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ABSTRACT

Cavitation-induced damage occurs in a wide range of applications, including in naval hydrody-

namics, medicine, and the Spallation Neutron Source. Local transient pressure decreases in liquid

flow may give rise to explosive bubble growth and violent collapse, with shock waves produced at

collapse interacting with neighboring solids. Although the mechanisms of erosion to hard, metallic

solids can be predicted in relatively simple geometries, damage to soft materials (e.g., elastomeric

coatings, soft tissue) or in confined geometries is less well understood. In such problems, the

constitutive models describing the medium are non-trivial and include effects such as (nonlinear)

elasticity, history (relaxation effects) and viscosity. As a result, the influence of the shock on the

material and the response of the material to the shock are poorly understood.

To gain fundamental insights into cavitation-induced damage to both soft objects and rigid

materials, we develop a novel Eulerian approach for numerical simulations of wave propagation

in heterogeneous viscoelastic media. We extend the five-equations multiphase, interface-capturing

model, based on the idea that all the materials (gases, liquids, solids) obey the same equation of

state with spatially varying properties, to incorporate the desired constitutive relation. We con-

sider problems in which the deformations are small, such that the substances can be described by

linear viscoelastic constitutive relations. One difficulty is the calculation of strains in an Eulerian

framework, which we address by using a hypoelastic model in which an objective time derivative

(Lie derivative) of the constitutive relation is taken to evolve strain rates. The resulting numer-

ical framework is a solution-adaptive, high-order interface-capturing approach for compressible,

multiphase flows involving linear viscoelasticity at all speeds.

We then utilize this numerical framework to gain fundamental insights into cavitation damage

xiii



(i) in a confined geometry, (ii) in shock wave lithotripsy, and (iii) to rigid objects covered by an

elastomeric coating. We examine the maximum stresses, pressures, and temperatures along/in

rigid/compliant objects. We quantify the effect of confinement on an inertially collapsing bubble

and determine the appropriate scaling governing the maximum pressures can predicted on the

surfaces. We investigate the stresses produced to a model kidney stone due to a shock wave by

examining the amplification of tensile stresses in the stone when a gas bubble is present. The

impact loads on a polymeric coating relevant to naval engineering applications by shock-induced

bubble collapse indicate how pitting and coating material ejection may take place by repeated

cavitation events near the surface.
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CHAPTER 1

Introduction

This chapter provides an introduction to cavitation bubble dynamics and its applications, in the

context of cavitation erosion. Knowledge gaps on the mechanisms of cavitation erosion in confined

geometries, biomedical ultrasound, and in naval engineering are discussed. The requirements for

numerically solving multi-component, multiphase flows to gain fundamental insights on cavitation

damage are briefly detailed. The chapter concludes by stating the research objectives and main

contributions to the field.

1.1 Cavitation in Science and Engineering

Cavitation, the process primarily described by the formation and dynamics of vapor bubbles in a

liquid flow, appears in a wide range of hydraulic applications, such as turbomachinery, naval struc-

tures, biomedical ultrasound, and combustion. Cavitation occurs due to local pressure reductions in

a flow exceeding the tensional threshold in the surrounding liquid. As a result, nanometer-scale gas

nuclei in the liquid grow via phase change to vapor bubbles (Brennen, 2013). This mechanically

driven phenomenon contrasts with boiling, a thermally driven process, in which the temperature

increase vaporizes the liquid. When the local pressure reduction in the flow is sufficient to lead

to cavitation, multiple bubbles are formed and behave as a bubble cloud. Bubbles respond to the

transient pressure variations (e.g. ultrasound waves, turbulent flow) by oscillating in volume. The

oscillations eventually dampen due to dissipative mechanisms and, eventually, the bubbles achieve
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equilibrium with their surroundings. In extreme cases, however, the inertia imparted from the sur-

roundings dominates such that the bubbles collapse violently. Upon collapse, strong shock waves

are emitted and interacting with the neighboring surface. After repeated and continuous impact

loading, the surface is damaged by deforming or erosion.

Depending on the surroundings, individual cavitation bubbles can collapse symmetrically or

asymmetrically. Under the idealization of a single bubble in an infinite sea of liquid, the vapor

bubble collapse is spherical. This collapse causes the vapor inside the bubble to condense and

concentrates energy into a volume several orders of magnitude smaller than its maximum vol-

ume. Eventually, the pressure build up is so great that the collapse is arrested and the bubble

rebounds, i.e., grows again. As a result, a shock wave is generated and propagates into the sur-

roundings (Rayleigh, 1917; Lauterborn & Kurz, 2010). Depending on the bubble size, this shock

wave can impart high impact loads to the neighboring materials. For ductile materials, such as

metals, the impact load may lead to material deformation (e.g., pitting) and loss (Kim et al., 2014).

Material failure occurs in brittle materials from internal reflections of this shock forming a ten-

sile wave and lead to spallation (Lubock, 1989). Moreover, experimental studies demonstrate that

spherical collapses are significantly stronger than asymmetrical ones due to the high-volume con-

centration and compression (De Chizelle et al., 1995). However, cavitation vapor bubbles form

and collapse in finite environments with elements that may break the symmetry, e.g., neighboring

surfaces, adjacent bubbles in a bubble cloud, gravity, ultrasound waves, under which the collapse

becomes asymmetric (Benjamin & Ellis, 1966). A re-entrant jet forms (see Fig. 1.1, (Crum, 1988)),

which eventually impinges onto the distal side of the bubble thus producing a water-hammer shock.

The mechanisms of cavitation erosion are not fully understood. When approaching this prob-

lem from the single-bubble perspective, two important factors are known to play a role in ero-

sion (Parsons & Cook, 1919; Kornfeld & Suvorov, 1944): (i) the radially propagating water-

hammer shock and, (ii) direct impingement of the re-entrant jet onto the surface. Both mechanisms

give rise to localized high-impact loads on the material surface. Although both phenomena have

been investigated over the past few decades (Kornfeld & Suvorov, 1944; Benjamin & Ellis, 1966;
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(a) Liquid jet. (b) Erosion on brass plate.

Figure 1.1: Liquid jet produced collapsing cavitation bubble near a brass plate Crum (1988) and
the resulting cavitation erosion. The bubble is approximately 1 mm across and plate is 2 mm thick.

Blake et al., 1986; Brujan et al., 2002; Lindau & Lauterborn, 2003), the extent to which one or

the other mechanism is dominant remains unclear. Numerical efforts by Beig et al. (2018) have

demonstrated with appropriate scalings the data can collapse and be predictable for certain kinds

of problems.

The non-linear, fully-coupled behavior of the fluid motion during the bubble collapse, tur-

bulence, and material undergoing finite and permanent deformations presents serious modeling

challenges. In this thesis, three distinct thematic areas are considered in the context of cavita-

tion erosion: cavitation under confinement, ultrasound-induced cavitation, and cavitation in naval

hydrodynamic applications.

1.1.1 Confined Cavitation

Cavitation damage occurs in various applications in which the confined flow geometry and oper-

ating conditions play a critical role on the bubble dynamics. In these applications, the cavitation

bubble diameter is on the order of the channel width such that confinement can affect the dynamics.

Cavitation also plays an important role in the atomization process in sprays that typically involve

jet with cross-sectional areas of a few millimeters square (Wang et al., 2014; Bergeles et al., 2015;

Biçer & Sou, 2016). Ferns sporangia utilize cavitation to eject its spores akin to man-made cat-
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(a) Target module set-up. (b) Mercury flow target vessel. (c) Cavitation erosion.

Figure 1.2: Spallation Neutron Source (SNS) target module set-up and mercury target ves-
sel Haines et al. (2014) resulting confined cavitation erosion in the target vessel Riemer et al.
(2014).

apults (Noblin et al., 2012) and snapping-shrimp produce cavitating bubbles by rapidly closing

their claws to kill their prey (Versluis et al., 2010). Cavitation is is the lifetime-limiting factor for

the target used in the operation of the Spallation Neutron Source (SNS) at Oak Ridge National

Laboratory (Haines et al., 2014; Riemer et al., 2014; Naoe et al., 2016). In the SNS, a proton beam

is fired into a mercury target vessel leading to a spallation process that produces an intense neutron

beam. This process produces a shock wave that propagates through the mercury and interacts with

the vessel walls. In addition, cavitation is generated and gives rise to erosion of the target, which

limits the radiation power range and experiment duration (see Fig. 1.2).

Confined cavitation is challenging to study experimentally and has received limited attention

in the literature. Confinement may affect the hydrodynamics of bubble collapse, particularly the

re-entrant jet formation. For a single bubble inertially collapsing near a perfectly rigid wall, a jet

forms on the distal side of the bubble relative to the wall (Naude & Ellis, 1961; Plesset & Chapman,

1971; Brujan et al., 2002). Fluid from the surroundings is entrained into the bubble as the re-

entrant jet forms. However, in a confined geometry (e.g., a channel) it is not clear what effect, if

any, the boundaries could have on the re-entrant jet formation and cavitation damage. Additionally,

a collapsing bubble generates outward propagating rarefaction waves, which subsequently interact

with the bubble and affect the dynamics. The extent to which the rarefaction dynamics differ under

confinement and affect the bubble collapse violence has not been previously explored. Quantitative

understanding of the confinement bubble collapse dynamics is necessary to gaining insights into
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(a) ESWL wave form. (b) Comminution of stone phantom.

Figure 1.3: Extracorporeal shock wave lithotripsy (ESWL) waveform and photographs of the com-
minution of a plaster-of-Paris stone phantom from 25-500 ESWL shocks in water (Zhu et al.,
2002).

cavitation damage in confined geometries.

1.1.2 Ultrasound-induced cavitation

Extracorporeal shock wave lithotripsy (ESWL) is a non-invasive ultrasound therapy tool used to

fractionate kidney stones (Lubock, 1989). The ultrasound is generated extracorporeally and fo-

cused to fragment kidney stones to the extent that they can then be passed by the renal sys-

tem (Coleman et al., 1987; Sass et al., 1991). An ultrasound wave generated by a hydrophone

is focused the body, near the kidney stone. A common ESWL waveform consists of a positive

pressure peak (a shock) followed by a rarefaction which reaches ∼10 MPa in tension (see Fig. 1.3).

Peak pressures used in practice are ∼40 MPa (Coleman et al., 1987; Zhu et al., 2002). The tensile

region generates cavitation bubbles along the kidney stone surface. Two primary stone comminu-

tion mechanisms have been proposed based on experimental observation: (i) the tensile stresses

generated from the reflected shock within the stone leading to spallation, and (ii) cavitation ero-

sion from the bubbles at the surface leading to material failure (Lubock, 1989; Crum, 1988; Zhong

et al., 1993; Brujan, 2004; Weinberg & Ortiz, 2009). Moreover, experiments by Zhu et al. (2002)

in water and castor oil demonstrated that the combined effect of the tensile stress wave and the

cavitation are needed for effective comminution (see Fig. 1.3). However, the interplay between
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these two mechanisms and how it leads to more effective kidney stone comminution are not yet

well understood.

1.1.3 Naval Hydrodynamics

Cavitation erosion is undesired in the context of naval engineering. Flows in naval engineering

involve low-Mach number regions in the liquid, while local Mach numbers can be supersonic in

gas/liquid mixture regions where the sound speed can be as low as tens of meters per second (Reis-

man et al., 1998; Gnanaskandan & Mahesh, 2015; Ganesh et al., 2016). Shocks waves emitted

from implosions are one of the important consequences of cavitation and lead to structural damage

to neighboring surfaces (Kornfeld & Suvorov, 1944; Benjamin & Ellis, 1966; Tomita & Shima,

1986; Philipp & Lauterborn, 1998; Lindau & Lauterborn, 2003; Franc et al., 2012). The structural

damage on these surfaces or objects degrades the performance and need for require or replacement

of critical components. The modern description of cavitation erosion to hard, metallic structures

is well documented in Kim et al. (2014). However, it is unclear whether conclusions made for

metallic surfaces apply to softer materials proposed for blast mitigation (Samiee et al., 2013; Ri-

jensky & Rittel, 2016), and other polymer-based materials. Studies have shown that these poly-

meric materials have a viscoelastic response (Qiao et al., 2011). Understanding the behavior of

these compliant, polymeric materials under the high mechanical and thermal loads from cavitation

and their influence on the bubble dynamics will provide valuable knowledge towards developing

cavitation mitigation strategies.

1.2 Computational Approaches

Due to the wide spatial and temporal scales involved in cavitation damage there are experimental

limitations to analyzing cavitation damage in the thematic areas described above. Additionally, the

non-intuitive nature of the dynamics and non-linear equations of motion presents an opportunity

for numerical simulations to complement analytical and experimental efforts. One challenge lies in
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the non-trivial implementation of constitutive models describing the material that include effects

such as (nonlinear) elasticity, history and viscosity. We briefly summarize the latest numerical

methodologies for computing multi-component flows and bubble dynamics.

1.2.1 Bubble-Cloud and Spherical-Bubble Models

In most applications, cavitation erosion is produced by a cloud of bubbles. While efforts have

been made to numerical compute bubble clouds (Zhang & Prosperetti, 1994; Wang & Brennen,

1999; Seo et al., 2010; Fuster & Colonius, 2011; Ando et al., 2013), these approaches are based

on models for spherical bubble dynamics. It is well known that non-spherical bubble collapse

play an important role in cavitation erosion (Kornfeld & Suvorov, 1944; Knapp, 1955; Benjamin

& Ellis, 1966; Tomita & Shima, 1986; Blake & Gibson, 1987; Kim et al., 2014). Moreover,

if the neighboring material is soft, accounting for the flow-structure interaction is challenging.

As a first step, researchers have considered the dynamics and collapse of a single bubble near a

solid. Early models (Fogler & Goddard, 1970; Tanasawa & Yang, 1970) developed to study bubble

dynamics in viscoelastic media were based on the Rayleigh-Plesset equation, a nonlinear ordinary

differential equation to describe spherical bubble dynamics, with Maxwell constitutive models.

Further extensions to include elasticity (Yang & Church, 2005; Hua & Johnsen, 2013; Gaudron

et al., 2015) as well as other nonlinearities (Allen & Roy, 2000; Warnez & Johnsen, 2015) have

been pursued. However, such approaches, are limited by the assumptions that the dynamics are

spherically symmetric and that the near-field flow is incompressible. Neither assumption is strictly

valid in problems involving inertia-dominated bubble collapse near a solid object, during which

the collapse is often non-spherical and shock waves propagate in the surrounding medium.

1.2.2 Direct Simulations

To gain insights into the asymmetric and compressible nature of bubble collapses, the non-linear

governing equations of motion must be solved. Two main numerical methodologies have been

pursued: coupling the flow solver to a solid mechanics solver (e.g., arbitrary Lagrangian-Eulerian
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or ALE approaches), or computing the fluid and solid mechanics in a single framework.

ALE methodologies have been used for multi-component fluid-structure interaction (FSI) prob-

lems such as shock-bubble interaction near a solid object (Young et al., 2009) and for flows with

shocks using the Ghost Fluid method (Arienti et al., 2003; Sambasivan & UdayKumar, 2009;

Grétarsson & Fedkiw, 2013). The approach has been combined with the incompressible bound-

ary element method (BEM) to capture the bubble implosion and re-entrant jet formation (Hsiao

et al., 2014). However, extreme fluid distortions and vorticity generated in problems of interest

(e.g., bubble collapsing near an elastically rigid object) can pose challenges to such approaches.

Additionally, these approaches increase the algorithmic complexity as they typically involve two

solvers—one for the fluid and one for the solid. Furthermore, the coupling generally involves an

iterative process to communicate the stresses produced by the fluid to the solid, and the correspond-

ing solid deformations to the fluid (Kalateh & Koosheh, 2018). Another approach within ALE is

the extended Finite Element Method (xFEM), which has been used to study implosions and crack

growth (Moës & Belytschko, 2002; Šuštarič et al., 2014). These approaches are advantageous in

eliminating the need to re-mesh the computational domain. However, these methods are typically

limited in considering the fluid to be incompressible (Liu & Marsden, 2018; Wang et al., 2018) or at

most weakly compressible. One of the most sophisticated of these approaches is that of Wang et al.

(2015), which is an embedded boundary method (EBM), utilizing xFEM and the element deletion

(ED) method, is used to compute high-speed compressible flows in FSI applications. However,

this method is at most second-order accurate and its algorithmic complexity is significant as it

combines several numerical approaches. Lagrangian framework using the Finite-Element Method

(FEM) have also been considered to solve the compressible Navier-Stokes equations for problems

involving discontinuities (e.g., shocks), but are most second-order accurate (Radovitzky & Ortiz,

1999).

On the other hand, Eulerian approaches present a viable alternative to simulate flow-structure

interactions. This numerical methodology can naturally handle compressible flows, enforce con-

servation, and resolve high-frequency contents. High-order accurate shock-capturing schemes
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have emerged as viable approaches to simulate bubbles collapsing non-spherically in water and

the shock waves thereby produced (Johnsen & Colonius, 2006; Shukla et al., 2010; Tiwari et al.,

2013; Coralic & Colonius, 2014).

Two distinct challenges arise in a fully Eulerian, high-order accurate, fluid-solid framework:

(i) preventing spurious interfacial errors when simulating resolving multiphase/multi-component

flows, and (ii) representing the material deformations and viscoelastic behavior naturally repre-

sented in a Lagrangian framework. The representation of interfaces in multiphase flows generally

falls under one of two approaches: interface tracking and interface capturing. For the former, these

methods are attractive as they can represent sharp interfaces but may suffer conservation losses,

which are most crucial in precisely the problems under consideration (shock interacting with an

interface). The algorithm typically involves using two solvers, which increases algorithmic com-

plexity. For the latter, interface-capturing approaches regularize the interface over 4 − 5 compu-

tational cells. This approach is particularly attractive as it naturally enforces conservation and

one algorithm computes the flow. However, interface-capturing algorithms bring about their own

numerical difficulties, such as the generation of pressure and temperature oscillations across the

material discontinuities for interfacial flows (Abgrall, 1996; Shyue, 1998; Johnsen, 2012). Such is-

sues can be addressed for the three-dimensional compressible Navier-Stokes equations for a binary

gas-liquid system (Alahyari Beig & Johnsen, 2015).

In the context of cavitation erosion, the chief difficulty in extending such methods to incor-

porate viscoelasticity lies in the representation of strains (or deformations), which are naturally

described in a Lagrangian fashion, in the Eulerian formulation. While Eulerian approaches have

historically been limited in modeling the material deformations, two approaches have been pur-

sued (Gavrilyuk et al., 2008): Godunov-based approaches (Godunov & Romenskii, 2003; Gavri-

lyuk et al., 2008; Favrie et al., 2009; Ndanou et al., 2015) and hypoelastic approaches (Eringen,

1962; Kapahi et al., 2011; Udaykumar et al., 2003; Despres, 2007; Kapahi et al., 2013a; Altmeyer

et al., 2015). In the Godunov-based approach, the deformation tensor is directly evolved, such that

the equations of motion form a hyperbolic, conservative, and thermodynamically consistent set of
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equations (Godunov & Romenskii, 1972; Trangenstein & Colella, 1991; Plohr & Sharp, 1988; Go-

dunov & Romenskii, 2003). Hyperelastic constitutive models, which depend on the deformation

tensor, can thus be represented using this approach. However, these approaches are in their infancy

towards using high-order accurate methods and are at most second-order accurate.

On the other hand, hypoelastic constitutive models are designed for small strains (Eringen,

1962), the elastic components of the stress tensor obey evolution equations. Both approaches have

their advantages and limitations in describing visco(elastic) materials and their implementation

in an Eulerian numerical framework is non-trivial. Further discussion on how the hypoelastic

approach is particularly attractive when using high-order accurate interface-capturing methods is

detailed in Chapter 2.

1.3 Thesis Overview

The objective of this work is to better understand the dynamics of gas bubbles and the emitted

shock wave mechanics in elastic and viscoelastic media, by leveraging high-order accurate numer-

ical simulations. Along with the numerical modeling advances, the contributions of this thesis to

three areas relevant to cavitation damage are presented below:

Part I: Numerical modeling advances

1. A novel high-order, solution-adaptive Eulerian approach for numerical simulations of wave

propagation in viscoelastic media, with application to shocks interacting with interfaces be-

tween fluids and viscoelastic media, is developed (Chapter 2). The main challenge lies in

representing the combination of viscoelastic, multiphase and compressible flow. A partic-

ular difficulty is the calculation of strains in an Eulerian framework, which we address by

using a conventional hypoelastic model in which an objective time derivative (Lie derivative)

of the constitutive relation is taken to evolve strain rates instead. The numerical method is

verified in a comprehensive fashion using a series of smooth and discontinuous (shocks and

interfaces), one- and two-dimensional test problems.
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2. We extend our approach to all-speed flows, including viscoelasticity, using the Advection

Upstream Splitting Method (AUSM) (Chapter 3). We generalize the AUSM flux-vector

splitting (FVS) to account for the Cauchy stress tensor. An additional novelty is the exten-

sion of the AUSM scheme to the five-equation model for simulations of interfaces between

gases, liquids, and solids. We determine an appropriate discretization of non-conservative

equations that appear in the five-equation multiphase model with AUSM schemes to pre-

vent spurious oscillations at material interfaces. The framework is used to simulate 1D and

2D problems that demonstrate the ability to maintain equilibrium interfacial conditions and

solve challenging multi-dimensional and multi-material problems.

Part II: Bubble dynamics investigations

4. We leverage our numerical approach to conduct a series of investigations on the dynamics of

bubbles inertially collapsing in a channel (Chapter 3). The quantities of interest are the max-

imum pressures along the perfectly rigid channels walls, bubble collapse distance migration

and minimum bubble volume. We qualitatively study the wave dynamics of the collapse and

gain novel insights into the mechanisms of asymmetric collapse and multiple re-entrant jet

formation. Moreover, we determine the smallest channel width, relative to the initial bubble

radius, for which the presence of a second wall has a non-negligible effect on the collapse

dynamics.

5. We conduct a fundamental study to examine the effectiveness of the ESWL ultrasound shock

wave in the presence of a cavitation (Chapter 5). We consider a shock-induced bubble col-

lapse adjacent to a model kidney stone. We examine the effect of different model kidney

stone sizes and initial bubble stand-off distances on the maximum principal stress in the

stone. An augmentation of the potential for material failure when the cavitation bubble is

present is achieved relative to the case without the bubble. Three distinct events at which

the tensile stress in the model kidney stone in the presence of the bubble exhibits a local

maximum are identified.

11



6. Relevant to naval engineering applications, we conduct a study to determine the cavitation

damage and material failure mechanisms in shock-induced bubble collapse near a polymeric

coating (Chapter 6). Single and multiple bubble collapse problems are presented for various

configurations. This study considers the nearby object to be compliant such that the de-

formations are infinitesimally small. We quantify the maximum pressures in the polymeric

layer from the bubble collapse. The polymeric coating’s deformation is also investigated,

particularly after the bubble collapse when a convecting vortex ring is generated, which can

further deform the material. These results are of importance because the object’s viscoelas-

ticity can dampen the wave propagation and bubble interaction hypothesized to deform and

damage nearby objects.
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Numerical Approaches for
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CHAPTER 2

A high-order accurate, five-equations compressible

multiphase approach for viscoelastic fluids and solids

with relaxation and elasticity

This chapter is adapted from Rodriguez & Johnsen (2018).

2.1 Abstract

A novel Eulerian approach is proposed for numerical simulations of wave propagation in viscoelas-

tic media, for application to shocks interacting with interfaces between fluids and viscoelastic me-

dia. In this chapter, we extend the five-equations multiphase, interface-capturing model, based on

the idea that all the materials (gases, liquids, solids) obey the same equation of state with spatially

varying properties, to incorporate the desired constitutive relation; in this context, interfaces are

represented by discontinuities in material properties. We consider problems in which the deforma-

tions are small, such that the substances can be described by linear constitutive relations, specifi-

cally, Maxwell, Kelvin-Voigt or generalized Zener models. The main challenge lies in representing

the combination of viscoelastic, multiphase and compressible flow. One particular difficulty is the

calculation of strains in an Eulerian framework, which we address by using a conventional hypoe-

lastic model in which an objective time derivative (Lie derivative) of the constitutive relation is

taken to evolve strain rates instead. The resulting eigensystem is analyzed to identify approach
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wave speeds and characteristic variables. The spatial scheme is based on a solution-adaptive for-

mulation, in which a discontinuity sensor discriminates between smooth and discontinuous regions.

To compute the convective fluxes, explicit high-order central differences are applied in smooth re-

gions, while a high-order finite-difference Weighted Essentially Non-Oscillatory scheme is used

at discontinuities (shocks, material interfaces and contacts). The numerical method is verified in

a comprehensive fashion using a series of smooth and discontinuous (shocks and interfaces), one-

and two-dimensional test problems.

2.2 Introduction

Recent years have seen the emergence of the need for simulating shock and other high-frequency-

content waves (e.g., blasts, therapeutic ultrasound pulses, shocks emitted by collapsing bubbles)

interacting with solid objects whose stiffnesses can range from soft (e.g., human tissue) (Vlaisavl-

jevich et al., 2015) to moderate (e.g., elastomeric coatings in naval propulsors) (Rijensky & Rittel,

2016; Bahei-El-Din et al., 2006) to hard (metals or concrete) (de Brauer et al., 2016; Ndanou et al.,

2015; López Ortega et al., 2011). An example of interest is the impingement of a shock propa-

gating in a liquid upon a solid object and its subsequent propagation in the solid, which presents

the computational challenge of accurately and robustly representing compressible, multi-material

flows with shocks, shear waves, and viscoelastic deformations of the solid. High-order accurate

shock- and interface-capturing schemes have emerged as viable approaches for shocks in multi-

material flows, for instance, to simulate gas bubbles collapsing in water near solid objects and the

shock waves thereby produced (Johnsen & Colonius, 2006; Shukla et al., 2010; Tiwari et al., 2013;

Coralic & Colonius, 2014). Given their high order of accuracy, these approaches accurately repre-

sent high-frequency-content waves emitted by bubble collapse. However, an accurate description

of the solid mechanics is challenging. Two main strategies have been pursued: coupling the flow

solver with a solid mechanics solver (e.g., arbitrary Lagrangian-Eulerian or ALE approaches), or

solving the fluid and solid mechanics in a single framework. The former has been used for multi-
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component fluid-structure interaction problems such as shock-bubble interaction near a solid ob-

ject (Young et al., 2009) and for flows with shocks using the Ghost Fluid method (Arienti et al.,

2003; Sambasivan & UdayKumar, 2009; Grétarsson & Fedkiw, 2013). However, the extreme fluid

distortions and vorticity generated in problems of interest (e.g., bubble collapsing near an elasti-

cally rigid object) can pose challenges to such approaches. Additionally, these approaches increase

in algorithmic complexity as they typically involve two solvers—one for the fluid and one for the

solid—whose complexity increases even more so when incorporating viscoelasticity. Additionally,

the Lagrangian portion of the numerical approach of the solver is typically limited in its ability to

capture high-frequency contents of relevant waves relative to the Eulerian counterpart. Thus, our

present focus resides in the latter—a single framework for fluids and solids, which can represent

fully coupled fluid-solid mechanics. Given our interest in leveraging the advantages of high-order

shock- and interface-capturing approaches, the chief difficulty lies in representing strains (or de-

formations), naturally described in a Lagrangian fashion, in the Eulerian formulation of predilec-

tion for discontinuity capturing. This difficulty has been addressed primarily by following either

Godunov-based or “conventional” approaches (Gavrilyuk et al., 2008).

