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ABSTRACT

In the first part of this thesis, we construct a type Afllll geometric crystal on the
variety Xy := Gr(k,n) x C*, and show that it tropicalizes to the disjoint union of
the Kirillov-Reshetikhin crystals corresponding to rectangular semistandard Young
tableaux with n—k rows. A key ingredient in our construction is the Z/nZ symmetry
of the Grassmannian which comes from cyclically shifting a basis of the underlying
vector space. We show that a twisted version of this symmetry tropicalizes to com-
binatorial promotion.

In the second part, we define and study the geometric R-matrix, a birational map
R X, X Xy, = Xy, x X, which tropicalizes to the combinatorial R-matrix on pairs
of rectangular tableaux. We show that R is an isomorphism of geometric crystals,
and that it satisfies the Yang—Baxter relation. In the case where both tableaux have
one row, we recover the birational R-matrix of Yamada and Lam—Pylyavskyy. Most
of the properties of the geometric R-matrix follow from the fact that it gives the
unique solution to a certain equation of matrices in the loop group GL,(C())).

vi



CHAPTER 1

Introduction

1.1 Affine crystals and the combinatorial R-matrix

In the early 1990s, Kashiwara introduced the theory of crystal bases [Kas90,
Kas91]. This groundbreaking work provides a combinatorial model for the represen-
tation theory of semisimple (and more generally, Kac-Moody) Lie algebras, allowing
many aspects of the representation theory to be studied from a purely combinatorial
point of view. In type A, crystal bases can be realized as a collection of combinatorial
maps on semistandard Young tableaux, and many previously studied combinatorial
tableau algorithms turned out to be special cases of crystal theory. For example,
the Robinson—Schensted-Knuth correspondence is the crystal version of the decom-
position of the GL,-representation (C")®? into its irreducible components [Shi05];
Lascoux and Schiitzenberger’s symmetric group action on tableaux is a special case
of the Weyl group action on any crystal [BS17]; Schiitzenberger’s promotion map, re-
stricted to rectangular tableaux, is the crystal-theoretic manifestation of the rotation
of the affine type A Dynkin diagram [Shi02].

Tableau algorithms are traditionally described as a sequence of local modifications
to a tableau, such as bumping an entry from one row to the next, or sliding an entry
into an adjacent box. These combinatorial descriptions are quite beautiful, but for
some purposes, one might want a formula that describes the local transformations
in terms of a natural set of coordinates on tableaux, such as the number of j’s in
the i'" row (or the closely related Gelfand-Tsetlin patterns). Kirillov and Berenstein
discovered that the Bender-Knuth involutions, which are the building blocks for
algorithms such as promotion and evacuation, act on a Gelfand—Tsetlin pattern by
simple piecewise-linear transformations [KB96]. This discovery sparked a search for
piecewise-linear formulas for other combinatorial algorithms.

This thesis is centered around the problem of finding piecewise-linear formulas for
combinatorial maps coming from affine crystal theory. Quantum affine algebras ad-
mit a class of finite-dimensional, non-highest-weight representations called Kirillov—



Reshetikhin (KR) modules. The crystal bases of these representations, which we call
KR crystals, have received a lot of attention for several reasons. Kang et al. showed
that the crystal bases of highest-weight modules for quantum affine algebras can be
built out of infinite tensor products of KR crystals, and they used this construc-
tion to compute the 1 point functions of certain solvable lattice models coming from
statistical mechanics [KKM192]. Kirillov-Reshetikhin crystals have also played a
central role in the study of a cellular automaton called the box-ball system and its
generalizations [TS90, HHIT01].

Unlike the tensor product of representations of Lie algebras and finite groups,
the tensor product of representations of quantum algebras (and thus of crystals) is
not commutative. In the case of KR crystals, however, there is a unique crystal
isomorphism

R:B ® B, = B,® By.

This isomorphism is called the combinatorial R-matrix, and it plays an essential role
in both of the applications mentioned in the preceding paragraph. For example, the
states of the box-ball system can be represented as elements of a tensor product of
KR crystals, and the time evolution is given by applying a sequence of combinatorial
R-matrices.

In (untwisted) affine type A, Kirillov—Reshetikhin modules correspond to parti-
tions of rectangular shape (L*), and their crystal bases, which we denote by B*L,
are modeled by semistandard Young tableaux of shape (L¥). If one ignores the affine
crystal operators e, fo, then B%% is the crystal associated to the irreducible sl,-
module of highest weight (L¥). Shimozono showed that the affine crystal operators
are obtained by conjugating the crystal operators 51,]71 by Schiitzenberger’s pro-
motion map [Shi02]. He also gave a combinatorial description of the action of the
combinatorial R-matrix on pairs of rectangular tableaux, which we now explain.

Let * denote the associative product on the set of semistandard Young tableaux
introduced by Lascoux and Schiitzenberger (see §2.2.3 for the definition). If T €
BFuIt and U € B*2L2_ then there are unique tableaux U’ € B*>2 and T' € B+l
such that T« U = U’ xT’, and the combinatorial R-matrix is realized by the map
R:ToUw—U®T'. For example, suppose

T=|1|212|344|4|5|eB"® and U=|1|2]2|4|5|5]|e B"S.

The product T % U can be computed by using Schensted’s row bumping algorithm
to insert the entries of U into T', starting from the left end of U; the result is

1121224144515
2131415

T+xU =




The reader may verify that the tableaux

U=|1|2]2]3]|4]|5 and T'=|1]|2(2]4|4|4|5]|5

satisfy U« T =T« U, so R(T@U) =U' @ T".

There is a combinatorial procedure for pulling T' x U apart into U’ and T’ so
the whole process is algorithmic. It is nevertheless natural to ask if the map R can
be computed in one step, without first passing through the product T % U. In the
case where T" and U are both one-row tableaux, there is an elegant piecewise-linear

formula for E, due to Hatayama et al.

Proposition 1.1 ([HHIT01, Prop. 4.1)). Suppose T and U are one-row tableauz,
with entries at most n, and suppose R(T @ U) =U'®@T'. Let a;,b; be the numbers
of 3’s inT" and U, respectively. Define

b; = bj + Kj1 — Ky, a; = aj + Kj — Kj1,

where

kj = 0<17¥1<171L171 (bj +bjr1 4+ bjr—1 + Qjiri1 + Qjpria + 0+ Qjynt)

and all subscripts are interpreted modulo n. Then b, a’; are the numbers of j’s in U’

and T', respectively.

The motivating goal of this thesis was to generalize Proposition 1.1 to a formula

for the combinatorial R-matrix on pairs of arbitrary rectangular tableaux.

1.2 Geometric lifting

How does one find—and work with—piecewise-linear formulas for complicated
combinatorial operations? A very useful method is to use tropicalization and geo-
metric lifting. Tropicalization is the procedure which turns a positive rational func-
tion (i.e., a function consisting of the operations +, -, =+, but not —; such functions
are often called “subtraction-free” in the literature) into a piecewise-linear function
by making the substitutions

(+,+,+) > (min, +, —).

A geometric (or rational) lift of a piecewise-linear function I is any positive rational
function h which tropicalizes to h. Rational functions are often easier to work with
than piecewise-linear functions, since one may bring to bear algebraic and geomet-
ric techniques. Furthermore, identities proved in the lifted setting can be “pushed



down,” via tropicalization, to results about the piecewise-linear functions and the
corresponding combinatorial maps.

For example, the formula for R in Proposition 1.1 turns out to be the tropi-
calization of a rational map which solves a certain matrix equation. Given z =

(1,...,2,) € (C*)", define

T A

1 T3
(1.1) g(x) =

Tn-1

1 Tn

Here A is an indeterminate, and we view g(z) as an element of the loop group

GL,(C(\)).

Proposition 1.2 ([Yam01], [LP12, Th. 6.2]). Ifz,y € (C*)" are sufficiently generic,

then the matrix equation

(1.2) 9(x)g(y) = g(y")g(a")

has two solutions: the trivial solution y; = x;, 2 = y;, and the solution

(1.3)

n—1
Kj Kj
r_ j+1 r_ J _
Y5 = Yj o Ly =Xy ,  where Kj = Yi Yj+r—1Tjtr+1 " Ljgn—1,
J J
Rj Rj+1 —o

and subscripts are interpreted modulo n. The solution given by (1.3) is the unique

solution to (1.2) which satisfies the additional constraint

(1.4) Hmj = Hx; and Hyj = Hy;

Note that the piecewise-linear map Rin Proposition 1.1 is the tropicalization of
the rational map R : (z,y) — (v, 2’), where y/, 2" are defined by (1.3)! (note also
that (1.4) tropicalizes to the condition ) a; = ) a}, > b; = > b}, which says that
the tableaux T" and 7" (resp., U and U’) have the same length). Thus, the map R is
a geometric lift of the combinatorial R-matrix on pairs of one-row tableaux.

