

i+1,i. To avoid this, we introduce hysteresis
by generating a small overlap region between the gears by splitting the curves to Hε

i,i+1 6=
Hε
i+1,i. For example, between the i-th and (i + 1)-st gears, we move the upshift curve to

the right (that is, Hε
i,i+1 6= H0

i+1,i) as shown by the blue solid curve in Figure 3.3b, while
keep the downshift curves at the ideal curve (that is, Hε

i+1,i = H0
i+1,i) as shown by the red

dashed curve in Figure 3.3b. The same strategy is applied between the (i − 1)-st and the
i-th gears. We can now define the actual working region Xi for the i-th gear, which is the
union of the blue and the red regions in Figure 3.3b, while ∂Xi is given by the blue solid
curves on the right and the red dashed curve on the left. Thus, the gear shift schedule (3.13)
can be formally written as



ωe(t

+)

Te(t
+)

i(t+)


 =




ωe(t
−)

ηi(t−)+1

ηi(t−)

Te(t
−)

ηi(t−)

ηi(t−)+1

i(t−) + 1


 ,

if Hε
i,i+1

(
ωe(t

−) R
ηi(t−)

, Te(t
−)

ηi(t−)

meffR

)
= 0,

∇Hε
i,i+1|t=t− ·

[
ω̇e(t

−) R
ηi(t−)

Ṫe(t
−)

ηi(t−)

meffR

]
> 0,

(3.19)

and



ωe(t

+)

Te(t
+)

i(t+)


 =




ωe(t
−)

ηi(t−)−1

ηi(t−)

Te(t
−)

ηi(t−)

ηi(t−)−1

i(t−)− 1


 ,

if Hε
i,i−1

(
ωe(t

−) R
ηi(t−)

, Te(t
−)

ηi(t−)

meffR

)
= 0,

∇Hε
i,i−1|t=t− ·

[
ω̇e(t

−) R
ηi(t−)

Ṫe(t
−)

ηi(t−)

meffR

]
> 0,

(3.20)

where ∇ is the gradient operator for multi-variable functions (see the vectors in Fig-
ure 3.3b), cf. (3.17,3.18).

34



In Section 3.3, we will show that having overlap regions between gears is crucial for the
stability of system (3.13). The size of the overlap region will affect the performance of the
gear shift schedule as will be demonstrated through a case study on a heavy duty vehicle in
Section 3.4.

3.3 Stability With Gear Changes

In this section, we prove that the hybrid system (3.13) is stable in the sense of Lyapunov
with the proposed gear shift schedule (3.19,3.20). Before stating the main results of the
section, we present some useful definitions, all of which are visualized graphically in Fig-
ure 3.4.

Definition 1. A partition of a compact set X ⊆ R2 is a collection of subsets {Pi}ki=1,

Pi ⊆ X , Pi 6= ∅, such that
⋃k
i=1 Pi = X and Pi

⋂
Pj = ∅, ∀ i 6= j.

As shown in Figure 3.4a, the partition means that the Pi-s cover the set X and that there
is no intersection between the Pi-s.

Definition 2. Given a partition {PN
i }ki=1 of a compact set X ⊆ R2, let Ni = {j ∈ N+ |

∂PN
i ∩ ∂PN

j 6= ∅, i 6= j}. Then, {PN
i }ki=1 is called a 2-neighbor partition if |Ni| ≤ 2 .

Here |S| denotes the number of element of the set S and ∂S denotes the boundary of
the set S. The superscript “N” stands for neighbor. The definition means that the PN

i -s
cover the set X and that each PN

i has at most two neighbors; see Figure 3.4(b).

Definition 3. Given a partition {Pi}ki=1, an ε-partition of a compact set X ∈ R2 is a

collection of subsets {P ε
i }ki=1, P ε

i ⊆ X , P ε
i 6= ∅, such that

⋃k
i=1 P

ε
i = X and P ε

i \ P ε
j 6=

∅, ∀ i 6= j, where ε = inf{ρ > 0 |P ε
i ⊆ (Pi

⊕
Bρ) ∩ X ,∀ i}.

Here, Bρ denotes a ball with radius ρ around the origin and
⊕

denotes the Minkowski
sum defined by A

⊕
B = {z = x+ y|x ∈ A, y ∈ B}. This definition means that the P ε

i -s
cover the set X and that each P ε

i overlaps with its neighbors, while ε is the smallest radius
for the ball that allows us to cover the overlap regions; see Figure 3.4(c). It is clear that as
ε→ 0, an ε-partition {P ε

i }ki=1 converges to a partition {Pi}ki=1.

Definition 4. A 2-neighbor ε-partition of a compact set X is an ε-partition {PNε
i }ki=1

of that set such that |Ni| ≤ 2, ∀i and QNε
i,j

⋂
QNε
i,l = ∅, ∀j, l ∈ Ni where Ni = {j ∈

N+|PNε
i

⋂
PNε
j 6= ∅, i 6= j} and QNε

i,j = PNε
i

⋂
PNε
j .

This definition means that the PNε
i -s cover the set X and each PNε

i overlaps with its
neighbors but there will be at most two neighbors for each PNε

i ; see Figure 3.4(d).
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Figure 3.4: Visualization of definitions: (a) Partition. (b) 2-neighbor partition. (c) ε-
partition. (d) 2-neighbor ε-partition.

Lemma 1. Given a 2-neighbor ε-partition of a setX , {PNε
i \(

⋃
j∈Ni

QNε
i,j )}ki=1

⋃{⋃j∈Ni
QNε
i,j }ki=1

gives a partition of the set X .

Proof. This is trivial since there is no intersection between any two intersections of any
two of the partition elements QNε

i,j = PNε
i

⋂
PNε
j .

Lemma 2. A full-rank affine transformation preserves partition (or ε-partition or 2-neighbor

partition or 2-neighbor ε-partition) of a set X ⊆ R2.

Proof. We prove this by contradiction. Suppose that the image of a partition is not a par-
tition any more. It could be that

⋃k
i=1 Pi 6= X or ∃ i 6= j, Pi

⋂
Pj 6= ∅. Both cases imply

that ∃Q ∈ Im(X ), Q 6= ∅ such that Pre(Q) = ∅, that is, the affine transformation maps a
point to a nonempty set, which cannot be true for a full-rank affine transformation.

Using Lemma 2, we can conclude that if the shift schedule (3.19,3.20) gives a 2-
neighbor ε-partition, it maps all the equilibria of the system (3.8) that are not located in
an overlap region to a unique equilibrium of the switched system (3.13). If an equilibrium
of (3.8) is located in the overlap region, the shift schedule (3.19,3.20) will not map it to a
unique equilibrium of (3.13). We will deal with this issue in Theorem 1.

Next, we define the working region of (3.8) on the (v, u)-plane. In particular, the power
limit of the engine results in

u ≤ Pmax

meffv
. (3.21)
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Figure 3.5: Phase plane dynamics of system (3.8) with constraints (3.26) for different con-
trol parameters as indicated. Trajectories starting from different initial points are marked as
brown curves. The green curves denote the nullclines u = f(v), and u = KI

KP
(v−v∗)+f(v)

and they intersect at the equilibrium denoted by the black dot. The black solid pluses denote
the exit points of trajectories along boundary arcs.

Besides this, we also impose the maximum and minimum constraints

umin ≤ u ≤ umax, (3.22)

where umin comes from braking torque limit, and it can only be applied when v > 0, while
umax is an upper bound due to the torque limitation of the engine (e.g., C(ωe)), and other
physical limits at low vehicle speed. The speed where (3.21) starts to become active and
(3.22) starts to become inactive is given by

vswitch =
Pmax

meffumax

. (3.23)

Note that due to the relation between w and u given by (3.6), equations (3.21) and (3.22)
impose constraints on w as well. This saturation, in fact, may lead to an anti-windup
mechanism that improves the performance of the PI controller [67]. Recall that according
to (3.5), umax > γg is needed to start a stationary vehicle. Finally, we restrict ourselves to
the speed range

0 ≤ v ≤ vmax, (3.24)

where vmax is chosen to be the maximum steady state speed given by

Pmax −mefff(vmax)vmax = 0. (3.25)
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Since f is monotonically increasing for positive speed, vmax is unique.
Therefore, the constrained working region is given by

{
(v, u)|v ∈ [0, vmax], u ∈

[
umin,min

(
umax,

Pmax

meffv

)]}
, (3.26)

that is enclosed by the black curves in Figure 3.5. The following lemma states the stability
conditions for an equilibrium of (3.8) within this domain.

Lemma 3. If condition (3.10) holds, by choosing the feedback gains as

KP >
Pmax

meffv2
switch

, KI > KPf
′(vmax) (3.27)

the equilibrium (3.9) of system (3.8) is asymptotically stable and (3.26) is the region of

attraction.

The details of the proof are given in Section 3.3.1 where we propose a Lyapunov func-
tion and first show asymptotic stability of the equilibrium without constraints. Then, we
show that the trajectories join and leave the boundaries of (3.26) at particular points (see the
inlets in Figure 3.5a) and that the value of the Lyapunov function decreases while traveling
along the boundaries. We remark that the conditions on KP and KI in Lemma 3 are easy
to satisfy, as f ′(vmax) > 0 is usually small.

In Figure 3.5 we show trajectories as brown curves starting from multiple initial condi-
tions (marked by brown crosses), for reference speed v∗ = 20[m/s], for two different sets
of control parameters as indicated above. The conditions in Lemma 3 are satisfied in both
cases. Indeed, all trajectories in Figure 3.5 converge to the equilibrium denoted by black
dots. In Figure 3.5a the equilibrium appears as a focus while in Figure 3.5b it appears as
a node. The green curves denote the nullclines u = f(v) and u = KI

KP
(v − v∗) + f(v) (cf.

(3.8)) that intersect at the equilibrium. The nullclines are utilized in the proof in Appendix
3.3.1. The black solid pluses denote the points along boundary arcs where the trajectories
leave the arcs as highlighted by the inlets. These can be calculated analytically; see (3.36)
in Appendix 3.3.1.

Before presenting the main theorem, we require one more assumption that should be
satisfied when designing the shift schedule.

Assumption 1. The gear shift schedule (3.19,3.20) gives a 2-neighbor ε-partition in the

(v, u)-space. If ε = 0 the gear shift schedule gives 2-neighbor partitions in the (v, u)-

space.
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Figure 3.6: Sketch of the proof of Theorem 1. Trajectories associated with different cases,
with part of the figures zoomed in. In cases 1 and 2, the equilibrium is in the non-overlap
region and the trajectory evolves either without gear change (case 1) or with finitely many
gear changes (case 2). In case 3 the equilibrium is in the overlap region, and the gear at the
equilibrium depends on the initial states.

In practice, the BSFC map is usually close to a quadratic function with one minimum
point, and it can be checked that for a quadratic BSFC function Assumption 1 holds. As
will be shown below, this assumption is essential to prove the stability of a gear switch
schedule, so one shall generate a 2-neighbor ε-partition in the (v, u)-plane even when the
BSFC is more complicated. Based on all definitions, lemmas and assumptions, we are now
ready to present the main theorem.

Theorem 1. If Assumption 1 and Lemmas 1, 2, 3 hold, the trajectories will approach the

equilibrium while having finitely many gear changes.

The details of the proof are given in Section 3.3.2. The idea behind the proof is to
categorize all different cases and show stability of the system (3.13), respectively. All the
three different possibilities are shown in Figure 3.6, where initial conditions are denoted
by brown crosses, the equilibrium is denoted by black dot, and different line styles of the
trajectories indicate different gears. We emphasize again that the stability of system (3.13)
requires implicitly the fact the gear shift schedule (3.19,3.20) gives a 2-neighbor ε-partition
in the (v, u)-space.

We remark that stability of system (3.13) with certain gear shift schedule does not
require specific structure of the controller. The proof of Theorem 1 relies only on the fact
that the equilibrium of the controlled system in (v, u)-space is stable. Therefore, the gear
shift schedule design may be generalized to more general and nonlinear controllers, such
as those presented in [44] [52].
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3.3.1 Proof of Lemma 3

We will prove the lemma in two steps. First, we show that without constraints the equilib-
rium (3.9) is stable. Second we show that adding (3.21,3.22,3.24), the constrained working
region (3.26) is still invariant and the equilibrium (3.9) is still stable. Note that for a given
v∗, equilibrium (3.9) is unique.

Defining the perturbations

ṽ = v − v∗,
ũ = u− u∗ ,

(3.28)

(3.8) can be re-written as

˙̃v = −f(ṽ + v∗) + ũ+ u∗,

˙̃u = −KP

(
− f(ṽ + v∗) + ũ+ u∗

)
−KIṽ .

(3.29)

Choosing the Lyapunov function

V (ṽ, ũ) =
1

2
KIṽ

2 +
1

2
(ũ+KP ṽ)2 , (3.30)

with KI > 0, KP > 0, we obtain the Lie derivative

V̇ (ṽ, ũ) = KIṽ ˙̃v + (ũ+KPṽ)( ˙̃u+KP
˙̃v)

= KI

(
− f(ṽ + v∗) + f(v∗)

)
ṽ −KIKPṽ

2

= KI

(
− f ′(ξ)−KP

)
ṽ2 .

(3.31)

In the last step, the mean value theorem is applied to f assuming v > 0, which ensures that
there exists ξ satisfying

f(ṽ + v∗)− f(v∗) = f ′(ξ)ṽ, (3.32)

where ξ = ξ(ṽ) > 0. Thus, (3.31) is negative semi-definite when v > 0. Applying the
LaSalle-Krasovskii invariance principle, it can be shown that the largest invariant set within
V̇ = 0 is (ṽ, ũ) = (0, 0). Therefore, the equilibrium is asymptotically stable.

Next we show that in the presence of state constraints (3.24) and control constraints
(3.21,3.22), the stability of the equilibrium can still be guaranteed. We show that the dy-
namics can be maintained along boundaries v = 0, u = umin, u = umax, and meffuv = P ,
and that when a trajectory enters one of these boundaries (at time ten) and leaves it (at time
tex), then the Lyapunov function decreases between tin and tex. We first determine the dy-
namics along the boundaries and determine the exit points (v(tex), u(tex)). Then we show

40



that the Lyapunov function (3.30) decreases while traveling along the boundary arcs, by
comparing v(tex)− v∗ with v(ten)− v∗, and u(tex)− u∗ with u(ten)− u∗.

3.3.1.1 Along v = 0

Below the nullcline u = f(v) we have v̇ < 0 while above it we have v̇ > 0; see Figure 3.5.
Corresponding to this, a trajectory can only enter the v = 0 boundary below the point where
the nullcline intersects it (marked as a black plus in Figure 3.5), i.e., u(ten) < f(0) = γg.
Along this section, we have v̇ = 0 and u̇ = KIv

∗ > 0 according to the dynamics (3.8). That
is, the trajectory keeps traveling upward on v = 0 until it reaches the nullcline at tex where
u(tex) = f(0) = γg. Comparing the states at ten and tex, we have v(ten) = v(tex) = 0 and
u(ten) < u(tex) < u∗, which imply

|v(tex)− v∗| = |v(ten)− v∗|,
|u(tex)− u∗| < |u(ten)− u∗|,
(u(tex)− u∗) (v(tex)− v∗) < (v(ten)− v∗) (u(ten)− u∗) .

(3.33)

Substituting these into the Lyapunov function (3.30), we obtain

V (ṽ(tex), ũ(tex)) < V (ṽ(ten), ũ(ten)), (3.34)

that is, the Lyapunov function decreases while the trajectory travels along the v = 0 bound-
ary.

3.3.1.2 Along v = vmax

According to the definition (3.25), the v = vmax boundary is located below the u = f(v)

nullcline, yielding v̇ < 0. This means that no trajectory enters this boundary.
Before discussing the remaining three boundaries we remark that according to the con-

trol constraints (3.21,3.22) and the monotonicity condition (3.10), we have

umin < f (v) < min

{
umax,

Pmax

v

}
, (3.35)

in the domain 0 < v < vmax; cf. (3.24).

3.3.1.3 Along u = umin

On the right side of the nullcline u = KI

KP
(v − v∗) + f(v), we have u̇ < 0 while on the

left side of it we have u̇ > 0. That is, a trajectory can enter the u = umin boundary on
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the right side of the nullcline. After traveling left along the boundary, it exits where the
nullcline intersects the boundary; cf. see black plus in Figure 3.5. Consequently, we have
v(tex) < v(ten) and u(tex) = u(ten) = umin.

However, in order to show that the Lyapunov function decreases while traveling along
the boundary, additional arguments are needed. The normal unit vector to this boundary
(pointing outbound) is given by nmin = [0,−1]T. According to (3.8), when u ≡ umin, the
vector field is given by tmin = [−f(v) + umin, −KP(−f(v) + umin) +KI(v

∗− v)]T. Then
staying on the boundary corresponds to

tmin · nmin = KP (−f(v) + umin) +KI(v − v∗) > 0, (3.36)

which holds on the right of the point where nullcline intersects the boundary, and it becomes
zero at the intersection point. That is, using (3.35,3.36), we have v(tex) > v∗. Moreover,
using u ≡ umin ⇒ ũ < 0⇒ u̇ = ˙̃u = 0, v̇ = ˙̃v < 0 and (3.10,3.28,3.35,3.36) in (3.31) we
obtain the Lie derivative

V̇ (ṽ, ũ) = v̇
(
(KI +K2

P)ṽ +KPũ
)
. (3.37)

Using the fact that v̇ < 0, ṽ > 0, KP > 0 and ũ = −f(v∗) + umin > −f(v) + umin, we
have

V̇ (ṽ, ũ) < v̇
(
KIṽ +KP(−f(v∗) + umin)

)

< v̇
(
KIṽ +KP(−f(v) + umin)

)
= v̇ (tmin · nmin) < 0.

(3.38)

That is, the Lyapunov function decreases along the u = umin boundary.
Note that it is possible that the nullcline intersects the u = umin boundary at v > vmax.

In such case, no trajectory enters the boundary u = umin.

3.3.1.4 Along u = umax

This boundary can be handled similar to the u = umin boundary. A trajectory may enter
the boundary on the left side of the nullcline, and after traveling right, it exits where the
nullcline intersects the boundary; cf. black plus in Figure 3.5. Consequently, we have
v(tex) > v(ten) and u(tex) = u(ten) = umax.

Similar to the u = umin boundary, it can be shown that the Lyapunov function decreases
when the trajectory travels along the boundary. The normal unit vector to this boundary
(pointing outbound) is given by nmax = [0, 1]T. According to (3.8), along the u = umax

boundary, the vector field is given by tmax = [−f(v) + umax,−KP(−f(v) + umax) +
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KI(v
∗ − v)]T, yielding

tmax · nmax = −KP (−f(v) + umax)−KI(v − v∗) > 0. (3.39)

This holds only on the left of the point where nullcline intersects the boundary, and it
becomes zero at the intersection point. That is, using (3.35,3.39), we have v∗ > v(tex) >

v(ten) and u(tex) = u(ten) = umax. When traveling along the boundary, the Lie derivative
is same as (3.38) and again using (3.10,3.28,3.35,3.39) one can show that it is negative, i.e.,
the Lyapunov function decreases along the u = umin boundary.

Note that it is possible that the nullcline intersects the u = umax boundary at v > vswitch

(cf. (3.23)) or v < 0. In the former case, the no trajectory enters the u = umax boundary.
The later case implies that no trajectory exits within [0, vswitch], but continues to travel along
the boundary meffuv = Pmax, which will be handled below.