In the Godunov-based approach, the deformation tensor is directly evolved, such that the

equations of motion form a hyperbolic, conservative, and thermodynamically consistent set of

equations (Godunov & Romenskii, 1972; Trangenstein & Colella, 1991; Plohr & Sharp, 1988; Go-

dunov & Romenskii, 2003). Hyperelastic constitutive models, which depend on the deformation

tensor, can thus be represented using this approach. Computational studies of shocks in a single

elastic medium were performed with second-order shock-capturing schemes (Le Floch & Olsson,

1990; Miller & Colella, 2001, 2002; Miller, 2004; Gavrilyuk et al., 2008). High-order Weighted

Essentially Non-Oscillatory (WENO) (Jiang & Shu, 1996), Arbitrary DERivative in space and time

(ADER) (Titarev & Toro, 2002) and Discontinuous Galerkin approaches have been implemented

for single-phase problems involving fluids and solids (Dumbser et al., 2015). These methods can

represent interfaces via interface tracking and capturing, as well as immersed boundary meth-

ods (Barton & Drikakis, 2010; Barton et al., 2011, 2013; Schoch et al., 2013; López Ortega et al.,
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2011, 2014; Gorsse et al., 2014). However, these interface-tracking techniques may suffer con-

servation losses. Although interface capturing, e.g., using the seven- or five-equations multiphase

models (Baer & Nunziato, 1986; Kapila et al., 2001; Saurel & Abgrall, 1999a; Saurel & Lemetayer,

2001), has been used for ballistic and detonation problems (Favrie et al., 2009; Favrie & Gavri-

lyuk, 2011; Ndanou et al., 2013, 2015) with second-order accurate schemes, the implementation

of Riemann solvers appropriately capturing all the waves of the nonlinear hyperbolic systems for

arbitrary constitutive models is challenging. Moreover, it is not clear how to incorporate stress

relaxation in such a formulation.

For these reasons, we consider conventional approaches, in which an objective temporal deriva-

tive of the constitutive relation is performed to obtain an evolution equation for the stress tensor.

This process effectively transforms strains into strain rates, which can naturally be represented in

an Eulerian formulation in terms of the velocity gradient (Kulikovskii et al., 2002; Despres, 2007).

Moreover, this process is suited to hypoelastic constitutive models for small strains (Eringen, 1962)

in which the elastic components of the stress tensor obey evolution equations. Appropriate objec-

tive derivatives must be used, e.g., Lie derivative (Altmeyer et al., 2015); if not, thermodynam-

ically inconsistent equations and results may be obtained (Trangenstein & Colella, 1991; Morro,

2017). The resulting system of equations is attractive given the relatively straightforward numerical

implementation of viscoelasticity, including generalized Zener models (Robertsson et al., 1994).

This conventional approach has been used in the geophysical community to simulate nonlinear

wave propagation in viscoelastic media (Carcione, 1993). For multi-material problems, the ADER

scheme was implemented to investigate wave propagation in incompressible viscoelastic media us-

ing an immersed interface method, with a specific focus on stress relaxation (Lombard & Piraux,

2011). The Sharp-Interface approach, a mixed Eulerian-Lagrangian method (Udaykumar et al.,

2003), and the particle level-set method (Tran & Udaykumar, 2004) have been used to study high-

speed solid impact, penetration and void collapse problems (Tran & Udaykumar, 2006a,b). The

Ghost Fluid method has also been employed to simulate elastic-plastic deformations (Kapahi et al.,

2013b,a; Kapahi & Udaykumar, 2015, 2013). However, interface capturing (e.g., five-equations
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model) has yet to be used in conjunction with this conventional approach. Interface capturing

can be designed to be fully conservative, by contrast to the tracking methods described above.

However, one of the expected challenges when using interface capturing in conjunction with this

conventional approach, which we address, lies in maintaining the appropriate interfacial conditions

and preventing spurious pressure and temperature errors (Abgrall, 1996; Saurel & Abgrall, 1999b;

Johnsen, 2011; Alahyari Beig & Johnsen, 2015).

Our goal is to develop a numerical method capable of accurately representing wave prop-

agation (including shocks and other high-frequency-content waves) in heterogeneous and com-

pressible viscoelastic media with interfaces and heat diffusion processes. Given our interest in

problems in which solid deformations are sufficiently small and exhibit elastic, viscous and mem-

ory effects (stress relaxation), the key contribution in this article is to extend the five-equations

interface-capturing method for compressible multiphase flows to the generalized Zener linear vis-

coelastic model (i.e., with elasticity and relaxation) based on the Lie derivative. In this fully cou-

pled fluid-solid approach, all materials (gases, liquids, solids) obey the same equation of state

and constitutive model with spatially varying properties. Such an approach is attractive since the

same numerical scheme can be applied throughout the computational domain; furthermore, we can

leverage high-order accurate discontinuity-capturing schemes commonly used in Eulerian calcula-

tions. The article is organized as follows. We first present our physical model, with an emphasis

on the constitutive relations. We then describe our numerical model and analyze the properties of

the system of equations. Next, the numerical method is discussed. A stringent suite of one- and

two-dimensional, single- and multi-phase test problems with various viscoelastic models, shocks

and interfaces, is presented for verification purposes.
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2.3 Physical Model

2.3.1 Equations of Motion

The equations governing the phenomena of interest are the mass conservation, momentum balance

and energy balance equations:

∂ρ

∂t
+

∂

∂x j
(ρu j) = 0, (2.1a)

∂

∂t
(ρui) +

∂

∂x j
(ρuiu j − σi j) = 0, (2.1b)

∂E
∂t

+
∂

∂x j
(Eu j − σi jui) = −

∂Qk

∂xk
, (2.1c)

∂

∂t
(ρ(k)α(k)) +

∂

∂x j
(ρ(k)α(k)u j) = 0, k = 1, ...,K − 1, (2.1d)

where ρ is the total density, ui the velocity vector, σi j the Cauchy stress tensor, Qk the heat flux, α(k)

the volume fraction of material k, K the total number of materials, and indices i, j = 1, 2, and 3. Re-

peated indices imply summation. Eqs. (4.6a) are mass conservation equations for K − 1 materials.

The total energy (per unit volume) E comprises internal, kinetic and elastic contributions:

E = ρe +
1
2
ρu2

i + ρe(e). (2.2)

The internal energy (per unit volume) ρe is related to the relevant thermodynamic quantities

through the equation of state described in the next section, and the elastic energy ρe(e) is described

in more detail in §3.3.3. Material k has volume fraction α(k) and density ρ(k), with

∑
k

ρ(k)α(k) = ρ,
∑

k

α(k) = 1. (2.3)

As described in §3.4.2, K − 1 mass balance equations, corresponding to the K materials, must be

evolved.
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2.3.2 Equation of State

The Noble-Abel Stiffened-Gas equation of state (Le Métayer & Saurel, 2016) is used to relate the

internal energy to pressure and temperature in all materials:

ρe =
p(1 − ρb)

n − 1
+

nB(1 − ρb)
n − 1

+ ρq (2.4a)

= ρcT + B(1 − ρb) + ρq, (2.4b)

where T is the temperature and q, n, B, b and c are material properties prescribed to produce

the correct propagation speeds in liquids and solids (Harlow & Amsden, 1971; Le Métayer et al.,

2005; Le Métayer & Saurel, 2016). This equation reduces to the stiffened gas equation of state (Le

Métayer et al., 2005) with b = 0 and by setting the other properties to appropriate values. In the

limit of ideal gases, B = 0, b = 0, q = 0, c is the specific heat at constant volume and n = γ

is the ratio of specific heats. Table 6.1 lists the values of the material properties corresponding

to materials of interest. The model viscoelastic medium has properties very similar to those of

water, with a slightly greater acoustic impedance. The calculation of ρe when multiple materials

are present is discussed in §3.4.2.

Table 2.1: Material properties corresponding to different media described by the Noble-Abel
Stiffened-Gas equation of state.

Material n b[m3/kg×10−4] B[Pa×106] q [kJ/kg] c [kJ/kg·K]
Air 1.40 0 0 0 0.718

Water & viscoelastic medium 1.19 6.61 702.8 -1.167 4.167
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2.3.3 Constitutive Relations

Closure relationships for the heat flux and Cauchy stress tensor are required to close the system of

equations. Fourier conduction describes the heat diffusion process:

Qk = −κ
∂T
∂xk

, (2.5)

where κ is the thermal conductivity.

Before discussing the stresses, we define the strain-rate tensor and its deviatoric part,

ε̇i j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
, ε̇(d)

i j = ε̇i j −
1
3
ε̇kkδi j, (2.6)

where the dot denotes an objective temporal derivative, here the Lie derivative. The Cauchy stress

tensor can be written in terms of isotropic and deviatoric contributions,

σi j = σ(i)
i j + τ(d)

i j . (2.7)

The isotropic term consists of mechanical pressure and bulk (dilatational) viscous contributions:

σ(i)
i j = −pδi j + µbε̇kkδi j, (2.8)

where µb is the bulk viscosity. The isotropic elastic contributions to the Cauchy stress tensor, which

are associated with density changes in the material, are captured via the mechanical pressure, which

itself is determined through the equation of state.

The deviatoric stress can further be written in terms of viscous, τ(v)
i j , and elastic, τ(e)

i j , contribu-

tions,

τ(d)
i j = τ(v)

i j + τ(e)
i j , (2.9)

where τ(v)
i j = 2µsε̇

(d)
i j . The elastic stress is modeled as a hypoelastic material where the stress tensor
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rate linearly depends on the spatial velocity gradient (Eringen, 1962),

τ̇(e)
i j = Di jkl

∂uk

∂xl
, (2.10)

where Di jkl is a rank-4 tensor with the objective stress tensor rate terms. Since we consider

isotropic media, τ(e)
i j = 2Gε(d)

i j . Our focus lies in materials that may exhibit stress relaxation,

elasticity and viscosity, and undergo infinitesimally small deformations (i.e., linear viscoelasticity

in which the stress and its rate depend linearly on the strain and its rate). The simplest constitutive

model accounting for these effects is the Zener model (Zener, 1947), used to represent, among

other things, biomaterials (Fung, 1993):

λrτ̇
(d)
i j + τ(d)

i j = 2µsε̇
(d)
i j + 2Gε(d)

i j , (2.11)

where λr is the relaxation time, µs the shear viscosity, G the shear modulus. The elastic energy is

then defined as

ρe(e) =
τ(e)

i j τ
(e)
i j

4G
. (2.12)

The Zener model has the advantage of reducing to other simple linear constitutive relations (Car-

cione, 2014; Fung, 1993; Wineman, 2000). For λr = 0, the model reduces to that representing a

Kelvin-Voigt solid,

τ(d)
i j = 2µsε̇

(d)
i j + 2Gε(d)

i j . (2.13)

If µs = 0 and λr = 0, the model further reduces to that representing a linear Hookean solid,

τ(d)
i j = 2Gε(d)

i j . (2.14)

In Eq. (3.8), the model represents a Maxwell fluid if G = 0,

λrτ̇
(d)
i j + τ(d)

i j = 2µsε̇
(d)
i j . (2.15)
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Additionally, if λr = 0, the model further reduces to that representing a viscous, Newtonian fluid,

τ(d)
i j = 2µsε̇

(d)
i j . (2.16)

The Zener model can further be generalized to account for materials exhibiting frequency-

dependent viscoelastic properties, e.g., soft tissue (Klatt et al., 2007; Palacio-Torralba et al., 2015).

The shear relaxation function is defined as (Carcione, 2014),

ψ = Gr

1 +

Nr∑
l=1

ς(l) exp(−θ(l)t)

 H(t), (2.17)

where Gr is the relaxed shear modulus, ς(l) the strictly positive relaxation shear coefficient corre-

sponding to relaxation frequency θ(l), Nr the total number of frequencies and H(t) the Heaviside

function. The elastic stress can be written as a time convolution of the shear relaxation function

and (deviatoric) strain rate,

τ(d)
i j = 2ψ(t) ∗ ε(d)

i j . (2.18)

2.4 Numerical Model

2.4.1 Numerical Implementation of Viscoelastic Models

2.4.1.1 Kelvin-Voigt

We first consider the Kelvin-Voigt model, perhaps the simplest viscoelastic model in which an

elastic contribution is simply added to the viscous stress to form the total deviatoric stress. Drawing

from (Kulikovskii et al., 2002; Altmeyer et al., 2015, 2016), the Lie objective temporal derivative

of the elastic stress is taken to transform strains into strain rates,

τ̇(e)
i j =

∂τ(e)
i j

∂t
+ uk

∂τ(e)
i j

∂xk
− τ(e)

k j

∂ui

∂xk
− τ(e)

ik

∂u j

∂xk
+ τ(e)

i j
∂uk

∂xk
, (2.19)
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where the first two terms are the material derivative of the stress tensor and the rest of the terms

contribute to preserving objectivity. The material derivative is incorporated in the Lie derivative to

transport elastic stress tensor discontinuities. We note that the Lie derivative is equivalent to the

Truesdell derivative (Altmeyer et al., 2015) in a rectangular Cartesian coordinate system. We fol-

low the restrictions for the thermodynamic consistency of the Truesdell derivative (Morro, 2017).

The Oldroyd derivative is obtained if the last term in Eq. (3.12), which accounts for the compress-

ible effects, is set to zero. These stress rates, among others, and their behavior under small and

finite deformations have been characterized in the literature (Surana et al., 2010).

Another useful property of the Lie derivative is that its acoustic tensor is symmetric. The

acoustic tensor is defined as,

A jk =
1
ρ

ni

(
Bi jkl + Ci jkl

)
nl, (2.20)

where ni is an arbitrary unit vector, Bi jkl the tensor of objective stress rates, and Ci jkl the stiffness

tensor,

τ̇(e)
i j = Ci jkl

∂uk

∂xl
= 2G

(
Ii jkl −

1
3
δi jδkl

)
∂uk

∂xl
= 2Gε̇(d)

i j , (2.21)

where Ii jkl is the rank-4 identity tensor and the final equality holds for an isotropic medium. The

acoustic tensor for the Lie derivative can thus be written,

A jk =
1
ρ

ni

(
Bi jkl + Ci jkl

)
nl =

1
ρ

[
niτ

(e)
il nlδ jk + G

(
δ jk +

n jnk

3

)]
, (2.22)

which is symmetric, by contrast to the Jaumann derivative (Trangenstein & Colella, 1991).

Combining mass conservation and Eqs. (3.12) and (2.21), the evolution equation using the Lie

derivative for the elastic stress tensor becomes,

∂

∂t
(ρτ(e)

i j ) +
∂

∂xk
(ρτ(e)

i j uk) = ρ

(
τ(e)

k j

∂ui

∂xk
+ τ(e)

ik

∂u j

∂xk
− τ(e)

i j
∂uk

∂xk
+ 2Gε̇(d)

i j

)
. (2.23)

In two dimensions, three equations must be solved for the elastic contribution of the stress, namely

for τ(e)
11 , τ(e)

22 and τ(e)
12 (or τ(e)

21 , since the Cauchy stress tensor is symmetric). In the absence of elastic
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effects (i.e., G = 0), the compressible Navier-Stokes equations are recovered. In the absence of

viscous effects (i.e., µs = µb = 0), the Euler equations with elastic stresses are recovered (Ku-

likovskii et al., 2002; Gavrilyuk et al., 2008; Kapahi et al., 2013a; Kapahi & Udaykumar, 2015).

Eq. (2.23) complements the mass, momentum and energy Eqs. (4.1). The momentum and energy

equations are solved as follows:

∂

∂t
(ρui) +

∂

∂x j
(ρuiu j + pδi j − τ

(e)
i j ) =

∂

∂x j

(
τ(v)

i j + µbε̇kkδi j

)
, (2.24a)

∂E
∂t

+
∂

∂x j
[(E + p)u j − τ

(e)
i j ui] =

∂

∂x j

[
ui

(
τ(v)

i j + µbε̇kkδi j

)]
+

∂

∂x j

(
κ
∂T
∂x j

)
. (2.24b)

The model equations for Kelvin-Voigt using the Lie derivative implementation for stress evo-

lution are Eqs. (4.1a), (4.6a), (2.23) and (3.16).

2.4.1.2 Zener and Generalized Zener Model

For the Zener and generalized Zener models, we extend the differential viscoelastic model in Roberts-

son et al. (1994); Bécache et al. (2005); Lombard & Piraux (2011) to incorporate the constitutive

model, Eq. (3.11). We follow the thermodynamic restrictions for the Zener model (Ván et al.,

2014). Following the same procedure as that described in the previous section, a Lie derivative of

the constitutive relation is taken to transform the strains into strain rates, thus yielding the following

equations for the stress and memory variables:

∂

∂t

(
ρτ(e)

i j

)
+

∂

∂x j
(ρτ(e)

i j u j) = ρ

τ(e)
k j

∂ui

∂xk
+ τ(e)

ik

∂u j

∂xk
− τ(e)

i j
∂uk

∂xk
+ 2Gε̇(d)

i j +

Nr∑
l

ξ(l)
i j

 , (2.25a)

∂

∂t
(ρξ(l)

i j ) +
∂

∂x j
(ρξ(l)

i j u j) = ρ

[
ξ(l)

k j

∂ui

∂xk
+ ξ(l)

ik

∂u j

∂xk
− ξ(l)

i j
∂uk

∂xk
− θ(l)

(
2ς(l)Grε̇

(d)
i j + ξ(l)

i j

)]
, l = 1, ...,Nr,

(2.25b)

where ξ(l)
i j is the lth memory variable,

ξ(l)
i j = −θ(l)Grς

(l) exp(−θ(l)t)H(t) ? ε̇(d)
i j , (2.26)
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Gr is the relaxed shear modulus,

G = Gr

1 +

Nr∑
l=1

ς(l)

 , (2.27)

and ς(l) are the strictly positive relaxation coefficients for the given material which can be obtained

by material characterization (Lombard & Piraux, 2011). Using the mechanical analog of the gen-

eralized Zener model (Carcione, 2014), the relaxation coefficients can be evaluated using material

properties,

ς(l) = λ(l)
ε θ

(l) − 1, (2.28)

where λ(l)
ε are the retardation times, or creep times. There are Nr relaxation frequencies corre-

sponding to Nr memory variables and evolution equations. The additional evolution equations

close the system without having to perform a convolution in time, i.e., Eq. (3.14) need not be

solved. The model equations for the generalized Zener model using the Lie derivative implemen-

tation for stress transport are Eqs. (4.1a), (4.6a), (3.16), and (3.13). These equations close the

momentum and energy balance equations, Eqs. (3.16). We note that Eq. (3.13) incorporates the

shear viscous contributions and that both the retardation and relaxation times are functions of the

shear viscosity. Thus, the τ(v)
i j term solved in the conservation of linear momentum and energy

equations, i.e., Eqs. (3.16), should not be included when solving for the Zener, generalized Zener,

and Maxwell models. However, the bulk viscosity contributions in Eq. (2.8) must be retained in

this formulation. If there is only one relaxation time (i.e., Nr = 1), we recover the Zener model.

For a single relaxation frequency, the Maxwell model is recovered by setting G = Gr = µsθ
(1). In

the absence of elasticity and relaxation, the model reverts to the Newtonian model in Eqs. (3.16),

in which case Eqs. (3.13) need not be solved, τ(e)
i j terms are neglected, and τ(v)

i j must be included in

Eqs. (3.16).

2.4.1.3 Eigensystem of the Euler equations with hypoelastic stresses using the Lie derivative

The eigensystem of the Euler equations are well known. For a hypoelastic medium with a Lie

derivative implementation, additional terms are present. Here, we determine how elasticity and the

26



additional terms introduced by the Lie derivative affect the eigensystem. We neglect viscous and

thermal effects, and consider the one-dimensional equations for a single material,

∂ρ

∂t
+
∂

∂x
(ρu) = 0,

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p − τ(e)

11 ) = 0,

∂

∂t
(ρv) +

∂

∂x
(ρvu − τ(e)

12 ) = 0,

∂E
∂t

+
∂

∂x

[
u(E + p − τ(e)

11 ) − vτ(e)
12

]
= 0,

∂

∂t
(ρτ(e)

11 ) +
∂

∂x
(ρuτ(e)

11 ) = ρ

(
4G
3

+ τ(e)
11

)
∂u
∂x
,

∂

∂t
(ρτ(e)

22 ) +
∂

∂x
(ρuτ(e)

22 ) = ρ

(
−

2G
3
− τ(e)

22

)
∂u
∂x

+ 2ρτ(e)
12
∂v
∂x
,

∂

∂t
(ρτ(e)

12 ) +
∂

∂x
(ρuτ(e)

12 ) = ρ
(
G + τ(e)

11

) ∂v
∂x
,

(2.29)

which can be written in quasi-linear form,

∂W
∂t

+ A(W)
∂W
∂x

= 0, (2.30)

where W is the vector of primitive variables and A is the Jacobian matrix,

W =



ρ

u

v

p

τ(e)
11

τ(e)
22

τ(e)
12



, A(W) =



u ρ 0 0 0 0 0

0 u 0 1
ρ
− 1
ρ

0 0

0 0 u 0 0 0 − 1
ρ

0 ρa2 0 u 0 0 0

0 −4G
3 − τ

(e)
11 0 0 u 0 0

0 2G
3 + τ(e)

22 −2τ(e)
12 0 0 u 0

0 0 −G − τ(e)
11 0 0 0 u



, (2.31)
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where a =

√
n(p+B)
ρ(1−ρb) is the speed of sound corresponding to the Noble-Abel Stiffened-Gas equation

of state. The eigenvalues (i.e., wave speeds) of the Jacobian matrix are:

ζ1,2,3 = u, ζ4,5 = u ±

√
G + τ(e)

11

ρ
, ζ6,7 = u ±

√
a2 +

4G/3 + τ(e)
11

ρ
. (2.32)

For the analysis in the y-direction, u and τ(e)
11 in the eigenvalues in Eq. (2.32) are replaced with v

and τ(e)
22 , respectively. As expected, the presence of elasticity manifests in the characteristic wave

speeds by two important modifications: it introduces three additional waves (a linearly degener-

ate wave ζ5 and two shear waves ζ4,5) and it increases the propagation speed of the (longitudinal)

pressure waves. If the analysis is extended to the Zener model, there are three additional linearly

degenerate waves; for the generalized Zener model, each additional relaxation frequency intro-

duces three additional such waves. When considering multi-material problems, each additional

material introduces a linearly degenerate wave. In the absence of elasticity, the speed of sound

reduces to that expected for a fluid obeying the Noble-Abel Stiffened-Gas equation of state.

The corresponding right eigenvector matrix of the Jacobian matrix,

R =



0 0 1 0 0 ρ ρ

0 0 0 0 0

√
a2 +

4G/3+τ(e)
11

ρ
−

√
a2 +

4G/3+τ(e)
11

ρ

0 0 0 −

√
G+τ(e)

11
ρ

√
G+τ(e)

11
ρ

0 0

0 1 0 0 0 ρa2 ρa2

0 1 0 0 0 −(4G/3 + τ(e)
11 ) −(4G/3 + τ(e)

11 )

1 0 0 2τ(e)
12 2τ(e)

12 2G/3 + τ(e)
22 2G/3 + τ(e)

22

0 0 0 G + τ(e)
11 G + τ(e)

11 0 0



, (2.33)

where the j-th column corresponds to the j-th wave speed ζ j. We recognize the three linearly

degenerate waves in the first three columns, with the first and third corresponding to the τ(e)
22 and

density jump across the contact, respectively, and the second to σ11 = (−p + τ(e)
11 ), which is contin-
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uous across the contact. Then come the s-waves (shear) in the fourth and fifth columns, followed

by the p-waves (pressure) in the sixth and seventh columns. We further note that the i-th primitive

variable is discontinuous across the j-th wave if the entry in the i-th row and j-th column is non-

zero. This observation is particularly important for the shear waves, where this analysis indicates

that v, τ(e)
22 and τ(e)

12 are discontinuous when using the Lie derivative.

2.4.2 Multi-Material Framework

We extend the five-equations compressible multiphase model (Allaire et al., 2002; Murrone &

Guillard, 2005; Alahyari Beig & Johnsen, 2015) used to capture gas/liquid material interfaces

to solids. In this framework, all the materials (gases, liquids, solids) obey the same equation of

state and constitutive relations, with spatially varying material properties; numerical dissipation at

interfaces gives rise to a (numerical) mixture region in which appropriate rules must be specified

to prevent spurious errors at interfaces. In addition to the total mass conservation equation (4.1a),

K − 1 species conservation equations are solved in both conservative form as in Eq. (4.6a) and

in non-conservative form to maintain interfacial equilibrium conditions for velocity, pressure and

temperature (Alahyari Beig & Johnsen, 2015),

∂α(k)

∂t
+ u j

∂α(k)

∂x j
= Γ(k)∂u j

∂x j
, (2.34)

where k = 1, ...,K − 1 and

Γ(k) =
α(k)

K(k)
s

 1∑
l
α(l)

K(l)
s

− K(k)
s

 , K(k)
s = ρ(k)(a(k))2 =

n(k)(p + B(k))
(1 − ρ(k)b(k))

. (2.35)

The right-hand-side of this equation is sometimes set to zero (Allaire et al., 2002; Massoni et al.,

2002; Murrone & Guillard, 2005; Perigaud & Saurel, 2005; Shukla et al., 2010); however, this

term is necessary to accurately represent compressible multiphase problems.
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The pressure and temperature are computed based on the internal energy as follows:

p =
E − ρ u2

i
2 − ρe(e) −

∑
k ρ

(k)α(k)q(k) −
∑

k α
(k) n(k)B(k)(1−ρ(k)b(k))

n(k)−1∑
k α

(k) 1
n(k)−1

, (2.36a)

T =
E − ρ u2

i
2 − ρe(e) −

∑
k ρ

(k)α(k)q(k) −
∑

k α
(k)(1 − ρ(k)b(k))B(k)∑

k ρ
(k)α(k)c(k) , (2.36b)

where terms with ρ(k)α(k) are calculated using Eq. (4.6a), terms with α(k) only are calculated using

Eq. (4.6b), as described in Alahyari Beig & Johnsen (2015). Thus, the internal energy equation is

calculated as follows,

ρe = p
∑

k

α(k) (1 − ρ(k)b(k))
n(k) − 1

+
∑

k

α(k) n(k)B(k)(1 − ρ(k)b(k))
n(k) − 1

+ ρ(k)α(k)q(k), (pressure − wise), (2.37)

= T
∑

k

ρ(k)α(k)c(k) +
∑

k

α(k)B(k)(1 − ρ(k)b(k)) + ρ(k)α(k)q(k), (temperature − wise).