Upon learning of Propositions 1.1 and 1.2, we were deeply impressed that the
solution to a matrix equation could also describe a combinatorial procedure for

swapping pairs of tableaux. In fact, this example is just one instance of a larger

n the tropicalization, we replace the “rational variables” x; and y;, which can be thought of as generic nonzero
complex numbers, or indeterminates, with the “combinatorial variables” a; and b;, which take on integer values.



phenomenon. Since Kirillov—Berenstein’s work on the Bender—-Knuth involutions,
many other combinatorial algorithms have been lifted to rational maps, including
the Robinson—Schensted-Knuth correspondence, the Lascoux—Schiitzenberger sym-
metric group action, and rowmotion on posets [KB96, Kir01, NY04, DK07, EP14].

One of the crowning achievements of the geometric lifting program is Berenstein
and Kazhdan’s theory of geometric crystals, which provides a framework for lifting
the entire combinatorial structure of crystal bases [BK00, BK07a]. Roughly speak-
ing, a geometric crystal is a complex algebraic variety X, together with rational
actions e; : C* x X — X, which are called geometric crystal operators. The geo-
metric crystal operators are required to satisfy rational lifts of the piecewise-linear
relations satisfied by (combinatorial) crystal operators. In many cases, the geometric
crystal operators are positive, and they tropicalize to piecewise-linear formulas for
the combinatorial crystal operators €; on a corresponding combinatorial crystal By;
when this happens, we say that X tropicalizes to By. For each reductive group G,
Berenstein and Kazhdan [BK07a] constructed a geometric crystal on the flag variety?
of G’ which lifts the crystals associated to all the irreducible representations of GV,
the Langlands dual group (see Remark 2.27(3)). These geometric crystals provide
a new method for constructing and studying crystals; in addition, they have proved
useful beyond combinatorics, with applications to quantum cohomology and mir-
ror symmetry, Brownian motion on Lie groups, and the local Langlands conjectures
[LT17, Chh13, BKO7h].

Nakashima [Nak05] extended the definition of geometric crystal to the setting of
Kac—Moody (and in particular, affine) Lie algebras. There has been a concerted effort
to construct geometric lifts of Kirillov—Reshetikhin crystals, and to find compatible
lifts of the associated combinatorial R-matrices. In the case of the one-row affine type
A crystals mentioned above, it is straightforward to define a corresponding geometric
crystal, and Yamada’s rational map from Proposition 1.2 turns out to be an isomor-
phism of geometric crystals (see the introduction of [KOTY03]). When we began
work on this project, Kuniba—Okado—Takagi—Yamada and Kashiwara—Nakashima—
Okado had constructed a geometric crystal for the analogue of one-row KR crystals
in all non-exceptional affine types, and a compatible geometric R-matrix in types
Dq(zl), Bfll), Dfizl, Agl)_l, Agi) [KOTY03, KNO08, KNO10]. Beyond the one-row case,
Misra and Nakashima had constructed a geometric crystal for two-row tableaux in
affine type A (i.e., type Afll_)l) [MN13].

In this thesis, we construct a geometric crystal on Gr(n—k,n) x C* which tropical-
izes to the disjoint union of the KR crystals B¥*, L > 0, and a compatible geometric

R-matrix on products of these geometric crystals. In the next two sections, we give

2The geometric crystal is actually constructed on G/B x T, where T is a maximal torus.



an overview of some of the key ideas in our constructions.

1.3 Cyclic symmetry and the Grassmannian

We saw above that the geometric R-matrix in the one-row case is the solution to a
matrix equation. The same is true in the general case, and in fact, the full geometric
crystal structure is determined from the appropriate generalization of the matrix g(z)
in (1.1). Before describing this matrix, we introduce coordinates on semistandard
rectangular tableaux with k rows (and entries at most n). The entries in the i** row
of such a tableau must lie in the interval {i,7+ 1,...,i+n — k}. If we fix the row
length L, then the i'" row is determined by the n—k integers b, biiy1,- - -, biitn_k—1,
where b;; is the number of j’s in the i’ row. Thus, a k-row rectangular tableau is
determined by k(n — k) integers b;;, plus the row length L. (These integers must
satisfy certain inequalities, such as non-negativity, but we ignore the inequalities in
this discussion; see §2.2.4 for full details.)

To lift the combinatorial R-matrix in the one-row case, we replaced the integer
coordinates by,...,b, with rational coordinates x1,...,x,. In the k-row case, we
replace b;; with x;;, and the row length L with the rational coordinate ¢. It turns out
that the coordinates (z;5,t) are not well-suited to defining the analogue of the matrix
(1.1) in the general case. In the k = 1 case, the coordinates 1, ..., x, have a simple
cyclic symmetry of order n, which is reflected in the matrix (1.1).> For k > 1, the
coordinates (x;;,t) do not have any obvious cyclic symmetry. There is, however, a
“hidden” cyclic symmetry coming from Schiitzenberger promotion, which has order
n on rectangular tableaux with entries at most n. The key to defining the analogue of
(1.1) is to use an alternative set of coordinates which makes the action of promotion
transparent. This alternative set of coordinates comes from the Grassmannian.

Let Gr(n — k,n) denote the Grassmannian of (n — k)-dimensional subspaces in
C". Borrowing a construction from the work of Lusztig and Berenstein—Fomin—
Zelevinsky on total positivity [Lus94, BFZ96], we define a birational isomorphism
from the k(n — k) rational coordinates x;; to a subspace N € Gr(n—k,n). Let ©,,_
denote the birational map from CF"=*®+1 — Gr(n — k,n) x C* given by

(Z)’Jij,t) — (N, t) =: N|t

(See Definition 4.1 for the definition of ©,,_j.) The Grassmannian has a natural cyclic
symmetry induced by rotating a basis of the underlying n-dimensional vector space.
By “twisting” this symmetry by the parameter ¢, we define a map PR : N|t — N'|t,

3To see this symmetry in the matrix, one must “unfold” g(x) into an infinite periodic matrix which repeats the
sequence 1, ..., T, along the main diagonal, and has an infinite diagonal of 1’s just below the main diagonal. See
§2.4 for the precise definition of “unfolding.”



and we show in Theorem 4.24 that the composition @;k o PR 0 ©,,_; tropicalizes to
a piecewise-linear formula for promotion on k-row rectangular tableaux. Since ©,,_
is a birational isomorphism (and there is a simple formula for its inverse), we may
do computations in terms of Pliicker coordinates on the Grassmannian, and then
translate back to the coordinates (z;;,t) at the end.

The analogue of (1.1) in the general k-row case is a matrix in GL,(C()\)) filled
with ratios of Pliicker coordinates. When n = 4 and k = 2, the matrix looks like
this:

P P
N (D N S
Py Py
P P
ool L
g(N|t) = 3 PE Pys
1 — t—= 0
Py P
P P
0 1 2 23
Py, Py

Here P is the I'" Pliicker coordinate of the two-dimensional subspace N. See Defi-
nition 3.2 for the general definition of g(N|t); note that the one-row case corresponds
to Gr(n —1,n) x C*.

Suppose M|s € Gr(¢,n) x C* and N|t € Gr(k,n) x C*. As in the one-row case,
we seek a solution to the matrix equation

(1.5) g(M|s)g(Nt) = g(N'|t)g(M'[s),

where N’ € Gr(k,n) and M’ € Gr(¢,n). Using properties of the Grassmannian and
linear algebra, we show that for sufficiently generic M, N, s, t, there is a unique can-
didate for the solution to (1.5) (Lemma 5.8, Corollary 5.9). We define the geometric

R-matrix to be the map
R: (M|s,N|t) — (N'|t, M'|s)
given by this unique candidate. The main technical results of this thesis are
e Theorem 5.4, which states that R does in fact give a solution to (1.5);

e Theorem 5.3, which states that R is positive, in the sense that the map
(0" x 071 0 Ro (00 x O) : (45, 5), (wijs 1)) = (w5, 1), (¥, 5))
is given by positive rational functions in y;;, z;;, s, and t.

The latter result shows that the geometric R-matrix can be tropicalized, and the
former result is the key to showing that R commutes with the geometric crystal

operators.



1.4 Unipotent crystals and the loop group

Why should the geometric R-matrix satisfy a matrix equation? One explanation
comes from the notion of unipotent crystals. Let G be a reductive group, B~ a
fixed Borel subgroup, and U the unipotent subgroup of the opposite Borel. In the
case G = GL,(C), one can take B~ to be the lower triangular matrices and U the
upper uni-triangular matrices. Berenstein and Kazhdan [BK00] gave B~ a geometric
crystal structure in which the geometric crystal operator e; is given by simultaneous
left and right multiplication by certain elements of the one parameter subgroup
in U corresponding to the i** simple root. They defined a unipotent crystal to
be a pair (X, g), where X is a variety which carries a rational action of U, and
g : X — B~ is a rational map which is “compatible” with the U-action (see §2.4
for details). A unipotent crystal (X, ¢) induces a geometric crystal on X, in such a
way that ¢ intertwines the geometric crystal operators on X and B~ (i.e., ge; = €;9).
Furthermore, if (X, ¢) and (Y, g) are unipotent crystals, then (X x Y/ ¢) is a unipotent

crystal, where

(1.6) g(z,y) = g(x)g(y).

This unipotent crystal induces a geometric crystal on the product X x Y, and if X
and Y tropicalize to crystals Bx, By, then X x Y tropicalizes to the tensor product
Bx ® By.