3.3.1.5 Along meffuv = Pmax

This boundary can only be entered when v ≥ vswitch (cf. (3.23)), and we have v̇ > 0

since this boundary is above the nullcline u = f(v). We denote P̄ = Pmax

meff
in the rest of

proof for compact description. Note that this boundary is neither horizontal nor vertical.
Consequently, one cannot use the nullcline to determine where this trajectory exits the
boundary. The normal vector to this boundary pointing outbound is given by nP = [ P̄

v2 , 1]T,
while vector field is given by tP = [−f(v) + P̄ /v,−KP(−f(v) + P̄ /v) + KI(v

∗ − v)]T;
cf. (3.8). In order to stay along the boundary, we need

(tP · nP )(v) =

(
P̄

v2
−KP

)(
−f(v) +

P̄

v

)
−KI(v − v∗) > 0. (3.40)

This requires that vswitch < v < v∗, otherwise, due to (3.27) and (3.35), both terms in (3.40)
are negative. Indeed, to enter the boundary, we need (tP ·nP )

(
v(ten)

)
> 0 while at the exit

point (tP · nP )
(
v(tex)

)
= 0.

In fact, if KP, KI satisfy (3.27), there exists v̄ ∈ (0, vswitch) such that KPv̄
2− P̄ = 0, so

(tP ·nP )(v̄) = KI(v
∗−v̄) > 0. On the other hand, due to (3.27) and (3.35), (tP ·nP )

(
v
)
< 0

for all v ≥ v∗. Thus, there exists v ∈ (v̄, v∗) such that (tP · nP )(v) = 0; cf. the black plus
on the curve uv = P̄ in Figure 3.5. Recall that v is increasing along the boundary. Using
(3.10,3.35) we have v(ten) < v(tex) < v∗. Using (3.10,3.28) in (3.31), the Lie derivative
becomes

V̇ (ṽ, ũ) = KIṽ (−f(v) + u∗)−KPKIṽ
2 < −KPKIṽ

2 < 0. (3.41)
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That is, the Lyapunov function decreases along the uv = P̄ boundary.
Note that (tP ·nP )

(
v(tex)

)
= 0 may occur for v(tex) < vswitch. In this case the trajectory

does not enter the uv = P̄ boundary.
Therefore, we can conclude that if we choose KP, KI according to (3.27), when travel-

ing along boundary arcs, the value of the Lyapunov function decreases. This, together with
that the Lyapunov function decreases along the trajectories in the interior, the equilibrium
(3.9) is asymptotically stable.

3.3.2 Proof of Theorem 1

Recall (3.28) and let us denote working region of engine in (ṽ, ũ)-space as X (cf. (3.26)).
Using Lemma 2 and Assumption 1, a 2-neighbor ε-partition is generated by gear change
as
⋃N
i=1 P

Nε over (ṽ, ũ)-space. We define QNε
i,j = PNε

i

⋂
PNε
j . The initial states are (ṽ0, ũ0)

at t = 0. According to Lemma 3, the trivial equilibrium of (3.29) is asymptotically stable.
Define the domain Dδ = {(ṽ, ũ) |V (ṽ, ũ) ≤ δ}⋂X , where V is the Lyapunov function
(3.30). Below we use the abbreviated notation DV (ṽ0,ũ0), by which we mean Dδ with δ =

V (ṽ0, ũ0). Without loss of generality, we assume that the equilibrium (v∗, u∗) is located in
PNε
i , while the initial state (ṽ0, ũ0) can be in any gear. Then there are three possibilities.

The trajectories of all the possibilities are illustrated in Figure 3.6 by brown curves with
gear engaged implied by line styles, where initial conditions are denoted by brown crosses
while equilibrium is denoted by black dots.

1. The equilibrium is located in a non-overlap region (i.e., (v∗, a∗d) 6∈ QNε
i,j , ∀ j 6= i),

and the initial state (ṽ0, ũ0) ∈ DV (ṽ0,ũ0) ⊆ PNε
i . If (ṽ0, ũ0) ∈ PNε

i

⋂
PNε
j where

j ∈ Ni, and the system starts in the j-th gear, then one gear change will happen and
the trajectory settles to the i-th gear, yielding a stable equilibrium. If, instead, the
system starts in the i-th gear, then no gear change will happen while the trajectory
approaches the equilibrium. The corresponding trajectory is shown in Figure 3.6,
denoted by case 1.

2. The equilibrium is located in an non-overlap region, but the trajectory travels through
different regions, that is DV (ṽ0,ũ0)

⋂
PNε
j \QNε

i,j 6= ∅, ∃j 6= i. In this case multiple
gear shifts may occur. By Assumption 1 there is a non-zero dwell time between two
consecutive gear shifts. Then ∃T > 0 such that ∀ t > T , DV (ṽ(t),ũ(t)) ⊆ PNε

i . Since
T is finite, it will enter and leave PNε

j ,∀j 6= i only finite times. The corresponding
trajectories are shown in Figure 3.6, denoted by case 2. Therefore the gear will still
settle down to the i-th gear and the equilibrium will be stable.
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3. The equilibrium is located in an overlap region, i.e., ∃j ∈ Ni such that (v∗, u∗) ∈
QNε
i,j . If DV (ṽ0,ũ0) ⊂ QNε

i,j , the states converge to the equilibrium without changing
gears and the equilibrium is stable. The final gear will be the same as the initial gear,
and thus could be either i-th or j-th. If DV (ṽ0,ũ0) 6⊂ QNε

i,j , then ∃T > 0 such that
∀ t > T , DV (ṽ(t),ũ(t)) ⊆ QNε

i,j . Since T is finite, the trajectory will enter and leave
PNε
j , (j 6= i) only finite times. Therefore, the gear will still settle down at the same

gear as
(
ṽ(T ), ũ(T )

)
(also could be either i or j). The corresponding trajectories are

shown in Figure 3.6, denoted by case 3.

3.4 Application Of The Gear Shift Schedule Design For A
Heavy-Duty Vehicle

In this section we apply the proposed method to the gear shift schedule design of a class 8
truck. In particular, we consider a Prostar truck manufactured by Navistar that is equipped
with a MaxxForce 13 liter diesel engine and a 10 speed automated manual transmission.
The parameters for the vehicle are given in Table 2.1. The gear ratios ηi in (3.16) are given
by the corresponding value in Table 2.1 times the final drive ratio. Similar to the gear ratio,
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Figure 3.7: The procedure of generating the 2-neighbor ε-partition gear shift schedule from
the ideal shift curves (green). Through the indicated shifting using ε1 and ε2, the actual
upshift (blue) and downshift (red dashed) curves are obtained.

the efficiency is calculated by the corresponding number in Table 2.1 times the efficiency
of the final drive. During simulations, the mild difference in efficiency of torque delivery at
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Figure 3.8: Performance of the system (3.13) with the gear shift schedule (3.19,3.20). (a)
Trajectory in the (v, u)-space, with the corresponding gear indicated by the line styles. (b)
Time profiles of the reference speed vr and the vehicle speed v. (c) Time profile of the gear.

different gears is also taken into account. We also set Pmax = 330 [kW], umax = 2[m/s2],
and umin = −2[m/s2], yielding vmax = 40.70[m/s].

Using the proposed gear shift schedule design, the ideal shift curves H0
i,i+1 = H0

i+1,i

and H0
i,i−1 = H0

i−1,i are shown as green solid curves in Figure 3.7. Note that each H0
i,i+1

consists of two sections. The vertical line at the bottom up to blue dot is resulted from the
low engine speed limit, i.e., vi = ωeηi/R. We refer to this section as the lower section. The
rest of the curve H0

i,i+1 is called the upper section. To generate a 2-neighbor ε-partition
in the (v, u)-space, we shift the ideal curve H0

i,i+1 to the right in order to get the upshift
curve Hε

i,i+1, while keep downshift curve as Hε
i+1,i = H0

i+1,i. The curve Hε
i,i+1 is obtained

in three steps. First, the lower section of H0
i,i+1 is shifted to the right with ratio ε1, that

is, from H0
i,i+1 to H0

i,i+1 + ε1(H0
i+1,i+2 − H0

i,i+1), as shown by the black dashed arrows in
Figure 3.7. Second, the upper section of the new H0

i,i+1(v, u) is shifted along iso-power
curves, that is from H0

i,i+1(v, u) = 0 to H0
i,i+1((1 + ε2)v, u/(1 + ε2)

)
= 0, as shown by the

black solid arrows in Figure 3.7. Finally, the upshift curve Hε
i,i+1 is generated by extending

the lower section toward the upper section as shown by the blue curve in Figure 3.7. The
downshift curves are shown as red dashed curves and they coincide with the ideal green
curves.

All upshift and downshift curves are shown in the (v, u)-space in Figure 3.8a when
choosing ε1 = 0.15 and ε2 = 0.05. Indeed, a 2-neighbor ε-partition in (v, u)-space is
generated, so Assumption 1 holds and thus the stability of (3.13) is guaranteed by Theorem
1. We remark that larger ε-s lead to better drivability in traditional sense [55], as they
make the vehicle stay at a lower gear compared to the ideal design, making the maximum
available power larger at a given speed. On the other hand, increasing ε-s pushes the design
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away from the ideal curves and thus, lowers the fuel economy. Thus, the ε-s can be used
for tuning between fuel economy and drivability.

Numerical simulations are carried out to show the effectiveness of the proposed design.
The feedback gains in (3.8) are set to KI = 0.5[1/s2] and KP = 6[1/s]. As the condition of
Lemma 3 holds, stability of the equilibrium is guaranteed. The simulation uses time step
0.01[s], and the gear shift decision made at each time step is applied in the next step. In
Figure 3.8b, we first show the case where controller (3.6) tries to follow a test cycle marked
as a black dashed curve. The resulted time profile of the speed is shown by the solid brown
curve in Figure 3.8b while the time profile of the gear engaged is displayed in Figure 3.8c.
In the last part of the cycle, the reference speed is set as a constant vr = 15[m/s], and the
vehicle speed approaches this equilibrium. The corresponding trajectory is plotted in the
(v, u)-plane in Figure 3.8a, with the gear engaged indicated by line type.

Next we simulate cases where controller (3.6) is used to follow real driving cycles. In
particular, we use two different EPA driving cycles, the heavy duty urban dynamometer
driving schedule (HUDDS) cycle and the New York City (NYC) cycle, shown as black
dashed curves in Figure 3.9 a, b, d and e, respectively. We compare the results using the
proposed gear shift map and the in-production gear shift map implemented in the Navistar
Prostar. The time evolution of the speed is shown in Figure 3.9a and d for the optimal
design (brown curves) and in Figure 3.9b and e for the in-production benchmark design
(red curves), while the corresponding gear profiles are shown in Figure 3.9c and f. The
fuel performance and tracking performance are summarized in Table 3.1. In both cases, the
controller manages to follow the reference speed closely, but the proposed gear shift map
can achieve better tracking performance with less fuel consumption.

However, frequent gear changes with the proposed optimal design can be seen, espe-
cially for the HUDDS cycle. For the HUDDS cycle, downshift at high speed happens when
a large acceleration is needed, while for the NYC cycle, the frequent change is caused by
both large deceleration and large acceleration.

With traffic information available, an automated vehicle may plan the torque demand,
so large variation of the torque demand can be avoided [16]. As an example, we filtered the
original driving the HUDDS and the NYC cycles using an moving average filter of window
size 5 [s], and fed the filtered cycle to the controller. This mimics a predictive controller for
an automated vehicle with prediction window of 2.5 [s]. The time profiles of the speed and
the gear of the filtered cycles are shown in Figure 3.10 a,b,d and e as dashed blue curves.
For filtered cycles, the controller still manages to follow the reference speed closely as
shown by the brown and red curves. The corresponding gear profiles in Figure 3.10 c and
f show that by providing a smoother speed profile (and therefore requiring lower torque),
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Optimal/Benchmark design HUDDS NYC
Fuel economy [MPG] 4.66/4.60 2.68/2.60

Maximum tracking error [m/s] 1.10/1.22 1.72/1.91
Average tracking error [m/s] 0.046/0.048 0.079/0.082

Table 3.1: Fuel consumption and tracking performance comparison between proposed
design and in-production benchmark design while following the original driving cycles

frequent gear changes can be avoided. In Table 3.2, the fuel consumption and the tracking
performance are summarized for the cases when the truck tries to follow the filtered cycle.
It can be seen that a large improvement in fuel economy is achieved by filtering without
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Figure 3.9: Performance of the system (3.13) with proposed gear shift schedule while
following different driving cycles. The top and middle rows show the speed profiles of
both optimal design (brown) and in-production benchmark design (red) while following
the driving cycle (dashed black). The bottom row shows the corresponding gear profiles.

creating a noticeable difference in the tracking error. The improvement of the proposed
design over in-production design becomes more significant. These imply that by integrating
the proposed gear shift design with proper speed profile planning, the automated vehicle
could be driven both safely and fuel-efficiently. To sum up, our framework guarantees
the stability and efficiency of propulsion system, and enables further improvement in fuel
economy with driving cycle planning for an automated vehicle, while achieving better fuel
performance.
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Optimal/Benchmark design HUDDS NYC
Fuel economy [MPG] 5.44/5.23 3.17/3.00

Maximum tracking error
0.28/0.29 0.48/0.80

compared to filtered cycle [m/s]
Average tracking error

0.027/0.027 0.052/0.054
compared to filtered cycle [m/s]

Maximum tracking error
1.19/1.19 1.73/1.72

compared to original cycle [m/s]
Average tracking error

0.122/0.122 0.196/0.198
compared to original cycle [m/s]

Table 3.2: Fuel consumption and tracking performance comparison between proposed
design and in-production benchmark design while following the filtered driving cycles

0 200 400 600 800 1000 1200
0

10

20

30

0 200 400 600 800 1000 1200
0

10

20

30

0 200 400 600 800 1000 1200

2

4

6

8

10

0 100 200 300 400 500 600
0

5

10

15

0 100 200 300 400 500 600
0

5

10

15

0 100 200 300 400 500 600

2

4

6

8

10
(c)

(b)

(a)

(f)

(e)

(d)

t [s]

t [s]

t [s]

t [s]

t [s]

t [s]

v

[ms ]

v

[ms ]

v
[ms ]

v
[ms ]

Gear Gear

Benchmark Filtered Cycle

Optimal Design Filtered Cycle

Benchmark Filtered Cycle

Optimal Design Filtered Cycle
HUDDS NYC

Figure 3.10: Performance of the system (3.13) with proposed gear shift schedule while
following filtered cycles. The top and middle rows show the speed profiles of both optimal
design (brown) and in-production benchmark design (red) while following the filtered cy-
cles (dashed blue). The bottom row shows gear profiles corresponding to the two difference
speed profiles.

3.5 Summary

In this chapter, we proposed a gear shift schedule design primarily intended for automated
vehicles. We used Lyapunov arguments to prove the stability of equilibrium of the un-
derlying constrained hybrid dynamical systems in the presence of constraints. Our design
guarantees that the torque demand is delivered at the most fuel efficient gear, that is, fuel
economy is improved without compromising drivability. It was shown that further im-
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provements in fuel economy can be achieved by requesting smoother speed profile through
automation.

Using the proposed design, one would have a safe and fuel-efficient powertrain. With
such powertrain, it is possible to design a fuel-efficient driving profile that optimally use
the powertrain. This will be discussed in Chapter 4.
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CHAPTER 4

Analytical Approach for Fuel Optimal Control

First get the physics right. The rest is

mathematics.

RUDOLPH E. KALMAN

Using the results of previous section In the previous chapter, an automated powertrain
system can be acquired. Based on such powertrain, in this chapter, we design eco-driving
systems that generate fuel-efficient driving profile based on elevation obtained via connec-
tivity.

Eco-driving problem can be formulated as optimal control problems. These problems,
however, contain many parameters that may be fixed to some reasonable values and then
the problems can be solved using particular methods of choice. However, a thorough and
systematic study on how the optimal solution changes when the parameters are varied is not
available in the literature. Since the performance of the optimal controller depends heavily
on the parameter values, understanding how to tune the parameters is as important as un-
derstanding the design framework. In this chapter, we use analytical and numerical tools
from bifurcation theory to investigate the effects of parameter variations on optimal control
problems. This allows us to determine regions in the parameter space with qualitatively
different dynamics and control actions and quantify the trade-off between different control
goals in the different regions.

We start with a modeling framework that allows one to optimize the driving profile to
achieve better fuel economy given the elevation profile, headwind, and traffic information
along the route. We also take into account the desired terminal time leading to a multi-
objective optimal control problem. Then, we present a systematic approach to analyze the
optimal control trajectory for fuel efficient driving while varying parameters and quanti-
fy the trade-offs in different parameter regions. We convert the resulting optimal control
problem to a boundary value problem (BVP) by using Pontryagin’s Maximum Principle

51



(PMP). We first solve a simplified BVP analytically and then use numerical continuation
to gradually change the parameters until the solution to the original nonlinear problem is
reached. Also, in order to avoid the sensitivity to initial conditions, we use collocation to
solve the BVP that is embedded in our pseudo-arclength numerical continuation program.
This allows us to increase the computational speed by distributing the sensitivity along the
trajectory while reacting to changing parameters.

Mathematically, we need to deal with an optimal control problem that involves mixed
state-control constraints and singular arcs. Optimal control problems with mixed con-
straints are challenging due to the non-smooth and non-continuous nature of the prob-
lem [68]. Necessary optimality conditions for this class of control problems can be found
in [69–72]. In our problem, the control variable appears linearly in the dynamics and cost
functional. Then, in view of PMP, the optimal control is a concatenation of bang-bang
and singular arcs, which makes it difficult to generate numerical solutions. In [73], mixed
control-state constraints were handled using saturation functions which can tolerate the
discontinuity to some extent. In [74], numerical continuation was used to study the opti-
mal solution while varying parameters in (smooth) optimal control problems occurring in
biomedical imaging. Inspired by these works, in this chapter we use the analytical solu-
tion of a simplified (linear damped) system to characterize the switching structure between
different arcs while varying parameters. This allows us to identify the structure of the op-
timal controller that may switch between different “bang-bang” and “bang-singular-bang”
scenarios as parameters vary. Moreover, using the analytical solution to initialize the nu-
merical continuation allows us to speed up the solution process.

The rest of the chapter is organized as follows. The optimal control problem is for-
mulated in Section 4.1, and the necessary condition for optimal trajectories is presented in
Section 4.2. We generate the analytical solution of a corresponding linear system in Section
4.3 that is used to initialize the numerical solver discussed in Section 4.4. We analyze the
optimal solution with respect to the change of traffic condition in Section 4.5. Finally, we
summarize this chapter in Section 4.6.

4.1 Optimal Control Formulation

In this section we lay out a modeling framework that is used to optimize fuel economy of
HDVs. This framework allows the use of different models to describe the vehicle dynamics,
a wide variety of fuel consumption maps, and real-time traffic information.
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4.1.1 Optimization Problem

Let us denote the distance (arc-length) traveled by the vehicle as s and the speed of the
vehicle by v. The goal is to find the scalar input u that minimizes the objective function

J0 =

∫ tf

0

q(v, u) dt+ σ0 tf +

∫ tf

0

r(v, s)dt, (4.1)

subject to the constraints

[
ṡ

v̇

]
=

[
v

f(s, v, u)

]
, (4.2)

[
s(0)

v(0)

]
=

[
0

v0

]
,

[
s(tf)

v(tf)

]
=

[
sf

vf

]
, (4.3)

0 ≤ u ≤ aU(v), (4.4)

where the dot represents the derivative with respect to time t. The initial time is considered
to be 0, while the terminal time is denoted by tf and it is considered to be unknown.