(2.38)

For simplicity and without loss of generality, mixture material properties φ (e.g., moduli, viscosi-

ties, thermal conductivity, etc.) are weighted by the volume fraction:

φ =
∑

k

α(k)φ(k). (2.39)

2.5 Numerical Method

Without loss of generality, we consider the one-dimensional form of the equations,

dU
dt

∣∣∣∣
i
= −

Fi+1/2 − Fi−1/2

∆x
+ Di(U) + S i(U), (2.40)

where U denotes the conservative variables, F the convective flux, the D diffusion operator and

S source terms. Our overall approach is based on explicit finite differences in space and explicit

time-marching.
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2.5.1 Temporal Discretization

For time marching, we use the standard explicit fourth-order Runge-Kutta scheme. The time-step

constraint is calculated by accounting for advection and diffusion,

∆t = min
(
ν

∆x
ζmax

, νµ
∆x2

(µs/ρ)
, νκ

∆x2

(κ/ρc)

)
, (2.41)

where ∆x is the mesh size, ζmax the maximum wave speed in the system (and computational do-

main), ν is the Courant number, νµ and νr are the Von Neumann numbers for viscous and thermal

diffusion. We set ν = 0.85, νµ = νκ = 0.125.

Since G ≥ 0, the maximum wave speed is calculated, as shown from the analysis in §2.4.1.3,

as follows:

ζmax = max j

|u| ±
√

n(p + B)
ρ(1 − ρb)

+
4G/3 + τ(e)

j j

ρ


j

. (2.42)

2.5.2 Spatial Discretization

The spatial discretization is based on a solution-adaptive approach that introduces numerical dissi-

pation only where necessary. The discontinuity sensor of Henry de Frahan et al. (2015); Alahyari

Beig & Johnsen (2015) detects shocks, contact discontinuities and material interfaces, such that

the convective fluxes are computed as follows:

Fi±1/2 = bFi±1/2|central + (1 − b)Fi±1/2|HLL, (2.43)

where the subscripts “central” and “HLL” are explained below, b = 1 is smooth regions and b = 0

at discontinuities. The function

ΦA =
4φA

(1 + φA)2 , φA =
|AR − AL|

AR + AL
, (2.44)
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where A is p, ρ or n, and L and R denote the left and right edge of a computational cell, is eval-

uated. If ΦA > 0.0001 ∀A in a given cell, the solution therein is considered discontinuous and

the WENO approach of Johnsen & Colonius (2006) is used for all the primitive variables along

with the HLL Riemann solver (Harten et al., 1983) with appropriate correction for equations in

non-conservative form (Saurel & Abgrall, 1999b); in a finite difference framework, this scheme is

formally second-order accurate, but since it is applied at discontinuities only it does not affect the

overall convergence rate. Otherwise, standard fourth-order explicit central differences are applied.

In the diffusion and source terms, the derivatives are computed using explicit fourth-order central

differences; if material properties are variable, their derivatives are calculated in non-conservative

form. When solving Eq. (4.6b) with the source term, the numerical method’s stiffness is signifi-

cantly increased and, thus, the criterion ΦA > 0.0001 was set to solve the problems of interest. In

the absence of the source term, the criterion is less restrictive (Alahyari Beig & Johnsen, 2015).

In summary, the overall approach is globally fourth-order accurate in time and space in smooth

problems. For problems with discontinuities, the convergence rate reduces to first-order accuracy,

as expected. We note however that the fifth-order shock-capturing scheme significantly reduces

the amount of dissipation in discontinuous regions.

2.6 Results

2.6.1 Wave Propagation Problem

Without loss of generality, we consider the Kelvin-Voigt model for a single material, i.e., the

model viscoelastic medium with properties in Table 6.1. We non-dimensionalize the problem

using a length scale of L = 1 mm and the relevant material properties. The thermal conductivity is

κ = 0.615 W/(K m).
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2.6.1.1 Convergence and Wave Speeds

We use a one-dimensional p−wave (acoustic) problem to verify the convergence rate of the overall

scheme and that correct wave speeds are obtained. The initial conditions are

(ρ, u, v, p) = (1 + ∆, 0,∆, (1 + nB)/n + ∆), (2.45)

with τ(e)
11 = τ(e)

22 = τ(e)
12 = 0, and where ∆ = εsin8(πx), on the periodic domain x ∈ [0, 1]. Values of

ε = 10−4 and 10−1 are used to discriminate between different convergence behaviors. The initial

density, pressure and y−velocity split into left- and right-moving waves propagating at speeds

±

√
n(p+B)
ρ(1−ρb) +

4G/3+τ(e)
11

ρ
. For this amplitude, the solution remains smooth throughout such that central

differences are always used. The number of grid points is N = 10, 20, 40, 80, and 160. The L2

error, evaluated after one period using the solution on N = 1024 as the reference for both ∆s, is

shown in Fig. 2.1 in gas (µb = µs = 0 and G = 0), Newtonian liquid (µb = µs = 1 Pa s and G = 0),

elastic solid (µb = µs = 0 and G = 1 GPa), and viscoelastic solid (µb = µs = 1 Pa s and G = 1

GPa). The viscosity and shear modulus are set to these values to demonstrate their effect, if any,

on the order of accuracy. For this problem, the Reynolds number is Re = ρaL/µs = 1.57 × 103 and

Cauchy number is Ca = ρa2/G = 2.47. For ε = 10−4, the problem remains sufficiently smooth that

the sensor never gets activated, such that a fourth-order convergence rate is achieved. For ε = 10−1,

the amplitude of the perturbation is sufficiently large that the wave steepens such that capturing is

activated. As a result, the convergence rate reduces to first-order accuracy. Although not included

here, similar results are obtained in a Zener medium (i.e., with relaxation) for both cases.

To verify that the correct wave speeds are obtained as shear modulus is varied, the same prob-

lem is considered with N = 400, x ∈ [0, 2], G = 10−6, 10−3, 1, 10, 35 and 100 GPa. The viscosities

are set to zero. Fig. 2.2 compares the numerically measured sounds speeds and their theoreti-

cal values, ζ1,2. The wave speeds, constant for a given modulus, are obtained by tracking the

x-location and time of the peak density, and are scaled by the reference sound speed in the vis-

coelastic medium with G = 0, a0. As the shear modulus is increased, the wave speed increases
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(a) ∆1 = 10−1sin8(πx). (b) ∆2 = 10−4sin8(πx).

Figure 2.1: L2 error in pressure for the 1D wave-propagation problem. Green circles: gas (µb =

µs = 0, G = 0); blue diamonds: Newtonian liquid (µb = µs = 1 Pa s, G = 0); red squares: elastic
solid (µb = µs = 0, G = 1 GPa); orangle triangles: viscoelastic solid (µb = µs = 1 Pa s, G = 1
GPa); dashed black line: −2 slope; solid black line: −4.

accordingly. The agreement is excellent for all values of G under consideration.

2.6.1.2 Effects of Relaxation on p− and s−Wave Propagation

We verify the implementation of relaxation effects and frequency dependence using the generalized

Zener model. Without loss of generality, we consider a single relaxation time and compute the

same problem, with N = 600, x ∈ [−1.5, 1.5] to obtain both the p− and s−waves. The initial single

memory variable is set ξ(1)
11 = ξ(1)

22 = ξ(1)
12 = 0. The viscosities are also set to zero. The relaxation

frequency is varied such that θ(1) ∈ [1, 100] MHz, with a relaxation coefficient of ς(1) = 1 and

G = 2 GPa, Gr = 1 GPa, all consistent with Eq. (3.15). The dependence of the p− and s−waves on

relaxation is shown in Fig. 2.3, with the waves calculated as described above using a least-squares

fit by tracking the corresponding wave amplitude, and scaled by a0. The results are as expected. At

the lowest relaxation frequencies, the wave speeds agree with those corresponding to an unrelaxed

shear modulus of G = 2 GPa. As the frequency is increased, the wave speeds decrease to reach the

limit of the relaxed shear modulus at infinite frequency.
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ζ

Figure 2.2: Comparison of the propagation speed of the p−waves in the 1D wave-propagation
problem in a viscoelastic solid between theory (black squares) and simulations (blue diamonds).

θ

ζ

(a) p−wave.

θ

ζ

(b) s−wave.

Figure 2.3: Dependence of the propagation speed of the p− and s−waves on relaxation frequency
for the 1D wave-propagation problem. Black solid line: theoretical wave speed for G = 2 GPa;
black dotted line: theoretical wave speed for Gr = 1 GPa; blue diamonds: Simulation results.

2.6.2 Material Interface Advection Problem – Interfacial Conditions

We demonstrate that an extension of the five-equations multiphase model to (visco)elasticity can

be performed while preserving the appropriate interfacial conditions (Abgrall, 1996; Shyue, 1998;

Johnsen, 2011; Alahyari Beig & Johnsen, 2015). We adapt the 1D gas-liquid interface problem

in Alahyari Beig & Johnsen (2015), replacing the liquid by a viscoelastic solid described by a
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ρ

(a) Density.

(b) x-velocity.

ρ

(c) Pressure. (d) Temperature.

τ
τ

ρ

(e) Elastic stress τ(e)
11 .

τ
τ

ρ

(f) Elastic stress τ(e)
12 .

τ
τ

ρ

(g) Elastic stress τ(e)
22 .

Figure 2.4: Relative error in the interface advection problem after one period. Blue squares: New-
tonian liquid (G = 0); red triangles: G = 1 MPa; green circles: G = 1 GPa; black line: exact
solution.

Kelvin-Voigt model with the material properties of the model viscoelastic medium in Table 6.1.

The initial conditions are

(ρ, u, v, p) =


(1, 0.5, 0.5, 1/γ), if x/L ∈ [0.25, 0.75]

(1000, 0.5, 0.5, 1/γ), otherwise,
(2.46)
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(a) x-velocity.

ρ

(b) Pressure. (c) Temperature.

Figure 2.5: Time histories of normalized L∞ errors for the interface advection problem through
two periods. Blue squares: Newtonian medium; red triangles: viscoelastic medium (µb = µs = 5
mPa s, G = 1 MPa); green circles: viscoelastic medium (µb = µs = 5 mPa s, G = 1 GPa).

with τ(e)
11 = τ(e)

22 = τ(e)
12 = 0 and γ is the n value for air from Table 6.1, and L = 1 mm. A constant,

non-zero normal velocity is introduced to magnify any shear errors. The domain, x ∈ [0, 1], is

periodic with N = 200. For the model viscoelastic material, µb = µs = 5 mPa s, and G = 1

MPa and 1 GPa. For air, κ = 0.026 W/(K m), and for the model viscoelastic material, κ = 0.615

W/(K m). The density solution, normalized errors in velocities, pressure, temperature and stresses

after the solution has traveled four domain lengths are plotted in Fig. 3.1, and the time histories of

the errors are included in Fig. 3.2. Due to fixed precision arithmetic with quantities that differ by

several orders of magnitude, the errors are not exactly at the round-off level, but are nevertheless

of the similar order as those observed for water in Alahyari Beig & Johnsen (2015). The largest

relative errors (observed in pressure) are on the order of 10−7 and remain bounded over time. Much

smaller errors are observed for temperature, velocity and stresses. We conclude that our approach

preserves the appropriate interface conditions for interface advection problems.

2.6.3 Elastic Medium Riemann Problem

We consider three one-dimensional Riemann problems in elastic media taken from Gavrilyuk et al.

(2008) to verify the capability of our approach to represent discontinuities: five-wave shock tube,

impact, and expansion problems, all for a single material. We evaluate the solution using the Lie

derivative implementation. The domain is x ∈ [0, 1], L = 1 mm, and N = 200. For comparison’s
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sake, the stiffened gas equation of state is used with ρ = 1000 kg/m3, n = 4.4 and B = 600

MPa. The elastic medium is modeled using the Kelvin-Voigt approach with G = 10 GPa and

zero viscosities. We compare our results to the analytical solution to elastic Riemann problems

of Gavrilyuk et al. (2008); it is important to note that this “exact” analytical solution strictly applies

to problems in which ρG is a constant. For problems in this section, the initial elastic stresses are

τ(e)
11 = τ(e)

22 = τ(e)
12 = 0.

2.6.3.1 Five-Wave Shock Tube Problem

An initial discontinuity in the tangential velocity (y-component) is superposed onto a pressure jump

(1000:1) with initial conditions:

(ρ, u, v, p) =


(1000, 0, 100, 108) if x/L ∈ [0, 0.5],

(1000, 0,−100, 105) otherwise.
(2.47)

The solution at t = 64 µs is shown in Fig. 2.6.

Five waves are observed: a right-moving shock, a stationary contact and a left-moving rarefac-

tion (all visible in the density plot), as well as left- and right-propagating shear waves propagating

more slowly than the shock and rarefaction, as expected from Eq. (2.32). At the contact disconti-

nuity, the appropriate interface condition is that the normal stress, −p + τ(e)
11 , be constant; pressure

itself is discontinuous due to the presence of an elastic stress. Overall, our results with the Lie

derivative match the analytical solution owing to the relatively small changes in density, i.e., ρG

is approximately constant. Based on the eigenanalysis, the correct waves speeds and states are

achieved.

Since capabilities to handle large pressure ratios are of interest, we consider the same problem
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ρ

(a) Density. (b) x−velocity.

(c) Pressure.

τ

(d) Normal stress p - τ(e)
11 .

τ

(e) Shear stress τ(e)
12 . (f) y−velocity.

Figure 2.6: Shock tube problem in an elastic medium for pressure ratio 1000:1 at t = 64µs for the
Lie derivative implementation (blue squares) along with the analytical solution (black dotted line).
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with a higher pressure ratio of 105 : 1, with initial conditions:

(ρ, u, v, p) =


(1000, 0, 100, 1010) if x/L ∈ [0, 0.5],

(1000, 0,−100, 105) otherwise.
(2.48)

For this problem, G = 1 GPa to represent a less stiff material. The solution is plotted at

t = 64 µs in Fig. 2.7. The analytical solution assuming constant ρG (Gavrilyuk et al., 2008) and

the corresponding numerical solution with the Lie derivative exhibit several small differences: the

shear wave speeds are slightly different and the values of y-velocity and τ(e)
12 are slightly larger

between the shear waves. The small overshoots in the x-velocity and pressure just downstream of

the shock are attributed to start-up errors (Johnsen, 2013) and are magnified for this stronger shock

represented by the high-order accuracy.

2.6.3.2 Impact Problem

We consider weak (U = 10 m/s) and strong (U = 1000 m/s) impacts, with initial conditions

(ρ, u, v, p) =


(1000,U, 0, 105) if x/L ∈ [0, 0.5],

(1000,−U, 0, 105) otherwise.
(2.49)

The solution is plotted at t = 64 µs (weak impact) and t = 41 µs (strong impact) in Figs. 2.8 and

2.9. Solution with the Lie implementation agrees with the analytical solution assuming constant

ρG for the weak impact since density variations are small. For the strong impact, noticeable dif-

ferences are observed: the analytical solution assuming constant ρG underpredicts pressure and

the (negative) normal stress, p − τ(e)
11 , results and overpredicts density between the shocks, com-

pared to the numerical solutions. Again, the discrepancy is due to the invalidity of the constant

ρG assumption necessary to obtain the analytical solution. The spike at the origin, also observed

in Gavrilyuk et al. (2008), is attributed to overheating (Noh, 1987; Barton et al., 2009); fixes have

been proposed to address this issue (Fedkiw et al., 1999). For both impact velocities, the effect of
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ρ

(a) Density. (b) x−velocity.

(c) Pressure.

τ

(d) Elastic stress τ(e)
11 .

τ

(e) Shear stress τ(e)
12 . (f) y−velocity.

Figure 2.7: Shock tube problem in an elastic medium with pressure ratio 105 : 1 at t = 64 µs for
the Lie derivative implementation (blue squares) along with the analytical solution (black dotted
line).
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ρ

(a) Density. (b) x−velocity.

(c) Pressure.

τ

(d) Normal stress p − τ(e)
11 .

Figure 2.8: Weak impact problem (20 m/s velocity difference) in an elastic medium at t = 64 µs
for the Lie derivative implementation (blue squares) along with analytical solution (black dotted
line).

the objective stress rates is negligible since the y-velocity is zero. Similar results are obtained at

higher resolutions.

2.6.3.3 Expansion-Wave Problem

We consider weak (U = 50 m/s) and strong (U = 800 m/s) expansions, with initial conditions

(ρ, u, v, p) =


(1000,−U, 0, 105) if x/L ∈ [0, 0.5],

(1000,U, 0, 105) otherwise.
(2.50)
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ρ

(a) Density. (b) x−velocity.

(c) Pressure.

τ

(d) Normal stress p − τ(e)
11 .

Figure 2.9: Strong impact problem (2000 m/s velocity difference) in an elastic medium at t = 41
µs for the Lie derivative implementation (blue squares) along with the analytical solution (black
dotted line).

The solution is plotted at t = 64 µs (weak expansion) and t = 40 µs (strong expansion) in Figs. 2.10

and 2.11. Here again, the numerical solution with Lie derivative implementation agree with the

analytical solution for the weak expansion since density variations are small; overheating is dis-

cernible in the pressure at the origin. For the strong expansion, noticeable differences are observed:

the analytical solution with constant ρG overpredicts both pressure and density. The effect of the

objective stress rate is negligible since the y-velocity is zero. Again, the discrepancy is due to the

invalidity of the constant ρG assumption necessary to compute the analytical solution.
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ρ

(a) Density. (b) x−velocity.

(c) Pressure.

τ

(d) Normal stress p − τ(e)
11 .

Figure 2.10: Weak expansion problem (100 m/s velocity difference) in an elastic medium at t = 64
µs for the Lie derivative implementation (blue squares) along with the analytical solution (black
dotted line).

2.6.4 Multi-material Riemann Problem

To verify the extension of the five-equations multiphase model to viscoelastic media with shocks,

we extend the multi-material Riemann problem in Alahyari Beig & Johnsen (2015); Murrone &

Guillard (2005); Allaire et al. (2002) to include viscoelasticity,

(ρ, u, v, p, α(1)) =


(1000, 0, 0, 109, 1) if x/L ∈ [0, 0.7],

(50, 0, 0, 105, 0) otherwise.
(2.51)
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ρ

(a) Density. (b) x−velocity.

(c) Pressure.

τ

(d) Normal stress p − τ(e)
11 .

Figure 2.11: Strong expansion problem (1600 m/s velocity difference) in an elastic medium at
t = 40 µs for the Lie derivative implementation (blue squares) along with the analytical solution
(black dotted line).

For comparison with the previous work, the right-hand-side term in Eq. (4.6b) is set to zero and

the stiffened gas equation of state is used for the viscoelastic material and gas. The initial elastic

stresses are τ(e)
11 = τ(e)

22 = τ(e)
12 = 0. For the model viscoelastic material, κ = 0.615 W/(K m) and for

the gas, κ = 0.026 W/(K m). The viscous (µb = µs = 50 mPa s) and Kelvin-Voigt (µ = 50 mPa s and

G = 1 GPa) solutions are plotted at t = 240 µs in Fig. 2.12, along with their respective analytical

solutions. The analytical solutions were generated using the Riemann solver of Gavrilyuk et al.

(2008), in which ρG is assumed constant. Our numerical results show good agreement with the

analytical solution since the density ratio is large; all the relevant waves are captured, and no
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ρ

(a) Density. (b) x−velocity. (c) Pressure.

ρ

(d) Density. (e) x−velocity. (f) Pressure.

Figure 2.12: Multi-material Riemann problem at t = 240 µs with analytical (black dashed line) and
numerical (blue square) solutions for the viscous liquid-air shock wave (top row) and Kelvin-Voigt
viscoelastic material-air shock wave (bottom row).

spurious oscillations are observed at any of the discontinuities for the Kelvin-Voigt solution. The

solution with no elasticity exhibits an undershoot at the material interface, originating from the

right-hand-side term in Eq. (4.6b) in the volume fraction equation, which can be addressed by

implementing the equivalent six-equation multiphase model (Saurel et al., 2009; Pelanti & Shyue,

2014).

2.6.5 Shock Wave-Viscoelastic Cylinder Interaction

Inspired by Lombard & Piraux (2004), we consider the two-dimensional interaction of a shock in

water with a viscoelastic cylinder to assess the capabilities to represent multi-dimensional wave

propagation in viscoelastic media. The problem set-up is shown in Fig. 3.8; half of the domain

is simulated given the symmetry. The domain extends three initial bubble radii in each direction
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Figure 2.13: Shock-viscoelastic cylinder interaction setup, analogous to the problem considered
by Lombard & Piraux (2004).

from the bubble center: x ∈[-3 mm, 3 mm] and y ∈[0 mm, 3 mm]. The initial cylinder radius is

defined with a diffuse interface, similar to other multiphase studies (Shukla et al., 2010), where the

volume fraction is defined, α =
1−tanh(ψ)

2 , where ψ = (R − Ro)/∆x, R =
√

x2 + y2 and Ro = 1 mm

is the initial cylinder radius. Given the volume fraction and for constant velocity and pressure, the

conservative variables φ are computed using the mixture relation, φ = αφ1 + (1 − α)φ2.

We use the generalized Zener model to represent the viscoelastic cylinder. The surrounding

medium is water. For the viscoelastic cylinder, one relaxation time is considered with ρ = 1000

kg/m3, µb = 50 mPa s, G = 1 GPa, Gr = 0.5 GPa, ς(1) = 1, and θ(1) = 15 MHz. The remain-

ing material properties for water and the model viscoelastic medium are in Table 6.1. The shear

modulus values were selected to be two orders of magnitude higher than the incident shock wave

pressure (i.e., p = 10.1 MPa) to highlight the effect of the elastic component of the stress inside

the viscoelastic cylinder in the simulation. The shock wave is initialized at x = −1.1 × R0, using

appropriate Rankine-Hugoniot conditions. The elastic contributions of the Cauchy stresses and the

memory variables are initialized to zero. Four resolutions are considered: 32, 64, 128, 192, and

256 points per initial cylinder radius on a uniform mesh. Contours of the pressure and elastic com-

ponent of the elastic stress tensor, τ(e)
12 , are shown in Fig. 2.14, with 256 points per initial cylinder

radius.

Upon interaction with the cylinder, the shock is partly reflected, partly transmitted, and diffracts

around the cylinder (frame a). Due to the higher speed of sound in the viscoelastic material, the
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transmitted shock travels faster than the diffracting shock. As expected from one-dimensional re-

sults, the shear wave travels more slowly than the p-wave. As the transmitted shock reaches the

distal side of the viscoelastic cylinder, it is partially transmitted and reflected back into the cylin-

der (frame b). The reflected internal rarefaction then interacts with the shear wave as the diffracted

shock leaves the domain (frames c and d). The resulting transmitted shock propagates radially

outward (frames d, e, and f). The trapped shock in the viscoelastic cylinder gives rise to a distorted

shear wave structure with alternating concentrated regions of negative and positive shear through-

out the cylinder (frames d, e, and f). The shock wave minimally distorts the cylinder (in tension

and shear).

The time evolution of two quantities of interest are the maximum pressure and elastic stress in

the viscoelastic cylinder. For the elastic stress, we consider the von Mises stress,

σv =
√

(σ11)2 − σ11σ22 + (σ22)2 + 3(σ12)2, (2.52)

which only incorporates the effects of pressure and all three components of the elastic stress. The

time evolution of the maximum pressure and the von Mises stress is shown in Fig. 2.15 for the five

spatial resolutions in the viscoelastic cylinder. The final time for the simulations is t = 6 µs when

the incoming shock has left the domain, at which point the trapped shock waves in the viscoelastic

cylinder have a negligible effect. The average maximum pressure experienced by the viscoelastic

cylinder during the simulation is approximately 12 MPa, which is expected as most of the incom-

ing shock wave is transmitted into the cylinder since the acoustic impedance mismatch between

the water and the viscoelastic gel is minimal. Using the von Mises stress, the maximum elastic

strains, i.e., the von Mises strain, can be computed (applying Hooke’s Law) and correspond to

approximately 1.5% von Mises strain, thus justifying the small-strain approximation. The trapped

transmitted shock (p-wave) is reflected back into the viscoelastic cylinder, generating the largest

elastic stresses from t = 2 to 3 µs. The elastic stresses subsequently diminish substantially after the

first internal reflection at t = 3 µs, as expected as the shock is transmitted mostly out of the cylin-
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(a) time = 600 ns. (b) time = 1.2 µs. (c) time = 1.8 µs.

(d) time = 2.4 µs. (e) time = 3 µs. (f) time = 3.6 µs.

Figure 2.14: Pressure (top) and elastic component of the stress tensor, τ(e)
12 , (bottom) contours for

the 2D interaction of a Mach 1.006 shock in water with a Zener-like viscoelastic medium with
G = 1 GPa and Gr = 0.5 GPa. Dashed black: the initial cylinder location; solid black line:
instantaneous interface location.

der; the remaining contributions are due to subsequent interactions with the slower shear wave.

The pressure and stresses are not yet converged at the highest resolution presented here. Higher

resolution would be needed to achieve convergence. Such interactions, where a shock, e.g., pro-

duced by a collapsing bubble, leads to p− and s−waves in the viscoelastic medium, are of interest

when studying damage caused by the internal wave reflections in solids and the subject of future

work discussed in Chapter 7.

2.7 Numerical Framework Validation

We validate our numerical framework detailed for shock-induced bubble collapse problems. Based

on the experiments of Bourne & Field (1992), we consider the interaction of a shock wave with
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Figure 2.15: Time evolution of quantities of interest in the 2D shock-viscoelastic cylinder inter-
action in the cylinder with 32 (solid red), 64 (green dash), 128 (blue dash-dot), 192 (black long
dash), and 256 (orange dash-dot-dot) points per initial bubble radius.

a 2D (cylindrical) bubble in a gel. This problem has motivated computational studies (Ball et al.,

2000), though generally the gel is replaced by water in simulations. The problem set-up is shown

in Fig. 3.8; half of the domain is simulated given the symmetry. The domain size extends three

bubble radii in each direction from the bubble center. The initial bubble radius and post-shock

pressure are initialized to match the experimental values. The ambient temperature 300K and the

shock is initialized using the Rankine-Hugoniot conditions. The source term in the multi-material

framework is neglected and the Kelvin-Voigt model is used to represent the gel. Based on the

experiments, the gel has a density ρ = 970 kg/m3 and shear modulus G = 8.35 kPa. The stiffened-

gas equation of state is used for the gel with n = 2.35 and B = 1 GPa and the air properties are

provided in Table 6.1. A resolution of 256 points per initial bubble radius is used, such that Nx =

1536 and Ny = 768.