In our affine type A setting, the appropriate analogue of the reductive group
G is the loop group GL,(C())), which consists of invertible n x n matrices over
the field of rational functions in an indeterminate A\. We take B~ to be a certain
“lower triangular” submonoid of G, and U an “upper uni-triangular” subgroup (this
triangularity refers to the “unfolded” version of the matrices; see the discussion
preceding Definition 2.33). Berenstein and Kazhdan’s theory of unipotent crystals
extends essentially unchanged to this setting.

Let X := Gr(k,n) x C*. In §3.1, we show that the map ¢ : X; — B~ discussed
above makes Xj into an affine type A unipotent crystal. This explains why the
geometric R-matrix ought to provide a solution to the matrix equation (1.5). Indeed,
the geometric R-matrix is supposed to be a map R : Xj,, x X, = X}, x X}, which
commutes with the geometric crystal operators. Equation (1.5) says that go R = g;
if this is satisfied, then since g commutes with the geometric crystal operators, we
have

(1.7) goe;R=go Re,.

By the uniqueness of the solution to (1.5), (1.7) implies that R commutes with e;.



(There is an alternative explanation, based on the combinatorial description of ﬁ,
for why the geometric lift of R should satisfy a matrix equation; see Remark 5.15).

1.5 Related work

Misra and Nakashima recently constructed a geometric crystal which tropicalizes
to a certain limit of the crystals B*L [MN16]. Their construction is based on a
description of the affine crystal operators €y, ]% in terms of lattice paths, rather than
promotion.

The idea of relating the cyclic symmetry of the Grassmannian to promotion of
rectangular tableaux is not new. In Rhoades’ work on the cyclic sieving phenomenon,
he showed that a natural cyclic shift in a certain realization of the irreducible GL,,(C)-
representation corresponding to a rectangular partition permutes the dual canonical
basis according to promotion (up to a sign) [Rhol0, Prop. 5.5]. Lam translated this
result into a statement about cyclic shifting in the homogeneous coordinate ring of
the Grassmannian [Lam16, Th. 12.2(4)]. Our result that the twisted cyclic shift map
tropicalizes to promotion (Theorem 4.24) was inspired by Rhoades’ result; we do not,
however, know of any direct connection between the two. More recently, Grinberg
and Roby [GR15] used the cyclic symmetry of the Grassmannian to prove that bi-
rational rowmotion on the k& x (n — k) rectangle has order n, a result essentially
equivalent to Theorem 4.24. In fact, our proof is similar to theirs, although ours
arose from the parametrization Oy (which comes from the theory of total positiv-
ity), whereas theirs was inspired by Volkov’s proof of the Zamolodchikov periodicity
conjecture in type A x A [Vol07].

Our formalism is similar in some important respects to that of [ KOTY03, KNO10].
In particular, the matrix g(N|t) is the analogue of the “M-matrix” (or “matrix
realization”) in those works, and our use of the uniqueness of the solution to (1.5) to
prove properties of the geometric R-matrix in Theorem 5.11 is identical to Kuniba—
Okado-Takagi-Yamada’s use of [KOTY03, Th. 3.13] to prove [KOTY03, Prop. 4.6,
4.7, 4.8].

1.6 Applications and future directions

Perhaps the most important property of the combinatorial R-matrix is that it
satisfies the Yang—Baxter relation. Akasaka and Kashiwara proved this result by an-
alyzing the poles of the R-matrix on tensor products of Kirillov—Reshetikhin modules
[AK97], and Shimozono gave a combinatorial proof using a generalization of Lascoux
and Schiitzenberger’s cyclage poset [Shi01]. In §5.1.2, we show that the Yang—Baxter

relation for the geometric R-matrix follows immediately (using a bit of linear algebra)
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from the fact that the geometric R-matrix satisfies the matrix equation (1.5), thereby
giving a new proof of the corresponding result for the combinatorial R-matrix.

As discussed above, the twisted cyclic shift map on the Grassmannian, which is a
geometric lift of promotion, plays a crucial role throughout this work. This map has
order n by definition, so by tropicalizing, we obtain a proof that promotion on rectan-
gular tableaux has order n.* Two additional geometric symmetries play an important
role: transposition of the matrix g(N|t) over the anti-diagonal, which turns out to be
a geometric lift of the Schiitzenberger involution, and the map from a subspace to its
orthogonal complement, which is related to a lift of the “column complementation”
map on rectangular tableaux (that is, the map which replaces each column with its
complement in {1,...,n}, and reverses the order of the columns). We show that
these symmetries are compatible with the geometric crystal operators, which implies
that the corresponding combinatorial symmetries are compatible with the crystal
operators on rectangular tableaux. In the case of the column complementation map,
this compatibility seems to be a new result (see Remark 2.25).

The one-row geometric R-matrix of Proposition 1.2 has proved to be an inter-
esting map. It induces a birational action of the symmetric group S,, on the field
of rational functions in mn variables. Lam and Pylyavskyy called the polynomial
invariants of this action loop symmetric functions, and they showed that these invari-
ants have many properties analogous to those of symmetric functions [LP12, Lam12].
We expect that the more general geometric R-matrix constructed here will have ap-
plications to loop symmetric functions.

In fact, our original motivation for lifting the combinatorial R-matrix comes from a
conjectural connection between loop symmetric functions and the above-mentioned
box-ball system. The box-ball system exhibits soliton behavior; that is, regard-
less of the initial configuration, the balls in the system eventually form themselves
into several connected blocks, or solitons, each of which moves as a unit. Lam-—
Pylyavskyy—Sakamoto [LPS16] conjectured a formula, in terms of the tropicalization
of loop symmetric functions, for determining the lengths and internal composition
of the solitons from the initial configuration of balls. Using the one-row geometric
R-matrix, they were able to prove the first case of their conjecture. To extend their
method to prove the full conjecture, one needs a lift of the combinatorial R-matrix
in the case where one of the tableaux has more than one row. We are optimistic that
our general geometric R-matrix can be used to prove the conjecture in full generality.

The (co)energy function on tensor products of Kirillov—Reshetikhin crystals is
another interesting feature of affine crystal theory which plays an important role
in the study of the box-ball system. Lam and Pylyavskyy showed that a certain

4This proof also follows from the above-mentioned result of Grinberg and Roby [GR15].
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“stretched staircase” loop Schur function tropicalizes to the coenergy function on
tensor products of arbitrarily many one-row tableaux [LP13]. As an application
of our setup, we show that a minor of the matrix g(M|s)g(N|t) tropicalizes to the
coenergy function on tensor products of two arbitrary rectangular tableaux. It would
be interesting to find a geometric coenergy function on tensor products of more
than two rectangular tableaux which simultaneously generalizes this minor and the
“stretched staircase” loop Schur function.

We hope that our methods can be extended to lift Kirillov—Reshetikhin crystals
and their combinatorial R-matrices in other affine types (beyond the analogue of
the one-row case). One potential difficulty is that most Kirillov—Reshetikhin crystals
outside of type AS_)l are reducible as classical crystals. We suspect that this will
make it necessary to use “isotropic partial flag varieties,” rather than just “isotropic

Y

Grassmannians,” in the other types.

1.7 Organization

Chapter 2 surveys much of the required background for this thesis. In §2.1 we
discuss notation. In §2.2 we review the combinatorics of Kirillov-Reshetikhin crystals
and the translation into piecewise-linear maps on Gelfand—Tsetlin patterns; in §2.3
we review the definition of geometric crystals; in §2.4 we discuss the loop group
and the affine version of unipotent crystals that we use; in §2.5 we review several
important results about the Grassmannian; in §2.6 we discuss the Lindstrom Lemma,
which enables one to compute minors of matrices in terms of paths in planar networks.

Chapter 3 revolves around the unipotent crystal map g : X = Gr(k,n) x C* —
GL,(C())). In §3.1, we define this map, show that it makes Xj into a unipotent
crystal, and present explicit formulas for the induced geometric crystal structure on
Xi. In §3.2, we prove several important properties of the map ¢g. In §3.3, we study
the cyclic symmetry of Xy, the geometric lift of the Schiitzenberger involution, and
the map from a subspace to its orthogonal complement in the dual Grassmannian.
Using the relationship between these symmetries and the map g, we show that the
symmetries are compatible with the geometric crystal structure. These symmetries
play an indispensable role in the proofs of later results.

Chapter 4 explains how to tropicalize the geometric crystal on X to obtain
piecewise-linear formulas for the affine crystal structure on rectangular tableaux with
n — k rows. The first step is to introduce the map ©;, which parametrizes X, by a
complex torus of dimension k(n—k)+1. In §4.1, we define this parametrization, give
an explicit formula for its inverse, and use the Lindstrom Lemma to derive formulas
for Pliicker coordinates in terms of the parameters. §4.2 discusses a general notion

of positive rational maps, and defines the tropicalization of such maps. In §4.3, we
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consider the tropicalization of the geometric crystal structure on (products of) Xj.
We show that the tropicalization of a function called the decoration defines a poly-
hedron whose integer points are precisely the rectangular tableaux with n — k rows
(the decoration is Berenstein and Kazhdan’s ingenious solution to the problem of
“lifting” the inequalities of the piecewise-linear setting to the geometric setting). We
then prove that the tropicalizations of the geometric crystal maps, when restricted
to the integer points of this polyhedron, agree with their combinatorial counterparts.
The key step in this proof is Theorem 4.24, which states that the cyclic shift map
PR tropicalizes to promotion. We also consider the tropicalization of the other two
symmetries, and we work out some small examples.