The objective functional J0 in (4.1) consist of three parts. The first terms represents the
total fuel consumption, where the fuel consumption rate q(v, u) is a function of the vehicle
speed v and control input u. The second term σ0tf represents the total cost corresponding
to the terminal time tf with weight σ0. The third term is a penalty term related to traffic. It
includes penalties related to the speed limits and traffic speed, as explained later.

The dynamic system (4.2) describes a longitudinal vehicle dynamics which will be
specified below. The boundary conditions (4.3) fix the total arc-length of the route sf , the
initial speed v0, and the final speed vf , while (4.4) gives a speed-dependent upper bound
for the control input u. To avoid braking (since it dissipates energy), we require the control
input to be nonnegative, and assuming no safety hazard would occur.

4.1.2 Vehicle Dynamic Model

Recall the longitudinal vehicle model acquired from Chapter 2, we assume that no slip
occurs on the wheels and that the flexibility of the tires and the suspension can be neglected.
Then using the Newton-Euler equation we obtain

meff v̇ = −mg sinφ− γ mg cosφ− k(v + vw)2 +
η

R
Te, (4.5)
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see [35,44], where the effective massmeff = m+Jw/R
2 contains the mass of the vehiclem,

the moment of inertia Jw of the rotating elements, and the wheel radius R. For simplicity,
this part only consider Je = 0 in the design. Furthermore, g is the gravitational constant, φ
is the inclination angle, γ is the rolling resistance coefficient, k is the air drag constant, vw

is the speed of the headwind, η is the gear ratio (that includes the final drive ratio and the
transmission efficiency), and Te is the engine torque. See Table 2.1 for parameter values
used in this section, which are for a Prostar truck, a class 8 heavy duty vehicle manufactured
by Navistar [1]. When units are not spelled out, quantities should be understood in SI units.

Based on (4.5), we have

f(s, v, u) = −α sinφ− β cosφ− κ (v + vw)2 + u, (4.6)

in (4.2) where

α =
mg

meff

, β =
γ mg

meff

, κ =
k

meff

, u =
ηTe

meffR
. (4.7)

Note that the control input u is a rescaled torque, with unit of acceleration [m/s2], and by
choosing the appropriate gear ratio η one can calculate the corresponding engine torque Te.

The inclination angle φ is calculated from the elevation profile h(s) that gives the eleva-
tion as a function of the distance traveled s. Throughout this chapter, we consider a straight
road with the simple elevation profile

h(s) = hR

(
s− sR

sR

)2

, (4.8)

shown in Figure 4.1. We also consider hR � sR, in particular we use hR = 30 [m],
sf = 2sR = 4000 [m]. This profile is selected to enable the derivation of an analytical
solution for the resulted optimal control problem in Section 4.3. Nonetheless, the methods
presented can be applied when using other profiles as well. Since φ < 0.05 [rad], here
we use the approximation cosφ ≈ 1. Moreover, for simplicity we consider no headwind
vw = 0. Thus, (4.6) can be simplified to

f(s, v, u) = −αh′(s)− β − κ v2 + u; (4.9)

see Section 2.2.
We emphasize that using u as the control input enables us to decouple the optimization

of the speed profile and the gear selection: the rescaled torque u is derived first and then
the optimal gear is selected to minimize fuel consumption.
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Figure 4.1: Elevation h as function of distance d and arc-lengths s.

4.1.3 Fuel Consumption Map with Gear Change

In order to keep the problem analytically tractable, we use a static fuel consumption map,
q(v, u) that specifies the fuel consumption rate (with unit [g/s]) for a given input u and
a given speed v. Fuel consumption maps are typically given as a function of the engine
speed ωe and engine torque Te, that is, q(ωe, Te). Dividing this with the engine power
Pd = Teωe = meffuv we obtain the brake specific fuel consumption (BSFC):

BSFC =
q(ωe, Te)

Teωe

=
q(v, u)

meffuv
, (4.10)

where we used u = ηTe

meffR
and v = Rωe

η
; cf. (4.7). Small BSFC values typically imply

good fuel economy [51]. Previous efforts on fuel economy optimization with analytical
approach usually assumed fixed gear ratio, which resulted in a one-to-one relationship be-
tween q(ωe, Te) and q(v, u) [15,75]. In this chapter, we generate a map with the gear
changes involved.

Given a control input u at a certain speed v, different gears set the engine to different
working points, and therefore, yield different BSFC values. We choose the gear that gives
the least BSFC among all the available gears and generate the working zone for each gear in
the (v, u) plane as shown in Figure 4.2(a) for a MaxxForce 13 diesel engine with a 10-speed
transmission used in a Prostar truck manufactured by Navistar [1]. Recall Chapter 3 for the
optimal design. We found that for any given (v, u) point, there is a single optimal gear ratio,
so one can map the fuel consumption from the (ωe, Te)-plane to the (v, u)-plane using the
associated gear, which is shown by the contours in Figure 4.2(b). This corresponds to
the optimal gear shift schedule in chapter 3. It can be observed that the contours of the
fuel consumption map are similar to the iso-power curves (Pd = meffuv). To obtain an
analytical model we fit the data using the Willans approximation

q(v, u) = p2v u+ p1v + p0, (4.11)

see [76], where p2, p1,p0 are parameters to be identified. By applying least squares fitting,
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Figure 4.2: Contours in the plane of speed v and control input u. (a) Optimal gear ratios;
(b) Experimental fuel consumption contours, with units [g/s]; (c) Fitted fuel consumption
contours, with units [g/s]; (d) BSFC with optimal gear ratios applied, with units [g/(kW ·
h)]. The black crosses represent points with minimal BSFC value. In all four panels, black
dashed curves indicate the boundaries of the domain accessible by the engine for all gears.

we obtain p2 = 1.8284 ± 0.0019 [gs2/m2], p1 = 0.0209 ± 0.0006 [g/m], p0 = −0.1868 ±
0.0068 [g/s]. The corresponding contours are shown in Figure 4.2(c). With the gear ap-
plied, the BSFC in (v, u)-plane is shown in Figure 4.2(d), where crosses indicate the mini-
mal BSFC points for different gears.

We assume that gear changes occur instantaneously and the engine’s state jumps a-
long iso-power curves during gear change. The blank regions in Figure 4.2 correspond to
(v, u) combinations that are not accessible by the engine. The corresponding black dashed
boundary at the top consists of two sections: a constant section at amax for low speeds and
an iso-power curve at Pmax for higher speeds. Since P = Teωe = meffuv, we have

aU(v) = min{amax, U/v}, U =
Pmax

meff

, (4.12)

in (4.4). In this chapter we use amax = 2[m/s2], Pmax = 300.65 [kW]⇒ U = 10.14 [m2/s3]

that are acquired through data fitting.
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We rewrite the constraints (4.4,4.12) into the form

0 ≤ u

min{amax, U/v}
≤ 1

⇔





C1(v, u) :=
u

min{amax, U/v}
− 1 ≤ 0,

C2(v, u) := − u

min{amax, U/v}
≤ 0.

(4.13)

We note that the mixed constraint trivially satisfies the regularity condition ∂uCi(v, u) 6=
0, i = 1, 2. This guarantees the existence of Lagrange multipliers that is continuous over
the whole time interval [77]. This will be supported by the derivation in the next section.
Moreover, having the two constraints in a similar form results in multipliers of same scale,
which is convenient for numerical computation.

4.1.4 Penalty on Traffic

We consider two types of penalty on traffic: one related to the speed limit, the other related
to the traffic flow speed, that is, in (4.1) we consider

r(s, v) = r1

(
vlim(s), v

)
+ r2

(
vtraf(s), v

)
. (4.14)

Here we assume the speed limit penalty is,

r1

(
vlim(s), v

)
= ρ1

{
sec

[
π

2

(
2v

vlim(s)
− 1

)n]
− 1

}
, (4.15)

where the speed limit vlim(s) is given along the route and as a function of the arc-length
s and ρ1 is a constant weight. The function (4.15) is illustrated in Figure 4.3(a), with
vlim ≡ 30 [m/s], ρ1 = 0.1[g/s], for different values of n. It can be seen that as parameter n
increases, the function becomes more “square shaped”. In this chapter, we use the power
n = 10.

For traffic penalty, we use a quadratic function

r2

(
vtraf(s), v

)
= ρ2

(
vtraf(s)− v

)2
, (4.16)

which is illustrated in Figure 4.3(b) for the weight ρ2 = 1[gs/m2]. Indeed, the traffic
penalty increases when the vehicle speed moves away from the traffic flow speed vtraf(s)

that is given as a function of the arc-length s. We remark that we use an Eulerian description
to describe the traffic flow, that is, vtraf shows the “averaged” flow speed at location s and
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Figure 4.3: Traffic penalty given by (4.14,4.15,4.16).

does not necessarily correspond to the speed of an individual vehicle (that would require a
Lagrangian description [78]). When increasing the weight ρ1, one intends to adapt more to
the traffic flow speed.

4.2 Optimal Control Problem and Necessary Conditions
for Optimality

Substituting (4.11) into (4.1), we obtain

J0 =

∫ tf

0

(p2vu+ p1v + p0) dt+ σ0 tf +

∫ tf

0

r(s, v) dt. (4.17)

Since
∫ tf

0
p1v(t) dt = p1sf is constant, this term may be dropped. We define σ = p0 + σ0,

drop the subscript of p2, and redefine the objective function as

J =

∫ tf

0

p uv dt+ σ tf +

∫ tf

0

r(s, v) dt. (4.18)

To minimize this, we need to determine a piecewise continuous control function u :

[0, tf ] → R that minimizes the functional (4.18) subject to the dynamic system (4.2) (or
specifically (4.9)), the boundary conditions (4.3) and the mixed state-control constraints
(4.4) (or specifically (4.13)). For systems with mixed constraints, necessary conditions of

58



optimality were derived in [70, 72, 79] in the form of PMP, and the following analytical
framework is based on these works.

Let x = [s, v]T be the state vector of the system and λ = [λs, λv]
T be the associated

costate vectors. The standard Hamiltonian function is defined as

H(x, λ, u) = puv + σ + r(v, s)

+λsv + λv(−αh′(s)− β − κv2 + u).
(4.19)

Then, the augmented Hamiltonian that takes into account the mixed constraints is given by

H(x, λ, µ, u) = H(x, λ, u) + µTC(x, u), (4.20)

where C = [C1, C2]T are given by (4.13) and µ = [µ1, µ2]T are the Lagrange multipliers.
Let x∗, u∗ denote a local minimum pair of the optimal control problem. Then ac-

cording to [70] there exist a continuous and piecewise continuously differentiable costate
λ∗ : [0, tf ] → R2 and a continuous multiplier µ∗ : [0, tf ] → R2 such that the following
conditions hold:

1. adjoint equations
λ̇∗ = −∂xH(x∗, λ∗, µ∗, u∗). (4.21)

2. minimum condition for the standard Hamiltonian

H(x∗(t), λ∗(t), u∗(t)) = min
u∈Ω(t)

H(x∗(t), λ∗(t), u), (4.22)

with (momentarily) admissible control set

Ω(t) =
{
u | 0 ≤ u ≤ min{amax, U/v

∗(t)}
}
.

3. local minimum condition for the augmented Hamiltonian

∂uH(x∗(t), λ∗(t), µ∗(t), u∗(t)) ≡ 0. (4.23)

4. complementarity condition

µ∗(t) ≥ 0, µ∗(t)TC(x∗(t), u∗(t)) = 0, (4.24)
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5. transversality condition (for free terminal time tf)

H(x∗(tf), λ
∗(tf), u

∗(tf)) = 0. (4.25)

Note that because C1 and C2 cannot be active at the same time, the complementarity condi-
tion (4.24) actually leads to µ∗iCi = 0, i = 1, 2 when either of the constraints is active and,
consequently, the constraint qualification condition is trivially satisfied [68]. Also note that
we do not get a terminal condition for λ(tf), since the terminal state x(tf) is fixed.

From now on we abuse the notation and drop the ∗ for the optimal solution. Using
(4.19) and (4.20), the adjoint equation (4.21) becomes

[
λ̇s

λ̇v

]
=

[
λvαh

′′(s)− ∂sr(v, s)
−λs + 2λvκv − pu− ∂vr(v, s)− µ1∂vC1 − µ2∂vC2

]
, (4.26)

where ∂s and ∂v denote the partial derivatives with respect to s and v, respectively. Since
the control variable u appears linearly in the Hamiltonian (4.19), the minimum condition
(4.22) gives the controller

u(t) =





min{amax, U/v(t)}, if ζ(t) < 0,

using(t), if ζ(t) = 0, t ∈ Is ⊂ [0, tf ]

0, if ζ(t) > 0,

(4.27)

where Is denotes the time interval corresponds to singular arc, ζ(t) = ζ(v(t), λv(t)) is the
switching function given by

ζ(v, λv) = ∂uH = pv + λv, (4.28)

and the control input using along the singular arc is described further below. To determine
the multipliers µ1 and µ2, we use the local minimum condition (4.23) which gives

µ1 = − ζ

∂uC1

, µ2 = − ζ

∂uC2

. (4.29)

Note that the sign condition µ1 ≥ 0 and µ2 ≥ 0 in (4.24) are in accordance with the sign of
the switching function ζ in (4.28), and we exploited that C1 and C2 cannot be active at the
same time.

Now we derive a formula of the singular control using in (4.27). We achieve this by dif-
ferentiating (4.28) with respect to time until u appears explicitly. The derivation is carried
out for the case with no traffic penalty (r(s, v) ≡ 0 in (4.14)), but it can easily be gener-
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alized when adding traffic penalty. Assume that control takes values in the interior of the
control set, that is, Ci(v, u) < 0 for i = 1, 2, in a certain time interval Is. Then the singular
arc is given by

ζ = pv + λv = 0, (4.30)

cf. (4.27,4.28). Differentiating this with respect to time and using (4.2,4.9,4.26) we obtain

ζ̇ = p
(
− αh′(s)− β − κv2

)
− λs + λv 2κv = 0. (4.31)

Note that the control variable u drops out in accordance with the theory of singular control;
see [80]. Substituting λv = −pv we attain

ζ̇ = p(−αh′(s)− β − 3κv2)− λs = 0. (4.32)

Using again (4.2,4.9,4.26), the second derivative of ζ is computed as

ζ̈ = p
(
− αh′′(s)v − 6κv(−αh′(s)− β − κv2 + u)

)

−λvαh′′(s) = 0.
(4.33)

Substituting λv = −pv again, we obtain

ζ̈ = −p6κv
(
− αh′(s)− β − κv2 + u

)

= −p6κv · v̇ = 0.
(4.34)

The control u appears explicitly in the second derivative of ζ and, hence, a singular arc is
of first order; see [80]. According to (4.34) a singular arc is characterized by the condition
v̇ ≡ 0 of constant speed which yields the singular control

using(s, v) = αh′(s) + β + κv2. (4.35)

Moreover, note that the strict generalized Legendre-Clesch condition (GLC), which is a
higher order necessary condition for the singular control to be optimal, holds since

− ∂ζ̈

∂u
= 6pκv > 0, (4.36)

see [80]. To interpret the physical meaning of singular control (4.35), we give the following
two theorems.

Theorem 2. Assume that κ 6= 0 in (4.9), no constraints are applied to control input u,

and no traffic penalties are considered (r(s, v) ≡ 0 in (4.14)). Then the necessary and
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sufficient condition to maintain ζ = 0 is having constant speed v ≡ 3
√
σ/(2pκ), which can

be calculated by setting v̇ ≡ 0 and using (4.25).

Theorem 3. If the gradient h′(s) is such that 0 ≤ αh′(s) + β + κ v2 < min{amax, U/v}
for s ∈ [0, sf ] and we assume v(0) = v(tf) = v0, then the singular control input (4.35)
maintains a speed constant along the whole route.

According to these theorems, if the combined effect of the grade, rolling resistance
and wind are small, then limiting the acceleration (by traveling with constant speed) is the
best strategy to minimize the fuel consumption. On the other hand, it will be demonstrated
below that when the external effects are significant, the optimal controller switches between
the minimum and maximum of u.

In the rest of this chapter, we will use the vector notation

X = [s, v, λs, λv]
T. (4.37)

Then the boundary value problem (4.2,4.3,4.9,4.25,4.26) can be summarized as




ṡ

v̇

λ̇s

λ̇v




=




v

−αh′(s)− β − κ v2 + u

λvαh
′′(s)− ∂sr(v, s)

−λs + 2λvκ v − p u− ∂vr(v, s)− µ1∂vC1 − µ2∂vC2



, (4.38)




s(0)

s(tf)− sf

pv(0)− v0

v(tf)− vf

H(s(tf), v(tf), λs(tf), λv(tf), u(tf))




︸ ︷︷ ︸
B(X(0),X(tf))

=




0

0

0

0

0



. (4.39)

There is no general existence and uniqueness conditions for boundary value problems,
even for smooth dynamic systems [81]. Therefore, whether a solution exists is unknown
when setting the parameter values. Even if system (4.27,4.38,4.39) consists of smooth
subsystems, switches make the system non-smooth. Moreover, varying the parameter σ
changes the boundary condition (4.39), and consequently, changes the optimal solution.
We also remark that (4.27,4.38,4.39) essentially give a multi-point boundary value problem
(MBVP) since the switching times tk ∈ (0, tf), where the switching function ζ(t) vanishes,
are not known a priori. Standard numerical methods like the shooting method cannot be
applied directly to solve this problem as the system may become very sensitive to initial
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conditions due to the switches at the interim points. In this chapter, we bypass this issue by
using smoothing techniques and apply collocation to obtain the solutions. These combined
with pseudo-arclength continuation allow us to trace the optimal solution while varying
parameters. To obtain an initial guess of the solution, we analyze the switching structure
of the optimal controller for a simplified linearized model.

Alternatively, one can discretize the problem by using a large number of grid points
and solve the resulting nonlinear programming problem (NLP), e.g., by the Interior-Point
optimization code IPOPT [82] that is implemented using the Applied Modeling Program-
ming Language (AMPL) [83]. We use this direct “discretize and then optimize” approach
to check the solutions provided by the proposed “collocation and continuation” method ex-
plained above. However, we remark that the direct method requires much finer time mesh
to obtain the optimal solution.

4.3 Analytical Solution of the Linear Damped System

In this section, we simplify the BVP (4.27,4.38,4.39) to a linear system with simple con-
straints, and derive the analytical solution. This allows us to characterize how the optimal
solution changes with the parameter σ. Moreover, the analytical solution will be utilized in
Section 4.4 to initialize the numerical continuation when solving the original nonlinear B-
VP. Here, the air drag is substituted by linear damping, i.e., κv2 is replaced by κv0v, where
v0 = v(0). Furthermore, traffic penalty is omitted by setting r(s, v) ≡ 0 in (4.14). Finally,
the constraints (4.13) are substituted by 0 ≤ u ≤ amax. Thus, (4.38) is simplified to the
affine equations




ṡ

v̇

λ̇s

λ̇v




=




0 1 0 0

−2αhR

s2R
−κv0 0 0

0 0 0 2αhR

s2R

0 0 −1 κv0







s

v

λs

λv




+




0

2αhR

sR
− β + u

0

−pu



, (4.40)

which can be solved analytically, given the control input u. According to (4.27), the input
u stays at its maximum amax or minimum 0 when ζ 6= 0. Therefore, we obtain the solution
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Figure 4.4: Six possible scenarios involving one switch. For trajectories 1 and 2, u switches
from maximum to minimum (i.e., ζ = pv + λv switches from negative to positive). For
trajectories 4 and 5, u switches from minimum to maximum (i.e., ζ = pv+λv switches from
positive to negative). Trajectories 1 and 5 represent transverse scenarios, while trajectories
2 and 4 show tangential scenarios. Trajectories 3 and 6 are for the grazing scenarios, where
the minimum and the maximum control input is maintained, respectively. Bold segments
and crosses indicate ζ = 0.

in the following form when u is constant.




s(t)

v(t)

λs(t)

λv(t)




︸ ︷︷ ︸
X(t)

=




F1(s0, v0, t, u)

F2(s0, v0, t, u)

F3(λs0, λv0, t, u)

F4(λs0, λv0, t, u)




︸ ︷︷ ︸
F(X0,t,u)

, (4.41)

where we used the abbreviated notation: s(0) = s0, v(0) = v0, λs(0) = λs0, λv(0) = λv0,
X0 = X(t0) = [s0, v0, λs0, λv0]T. Note that, when u changes in time, we may still get an
expression similar to (4.41), but the right hand side becomes a functional. In this case the
dynamics of s, v and the dynamics of λs, λv are not decoupled anymore, but the control
law (4.27) makes them coupled through switching. Even though we cannot guarantee that
a unique solution exists, we assume that the boundary condition (4.39) allows at least one
solution.