To qualitatively illustrate the dynamics, a time series of numerical Schlieren,

fi j = 1 − exp
[
−(0.1 + 0.9αi j)

|∇ρ|i j

|∇ρ|max

]
, (2.53)

and pressure contours are shown in Fig. 2.17. The domain in the plots is x ∈[-6 µm, 6 µm]

and y ∈[0µm, 5.3 µm]. Upon interaction of the shock wave with the bubble, a rarefaction wave is
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Figure 2.16: Bubble collapse setup, analogous to the experiments by Bourne & Field (1992).

reflected into the surroundings and a shock wave is transmitted into the bubble, while the incoming

shock wave diffracts around the bubble (frame a). As the bubble collapses, the transmitted shock

wave is trapped in the bubble (frame b). A right-moving re-entrant jet forms on the proximal

side (frame c) and subsequently impacts the distal side (frame d) at collapse, thus generating an

outward-propagating water-hammer shock wave (frame e). Thereafter, the bubble takes the form

of vortex lines and convects downstream (frame f). For a quantitative assessment, we compare

the re-entrant jet velocity and bubble collapse time achieved for selected initial bubble sizes and

shock pressures with the experiments in Table 2.2. For selected sets of parameters, reasonable

agreement is achieved, especially for cases with high shock pressures (greater than 0.5 GPa) and

6 mm cavity diameter. We note that the viscoelasticity of the gel has negligible effects on the

dynamics; nevertheless, this problem illustrates the robustness of our approach.

2.8 Conclusions

We introduce a novel Eulerian approach for numerical simulations of wave propagation in hetero-

geneous viscoelastic media, with application to compressible materials described by linear con-

stitutive relations, specifically Maxwell, Kelvin-Voigt or generalized Zener models. We extend

the five-equations multiphase, interface-capturing model, based on the idea that all the materials

(gases, liquids, solids) obey the same equation of state with spatially varying properties, to in-

corporate the constitutive relation; interfaces are thus represented by discontinuities in material
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(a) time = 2.0 µs. (b) time = 3.6 µs.

(c) time = 5.0 µs. (d) time = 5.8 µs.

(e) time = 6.6 µs. (f) time = 7.8 µs.

Figure 2.17: Pressure (top) with density line contours and numerical Schlieren (bottom) contours
for the 2D shock-bubble interaction in a viscoelastic medium with G = 8.35 kPa. Shock pressure:
0.5 GPa; bubble diameter: 6 mm.
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properties. To represent strains in an Eulerian framework, we utilize a hypoelastic model and

implement the Lie objective derivative of the constitutive relations to evolve the strain rates in-

stead of strains. As a result, additional evolution equations must be solved for the components of

the elastic stress tensor and stress relaxation terms. Our numerical framework is explicit in time

and space, and high-order accurate. The spatial scheme is based on a solution-adaptive approach,

where central differences are used in smooth regions and high-order shock capturing at disconti-

nuities (material interfaces, contacts and shocks). The method is verified using a stringent suite

of test problems involving smooth wave, shock, shear and contact waves problems in viscoelastic

media. At least fourth-order accuracy is achieved in smooth problems, and the correct wave speeds

are obtained. Eigenanalysis confirms that our Lie derivative implementation yields correct results.

Spurious pressure and temperature errors at interfaces are shown to be prevented, and all wave fam-

ilies are accurately represented. We consider a two-dimensional problem to further demonstrate

the robustness of the method (shock-viscoelastic solid interaction). Overall, this work advances

our capabilities to compute fully coupled fluid-solid problems. Further investigations into the in-

clusion of more complex constitutive relations, particularly those involving finite deformations,

will be pursued in the future.

Table 2.2: Comparisons of various quantities of interest between the simulations (sim.) of shock-
bubble interaction with experimental (exp.) results Bourne & Field (1992).

Shock
Pressure
(GPa)

Cavity
diameter
(mm)

Jet velocity (m/s) Collapse time (µs)

Exp. Present sim. Exp. Present sim.
1.9 3 4000±2000 2860 1.0±0.5 1.4
0.5 6 1500±400 1530 5±1 5.8
1.9 6 3300±300 2861 1.8±0.2 2.7
3.5 6 8000±4000 3817 1±0.5 2
1.9 12 1500±200 2861 8±1 5.7
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CHAPTER 3

A high-order accurate AUSM+-up approach for

simulations of compressible multiphase flows with

linear viscoelasticity

This chapter is adapted from Rodriguez et al. (2018).

3.1 Abstract

An Eulerian approach for simulations of wave propagation in multiphase, viscoelastic media is

developed in the context of the Advection Upstream Splitting Method (AUSM). We extend the

AUSM scheme to the five-equation model for simulations of interfaces between gases, liquids,

and solids with constitutive relations appropriately transported. In this framework, the solid’s de-

formations are assumed to be infinitesimally small such that they can be modeled using linear

viscoelastic models, e.g., generalized Zener. The Eulerian framework addresses the challenge of

calculating strains, more naturally expressed in a Lagrangian framework, by using a hypoelastic

model that takes an objective Lie derivative of the constitutive relation to transform strains into

velocity gradients. Our approach introduces elastic stresses in the convective fluxes that are treated

by generalizing AUSM flux-vector splitting (FVS) to account for the Cauchy stress tensor. We de-

termine an appropriate discretization of non-conservative equations that appear in the five-equation

multiphase model with AUSM schemes to prevent spurious oscillations at material interfaces. The
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framework’s spatial scheme is solution-adaptive with a discontinuity sensor discriminating be-

tween smooth and discontinuous regions. The smooth regions are computed using explicit high-

order central differences. At discontinuities regions (i.e., shocks, material interfaces and contacts),

the convective fluxes are treated using a high-order Weighted Essentially Non-Oscillatory (WENO)

scheme with AUSM+-up for upwinding. The framework is used to simulate 1D and 2D problems

that demonstrate the ability to maintain equilibrium interfacial conditions and solve challenging

multi-dimensional and multi-material problems.

3.2 Introduction

The increased sophistication of numerical techniques for compressible multiphase flows has en-

abled studies of implosions, explosions, and ballistics, and with them the growing need to accu-

rately resolve features with high-frequency contents (e.g., shock waves) propagating into hetero-

geneous media. These flows involve regions of low Mach number flows in homogeneous solids

or liquids, while Mach numbers can be supersonic in gas/liquid mixture regions where the sound

speed can be as low as tens of meters per second. Shocks emitted from implosions propagate

into surrounding media, causing permanent deformations and possibly material loss. An exam-

ple of interest is cavitating bubble clouds collapsing over a hydrofoil’s surface (Reisman et al.,

1998; Gnanaskandan & Mahesh, 2015; Ganesh et al., 2016). Computing such flows requires high-

order accuracy to resolve broadband motions, robustness to be applicable across a range of Mach

numbers (including nearly incompressible flow), and computational efficiency to represent a wide

range of scales (e.g., bubble clouds, cavitation sheets, turbulence). Flux-difference splitting (FDS)

or flux-vector splitting (FVS) are common approaches to address these issues. FDS schemes are

popular given their relatively simple implementation. However, representation of flows across a

wide range of Mach numbers is not straightforward. On the other hand, FVS schemes, in particu-

lar the AUSM schemes first developed by Liou and Steffen (Liou & Steffen, 1993), are capable of

computing all-speed flows (Liou, 2006; Shima & Kitamura, 2011) and multiphase flows (Paillère
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et al., 2003; Evje & Fjelde, 2003; Chang & Liou, 2003, 2007; Liou et al., 2008; Kitamura et al.,

2014).

AUSM schemes have been used to study multiphase implosions, shock-wave propagation,

and shock-droplet problems involving gases and liquids (Liou et al., 2008). Here, the motivation

is to develop a coupled fluid-solid approach to study problems such as cavitation bubbles col-

lapsing near rigid materials. The extension of an Eulerian framework to represent deformations,

more adequately expressed in a Lagrangian framework, is non-trivial. Two major approaches

have been pursued in the literature (Gavrilyuk et al., 2008): Godunov-based (hyperelastic models)

and conventional (hypoelastic models). The former accounts for finite deformations and ensures

thermodynamic consistency in an Eulerian framework. This approach has been used in conjunc-

tion with FDS schemes to study ballistics (Barton et al., 2011, 2013), and implosions (López

Ortega et al., 2015) with interface-tracking approaches and ballistics with interface-capturing ap-

proaches (Ndanou et al., 2015). However, it is not clear how to implement FVS schemes with

the Godunov approach, specifically, the fluxes involving the deformation tensor. Leveraging our

previous work (Rodriguez & Johnsen, 2018), we follow the hypoelastic approach as it is possible

to formulate an Eulerian framework for simple linear viscoelastic models for materials under the

small-strain assumption. This limitation is acceptable for problems with small deformations, e.g.,

for materials with large Young’s modulus relative to the pressure loads. An objective Lie temporal

derivative of the elastic contribution of the Cauchy stress tensor is taken, thus transforming La-

grangian strains in the constitutive relation into velocity gradients (Eringen, 1962). As a result,

the convective fluxes are modified by additional elastic components, such that the implementation

of FVS schemes as developed for the Euler equations where the Cauchy stress tensor involved

only pressure is not trivial. We address this issue here for the AUSM scheme by generalizing flux

vectors to Cauchy stress tensors describing linear viscoelastic constitutive relations.

The representation of material interfaces typically falls into one of two approaches: track-

ing or capturing. The former, while being able to resolve the interface exactly, involves solv-

ing non-conservative equations that may lead to conservation issues. AUSM schemes have been
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used in interface-tracking approaches, e.g., the Ghost Fluid Method, in conjunction with arbitrary

Lagrangian-Eulerian frameworks (Luo et al., 2004; McGurn et al., 2013). While conservation

issues can be mitigated, the overall solver can become complicated and involves two different

solvers, one for the flow and one for the solid dynamics, to be appropriately coupled. Moreover,

comparisons of AUSM schemes and FDS schemes demonstrated AUSM schemes to be numeri-

cally stiffer (Luo et al., 2004). In the latter approach, the interface is regularized over a few cells

in a fashion that ensures conservation using a single-solver framework. Although the six-equation

multiphase model has been used with AUSM schemes (Liou et al., 2008), the five-equation model

is appealing for the simplicity of its implementation and because it does not require the calculation

of the complicated source terms present in the six-equation model. The five-equation multiphase

model has been implemented successfully for FDS schemes that eliminate spurious errors due to

the inconsistent treatment of primitive variables and maintain equilibrium conditions (Alahyari

Beig & Johnsen, 2015). However, the five-equation model has yet to be extended to FVS-type

schemes.

By following the analysis of Saurel & Abgrall (1999b); Johnsen & Colonius (2006) and using

the AUSM+-up scheme, we obtain the appropriate discretization for the non-conservative equa-

tions in the five-equation model, which prevent spurious errors at material interfaces. In an exten-

sive study of AUSM schemes with high-order approaches, Scandaliato and Liou (Scandaliato &

Liou, 2012) suggests utilizing characteristic variable reconstruction WENO with AUSM schemes

to avoid the oscillations present in other reconstructions that would lead to a stiff scheme. We

utilize primitive variable reconstruction WENO scheme of Johnsen & Colonius (2006) due to its

straightforward implementation and ability to eliminate spurious errors. Our objective is to extend

AUSM schemes to interface-capturing approaches for gas-liquid-solid flows in which the solid

behaves in a linear viscoelastic fashion. Furthermore, we focus on high-order-accurate spatial

discretizations that result in a single, solution-adaptive framework to compute compressible mul-

tiphase flows with viscoelasticity. The chapter is organized as follows. The physical model is first

presented, followed by a description of the numerical model. Thereafter, the AUSM implementa-

57



tion for interface capturing and viscoelastic media is outlined. The approach is then tested using

a series of one- and two-dimensional problems. Finally, the chapter is summarized, and future

directions are outlined.

3.3 Physical Model

3.3.1 Equations of Motion

The equations governing the phenomena of interest are mass conservation, momentum and energy

balance:

∂ρ

∂t
+
∂

∂x j
(ρu j) = 0, (3.1a)

∂

∂t
(ρui)+

∂

∂x j
(ρuiu j − σi j) = 0, (3.1b)

∂E
∂t

+
∂

∂x j
(Eu j − σi jui) = −

∂Qk

∂xk
, (3.1c)

∂

∂t
(ρ(k)α(k))+

∂

∂x j
(ρ(k)α(k)u j) = 0, (3.1d)

where ρ is the total density, ui the velocity vector, σi j the Cauchy stress tensor, Qk the heat flux,

α(k) the volume fraction of material k, k = 1, ...,K − 1, K the total number of materials, and indices

i, j = 1, 2, and 3. Eqs. (4.6a) are mass conservation equations for K − 1 materials. Material k has

volume fraction α(k) and density ρ(k), with the following relations

∑
k

ρ(k)α(k) = ρ,
∑

k

α(k) = 1. (3.2)

As described in §3.4.2, K−1 additional mass balance equations along with the total density balance

equation, corresponding to the K materials, must be evolved. The total energy per unit volume, E,
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is comprised of the internal, kinetic and elastic contributions:

E = ρe +
1
2
ρu2

i + ρe(e). (3.3)

The internal energy (per unit volume) ρe is determined through the equation of state described in

the next section, and the elastic energy ρe(e) is described in §3.3.3.

3.3.2 Equation of State

The Noble-Abel Stiffened-Gas (NASG) equation of state (EOS) (Le Métayer & Saurel, 2016) is

used to relate the internal energy to pressure and temperature in gases, liquids and solids:

ρe =
p(1 − ρb)

n − 1
+

nB(1 − ρb)
n − 1

+ ρq (3.4a)

= ρcT + B(1 − ρb) + ρq, (3.4b)

where T is the temperature and q, n, B, b and c are material properties empirically for liquids

and solids (Harlow & Amsden, 1971; Le Métayer et al., 2005; Le Métayer & Saurel, 2016). The

equation reduces to the stiffened gas equation of state (Le Métayer et al., 2005) with b = 0 and and

modifying the other material properties appropriately. In the limit of ideal gases, B = 0, b = 0,

q = 0, c is the specific heat at constant volume and n = γ is the ratio of specific heats. Table 6.1

provides the values of the material properties used in this chapter.

Table 3.1: Material properties corresponding to different media described by the Noble-Abel
Stiffened-Gas equation of state.

Property Air Water & Model Zener solid
n 1.4 1.19

b[m3/kg×10−4] 0 6.61
B[Pa×106] 0 702.8
q [kJ/kg] 0 -1.167

c [kJ/kg·K] 0.718 4.167
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3.3.3 Constitutive Relations

Constitutive relations for the heat flux and Cauchy stress tensor are required. For the former,

Fourier conduction describes the heat diffusion process:

Qk = −κ
∂T
∂xk

, (3.5)

where κ is the thermal conductivity.

For the latter, we first define the strain-rate tensor and its deviatoric component,

ε̇i j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
, ε̇(d)

i j = ε̇i j −
1
3
ε̇kkδi j, (3.6)

where the dot denotes the Lie objective temporal derivative. The Cauchy stress tensor can be

written in terms of isotropic (bulk) and deviatoric contributions,

σi j = −pδi j + µbε̇kkδi j + τ(d)
i j , (3.7)

where the first two terms are the mechanical pressure and bulk (dilatational) viscous isotropic

contributions, the third term the deviatoric stress, and µb the bulk viscosity. We consider the Zener

constitutive model that is suited for materials exhibiting elasticity, viscosity, and stress relaxation.

We consider elasticity in the infinitesimally small-strain limit such that the stress and its rate depend

linearly on the strain and its rate, (Zener, 1947):

λrτ̇
(d)
i j + τ(d)

i j = 2µsε̇
(d)
i j + 2Gε(d)

i j , (3.8)

where the viscous contribution is τ(v)
i j = 2µsε̇

(d)
i j , the elastic contribution τ(e)

i j = 2Gε(d)
i j , λr the relax-

ation time, µs the shear viscosity, and G the shear modulus. The elastic energy is defined as

ρe(e) =
τ(e)

i j τ
(e)
i j

4G
. (3.9)
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Moreover, the Zener model has the advantage of reducing to other simple linear constitutive re-

lations (Carcione, 2014; Fung, 1993; Wineman, 2000). We can generalize the Zener model to

account for multiple relaxation frequencies. To do so, a shear relaxation function is defined as Car-

cione (2014)

ψ = Gr

1 +

Nr∑
l=1

ς(l) exp(−θ(l)t)

 H(t), (3.10)

where Gr is the relaxed shear modulus, ς(l) the relaxation shear coefficient corresponding to relax-

ation frequency θ(l), Nr the total number of relaxation frequencies and H(t) the Heaviside function.

The elastic stress is a convolution of the shear relaxation function and (deviatoric) strain rate,

τ(d)
i j = 2ψ(t) ∗ ε(d)

i j . (3.11)

Taking an objective Lie temporal derivative and introducing evolution equations of the memory

variables close the system.

3.4 Numerical Model

3.4.1 Zener Model in an Eulerian Framework

The main challenge with incorporating elasticity into a shock-capturing framework lies in the rep-

resentation of deformations, or strains. An objective temporal derivative of the elastic contribution

of the deviatoric stress is taken to transform strains into strain rates. The Lie derivative is used to

make this transformation (Altmeyer et al., 2015; Rodriguez & Johnsen, 2018),

τ̇(e)
i j =

∂τ(e)
i j

∂t
+ uk

∂τ(e)
i j

∂xk
− τ(e)

k j

∂ui

∂xk
− τ(e)

ik

∂u j

∂xk
+ τ(e)

i j
∂uk

∂xk
, (3.12)

where the first two terms are the material derivative of the stress tensor and the rest of the terms

contribute to preserving objectivity. Here, we incorporate the material derivative and Eq. (4.1a)

into the Lie derivative to transport elastic stress tensor and memory variable discontinuities, which
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yields (Rodriguez & Johnsen, 2018):

∂

∂t

(
ρτ(e)

i j

)
+
∂

∂x j

(
ρτ(e)

i j u j

)
= ρ

2Gε̇(d)
i j +

Nr∑
l

ξ(l)
i j

 + ρ

[
τ(e)

k j

∂ui

∂xk
+ τ(e)

ik

∂u j

∂xk
− τ(e)

i j
∂uk

∂xk

]
, (3.13a)

∂

∂t

(
ρξ(l)

i j

)
+
∂

∂x j

(
ρξ(l)

i j u j

)
= ρ

[
ξ(l)

k j

∂ui

∂xk
+ ξ(l)

ik

∂u j

∂xk
− ξ(l)

i j
∂uk

∂xk

]
− ρ

[
θ(l)

(
2ς(l)Grε̇

(d)
i j + ξ(l)

i j

)]
, (3.13b)

where l = 1, ...,Nr, ξ
(l)
i j is the lth memory variable,

ξ(l)
i j = −θ(l)Grς

(l) exp(−θ(l)t)H(t) ? ε̇(d)
i j , (3.14)

Nr the total number of relaxation frequencies corresponding to Nr memory variables and evolution

equations, and Gr the relaxed shear modulus,

G = Gr

1 +

Nr∑
l=1

ς(l)

 , (3.15)

where ς(l) are the relaxation coefficients for the given material, which can be obtained by material

characterization (Lombard & Piraux, 2011). The memory variable evolution equations close the

system without having to perform the temporal convolution in Eq. (3.14).

Using the Lie derivative, the generalized Zener model equations are Eqs. (4.1a), (4.6a), (3.13)

and the momentum and energy balance equations,

∂

∂t
(ρui)+

∂

∂x j
(ρuiu j + pδi j − τ

(e)
i j ) =

∂

∂x j

(
τ(v)

i j + µbε̇kkδi j

)
, (3.16a)

∂E
∂t

+
∂

∂x j
[(E + p)u j − τ

(e)
i j ui] =

∂

∂x j

[
ui

(
τ(v)

i j + µbε̇kkδi j

)]
+

∂

∂x j

(
κ
∂T
∂x j

)
. (3.16b)
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3.4.2 Multi-Material Framework

To represent different materials, we use the five-equation compressible multiphase model (Allaire

et al., 2002; Murrone & Guillard, 2005; Alahyari Beig & Johnsen, 2015) for gases, liquids, and

solids (Rodriguez & Johnsen, 2018). All materials are assumed to obey the same equation of state

and constitutive relation, but with different properties. The numerical dissipation at interfaces gives

rise to a (numerical) mixture region of ∼4-5 computational cells in which appropriate rules must

be specified to prevent spurious errors. In addition to the total mass conservation equation (4.1a),

K − 1 species conservation equations are solved in both conservative form as in Eq. (4.6a) and

in non-conservative form to maintain interfacial equilibrium conditions for velocity, pressure and

temperature (Alahyari Beig & Johnsen, 2015),

∂α(k)

∂t
+ u j

∂α(k)

∂x j
= Γ(k)∂u j

∂x j
, (3.17)

where k = 1, ...,K − 1 and

Γ(k) =
α(k)

K(k)
s

 1∑
l
α(l)

K(l)
s

− K(k)
s

 , (3.18)

K(k)
s = ρ(k)(a(k))2 =

n(k)(p + B(k))
(1 − ρ(k)b(k))

. (3.19)

Though necessary to represent compressible multiphase problems with significant dilatational ef-

fects, the right-hand-side of this equation is sometimes set to zero (Allaire et al., 2002; Perigaud &

Saurel, 2005; Shukla et al., 2010). In this chapter, we assume dilatational effects are such that the

right-hand-side is negligible and thus neglect these terms. When using AUSM+-up with the source

terms, the system became considerably stiffer; future studies will investigate how to incorporate

this term in this framework.
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The pressure and temperature are computed based on the internal energy as follows:

p =
E − ρ u2

i
2 − ρe(e) −

∑
k ρ

(k)α(k)q(k) −
∑

k α
(k) n(k)B(k)(1−ρ(k)b(k))

n(k)−1∑
k α

(k) 1
n(k)−1

, (3.20a)

T =
E − ρ u2

i
2 − ρe(e) −

∑
k ρ

(k)α(k)q(k) −
∑

k α
(k)(1 − ρ(k)b(k))B(k)∑

k ρ
(k)α(k)c(k) , (3.20b)

where terms with ρ(k)α(k) are calculated using Eq. (4.6a), terms with α(k) only are calculated using

Eq. (4.6b), as described in Alahyari Beig & Johnsen (2015). The internal energy can be calculated

by rearranging Eq. (3.20). Mixture material properties φ (e.g., elastic moduli, viscosities, thermal

conductivity, etc.) are weighted by the volume fraction:

φ =
∑

k

α(k)φ(k). (3.21)

The spatial gradients of α(k) are computed to obtain the spatial gradients of φ.

3.5 Numerical Method

3.5.1 Baseline Temporal and Spatial Schemes

We use the standard explicit fourth-order Runge-Kutta scheme for time marching. Accounting for

advection and diffusion, the minimum time step is computed:

∆t = min
(
ν

∆x
ζmax

, νµ
∆x2

(µs/ρ)
, νκ

∆x2

(κ/ρc)

)
, (3.22)

where ∆x is the mesh size, ζmax the maximum global wave speed, ν is the Courant number, νµ and

νr are the Von Neumann numbers for viscous and thermal diffusion. Unless stated otherwise, we

set ν = 0.75 and νµ = νκ = 0.125. The maximum wave speed is calculated using the maximum
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eigenspeed and incorporating the effect of linear viscoelasticity (Rodriguez & Johnsen, 2018):

ζmax = max j

|u| ±
√

n(p + B)
ρ(1 − ρb)

+
4G/3 + τ(e)

j j

ρ


j

.

The spatial discretization is based on a solution-adaptive approach that introduces numerical

dissipation only where necessary. The discontinuity sensor of Henry de Frahan et al. (2015); Alah-

yari Beig & Johnsen (2015); Rodriguez & Johnsen (2018) detects shocks, contact discontinuities

and material interfaces, such that the convective fluxes are computed as follows:

Fi±1/2 =


Fi±1/2|AUS M+−up, if ΦA > 10−4∀A

Fi±1/2|central, otherwise,
(3.23)

where the subscripts “central” and “AUSM+-up” are explained below, and

ΦA =
4φA

(1 + φA)2 , φA =
|AR − AL|

AR + AL
, (3.24)

where A is p, ρ or n, and L and R denote the left and right edge of a computational cell. If

ΦA > 10−4 ∀A in a given cell, the solution is considered discontinuous and the WENO approach

of Johnsen & Colonius (2006) is used for all the primitive variables along with AUSM+-up (Chang

& Liou, 2007) generalized to viscoelasticity in the context of the five-equation multiphase model.

The sensor is not activated for smooth problems, i.e., central differences are used exclusively in

such problems. If discontinuities are detected, shock/interface capturing is applied. Though the

capturing scheme is second-order, it does not affect the overall convergence rate, since problems

with discontinuities exhibit first-order convergence only. Derivatives in the diffusion and source

terms and material properties are computed using explicit fourth-order central differences.
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3.5.2 Implementation of the AUSM+-up Scheme for the Compressible, Zener

Model

AUSM schemes were extended to solve the compressible Navier-Stokes equations for multiphase

flows (Chang & Liou, 2003; Paillère et al., 2003; Chang & Liou, 2007; Liou et al., 2008). The

constitutive relation for Cauchy stress tensor is σi j = −pδi j + µbε̇kkδi j + τ(v)
i j , for Newtonian fluids.