Chapter 5 is devoted to the geometric R-matrix R : Xj, X X, = X, X X,. In
§5.1, we define this map and state its two most important properties, namely that it is
positive (Theorem 5.3), and that it satisfies the identity go R = g (Theorem 5.4). We
show that these two results almost immediately imply that R is an isomorphism of
geometric crystals, an involution, and a solution to the Yang—Baxter equation. Using
the uniqueness of the combinatorial R-matrix é, we deduce that the geometric R-
matrix tropicalizes to a piecewise-linear formula for R. In §5.2, we define a rational
function E : Xj, x X, — C which tropicalizes to the coenergy function on the tensor
product of two rectangular tableaux. In §5.3, we work out explicit formulas for R
(and thus for E) in the case where the first tableau has one row. We show that when
both tableaux have one row, we recover the map of Yamada and Lam—Pylyavskyy
from Proposition 1.2. Finally, we prove Theorems 5.3 and 5.4 in §5.4 and §5.5,
respectively.



CHAPTER 2

Preliminaries

2.1 Notation
Throughout this thesis, we fix an integer n > 2. For two integers ¢ and j, we write
[i,j] ={m e Z]i<m <j}.

We often abbreviate [1, j] to [j]. We write ([Z]) for the set of k-element subsets (or
k-subsets) of [n], and |J| for the cardinality of a set J.
Given a matrix X and two subsets I, J, we write X7 ; to denote the submatrix

using the rows in / and the columns in J. If |I| = |J|, we write
ALJ(X) = det(XI,J).

We use the term upper (resp., lower) uni-triangular to refer to matrices with zeroes
below (resp., above) the main diagonal, and 1’s on the main diagonal.

Given a subset J C [n], we write wo(J) for the set obtained by replacing each
j € J with n— j+1; J for the complement [n] \ .J; and J* for wy(.J). For an integer
¢, we write J — ¢ for the subset of [n] obtained by subtracting ¢ from each element
of J, and then taking the residues of the resulting integers mod n.
(1)

n—17

By affine type A, we mean the untwisted affine root system A whose Dynkin
diagram is a cycle with n nodes. Type A refers to the root system A, _;, whose
Dynkin diagram is a path with n — 1 nodes. The simple Lie algebra sl, has root
system A,,_1, and the affine Lie algebra ;[n has root system Ai}ll.

We write C* for the multiplicative group of nonzero complex numbers, and GL,,
for GL,,(C). Almost all the maps between algebraic varieties appearing in this thesis
are rational, so we write them with solid arrows (e.g., h : X — Y), rather than
dotted arrows. We apologize to any algebraic geometers who are annoyed by this

choice.

13
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2.2 Crystals

In §2.2.1, we present Kashiwara’s axioms for (abstract) crystals. In §2.2.2, we
present the type A crystal structure on semistandard Young tableaux of shape .
We then introduce Schiitzenberger’s promotion map, which allows us to extend the
type A crystal structure to an affine type A crystal structure in the case where \
is a rectangle. In §2.2.3, we review the definition of the tensor product of crys-
tals, and we describe Shimozono’s realizations of the combinatorial R-matrix and
coenergy function on tensor products of rectangular tableaux. In §2.2.4, we review
the notion of Gelfand—Tsetlin pattern, which identifies semistandard tableaux with
the integer points of a polyhedron, and we translate several maps on tableaux into
maps on Gelfand—Tsetlin patterns given by piecewise-linear formulas. We introduce
“k-rectangles” as the subset of Gelfand—Tsetlin patterns which correspond to rect-
angular tableaux with k rows.

2.2.1 Crystal axioms

Kashiwara introduced the crystal basis as the ¢ — 0 limit of a special basis of a
module for the quantized universal enveloping algebra U,(g), where g is a Kac-Moody
Lie algebra [Kas91]. The crystal basis can be viewed as a combinatorial skeleton of
the corresponding representation of g. Kashiwara’s theory gives rise to the following
paradigm for studying representations of g: find a model for the crystal bases in terms
of a combinatorial object (tableaux, Littelmann paths, Mirkovic—Vilonen polytopes,
rigged configurations, etc.), and then analyze the combinatorics of this model.

Kashiwara abstracted several properties of crystal bases into axioms for (abstract)
crystals, which we now state, following the presentation in [BS17]. To streamline the
(1)

presentation, we specialize the definition to types A,,_; and A, ’,, which are the only
types considered in this thesis. In both cases, we use the weight lattice A = Z".
Let {vq,...,v,} be the standard basis of A, and for ¢ € [n — 1], let a; = v; — v
be the i* simple root in A. Let & : A — Z be the " simple coroot, the map
sending (aq,...,a,) — a; — a;y1. Let ag = v, — vy be the affine simple root, and let
ay : (ay,...,a,) — a, — a; be the affine simple coroot. We identify the index set of

the affine simple roots and coroots with Z/nZ.

Definition 2.1. A (Kashiwara, or abstract) crystal of type A,_1 (resp., type AS)I)
consists of a set B, together with

e a weight map wt : B — A,
e for each i € [n — 1] (resp., i € Z/nZ), maps

giy&i:B%ZZO and gz,ﬁB%BU{O}
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Here 0 ¢ B is an auxiliary element. The maps €; and ]?; are called crystal (or
Kashiwara) operators. We say that €; is defined on an element b € B if €;(b) # 0,
and undefined if €;(b) = 0 (and similarly for f;(b)). The maps must satisfy the

following three axioms:!

1. If a,b € B, then ¢;(b) = a if and only if ﬁ(a) = b. In this case,
wt(a) = wt(b) + o, gi(a) =&(b) — 1, pila) = @;(b) + 1.

2. For b € B,
Pi(b) — &) = & (wt(b)).

3. For b € B, &(b) is defined if and only if Z;(b) > 0, and f;(b) is defined if and
only if @;(b) > 0.

Given crystals A and B of the same type, a map ¢ : A — B U {0} is a strict?

morphism of crystals if

wi((a)) = wt(a)  &(¥(a)) =&la)  @i(¥(a)) = @i(a)

whenever ¥(a) € B, and 1 commutes with & and f; (using the convention 1(0) =
€;(0) = fi(0) = 0). The map % is an isomorphism if in addition, v is a bijection
A— B.

It is common to visually represent a crystal by its crystal graph; this is the graph
on the vertex set B, with a directed i-labeled edge from a to b whenever f;(a) = b.

Figure 1 shows an example of a crystal graph.

Remark 2.2. The crystal basis of any U,(g)-module is a crystal in the sense of
Definition 2.1 (where the definition is adapted to the appropriate root system), but
the converse is false. Stembridge introduced additional axioms that characterize
the class of crystals which come from highest-weight U,(g)-modules when the root
system of g is simply-laced [Ste03]. For non-simply-laced types, and for non-highest
weight modules (such as Kirillov—Reshetikhin modules), there is no known axiomatic
characterization of the class of crystals arising from modules.

2.2.2 Crystal structure on tableaux

Let A be a partition with at most n parts. A semistandard Young tableau (SSYT)
of shape X is a filling of the Young diagram of A with entries in [n], such that the
rows are weakly increasing, and the columns are strictly increasing. We will often

IThe definition in [BS17] allows &; and @; to take values in Z U {—oco}, and slightly modifies the second axiom.
Furthermore, the third axiom is not assumed, and crystals with this property are called seminormal.
2There is a weaker notion of morphism that we will not need; see [BS17, p.19].
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513 Crystal operators
2 (1)
N 5 A
111 fi Dynkin diagram
0 _—
1 213 9 0
v N\ -
1]2 1|1 fo
213 ) 313
2 1
A N
~ ]2 < o 1 2
0 3 —_—
.1/

Figure 1: The Kirillov-Reshetikhin crystal B??2 of type Aél).

refer to these objects simply as tableauz. We write B(\) to denote the set of SSYTs
of shape \.

For each partition A, there is an irreducible sl,-representation whose basis is

indexed by B()\), and a corresponding type A,_; crystal on the vertex set B(\).
The weight map wt is the content of a tableau, i.e., wt(1T') = (a4, ..., a,), where q;
is the number of i’s in T. We now describe the standard procedure for computing
the maps &;, @;, €;, and f;
Definition 2.3. For i € [n — 1], the maps &;, §;, €;, and ﬁ are defined on T' € B(\)
as follows. To begin, let w be the (row) reading word of T, i.e., the word formed by
concatenating the rows of 7', starting with the bottom row.?> Now apply the following
algorithm to w:

1. Cross out all letters not equal to ¢ or ¢ + 1.

2. For each consecutive pair of (non-crossed out) letters of the form i + 1,4, cross
out both letters.

3. Repeat the previous step until there are no remaining pairs to cross out.
4. Let w’ be the resulting subword, which is necessarily of the form
w' =i (i +1)°.
The functions &; and @; are defined by

&(T)=p pi(T) = o,

3We follow the English convention, where the rows of a Young diagram decrease in length from top to bottom.
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If p = 0, then the crystal operator ¢;(T") is undefined; if 5 > 0, then &;(T) is the
tableau of shape A whose reading word is obtained from w by changing the left-most
i+1in w' into an ¢ (it is clear that there is such a tableau). Similarly, if & = 0, then
fi(T ) is undefined, and if a > 0, then E(T ) is the tableau of shape A whose reading

word is obtained from w by changing the right-most 7 in w’ into an 7 + 1.