If the system does not satisfy the conditions in Theorem 3, the control input switches
between the cases in (4.27). Switches may occur in 6 different ways as illustrated in Figure
4.4 where the switching surface ζ = 0 is also depicted. The control input u either switches
from the maximum amax to minimum 0 (trajectories 1 and 2), or vice versa (trajectories 4
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and 5). Trajectories 3 and 6 do not cross the switching surface but attach to it and leave to
the same side, so the control input stays at the minimum (trajectory 3) or at the maximum
(trajectory 6). We call them grazing scenarios. Trajectories 1 and 5 are named traverse

scenarios since these trajectories go through the switching surface. On the other hand,
trajectories 2 and 4 attach to the plane, travel along it, and leave it on the other side. We
name these tangential scenarios. We remark that the switching structure is determined by
the boundary conditions and in general multiple switches may occur.

By solving the affine equation (4.40) analytically, the linear system (4.27,4.39,4.40) can
be transformed to a system of nonlinear algebraic equations. By using the notation defined
in (4.39,4.41), for the traverse scenario we obtain

B(X0, Xf) = 0,

X1 = F(X0, t1, ad1),

Xf = F(X1, tf − t1, adf),

(4.42)

where X1 = X(t1), Xf = X(tf), ad1, adf ∈ {0, amax} such that ad1 6= adf . Solving
these equations we obtain t1, tf , λs0, λv0. On the other hand, for the tangential and grazing
scenarios, we have

B(X0, Xf) = 0,

pv̇ + λ̇v = 0, for t ∈ [t1, t2],

X1 = F(X0, t1, ad1),

Xf = F(X2, tf − t2, adf),

(4.43)

where ad1, adf ∈ {0, amax} such that ad1 6= adf for tangential scenarios and ad1 = adf

for grazing scenarios. Solving these equations we obtain t1, t2, tf , λs0, λv0. The overall
solution of the multi-point boundary value problem will be a series of segments that are
given analytically.

As an example, we consider the case v(tf) = v(0) = 25 [m/s], amax = 0.6 [m/s2]. We
set amax at this value since it is close to the minimum value of U/v in the velocity range
we consider; see Figure 4.2. With these parameters, all types of switches shown in Figure
4.4 can be obtained except trajectory 6. Meanwhile, solutions with multiple switches also
appear.

The range of parameter σ is divided into 6 domains and the appearing 6 different types
of solutions are shown in Figure 4.5. Red dashed curves represent analytical solutions
while blue solid curves represent numerical simulations for the same initial condition, and
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they match very well. We compared these trajectories with those using a direct method
“discrete and optimize” method mentioned in Section 3 and they essentially give the same
results.

When σ ∈ [0, 1.05] [g/s], the optimal solution is of transverse scenario 1, and the
control input switches from minimum to maximum, see case A in Figure 4.5. When
σ ∈ [1.05, 3.71] [g/s], the optimal solution is of attached scenario 2, and the control in-
put changes from minimum to maximum but the trajectory attaches to the surface ζ = 0 in
the middle; see case B in Figure 4.5. When σ ∈ [3.71, 4.33] [g/s], the optimal solution is of
grazing scenario 3, and the control input starts from minimum and ends at minimum while
attaching to the plane ζ = 0 in the middle; see case C in Figure 4.5. When σ ∈ [4.33, 9.43]

[g/s], trajectories with two switches exist so that the transverse scenario 5 followed by the
attached scenario 3; see case D in Figure 4.5. When σ ∈ [9.43, 12.73] [g/s], the optimal
solution is of attached scenario 4; see case E in Figure 4.5. Finally, when σ ∈ [12.73,+∞)

[g/s], the optimal solution is of transverse scenario 5; see case F in Figure 4.5.
The terminal time tf and total fuel consumptionQ are plotted in Figure 4.6 as a function

of σ, where the total fuel consumption is defined as

Q =

∫ tf

0

q(v, u) dt =

∫ tf

0

(p2vu+ p1v + p0) dt, (4.44)

cf. (4.1,4.11). The six domains explained above are separated by the black vertical lines,
with the numbers 1-5 indicating the solution type corresponding to those in Figure 4.4,
while the letters A–F correspond to the cases in Figure 4.5. Note that the solution σ > 12.73

[g/s] the trajectories for s, v and u are essentially the same as those for σ = 15 [g/s].
The analysis of this simplified problem shows that by varying the system parameters,

the optimal solution may change qualitatively. To experience the trade-off between travel
time and fuel consumption, one shall set σ ∈ [3, 15], where, indeed, better fuel economy
leads to a longer traveling time. Meanwhile, it is possible to use the analytical solution
to start the numerical continuation and gradually steer the system to the original nonlinear
system. We will introduce the numerical technique in Section 4.4.

4.4 Numerical Solution of the Full Nonlinear System

In this section we investigate the original nonlinear BVP (4.27,4.38,4.39) using numerical
continuation. This technique was originally developed to compute solutions of systems of
parameterized nonlinear equations [84]. The idea is to start from a solution with certain set
of system parameters and gradually change the parameters until the target parameters are
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Figure 4.5: Time evolution of the speed v (left column), the corresponding control input
u (middle column), and the switching variable ζ (right column) for different values of
the parameters σ as indicated. The rows correspond to the points A–F marked in Figure
4.6. Red dashed curves represent analytical solutions while blue solid curves represent
numerical solutions and they match very well.
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Figure 4.6: The upper panel gives the terminal time tf as a function of σ, while the lower
panel shows the total fuel consumption Q (4.44) as a function of σ, for v(tf) = v(0) =
25 [m/s], amax = 0.6 [m/s2] for the system (4.27,4.40). The black dashed vertical lines
separate 6 regions of qualitatively different solutions, with the numbers corresponding to
those in Figure 4.4. The points A–F corresponds to the cases in Figure 4.5
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reached; see Appendix A for a brief overview of the method. We start from the solution
of the simplified system (4.27,4.39,4.40) and add nonlinearities gradually until we reach
(4.27,4.38,4.39) by varying the parameters. Besides the nonlinear “bang-bang” controller
(4.27), the original problem also has other types of nonlinearity: nonlinear input constraint
aU(v) in (4.13), air drag in (4.9), and traffic penalty r(v, s) in (4.1).

Instead of starting from U → ∞, we set U = 100 [m2/s3], so that U/v � amax =

0.6[m/s2]; see Figure 4.2. Then we decrease U until we reach U=Pmax/meff=10.14[m2/s3].
After that we change the maximum acceleration gradually from amax = 0.6[m/s2] to
amax = 2[m/s2]. This last step does not change the optimal trajectories in the cases consid-
ered here. The nonlinear air drag term is added by varying κ̃ from 0 to κ in κ̃v2+(κ−κ̃)v0v.
The traffic penalty (4.14) is introduced in similar manners. For speed limit r1, initially we
set vlim in (4.15) to be large and gradually decrease it to the target value while ρ1 is kept
fixed. For penalty r2 corresponding to the deviation from the traffic speed, we introduce it
gradually by increasing ρ2.

Since continuation requires a certain level of smoothness, we derive an approximate
system by smoothing (4.27,4.38,4.39). Specifically, the smoothed version of constraint
(4.12) is written as

ãU(v) =
amax + U/v

2
− (amax − U/v)2

2
√
ε1 + (amax − U/v)2

, (4.45)
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Figure 4.8: Time evolution of the speed v (left column), the corresponding control input
u (center column), and the switching variable ζ for different values of the parameter σ
(right column) as indicated. The rows correspond to the points A, G, H, I, J marked in
Figure 4.10. The blue solid curves are associated with the trajectories acquired by the our
BVP solver based on pseudo arc-length collocation method using the smoothed controller
(4.45,4.46), the red dashed curves are those generated by direct method.

while the smoothed version of the switching rule (4.27) is given as

u =
1

2
aU(v)

(
1− ζ√

ε2 + ζ2

)
, (4.46)

where ε1 and ε2 are small parameters with units [m2/s4] and [g2s2/m2], respectively. In
Figure 4.7 the nonsmooth functions (4.12,4.27) (black dashed curves) are compared to
(4.45,4.46) (solid green curves), for ε1 = 0.001[m2/s4], ε2 = 0.01[g2s2/m2] and amax =

0.6[m/s2]. Indeed, the smoothed curves approximate the nonsmooth ones well.
Our BVP solver is based on pseudo arclength continuation algorithm. We discretize the

BVP using collocation method [85] which results in a large system of nonlinear equations
that also depends on parameters. Then a continuation algorithm is used to solve these non-
linear equations while varying parameters. To speed up the computation, we use adaptive
steps. When solving BVPs with singular arcs with other methods like the shooting method,
[68,81,86], difficulties often arise due to the sensitivity with respect to initial values. The
collocation method can bypass this problem because it tunes the whole solution, that is,
distributes the sensitivity along the whole trajectory. In this chapter, we use the collocation
method with 400 points ε1 = 10−6[m2/s4] and ε2 = 0.01[g2s2/m2].

The time evolution of the system (4.27,4.38,4.39) is shown in Figure 4.8 for different
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Figure 4.9: Effect of the speed limit penalty with different values of vlim as indicated. The
same notation is used as that in Figure 4.8.

values of σ as indicated (different from those used in Figure 4.5, and 4.6 for better illus-
tration of the switching structure). The blue solid curves are the trajectories acquired by
the our BVP solver based on pseudo arc-length continuation method using the smoothed
controller (4.45,4.46), while the red dashed curves are generated by a direct method using
the nonsmooth controller (4.27). The two trajectories in each panel are close to each other,
implying that the smoothed controller represents the original non-smooth one with a good
accuracy. Note that when applying our method we used 400 points to represent the trajec-
tory, and for the direct method we used 10000 points, which increases the computational
demand significantly. The numerical solutions of the nonlinear system maintain the same
trend as the analytical solutions of the linear system. That is, as σ increases, the solutions
starts with minimum to maximum bang-bang type controller. Then, a singular arc appears.
Eventually it becomes a bang-bang type again but with maximum to minimum switch. We
also plot the terminal time tf and the total fuel consumption Q (cf. (4.44)) as functions
of σ in Figure 4.10. Compared with Figure 4.6, besides the change in values of terminal
time and total fuel consumption, the transition region expands in the σ direction due to the
nonlinearities.

We summarize the above results in Table 4.1, where we show the terminal time tf and
the total fuel consumption Q for different σ values for v(0) = v(tf) = 25 [m/s]. For
comparison, we also show the results for constant speed (that can be maintained using
standard cruise control). When σ is small the optimal solution consumes approximately
11.9% less fuel compared to the constant speed scenario. On the other hand, when the
weight on terminal time is large and the truck reaches its destination earlier but consumes
more fuel. Again we can identify the region σ ∈ [3, 30] where one has a trade-off between
travel time and fuel consumption. We remark that in order to maintain the constant speed,
braking and large engine torque may be needed (i.e., the constraints (4.13) may be violated).
Therefore the constant speed driving profile is not necessarily in the function space for the
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tf[s] Q[g]
σ = 0 (Case A) 162.1 1071.1
σ = 5 (Case G) 160.1 1080.2
σ = 10 (Case H) 145.2 1208.9
σ = 20 (Case I) 121.3 1545.7
σ = 30 (Case J) 115.6 1676.2
Cruise Control 160.0 1222.3

Table 4.1: Terminal time tf and fuel consumption Q for multiple σ values (cf. Figure 4.8),
compared with the fuel consumption and time of cruise control, with conditions v(0) =
v(tf) = 25[m/s].

optimal control problem. Finally, we remark that increasing the speed of headwind will
increase the length of the time where maximum available control input is applied.

4.5 Traffic Information

In this section, we investigate the effect of the penalty term on traffic. In particular, we
study the effects of the speed limit and the traffic flow speed separately. We first study the
penalty on speed limit by setting ρ1 = 0.1[g/s], and ρ2 = 0[gs/m2] and using constant
vlim along the route, cf. (4.15). We start from the solution with σ = 30[g/m] (cf. Figure
4.8, case J, where the maximum speed reaches ≈ 39[m/s]) and continue the solution while
changing vlim from 40[m/s] to 30[m/s]. The results are shown in Figure 4.9 where the
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Figure 4.11: Traffic flow penalty with different values of vtraf as indicated. The same
notation is used as that in Figure 4.8.

same notation is used as in Figure 4.8. As the speed limit decreases, the maximum speed of
the optimal speed profile decreases in response. Notice that to achieve the optimal profile,
complicated switching structure may be required for the control input. For example, when
vlim = 30 [m/s], minimum control, singular control and maximum control are all needed.

In order to investigate the effect of traffic flow penalty, we set σ = 30[g/s], ρ1 = 0[g/s],
and consider vtraf to be constant along the route; cf. (4.16). We start from the solution with
σ = 30[g/m] (cf. Figure 4.8 case J), and change ρ2 from 0 to 1. The results with different
vtraf values are shown in Figure 4.11, where again the same notation is used as in Figure 4.8.
Four different values of the constant traffic speed vtraf are considered along the road and the
results imply that the optimal trajectories settle down to different speed profiles. When vtraf

is small, the speed profile is similar to the solution without traffic penalty; cf. Figure 4.8,
case A. This is because, according to the results in Section 4.4, the solution is the one with
the lowest average speed, so the controller cannot bring the vehicle to lower speed. Note
that lower desired traffic speed vtraf can be achieved by adjusting problem parameters (e.g.,
the boundary condition (4.3) and the constraints (4.4)) but such analysis is beyond the scope
of this chapter. As vtraf increases, the speed profile comes closer to vtraf and the penalty
cost is reduced. However, as a result of the multi-objective optimization considering fuel
consumption, travel time, and traffic speed, the optimal profile requires nontrivial control
action including multiple switches between maximum, minimum and singular control.

Finally, in Figure 4.12 we show the ratio between traffic cost and the total cost (4.1) as
a function of the weight ρ2. When it is achievable by control, the speed profile gets closer
to the traffic flow speed (as in the second two rows of Figure 4.11) and therefore (v−vtraf)

2

goes to zero as ρ2 increases. As a result, the ratio between traffic cost and the total cost
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will converge to a constant value, as shown by the black dotted and magenta dashed-dotted
curves in Figure 4.12. On the other hand, if the traffic flow speed cannot be followed by the
vehicle using any feasible control (as in the first two rows of Figure 4.11), then the speed
profile remains significantly different from the traffic flow as ρ2 increases. As a result,
the ratio between traffic cost and the total cost will keep growing as ρ2 increases, since
(v−vtraf)

2 converges to a constant value, as demonstrated by the blue solid and red dashed
curves in Figure 4.12. These results show that increasing the weight on traffic may not
force the vehicle to approach the desired speed given by the traffic conditions. Also, we
emphasize that this desired speed does not correspond to the speed of a particular vehicle.
To take into account such effects (e.g., to address safety) a different description is needed
and it is left for future research.

4.6 Summary

In this chapter, we proposed a framework for fuel economy optimization of heavy duty
vehicles that can incorporate road elevation, headwind, desired terminal time, and traffic
information. We established a systematic approach in order to solve the arising multi-
objective optimal control problem while varying the system parameters. First, we solved
a simplified problem analytically that allowed us to characterize the switching structure
of the resulting bang-bang controller or bang-singular-bang controller. Then, we used this
knowledge to initialize our numerical continuation software.

We demonstrated that varying the weight on the desired terminal time causes qualitative
changes in the switching structure of the controller. We also identified a parameter region
where one can balance the fuel-economy and the traveling time. Moreover, we investigated
the effects of traffic dynamics and identified the conditions (in term of the traffic speed
and the weigh on the traffic cost) that allow the truck to balance between fuel economy
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and adaptation to traffic conditions. These were achieved by nontrivial control actions that
cannot be obtained intuitively.

For fuel efficient driving in heavy traffic conditions, reacting to the motion of individual
vehicles in the neighborhood may be important. Merging such an Lagrangian description
with the Eulerian description used in the chapter is a challenging task. One possible mean
is by incorporating V2V information from multiple vehicles ahead as will be investigated
in Chapter 5.
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CHAPTER 5

Fuel Efficient Connected Cruise Control for
Heavy-duty Trucks in Real Traffic

All stable processes we shall predict.

All unstable processes we shall control.

JOHN VON NEUMANN

In the previous chapter, the analysis on fuel efficient control was carried out, assuming
the traffic perturbations were mild. In this chapter, we focus on the case when a heavy duty
truck is in a dense traffic and need to react to traffic perturbations.

At the vehicle level, one may use geo-location information to do eco-driving and design
optimal speed profiles [11,14,87]. Without traffic perturbations, such optimal speed profiles
can lead to over 10 percent reduction in fuel consumption, as pointed out in Chapter 4.
However, this benefit may not be attainable in real traffic when a truck has to respond to
the speed profiles of human-driven vehicles ahead. While an automated truck using on-
board sensors may respond to such scenarios better than a human driver, the fuel-economy
improvement may still be limited because on-board sensors can only obtain information
within their lines of sight [33].

To further improve fuel economy in real traffic, one approach is to monitor the motion
of multiple vehicles ahead and utilize beyond-line-of-sight information through vehicle-to-
vehicle (V2V) communication. Some researchers have designed centralized and coopera-
tive controllers for platoons of automated trucks [88, 89], so that each participating truck
can enjoy significant fuel improvement [35,90]. However, it can be challenging to organize
such cooperative platoons, before automated trucks become widespread [91]. Therefore,
non-cooperative schemes have been proposed to predict the preceding vehicle’s motion and
optimize fuel economy in a receding horizon manner [41,42,92–94]. Yet such methods of-
ten have heavy computational load [47], and their performance in real traffic is unclear
when the prediction accuracy is low. While stochastic approaches and off-line methods can
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be used to alleviate such limitations [22], examples from other research areas indicate that a
simpler design scheme may be more applicable and even perform better in real application
scenarios [37].

Therefore, we directly include V2V information from multiple vehicles ahead in the
feedback structure and propose the concept of connected cruise control (CCC) [44]. A
vehicle driven by such a connected cruise controller is referred to as a connected auto-
mated vehicle (CAV). While a small percentage of connected automated vehicles on the
road can already improve traffic safety and efficiency [45, 46], the connected automated
vehicle itself can also achieve better fuel economy theoretically [47–49]. Yet the question
remains whether connected cruise control can indeed save fuel in real traffic. To answer this
question, in this chapter, we present a data-driven design for connected cruise control that
improves fuel economy through minimizing overall energy consumption. We evaluate the
design with real traffic data, and demonstrate that the proposed connected cruise controller
can lead to robust fuel savings in real traffic.