AUSM schemes split the flux into convective and pressure flux contributions (Liou, 1996), with

the viscous terms computed separately. We first generalize the AUSM+-up flux-vector splitting

to solve the numerical model with a general Cauchy stress tensor; we then extend this procedure

to the generalized Zener model. For brevity, the extension of AUSM+-up for all-speeds is not

presented, but can be obtained in a straightforward fashion following (Liou, 2006). We start by

formulating the AUSM flux-vector splitting to Eqs. (4.1) using the U-splitting form (Liou, 1992)

for a Cauchy stress tensor described by linear viscoelasticity,

Fk,i+1/2 = max(uk,i+1/2, 0)ϕL + min(uk,i+1/2, 0)ϕR + max(ul,i+1/2, 0)ψL + min(ul,i+1/2, 0)ψR + ηi+1/2,

(3.25)

where k , l, the first subscript denotes the flux vector direction, and the second the discretization

index. The subscripts L, R indicate the left and right edge of the computational cell, respectively,

whose values are calculated using WENO reconstruction on the primitive variables (Johnsen &

Colonius, 2006). To account for the second term in the convective flux in Eq. (3.16b), an additional

convective flux vector, ψ, is needed alongside the conventional convective flux vector in AUSM+-

up, and the pressure flux is generalized to the Cauchy stress tensor flux,

ϕ =



ρ

ρul

E − σkk

ρ(k)α(k)


, ψ =



0

0

σkl

0


, η =



0

−σkl

0

0


, (3.26)
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where k , l. The velocities uk,i+1/2 and ul,i+1/2 are computed using the AUSM+-up Mach number

splitting (Chang & Liou, 2007),

uk,i+1/2 =a1/2(M+
(4)(ML) +M−

(4)(MR)) + κpmax(1 − M̄2, 0)
(σL − σR)
ρ1/2a1/2

, (3.27a)

ul,i+1/2 =a1/2(M+
(4)(NL) +M−

(4)(NR)), (3.27b)

where the subscripts ofM are the order of the polynomial used, the left and right Mach numbers

ML/R =
uk,L/R

a1/2
, NL/R =

ul,L/R

a1/2
,

the interface values arithmetic averages, e.g., a1/2 = (aL + aR)/2, M̄2 = (M2
L + M2

R)/2, and the

coefficient κp = 0.4 unless stated otherwise. The third terms of Eqs. (3.27) and (3.28), are the

“up” velocity-stress coupling terms that add the necessary dissipation to handle flows with large

density ratios (Chang & Liou, 2003, 2007). The tangent velocity ul,i+1/2 and Cauchy stress tensor

flux ηkk,i+1/2 in Eqs. (3.27) and (3.28), respectively, are attributed to the elastic shear wave. Since

the shear wave is not significantly affected by the large density gradients relative to their normal

stress wave counterparts, these terms are computed without the “up”-dissipation terms. The split

Mach number functions are defined,

M±
(4) =


M±

(1), if |M| ≥ 1,

M±
(2)

[
1 ∓ 2M∓

(2)

]
, otherwise,

M±
(1) =

M ± |M|
2

, M±
(2) = ±

(M ± 1)2

4
.
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The Cauchy stress tensor flux, ηi+1/2, is defined using the same approach as the AUSM+-up pressure

flux,

ηkk,i+1/2 =P+
(5)(ML)σkk,L + P−(5)(MR)σkk,R + κuP

+
(5)(ML)P−(5)(MR)ρ1/2a1/2(uL − uR), (3.28a)

ηkl,i+1/2 =P+
(5)(ML)σkl,L + P−(5)(MR)σkl,R, (3.28b)

where k , l,

P±(5) =


M±

(1)/M, if |M| ≥ 1,

M±
(2)

[
±2 − M ∓ 3MM∓

(2)

]
, otherwise,

M̄ = (ML + MR)/2, and the coefficient κu = 0.2 unless stated otherwise. We follow (Chang & Liou,

2003, 2007) when specifying the AUSM+ scheme’s tunable parameters for multiphase problems

and set α = 3/16 and β = 1/8, see Liou (2006) for further details on these parameters. In other

AUSM schemes (Chang & Liou, 2003, 2007; Liou et al., 2008; Kitamura et al., 2014), the κu

and κp coefficients are set to unity to increase the scheme’s dissipation and decrease the numerical

stiffness. Additionally, whenσkl = −pδkl, the numerical method reverts to AUSM+-up for the Euler

equations and the additional convective flux vector, ψ, is not computed. Using this formulation,

the x-direction AUSM+-up flux vectors for the 2D generalized Zener numerical model are:

φ =



ρ

ρu

ρv

E − σ11

ρα(k)

ρτ(e)
i j

ρξ(l)
i j



, ψ =



0

0

0

−τ(e)
12

0

0

0



, η =



0

−σ11

−τ(e)
12

0

0

0

0



,

where σ11 = −p + τ(e)
11 and indices i, j = 1 and 2. Following appropriate simplifications, the flux

vectors for the generalized Zener numerical model reduces to simpler models (e.g., Kelvin-Voigt,
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Maxwell, Newtonian).

3.5.3 Verification of the Proposed AUSM+-up Approach to the Advection of

a Material Interface

The non-conservative equation for the volume fraction in the multi-material framework must be

carefully discretized using AUSM+-up to prevent spurious errors and maintain equilibrium con-

ditions for initially uniform flows. Following Saurel & Abgrall (1999b); Johnsen & Colonius

(2006); Alahyari Beig & Johnsen (2015), we aim to consistently solve the numerical model us-

ing AUSM+-up with minimal modifications to the overall method. We begin by prescribing that

interfacial conditions must be maintained for a flow initialized in equilibrium, i.e.,

un+1 = un = u, pn+1 = pn = p, T n+1 = T n = T,

where the superscripts denote the time step. Since the source terms, elastic stresses and memory

variables depend on velocity spatial gradients, which are zero in equilibrium, those relevant terms

cancel out. Only the spatial gradients in the volume fraction and density remain. As part of

the analysis, the AUSM+-up operator under equilibrium conditions is first identified to determine

the necessary evolution equation for the non-conservative volume fraction equation to maintain

interfacial equilibrium conditions.

Applying Eq. (3.25) to the mass conservation equation, Eq. (4.1a), and considering a simple

time discretization yields the AUSM+-up discretization operatorA(·) such that

ρn+1
i = ρn

i − (∆t/∆x)A(ρ), (3.29)

where

A(ρ) =
(
max(un

i , 0)ρn
i+1/2,L + min(un

i , 0)ρn
i+1/2,R

)
−

(
max(un

i , 0)ρn
i−1/2,L + min(un

i , 0)ρn
i−1/2,R

)
. (3.30)
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Discretizing the momentum balance equation, the pressure terms cancel, thus yielding the mass

conservation equation if and only if un+1 = un. For the energy balance equation, we let b = 0 in the

NASG EOS. Applying equilibrium conditions yields

(ρe)n+1
i = (ρe)n

i − (∆t/∆x)A(ρe). (3.31)

The kinetic energy contribution in the total energy results in a result similar to Eq. (4.1a). The elas-

tic energy contribution to the total energy also cancels out. Applying the pressure- and temperature-

wise forms of the EOS for the internal energy, i.e., Eqs. (4.8), we obtain

(Xp + χ)n+1
i = (Xp + χ)n

i − (∆t/∆x)A(Xp + χ), (3.32)

where

X =
∑ α(k)

n(k) − 1
, χ =

∑ α(k)n(k)B(k)

n(k) − 1
,

for the pressure-wise form, and

(ΘT + θ)n+1
i = (ΘT + θ)n

i −A(ΘT + θ), (3.33)

where

Θ =
∑

k

ρ(k)c(k)α(k), θ =
∑

k

B(k)α(k),

for the temperature-wise form. Eqs. (3.32) and (3.33) are rearranged and one equation for α is

obtained to maintain pressure and temperature equilibrium,

(α)n+1
i = (α)n

i − (∆t/∆x)A(α). (3.34)

This is a numerical discretization of non-conservative the linear advection of α,

∂α(k)

∂t
+ u

∂α(k)

∂x
= 0. (3.35)
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(a) x-velocity. (b) Pressure. (c) Temperature.

τ
τ

τ

(d) Elastic stress τ(e)
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τ
τ

τ

(e) Elastic stress τ(e)
12 .

τ
τ

τ

(f) Elastic stress τ(e)
22 .

Figure 3.1: Relative error in the interface advection problem after ten periods. Black squares:
Newtonian liquid (G = 0); blue diamonds: G = 100 MPa.

We note that the source term in Eq. (4.6b) would cancel out since the velocity is constant initially.

QuantitiesX, χ,Θ, and θ must be computed as described above when solving for p and T to prevent

spurious errors (Alahyari Beig & Johnsen, 2015; Rodriguez & Johnsen, 2018).

3.6 Results

We demonstrate our proposed approach by solving 1D and 2D multi-material problems with

shocks. Using 1D problems, we demonstrate the framework’s ability to maintain equilibrium

conditions and resolve the wave structures. We solve 2D shock-cylinder interaction problems in

which the cylinder is made of, alternatively, gas, water, and a Zener solid.
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(a) x-velocity. (b) Pressure. (c) Temperature.

Figure 3.2: Time histories of normalized L∞ errors for the interface advection problem through ten
periods. Black squares: Newtonian medium; blue diamonds: viscoelastic medium (µb = µs = 5
mPa s, G = 100 MPa, Gr = 50 MPa).

3.6.1 Material Interface Advection Problem

We demonstrate that the five-equation framework for the AUSM+-up scheme presented in §3.5.3

maintains equilibrium conditions at interfaces (Abgrall, 1996; Shyue, 1998; Johnsen, 2011; Alah-

yari Beig & Johnsen, 2015; Rodriguez & Johnsen, 2018). We consider the 1D multi-material

interface problem of our previous work (Rodriguez & Johnsen, 2018) with the Zener model for the

viscoelastic medium and the material properties in Table 6.1. The initial conditions are

(ρ, u, v, p) =


(1, 0.5, 0.5, 1/γ), if x/L ∈ [0.25, 0.75]

(1000, 0.5, 0.5, 1/γ), otherwise,
(3.36)

with τ(e)
11 = τ(e)

22 = τ(e)
12 = ξ(1)

11 = ξ(1)
22 = ξ(1)

12 = 0 and n = 1.4 for air. For the model viscoelastic material,

µb = µs = 5 mPa s, G = 100 MPa, Gr = 50 MPa, ς(1) = 1 and θ(1) = 100 MHz. For air, κ = 0.026

W/(K m), and for the model viscoelastic material, κ = 0.615 W/(K m). The domain is periodic with

L = 1 mm, x ∈ [0, 1], and N = 200. The normalized errors in x-velocity, pressure, temperature and

elastic components of the Cauchy stress tensor after the solution has traveled ten domain lengths

are plotted in Fig. 3.1. At the final time, all the errors are below 4 × 10−10. The normalized

elastic stress errors for τ(e)
11 and τ(e)

22 are localized at the right interface, i.e., x/L = 0.75, due to the
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ρ

(a) Density. (b) x−velocity.

α

(c) Volume fraction.

(d) Pressure. (e) Temperature.

Figure 3.3: Multi-material Riemann problem at t = 240 µs with analytical (black dashed line) and
numerical (blue square) solutions for the viscous liquid-air shock wave interaction.

advection speed. The time histories of the normalized x-velocity, pressure, and temperature errors

are plotted in Fig. 3.2. Within the first two periods of the simulation, the normalized temperature

errors quickly rise to 10−8. The temperature profile modifies the pressure through the heat transfer

term such that discrepancies in pressure grow to a similar order of magnitude. For an isothermal

simulation (results not shown), the normalized pressure errors do not exhibit this rise and remain

bounded below 5 × 10−10. After five periods, both temperature and pressure errors decrease by

two orders of magnitude to 10−10. The x-velocity errors remain bounded below 6 × 10−11. The

y-velocity and the elastic stress errors are negligible (data not shown). We conclude that our multi-

material framework utilizing AUSM+-up is capable of maintaining equilibrium conditions and

prevent spurious interfacial errors.
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ρ

(a) Density. (b) x−velocity.

α

(c) Volume fraction.

(d) Pressure. (e) Temperature.

Figure 3.4: Multi-material Riemann problem at t = 240 µs with analytical (black dashed line)
and numerical (blue square) solutions for the Kelvin-Voigt viscoelastic material-air shock wave
interaction.

3.6.2 Multi-material Riemann Problem

We verify the extension of the five-equation multiphase model to viscoelastic media with shocks

by considering the multi-material Riemann problem in (Alahyari Beig & Johnsen, 2015; Murrone

& Guillard, 2005; Allaire et al., 2002) with viscoelasticity (Rodriguez & Johnsen, 2018),

(ρ, p, α(1)) =


(1000, 109, 1) if x/L ∈ [0, 0.7],

(50, 105, 0) otherwise,
(3.37)

with u = v = 0 and L = 1 mm. The initial elastic stresses are τ(e)
11 = τ(e)

22 = τ(e)
12 = 0. For

the model viscoelastic material, κ = 0.615 W/(K m) and for the gas, κ = 0.026 W/(K m). The

viscous (µb = µs = 50 mPa s) and Kelvin-Voigt (µ = 50 mPa s and G = 1 GPa) solutions are
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Figure 3.5: Shock-gas cylinder interaction problem setup.

plotted at t = 240 µs in Figs. 3.3 and 3.4 along with their respective analytical solutions. The

analytical solutions are generated using the Riemann solver of Gavrilyuk et al. (2008), in which

ρG is assumed constant for the analytical viscoelastic solution. The numerical results show good

agreement with the analytical solution since the density and pressure ratios are large. We note that

all the relevant waves are captured. A spurious over-heating spike is observed in the temperature

plot at the material interface for the Kelvin-Voigt solution. This spike has also been observed for

multi-material problems and can be addressed with the fix by Fedkiw et al. (1999).

3.6.3 2D Shock-Gas Cylinder Interaction Problems

We demonstrate the numerical framework’s ability to handle 2D multifluid problems by studying

shock-gas cylinder interaction problems. We compute the problem studied experimentally by Haas

and Sturtevant (Haas & Sturtevant, 1987) and simulated numerically by Quirk & Karni (1996).

The initial set-up is shown in Fig. 3.5; given the symmetry of the problem half of the domain is

simulated. The initial cylinder radius is 25 mm. The computational domain extends six initial

bubble radii in the x-direction from the bubble center, with x ∈[-150 mm, 150 mm] and y ∈[0 mm,

44.5 mm]. The resolution is 256 points per initial cylinder radius. We define the initial cylinder

radius with a diffuse interface whose volume fraction is α =
1−tanh(%)

2 , where % = (R − Ro)/∆x,

R =
√

x2 + y2 and Ro = 25 mm is the initial cylinder radius. With volume fraction defined and

known velocity and pressure initial conditions throughout the domain, the conservative variables φ
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(a) time = 55 µs. (b) time = 135 µs. (c) time = 187 µs. (d) time = 247 µs.

(e) time = 318 µs. (f) time = 342 µs. (g) time = 647 µs. (h) time = 1020 µs.

Figure 3.6: Time evolution of numerical Schlieren contours for the shock-R22 gas cylinder inter-
action problem with a M = 1.22 shock moving from right to left. The red dotted outline denotes
the cylinder’s initial location.

(a) time = 32 µs. (b) time = 52 µs. (c) time = 62 µs. (d) time = 72 µs.

(e) time = 82 µs. (f) time = 245 µs. (g) time = 427 µs. (h) time = 674 µs.

Figure 3.7: Time evolution of numerical Schlieren contours for the shock-helium gas cylinder
interaction problem with a M = 1.22 shock moving from right to left. The red dotted outline
denotes the cylinder’s initial location.

are computed using the mixture relation, φ = α(1)φ1 + (1 − α(1))φ2.

We solve the compressible Navier-Stokes equations for the convergent (helium) and divergent

(R22) cases utilizing the same initial conditions as the experiment. The surrounding medium

is air with ρ = 1.204 kg/m3 and κ = 0.026 W/(K m) with the remaining material properties

listed in Table 6.1. Helium and R22 properties reported by Quirk & Karni (1996) were adapted:
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ρHe = 0.222 kg/m3, κHe = 0.151 W/(K m), ρR22 = 3.69 kg/m3, and κR22 = 0.61 W/(K m). The

shock wave is initialized at x = 5 × R0, using the Rankine-Hugoniot conditions for a M = 1.22

normal shock propagating from right to left. No-penetration and no-slip boundary conditions are

set along the top wall.

Select contours of the nonlinear shading function from Quirk & Karni (1996) are shown for

the R22 and helium cases in Figs. 3.6 and 3.7, respectively. The times shown correspond to those

reported by Haas & Sturtevant (1987); Quirk & Karni (1996). To obtain comparable contours to

the experiments, the timings on the contours were taken such that at time t = 0 the shock is at

x = 28 mm from the cylinder center and not yet at the upstream cylinder interface. Haas and

Sturtevant (Haas & Sturtevant, 1987) reported an error of 10% in their velocity measurements;

thus, the 12% discrepancy in start time to obtain comparable contours is reasonable.

3.6.3.1 R22 gas cylinder.

Upon interacting with the right side of the R22 cylinder, the incoming shock is partially reflected

and transmitted (frame a). Since the speed of sound in R22 is smaller than that of air, the trans-

mitted shock propagates more slowly than the shock in air (frame b). Additionally, the reflected

shock wave propagates radially and is reflected from the top and bottom walls towards the cylinder.

The incident shock intersects along the centerline after interacting with the cylinder (frame c) and

the transmitted shock is partially transmitted into the air and partially reflected into the cylinder

(frame d). The transmitted shock also forms a central wedge downstream of the R22-air interface

comparable with the experiments. As the incident shock traverses the interface, the misalignment

of density (material interface) and pressure (shock) gradients deposits baroclinic vorticity along

the interface and generates roll-ups. Later, the shock is partially transmitted into the surround-

ing air and propagates radially interacting with the interface; this shock is also reflected from the

walls (frames d-g). The transmitted shock-interface interactions further enhance the roll-ups as

the cylinder has convected to the left (frames d-g). The two-pronged feature at the downstream

centerline edge of the interface noticeable in the numerical simulations of Quirk & Karni (1996)
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is also observed. However, this feature is not as pronounced here. Moreover, fewer and smoother

roll-ups develop in the later times (frame g) compared to the heavily corrugated interface in Quirk

& Karni (1996). We conclude that our AUSM scheme exhibits good qualitative agreement with

experiments.

3.6.3.2 Helium gas cylinder.

Since the impedance of the helium cylinder is lower than that of the surrounding air, the incident

shock is partially transmitted as a shock and partially reflected as a rarefaction. Due to the higher

speed of sound of the helium with 20% air gas (aHe = 872 m/s), the transmitted shock propagates

ahead of the incident shock and reaches the downstream cylinder interface (frame a). We ob-

tain good agreement with the flow features observed in Quirk & Karni (1996); Haas & Sturtevant

(1987). At t = 52 µs (frame b), the four-shock, twin regular reflection-refraction (TRR) config-

uration described in Henderson et al. (1991) is observed. The transmitted shock then reaches the

downstream material interface at t = 62 µs (frame c), is partially reflected and develops into two

cusps within the cylinder. These two cusps then converge, coincide, and are reflected outward to

form a small hoop (frames d and e). Over time, the magnitude of the shock trapped in the cylinder

decreases. Outside of the cylinder, the incident and partially transmitted shocks are reflected from

the walls and the material interface (frame f). The baroclinic vorticity deposited along the material

interface gives rise to a re-entrant jet as the cylinder convects downstream. Unlike the simulations

of Quirk & Karni (1996), the roll-ups along the interface are not observed; the cylinder’s morphol-

ogy in our simulations are in better agreement with the experiments. The re-entrant jet develops

while the cylinder takes a kidney shape as the shocks in the surroundings weaken as they leave the

domain (frame g). Eventually the upstream and downstream cylinder interfaces meet, such that the

cylinder takes the form of two vortex lines symmetric upon the centerline, which convect down-

stream (frame h). Overall, the agreement between the proposed approach and the experiments is

good.
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Figure 3.8: Shock-cylinder interaction problem set-up adapted from Chang et al. (Chang & Liou,
2007).

3.6.4 2D Shock-Water/Zener Solid Cylinder Interaction Problems

We study shock-droplet/cylinder interaction problems with density ratios of 1000:1 between the

material in the cylinder and the surrounding air. This problem has been studied experimen-

tally (Theofanous et al., 2004) and numerically simulated with the inviscid, compressible Euler

equations using FDS schemes in 3D (Meng & Colonius, 2018) and AUSM schemes (Chang &

Liou, 2007; Niu et al., 2008; Liou et al., 2008; Kitamura et al., 2014). The shock-water cylinder

interaction problem of Kitamura et al. (2014) is adapted as shown in Fig. 3.8. The initial cylinder

radius is 3.2 mm. The domain extends three initial bubble radii in both directions: x, y ∈[−9.6 mm,

9.6 mm]. The resolution is 128 points per initial cylinder radius. The shock is initialized at x = −2

mm, using the Rankine-Hugoniot conditions for a M = 1.47 normal shock propagating from left

to right. The initial cylinder radius and conservative variables are initialized in the same fashion

as in §3.6.3. The Courant number is ν = 0.15 and AUSM+-up velocity-stress coupling coefficients

are kp = ku = 1. Our simulations did not require the variable mixing (blending) procedure (Chang

& Liou, 2007; Liou et al., 2008; Kitamura et al., 2014; Pandare & Luo, 2018) where mixing is

introduced to prevent the occurrence of non-physical negative pressures and improve numerical

stability.

We consider two different materials for the cylinder: water and Zener solid. We seek to eval-
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(a) time = 6.25 µs. (b) time = 12.5 µs. (c) time = 15.625 µs. (d) time = 18.75 µs.

(e) time = 6.25 µs. (f) time = 12.5 µs. (g) time = 15.625 µs. (h) time = 18.75 µs.

Figure 3.9: Time evolution of numerical Schlieren (top) and pressure (bottom) contours for the
shock-water cylinder interaction problem. The red dotted outline denotes the cylinder’s initial
location.

(a) time = 6.25 µs. (b) time = 12.5 µs. (c) time = 15.625 µs. (d) time = 18.75 µs.

(e) time = 6.25 µs. (f) time = 12.5 µs. (g) time = 15.625 µs. (h) time = 18.75 µs.

Figure 3.10: Time evolution of numerical Schlieren (top) and pressure (bottom) contours for the
shock-Zener solid cylinder interaction problem. The red dotted outline denotes the cylinder’s initial
location.
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σ

Figure 3.11: Time evolution of the Von Mises stress for the 2D shock-cylinder interaction problem.
Blue solid line: water; black dashed line: Zener solid.

uate the effect of the viscoelasticity on the wave dynamics by considering the numerical Schlieren

and pressure contours and on the stress response in the time evolution of the maximum Von Mises

stress in the domain. Thus, the material properties of the cylinders are set such that viscoelasticity

is the only difference between the two simulations. The material properties in Table 6.1 are used

for the surrounding air and cylinder materials. For both cylinder materials, ρ = 1000 kg/m3 and

κ = 0.615 W/(K m). By contrast to Kitamura et al. (2014) which used the stiffened gas EOS,

our simulations are conducted with the NASG EOS to model the cylinder. Therefore, the speed of

sound of the materials in the cylinders is higher and we expect to see small differences in numerical

Schlieren and pressure contours when compared to Kitamura et al. (2014). In the water case, the

compressible Navier-Stokes solutions are solved. For the Zener solid case, the model in §3.4.1 is

solved with one relaxation time, µb = 50 mPa s, G = 1 MPa, Gr = 0.5 MPa, ς(1) = 1, and θ(1) = 10

MHz. Simulation results of the numerical Schlieren function of Chang & Liou (2007); Kitamura

et al. (2014), (1 + (α(1))2)log(|∇ρ| + 1), and pressure are presented in Figs. 3.9 and 3.10 for the

shock-water and shock-viscoelastic solid cylinder cases, respectively.

3.6.4.1 Water cylinder.

Due to the acoustic impedance mismatch between the water and air, the shock is partially trans-

mitted and reflected as a shock upon interaction with the cylinder. Since water has a higher speed
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of sound than air, the transmitted shock propagates ahead of the shock in air and interacts with

the downstream interface. The transmitted shock is partially reflected as a rarefaction and focused

upstream into the cylinder (frame a and e). This process continues with phase inversion upon each

reflection (frames b and f). Upon the third interaction with the downstream interface, the two cusps

with a tensile pressure is observed, similar to those in Kitamura et al. (2014). However, this feature

is further evolved in the present simulations due to a faster speed of sound in the liquid when using

the NASG EOS. A shock is also transmitted into the domain, though it is too weak to be visible in

the contours. Numerical oscillations in both the numerical Schlieren and pressure contours along

the interface are likely due to the carbuncle phenomenon and are also observed in Kitamura et al.

(2014). The shock diffracted from the partial reflection and the incident shock continue to prop-

agate and are not affected by the flow inside the cylinder. The transmitted shock propagates back

to the downstream cylinder interface and is reflected to form a small hoop where a compressive

wave is focused (frame c and g). At t = 18.75 µs, the small hoop wave advects downstream and

evolves into another tensile bow wave with two compressive wing-like waves (frame d and h). We

conclude that despite the speed of sound differences and the minor effect of the carbuncle phe-

nomenon (Pandolfi & D’Ambrosio, 2001), the results are qualitatively comparable to Kitamura

et al. (2014).

3.6.4.2 Zener solid cylinder.

We set the shear modulus G = 10 MPa such that it is significant enough to illustrate the effect

of viscoelasticity while maintaining a similar speed of sound relative to the water case. Thus, the

pressure wave propagation is similar while the differences are attributed to the viscoelasticity. In

the Schlieren images, the small waves can be attributed to the weaker elastic shear waves that are

slower than the main wave structures described in the water case. The two cusps (frames a and

e), tensile wave (frames b and f), small hoop (frames c and f), and tensile wave with compressive

wing-like waves (frames d and h) described in the water case are observed for the Zener solid

cylinder. The elasticity increases the stress response at the top and bottom of the cylinder interface
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as the diffracted shock weakens. Moreover, the incident and diffracted shocks are slightly affected

with diffracted elastic shear waves distorting the flow behind the diffracted shock (frames b-d).

At later times, the wave structures inside the cylinder are significantly distorted due to the shear

waves and weak numerical oscillations, with the latter due to the limited dissipation (frames f and

g). These oscillations could be addressed by introducing numerical dissipation for the tangential

components, ul,i+1/2 and ηkk,i+1/2, of the generalized AUSM+-up scheme in Eqs. (3.27) and (3.28).

However, it remains unclear how to properly introduce dissipation in the tangential direction with-

out significantly increasing the scheme’s numerical stiffness.

To observe the effect of viscoelasticity, we consider the Von Mises stress as a quantity of

interest,

σvon =
√

(σ11)2 − σ11σ22 + (σ22)2 + 3(σ12)2, (3.38)

which incorporates pressure and all three elastic components of the Cauchy stress tensor. The time

evolution of the Von Mises stress is shown in Fig. 3.11 for the water and Zener solid cylinders. The

effect of the incident shock interacting with the cylinders and being partly transmitted and partly

reflected is apparent in the Von Mises stress profile at t = 2 µs. Starting at t ≈ 3 µs, the profiles

diverge as the Von Mises stress is significantly increased in the Zener case. At times t ≈ 7 µs

and t ≈ 11 µs, the transmitted shock is reflected into the cylinder and doubles in strength. The

subsequent peaks in the Von Mises stress profiles are attributed to the internal shocks interacting.

Moreover, the results demonstrate the capability of the AUSM+-up extension to the five-equation

multiphase model with linear viscoelasticity.

3.7 Conclusions

In this chapter, we extend the AUSM scheme to the five-equation compressible multiphase model

with viscoelasticity. Stress relaxation, elasticity and viscosity are included to describe viscoelastic

media, whose deformations are assumed to be infinitesimally small such that linear viscoelasticity

applies. By taking an objective Lie derivative of the constitutive relation, evolution equations are
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introduced for the elastic contribution of the Cauchy stress tensor, while strains are transformed

into velocity gradients. Moreover, the momentum and energy balance equations in the system

have additional terms in the fluxes not previously addressed using flux-vector splitting schemes.

We generalize AUSM schemes to account for the Cauchy stress tensor appearing in the viscoelastic

description. We determine the appropriate discretization of the non-conservative volume fraction

evolution equation in the five-equation multiphase model to prevent spurious oscillations at ma-

terial interfaces. The resulting framework is built upon a spatial scheme that is solution-adaptive

and high-order using explicit central differences in smooth regions and WENO primitive variable

reconstruction for discontinuities. We conduct 1D numerical simulations demonstrating the ap-

proach’s ability to maintain equilibrium conditions at interfaces and solve multi-material Riemann

problems for gas-liquid and gas-viscoelastic solid configurations. 2D problems involving shock-

cylinder problems for different fluids are computed, with density ratios up to 1000:1. Qualitative

agreement is obtained with past experiments and simulations. Using our proposed approach, we

successfully simulate the interaction of a shock wave interacting with a viscoelastic medium, and

use the simulations to quantitatively investigate the stresses produced in the object.
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Part II:

Bubble dynamics investigations
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CHAPTER 4

Inertially-driven bubble collapse in a channel

4.1 Introduction

In a variety of engineering applications, cavitation bubbles are produced in confined geometries.