111(1121212(3]|3]3
Example 2.4. Let T' = 5T31313 . The subword of 2’s and

3’s in w is
23 3 3 2 2 2 3 3 3
and after (recursively) crossing out consecutive pairs of the form 3 2, we are left
with
w=2 333222333 = 2333

Thus, we have &(T) = 3, po(T) = 1, and

_ 1|t ]2]2]2)80 3|3 - 1f1ftf2]2]2]3]|3]3
&(T) = 2] f(T) = H :

213133 31313

The reader may easily verify that the maps defined above make B()) into a crystal
of type A,,_1. A much deeper result is that this crystal arises as the crystal basis of
a U,(sl,,)-module; this was proved by Kashiwara and Nakashima [KN94].

Affine crystal structure on rectangular tableaux

For k € [n — 1] and L > 0, define B®F := B(LF), the set of SSYTs (with entries
in [n]) whose shape is the k x L rectangle. (By convention, B*? consists of a single
“empty tableau.”) The type A,_; crystal structure on B%% can be extended to a
type Af})l crystal structure. This affine crystal is the crystal basis of a Kirillov—
Reshetikhin module, a finite-dimensional representation of Uy (s?[n) Furthermore, the
Kirillov-Reshetikhin crystals in type A, are precisely the B*L.

We now present Shimozono’s combinatorial description of the affine crystal op-
erators ey, fo on BYE in terms of promotion [Shi02]. Let &; be the Bender—Knuth
involution which interchanges the numbers of 7’s and i+1’s in a semistandard tableau.
Given T' € B()), 7;(T) € B(\) is obtained by applying the following procedure to
each row of T

In a given row, suppose there are o boxes containing ¢ which are not directly
above a box containing ¢ + 1, and [ boxes containing ¢+ + 1 which are not directly
below a box containing ¢. Thus, this row contains a consecutive subword of the form
i%(i + 1)#. Replace this subword with i#(i 4+ 1)<,
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Promotion is the map pr : B(\) — B(\) defined by
(2.1) pr = 0102 0p_1.

Remark 2.5. It is well-known that promotion as defined here is equivalent to the fol-
lowing algorithm based on Schiitzenberger’s jeu-de-taquin: remove the n’s; slide the
remaining entries outward (start by sliding into the left-most hole); fill the vacated
boxes with 0; increase all entries by 1.

Example 2.6. If T is the tableau in Example 2.4, then

55(T) = 1 212121313
2 T3
and if n = 3, we have
1 11112313
or(T) = g4 (oo(T)) =
pr(T) = 01(c2(T)) 5121313
Definition 2.7. On B*”, define
Eo=¢&10opr $o = p10pr
~ ~_-1 ~ ~ re ~ —1 rs ~
€ =Ppr oepopr Jo=pr o fiopr

where we set &(T) = 0 if &, o pr(T) = 0 (equivalently, if £ (T) = 0), and fo(T') = 0
if fi opr(7T) =0 (equivalently, if ©o(7") = 0).

The reader may verify that the crystal operators in Figure 1 are computed by
Definitions 2.3 and 2.7.

Proposition 2.8. We have the following identities of maps on B*:

1. pr" =1d;

2. wtopr = sh o wt, where sﬁfl(al,...,an) = (an, a1, ..., Qp_1);
3. giopr==¢;_1 and @; o pr = ;1 for i € Z/nZ;

4. € opr=2¢_10pt and f;opr=pro fi_y fori€ Z/nZ.

Part (1) is well-known (see, e.g., [Shi02, Rho10]). Part (2) is immediate from the
definitions. Parts (3) and (4) are due to Shimozono [Shi02, §3.3].

Remark 2.9. The definitions of £y, ¢, €9, and f:) make sense for any partition A, and
in fact they define an affine crystal structure on B(\) (in the sense of Definition 2.1).
When A is not a rectangle, however, this crystal does not arise from a Uy (;[n) module.
This is related to the fact that the identity pr" = Id holds only for rectangular
tableaux [Shi02, §3.3].
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2.2.3 Tensor product of crystals

One of the most important features of crystal theory is the tensor product, which

corresponds to the tensor product of modules.

Definition 2.10. Given two crystals A, B of the same type (e.g., type A,,_; or type
Aﬁ}_)l), their tensor product A ® B is defined as follows. The underlying set is the
Cartesian product A x B, whose elements we denote by a ® b. The crystal structure
is defined by*

wt(a ® b) = wt(a) + wt(b)

Eila®b) = &(b) + max(0,&i(a) —i(b))  Pila®b) = @i(a) + max(0,£i(b) —Ei(a))

awed wa@>an oo [fwes ta@za

gl(a@)b) = " " " ~ " "
a®e;i(b) if g(a) < @i(b) a® fi(b) ifg(a) < i(b).

In the definition of €; and f;, we use the convention 0 ® b=a ® 0 = 0.

It is straightforward to verify that A ® B satisfies the axioms of Definition 2.1,
and that the tensor product is associative. Kashiwara proved that if A and B are
crystal bases of modules V' and W, then A ® B is the crystal basis of the tensor
product V @ W [Kas91].

It turns out that the tensor product of the type A, 1 crystals B()\) corresponds
to an associative product of semistandard tableaux that was introduced by Lascoux
and Schiitzenberger [LS81]. Given two tableaux T" and U, the tableau product T x U
may be defined as the rectification of the skew-tableau obtained by placing U to the

@

northeast of T', as shown here:

H
The rectification can be computed using Schiitzenberger’s jeu-de-taquin slides or
Schensted’s row insertion (we refer the reader to [Ful97] for details).

The following result states that the tableau product is compatible with the tensor
product of type A, _; crystals.

Proposition 2.11. If T'e€ B(\) and U € B(p) and s is one of the maps wt,&;, ¢;,
then (TR U) =s(T«U). If s=¢;, f;, and s(T @ U) = (T"®@ U’) in B(\) ® B(u),
then s(T'xU) =T« U’ in B(v), where v is the shape of T x U.

4We use the convention of [Shi02, BS17]; Kashiwara’s original convention interchanges the roles of a and b.
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Using Proposition 2.11 and the crystal structure on tableaux defined above, one
can derive the Littlewood—Richardson rule for the decomposition of a tensor prod-
uct of sl,-modules. For the proof of Proposition 2.11 and the derivation of the
Littlewood-Richardson rule, see, e.g., [Shi05] or [BS17, Ch. 9].

The combinatorial R-matrix

The tensor product of crystals is not commutative. In the case of the Kirillov—
Reshetikhin crystals B*%, however, there is a unique affine crystal isomorphism R:
BRI Bk2le . Bkale @) BRuIa called the combinatorial R-matriz. The existence
and uniqueness of this isomorphism is proved using quantum groups; see [Shi02, Th.
3.19]. We now describe how this map acts on tableaux, following Shimozono [Shi02].

Proposition 2.12. Suppose (T,U) € B¥vIt @ Bkl

1. There is a unique pair (U',T") € B¥»L2 x BFlr sych that T+« U = U’ *T".

2. The combinatorial R-matriz is given by R(T,U) = (U',T").

Proof (sketch). The Littlewood-Richardson coefficient cf, is equal to the number of
pairs (T,U) € B(\) x B(u) such that 7'« U = V, where V is a fixed element of
B(v) (see [Ful97, §5.1, Cor. 2]). If A and p are rectangles, then the product of
Schur functions sys,, is multiplicity-free (see [Ste01]). Thus, there is exactly one pair
(U',T") € B*2L2 x BFol1 guch that U’ T" = T * U. This proves (1).

By [Shi02, Lem. 3.8], if A and p are arbitrary partitions and ¢ : B(\) x B(u) —
B(p) x B(A) is a bijection which commutes with the classical crystal operators
€1y, 6n1, then (T, U) = (U, T') implies that T« U = U’ « T" (this is essen-
tially a converse to Proposition 2.11). Thus, (2) follows from (1) and the existence
of R. [

Example 2.13. If

1 12
T=|1{1|3[3[3|3]|4|eB" and U= 7 € B??,

then

1111123444
T'«xU=|2|2|3|3]|4
313

The reader may verify that the tableaux

(111122 ,
U = and T =|11112|3(4|4]4
313(3[3/4

satisfy U/« T' =T+ U, so RT@U) =U' & T'.
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oy . . . 1
Proposition 2.14. Let A, B,C be Kirillov-Reshetikhin crystals of type Al )1.

n—

1. The map R?: A® B — A® B is the identity.

2. The combinatorial R-matriz satisfies the Yang—Baaxter relation. That is, if R :
A@B®C — B A®C is the map which applies R to the first two factors and
does nothing to the third factor, and Ry: A®B®C — A®C® B is the map
which applies R to the last two factors and does nothing to the first factor, then

§10§20E1 :égoéloﬁg
as maps from AQBRC —-CRB® A.