The reminder of this chapter is organized as follows. In Section 5.1, as a motivation
to the proposed design, we use real traffic data to analyze the influence of traffic perturba-
tions on a truck’s fuel consumption using a high-fidelity model. We demonstrate that the
majority of fuel consumption in traffic is due to the energy consumption during speed fluc-
tuations. In Section 5.2, we present a connected cruise control design that utilizes motion
information of multiple vehicles ahead to minimize such energy consumptions in traffic.
The proposed design is evaluated in Section 5.3 using real traffic data sets, and the re-
sults are also compared to those obtained using receding-horizon controllers. Finally, the
conclusions are given in Section 5.4.

5.1 Evaluating fuel consumption in traffic

In this section, we demonstrate the impact of traffic perturbations on a truck’s fuel con-
sumption using real traffic data. We show that while such impacts can be reduced by tun-
ing the longitudinal controller through high-fidelity simulations, a systematic optimization
method is needed for more robust designs.

In this illustrative example, we consider a driving scenario where a truck drives behind
several human-driven vehicles on a segment of flat road that has one lane in each direction;
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Figure 5.1: (a) A truck driving behind three human-driven vehicles on a single-lane road. (b) The
saturation function in (5.1). (c) The range policy function (5.5). (d) The saturation function (5.6).

see Figure 5.1(a). The longitudinal motion of the truck can be described by

ṡ(t) = v(t), (5.1)

v̇(t) = −f
(
v(t)

)
+ sat

(
f̃
(
v(t− ζ)

)
+ ad(t− ζ)

)
,

where the dots denote differentiation with respect to time t, s denotes the position of the
rear bumper of the truck, v denotes its velocity, and ζ is the actuator delay that can also be
approximated by a first order lag [42, 44].

The physical effects like air resistance and rolling resistance are described by

f(v) =
1

meff

(γmg + k0v
2) , (5.2)

where g is the gravitational constant, γ is the rolling resistance coefficient, k0 is the air drag
constant, and the effective mass meff = m + I/R2 includes the mass of the vehicle m, the
moment of inertia I of the rotating elements, and the wheel radius R [87]. To compen-
sate for these physical effects, the term f̃ is often added through a lower-level controller.
Finally, ad denotes the higher-level acceleration command, which is limited between umin

and umax by the saturation function sat(·) based on the engine and braking power limit; see
Figure 5.1(b). In this chapter, we use umax = 1 [m/s2] and umin = −4 [m/s2] for the truck.

If the truck is driven by a human driver or adaptive cruise controller, the higher-level
controller can be modeled as

ad(t) =α
(
V
(
h(t− ξ1)

)
− v(t− ξ1)

)

+ β1

(
W
(
v1(t− ξ1)

)
− v(t− ξ1)

)
.

(5.3)
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Here α and β1 are the feedback gains. The headway

h = s1 − s− l , (5.4)

is the distance gap between the truck and its preceding vehicle, where l denotes the length
of the truck. Finally, ξ1 represents the sensory delay of position and speed information
from vehicle 1.

The range policy function

V (h) =





0 if h ≤ hst,

κ(h− hst) if hst < h < hgo,

vmax if h ≥ hgo,

(5.5)

describes the desired velocity of the truck as a function of its headway; see Figure 5.1(c).
For a small headway (h < hst), the truck intends to stop; for a large headway (h > hgo),
it intends to travel with the speed limit vmax; between hst and hgo the desired velocity
increases linearly, with the gradient κ = vmax/(hgo − hst). Finally, the saturation function

W (v1) =




v1 if v1 ≤ vmax,

vmax if v1 > vmax,
(5.6)

shown in Figure 5.1(d) is included to stay below the speed limit when a preceding vehicle
is speeding. In this chapter, we use vmax = 30 [m/s], hst = 5 [m] and κ = 0.6 [1/s].

To evaluate the performance of a truck under higher-level controllers such as (5.3), we
build a high-fidelity model in TruckSim based on a 2012 Navistar Prostar truck [1]; see
Figure 5.2 for the configuration and Appendix 2.1 for the data. In Figure 5.2, acceleration
commands for the truck are calculated using (5.3) and the motion information of the human-
driven vehicle ahead. These higher-level commands are then converted by a lower-level
controller into throttle and brake commands. Then using the TruckSim module, we obtain
the truck’s speed v, its engine speed ωe and engine torque Te. Finally, the truck’s fuel
consumption can be obtained using the fuel map q(ωe, Te).

In order to evaluate the influence of traffic perturbations on fuel consumption, we define
the cumulative energy consumption for the truck per unit mass

w(t) =

∫ t

t0

v(t̃)g
(
v̇(t̃) + f

(
v(t̃)

))
dt̃ , (5.7)
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Figure 5.2: Structure of the high-fidelity simulation platform using TruckSim and MAT-
LAB/Simulink to obtain the speed response and energy/fuel consumption of a truck responding
to traffic perturbations.

where t ∈ [t0, tf ] and g(x) = max(0, x). For vehicles with internal combustion engines,
fuel consumption typically increases with the energy consumption w(t). However, as w(t)

is defined by the vehicle’s motion, it can also be used to evaluate the energy consumption
of electric or hybrid vehicles due to speed variations using an appropriate g function.

In order to describe the traffic perturbations, we track the motion of three consecu-
tive human-driven vehicles in traffic. Two sets of recorded speed data are plotted in Fig-
ure 5.3(a,b), where the green, black, and red curves correspond to the speed of vehicle 3,
vehicle 2 and vehicle 1, respectively. In both cases, while the human-driven vehicles travel
with average speed of v ≈ 22 [m/s], their speed data exhibit large variations that are often
observed in dense traffic. We perform fast Fourier transforms on the speed data and display
their spectral amplitude ρi and phase angle φi in Figure 5.3(c-f). The spectral plots in pan-
els (c,d) show that both speed profiles contain similar Fourier components that are mainly
low-frequency oscillations.

Using the high-fidelity simulation platform shown in Figure 5.2, we simulate the truck
responding to speed perturbations shown in Figure 5.3(a,b) and obtain its energy consump-
tion (5.7) as well as the fuel consumption for different values of the feedback parameters
in the controller (5.3). In Figure 5.3(g,h), we plot the total energy consumption (blue
dots) of the truck during each simulation for κ = 0.6 [1/s] and α = 0.4 [1/s], while
β1 ∈ {0.1, . . . , 1.0} [1/s]. In panel (g), the truck consumes the least amount of energy
when β1 = 0.6 [1/s]. Moreover, as we calculate the total fuel consumption (red dots), we
find the truck also consumes the least amount of fuel at β1 = 0.6 [1/s]. This indicates
that one may minimize the fuel consumption through minimizing the energy consumption
while tuning the feedback gains in the higher-level controller (5.3).

If there were no speed perturbations, i.e., the preceding vehicles have constant speed,
the truck could also maintain the same constant speed. Then it consumes the total energy
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Figure 5.3: (a,b) Speed profiles of preceding human-driven vehicles, where the red, black, and
green curves represent v1, v2, v3 , respectively. (c,d) The amplitude spectra and (e,f) the phase angle
spectra of the speed profiles. (g,h) The total energy consumption (5.7) at the end of each run for
different values of the control gain β1 is shown as blue dots. The total mass of fuel mf consumed
by the truck in the high-fidelity simulation for the same parameters is shown as red dots. For both
curves, the black cross denotes the minimum point. For comparison the values corresponding to
constant speed are also plotted as blue and red dots connected by dashed lines.

80



w(tf) = 1.37 [kJ/kg] and the total fuel mf(tf) = 2.78 [kg]; see the blue and red dots along
the dashed lines in Figure 5.3(g). While constant-speed driving comprises less than half of
the total fuel/energy consumption, such motion can rarely be achieved in real traffic. Nev-
ertheless, the truck may reduce its energy consumption towards the constant-speed level,
if it is able to minimize its speed variation despite the traffic perturbations. In particular,
such smooth speed profiles can be maintained using connected cruise control, where V2V
signals from vehicles ahead serve as a “preview” of incoming traffic situations.

While the high-fidelity simulation platform can readily provide optimal controller gain-
s given specific speed profiles, it can be very costly in computation, and the optimal de-
sign may be very sensitive even with similar speed profiles. For example, based on Fig-
ure 5.3(g), one may be tempted to set β1 = 0.6 [1/s] for the truck driving in such slow-and-
go traffic. However, in panel (h), under speed profiles that are qualitatively very similar,
the energy and fuel minima are reached at β1 = 0.3 [1/s]. Therefore, in the next section,
we exploit the Fourier spectrum of the traffic perturbations in the connected cruise control
design, in order to obtain optimal parameters that are robust and computationally efficient.

5.2 Data-driven Connected Cruise Control

In this section, we consider a connected cruise controller for the truck that includes di-
rect feedback on speed signals from n human-driven vehicles ahead (see red arrows in
Figure 5.4). In particular, we propose the connected cruise controller for the connected
automated truck

ad(t) =α
(
V
(
h(t− ξ1)

)
− v(t− ξ1)

)

+
n∑

i=1

βi

(
W
(
vi(t− ξi)

)
− v(t− ξi)

)
.

(5.8)

cf. (5.3) and recall that h is the headway defined in (5.4).
The speed signals from vehicles farther ahead can be viewed as “preview information”

about speed variations propagating towards the connected automated truck. By includ-
ing vi, i = 2, . . . , n, in the feedback structure, the connected cruise controller (5.8) gains
“phase lead” against variations in the speed v1 of its immediate predecessor. In this way,
(5.8) enjoys the advantages of many cooperative adaptive cruise control designs [91] with-
out requiring the support of an automated vehicle fleet. While headway, speed, and accel-
eration from multiple preceding vehicles can be used in connected cruise control [95, 96],
here we only use V2V speed signals for simplicity.
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Figure 5.4: Layout of the connected vehicle system with a truck at the tail controlled by a CCC
algorithm. Each preceding vehicle is reacting to motion of the vehicle immediately ahead while the
truck utilizes V2V information from all three vehicles ahead.

5.2.1 Stability condition for maintaining constant speed

Before searching for the energy/fuel-optimal feedback gains, it is necessary to obtain the
stability boundaries to ensure that the connected automated truck is able to maintain con-
stant speed. Thus, we consider the steady-state traffic flow where

v(t) ≡ vi(t) ≡ v∗, (5.9)

for i = 1, . . . , n and
h(t) ≡ h∗, v∗ = V (h∗) , (5.10)

cf. (5.5) and Figure 5.1(c).
We define s̃, s̃1, ṽi, i = 1, . . . , n as the perturbations about the equilibrium positions

and velocities and assume that the influence of the physical effects f(v) can be negated
by f̃(v). Then linearizing the dynamics (5.1,5.8) of the connected automated truck about
(5.9), we obtain

˙̃s(t) =ṽ,

˙̃v(t) =α
(
κ
(
h̃(t− σ1)

)
− ṽ(t− σ1)

)

+
n∑

i=1

βi

(
ṽi(t− σi)− ṽ(t− σi)

)
, (5.11)

where h̃ = s̃1− s̃ is the perturbation about the equilibrium headway h∗ and σi = ξi + ζ for
i = 1, . . . , n gives the total delay in the control loop. For simplicity, we consider σi = σ

for i = 1, . . . , n.
In order for the connected automated truck (5.1,5.8) to be able to maintain its speed

around the equilibrium, we require the linearized dynamics (5.11) to be plant stable [44].
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Figure 5.5: Stability diagram for κ = 0.6 [1/s] and σ = 0.7 [s] where the shaded region corre-
sponds to plant stable parameters, with the black line segment corresponds to α = 0.4 [1/s].

That is, all roots of the characteristic equation

D(λ) = λ2eσλ +

(
α +

n∑

i=1

βi

)
λ+ ακ = 0 (5.12)

must be located in the left half complex plane. Thus, the design parameters α and βi need
to be selected from the domain enclosed by

α = 0, (5.13)

and

α =
Ω2

κ
cos(Ωσ),

n∑

i=1

βi = Ω sin(Ωσ)− Ω2

κ
cos(Ωσ),

(5.14)

for Ω > 0.
In Figure 5.5, we plot the plant-stable domain in the (

∑n
i=1 βi, α)-plane for κ = 0.6

[1/s] and σ = 0.7 [s]. For the headway feedback gain α = 0.4 [1/s], the plant-stable range
of
∑n

i=1 βi is highlighted by the black line in Figure 5.5.

5.2.2 Data-driven minimization on energy consumption

Given the similarity between energy-optimal and fuel-optimal designs (see Section 5.1),
here we propose an energy-optimal connected cruise control design by exploiting the Fouri-
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er decomposition of traffic perturbations.
Based on the linearized dynamics (5.11), the speed oscillation of the connected auto-

mated truck can be written as

Ṽ (λ) =
n∑

i=1

Γi(λ;pn)Ṽi(λ) , (5.15)

where Ṽi(λ) is the Laplace transform of the velocity perturbation ṽi(t), the vector pn =

[α, κ, β1, . . . , βn] contains the design parameters, and the so-called link transfer function
from the i-th vehicle to the connected automated truck can be formulated as

Γ1(λ;pn) =
ακ+ λβ1

λ2eσλ +

(
α +

n∑

k=1

βk

)
λ+ ακ

,

Γi(λ;pn) =
λβi

λ2eσλ +

(
α +

n∑

k=1

βk

)
λ+ ακ

,

(5.16)

for i = 2, . . . , n.
Assume that the speed data v1, . . . , vn are available through V2V communication, then

the velocity perturbation of vehicle i can be described using the m leading frequency com-
ponents

ṽi(t) ≈
m∑

j=1

ρi,j sin(ωjt+ φi,j) , (5.17)

where we discretize frequency ωj = j∆ω, with ∆ω = 2π/(tf − t0). Moreover, ρi,j =

ρi(ωj) and φi,j = φi(ωj) are the amplitude and phase angle of speed oscillations at fre-
quency ωj for car i; see Figure 5.3(d-f).

Based on (5.15,5.16,5.17), the steady-state oscillation of the connected automated truck
is given by

ṽ(t) =
m∑

j=1

n∑

i=1

ρ̃i,j(pn) sin
(
ωjt+ φ̃i,j(pn)

)
, (5.18)

where

ρ̃i,j(pn) = ρi,jΓi(iωj;pn),

φ̃i,j(pn) = φi,j + ∠Γi(iωj;pn).
(5.19)
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This can be rewritten as

ṽ(t) =
m∑

j=1

Dj(pn) sin
(
ωjt+ θj(pn)

)
, (5.20)

where

Dj =

√√√√
( n∑

i=1

ρ̃i,j cos φ̃i,j

)2

+

( n∑

i=1

ρ̃i,j sin φ̃i,j

)2

,

tan θj =

n∑

i=1

ρ̃i,j sin φ̃i,j

n∑

i=1

ρ̃i,j cos φ̃i,j

. (5.21)

Since directly minimizing the energy consumption (5.7) may lead to designs that are
overly sensitive (see Figure 5.3), here we use (5.20) and propose the minimization of the
cost function

min
pn∈P

Jn(pn) =
m∑

j=1

ω2
jD

2
j (pn) , (5.22)

where P is the admissible set of pn that ensures plant stability; see (5.13,5.14) and Fig-
ure 5.5. Other specifications such as string stability may also be incorporated [48]. The
details about the construction of (5.22) are provided in Appendix B. By computing the
level sets of (5.22), the parameters in pn can be related to the energy efficiency of the con-
nected automated truck at the linear level. We remark that the computational demand of
such minimization is low.

5.3 Evaluating fuel consumption of CCC in traffic

In this section, we obtain the optimal α and βi values using (5.22) while utilizing real traffic
data; see Figure 5.3. We evaluate the corresponding fuel consumption for the connected
automated truck using the high-fidelity simulation platform sketched in Figure 5.2. We
first establish the benchmark design where the truck only uses motion information from
its immediate predecessor. We then present the energy-optimal connected cruise control
designs and demonstrate its robustness when using similar speed perturbations. Finally, we
compare the performance of the optimal CCC to that of a receding horizon controller.
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Figure 5.6: The value of objective function (5.22) for different values of the control gain β1 for
α = 0.4 [1/s] and κ = 0.6 [1/s]. The blue and red curves correspond to the design results using the
speed profiles shown in Figure 5.3(a) and (b), respectively. For both curves, black cross denotes the
minimum points.

5.3.1 Using motion information from one vehicle ahead

To establish a benchmark for the controller that exploits information from multiple vehicles
ahead, we first consider the case where the truck only uses motion information from vehicle
1, that is, (5.8) reduces to (5.3) and β1 is the only design parameter. We use the amplitude
spectrum ρ1(ω) in the objective function (5.22) for the speed profiles shown in Figure 5.3.
We plot the value of (5.22) as a function of β1 for α = 0.4 [1/s] and κ = 0.6 [1/s] in
Figure 5.6, where the minima are marked by the black crosses at β1 = 0.4 [1/s]. Thus,
when only motion information of the immediate predecessor is available, the parameter
set [β1, β2, β3] = [0.4, 0, 0] [1/s] is the optimal design. We refer to it as the “benchmark
design” in the remainder of this chapter.

In contrast to the variation of optimal β1 in Figure 5.1(g,h), the optimal β1 in Figure 5.6
is centered around 0.4 [1/s]. Such robustness is achieved by exploiting the Fourier spectrum
of speed variations in (5.22).

5.3.2 Using motion information from multiple vehicles ahead

We now utilize motion information from vehicles 1, 2, 3 in the connected cruise con-
troller (5.8). We consider the admissible range of βi based on the linear stability region in
Figure 5.5. Considering β1, β2, β3 ∈ {0.1, . . . , 1.0} [1/s], we compute the energy efficien-
cy (5.22), and simulate the corresponding fuel consumption mf(tf) using the high-fidelity
platform.

In Figure 5.7(a), we show the level sets of the cost function (5.22) in the (β2, β3)-
plane for β1 = 0.1 [1/s] when the truck responds to the speed perturbations shown in
Figure 5.3(a). The red dashed curve corresponds to the plant stability boundary; see Fig-
ure 5.5. The global minimum J∗n = 1.17 [m2/s4] is achieved at p∗n = [β∗1 , β

∗
2 , β

∗
3 ] =

[0.1, 0.2, 0.5] [1/s], as marked by the black cross in Figure 5.7(a). Throughout this chap-
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Figure 5.7: (a) The level sets of the cost function (5.22) in the (β2, β3)-plane for β1 = 0.1 [1/s].
(b) The level sets of the total fuel consumption mf(tf) in the (β2, β3)-plane for β1 = 0.1 [1/s]. The
black crosses denote the minima. The red dashed line corresponds to the stability boundary (cf.
Figure 5.5).
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ter, we refer this as the “energy-optimal CCC design”. Note that not only the minimum is
significantly smaller than the minima in Figure 5.6, but most contours in Figure 5.7(a) in-
dicate less energy consumption than in Figure 5.6. This shows the energy-saving potentials
of including the speed data from vehicles farther ahead.

In Figure 5.7(b) we show the corresponding level sets of the total fuel consumption
mf(tf) for β1 = 0.1 [1/s] obtained via high-fidelity Trucksim simulations. The fuel-optimal
parameter combination is at is [β1, β2, β3] = [0.1, 0.1, 0.7] [1/s], as marked by the black
cross. Throughout this chapter, we refer to this as the “fuel-optimal CCC design”. This
is close to the energy-optimal parameters (black cross in Figure 5.7(a)). Again, most level
sets in Figure 5.7(b) show less fuel consumption than the minimum of the red curve in
Figure 5.3(g). This indicates that even with nonlinearities in the longitudinal controller,
powertrain dynamics and fuel map, adding feedback terms from vehicles farther ahead can
help to improve fuel economy.