For example, cavitation may enhance the atomization process in sprays that typically involve a liq-

uid jet with cross-sectional areas of a few millimeters squared (Wang et al., 2014; Bergeles et al.,

2015; Biçer & Sou, 2016). Though not well understood, cavitation is one of the main mechanisms

in the erosion and fragmentation of millimeter-sized kidney stones in biomedical ultrasound ther-

apy tools (Lubock, 1989; Pishchalnikov et al., 2003; Duryea et al., 2014). Ferns sporangia utilize

cavitation to eject its spores akin to man-made catapults (Noblin et al., 2012) and snapping-shrimp

produce cavitating bubbles by rapidly closing their claws to kill their prey (Versluis et al., 2010).

Cavitation is the lifetime-limiting factor for the target used in the operation of the Spallation Neu-

tron Source at Oak Ridge National Laboratory (Haines et al., 2014; Riemer et al., 2014; Naoe

et al., 2016). The spallation process produces a shock wave that propagates through the mercury

in the target vessel. The shock wave interacts with the vessel walls and a long period of negative

pressure is induced on the walls leading to cavitation and subsequent erosion, which limits the ra-

diation power range and experiment duration. Additionally, confined cavitation has been observed

to spontaneously occur in porous media and tree vessels (Vincent et al., 2012, 2014). Vincent &

Marmottant (2017) studied the effect of confinement on spherically oscillating bubbles.

While the dynamics of a bubble near a flat, rigid surface has studied, the role of confinement on
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bubble dynamics is less well known. The confinement problem add one more parameter, namely,

the confinement ratio R0/W, where R0 is the initial bubble radius and W is the characteristic size

of the “container” (e.g., channel). For the problems of interest R0/W > O(10−1), such that con-

finement dictates the wave dynamics throughout the collapse.

Although bubble dynamics in a confined geometry have not been systematically investigated,

the collapse of a bubble near a flat, rigid surface has been studied extensively. The bubble dynamics

and pressures experienced by neighboring surfaces are of key interest to characterize and predict

the damage mechanisms. In particular, experimental and early numerical studies have observed the

formation of a re-entrant jet for a bubble initially detached, attached from the surface (Kornfeld &

Suvorov, 1944; Naude & Ellis, 1961; Plesset & Chapman, 1971; Lauterborn & Bolle, 1975; Blake

& Gibson, 1987; Brujan et al., 2002) and for multiple bubbles (Blake et al., 1993). Variations of

the canonical geometry have been studied as well with curved and inclined rigid (Wang, 1998;

Tomita et al., 2002) and deformable (Blake et al., 1987; Brujan et al., 2001; Gregorčič et al.,

2007) surfaces. There has been a rise of analytical (Oguz & Prosperetti, 1998; Hsiao et al., 2013)

and experimental (Vincent et al., 2014; Fourest et al., 2015; Vincent & Marmottant, 2017; Brujan

et al., 2018) investigations of bubbles collapsing in a channel. However, the current understanding

of wave dynamics remains limited.

Numerical simulation have been used to complement theoretical and experimental efforts.

Boundary integral methods were used by Blake et al. (Blake & Gibson, 1987) to predict bub-

ble behavior during collapse near a rigid wall. However, these approaches are limited in their

ability to capture the late time compressible behavior of the collapse. Advances in compressible

multiphase methods and algorithms have enabled the numerical simulations of these problems with

high-order accurate, high-fidelity approaches (Abgrall, 1996; Shyue, 1998; Johnsen & Colonius,

2006; Johnsen, 2012; Alahyari Beig & Johnsen, 2015). The approach of Alahyari Beig & Johnsen

(2015); Alahyari Beig (2018) shows agreement agreement with experiments by Supponen et al.

(2016) of the re-entrant jet and bubble morphology at collapse. Moreover, a pressure scaling rela-

tionship at the wall based on the initial bubble configuration for detached and attached bubbles is
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developed by Beig et al. (2018).

The objective of this work is to study the dynamics of a single bubble inertially collapsing in

a channel to gain insights on the effect of confinement on the bubble dynamics and pressures on

the channel walls. The chapter outline is as follows. The physical and numerical model for binary

water-gas multiphase flows are described. The numerical method of Beig et al. (2018) is briefly

introduced and its performance on the Blue Waters supercomputing system is examined. The

problem of interest, namely a single gas bubble inertially collapsing in a channel, and the relevant

parameters are presented. Qualitative observations are made of the bubble and wave dynamics. We

then conduct a series of quantitative observations and comparisons of the bubble dynamics, max-

imum pressures between the channel and single wall configurations. Results varying the channel

width are presented to determine at which channel width the confinement has a negligible effect

on the dynamics. We conclude with future directions for this study.

4.2 Physical and Numerical Modeling

The physical and numerical models are fully detailed in Chapter 2 and is briefly summarized for

a binary-phase system. The equations of motion are mass conservation, momentum balance and

energy balance:

∂ρ

∂t
+

∂

∂x j
(ρu j) = 0, (4.1a)

∂

∂t
(ρui) +

∂

∂x j
(ρuiu j − pδi j) =

∂τi j

∂x j
, (4.1b)

∂E
∂t

+
∂

∂x j
((E + p)u j) =

∂

∂xk
(uiτi j − Qk), (4.1c)

where ρ is the total density, ui the velocity vector, τi j the viscous stress tensor, Qk the heat flux,

indices i, j = 1, 2, and 3, and repeated indices denote summation. The total energy (per unit

volume) E is comprised of internal and kinetic contributions: E = ρe + 1
2ρu2

k . To close the system,

an equation of state is required to relate the internal energy to pressure and temperature and a
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constitutive relation to define the heat flux and viscous stress tensor. The Noble-Abel Stiffened

Gas (NASG) equation of state (EOS) (Le Métayer & Saurel, 2016) is used for the water vapor-

water system:

ρe =
p(1 − ρb)

n − 1
+

nB(1 − ρb)
n − 1

+ ρq (pressure − wise), (4.2a)

= ρcT + B(1 − ρb) + ρq (temperature − wise), (4.2b)

where T is the temperature and q, n, B, b and c are material properties prescribed to produce

the correct sound speeds in liquids and have been validated for a wide range of pressures and

temperatures (Harlow & Amsden, 1971; Le Métayer et al., 2005; Le Métayer & Saurel, 2016).

Table 6.1 lists the experimentally fitted constants where a is the material’s sound speed.

Fourier conduction describes the heat diffusion process and flux:

Qk = −κ
∂T
∂xk

, (4.3)

where κ is the thermal conductivity. A newtonian constitutive relation describes the viscous stress

tensor. The viscous term has bulk (dilatational) and shear contributions:

τi j = µbε̇kkδi j + µsε̇
(d)
i j , (4.4)

where µb is the bulk viscosity, µs the shear viscosity, and

ε̇i j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
, ε̇(d)

i j = ε̇i j −
1
3
ε̇kkδi j, (4.5)

is the strain-rate tensor and its deviatoric part.

The five-equations multiphase model (Allaire et al., 2002; Murrone & Guillard, 2005; Alahyari

Beig & Johnsen, 2015) is used to capture gas/liquid flows. An additional species conservation

equation is solved in conservative and non-conservative form to maintain interfacial equilibrium
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conditions for velocity, pressure and temperature (Alahyari Beig & Johnsen, 2015; Rodriguez &

Johnsen, 2018),

∂

∂t
(ρ(k)α(k)) +

∂

∂x j
(ρ(k)α(k)u j) = 0, (4.6a)

∂α(k)

∂t
+ u j

∂α(k)

∂x j
= Γ(k)∂u j

∂x j
, (4.6b)

where α(k) is the volume fraction of the k-th phase. The right-hand-side term coefficient, Γ(k), is

determined for a binary mixture (Alahyari Beig & Johnsen, 2015),

Γ(k) =
α(k)ρ(k′)(a(k′))2

α(k)ρ(k′)(a(k′))2 + α(k′)ρ(k)(a(k))2 , (4.7)

where α(k′) = 1 − α(k) and k′ and k represent each phase. Similarly, the mixture material properties

φ (e.g., moduli, viscosities, thermal conductivity, etc.) are weighted by the volume fraction:

φ =
∑

k

α(k)φ(k). (4.8)

Due to the numerical stiffness, the right-hand term at the beginning of the simulation, for the

first 1000 time steps the algorithm solves the equations without this term. Moreover, the mixture

relation for the sound speed (Brennen, 2013),

1
ρa2 =

α(k)

ρ(k)(a(k))2 +
α(k′)

ρ(k′)(a(k′))2 , (4.9)

is used to calculate the speed of sound when using the right-hand side term in Eq. (4.6b) and

Table 4.1: Constants in the Noble-Abel stiffened gas equation of state for water vapor and water (Le
Métayer & Saurel, 2016).

Medium ρ [kg/m3] a [m/s] n [-] B [MPa] b [m3/kg]
Water, vapor 0.027 439.6 1.47 0 0
Water, liquid 1051 1613 1.19 702.8 6.61×10−4
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upwinding.

4.3 Numerical Algorithm and Performance

We leverage the numerical algorithm of Alahyari Beig & Johnsen (2015), which has been used

to study the pressures and temperatures produced by inertially collapsing bubbles near a rigid

wall (Beig et al., 2018). A brief summary of the numerical algorithm is provided below and full

details can be found in Alahyari Beig (2018).

The algorithm uses the third-order accurate Total Variation Diminishing (TVD) Runge-Kutta

scheme of Gottlieb & Shu (1998) with an adaptive time step calculation following the appropriate

advective and diffusion numerical constraints. The convective fluxes are computed in divergence

form using a conservative, solution-adaptive fashion based on the sensor of Henry de Frahan et al.

(2015) to discriminate between smooth regions and discontinuities. For smooth regions, stan-

dard fourth-order explicit central differences are applied. At discontinuities, the HLL Riemann

solver (Harten et al., 1983) is used, with appropriate correction for equations in non-conservative

form (Saurel & Abgrall, 1999b) in conjunction with the high-order accurate primitive variable

WENO reconstruction scheme of Johnsen & Colonius (2006). The first and second derivatives

of the diffusion and source terms are computed using explicit fourth-order accurate central differ-

ences. Thus, fourth-order accuracy is achieved in smooth problems; though the global convergence

rate for problems with discontinuities is first-order, as expected, smooth regions are resolved with

the central scheme. The code is written in C++, uses Message Passing Interface (MPI) for parallel

processing, and a hierarchical data format (HDF5) for inputting and outputting data in parallel.

We assess the scaling performance of the numerical algorithm on the National Center for Su-

percomputing Applications BlueWaters system by running simulations of a single bubble under-

going an inertial collapse for 100 time steps. Fig. 4.1 shows the numerical algorithm. Both scaling

analyzes show efficient behavior. The problem size is kept constant and the number of processors

is doubled for the strong scaling analysis. As a result, the computational wall time is reduced by
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(a) Strong scaling. (b) Weak scaling.

Figure 4.1: Scaling results of the numerical algorithm on the BlueWaters Supercomputing System.
Black dotted line: ideal theoretical strong scaling; Black squares: average total computing time
per processor; Black triangles: average communication per processor.

nearly a factor of two. In weak scaling analysis, as the problem size is increased with the number of

processors, the ideal behavior is achieved with the average total communication time between the

processors incurring a minimal increase in the average total computational time of the simulation.

The code exhibits ideal behavior up to 16,384 cores; the simulations in our study use 8,192 cores.

Similar results were obtained for the Titan supercomputing system at the Oak Ridge Leadership

Computing Facility (data not shown).

4.4 Problem Set-up

We consider a single, spherical gas bubble surrounded by liquid water in a channel. The problem

set-up is shown in Fig. 4.2. The water pressure at p∞ and temperature T∞ surrounds the bubble.

Vapor is modeled as a non-condensible ideal gas with vapor pressure pvapor = 3550 Pa and temper-

ature To = 300 K. The bubble has an initial radius R0 = 500 µm and is located at a distance x0/R0

from the right wall. The coordinate system in the x-direction is shown with xC0 denoted the initial

bubble centroid x-location with channel width W. Due to the symmetry in the xz- and xy-plane, a

quarter of the domain is simulated with symmetric boundary conditions. The top and back planes

have the non-reflecting boundary conditions (Thompson, 1990). Left and right channel walls are
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Figure 4.2: Problem set-up of an inertially collapsing bubble in a channel.

rigid walls with perfectly reflecting boundary conditions. The resolution is 192 computational cells

per initial bubble radius, which corresponds to approximately 0.45 billion computational points per

simulation. Average simulation takes approximately 30 − 40 thousand time steps, corresponding

to 18 wall-time hours, to reach a simulation time after bubble collapse. Three parameters of inter-

est are considered: (i) the driving pressure, p∞, (ii) the initial bubble centroid location, xC0, and

(iii) the channel width, W. The parameters of our baseline case are p∞ = 5 MPa, xC0/R0 = 0.75,

and W/R0 = 4. In this study, we vary the parameters of interest. Three different driving pressures

are considered, p∞ = 2, 5, and 10 MPa, which have been studied by others for various cavitation

applications (Franc et al., 2011; Beig et al., 2018). The corresponding water temperature, T∞, is

determined by the NASG equation of state. At least four different initial bubble centroid locations

are rigid walls with perfectly reflecting are considered: 0 (centered in the channel), 0.5, 0.75, and

0.875. Eight channel widths are considered in the range W = [3, 8]. The quantities of interest are

compared with those obtained from Beig et al. (2018) for a single bubble inertially collapsing near

a rigid boundary. In the single wall configuration, the same problem set-up is used with W → ∞

and the left boundary condition is a non-reflection boundary condition.
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(a) time = 0. (b) time = 0.45 µs. (c) time = 3.3 µs.

(d) time = 8 µs. (e) time = 9 µs. (f) time = 12.5 µs.

Figure 4.3: Numerical Schlieren contours along the centerline xz-, xy-plane, and channel walls for
an inertially collapsing bubble in a channel with xC0/R0 = 0 (symmetric case). White iso-surface
represents the bubble interface approximate location.

4.5 Results

4.5.1 Qualitative Results

Fig. 4.3 shows numerical Schlieren contours along the four boundary planes, i.e., the centerline

xz-, xy-planes, and channel walls, along with an isocontour of the volume fraction to illustrate

the bubble interface, for the baseline simulation. The initial condition is shown in frame a for

this Rayleigh collapse corresponds to a Riemann problem, which releases an inward-propagating

shock and an outward-propagating rarefaction while the interface moves radially inward (frame

b). Due to the acoustic impedance mismatch between the water and water vapor, the driving

pressure is reflected away from the bubble as an outward-propagating rarefaction wave that is then
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(a) time = 0. (b) time = 0.45 µs. (c) time = 3.3 µs.

(d) time = 8 µs. (e) time = 9 µs. (f) time = 12.5 µs.

Figure 4.4: Numerical Schlieren contours along the centerline xz-, xy-plane, and channel walls for
an inertially collapsing bubble in a channel with xC0/R0 = 0.75. White iso-surface represents the
bubble interface approximate location.

reflected towards the bubble by the channel walls in a symmetric fashion (frame b). The rarefaction

waves continue reflecting between the wall and the bubble as the bubble begins to implode (frame

c). These waves change polarity upon reflections off the bubble interface due to the impedance

mismatch. Over time, the amplitude of these waves diminishes. During the collapse, the pressure

gradients from these waves deposit baroclinic vorticity along the bubble interface leading to re-

entrant jets at the right and left bubble interface directed towards either wall (frame d). The jets

further penetrate the bubble during collapse and eventually impinge upon each other. The bubble

then achieves minimum volume, and emits an outward-propagating water-hammer shock into the

surroundings (frame d and e).

For comparison, we consider a case with the initial bubble centroid location at xC0/R0 = 0.75

in Fig. 4.4 (frame a). As in the previous case, the initial Riemann problem leads to an inward-
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two reentrant jets

asymmetric, 
one reentrant jet

Figure 4.5: Bubble centroid location at collapse for an inertially collapsing bubble in a channel at
three different driving pressures. Red symbols: 2 MPa; green symbols: 5 MPa; blue symbols: 10
MPa. Filled symbols: channel; empty symbols: single wall.

propagating shock, outward-propagating rarefaction, and inward-moving bubble interface. Due to

the asymmetry in the geometry, the rarefaction reflected off the right wall interacts with the bubble

first (frame b and c). The collapse is asymmetric, with a single re-entrant jet directed towards the

right wall (frame d). The impingement of the jet upon the distal side of the bubble produces an

outward propagating water-hammer shock (frame e). The bubble centroid moves in the x-direction

towards the right wall as it collapses (frame c-e). After collapsing, the bubble takes the form of a

vortex ring forms convecting towards the right wall (frame f).

4.5.2 Bubble Migration and Collapse Volume in a Channel

Two quantities of interest for the bubble dynamics are the migration distance of the bubble centroid

from the initial location to the location at collapse, i.e., xC0−xCF, and the volume at collapse. These

two quantities indicate the bubble proximity to the neighboring wall and intensity of its collapse.

Comparing these quantities between the channel and single wall configurations reveals the effect

of confinement, in any, on bubble dynamics. Fig. 4.5 shows the bubble migration distance for

the three different driving pressures and various xC0 locations for both the channel and single wall

configurations. For the initially symmetric case, i.e., xC0 = 0, the bubble undergoes a symmetric

collapse (as seen in Fig. 4.3) and collapses at its original location. The single wall configurations
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symmetric,
two reentrant jets

(a) p∞= 2 MPa. (b) p∞= 5 MPa. (c) p∞= 10 MPa.

Figure 4.6: Minimum bubble volume for an inertially collapsing bubble in a channel at three
different driving pressures. Filled symbols: channel; empty symbols: single wall.

have a positive bubble migration distance. For non-zero initial bubble locations, the bubble col-

lapses asymmetrically and a single re-entrant jet is observed. As the initial bubble location is set

closer to the wall, the migration distance tends to that for a single wall configuration. This result

is expected as the initially released rarefaction travels a longer distance toward the left wall before

interacting with the bubble; in the limiting case of the left wall being infinitely far from the bubble

(or far enough that the rarefaction does not have time to travel there and back before collapse), the

problem reduces to that of a single bubble collapsing near a single wall.

The intensity of the bubble collapse can be quantified by the minimum bubble volume which is

achieved at collapse. Fig. 4.6 shows the minimum bubble volume for the different driving pressures

for the channel and single wall configurations. The smallest minimum volume is achieved under

symmetric collapse (xC0 = 0). This is attributed to the increased inertia from the two impinging

re-entrant jets (Figs. 4.3) further compressing the bubble into a smaller volume relative to the

single re-entrant jets. For 0 ≤ xC0 < 0.5, the minimum bubble volumes achieved in the channel

are smaller than those in the single wall configurations. For xC0 > 0.5, the trend is inverted with

the smaller minimum volumes being achieved for the single wall configuration. This is due to

the bubbles in the channel configuration feeling the effect of the reflected leftward propagating

rarefaction, which reduces the intensity of the collapse.
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(a) Left wall. (b) Right wall.

Figure 4.7: Maximum pressures for the left and right walls for an inertially collapsing bubble at
three different driving pressures. Red symbols: 2 MPa; green symbols: 5 MPa; blue symbols: 10
MPa. Filled symbols: channel; empty symbols: single wall.

4.5.3 Maximum Pressures on the Channel Walls

The maximum pressures experienced at the channel wall are considered as they are indicative of

the impact loads driving cavitation erosion and shown in Fig. 4.7. Except for the xC0 case, the

maximum pressures at the left channel wall are significantly lower than those at the right wall. As

evidenced in Fig. 6.6, which shows that the minimum volume is smallest for the more symmetric

collapse, the collapse pressure is highest for stand-off distances close to xC0 = 0. However, the

dependence of the maximum wall pressure on initial stand-off distance indicates that the dominant

factor for determining the wall pressure is the location of the bubble at collapse. The single wall

configuration yields higher maximum pressures at the right wall than those in the channel. This

result is expected for xC0 > 0.5 as bubble minimum volume is smaller for single wall configura-

tion than in the channel (see Fig. 4.6). For cases with xC0 ≤ 0.5, the channel configuration yields

more violent collapses and stronger outward-propagating shocks than the single wall configura-

tion. However, the rarefactions trapped in the channel limit the collapse intensity (see Fig. 4.6) and,

therefore, the strength of the emitted water-hammer shock at the right wall relative to the single

wall configuration. While the confined geometry leads to highly-focused collapses that are more

violent than their single wall counterpart for cases xC0 ≤ 0.5, the trapped rarefaction waves lead to
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Figure 4.8: Maximum pressures for the left and right walls for an inertially collapsing bubble at
three different driving pressures. Red symbols: 2 MPa; green symbols: 5 MPa; blue symbols: 10
MPa. Filled symbols: channel; empty symbols: single wall.

lower maximum pressures at the right channel wall for all xC0 relative to the single wall configura-

tion. Fig. 4.8 shows the maximum pressures nondimensionalized by the scaling developed by Beig

et al. (2018) with the results appearing to collapse to the same single curve as that for the single

wall configuration. The maximum pressures are nondimensionalized by ρlal(∆p/ρl)1/2, where ρl

and al are the density of water and water sound speed, respectively, and ∆p = p∞ − pvapor. More-

over, the maximum pressure at the wall decays as 1/(1− xC0) which was also shown by Johnsen &

Colonius (2009a).

4.5.4 Channel Width Dependence on the Inertial Bubble Collapse Dynamics

The results provided above demonstrate that for a confinement ratio R0/W = 0.25, the initial lo-

cation of the bubble in the channel has an effect of the dynamics relative to the single wall. We

now investigate the effect of confinement by varying the channel width, i.e., W, to determine the

confinement ratio at which the dynamics achieve the single wall results. Such knowledge provide

a criterion at which point confinement effects need not be considered when developing cavitation-

induced damage mitigation strategies. The initial bubble centroid location and driving pressure

are fixed to the baseline values, i.e., xC0 = 0.75 and p∞ = 5 MPa. Fig. 4.9 shows the bubble

centroid migration distance and minimum bubble volume achieved at collapse. Expected results
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(a) Bubble migration distance. (b) Minimum bubble volume.

Figure 4.9: Bubble centroid location at collapse and minimum bubble volume of an inertially
collapsing bubble for various channel widths. Black dotted line: single wall bubble collapse.

are achieved; as the channel width increases, the migration distance and minimum bubble vol-

ume asymptotically approach the value observed in the single wall configuration. Additionally, for

channel widths W > 8 × R0, the leftward rarefaction from the driving pressure and shock from the

collapse no longer have an appreciable effect on the collapse dynamics. This is attributed to the

rarefactions waves not having enough time to travel to the left wall and reflect back onto the bubble

by the time of collapse. Moreover, the bubble migration and minimum volume increase as the con-

finement, R0/W, increases which is attributed to increasing symmetry in the initial configuration

leading to a more intense collapse as seen in the W = 4 cases (see Figs. 4.5 and 4.6). Fig. 4.10

shows the maximum pressures on the channel walls. On the left channel wall, the expected 1/r

decay is achieved as the water-hammer shock traverses longer channel distances. The maximum

pressures at the right channel wall demonstrate similar behavior as the bubble dynamics results in

Fig. 4.9 and additional simulations for longer channel widths will need to be studied.

4.6 Conclusions

The effect of confinement on dynamics of inertially collapsing bubbles and the mechanisms that

lead to cavitation erosion are not well understood. We conducted numerical simulations to gain
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(a) Left wall. (b) Right wall.

Figure 4.10: Maximum pressure at the left and right walls for various channel widths. Black dotted
line: single wall bubble collapse.

insights into the effect of confinement for a single inertially collapsing bubble in a channel. We

leveraged the numerical algorithm of Beig et al. (2018) and characterized its performance to com-

pare quantities of interest for two configurations (channel and single wall) as parameters of interest

(bubble centroid initial location, driving pressure, channel width) were varied. Differences were

observed in the bubble migration distance and volume at collapse between the single wall and

channel wall configuration. For xC0 = 0, channel configuration exhibit the smallest volume due

to the impingement of two re-entrant jets increasing the bubble compression and intensifying the

collapse. At xC0 = 0.5, an inversion of the minimum bubble volume at collapse between the

channel and single wall configures was observed. This was attributed to the trapped rarefaction

waves (tension) in the channel decreasing the inertia (compression) driving the collapse. Similar

behavior occurred for the maximum pressures at the right channel wall and the scaling developed

by Beig et al. (2018) for the single wall holds for a channel as well. We observed that for widths

W > 8 × R0 the effect of confinement diminishes significantly and approaches the single wall con-

figuration values. This is attributed to the rarefaction wave from the Rayleigh collapse not having

sufficient time due to the increased distance to travel to the left wall and reflect back onto the bub-

ble to enhance the collapse intensity. Future studies will examine the appropriate scaling relations

to predict pressures and on channel surfaces.
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CHAPTER 5

Shock-induced collapse as a mechanism enhancing

stone comminution in extracorporeal shock wave

lithotripsy

5.1 Introduction

Cavitation bubble dynamics plays an important role in a number of cavitation-based biomedical ul-

trasound procedures. Extracorporeal shock wave lithotripsy (ESWL) is a non-invasive ultrasound

therapy tool used to fractionate kidney stones (Lubock, 1989). Shock waves are generated outside

the body and focused to fragment kidney stones to the extent that they can then be passed by the

renal system (Coleman et al., 1987; Sass et al., 1991). A common ESWL waveform consists of a

positive pressure peak (a shock) followed by a rarefaction, which reaches ∼10 MPa in tension. The

peak pressures used in practice are ∼40 MPa (Coleman et al., 1987; Zhu et al., 2002). The tensile

region generates cavitation bubbles along the kidney stone surface, which grow and collapse. Two

primary stone comminution mechanisms have been proposed based on experimental observations:

(i) the tensile stresses generated from the reflected shock waves within the stone leading to spal-

lation, and (ii) cavitation erosion fatiguing and leading to material failure (Lubock, 1989; Crum,

1988; Zhong et al., 1993; Brujan, 2004; Weinberg & Ortiz, 2009). Moreover, experiments by Zhu

et al. (2002) in water and castor oil demonstrated that the combined effect of the tensile stress wave

and the cavitation produce the most effective comminution (see Fig. 1.3).
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Numerical simulations have been used to gain insights into stone communition mechanisms.