The first statement follows immediately from the description of Rin Proposition
2.12. There are several proofs of the Yang—Baxter relation. For instance, the Yang—
Baxter relation is a consequence of Akasaka-Kashiwara’s result that every tensor
product BM11 @ ... ® B*ald is connected (as an affine crystal), which in turn is
proved using quantum groups [AK97|. Shimozono gave a purely combinatorial proof
of the Yang-Baxter relation using a generalization of Lascoux and Schiitzenberger’s

cyclage poset [Shi0l, Th. 8(A3)]. In §5.1.3, we give a new proof using the geometric

R-matrix.

The coenergy function

Another important element of affine crystal theory is the coenergy function.
Definition 2.15. Let A and B be Kirillov-Reshetikhin crystals. A function H :

A® B — 7Z is a coenergy function if [TIOEZ- =¢ fort=1,...,n—1, and H interacts
with & as follows: if a @b e A® B and R(a ®b) = ® d, then

1 if £g(a) > @o(b) and £y(b') > po(a’)
(22)  H(@Ela®b))=Ha@b)+{ —1 if 5(a) < Fo(b) and (V) < Fola')

0 otherwise.

Remark 2.16. A function H is a coenergy function if and only if —H is an enerqy
function, in the sense of [KKM192, Shi02]. We have chosen to work with coenergy
instead of energy because the coenergy function E defined below naturally arises as

the tropicalization of a certain rational function on our geometric crystals.

Given T € B¥I1 and U € B*L2 define E(T ® U) to be the number of boxes
in the tableau T' x U which are not in the first max(ky, k2) rows. It’s clear from the
nature of Schensted insertion that if Ty is the classical highest weight element of
BFtl1 (that is, the tableau whose i row is filled with the number ), then

(2.3) E(Ty®U) =0 for all U € B!,
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Example 2.17. Let T and U be the tableaux in Example 2.13. There are two boxes
outside the first max(1,2) rows of T'x U, so E(T @ U) = 2.

Proposition 2.18.

1. Up to a global additive constant, there is a unique (co)energy function on B¥ 1@
BFzlz,

2. F is a coenergy function on B @ Bk2lz,

Proof (sketch). For part (1), see [KKM™92, §4] and [Shi02, §3.6]. For (2), define
F(T @ U) to be the number of boxes in T U that are not in the first max(Ly, L)
columns. By [Shi02, Prop. 4.5 and (2.4)], F is an energy function. Using the
properties of jeu-de-taquin and Schensted insertion, it is straightforward to show
that

E(T®U)+ F(T ®U) = min(ky, ky) min(Ly, Ly),

so E is a coenergy function. O]

2.2.4 Piecewise-linear translation

We now translate many of the combinatorial maps on tableaux from the previous
section into piecewise-linear maps on arrays of integers subject to certain inequalities,

or in other words, integer points of polyhedra.

Gelfand—Tsetlin patterns

A Gelfand-Tsetlin pattern (GT pattern) is a triangular array of nonnegative in-

tegers (A;j)1<i<j<n satisfying the inequalities
(2.4) Aiji1 2 Aij 2 A1

for 1 <1< j <n—1. Gelfand—Tsetlin patterns can be represented pictorially as
triangular arrays, where the j* row in the triangle lists the numbers A;; for i < j.
For example, if n = 3, then a Gelfand—Tsetlin pattern looks like:

A13 A23 A33

There is a natural bijection between Gelfand-Tsetlin patterns and SSYTs with
entries in [n]. Given a Gelfand-Tsetlin pattern (A;;), the associated tableau T is
described as follows: the number of j’s in the it row of T is A;j — A j—1 (we use the
convention that A;;_; = 0). Equivalently, the j* row of the pattern is the shape of
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T<;, the part of T obtained by removing numbers larger than j. In particular, the
last row of the pattern is the shape of T. Here is an example of a Gelfand—Tsetlin
pattern and the corresponding SSYT:

(2.5) 6 3 1 <o

6 6 6 0 0
Many maps on tableaux can be described by piecewise-linear formulas in the
entries of the corresponding Gelfand—Tsetlin pattern. In general, we will use the
same notation for a combinatorial map and its piecewise-linear translation, and we’ll

rely on context to determine which is meant. Here is a simple example.

Example 2.19. We describe how the maps €1, ¢1, €1, and ﬁ act on Gelfand—Tsetlin
patterns. Let (A;;) be a Gelfand-Tsetlin pattern with corresponding tableau 7'
When we apply the algorithm of Definition 2.3, every 2 in the second row of T" pairs
with a 1 in the first row, so the subword of unpaired 1’s and 2’s is

U), — 1A11—A22 2A12—A11.

ThUS, 51 (AZ]) = A12 — AH, and when gl(Az]) > 0, 51 (AZ]) is obtained by increasing
Ay by 1, and leaving the other entries unchanged. Similarly, ¢1(A4;;) = A1 — A,
and fi(A;;) is obtained by decreasing Ay; by 1 (if the result is still a GT pattern).

There is a simple piecewise-linear formula for the Bender—Knuth involutions.
Lemma 2.20 (Kirillov-Berenstein [KB96]). Let (A;;) be a Gelfand-Tsetlin pattern.
Forr € [n — 1], we have 7,.(A;;) = (Aj;), where
min(A; 1 ,—1, Ajpg1) Fmax(A; 1, Aip141) — A ifj=7
Ay ifj#r

and we use the convention that Ay ; = 0o and A;;—1 = 0.

(26) Al =

Note that &, changes only the 7* row of the Gelfand-Tsetlin pattern, and for
each i, 0,(A;.) depends only on A;, and the four entries diagonally adjacent to A;. in
the Gelfand—Tsetlin pattern (some of which may be “missing” if A;, is on the upper
boundary of the triangle):

Aic1r A
Ay
A Ait1,r1
Since promotion is a composition of Bender-Knuth involutions ((2.1)), Lemma

2.20 gives a recursive piecewise-linear description of promotion.
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k-rectangles

Gelfand—Tsetlin patterns can be thought of as coordinates for SSYTs of arbi-
trary shape. Here we consider the restriction of these coordinates to the subset of
rectangular tableaux.

For k € [n — 1], set

(2.7) Ry={(i,j)|1<i<k i<j<i+n—k—1},

and define T), = Z% x Z = ZF=k+1 We will denote a point of Ty by b = (By;, L),
where (i, j) runs over Ry.

Given (Byj,L) € 'i‘k, define a triangular array (A;;)1<i<j<n by

By if (i,5) € Ry
Aij =1L ifj>i+n—-k—1
0 ifj<i
Definition 2.21. Define B* to be the set of (B;;, L) € T, such that (A;;) is a

Gelfand-Tsetlin pattern. We call an element of B¥ a k-rectangle, and we say that
(A;;) is the associated Gelfand-Tsetlin pattern.

For example, if n =5 and k = 3, then we may pictorially represent a 3-rectangle
(Bi;, L) and its associated GT pattern as follows:

(2.8)
B11 Bll
B B BIQ BQQ
12 2 s L <— L 323 B33
Bz Bas L L Bs, 0
Baa L L L 0 0

As (2.5) and (2.8) illustrate (and the reader may easily verify), the bijection be-
tween G'T patterns and SSYT's restricts to a bijection between k-rectangles and rect-
angular tableaux with £ rows, with the coordinate L giving the number of columns
in the tableau. Thus, we identify

B | | B

Sometimes it will be more convenient to work with the following alternative set of
coordinates on B*". For 1 <i<kandi<j<i+n—k, define

(2.9) bij = Bij — Bij-1,
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where we use the convention that B;;_; = 0 and B; 1, = L for all <. Thus, b;; is
the number of j’s in the ¥ row of the k-row rectangular tableau corresponding to
b= (B, L).

Symmetries of k-rectangles

Throughout this section, fix £ € [n — 1] and L > 0.
Definition 2.22. Define rotation rot : B¥ — B* by rot(B;;, L) = (B!

ij)

L), where
Bjj =L — Br_it1,nj-

Define reflection refl : BE — B"=* by rot(By;, L) = (B!, L), where

i)
// pr— —_— . . .
B’Lj — L BJ—Z"FL]'

The first map rotates the rectangular Gelfand—T'setlin pattern 180 degrees, and then
replaces each entry a with L — a; the second map reflects the rectangular Gelfand—
Tsetlin pattern over a vertical axis, and then replaces each entry a with L — a.

The operations rot and refl have simple effects on rectangular tableaux.

Lemma 2.23. Suppose b = (By;, L) € B¥ and let T, U,V be the rectangular tableauz

corresponding to b, E)Jt(b),reﬂ(b), respectively. Then
1. U is obtained by rotating T' 180 degrees and replacing each entry i withn—i+1.