To further demonstrate the benefits of utilizing motion information from vehicles farther
ahead, we plot the time profiles corresponding to the benchmark parameters [β1, β2, β3] =

[0.4, 0, 0] [1/s] in blue, the energy-optimal CCC parameters [β1, β2, β3] = [0.1, 0.2, 0.5] [1/s]
in green, and the fuel-optimal CCC parameters [β1, β2, β3] = [0.1, 0.1, 0.7] [1/s] in red in
Figure 5.8. We also plot the speed and fuel consumption profiles that correspond to con-
stant speed as solid black lines. Note that the two CCC designs have much smaller head-
way, speed, and acceleration variations, which contributes to smaller fuel consumption at
the end of the simulation. While the energy-optimal and fuel-optimal parameters generate
different trajectories, the difference is quite small.

When looking at the total fuel consumption mf(tf) at the end of the simulations in
Figure 5.8(d), the energy-optimal CCC design (green) consumes about 10.4% less fuel
compared with the benchmark design, while the fuel-optimal CCC design consumes about
12.8% less fuel compared with the benchmark design. Figure 5.8(c) highlights the reason
behind this significant improvement: in each cycle of speed perturbation, the energy/fuel-
optimal designs accelerate/brake earlier and milder than the benchmark design. With less
energy dissipated in braking, the connected automated truck requests less energy from the
engine and consumes less fuel.

Aside from the energy/fuel benefits of the CCC designs, we also quantify the car-
following performance using the average headway error

∆havg =
1

tf − t0

∫ tf

t0

∣∣∣∣h(t)− hst −
v(t)

κ

∣∣∣∣ dt, (5.23)
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Figure 5.8: Time profiles for the connected automated truck. The blue curves correspond to
the benchmark design when motion information only from vehicle 1 is used ([β1, β2, β3] =
[0.4, 0.0, 0.0] [1/s]). The green curves correspond to the energy optimal CCC design when motion
information from vehicles 1, 2, 3 are utilized ([β1, β2, β3] = [0.1, 0.2, 0.5] [1/s]). The red curves
correspond to the fuel-optimal CCC design when motion information from vehicles 1, 2, 3 are u-
tilized ([β1, β2, β3] = [0.1, 0.1, 0.7] [1/s]). The solid black lines corresponds to the constant speed
profile without traffic disturbance.
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and quantify the safety performance using the minimal time-to-collision

TTC = min
t

{
h(t)

v(t)− v1(t)

∣∣∣∣ ∀ v(t) > v1(t)

}
. (5.24)

The total fuel consumption mf(tf), the average headway error ∆havg, and the mini-
mal time-to-collision TTC are summarized in Table 5.1. Based on this data we can con-
clude that by introducing motion information from vehicles farther ahead, fuel economy,
car-following performance and safety are improved for the connected automated truck.
Moreover, the energy optimal design acquired using (5.22) can achieve near optimal fuel
performance without carrying out extensive simulations.

design benchmark
energy-optimal fuel-optimal

CCC CCC
[β1, β2, β3][1/s] [0.4, 0, 0] [0.1, 0.2, 0.5] [0.1, 0.1, 0.7]
mf(tf) [kg] 7.03 6.30 6.13
∆havg[m] 44.1 25.7 17.9
TTC [s] 4.0 5.9 6.1

Table 5.1: Fuel consumption, car-following, and safety performance for the benchmark, energy-
optimal CCC, and fuel-optimal CCC designs.

5.3.3 Robustness of CCC design

For a connected automated truck responding to the speed profiles shown in Figure 5.3(a),
we have obtained a benchmark design when information from its immediate predecessor is
used, and energy-optimal and fuel-optimal designs when information from three vehicles
ahead is used. However, the exact speed profiles used in these designs may not recur in
real traffic. Thus, it is critical that given similar speed profiles, the energy/fuel-optimal
gains maintain their benefits over the benchmark design. Therefore, here we evaluate the
robustness of the energy-optimal design using six sets of traffic data that are qualitatively
similar.

In Figure 5.9 we show the improvements of cost function (5.22), the fuel consumption,
the average headway error, and the minimal time-to-collision of the energy-optimal CCC
design ([β1, β2, β3] = [0.1, 0.2, 0.5] [1/s]) compared to the benchmark design ([β1, β2, β3] =

[0.4, 0, 0] [1/s]) for the six data sets. It can be seen that the energy-optimal gains continue
to produce 6-12% improvement in energy efficiency/fuel economy, while improvement
in car-following performance and safety can also be obtained. These results demonstrate
that proposed design approach can benefit the fuel economy, car-following performance,
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Figure 5.9: Performance improvements of the energy-optimal CCC design ([β1, β2, β3] =
[0.1, 0.2, 0.5]) over the benchmark design ([β1, β2, β3] = [0.4, 0, 0]).

and safety of the connected automated truck, and such benefits are robust against traffic
variations.

5.3.4 Comparison with receding horizon optimal control

While connected cruise control exploits “traffic preview” through motion data of vehicles
farther ahead, receding horizon optimal control (RHOC) may also be used to exploit “traffic
preview” by predicting the motion of the truck’s immediate predecessor over a finite hori-
zon and updating the optimal controller accordingly [41, 42]. While the energy-optimal
CCC design requires much less computational load than a RHOC design, in order to de-
clare the CCC design as an attractive alternative, its real-traffic performance needs to be at
least comparable to that of a RHOC design. Therefore, here we compare the performance
of the data-driven CCC design presented above to a RHOC design over real traffic data.
The details of the RHOC design are presented in Appendix C; see also [41, 42].

We remark that the parameters for the RHOC problem are chosen such that the achieved
car-following performance is comparable to that of the CCC design. The RHOC problem is
discretized with ∆T = 0.1 [s] and the resulting nonlinear programming problem is solved
by the open-source interior point solver IPOPT [97]. Due to the non-convex and nonlinear
nature of the problem, the solver cannot guarantee global optimality. It may also encounter
infeasibility or fail to converge (exceed maximum number of iterations). In such cases,
the benchmark controller with zero time delay is used, though this rarely happened for the
RHOC tests reported in this section.
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Figure 5.10: The total fuel consumption of RHOC design as a function of preview horizon T ,
compared to the benchmark design (blue dashed-dotted line) and the energy-optimal CCC design
(solid green line).

Previous studies suggest that the length of the preview horizon has a large effect on the
performance of the RHOC controllers [47]. Thus, we vary the preview horizon T from
2 [s] to 15 [s] and show the total fuel consumption of RHOC design at the end of the simu-
lation in Figure 5.10 for the data set in Figure 5.3(a). We also mark the fuel consumption
corresponding to the benchmark design (dashed-dotted blue) and the energy-optimal CCC
design (solid green) in Figure 5.10. As it can be seen, RHOC requires a preview horizon
to be larger than 9 [s] in order to outperform the energy-optimal CCC design. When the
preview horizon is shorter than 6 [s], the RHOC performs even worse than the benchmark
design. Indeed, similar trends are observed for all six data sets, underlining the robustness
of these findings.

To take a closer look at the car-following performance, in Figure 5.11 we plot the time
profiles of headway and speed for the RHOC design with preview horizons 5 [s] and 10 [s]
(brown and magenta curves) along with the those for the benchmark design (blue curves)
and energy-optimal CCC design (green curves). Notice that even for 10 [s] preview horizon
the car-following performance of RHOC is worse than that of the energy-optimal CCC
design.

We emphasize that the performance by RHOC design reported above are achieved by
assuming perfect knowledge about the motion of the preceding vehicle. Prediction about
preceding vehicle may be available for few second in practice, but most predictions are
typically far from perfect; see [43, 98]. In practice, the performance may be improved by
careful and extensive tuning of the parameters in the RHOC design, but it would become
increasingly more specific for the specific speed profile and thus less robust. Therefore,
compared with the RHOC method, the data-driven CCC design proposed in this chapter
can be a desirable alternative.
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Figure 5.11: Time profiles for the connected automated truck. The blue curves correspond-
s to the benchmark design when motion information only from vehicle 1 is used ([β1, β2, β3] =
[0.4, 0.0, 0.0] [1/s]). The green curves corresponds to the energy-optimal CCC design when motion
information from vehicles 1, 2, 3 are utilized ([β1, β2, β3] = [0.1, 0.2, 0.5] [1/s]). The brown curves
corresponds to the RHOC design with T = 5 [s], while the magenta curve corresponds to the RHOC
design with T = 10 [s].

5.4 Summary

In this chapter, we have proposed a data-based method to optimize the energy efficiency and
minimize the fuel consumption of a connected automated truck. First, using experimental
data of human-driven vehicles in traffic, we demonstrated through a high-fidelity simulation
platform that the fuel consumption is significantly influenced by the traffic perturbations.
Then we proposed a data-based method to design optimal connected cruise controllers
using the Fourier spectra of speed profiles. Evaluating the design on different sets of traffic
data we found that utilizing motion information from multiple vehicles ahead not only
improved the fuel economy of the connected automated truck, but also its car-following
performance in traffic. Such improvements were also shown to be robust against variations
in traffic data. Finally, the proposed data-driven design was shown to be a viable alternation
to the receding horizon optimal control method.

At this stage, we have individual techniques at vehicle level (Chapter 4) and traffic
level (this Chapter). A mechanism to allocate these techniques is needed to maximize the
overall fuel saving, while ensuring that the overall system stays safe when reacting to other
vehicles. In Chapter 6, an algorithm that incorporates safety concerns will be introduced to
meet this need.

93



CHAPTER 6

Safety Guaranteed Connected Cruise Control

Scientists discover the world that exists;

engineers create the world that never was.

THEODORE VAN KARMAN

In the previous two chapters, the fuel efficient control techniques at vehicle level and
traffic level were designed and analyzed. It was assumed that the resulted control action
does not lead to safety hazards. To enable an implementation on real vehicles, a safety
verification mechanism is required and that is the focus of this chapter. The notion of safety
chart is established and utilized to provide safety guarantee while using the techniques at
different levels.

Recent results in utilizing vehicle-to-vehicle (V2V) connectivity in vehicle automation
has been showing significant improvements in congestion mitigation, fuel economy and
vehicle safety [44, 46, 49, 99]. However, so far there exist no guarantees that can keep the
V2V-based controllers collision free. In this chapter we target this important aspect and
design connected cruise controllers with guaranteed safety performance. For simplicity,
we focus on the simple scenario where the follower monitors the motion of its predecessor
via V2V communication.

In order to integrate safety considerations into feedback control design, one may calcu-
late sets in state space that remain invariant under certain feedback laws [100, 101]. Such
approach is usually quite challenging in practice. However, recently the notion of control
safety function has been introduced [102,103] that allows one to certify the invariance of a
chosen set in state space. In this chapter, we utilize these techniques for the safety enhance-
ment of connected cruise control. In particular, we establish the notion of safety charts that
allow one to select safe parameters for a given control law. Moreover, in order to handle
the case with unsafe parameters, an intervention scheme is developed.

The reminder of the chapter is organized as follows. Section 6.1 establishes the con-
nected cruise control design and define the safety requirements. Section 6.2 introduces
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the method of safety verification for given feedback law. This is applied to guarantee the
safety of a connected cruise controller in Section 6.3. Finally, we conclude the chapter in
Section 6.4.

6.1 Connected Cruise Control Design

In this section we explain the connected cruise control design using a simple predecessor-
follower setup shown in Figure 6.1(a). More complicated scenarios are discussed in [44,
96, 104]. Here we emphasize the role of actuation constraints and safety requirements.

6.1.1 Modeling and feedback law

To model the longitudinal dynamics of the vehicles, we use



ḣ

v̇

v̇1


 =




0 −1 1

0 0 0

0 0 0






h

v

v1


+




0

0

1


 a1 +




0

1

0


 a, (6.1)

where h is the distance headway, that is, the bumper-to-bumper distance between the vehi-
cles, v is the speed of the following vehicle, and v1 is the speed of the preceding vehicle;
see Figure 6.1(a). Moreover, a1 denotes the acceleration of the preceding vehicles which
serves as a disturbance while a denotes the acceleration of the following vehicle that will
be assigned by the designed connected cruise controller.

It is assumed that a and a1 are bounded due to the limited driving and braking torques
available, that is,

a ∈ [−a, a], a1 ∈ [−a1, a1]. (6.2)

Moreover, we also restrict speed of both vehicles to the domain

v, v1 ∈ [0, v]. (6.3)

We remark that one may model the longitudinal dynamics by incorporating dissipations
like rolling resistance and air drag [47]. However, for safety considerations the simple
dynamics (6.1) will lead to more conservative results.

We refer to (6.1) as the open-loop system. The goal of connected cruise control design is
to generate a feedback law u(h, v, v1, a1). The design criteria typically include attenuation
of velocity fluctuations (often referred as string stability [44]) as well as minimizing energy
consumption [48]. According to (6.2) the feedback law enters (6.1) via a = sat(u) where

95



the saturation function is represented graphically in Figure 6.1(b). This leads to the closed-
loop system 


ḣ

v̇

v̇1


 =




v1 − v
sat
(
u(h, v, v1, a1)

)

0


+




0

0

1


 a1. (6.4)

The main question we try to answer here is that given a feedback law, how to make
sure that a vehicle stays safe (i.e., avoids collision). This may be achieved by choosing the
control parameters (e.g., feedback gains) appropriately which will lead to the concept of the
safety chart. Choosing parameters from the safe regimes of the chart can ensure collision
free motion. On the other hand, if the designer wishes to select parameters outside the safe
parameter regime (due to other design considerations) safety may still be maintained by
intervening once the given feedback law would render the vehicle unsafe.

We remark that the structure presented above is also used in adaptive cruise control
design with the exception that acceleration of the proceeding vehicle a1 is not directly
available. While one may try to extract this information by taking derivatives of h and
v, this requires heavy filtering, leading to significant inaccuracies and time lags. On the
other hand, acceleration information can be sent via V2V communication and thus, it can
be readily used in connected cruise control design [104].

Designers may come up with a plethora of feedback laws, but we require u(h, v, v1, a1)

to be continuous in its variables with piecewise continuous derivatives; see [78]. As an
example we will consider the simple controller

u = α
(
V (h)− v

)
+ β

(
W (v1)− v

)
, (6.5)

which is widely used in practice. The first term aims to maintain the velocity dependent
distance given by the range policy

V (h) =





0 if h < hst,

κ(h− hst) if hst ≤ h ≤ hgo,

v if h > hgo,

(6.6)

shown in Figure 6.1(c) where hgo = v/κ+ hst. The second term in (6.5) aims to match the
speed of the follower with that of the predecessor where the function

W (v1) =




v1 if v1 ≤ v,

v if v1 > v,
(6.7)
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Figure 6.1: (a) Two vehicles following each other on a single lane. (b) Saturation function in (6.4).
(c) Range policy function (6.6). (d) Speed saturation function (6.7).

is introduced to avoid following a speeding predecessor.
We remark that with (6.5) one can ensure that v ∈ [0, v]. On one hand, when v = v, for

any given h and v1, one has

v̇ = u ≤ α(v − v) + β(v − v) = 0

⇔ v̇ ≤ 0 if v = v.
(6.8)

One the other hand, when v = 0, for any given h and v1 ≥ 0, one has

v̇ = u ≥ α(0− 0) + β(v1 − v) ≥ 0

⇔ v̇ ≥ 0 if v = 0.
(6.9)

Thus, to simplify the matter, we will focus on the controller

u = α
(
κ(h− hst)− v

)
+ β(v1 − v), (6.10)

and draw safety charts in the parameter space spanned by the desired stopping distance hst,
the range policy derivative κ, and the feedback gains α and β.

6.1.2 Safety requirement

Consider the system (6.1) starts from time t = 0 with some initial value. A natural safety
requirement would be having no collision, that is, h > 0 for all t ≥ 0. In order to be more
conservative, here we set the requirement h − vτ ≥ 0 for all t ≥ 0 where τ > 0 is the
minimum time headway allowed. Corresponding to this we define the target set

T = {(h, v)|h− vτ ≥ 0}, (6.11)
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case given by (6.13) for with the black line indicating the switch (a) a = 4 [m/s2] and a1 = 6 [m/s2]
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in state space. Thus, the safety requirement would correspond to the target set to be in-
variant: if the system starts in T it should stay in T . However, it is easy to think of a
scenario when this does not hold. Due to the limited deceleration capability of the follower
(cf. (6.2)), for velocity v the distance needed to stop is v2/2a. When having a stationary
vehicle within this distance, a collision is inevitable. Thus, the invariance of T can only be
guaranteed if vτ ≥ v2/2a for all v1. This may require τ to be set to a few seconds which
would result in unrealistically large distance headway.

In order to find a set in state space whose invariance can be ensured, we consider the
scenario when the leader, initially traveling at speed v1, applies its maximum deceleration
a1. In the mean time, the follower, initially traveling at speed v, applies a. Then, we
investigate how the distance headway evolves between the vehicles before the follower
comes to a halt and calculate how large the initial distance needs to be to avoid collision.
Taking the maximum of this distance and vτ we obtain the set

C = {(h, v, v1)|h− b̂(v, v1) ≥ 0}, (6.12)

where b̂ is defined as follows. If a ≤ a1 then we have

b̂(v, v1) =




vτ, if v1 ≥ f1(v),

vτ + (v−aτ)2

2a
− v2

1

2a1
, if v1 < f1(v),

(6.13)

where
f1(v) =

√
a1

a
(v − aτ). (6.14)
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On the other hand, if a > a1 then

b̂(v, v1) =





vτ, if v1 ≥ f2(v),

vτ + (v−aτ−v1)2

2(a−a1)
, if f2(v) < v1 < f3(v),

vτ + (v−aτ)2

2a
− v2

1

2a1
, if v1 ≥ f3(v),

(6.15)

where

f2(v) = v − aτ, f3(v) =
a1

a
(v − aτ). (6.16)

A detailed derivation may be found in [103]. Having different cases in (6.13) and (6.15)
corresponds to the fact that the minimal distance headway may appear at different phases
of the braking event: right at the moment when both vehicles launch the emergency brake,
during the deceleration phase of the following vehicle, and at the end when the following
vehicle stops.

Indeed, C ⊆ T as can be observed in Figure 6.2 where we set the time headway τ =

1 [s] and consider v = 30 [m/s]. Figure 6.2(a) corresponds to a ≤ a1, in particular, a =

4 [m/s2] and a1 = 6 [m/s2]. That is, the surface is given by (6.13) where (6.14) is indicated
by a black line. On the other hand, Figure 6.2(b) corresponds to a > a1, in particular,
a = 6 [m/s2] and a1 = 4 [m/s2]. That is, the surface is given by (6.15) where (6.16) are
indicated by red and a black lines.

At this point, our goal is to find conditions that a feedback law u(h, v, v1, a1) has to
satisfy in order to ensure the invariance of C under the closed-loop dynamics (6.4). For
this, we utilize the concept of safety functions described in the next section.

6.2 Safety Functions for Set Invariance

In this section, we depart from the specific example of connected cruise control and propose
a general theoretical framework for ensuring safety for a given feedback law. The logic flow
is summarized in Figure 6.3.