To determine the tensile stress leading to spallation inside the stone, studies have focused on the

wave propagation inside the stone to determine how and where stresses form inside the stone (Da-

hake & Gracewski, 1997a,b; Mihradi et al., 2004; Cleveland & Sapozhnikov, 2005; Weinberg &

Ortiz, 2009). These solvers, however, were designed to represent the wave dynamics and small

deformations, and do not take into account the interaction between the shock wave and cavitation

bubbles along the surface of the stone. A bubble cloud model has been used to study the pressure

loadings of the stone (Krimmel et al., 2010) from the bubble collapses by coupling the fluid dy-

namics results with the solids mechanics solver of Cleveland & Sapozhnikov (2005). However,

this study used a bubble cloud model that neglects the asymmetric collapses bubbles undergo near

rigid objects (Tanguay, 2004). Direct simulations by Johnsen & Colonius (2008) were used to

study shock-bubble interaction by modeling the stone as a rigid wall. These simulations accounted

for the asymmetric collapse of the bubble and the subsequent effects (i.e., re-entrant jet and emit-

ted water-hammer shock wave). In a separate study, these results were coupled with the solver

of Cleveland & Sapozhnikov (2005) to determine the wave propagation of inside stone using as a

results from the bubble collapse near the wall (Kim et al., 2014). However, the wave interactions

(i.e., transmission and reflections) between stone and the bubble and their effect on kidney stone

comminution has yet to be studied. By leveraging our novel numerical described in Chapter 2 (Ro-

driguez & Johnsen, 2018), novel insights are obtained on the interplay of these wave interactions

and their role in kidney stone comminution.

The objective of this chapter is to study the bubble and wave dynamics of a shock-bubble

interaction near a model kidney stone. We leverage our numerical model to conduct 2D numerical

simulations to investigate the bubble dynamics and wave propagation in ESWL by studying shock-

induced bubble collapse near a model kidney stone. The effect of different model kidney stone

sizes and bubble location stand-off distances on the maximum principal stress in the stone are

investigated. Moreover, an augmentation of the potential for material failure when the cavitation

bubble is present is achieved relative a problem with no bubble present.
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5.2 Single-bubble Collapse Near a Model Kidney Stone

5.2.1 Problem Set-up

We consider the interaction of a shock wave with an air bubble adjacent to a model kidney stone.

For simplicity and by analogy to comparisons to experiments in Chapter 2, we consider a two-

dimensional version of the problem, in which the bubble is cylindrical, as is the model kidney

stone. The schematic of this set-up is presented in Fig. 5.1, inspired from ESWL experiments

by (Pishchalnikov et al., 2003) and numerical simulations (Cleveland & Sapozhnikov, 2005). The

domain size is set such that there are at least three initial bubble radii from the closest material

interface. The initial bubble radius is Ra = 300 µm and is initialized at a stand-off distance H/Ra

from the proximal side of the stone. The initial model kidney stone radius is Rs. We model the

lithotripsy wave as a shock wave with a post-shock pressure of 30.4 MPa, which is consistent

with amplitudes used in practice (Coleman et al., 1987; Pishchalnikov et al., 2003). For sim-

plicity, we examine the role of the peak pressure of the lithotripsy wave, known to produce high

pressures (Johnsen & Colonius, 2008, 2009a), and neglect the rarefaction at the tail of the wave.

The ambient temperature is 300K and the shock is initialized with the Rankine-Hugoniot condi-

tions. Using our numerical framework, the stone is modeled as a linear elastic solid with material

properties within the ranges reported by Zhong et al. (1993) for kidney stones (Table 5.1). The

thermal conductivity of the model kidney stone is set to κ = 0.58 W/(K m). It is known that as

the comminution of the stone progresses, the effectiveness of the lithotriper shock diminishes and

the cavitation is hypothesized to dominate as leading to stone comminution. Thus, we explore

five different stone sizes, from Rs = 1 mm (small stone) to 2 mm (large stone) (Johnsen & Colo-

nius, 2009b). From studies of bubble collapse near a rigid wall, the initial proximity of the bubble

increases the likelihood of damage from the re-entrant jet and water-hammer, thus, five different

stand-off distances H/Ra are also considered. As a baseline case, H/Ra = 2 and Rs/Ra = 5 with

the air bubble present. The resolution of the baseline case is 240 points per initial stone radius,
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Figure 5.1: Problem set-up for the shock-induced collapse of an initially cylindrical gas bubble
near a model kidney stone.

which is sufficient to resolve the wave dynamics. As limiting cases, we consider the same problem

with no bubble (shock wave interaction with a kidney stone), as well as the same problem with no

model kidney stone (shock-bubble interaction). The resolution is 48 points per initial air bubble

radius. While higher resolutions are desirable to achieve convergence in the strength of the emitted

shock wave, the resolution provided obtain comparable collapse strengths relative those discussed

in §6.2 which are resolved.

5.2.2 Results

Fig. 5.2 shows the time evolution of pressure and numerical Schlieren contours of Chang & Liou

(2007); Kitamura et al. (2014) for the baseline case, the same problem with no bubble, and the same

Table 5.1: Material properties corresponding to the materials used for simulations of shock-induced
bubble collapse near a model kidney stone described by the NASG EOS.

Property Air Water Model kidney stone
ρ [kg/m3] 1 1000 1700
cL [m/s] 376 1570 3500

n 1.4 1.19 2.35
b[m3/kg×10−4] 0 6.61 0

B[Pa×109] 0 0.702 5.45
q [kJ/kg] 0 -1.167 -1.167

c [kJ/kg·K] 0.718 4.167 4.167
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(a) t = 1.7 µs (b) t = 3.3 µs (c) t = 4.3 µs

(d) t = 1.7 µs (e) t = 3.3 µs (f) t = 4.3 µs

(g) t = 1.7 µs (h) t = 3.3 µs (i) t = 4.3 µs

Figure 5.2: Pressure (top) and numerical Schlieren (bottom) contours for the 2D shock-model
kidney stone interaction problem with (top row), without a bubble (middle row), and without the
model kidney stone (bottom row). Contour lines represent the material interface approximate
locations.

problem with no kidney stone. After inducing the implosion of the bubble, the incident shock is

partially transmitted into the model kidney stone and partially reflected to the surroundings (frames

a and d). Due to the stone’s higher sound speed relative to water, the transmitted shock wave

reaches the distal side of the stone while the incident shock wave has propagated over a distance
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of approximately one initial radius in water. The patterns of wave propagation show differences

depending on whether a bubble is present or not (frame g). Upon reaching the distal side of

the stone, the shock wave is partially transmitted to the water and partially reflected as a tension

wave, thus forming a cusp. A four-shock TRR configuration is observed (Henderson et al., 1991).

This configuration involves a rarefaction propagating behind the leading shock wave and inside

the stone. A similar phenomenon is observed in the simulations by Cleveland & Sapozhnikov

(2005), namely, what is referred to as surface waves along the equatorial surface. The bubble

collapses, forming a re-entrant jet, and subsequently implodes, emitting an outward-propagating

water-hammer shock wave partially transmitted into the stone (frame b). The water-hammer shock

propagates into the stone and is at the center of the stone in frame b. The water-hammer shock

wave also propagates in water along the stone surface as the collapsed bubble forms into a pair of

vortex lines convecting towards the stone. In the absence of the bubble, the shock waves trapped

within the stone continue to undergo internal reflections and dampen over time (frames e and f). In

the absence of the stone, the bubble collapse is weaker and the shock wave propagates radially out

of the domain (frames h and i).

To quantify the effect of the shock-bubble interaction on the stresses experienced in the stone,

the principal stresses are measured to characterize failure for brittle materials such as kidney

stones (Crum, 1988; Zhu et al., 2002). In 2D planar Cartesian coordinates, the principal stresses

are

σ1 =σ11cos2(θp) + σ22sin2(θp) + 2τ(e)
12 cos(θp)sin(θp) (5.1a)

σ2 =σ11sin2(θp) + σ22cos2(θp) − 2τ(e)
12 cos(θp)sin(θp). (5.1b)

where the rotation angle to the current basis is

θp =
1
2

arctan

 2τ(e)
12

σ11 − σ22

 , (5.2)

and σkk = −p+τ(e)
kk and τ(e)

i j is the elastic stress contribution of the Cauchy stress tensor, and i, j = 1
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and 2. We note that a positive sign for a stress component corresponds to tension. Another quantity

of interest is the maximum and minimum principal stress,

σmax,min =
σ11 + σ22

2
±

√(
σ11 − σ22

2

)2
+ τ(e)

12 , (5.3)

and maximum shear stress,

τmax =
σmax − σmin

2
. (5.4)

The Von Mises stress has also been used as a failure criterion for lithotripsy simulations (Cleveland

& Sapozhnikov, 2005), however, this criterion is primarily used for ductile materials so, for brevity,

it is not considered for this study. In addition to the maximum principal stresses, we focus on the

maximum principal stresses in tension,

σT,max = σmax if σmax > 0. (5.5)

Fig. 5.3 shows the maximum principal stress in the 1-direction and maximum shear stress for

the cases with (frames a–c) and without (frames d–f) the air bubble adjacent to the model stone.

As the incident shock wave traverses the stone interface, a rarefaction (tension wave) is observed

in both the maximum principal and shear stress (frame a and d). The transmitted shock wave

propagates to the distal side of the stone and is reflected as a rarefaction (frames b and e). The

water-hammer shock wave from the bubble collapse produces a region of maximum shear stress

on the proximal side of the stone (frame b). This water-hammer shock wave then propagates to

the distal side of the stone and is reflected as a rarefaction with high tension and shear (frame c).

For the case with no bubble present, the trapped wave in the stone dampens as it reflects from the

proximal and distal sides and does not increase the maximum principal and shear stresses (frame

f). The shock-bubble interaction with no kidney stone shows the compression wave propagating

through the domain and not exhibiting tensile stresses (frames g–i). The maximum values of these

stresses are shown in the temporal evolution of the maximum tensile principal stress for both with
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(a) t = 1.7 µs (b) t = 3.3 µs (c) t = 4.3 µs

(d) t = 1.7 µs (e) t = 3.3 µs (f) t = 4.3 µs

(g) t = 1.7 µs (h) t = 3.3 µs (i) t = 4.3 µs

Figure 5.3: Maximum principal stress in the 1-direction (top) and maximum shear stress (bottom)
contours for the 2D shock-model kidney stone interaction problem with (top row), without a bubble
(middle row), and without the model kidney stone (bottom row). Contour lines represent the
material interface approximate locations.

and without the bubble in Fig. 5.4. The three peaks in the maximum principal stress in tension

correspond to the three key events in the flow: (i) the incident shock wave propagation along the

stone surface t∼1–2.5 µs, (ii) the water-hammer shock wave from the bubble partially transmission

into the stone t∼2.5–3.5 µs , and (iii) water-hammer shock wave reflection as a rarefaction wave
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Figure 5.4: Time evolution of the maximum pressure and principal stress in the kidney model
object for shock-induced bubble collapse (black solid line) and shock-model stone (red dotted
line) cases.

in the stone t∼3.5–5 µs. Comparing the maximum tensile principal stresses evolution with and

without the bubble, the presence of the bubble generates higher maximum tensile principal stresses

relative to the shock-model kidney stone interaction. This is due to the rarefaction from the incident

shock-bubble interaction, augmenting the tension in the TRR configuration. Moreover, the wave-

bubble interactions near the stone augment the tensile stress response and likelihood of material

failure also observed in experiments (Crum, 1988; Sass et al., 1991; Holmer et al., 1991; Zhu et al.,

2002).

The relative importance of these three peaks is expected to depend on the size of the stone.

The effect of the stone size and initial air bubble stand-off distance on the maximum bubble re-

entrant jet velocity, a measure of the bubble collapse violence, is shown in Fig. 5.5. For compari-

son, the value corresponding to the shock-induced bubble collapse in a free field is also included.

Higher maximum re-entrant jet velocities are achieved with the bubble collapsing near the stone

due impedance mismatch between the water and stone partially reflecting the incident shock wave

towards the air bubble furthering its collapse. The maximum re-entrant jet velocity has no observ-

able dependence on the stone size. As H/Ra increased, the jet velocity decreases asymptotically to

the results observed in collapse in a free field.
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(a) Rs/Ra dependence, H/Ra = 2. (b) H/Ra dependence, Rs/Ra = 5.

Figure 5.5: Maximum bubble jet for different model kidney stone sizes, Rs/Ra, and bubble stand-
off distances from the stone, H/Ra. Black squares: shock-induced bubble collapse near a stone,
blue line: shock-induced bubble collapse in a free field.

The maximum tensile principal stresses dependence on stone size and initial bubble stand-off

distance is shown in Figs. 5.6 and 5.7, respectively, for the three peaks identified in Fig. 5.4. The

shock-kidney stone interaction results are presented for comparison. The incident shock wave

generates the largest maximum tensile principal stress experienced throughout the simulation, fol-

lowed by the water-hammer shock wave emitted by the bubble and its reflected rarefaction wave.

However, the presence of the bubble leads to a smaller tensile response relative to having only

the shock-stone interaction for kidney stones smaller than Rs/Ra ≈ 4.2. This is due to the bubble

shielding the model kidney stone from the incident rarefaction wave. A similar trend is observed

for the reflected rarefaction and emitted shock. Minimal dependence of the maximum tensile re-

sponse on the initial bubble stand-off distance is observed for the incident and water-hammer shock

wave time periods. The closer the bubble to the stone, the stronger the emitted shock wave due

to the partially reflected shock wave further compressing the bubble as it collapses. However, in

these cases, most of the water-hammer shock wave from the bubble collapse is reflected towards

the bubble and does not propagate along the stone surface; subsequently, this leads to a weaker

maximum tensile stress in the stone. These results provide insights on the interplay between the

spallation and bubble collapse wave dynamics achieve preferential gains towards breaking up large
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Figure 5.6: Peak values of the maximum principal stress in tension at three different times for
five different model kidney stone sizes, Rs/Ra. H/Ra = 2. Black squares: shock-induced bubble
collapse, red line: shock-model kidney stone interaction (no bubble case).
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Figure 5.7: Peak values of the maximum principal stress in tension at three different times for
five different air bubble stand-off distances, H/Ra, from the model kidney stone. Rs/Ra = 5. Black
squares: shock-induced bubble collapse, red line: shock-model kidney stone interaction (no bubble
case).

stones. These gains diminish for stones sizes Rs/Ra < 4.

5.3 Conclusions

To provide a better understanding of cavitation erosion in ESWL, we carried out high-resolution

numerical simulations of 2D shock-induced collapse of an initially cylindrical gas bubble near a

model kidney stone. We characterized the wave and bubble dynamics of shock-induced collapse

near a model kidney stone for various stone sizes and initial bubble location stand-off distances
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modeling extracorporeal shock wave lithotripsy. The peaks in maximum tensile principal stresses

were identified with the three events in the flow. Significant increases in the maximum tensile

principal stresses in the model stone were observed when a nearby bubble is present relative to a

shock-stone configuration. This increase in the maximum tensile principle stress depends on the

model stone size with no appreciable gain observed for Rs/Ra < 4. The gain was found to be

insensitive to initial bubble location stand- off distance from the stone. These results support, in

part, the three stage process of kidney stone comminution process detailed in Johnsen & Colonius

(2009b). In this process, the shock wave leads the kidney stone comminution process for larger

stones (i.e., Rs > 2 mm). An important result is that cavitation bubbles near the kidney stones

amplify the potential for spallation from the shock wave. For smaller stones, the potential for

spallation via shock wave diminishes due to the shielding from the incident shock wave. In these

instances, the cavitation damage (e.g., the re-entrant jet) dominate the kidney stone comminution.

Different shapes for the model stone and relevant lithotripsy wave forms to interact with the stone

and induce the bubble collapse will be the subject of future studies. Moreover, these results are

expected to change for 3D simulations as the incident wave, depending on the model kidney stone

size and shape, can be highly focused within the stone.
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CHAPTER 6

Effectiveness of elastomeric coatings in mitigating

shocks produced by bubble collapse

Portions of this chapter are adapted from Alahyari Beig et al. (2016).

6.1 Introduction

Flows in naval engineering involve low-Mach number regions in the liquid, while local Mach num-

bers can be supersonic in gas/liquid mixture regions where the sound speed can be as low as tens

of meters per second (Reisman et al., 1998; Gnanaskandan & Mahesh, 2015; Ganesh et al., 2016).

One of the important consequences of cavitation is the structural damage to neighboring surfaces

due to bubble collapse (Kornfeld & Suvorov, 1944; Philipp & Lauterborn, 1998; Lindau & Lauter-

born, 2003; Franc et al., 2012). The structural damage on these surfaces or coatings degrades the

performance and need for require or replacement of critical components. Cavitation erosion to

hard, ductile materials is relatively well understood. The modern description of cavitation erosion

is based on a sequence of four steps (Kim et al., 2014): production of small-scale vapor structures,

impact loads due to bubble collapse, pitting, and failure. According to this model, cavitation ero-

sion originates from the impact loading produced by the local bubble dynamics on the material.

It is unclear whether this description holds for cavitation damage to compliant, elastomeric ma-

terials, such as polyurea, proposed and studied for blast mitigation (Amini et al., 2010; Grujicic

et al., 2012; Samiee et al., 2013) and in naval hydrodynamic applications. One challenge lies in
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the non-trivial implementation of constitutive models describing the material that include effects

such as (nonlinear) elasticity, history and viscosity. Studies have shown that these materials can

have a viscoelastic response (Qiao et al., 2011). The propagation of shock and rarefaction waves

in a multiphase medium interacting with these neighboring soft materials results in a multiscale

and multi-physics problem at the intersection of fluid and solid dynamics. Although this problem

has been investigated over the past years, effective mitigation strategies have yet to be developed.

Numerical simulations have been used to complement analytical and experimental studies of

bubble dynamics and cavitation erosion. Early simulations of the bubble dynamics implemented

incompressible approaches to predict the initial behavior of the bubble (Blake & Gibson, 1987).

However, such methods break down in the stages of the collapse when compressibility effects

become important. Recently, researchers have been focusing on developing algorithms capable

of simulating these flows by solving the Euler equations in a compressible framework to handle

shocks, contacts and material interfaces (Ball et al., 2000; Nourgaliev et al., 2006; Johnsen & Colo-

nius, 2006; Hawker & Ventikos, 2012; Coralic & Colonius, 2014). These algorithms tend to be

computationally expensive and challenging in their implementation. They also bring about other

numerical difficulties, such as the generation of pressure and temperature oscillations across the

material discontinuities for interfacial flows, which limit the usability of these methods (Abgrall,

1996; Shyue, 1998; Johnsen, 2012; Alahyari Beig & Johnsen, 2015). Viscoelasticity introduces

further complications. Numerical models, based on the Rayleigh-Plesset equation (Fogler & God-

dard, 1970; Tanasawa & Yang, 1970; Yang & Church, 2005; Hua & Johnsen, 2013; Gaudron et al.,

2015) have been developed to study the bubble dynamics near or in viscoelastic materials. How-

ever, these approaches are limited by the assumptions that the bubble dynamics are spherically

symmetric and that the near-field flow is incompressible. These assumptions break down in the

last stages of the asymmetric collapse of a gas bubble near a compliant object/coating. To over-

come these numerical modeling issues, we leverage our novel numerical multiphase compressible

model described in Chapter 2 (Rodriguez & Johnsen, 2018), to conduct high-order accurate 2D

simulations of multiphase flows involving gases, liquids and solids.
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The objective of the present work is to better understand the mechanisms of cavitation-induced

damage near soft materials/coatings relevant to naval hydrodynamic applications. To determine

the bubble, wave, and material dynamics, we consider the shock-induced collapse of a bubble and

bubble pair near an elastomeric coating. In addition, we investigate the effects of bubble-bubble

interactions on dynamics of a collapsing pair of bubbles. For the problem of interest, it is assumed

that that the compliant object’s deformations are infinitesimally small from the pressure load of an

individual bubble collapse. Moreover, the bubbles collapse due to the heterogeneous environment

(e.g., shocks from neighboring collapsing bubbles), for simplicity we consider a shock to induce

the bubble collapse.

6.2 Single-Bubble Collapse Near a Compliant Object

6.2.1 Problem Set-up

We consider the collapse of a cylindrical air bubble of Ro in water, located a distance δ near a

compliant object of thickness T covering a perfectly rigid solid. We define the total distance

H = δ+T . The problem setup is shown in Fig. 6.1, and is inspired from the experiments of Gibson

& Blake (1982); Swantek & Austin (2010). Due to the symmetry, the top half of the domain is

simulated with a symmetric boundary condition along the bottom. The initial stand-off distances

from the bubble center to the neighboring surface are δ/Ro = [1.125, 1.875]. The compliant object

has a baseline thickness of T/Ro = 0.75 with a perfectly-rigid wall boundary condition at the end of

the object. The initial bubble radius of 100 µm is used. We use ambient temperature 300 K and the

shock is initialized using the appropriate Rankine-Hugoniot conditions. The post-shock pressure

is ps, ambient pressure po and PR = ps/po = 300. Two media are considered for the compliant

object: (i) water as a baseline case and (ii) polyurea, an elastomeric material. The numerical

approach detailed in Chapter 2 with the Kelvin-Voigt model is used to compute this problem. The

polyurea is modeled as a Kelvin-Voigt solid using the following approximated property values:

ρ = 1190 kg/m3, κ = 0.58 W/m/K, µb = µs = 0.5 Pa s. We use a uniform Cartesian grid with
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Figure 6.1: Problem set-up for the shock-induced collapse of an initially cylindrical gas bubble
near an elastomeric coating. The coordinate system origin is set at the rigid wall (black arrow).

the resolution of 672 × 384 corresponding to 128 cells per initial bubble radius. The Noble-Abel

Stiffened Gas equation of state is used to model the materials and properties used for this section

and §6.3 are summarized in Table 6.1.

6.2.2 Results

Fig. 6.2 shows different contours of the bubble collapsing and its interaction with an elastomeric

coating (polyurea in this instance). In the first frame (frame a), the right-moving shock has inter-

acted with the bubble. Due to the air being acoustically softer than water, the shock is partially

reflected as a rarefaction wave and partially transmitted as a shock into the bubble. The shock

then interacts with the elastomeric coating as the bubble begins to collapse (frame b). Due to the

acoustic impedance mismatch between the water and the elastomeric coating, a portion of the in-

Table 6.1: Material properties corresponding to the materials used for simulations of shock-induced
bubble collapse near an elastomeric object described by the stiffened-gas EOS.

Property Air Water Polyurea
n 1.4 2.35 2.35

B [Pa×109] 0 0.7 2.1
b [m3/kg×10−4] 0 6.61 0

c [kJ/kg K] 0.718 1.816 4.34
q [kJ/kg] 0 −1.18 −1.17
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coming shock is reflected towards the bubble as a shock and part is transmitted into the elastomeric

coating. The transmitted shock is subsequently reflected by the wall towards the bubble, thus dou-

bling the pressure. As the bubble collapses, the transmitted and reflected shock interacts with the

bubble, thus enhancing the collapse (frame c). The surrounding water and elastomeric coating

are entrained by this converging flow (frame d). The bubble collapses forming a re-entrant jet to-

wards the elastomeric coating (frame e). An outward propagating water-hammer shock is emitted

into the surroundings and interacting with elastomeric coating (frames e and f). After its collapse,

the bubble takes the form of a pair of lines converging towards the wall and further deforms the

elastomeric coating (frame f).

We first investigate the wave dynamics due to the coating by simulating the 1D version of

the problem in Fig. 6.1 without the bubble. Fig. 6.3 shows the X-T diagram for the shock wave

interacting with elastomeric coating and rigid wall for the domain in Fig. 6.1 without the bubble.

For comparison, the X-T diagrams of the baseline configuration with the rigid wall located at

H = δ + T and H = δ are also presented. The shock wave-coating-rigid wall configuration shows

the partially reflected and partially transmitted wave from the shock-coating interaction and the

transmitted wave reflection from the rigid wall. For the baseline configuration with the rigid wall

at H = δ + T, the shock is reflected from the rigid wall later in time relative to the shock wave-

coating-rigid wall configuration. This is due to the shock wave propagating faster in the coating

given its higher sound speed than water. For the baseline case with the rigid wall at H = δ, the

reflected shock reflects from the rigid wall and has the same trajectory as the partially reflected

shock wave in the shock wave-coating-rigid wall configuration.

To investigate the bubble dynamics, the quantities of interest are the re-entrant jet velocity and

bubble volume at collapse. Both quantities are measures of the strength of the outward-propagating

water-hammer shock wave that interacts with the rigid wall. The shock wave then produces max-

imum pressures on the wall which are representative of the impact loads leading to material loss

and pitting (Kim et al., 2014). Fig. 6.4 shows the maximum bubble jet velocities normalized by the

characteristic speed, i.e.,
√

∆p
ρl

, defined by Plesset & Chapman (1971) based on the initial distance
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(a) time = 100 ns (b) time = 220 ns (c) time = 320 ns

(d) time = 640 ns (e) time = 880 ns (f) time = 1.06 µs

Figure 6.2: Pressure (top) and numerical Schlieren (bottom) contours for the 2D shock-induced
bubble collapse near an elastomeric coating. Contour lines represent the material interface approx-
imate locations. Black dotted line represents the initial bubble location.

to the rigid wall, H, and initial distance to the nearest object, δ. For the same initial distance to

the rigid wall, the bubble re-entrant jet velocities are higher with the coating relative to without the

elastomeric coating. However, since the partially reflected shock wave interacts with the bubble

in a similar fashion as the H = δ case in Fig. 6.3, the bubble dynamics are expected to exhibit

the same behavior when considering the distance to the nearest object, i.e., δ as shown in the sec-

ond subfigure of Fig. 6.4. As the bubble’s initial location is closer to the nearest boundary, the

maximum re-entrant jet velocity approach similar values. The slope of the maximum re-entrant

jet velocities for the problem with the coating is steeper than those of the baseline configuration.

While further investigation is needed, it is expected that as the bubble is initially placed farther

away from the coating, the trailing rarefaction waves behind the reflected shocks that interact with

the bubble (see frame c in Fig. 6.2) inhibit the re-entrant jet formation more than the case without

the elastomeric coating.
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(a) Shock-coating-wall. (b) Shock-wall, H = δ + T. (c) Shock-wall, H = δ.

Figure 6.3: X-T diagrams for a shock-wall interaction with and without the coating in the absence
of the bubble.

The bubble volumes at collapse for the baseline and elastomeric coating configurations are

shown in Fig. 6.5. For both configurations, as the bubble is initialized closer to rigid wall, the

bubble volume at collapse increases. For the baseline configuration, trailing rarefaction waves from

the reflected shocks inhibit the bubble collapse until the cases where the bubble is placed H/Ro <

1.125. For these cases, the bubble volume decreases. For the elastomeric coating configuration,

the minimum bubble volume is further inhibited by the elastomeric coating’s elasticity resisting the

entrainment of fluid as the bubble collapses. However, when considering the closest boundary (δ),

the minimum bubble volumes are less than those of the exhibited for the baseline configuration.

This is attributed to the partially transmitted wave into the elastomeric coating and subsequently

reflected from the rigid wall towards the bubble later in time, relative to the baseline configuration,

and furthering the collapse of the bubble.