2.V is obtained by replacing each column of T with the complement in [n] of the
entries in that column (arranged in increasing order), and then reversing the

order of the columns.

Proof. First we prove (1). Set (Bj;, L) = rot(B,;, L), and let U’ be the SSYT obtained
by rotating 7" 180 degrees and replacing each entry ¢ with n — i + 1. Let W;; be the
number of j’s in the i row of the tableau W. Clearly U}; = Tj—iy1n—js1. Fori € [K]

and j € [i,7 4+ n — k], we have (using the convention of (2.9))

/ / /
Uij = Bij - Bi7j71 = Bk7i+1,nfj+1 - kaiJrl,nfj = Tk7i+1,n7j+1 = Uij7

so U = U’, as claimed.
To prove (2), first consider the case L = 1. In this case, the tableau corresponding
to b is a single column of length &, or in other words, a subset S = {s; < -+ < s} C
[n]. We must show that if b corresponds to S, then reﬂvﬂ(b) corresponds to [n] \ S.
Identify the k-rectangle b = (B;;,1) with a partition A inside the k x (n — k)
rectangle by setting \; = |{j | B;; = 1}| for i = 1,..., k. The entries s; < --- < 55, of
the corresponding tableau are related to A by
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1 0
1 0 1 0
b= 1 1 0 refil)= 1 0 0
1 1 0 1 0 0
1 0 1 0
1 0

Figure 2: An example of refl in the L = 1 case (with n = 7,k = 4). Here b corresponds to the
partition (3,2,2,1) and the subset {1, 3,4,6}; refl(b) corresponds to (3,1,0) and {2,5, 7}.

Equivalently, s; is the position of the i'® vertical step in py, the lattice path from the
top-right corner of the k x (n — k) rectangle to the bottom-left corner which traces
out the lower boundary of the Young diagram of \.

Now identify the (n — k)-rectangle reAﬁ(b) with a partition X inside the (n — k) x k
rectangle in the same manner. From the definition of reﬁﬁ, one sees that the positions
of the vertical steps in py are precisely the positions of the horizontal steps in ps, so
X corresponds to the (n— k)-subset [n]\ S, as claimed. (See Figure 2 for an example.)

Now suppose L > 1. The rectangle b is equal to the entry-wise sum of the
rectangles corresponding to the individual columns of T, and the same is true of
1"/(;121(6) and its corresponding tableau V. Let V' be the array obtained by replacing
each column of T' by its complement in [n], and reversing the order of the columns.
Using the L = 1 case, we see that reA/ﬂ(b) is also equal to the entry-wise sum of the
rectangles corresponding to the individual columns of V’. To conclude that V' = V’,
it remains to show that V"’ is semistandard, i.e., that its rows are weakly increasing.

Let S and S’ be the subsets of entries in two consecutive columns of V’. The
condition for V' to be semistandard is that s; < s for i = 1,...,n — k. If this condi-
tion holds, write S < S’. Let A, X be the partitions associated to S, S’, respectively.
From the proof of the L = 1 case, one sees that

S8 < ADN <= N2\ < [n]\5 <[n]\S,

where C denotes inclusion of Young diagrams. Thus, V' is semistandard because T

is semistandard. O]

In §4.3, we will use geometric crystals to prove the following compatibility of rot
and refl with the affine crystal structure on rectangular tableaux (see Remark 4.27).

Proposition 2.24. Fori € Z/nZ, we have the identities

e; orot =rot o f,_; and e;orefl =refl o f;.
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Remark 2.25. Let S denote the Schiitzenberger involution (also known as evacua-
tion) on semistandard tableaux. It is well-known that the restriction of S to rectan-
gular tableaux is equal to rot (see, e.g, [Ful97]). In general, one has & 05 = So f,_;
for i € [n — 1] (see, e.g., [LLT95, §3]).

The “column complementation” map has been studied by Stembridge in his work
on rational tableaux [Ste87], but the compatibility of this map with the classical
crystal operators does not seem to have been investigated. We conjecture that this
compatibility holds for all shapes; it would be interesting to find a combinatorial
proof, even in the rectangular case.

2.3 Geometric crystals

A geometric crystal is an analogue of a Kashiwara crystal, where the underlying
set is replaced by an algebraic variety, and the maps associated to the crystal are
replaced by rational maps on the algebraic variety. We present the definition in type
A For more general definitions, see [BK00, BK07a, Nak05).

Let T' = (C*)™ be an n-dimensional complex torus. Fori € Z/nZ,let o; : T — C*

be the character sending (21, ..., 2,) to 2z;/z;41 (indices interpreted mod n), and let
a) : C* — T be the cocharacter sending z to (1,...,2,2z71,...,1), where z is in the
th 1

i component and z7! is in the (i + 1) component (mod n).

Definition 2.26. A geometric pre-crystal of type Asllll consists of an irreducible
complex algebraic (ind-)variety X, together with

e a rational map v: X — T

e for each ¢ € Z/nZ, rational functions &;, p; : X — C* which are not identically
zero,” and a rational unital® action e; : C* x X — X,

We call e; a geometric crystal operator, and we usually denote its action by ef(z) in-
stead of e;(c, z). These rational maps must satisfy the following identities (whenever
both sides are defined):

1. For z € X and ¢ € C*,
(2.10)  y(ef(x) = af ()y(x), eilef(x)) = cailz),  pilef(z)) = ¢ i)

2. Forx € X,

ei(z)
(2.11) = oy (v(x)).
pi(z)
5Tn [BK07a], some of the &; and ¢; are allowed to be zero, but we will not need this more general setting.
6This means that e;(1,x) is defined (and thus equal to ) for all z € X.
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Remark 2.27. The identities (2.10) and (2.11) are analogous to the first and second
crystal axioms in Definition 2.1. There are, however, several important subtleties to
this analogy:

1. The true analogues of &; and @; are the maps 1/¢; and 1/¢;, and the analogue
of f; is the rational action ¢¢ . This is made precise in Theorem 4.23.

2. The precise connection between the geometric crystal maps and the combina-
torial crystal maps comes from tropicalization, which treats rational maps as
formal algebraic expressions rather than actual functions. Thus, the partially-
defined nature of rational maps is not analogous to the partially-defined nature
of the crystal operators. The geometric analogue of the partially-defined na-
ture of the crystal operators (and thus of the third axiom in Definition 2.1) is
the notion of decoration introduced in Definition 2.30. This is made precise in
Proposition 4.21 and Theorem 4.23.

3. The role of o; and «; in the geometric crystal axioms is opposite that of a; and

& in the crystal axioms. For this reason, geometric crystals corresponding to

a given root system are analogues of combinatorial crystals for the Langlands
dual root system, which is obtained by interchanging roots and coroots. For
example, simply-laced root systems are self-dual, while the root system of type
B, is Langlands dual to that of type C,,. Since the root system Afll_)l is simply-

laced, we may ignore the Langlands duality in this thesis.

A geometric pre-crystal is the analogue of a Kashiwara crystal. To upgrade a
geometric pre-crystal to a geometric crystal, one requires an additional axiom, which
can be thought of as an analogue of Stembridge’s additional crystal axioms (see
Remark 2.2). We remark, however, that the geometric crystal axiom is weaker than
the Stembridge axioms, in the sense that a geometric crystal does not necessarily
tropicalize to a crystal satisfying the Stembridge axioms.

Definition 2.28. A geometric crystal of type AS_)1 is a geometric pre-crystal of type
AS_)I which satisfies the following geometric Serre relations:

If n > 3, then for each pair ¢, j of distinct elements of {0,...,n — 1}, and ¢, ¢ €
C*, the actions e;, e; satisty

(2.12) ej'ef? = effel! if i —j| > 1
: c1,c1c2 c2 __ ,C2,.C1C2 C1 ; S
et e = efef e if |i — j| = 1.

If n = 2, there is no Serre relation for ey and ey, so a geometric pre-crystal of type
Agl) is automatically a geometric crystal.
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Remark 2.29. One of Berenstein and Kazhdan’s motivations for introducing geo-
metric crystals was to obtain rational actions of Weyl groups [BK07b]. The geometric
Serre relations imply that the rational maps s; : X — X defined by

1

SZ(:L”) — e;"i("/(“”)) (l’)

generate a rational action of the type Afjll Weyl group, which is the affine symmetric
group S, (see Prop. 2.3 and the subsequent remark in [BK00]).

Definition 2.30. A decorated geometric (pre-)crystal of type ASL is a geometric
(pre-)crystal X equipped with a rational function f: X — C such that
c—1 c¢t—-1

o@) | E)

(2.13) flei(x)) = f(z) +

for all x € X and i € Z/nZ. The function f is called a decoration.

Definition 2.31. A morphism of geometric (pre-)crystals X and Y is a rational map
h : X — Y such that e;h = he;, and ph = p for p = v, &;, ;.

Product of geometric crystals

Berenstein and Kazhdan defined a product of decorated geometric pre-crystals
[BK0O, BKO07a].