Consider the affine control system

ẋ = f(x) + d+ g(x)u, (6.17)

where x ∈ Rn is the state, d ∈ D ⊂ Rq is the disturbance and u ∈ U ⊂ Rm is the control
input, with D and U are compact sets, while f and g are locally Lipschitz continuous.
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Given the Lipschitz continuous feedback law u(x; p) where p ∈ Rr represents the control
parameters, we obtain the closed loop system

ẋ = F (x; p) + d, (6.18)

where F (x; p) = f(x) + g(x)u(x; p).
Our goal is to find domain P ⊂ Rr in the parameter space so that parameters p ∈ P

guarantee the invariance of the closed set C ⊂ Rn in state space under the dynamics (6.18).
We refer to C as the safety set and refer to P as the safe parameter domain. The graphical
representations of P are called safety charts. Moreover, we are also interested in designing
controllers that can render the system safe even when p ∈ Rr \ P .

The safety set can be defined through the super-level set of the function b : Rn 7→ R
such that

C = {x ∈ Rn : b(x) ≥ 0},
∂C = {x ∈ Rn : b(x) = 0},

IntC = {x ∈ Rn : b(x) > 0},
(6.19)

where b is a continuously differentiable function or a continuous function constructed from
finite number of continuously differentiable functions [103]. We recall the following defi-
nition from [102].

Definition 5. Given a set C ∈ Rn defined by (6.19), the continuously differentiable function

b : Rn 7→ R is a safety function if there exists an extended class K function π such that,

ḃ(x) = LF+db(x) ≥ −π(b(x)), ∀x ∈ Rn, (6.20)

where LF+d denotes the Lie derivative.
We recall that, a continuous function π : [0, a) 7→ [0,∞) is of class K for some a > 0

Safe parameter

Not safe
parameter

Open-loop 
system

Closed-loop
system

Safety
chart

Safety function )x(b
with set C

Intervention

C    is 
invariant

Feedback
law

Figure 6.3: Ensuring safety of a given feedback law.
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if it is strictly monotonically increasing and π(0) = 0. Moreover, a continuous function π :

(−b, a) 7→ (−∞,∞) is of extended class K for some a, b > 0 if it is strictly monotonically
increasing and π(0) = 0.

Seeking a safety function is usually challenging, particularly for a controller with non-
trivial structure. Numerical techniques, such as sum of squares (SOS) programming, are
usually used for complex cases. A safety function acquired this way may also lead to very
conservative performance. This motivates us to go back to system (6.17) to find safety
functions.

Definition 6. Given a set C ⊂ Rn defined by (6.19) the continuously differentiable function

b : Rn 7→ R is a control safety function if there exists an extended class K function π such

that

sup
u∈U

[
Lf+db(x) + Lgb(x)u+ π(b(x))

]
≥ 0, ∀x ∈ Rn. (6.21)

The existence of a control safety function implies that there exist Lipschitz continu-
ous controller u : Rn 7→ U such that the set C is invariant [102]. The intuition behind
Definition 6 is that ∀x ∈ C, there always exist control such that

ḃ(x) ≥ −π
(
b(x)

)
⇒ ḃ(x) ≥ 0 if b(x) = 0. (6.22)

Compared to the safety function, control safety function describes the full capability
of the system from safety perspective. Indeed, if one finds a control safety function for
the open-loop systems it may be used as a safety function for the closed-loop systems as
shown in Figure 6.3. In particular, we will use this function to determine the safe control
parameters for the closed-loop systems and draw safety charts in parameter space. Us-
ing safe parameters p ∈ P in control law will result in the invariance of C in state space.
Moreover, we will also utilize the control safety function to intervene in cases when one
chooses control parameters outside the safe parameter regime. We remark that in the lit-
erature, safety functions and control safety functions are also referred as barrier functions
and control barrier functions, respectively [102, 103, 105].

6.3 Connected Cruise Control with Safety Guarantee

In this section, we apply the method proposed in the previous section in order to ensure
the safety of a given feedback law. In particular, we will provide a constructive method
to derive the safe control parameters and represent these graphically using safety charts.
We also present an algorithm that allows us to use parameters outside the safe parameter
domain by intervening when the system approaches the boundary of the safety set.
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Based on the definition of the set C in (6.12) we define the safety function candidate

b(h, v, v1) = h− b̂(v, v1). (6.23)

Then, by construction, the following conditions make (6.23) a control safety function ac-
cording to Definition 6:

C = {(h, v, v1) | b(h, v, v1) ≥ 0} 6= ∅, (6.24)

sup
u∈U

[
Lf+db(h, v, v1) + Lgb(h, v, v1)u+ π

(
b(h, v, v1)

)]
≥ 0, (6.25)

for v, v1 ∈ [0, v], a1 ∈ [−a1, a1] (cf. (6.2,6.3)) where π is a function of extended class K.
Note that, by construction, (6.24,6.25) hold for π(b(h, v, v1)) = 0, and therefore they

hold for any function of extended class K. Consequently, b(h, v, v1) is a control safety
function and C is invariant under the dynamics (6.1) given a ∈ [−a, a] (cf. (6.2)). In the
next section we fix the system parameters a, a, a1, a1, τ and apply (6.25) in order to derive
conditions for the feedback law u(h, v, v1, a1) that ensures the invariance of C.

6.3.1 Safety charts

With the control safety function (6.23), and given a feedback law u(h, v, v1, a1), we present
the main theorem that certifies the safety of the connected cruise controller.

Theorem 4. Given a continuous and piecewise continuously differentiable feedback law

u(h, v, v1, a1) such that

U ≥ ∂u

∂h
≥ 0, (6.26)

for some U > 0, a piecewise continuously differentiable safety function b(h, v, v1) = h −
b̂(v, v1) such that

∂b̂

∂v
> 0, (6.27)

for v 6= 0, and

v1 − v −
∂b̂

∂v1

a1 −
∂b̂

∂v
sat
(
u
(
b̂(v, v1), v, v1, a1

))
≥ 0, (6.28)

then there exists an extended class K function π such that

LF+db(h, v, v1) ≥ −π(b(h, v, v1)) (6.29)
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holds and thus, C is invariant under (6.4).

The proof of Theorem 4 can be given by using a linear function for π.

Proof. Both b̂(v, v1) and u(h, v, v1, a1) are piecewise continuously differentiable. They
take value from a compact set v, v1 ∈ [0, v], despite h may be unbounded from above.
Thus, ∂b̂

∂v
is bounded; see (6.27). Since ∂u

∂h
has an upper bound U (see (6.26)), then for

b(h, v, v1) = h− b̂(v, v1) ≥ 0, we have

Ub(h, v, v1) = U(h− b̂(v, v1))

≥ u (h, v, v1, a1)− u
(
b̂(v, v1), v, v1, a1

)
,

(6.30)

where the equality holds only when b(h, v, v1) = h − b̂(v, v1) = 0. Now considering the
sat(·) function, if u

(
b̂(v, v1), v, v1, a1

)
≥ a > 0 or u

(
h, v, v1, a1

)
≤ −a < 0, then

u(h, v, v1, a1)− u
(
b̂(v, v1), v, v1, a1

)

≥ sat
(
u
(
h, v, v1, a1

))
− sat

(
u
(
b̂(v, v1), v, v1, a1

))
= 0.

(6.31)

Otherwise, having u
(
b̂(v, v1), v, v1, a1

)
< a and u(h, v, v1, a1) > −a yields

u(h, v, v1, a1)− u
(
b̂(v, v1), v, v1, a1

)

≥ sat
(
u
(
h, v, v1, a1

))
− u
(
b̂(v, v1), v, v1, a1

)

≥ sat
(
u
(
h, v, v1, a1

))
− sat

(
u
(
b̂(v, v1), v, v1, a1

))
.

(6.32)

Thus, one has

Ub(h, v, v1)

≥ u(h, v, v1, a1)− u
(
b̂(v, v1), v, v1, a1

)

≥ sat
(
u
(
h, v, v1, a1

))
− sat

(
u
(
b̂(v, v1), v, v1, a1

))
(6.33)

where again the equality holds only when b(h, v, v1) = h− b̂(v, v1) = 0.
By selecting the linear extended class K function π(y) = γ y such that

γ ≥ U max
v,v1∈[0,v]

∂b̂

∂v
, (6.34)
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we have

LF+db(h, v, v1) + γ b(h, v, v1)

=ḣ− ∂b̂

∂v
v̇ − ∂b̂

∂v1

v̇1 + γ b(h, v, v1)

=v1 − v −
∂b̂

∂v1

a1 −
∂b̂

∂v
sat
(
u
(
h, v, v1, a1

))

+

(
γ − U ∂b̂

∂v
+ U

∂b̂

∂v

)
b(x)

=v1 − v +

(
γ − U ∂b̂

∂v

)

︸ ︷︷ ︸
≥0

b(x)− ∂b̂

∂v1

a1

− ∂b̂

∂v

[
sat
(
u
(
b̂(v, v1), v, v1, a1

))
+

sat
(
u
(
h, v, v1, a1

))
− sat

(
u
(
b̂(v, v1), v, v1, a1

))
− Ub(h, v, v1)

︸ ︷︷ ︸
≤0

]

≥v1 − v −
∂b̂

∂v1

a1 −
∂b̂

∂v
sat
(
u
(
b̂(v, v1), v, v1, a1

))
, (6.35)

where the equality at last step holds only when b(h, v, v1) = h − b̂(v1, v) = 0. Note that
(6.35) gives condition (6.29) at b(h, v, v1) = 0.

One may show that in fact

u
(
b̂(v, v1), v, v1, a1

)
≤ −a, (6.36)

implies LF+db(h, v, v1) ≥ 0 for the safety function (6.23) with definition (6.13) and also
with definition (6.15). Consequently, this is a sufficient condition for (6.29) and implies the
invariance of C. Based on this we will use

max
v,v1

[
u
(
b̂(v, v1), v, v1, a1

)]
≤ −a, (6.37)

to find control parameters that ensure safety.
For example, given the controller (6.10) we are searching for the parameters p =

[α, β, κ, hst] such that

max
v,v1

[
α
(
κ(b̂(v, v1)− hst)− v

)
+ β(v1 − v)

]
≤ −a. (6.38)
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For the sake of presentation, we assume α, β and τ are given and draw safety charts in the
(hst, κ)-plane. Before providing the corresponding detailed conditions, we remark that one
needs

κ < 1/τ, (6.39)

in order to obtain a meaningful controller as κ determines the time headway in equilibrium.
We recall that b̂(v, v1) is given by different analytical formulae in different domains of

the (v, v1) space; cf. (6.13,6.15). The maximum of (6.38) may occur either in the interior
of these domains or at the boundaries of these domains given by (6.3,6.14,6.16).

In case a ≤ a1 the results are summarized in Tables 6.1,6.2,6.3. In particular, Table 6.1
is for b̂(v, v1) = vτ while Tables 6.2 and 6.3 are for b̂(v, v1) = vτ + (v−aτ)2

2a
− v2

1

2a1
. When

a > a1 the results are summarized in Tables 6.1 and 6.4. Again Table 6.1 correspond
to b̂(v, v1) = vτ while Table 6.4 is for b̂(v, v1) = vτ + (v−aτ−v1)2

2(a−a1)
and b̂(v, v1) = vτ −

(v−aτ)2

2a
− v2

1

2a1
. These two cases can be brought together since the former function is convex

in its domain and the maximum appears at the boundary v1 = f3(v). Thus, it is enough to
consider (6.38) only when v1 ≤ f3(v).

if α, β, τ then hst, κ
1− (β + α)τ ≥ 0 ακ(hst − aτ 2) ≥ a

(
1− βτ − ατ

)

βτ − 1 ≥ 0 ακhst ≥ a(τβ − 1) and κτ < 1
βτ − 1 < 0 and either hst ≥ aτ 2

1− (β + α)τ < 0 or ακ(aτ 2 − hst) ≤ a
(
(β + α)τ − 1

)

Table 6.1: Safety conditions when b̂(v, v1) = vτ independent of the relation between a1

and a.

if α, β, τ, κ then hst

α > 0, β > 0, τ > 0, ακ
(
vτ + (v−aτ)2

2a
− hst

)

and κ ≥ βa1

αv
+
β2a1

2ακ
− (α + β)v ≤ −a

α > 0, β > 0, τ > 0, ακ
(
vτ + (v−aτ)2

2a
− v

2

2a1
− hst

)

and κ < βa1

αv
−αv + β(v − v) ≤ −a

Table 6.2: Safety conditions when a ≤ a1 and b̂(v, v1) = vτ + (v−aτ)2

2a
− v2

1

2a1
along the

boundary v = v.

We remark that the conditions summarized in the above tables give non-empty sets of
α, β, τ, κ, hst. In particular, choosing sufficiently small κ and sufficiently large hst ensures
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if α, β, τ then hst, κ

α + β < β
√

a1

a

ακ(hst − τ v̂ − aτ 2) ≥(
β
√

a1

a
− (α + β)

)
v̂ + a(1− βτ − ατ)

α + β > β
√

a1

a

either ακτ ≤ α + β − β
√

a1

a
and

ακ(hst − aτ 2) ≥ a
(
1− βτ − ατ

)

or ακτ > α + β − β
√

a1

a
and

ακ(hst − τ v̂ − aτ 2) ≥(
β
√

a1

a
− (α + β)

)
v̂ + a(1− βτ − ατ)

Table 6.3: Safety conditions when a ≤ a1 and b̂(v, v1) = vτ + (v−aτ)2

2a
− v2

1

2a1
along the

boundary v1 = f1(v).

if α, β, τ, κ then hst

α > 0, β > 0, τ > 0, ακ
(

(v−aτ)2

2a
+ vτ − hst

)

and κ ≥ βa1

αv
+
β2a1

2ακ
− (α + β)v ≤ −a

α > 0, β > 0, τ > 0, ακ
(
a−a1

2a
(v − aτ)2 + vτ − hst

)

and κ < βa1

αv
−(α + β)v + β

a1

a
v ≤ −a

Table 6.4: Safety conditions when when a > a1 and b̂(v, v1) 6= vτ .

safety. In the tables we also used the notation

v = min

{
(v − aτ)

√
a1

a
, v

}
,

v̂ = min

{
v − aτ, v

√
a

a1

}
.

(6.40)

As an example, we pick a set of control parameter α = 0.4 [1/s], β = 0.5 [1/s], τ =

1 [s], κ = 0.6 [1/s], hst = 5 [m] that were used in a real experiment [46]. The acceleration
limits are given as a = a1 = 2 [m/s2], a = 4 [m/s2], a1 = 6 [m/s2] which correspond to
Tables 6.1, 6.2, 6.3. The safety chart is plotted in the (hst, κ)-plane in Figure 6.4, where
the curves corresponds to the different limits given in the tables and shading indicates the
region of safe parameters. The corresponding color code is explained in Table 6.5.

In order to show the difference between the safe and unsafe parameter combinations
we mark some point inside the safe parameter region (green cross at κ = 0.4 [1/s], hst =

10 [m]) and another outside (red cross at κ = 0.6 [1/s], hst = 5 [m]) in Figure 6.4. We plot
the corresponding simulation results in Figure 6.5 and Figure 6.6 as red solid and green
dashed-dotted curves, respectively. In particularly, we exam two different two different
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hst [m]

κ

[1s ]

Figure 6.4: Safety chart for a1 = 6 [m/s2], a = 4 [m/s2], τ = 1 [s], α = 0.4 [1/s], and
β = 0.5 [1/s]. The red shaded region corresponds safe (hst, κ) combinations. The blue solid line
corresponds to (6.39). For the mean of the rest curves, see Table 6.5.

since α, β, τ 1− (β + α)τ ≥ 0
then hst, κ ακ(hst − aτ 2) ≥ a

(
1− βτ − ατ

)
(red dashed)

if κ (cyan) then hst

κ ≥ βa1

αv

ακ
(
vτ + (v−aτ)2

2a
− hst

)
(between green

+
β2a1

2ακ
− (α + β)v ≤ −a and brown solid)

κ <
βa1

αv
ακ
(
vτ + (v−aτ)2

2a
− v2

2a1
− hst

)
≤ αv − a (magenta)

since α, β α + β > β
√

a1

a

either ακτ ≤ α + β − β
√

a1

a
(black dashed) and

then ακ(hst − aτ 2) ≥ a
(
1− βτ − ατ

)
(red dashed)

hst, κ or ακτ > α + β − β
√

a1

a
(black dashed) and

ακ

(
hst − v

√
a
a1
− aτ 2

)
≥ (black solid)

(
β
√

a1

a
− (α + β)

)
v
√

a
a1

+ a(1− β1τ − ατ)

Table 6.5: Safety conditions when a1 = 6 [m/s2], a = 4 [m/s2], τ = 1 [s], α = 0.4 [1/s],
and β = 0.5 [1/s]. The color codes correspond to those in Figure 6.4.

scenarios. The first scenario starts from a traffic equilibrium: both vehicles travel with the
same speed and an ideal distance is kept. The predecessor’s velocity profile v1 is shown
in panel Figure 6.5(a) as a black curve. After a constant-speed plateau at 30 [m/s] the
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Figure 6.5: Simulation results when a safety critical events occur from a traffic equilibrium. The
predecessor applies heavy braking as shown by the speed profile in panel (a). The green and the
red profiles in panels (b,c,d) correspond to the safe and unsafe parameter combinations marked by
a green and red crosses in Figure 6.4. The blue profiles also correspond to the unsafe combination
but with the intervening controller (6.43).

predecessor applies maximum braking with −6 [m/s2]. Initially the following vehicle is
traveling with speed v = 30 [m/s] and the initial distance between the two vehicles are
given by h = V (v), which equals to 80 [m] and 50 [m] for the chosen κ, hst combinations;
cf. (6.6). Panels (b,c,d) show the time profiles for v, h− vτ , h. While the unsafe controller
leads to collision, the safe controller is able to bring the vehicle slowly to a stop. The second
scenario mimic a “cut-in” event: a slower traveling vehicle suddenly appear at the front. As
shown in Figure 6.6(a) after a constant-speed plateau at 14 [m/s] the predecessor applies
maximum braking with −6 [m/s2]. Initially the following vehicle is traveling with speed
v = 30 [m/s] and the initial distance between the two vehicles is given by h = b̂(v1, v) =

98.17 [m]. As see in panels (b,c,d) in Figure 6.6, the unsafe controller leads to collision,
but the safe controller is still able to bring the vehicle slowly to a stop.
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Figure 6.6: Simulation results when a safety critical events occur after a slower preceding vehicle
appears in the front. The predecessor applies heavy braking as shown by the speed profile in panel
(a). The dashed green and the solid red curves in panels (b,c,d) correspond to the safe and unsafe
parameter combinations marked by a green and red crosses in Figure 6.4. The blue profiles also
correspond to the unsafe combination but with the intervening controller (6.43).

109



6.3.2 Intervening controller

While the safety charts allowed us to select safe control parameters, the corresponding
connected cruise control algorithm tends to keep large distances. This may not be feasible
heavy traffic scenarios as it may “invite” other road users to cut in front of the vehicle.
In order to resolve this issue one may prefer to choose parameter combinations outside
the safe parameter region. In this section we propose an intervention that overrides the
feedback law once non-safe situations are detected.