The maximum pressures exhibited in the surrounding water and at the wall are shown in

Figs. 6.6 and 6.7, respectively. The maximum pressures are normalized by the characteristic water-

hammer pressure defined by Plesset & Chapman (1971), i.e., ρlal

√
∆p
ρl

, where ρl is the water den-
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Figure 6.4: Maximum bubble jet velocities for different initial bubble stand-off distances from the
rigid wall (left) and nearest object (right) for a 2D shock-induced bubble collapse without (blue
triangles) and with an elastomeric coating (red squares).

sity, al the water sound speed, and ∆p = ps − po. Fig. 6.6 shows the maximum pressures in the

surrounding water from the water-hammer shock for the initial bubble stand-off distances relative

to the rigid wall and the nearest object. For δ/Ro > 1.5, the maximum pressure exhibited in the

water from the water-hammer shock with the coating approaches the baseline configuration values

as the effect of the reflected incident wave diminishes. For δ/Ro < 1.5, the exhibited maximum

pressures for the baseline configuration increase due to the incident shock wave reflecting from

the rigid wall increasing the bubble re-entrant jet velocity and decreasing the bubble volume at

collapse (see Figs. 6.4 and 6.5). Despite the bubble re-entrant jet velocity increasing as the initial

bubble location approaches the elastomeric coating, the elastomeric coating’s elasticity inhibits

the bubble collapse volume as seen in Fig. 6.5 resulting in a relatively constant maximum pressure

exhibited in the water due to the water-hammer shock. For Fig. 6.7, the location of the bubble

collapse is considered instead of the initial bubble location since an expected ∼ 1/r trend for the

maximum pressure exhibited at the wall as shown in Chapter 4 and in Beig et al. (2018). For the

baseline configuration, the expected result is achieved with the maximum wall pressures increase

as the bubble collapses closer to the wall. The maximum wall pressures for the elastomeric coating

configuration exhibit similar values as those with the coating, however, the slope of the trend is
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Figure 6.5: Bubble collapse volume for different initial bubble stand-off distances from the rigid
wall (left) and nearest object (right) for a 2D shock-induced bubble collapse without (blue trian-
gles) and with an elastomeric coating (red squares).

lower than without the coating. This result is attributed to the relatively constant maximum pres-

sures water-hammer pressures in the liquid due to the elastomeric inhibiting the bubble collapse

(see Fig. 6.7). Moreover, Fig. 6.8 shows the maximum wall pressures with varying elastomeric

coating thickness while keeping δ = 1.5. As the elastomeric coating thickness, the maximum wall

pressure increases; however, the effect is minimal. Further investigations would be needed increas-

ing the coating’s elasticity to determine the bubble collapse dependence the elasticity and resulting

maximum wall pressures with the elastomeric coating.

6.3 Collapse of a Bubble Pair Near an Elastomeric Coating

6.3.1 Problem Set-up

Although single-bubble collapse is a valuable canonical problem, cavitation erosion most com-

monly occurs due to the collapse of bubble clouds. Thus, understanding how interactions between

the bubbles affect the dynamics as well as the mechanical loads are produced on neighboring ob-

jects. At the present time, capturing the detailed bubble-bubble interactions is beyond the reach

of even the most sophisticated cloud models (Fuster & Colonius, 2011), particularly if the bubble
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Figure 6.6: Maximum water pressure for different initial bubble centroid stand-off distances from
the rigid wall (left) and nearest object (right) for a 2D shock-induced bubble collapse without (blue
triangles) and with an elastomeric coating (red squares).

dynamics are non-spherical. To investigate the effects of the presence of a second nearby bubble,

we perform 2D simulations of a bubble pair collapsing near a compliant surface. Fig. 6.9 shows

the problem setup. Two initially cylindrical air bubbles are in water with the primary bubble lo-

cated a distance δ away from the elastomeric coating of thickness T . As in §6.2, T/Ro = 0.75 and

δ/Ro = 1.5. The secondary bubble is an initial distance D from the primary bubble with an angle

φ between the line that connects the bubbles’ initial centroids and the horizon. For simplicity,

we consider the bubble pair to be monodisperse (same radii) with Ro = 500 µm and one initial

distance, D/Ro = 2.5. Only φ is varied in this study as it presents the most distinct initial bubble

pair configurations, and therefore bubble collapse dynamics, relative to varying D. Ambient tem-

perature 300K is used and the Rankine-Hugoniot conditions are used to initialize the shock. The

post-shock pressure is ps, ambient pressure po and PR = ps/po = 300. Two media are considered

for the compliant object: (i) water as a baseline case and (ii) polyurea, an elastomeric material.

The elastomeric coating is modeled as a Kelvin-Voigt solid using the properties of polyurea, an

elastomeric material, using the stiffened-gas equation of state as described in §6.2 with the mate-

rial properties in Table 6.1. We have a uniform Cartesian grid with a resolution that varies with φ

such that there is 96 cells per initial bubble radius, for example, the φ = 45◦ case has a resolution
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Figure 6.7: Maximum wall pressure for different initial bubble centroid stand-off distances from
the rigid wall (left) and nearest object (right) for a 2D shock-induced bubble collapse without (blue
triangles) and with an elastomeric coating (red squares).

ρ
∆

ρ

Figure 6.8: Maximum wall pressure for different elastomeric coating thicknesses with δ = 1.5 for
a 2D shock-induced bubble collapse.

of 673 × 745.

6.3.2 Results

Fig. 6.10 shows contours of shock-induced collapse of a bubble pair for the case with φ = 45◦.

The right-moving shock interacts with the two bubbles. First, the incident shock wave interacts

with the secondary and primary bubbles. Due to the acoustic impedance mismatch between water

and air, the shock wave is partially transmitted as a shock wave into the bubbles and partially re-

flected into the surroundings as rarefaction waves (frame a). Additionally, the incident shock wave
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Figure 6.9: Problem set-up for the shock-induced collapse of a pair of initially cylindrical gas
bubbles near an elastomeric coating.

interacts with the elastomeric coating. Since the elastomeric coating is acoustically stiffer than

water, the shock wave is partially transmitted and partially reflected as shock waves. The partially

transmitted shock wave is then reflected from the rigid wall and doubles in strength as the primary

and secondary bubbles begin to collapse (frame b). The secondary bubble collapses and produces a

re-entrant jet directed towards the primary bubble (frames c and d). Upon impact of the re-entrant

jet with the distal side, the secondary bubble emits an outward-propagating water-hammer shock

(frame d) and becomes a distorted pair of vortex lines that convects towards the primary bubble

(frames e and f). Due to its farther initial distance from the incident shock relative to the secondary

bubble, the collapse of the primary bubble takes place after the secondary bubble (frames a-d).

Two re-entrant jets form during collapse due to the combined interaction with the primary bub-

ble and the wall (frame e). The primary bubble’s resulting re-entrant jet is at approximately 45o

from the horizontal. These results are consistent with bubble pairs collapsing near a perfectly rigid

wall (Alahyari Beig, 2018). The primary bubble’s emitted water-hammer shock is substantially

stronger than that of the secondary bubble (frame e). For the elastomeric coating, the primary bub-

ble’s pair of vortex lines convects toward the coating and its impingement on the coating causes the

deformation (frame b). The primary bubble’s water-hammer shock is partially transmitted into the

elastomeric coating (frame e). This water-hammer shock is then reflected from the perfectly rigid
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(a) time = 300 ns (b) time = 400 ns (c) time = 900 ns

(d) time = 1.1 µs (e) time = 1.2 µs (f) time = 1.3 µs

Figure 6.10: Pressure (top) and numerical Schlieren (bottom) contours for the 2D shock-induced
collapse of an initially single bubble near an elastomeric coating. Contour lines represent the
material interface approximate locations. Black dotted lines represent the initial bubble locations.

wall and doubles in strength (frame f). The reflected water-hammer shock (see frame f) would

induce subsequent weaker collapses from the bubble pair. We note that the primary and secondary

bubble collapses are different from the single bubble case as both bubbles had re-directed re-entrant

jets during collapse enhancing the strength of the emitted water-shocks. Moreover, the deforma-

tion of the elastomeric coating is further sustained relative to the single bubble configuration. This

is due to the primary bubble collapsing at angle and as opposed to convecting towards the coating

in the normal direction and thereby deforming the coating towards its original configuration.

In the context of naval hydrodynamic cavitation-induced damage, the quantity of interest is

the maximum pressures exhibited in the elastomeric coating. Pressures being representative of

the impact loads that lead to pitting and material loss (Kim et al., 2014). The maximum pres-

sures as a function of φ are presented in Fig. 6.11 for the baseline configuration (water) and the

elastomeric coating configuration. For comparison, the maximum wall pressure from the single
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bubble-elastomeric coating configuration with δ = 1.5 is also presented. For φ = 90◦, the bubble

pair is aligned such that the incident shock wave interacts with the bubbles at the same time. Thus,

the bubbles collapse is synchronized and the outwardly propagating water-hammer shocks are re-

flected from the rigid wall and exhibit a similar value as the single bubble collapse value for the

baseline and elastomeric coating configurations. For φ < 90◦, the incident shock wave and bub-

ble pair interaction is desynchronized with the shock wave inducing the collapse of the secondary

bubble before the primary bubble (see Fig. 6.10 for the φ = 45◦ example). While the partially

reflected shock wave from the incident shock-elastomeric coating interaction interacts with the

bubble pair (see frame b in Fig. 6.10), the effect is minimal compared to the outward-propagating

water-hammer shock wave from the secondary bubble interacting with the primary bubble. As

a result, the secondary bubble collapses first and the emitted outward-propagating water-hammer

further strengthens the collapse of the primary bubble resulting in a higher maximum wall pres-

sure. For all φ, the baseline case (water case) exhibits a higher maximum wall pressure than

the elastomeric coating case, this result is expected due to primary bubble’s outward-propagating

water-hammer shock wave being (i) partially transmitted into the coating due to the impedance

mismatch between the elastomeric coating water and (ii) dampened from propagating the addi-

tional distance of the coating thickness. Although this is a preliminary study, we have gained

insights on the synchronization and bubble collapse enhancement based on the bubble pair’s initial

spatial configuration. This result suggests a mechanism for permanently deformation of the coat-

ing (e.g., pitting (Kim et al., 2014)) via the collapse of bubble pairs. More detailed studies will

be needed to further characterize the sustained deformation dependence on the inter-bubble pair

distance D and angle φ.

6.4 Conclusions

To provide a better understanding of cavitation erosion, we conducted numerical simulations of

2D shock-induced collapse of an initially cylindrical gas bubble near an elastomeric coating for
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Figure 6.11: Maximum wall pressure for different bubble-bubble angles from the horizontal with-
out (blue triangles) and with (red squares) the elastomeric coating with δ = 1.5. Solid black line is
the single bubble shock-induced collapse elastomeric configuration value for δ = 1.5.

different geometrical configurations. We investigated the detailed flow physics of the problem

with an emphasis on wave propagation and viscoelastic effects for bubble collapse near an elas-

tomeric coating. The acoustic impedance mismatch between the surround fluid and elastomeric

coating led to a higher re-entrant jet velocity relative to the water case surrounding the bubble.

Soon afterwards, the collapse is further strengthened by the shock wave that was reflected from

the perfectly rigid wall. The synchronization and amplification of these two shock waves depends

on the elastomeric coating thickness and initial bubble radius. The initial deformation is due to

conservation of mass as the bubble entrains the surroundings as it collapses. The re-entrant jet and

convecting pair of vortex lines then contributes to the material returning to its original state. Addi-

tionally, we simulated the shock-induced collapse of a bubble pair near an elastomeric coating. We

demonstrated that strong bubble-bubble interactions may significantly affect the dynamics of the

flow: amplify pressures produced at the collapse. As a result, the elastomeric coating deformation

from the surface was significantly larger and more sustained than the single bubble case. Future

parametric studies will enable further modeling efforts for polydisperse and monodisperse bubble

clouds near compliant objects and elastomeric coatings and similar soft materials.
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CHAPTER 7

Conclusions

This chapter summarizes the research objectives, contributions to the field, and future research

directions.

7.1 Summary

The two objectives of this thesis were: (i) to develop a high-order accurate, interface-capturing

compressible multiphase numerical model with linear viscoelasticity to study flows at all speeds

and involving non-spherical bubble dynamics, and (ii) to better understand cavitation damage by

investigating bubble collapse dynamics and neighboring rigid/soft objects for confined cavitation,

ultrasound-induced cavitation, and cavitation in naval engineering applications. The following is a

summary of Chapter 2 through 6 in the thesis.

Two contributions were made to the field in achieving the first objective.

1. We introduce a novel Eulerian approach for numerical simulations of wave propagation in

heterogeneous viscoelastic media, with application to compressible materials described by

linear constitutive relations, specifically Maxwell, Kelvin-Voigt or generalized Zener mod-

els Rodriguez & Johnsen (2018).

2. We extended our numerical approach to the AUSM scheme which is capable of handling all

speed flows Rodriguez et al. (2018).
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This numerical framework is then leveraged to study three thematic areas of cavitation damage of

interest and achieve our second objective:

1. We conducted numerical computations to gain fundamental quantitative insights on the effect

of confinement for an inertially collapsing bubble in a channel. The bubble centroid initial

location within the channel, driving pressure, and channel width were varied.

2. To gain insights into the cavitation erosion mechanisms in extracorporeal shock wave lithotripsy,

we conducted numerical simulations of 2D shock-induced collapse of an initially cylin-

drical gas bubble near a model kidney stone. We validated our numerical framework for

shock-induced bubble collapse problems with 2D experimental results. The wave and bub-

ble dynamics were characterized for various model stone sizes and initial bubble stand-off

distances from the stone.

3. We conducted 2D shock-induced collapse of gas bubbles near an elastomeric coating for dif-

ferent configurations to understand cavitation-induced damage relevant to naval engineering

applications. The shock-induced collapse of a single bubble and a bubble pair near an elas-

tomeric coating are considered for different initial geometric configurations. We investigated

the detailed flow physics with an emphasis on wave propagation and viscoelastic effects.

7.2 Conclusions

The following conclusion are drawn for Chapter 2 through 6:

1. We developed an Eulerian approach for numerical simulations of wave propagation in het-

erogeneous viscoelastic media (Rodriguez & Johnsen, 2018), that is suitable to investigate

problems involving cavitation-induced damage. Our numerical framework is explicit in time

and space, and high-order accurate. The spatial scheme is based on a solution-adaptive ap-

proach, where central differences are used in smooth regions and high-order shock capturing

at discontinuities (material interfaces, contacts and shocks). We verified the method using a
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stringent suite of test problems involving smooth wave, shock, shear and contact waves prob-

lems in viscoelastic media. The spatial scheme is based on a solution-adaptive formulation,

in which a discontinuity sensor discriminates between smooth and discontinuous regions. To

compute the convective fluxes, explicit high-order central differences are applied in smooth

regions, while a high-order finite-difference Weighted Essentially Non-Oscillatory (WENO)

scheme is used at discontinuities (shocks, material interfaces and contacts). At least fourth-

order accuracy is achieved in smooth problems, and the correct wave speeds are obtained.

Eigenanalysis confirms that our Lie derivative implementation yields correct results. Spuri-

ous pressure and temperature errors at interfaces were shown to be prevented, and all wave

families are accurately represented. The method is verified using a stringent suite of 1D

and 2D test problems involving smooth wave, shock, shear and contact waves problems in

viscoelastic media. Overall, we developed and verified a robust framework to compute fully

coupled fluid-solid problems viable for studying cavitation-induced damage.

2. We extended the abilities of our novel approach (Rodriguez & Johnsen, 2018) by using the

AUSM scheme (Rodriguez et al., 2018). Our approach introduces elastic stresses in the con-

vective fluxes that are treated by generalizing AUSM flux-vector splitting (FVS) to account

for the Cauchy stress tensor. The approach provides a paradigm on how to develop FVS

schemes for physical models that exhibit traits to those of linear viscoelasticity. Prior to

this work, the five-equation multiphase model or viscoelasticity had yet to be implemented

into flux-vector splitting (FVS) schemes such as AUSM. Multiphase FVS schemes were pri-

marily used for solving the compressible Euler equations with the six-equation multiphase

model. The generalization of AUSM to account for the Cauchy stress tensor appearing

in the viscoelastic description was a novel development for FVS schemes. We determine

an appropriate discretization of non-conservative equations that appear in the five-equation

multiphase model with AUSM schemes to prevent spurious oscillations at material inter-

faces. Moreover, the discretization we obtained is the same for other FVS schemes. The

framework’s spatial scheme is solution-adaptive with a discontinuity sensor discriminating
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between smooth and discontinuous regions. The smooth regions are computed using explicit

high-order central differences. At discontinuities (i.e., shocks, material interfaces and con-

tacts), the convective fluxes are treated using a high-order WENO scheme with AUSM+-up

for upwinding. This numerical approach is a preferred approach given its ability to com-

pute flows at all speeds which is not straightforward for finite-difference schemes (FDS)

schemes. The framework is used to simulate 1D and 2D problems that demonstrate the abil-

ity to maintain equilibrium interfacial conditions and solve challenging multi-dimensional

and multi-material problems.

3. We gained fundamental quantitative insights into the effect of confinement for an inertially

collapsing bubble in a channel. Differences observed in the bubble migration distance and

volume at collapse between the single wall and channel wall configuration. For xC0 = 0,

channel configuration exhibits the smallest volume due to the impingement of two re-entrant

jets increasing the bubble compression and intensifying the collapse. At xC0 = 0.5, an inver-

sion of the minimum bubble volume at collapse between the channel and single wall con-

figures was observed. This was attributed to the trapped rarefaction waves (tension) in the

channel decreasing the inertia (compression) driving the collapse. We observed that other

than for the case where the bubble was initially in the center of the channel, the bubbles

collapsed in a similar asymmetric fashion as that of a single wall configuration. Moreover,

as the bubble was initialized closer to the right wall, the bubble centroid migration for the

channel converged to the single wall values. The maximum pressures along the right wall

exhibited similar trends as those of the single wall configuration; thus, the scaling developed

by Beig et al. (2018) holds for the channel configuration. This indicates that the confine-

ment plays a limited role in inertially collapsing bubbles in channel to the extent that the

dynamics are relatively similar to the single wall configuration. Additionally studies of more

confined configurations may be needed, e.g., bubbles attached to the right wall, two bubbles

in the channel, to determine if the dynamics deviate from their single wall counterparts. For

widths W > 8 × R0, the effect of confinement diminishes and approaches the single wall
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configuration values.

4. Numerical simulations of shock-induced bubble collapse near a kidney stone were used to

determine the the mechanisms involved stone comminution with a neighboring cavitation

bubble. Three events were identified where a local maximum principal stress in tension was

produced in the stone: (i) along the surface of the stone as the incident shock wave interacts

with the stone, (ii) on the stone’s side facing the cavitation bubble from the bubble’s emitted

water-hammer shock, and (iii) on the distal side of the stone relative to the bubble from the

reflected water-hammer shock becoming a tensile wave. These local maximum tensile stress

appeared descending in magnitude with the incident shock response being the strongest. We

observed an increase in the maximum tensile principle stress depends on the model stone size

with no appreciable gain observed for stones with radii Rs < 4 × Ra, where Ra is the bubble

radius. The gain was found to be insensitive to initial bubble stand-off distance from the

stone. These results support, in part, the three-stage process of kidney stone comminution

process detailed in Johnsen & Colonius (2009b). In this process, the shock wave leads

the kidney stone comminution process for larger stones (i.e., Rs > 2 mm). The insight

gained in this work is that cavitation bubbles near the kidney stones amplify the potential

for spallation from the shock wave. For smaller stones, the potential for spallation via shock

wave diminishes. In these instances, the cavitation damage (e.g., the re-entrant jet) dominate

the kidney stone comminution.

5. The 2D numerical simulations of shock-induced collapse of gas bubbles near an elastomeric

coating for different configurations provided valuable insights on cavitation-induced dam-

age mechanisms for elastomeric coatings. The single bubble case demonstrated that both

the acoustic impedance and elastomeric coating’s thickness determine the bubble dynam-

ics and the impact loading and deformation of the coating. Due to the acoustic impedance

mismatch between the liquid and coating, the partially reflected shock wave from the in-

cident shock/elastomeric coating interaction led to a higher re-entrant jet velocity relative
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to the water only case. Soon afterwards, the collapse is further strengthened by the shock

wave that was reflected from the perfectly rigid wall. The synchronization and amplification

of these two shock waves depends on the elastomeric coating thickness and initial bubble

radius. Additional studies will be needed to characterize the synchronization/amplification

dependence on ratio of coating thickness to bubble radius ratio T/Ro. The initial deformation

is due to conservation of mass as the bubble entrains the surroundings as it collapses. The re-

entrant jet and convecting pair of vortex lines then contributes to the material returning to its

original state. In the bubble pair case, we observed bubble-bubble interactions significantly

affecting the dynamics of the flow: amplify pressures produced in the elastomeric coating.

For centroid-to-centroid angles of the bubble pairs from the horizon φ < 90o, a desynchro-

nization of the bubble pair collapses was observed. The desynchonization resulted in higher

maximum wall pressures relative to the comparable single bubble shock-induced bubble col-

lapse value. For φ = 45o, the desynchronization involved two re-entrant jets forming in the

primary bubble significantly amplifying the collapse strength after the secondary bubble col-

lapsed. Additionally, the primary bubble’s re-entrant jet was redirected at an angle towards

the wall due to the fluid entrainment from the secondary bubble’s collapse. As a result, the

elastomeric coating deformation from the surface was significantly larger and sustained than

the single bubble case. This result suggests a mechanism for permanently deformation of the

coating (e.g., pitting) via the collapse of bubble pairs. More detailed studies will be needed

to further characterize the sustained deformation dependence on the inter-bubble distance D

and angle φ.

7.3 Future Research Directions

7.3.1 Physical and Numerical Model

The physical model is limited to infinitesimally small strains and neglects surface tension and mass

transfer. The hypoelastic framework using the Lie derivative has been shown to be consistent with
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hyperelastic constitutive relations (e.g., Neo-Hookean) and the approach of Altmeyer et al. (2015)

could be incorporated into the current numerical model. Doing so would enable cavitation dam-

age investigations studies involving materials undergoing finite deformations. While the numerical

models for the Godunov-based Eulerian physical model discussed in Chapter 2 are in their infancy

this approach has potential long-term advantages. Viscoelastic constitutive relations for non-linear

finite deformations and non-linear stress relaxation, e.g., the popular model of Bernstein et al.

(1963), are well-suited for this physical model as they are effective in modeling elastomeric mate-

rials in a hyperelastic framework. Moreover, there have been efforts incorporating stress relaxation

using Godunov-approach (Ndanou et al., 2015).

Mass transfer (e.g., the evaporation and condensation in the gas bubble) is important during

the collapse and rebound of the bubble. To incorporate mass transfer and phase change, the ap-

proach of Pelanti & Shyue (2014) could be followed with the current physical model. Surface

tension is important when considering non-spherical perturbations at bubble interfaces and bubble

oscillations prior to collapse. To incorporate surface tension, the approach of Schmidmayer et al.

(2017) could also be incorporated into the physical and numerical model.

7.3.2 Numerical Methods and Computation

The current solver incorporating the high-order multiphase framework with linear viscoelasticity

is limited to 2D calculations. However, the solver of Alahyari Beig & Johnsen (2015) used in

Chapter 3 could be extended to incorporated linear viscoelasticity with the appropriate algorithmic

modifications.

The extension of the numerical model with AUSM+-up is numerically stiff when incorporating

the source term in the non-conservative volume fraction equation in the five-equations model.

Future numerical analysis will be needed to identify and, if possible, alleviate this issue. An

avenue to pursue is analytically demonstrating the numerically consistent approach to calculate

both the speed of sound for upwinding and incorporating the source term.

When the bubble collapses to a volume typically four orders of magnitude lower than the initial
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volume, significant resolution is needed with a fixed mesh to resolve the late-time collapse small-

scale features. The calculations typically need mesh resolutions over 100 computational cells per

initial bubble radius to achieve grid convergence with a high-order scheme (Beig et al., 2018).

Moreover, the solution-adaptive approach leads to a computational workload imbalance during the

later stages of the bubble collapse. The processors solving the flow where the bubble is located

typically require an order of magnitude more operations as more cells are flagged to utilize the

high-order accurate method. Utilizing Adaptive Mesh Refinement (AMR) techniques could be a

viable way to address both the workload imbalance issue and limitations in resolving small-scale

features. AMR is advantageous on increasing the resolution only where needed and the high-order

accurate AMR approach of Shen et al. (2011) could be incorporated into the numerical solver.

Understandably, the load imbalance issue may still persist but it would be reduced relative to the

current solution-adaption approach.

7.3.3 Physical Investigations

Our studies explored wave and bubble dynamics for certain range of material properties (e.g., gas

in bubble, shear modulus) and geometries (e.g., confinement ratio and model stone to bubble size

ratio). In Chapter 4, the maximum wall pressures in the confinement problem appeared to collapse

to the same curve as those as the values obtained for the single wall configuration. Additional para-

metric investigations with higher confinement ratios and bubbles attached to the wall are needed

to determine if confinement has an effect on the maximum wall pressures relative to those exhib-

ited for the single wall configuration. In Chapter 5, the stone-bubble size ratios considered were

of order O(100) such that stones were small enough that bubble-lithotripsy shock wave interac-

tions were significant. Investigations with relevant lithotripsy waveforms are needed to further

explore the bubble-shock wave interactions during the comminution of stones with ∼ 10 − 15 mm

diameters (Cleveland & Sapozhnikov, 2005). Moreover, the results are expected to change for

3D simulations as the incident wave, depending on the model kidney stone size and shape, can be

highly focused within the stone. In Chapter 6, the properties of polyurea were used to represent the
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elastomeric coating and the elasticity of the coating inhibited the bubble collapse. However, sim-

ilar maximum wall pressures were exhibited for configurations with and without the elastomeric

coating. Different elastomeric material (with different shear moduli) properties and coating thick-

nesses would need to be considered to further characterize the effect of the coating’s elasticity on

the maximum wall pressures. Moreover, considering different size ratios for the bubble pair would

further modeling efforts of bubble clouds near elastomeric coatings.

Two emerging areas of interest to pursue with this work are (i) high-strain rate rheometry

of soft matter and (ii) damage mechanisms from high-amplitude wave propagation in soft tissue.

Significant advances have been made in modeling a spherically collapsing bubble in viscoelas-

tic media (Warnez & Johnsen, 2015; Gaudron et al., 2015). The work of Estrada et al. (2017)

demonstrates the potential of utilizing cavitation bubble dynamics to characterize soft matter in

the high-strain rate regime. These efforts are currently limited to idealized conditions where the

bubble collapses spherically. The numerical framework in this thesis could provide a valuable com-

putational tool to complement experiments. Moreover, it would enable the study of asymmetrical

bubble collapses in soft matter, the non-spherical perturbations, and re-entrant jet formation.

The damage/injury mechanisms due to high-frequency or high-amplitude waves (e.g., ultra-

sound, shocks/blasts) in soft tissue is not well understood. An example of this is lung hemorrhag-

ing due to diagnostic ultrasound (Child et al., 1990). Recent investigations using computational

fluids dynamics (Patterson & Johnsen, 2018) have demonstrated how baroclinic vorticity distorts

the material interface. This deformation is hypothesized to potentially lead to damage. However,

this approach uses an inviscid solver; and the extent to which viscoelasticity affects the tissue’s

response and deformations remains unknown. As an initial step, the strains necessary to initiate

damage in soft matter could be infinitesimally small. The numerical framework in this thesis is

could be used to investigate the role of linear viscoelasticity in soft matter damage.
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