Recall that the invariance of the safety set C is guaranteed once (6.29) holds which is
ensured by (6.28). Similar to the proof of Theorem 4 shown in Section 6.3.1, we choose
the extended class K function to be linear π(y) = γ y and propose the control law

û(h, v, v1, a1)

=

(
∂b̂

∂v

)−1(
v1 − v −

∂b̂

∂v1

a1 + γ
(
h− b̂(v, v1)

)) (6.41)

that is applied when
LF+db(h, v, v1) + γ b(h, v, v1) ≤ 0. (6.42)

Then, the enhanced controller is given by

min
{
u(h, v, v1, a1), û(h, v, v1, a1)

}
. (6.43)

We show the result of this enhanced controller while choosing u according to the feed-
back law (6.10) and setting

γ ≥ ακmax

{
τ,
v

a

}
, (6.44)

according to (6.34) in the proof of Theorem 4. We present the corresponding simulation
results as blue dashed curves in Figure 6.5 and Figure 6.6 for the unsafe parameters (κ =

0.6 [1/s], hst = 5 [m]) marked by the red cross in Figure 6.4 while using γ = 1.8 that
satisfies (6.44). For both scenarios, apart from being able to maintain safety, the enhanced
controller also provides a faster response compared to the one with safe parameters (green
dashed-dotted curves).

6.4 Summary

In this chapter, we investigated the safety of a predecessor-follower system with connected
cruise control. We proposed a theoretical framework to evaluate the safety of a given
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control law using the notion of control safety function. The concept of safety chart was
established in order to help the selection of control parameters that guarantee collision-free
motion and an intervening scheme was establish to handle unsafe parameters. With the
safety chart concept, as well as the intervening scheme, allocation between the fuel saving
techniques introduced at vehicle level (in Chapter 4) and traffic level (in Chapter 5) can be
carried out with safety guarantee.
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CHAPTER 7

Conclusion and Future Work

We can only see a short distance ahead, but we

can see plenty there that needs to be done.

ALAN M. TURING

7.1 Conclusion

In this dissertation, a series of techniques was proposed to improve the fuel economy of
heavy-duty vehicles using connectivity and automation. These techniques were targeting
fuel saving at different levels, from powertrain design, up to vehicle motion control in
sparse as well as dense traffic conditions. Each technique was demonstrated to result in
fuel benefit.

Starting from the powertrain level, in Chapter 3 a hybrid approach was proposed to
design a safe and stable gear shift schedule for automated vehicles. This gear shift sched-
ule is shown to result in a fuel-saving of 3-5% for a given powertrain compared to the
benchmark in-production design. This improvement is demonstrated in simulation when
the truck is driven over standard EPA driving cycles, with no compromises to driveability.
The proposed design was also shown to be compatible with the human-driven case as well.
Furthermore, it was demonstrated that when geographical, traffic conditions are utilized in
motion planning algorithms of automated vehicles, the proposed design may lead to more
significant improvements.

Based on the findings at the powertrain level, a systematic tool for geographic pre-
viewed eco-driving system was developed at the vehicle level in Chapter 4. Using this
tool, a connected automated truck can achieve around 10% fuel economy improvement
given freeway driving or mild traffic conditions compared to standard non-preview cruise
control. A further benefit is that the trade-offs between different objectives (e.g., travel-
ing time, fuel economy, traffic flow merging) can be evaluated and controlled. However,
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when the traffic is dense, fuel improvement may not be fully attainable, which demanded a
technique that works in such conditions.

To address this issue, at the traffic level, when the connected automated truck is driven
in dense traffic, a data-driven optimization method was developed in Chapter 5. This tech-
nique utilized beyond-line-of-sight traffic information. Using real traffic data, it was found
that a connected automated truck with optimal connected cruise control can save 5-13%
fuel compared to the traditional adaptive cruise control that does not use beyond-light-of-
sight information.

The results presented in this dissertation can be applied to in-production trucks for
fuel savings. Also, the novel design analysis and application of nonlinear control theory,
optimal control, control safety function can be executed in control design and applications
in a general sense.

7.2 Future work

Despite the fuel savings resulting from the techniques proposed in this dissertation indi-
vidually, integrations are still needed to unify the overall propulsion system of a connected
automated truck. Specifically, due to the relatively small design scale, both in terms of time
and distance (a few seconds and few dozens of meters), the connected cruise control design
at the traffic level may be insufficient to include a large scale geographic preview needed
at the vehicle level (a few kilometers and few minutes). Moreover, how to integrate these
techniques together in a safe manner is also an important task.

Preliminary attempts to integrate the technologies used at the different levels in a safe
manner were also made, as presented in Chapter 6. A safety verification theory is de-
veloped for connected cruise control; the notion of minimal intervention was proposed to
allocate the use of techniques at both the vehicle level and traffic level. Indeed, this minimal
intervention was demonstrated to ensure a collision free connected cruise control design.

Preliminary simulation results also showed that the minimum intervention technique
may combine the fuel saving potential by individual techniques to maximize the overall
fuel-saving for certain traffic conditions, while still keeping the vehicle safe. In the future,
it important to understand how to adjust such minimum intervention under different traffic
conditions while maintaining safety. Furthermore, future integrations of these techniques
using minimum intervention should be applied to real in-service trucks and tested out in
real daily traffic scenarios, so as to fully evaluate their performance.
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APPENDIX A

Pseudo arclength continuation method

Our BVP solver developed is based on pseudo arclength continuation. Given a BVP prob-
lem, the solver first uses a collocation method to transform the continuous ODE to a set of
nonlinear equations. Consider the BVP in the form

ẋ = f(x, t; p), t ∈ [0, tf ],

0 = g(x(0), x(tf); p),
(A.1)

where x ∈ Rn is the state and p ∈ R is the system parameter. The boundary condition g
contains n equations, assuming that the terminal time tf is given.

We define N collocation points x(ti) = xi at time ti = i · tf
N−1

, i = 0, 1, . . . , N − 1.
Using the trapezoidal rule, we arrive at the algebraic equations

xi+1 − xi =
tf

2(N − 1)

[
f(xi+1, ti+1; p) + f(xi, ti; p)

]
,

0 = g(x0, xN ; p).

(A.2)

Therefore the collocation method of order N transforms the original BVP to a nonlinear
equation problem of dimension Nn that can be written to the form:

F (x, p) = 0, (A.3)

where x ∈ RNn contains all the component xi ∈ Rn, i = 0, . . . , N − 1. Note that the
terminal time tf may be a variable as well, and in this case g shall contain n+ 1 equations,
and the resulting nonlinear equations will be of dimension Nn+ 1.

The key idea behind continuation is that one may solve the BVP for a particular value
of p and then use the corresponding solution as an initial guess when solving the BVP for
the nearby parameter p+δp. This way the solution can be continued while the parameter is
varied [106]. Continuation is based on the implicit function theorem, which guarantees that
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(A.3) can be solved for x(p). However, there may be points where implicit function theo-
rem is violated. For example, in Figure A.1, the curve (A.3) is shown in the (p, ‖x‖)-plane.
The implicit function theorem is violated at the fold points where the partial derivative of
F with respect to x is 0. In order to be able to continue the curve through these points, we
apply the so-called pseudo arc-length continuation method [107]. Throughout the descrip-

}

p

‖x‖ F (x, p) = 0

x
(k+1)
pred

x(k+1)

x(k)

Q
Qk

p
(k+1)
predp(k+1)�

�3
p(k)

z(k)

z(k+1)

δs

Figure A.1: Concept of the Pseudo Arc-length Method

tion of the algorithm, we use the subscript k to denote the iteration number. In the k-th
iteration, the point (x(k), p(k)) lies on the curve with tangent vector z(k). Let us consider the
arc-length step δs.
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Then we follow the steps:

1. Compute the a predicted value for the (k + 1)-st step



x

(k+1)
pred

p
(k+1)
pred


 =



x(k)

p(k)


+ z(k)δs. (A.4)

2. Solve the following system of augmented nonlinear equations

0 = F (x(k+1), p(k+1)),

0 = z(k)T ·



x(k+1) − x

(k+1)
pred

p(k+1) − p(k+1)
pred


 ,

(A.5)

for (x(k+1), p(k+1)) given (x
(k+1)
pred , p

(k+1)
pred ).

3. Find the tangent z(k+1) to the curve for the (k + 1)-st point by solving the linear
equations




∂F
∂x

(x(k+1), p(k+1)) , ∂F
∂p

(x(k+1), p(k+1))

z(k)T


 z(k+1) =




0
...
0

1



,

with ‖z(k+1)‖ = 1.

(A.6)

In this chapter, we use the classical Newton method [108] to solve the nonlinear algebraic
equations (A.5). These steps are demonstrated in Figure A.1. It can be seen that the pseudo
arc-length continuation method may allow one to continue curve through the fold points.
Finally, we remark that the step size δs can be adapted during the process, e.g., can be
chosen larger where (A.3) is “flat”.
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APPENDIX B

Approximating the energy consumption

In this Appendix we provide the detailed derivation of the cost function (5.22).
Recall the truck’s speed response (5.20) for a certain parameter set pn, we have

v(t) = v∗ + ṽ(t) = v∗ +
m∑

j=1

Dj sin(ωjt+ θj), (B.1)

where t ∈ [t0, tf ], ωj = j∆ω, j = 1, . . . ,m, and ∆ω = 2π/(tf − t0). Correspondingly, the
acceleration of the truck is

v̇(t) =
m∑

j=1

Djωj cos(ωjt+ θj). (B.2)

Note that the nonlinear function g(x) = max(x, 0) in (5.7) can be approximated by

ĝ(x) =
1

2

(
x+

x2

√
ε+ x2

)
, (B.3)

for small ε > 0.
Since the energy consumption due to physical effects f(v) is shown to be small in

Figure 5.3, we may omit f(v) and approximate the total energy consumption (5.7) by

ŵ =

∫ tf

t0

v ĝ
(
v̇
)

dt =
1

2

∫ tf

t0

v v̇2

√
ε+ v̇2

dt . (B.4)

Note that

v̇2 =
m∑

j,k=1

DjDkωjωk cos(ωjt+ θj) cos(ωkt+ θk) . (B.5)
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Thus, for some M > 0, we have

ε ≤ ε+ v̇2 ≤ ε+
m∑

j,k=1

DjωjDkωk ≤M
m∑

j=1

D2
jω

2
j , (B.6)

where in the last step we utilized the Cauchy-Schwarz inequality. Thus, we obtain the
bounds ∫ tf

t0

v v̇2dt

2

√√√√M

m∑

j=1

D2
jω

2
j

≤ ŵ ≤

∫ tf

t0

v v̇2dt

2
√
ε

. (B.7)

On the other hand,

v∗v̇2 =
v∗

2

m∑

j=1

D2
jω

2
j −

v∗

2

m∑

j=1

D2
jω

2
j cos(2ωjt+ 2θj)

+
v∗

2

m∑

j=1

m∑

k=1,k 6=j
DjDkωjωk

×
[

cos
(
(ωj + ωk)t+ θj + θk

)

+ cos
(
(ωj − ωk)t+ θj − θk

)]
,

(B.8)

and

ṽ v̇2 =
m∑

j=1

m∑

k=1

m∑

l=1

DjDkDlωjωk

× cos(ωjt+ θj) cos(ωkt+ θk) sin(ωlt+ θl)

=
1

4

m∑

j=1

m∑

k=1

m∑

l=1

DjDkDlωjωk

×
[

sin
(
(ωj + ωk + ωl)t+ θj + θk + θl

)

− sin
(
(ωj + ωk − ωl)t+ θj + θk − θl

)

+ sin
(
(ωj − ωk + ωl)t+ θj − θk + θl

)

− sin
(
(ωj − ωk − ωl)t+ θj − θk − θl

)]
.

(B.9)
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Thus, adding (B.8) and (B.9) and evaluating the integrals, we obtain

∫ tf

t0

v v̇2dt =
tf − t0

2
v∗

m∑

j=1

D2
jω

2
j

+
tf − t0

4

m−1∑

j=1

m∑

k≤m−j
DjDkDj+kωjωk sin(θj+k − θj − θk)

+
tf − t0

2

m−1∑

j=1

m∑

k>j

DjDkDk−jωjωk sin(θj + θk−j − θk).

(B.10)

Here, we assume the speed oscillations are small compared to the steady-state speed,
that is, v∗ � Dj for j = 1, . . . ,m. Then denoting D = max{Dj|j = 1, . . . ,m}. Thus, we
have

∣∣∣∣
m−1∑

j=1

m∑

k≤m−j
DjDkDj+kωjωk sin(θj+k − θj − θk)

∣∣∣∣

≤
m−1∑

j=1

m∑

k≤m−j
DjDkDj+kωjωk < mD

m∑

j=1

ω2
jD

2
j ,

(B.11)

and

∣∣∣∣
m−1∑

j=1

m∑

k>j

DjDkDk−jωjωk sin(θj + θk−j − θk)
∣∣∣∣

≤
m−1∑

j=1

m∑

k>j

DjDkDk−jωjωk <
mD

2

m∑

j=1

ω2
jD

2
j ,

(B.12)

yielding

(v∗ −mD)(tf − t0)

2

m∑

j=1

D2
jω

2
j

≤
∫ tf

t0

v v̇2dt ≤

(v∗ +mD)(tf − t0)

2

m∑

j=1

D2
jω

2
j .

(B.13)
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Finally, the energy consumption (B.4) can be bounded

C

√√√√
m∑

j=1

D2
iω

2
j ≤ ŵ ≤ C

m∑

j=1

D2
jω

2
j (B.14)

where

C =
(v∗ −mD)(tf − t0)

4
√
M

, C =
(v∗ +mD)(tf − t0)

4
√
ε

. (B.15)

Given v∗ > mD, the energy consumption (B.4) is bounded by class-K functions of
∑m

j=1 D
2
jω

2
j ,

which can be used for a robust energy-optimal design; see (5.22).
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APPENDIX C

Receding horizon optimal control (RHOC)
design

In this Appendix we provide some details about the receding horizon optimal control
(RHOC) approach utilized in Section 5.3.4.

C.1 Longitudinal model

We model the longitudinal dynamics as

ṡ(t) = v(t),

v̇(t) = −f
(
v(t)

)
+ u(t),

(C.1)

that is indeed analogous to (5.1). The dissipation f(v) is still given by (5.2) but here
the feedback structure of the controller u is not predetermined. Moreover, the delays are
omitted as we assume that a predictor can accurately predict the current state (and even the
future states) of the vehicles.

C.2 Fuel consumption map and input constraints

Fuel consumption rates are typically given as a function of the engine speed ωe and engine
torque Te, that is, q(ωe, Te). Given a well defined gear shift logic one may obtain the fuel
consumption as a function of the speed v and the control input u, i.e., q(v, u) [109]. Here
we utilize the Willans approximation

q(v, u) =




p2v u+ p1v + p0, if u ≥ 0,

p1v + p0, , if u < 0,
(C.2)
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to get analytical approximation of the fuel consumption rate [76]. In particular we have
p2=1.8284 [gs2/m2], p1=0.0209 [g/m], p0 = −0.1868 [g/s] for the truck.

The distinction between the two cases in (C.2) is made since for u < 0 the engine
torque is set to zero and the brakes are applied. To bypass this nonsmoothness, we define
the control inputs ud and ub such that

u = ud + ub, (C.3)

with the constraints
ud ≥ 0, ub ≤ 0, udub = 0. (C.4)

Indeed, ud is related to driving torque, while ub is related to braking torque. Then (C.2)
can be rewritten as

q(v, ud) = p2v ud + p1v + p0. (C.5)

Due to the torque limitations of the engine and the brakes the control input u also
saturates at umin and umax; cf. Figure 5.1(b). Here we also take into account the power
limitation of the engine, i.e., we have

umin ≤ u ≤ min

{
umax,

Pmax

meffv

}
, (C.6)

which is visualized in Figure C.1(a). Note that while in Section 5.2 the power limit was not
included in the CCC design, it was still enforced by the high-fidelity simulation platform.

Finally, since RHOC algorithms are typically designed and implemented in discrete-
time they may lead to “jerky” trajectories. To avoid this issue, we also pose the constraint

∆u ≤ u̇d + u̇b ≤ ∆ū. (C.7)

C.3 State Constraints

Corresponding to saturation function (5.6), we set the speed constraint

0 ≤ v ≤ vmax, (C.8)
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0

vmax

umax

umin

Pmax

meffv
u

v

(a) v

h0

κ

κ

vmax

hst

❄
hst

(b)

Figure C.1: (a) The working region (C.6,C.8) indicated by blue shading in the (v, u)-plane. (b) The
constrained region (C.8,C.9) indicated by blue shading in (h, v)-plane. The relaxed upper bound
(C.10) extends this by adding the green shading.

that is visualized in Figure C.1. Moreover, to generate a car-following behavior similar to
that of the CCC controller, we introduce the state constraints

κ
(
h− hst

)
≥ v, κ (h− hst) ≤ v, (C.9)

using the headway h and the speed v. The parameters are selected so that κ ≤ κ ≤ κ and
hst ≤ hst ≤ hst to make sure that the blue shaded domain shown in Figure C.1(b) includes
the curve shown in Figure 5.1(c).

It can be shown that with powerful enough propulsion capability, one can have (C.9)
recursively feasible for a finite horizon T . However, with limited power this may not be the
case, in particular, when the acceleration capability of the preceding vehicle is larger than
that of the truck. To avoid this problem we relax the upper bound in (C.9) by adding the
slack variable η, that is, we set

κ
(
h− hst

)
≥ v, κ (h− η − hst) ≤ v, (C.10)

which extend the shaded domain in Figure C.1(b) with the green part. Note that we do not
relax the lower bound as that is safety critical constraint.

C.4 Implementation

Using the model and constraints listed we set up the following optimal control problem:

min
ud,ub

J = µ η2 +

∫ tk+T

tk

q(ud, v) dt, (C.11)
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subject to

[
ṡ

v̇

]
=

[
v

−f(v) + ud + ub

]
,

ud ≥ 0,

ub ≤ 0,

umin ≤ ub + ud ≤ min

{
umax,

Pmax

meffv

}
,

∆u ≤ u̇d + u̇b ≤ ∆ū,

0 ≤ v ≤ vmax,

κ
(
h− hst

)
≥ v,

κ (h− η − hst) ≤ v,

η ≥ 0,

(C.12)

and we solve this at each tk = k∆T , k = 0, 1, . . .. Here µ is the weight on slack variable,
q(ud, v) is given by (C.5) and f(v) is given by (5.2). The time horizon T and the sampling
period ∆T are chosen such that T = N∆T for some N ∈ N. When solving the optimal
control problem the differentials are discretized using explicit Euler method with time step
∆T . Then at each tk, the first step of the solution is applied over the interval [tk, tk + ∆T )

using a zero-order hold, that is,

u(t) = ud(tk) + ub(tk), t ∈ [tk, tk + ∆T ). (C.13)

is commanded in the high-fidelity simulations
We remark that the constraint (C.7) together with fuel consumption formula (C.5) im-

plicitly enforces the constraint udub = 0 in (C.6); see [47]. That is why udub = 0 is not
listed in (C.12) reducing the complexity of the optimal control. Finally, the parameters
used in the RHOC are summarized in Table C.1. Indeed, that the values of umax and umin

are the same as in the data-based CCC design while we set hst = hst = hst and κ < κ < κ.

µ 100 [kg/m2] ∆T 0.1 [s]
hst 5 [m] hst 5 [m]
umax 1 [m/s2] umin −4 [m/s2]
∆u 4 [m/s3] ∆u −4 [m/s3]
κ 0.4 [1/s] κ 1 [1/s]

Table C.1: Control parameters for RHOC design.
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[17] Jiménez, F., López-Covarrubias, J. L., Cabrera, W., and Aparicio, F., “Real-time
speed profile calculation for fuel saving considering unforeseen situations and travel
time,” IET Intelligent Transport Systems, Vol. 7, No. 1, 2013, pp. 10–19.
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