Definition /Proposition 2.32. Suppose X and Y are decorated geometric pre-
crystals (of type AT(ll_)l). Define the following rational maps on (z,y) € X x Y:

Y(z,y) = v(x)y(y)
wi(z)(ei(r) + 9ily))
ei(z)

c (S (1), e where ¢ — cei(z) + piy) o — ei(z) + pi(y)
ei(z,y) = (&' (2), 67 (y)) wh T LDt o) O ) o)

flx,y) = f(z)+ f(y).

These maps make X x Y into a decorated geometric pre-crystal, which we call the

pi(z,y) =

product of X and Y. This product is associative.

Proof. The proof of [BK07a, Lemma 2.34] shows that the decoration on X x Y
satisfies (2.13). The remainder of this Proposition is stated as [BK07a, Claim 2.16],
and the proof is left to the reader. The various assertions are indeed straightforward
(if tedious) to verify from the definitions. Here we show that (2.10) and (2.11) hold
for X x Y.
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First, using (2.11) for the geometric pre-crystals X and Y and the fact that «; is
multiplicative, we have
gi(z,y) gi(y) ei(x)

oy oy e - @) =al(@y)),

so (2.11) holds for X x Y. Now let (2/,y') = e5(z,y) = (e* (), e?(y)). Using (2.10)

(2 )

for X and Y and the identity c;co = ¢, we have
V(@' y) = @) () = o (c)v(@)ai (2)7(y) = o (e)v(x, 1),
so y(e5(z,y)) = af (¢)y(x,y). Likewise, we compute

i) (e(@) + oiy)) _ emiy)(aci(@) + ¢ vily))

gi(x',y') = () = o)
— . gi(y)(cei(x) + 9iy) _ Cgi(y)(gi(x) +¢i(y))
’ i(y) iy) ’

so gi(e§(z,y)) = cei(z,y). Finally, using the preceding identities and the fact that
a;(a)(c)) = %, we have

gi(@y) _ calzy)
a(v(2,y))  Aai(y(z,y

iz, y) = = clpi(@,y).
Similar computations show that ef(x,y) is an action of C* (clearly it is unital),

and that the product is associative. O

If X and Y are geometric crystals, their product is not necessarily a geometric
crystal ([BKO7a, Remark 2.21]). To get around this problem, Berenstein and Kazh-
dan introduced unipotent crystals, and showed that if X and Y are induced from

unipotent crystals, then their product is a geometric crystal.

2.4 Unipotent crystals

The definition of geometric pre-crystal given in the previous section makes sense
for any reductive group G; one simply replaces the torus 7' = (C*)™ by a maximal
torus in G, and «a;, ) with the corresponding simple characters and cocharacters.
Given a geometric pre-crystal, it is in general quite difficult to verify the geometric
Serre relations, and, as mentioned above, the fact that the Serre relations hold for
X and Y does not guarantee that they hold for X x Y. Berenstein and Kazhdan
invented unipotent crystals to get around these difficulties [BK00]. The intuitive
idea behind a unipotent crystal is that a geometric pre-crystal which “comes from”
G itself will automatically satisfy the Serre relations, and will automatically behave

nicely under products.
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Nakashima extended the notions of geometric and unipotent crystals to affine (and
even Kac-Moody) groups [Nak05]. The (minimal) Kac-Moody group which corre-
sponds to the affine Lie algebra sl, is closely related to SL,(C[A, A™]), the group of
n x n matrices of determinant 1 with entries in the Laurent polynomial ring C[\, A71].
For our purposes, however, we have found it necessary to allow determinants other
than 1, so we work with the bigger group GL,,(C(\)), which consists of n x n matrices
with entries in the field of rational functions in the indeterminate A, and nonzero
determinant. We call GL,,(C(\)) the loop group,” and X the loop parameter.

Before giving the definition of unipotent crystals, we pause to discuss a correspon-
dence between n x n matrices with entries in C(()A)) and “infinite periodic” matrices
with entries in C. This construction generalizes the correspondence between for-
mal Laurent series and Toeplitz matrices (which is the n = 1 case), and plays an

important role in [LP12].

Unfolding

Let C(())) be the field of formal Laurent series in the indeterminate A, that is,

expressions of the form
o0

Z am A"

m=mg
where my is an integer, and each a,, is in C. Let M,[C(()\))] denote the ring of n x n
matrices with entries in this field.

An n-periodic matriz (over C) is a Z x Z array of complex numbers (Xy;); j)ez
such that X;; = 0 if j — ¢ is sufficiently large, and X;; = X, j1, for all 4,5. Say
that the entries X;; with i — j = k lie on the k™ diagonal of X, or that k indexes
this diagonal. Thus, the main diagonal of X is indexed by 0, and higher numbers
index lower diagonals. We add these matrices entry-wise, and multiply them using
the usual matrix product: if X = (X;;) and Y = (Y};), then

(XY)ij =Y XY
kEZ
The hypothesis that X;; = 0 for j — ¢ sufficiently large ensures that each of these
sums is finite, and it is clear that the product of two n-periodic matrices is n-periodic.
Denote the ring of n-periodic matrices by M:°(C).
Given a matrix A = (4;;) € M,[C((\))], where A;; = > a%\™, define an n-
periodic matrix X = (X;;) by®

— b
Xrn—l—i,sn—l—j =0, 4

"The term “loop group” does not have a fixed meaning in the literature.
8The definition in [LP12] uses s — r instead of » — s. This is equivalent to interchanging A and A~ 1.
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for r;s € Z and i, j € [n]. For example, if n = 2 and

Ao AT 344N 45X AT 4T+ 8)
L BTN 2 4546

then
3 7| 2 1 0 0
1 5/-3 =2| 0 0
- 4 8| 3 7 2 1
0 6| 1 5 | -3 —2
5 0| 4 8 3 7
1 0] 0 6 1 5

where the row (resp., column) indexed by 1 is the upper-most row (resp., left-most
column) whose entries are shown. The vertical and horizontal lines partition the
matrix into 2 x 2 blocks whose entries are the m! coefficients of the entries of A, for
some m.

It is straightforward to check that the map A — X is an isomorphism of rings.
We will refer to the n x n matrix A as a folded matriz, and the n-periodic matrix X
as an unfolded matriz. We call X the unfolding of A, and A the folding of X. When
it is important to distinguish between folded and unfolded matrices, we will try to
use letters near the beginning of the alphabet for folded matrices, and letters near

the end of the alphabet for unfolded matrices.

Definition of unipotent crystals

Every rational function in A has a Laurent series expansion, so GL,(C(})) is a
subset of M,[C(()))], and we may talk about the unfoldings of its elements.

In what follows, we will work with the submonoid G C GL,(C())) consisting
of matrices whose entries are Laurent polynomials in A, and whose determinant is a
nonzero Laurent polynomial in A\. The purpose of restricting to this monoid is that it
is an ind-variety, so we may talk about rational maps to and from this space. (For our
purposes, an ind-variety is simply an infinite-dimensional object that admits rational
maps. We refer the reader to [Kumo02] for more information about ind-varieties.)

Let B~ C G be the submonoid of matrices whose unfolding is lower triangular
with nonzero entries on the main diagonal. In terms of folded matrices, this means
that all entries are (ordinary) polynomials, with the entries on the diagonal having

nonzero constant term, and the entries above the diagonal having no constant term.
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B~ is naturally an ind-variety, where the m** piece consists of unfolded matrices
which are supported on diagonals 0, ..., m.
For a € C, define the folded matrices

zi(a) =Id+ aFE;;+1 forie n—1], and  To(a) = Id+ a)\ "B,
where Id is the n x n identity matrix, and F;; is an n X n matrix unit. For ¢ € Z,
set 7;(a) = Tz(a), where 7 is the residue of i mod n (in {0,...,n —1}). Let U C G
be the subgroup generated by the elements 7;(a). Note that the unfolding of each
element of U is upper uni-triangular.

The usual definition of unipotent crystals ([BK00, Nak05]) is based on rational
actions of U. We work here with a slightly weaker notion.

Definition 2.33. Let V' be an irreducible complex algebraic (ind-)variety, and let
a: U xV — V be a partially-defined map. Let u.v := a(u,v). We will say that «

is a pseudo-rational U-action if it satisfies the following properties:
1. lv=wvforallveV;
2. If wv and v'.(u.v) are defined, then (v'u).v = u'.(u.v);

3. For each i € Z/nZ, the partially defined map from C x V. — V given by

(a,v) — T;(a).v is rational.

Remark 2.34. We suspect that it is possible to give U an ind-variety structure
so that a pseudo-rational U-action is actually a rational U-action. The difficulty is
that U is not the full set of matrices whose unfolding is upper uni-triangular, and
whose folding has determinant 1 (it is not possible to generate all the one-parameter
subgroups corresponding to positive real roots using only the Z;(a)). Fortunately,
pseudo-rational U-actions suffice for our purposes.

Definition 2.35. Define ag- : U x B~ — B~ by w.b = b if ub = V'u/, with
b€ B~,u' € U. If ub does not have such a factorization, then wu.b is undefined.

Note that if byu; = bauso, then b;lbl = UgUIl is both lower triangular and upper
uni-triangular (as an unfolded matrix), so it must be the identity matrix, and thus
by = by and u; = uy. This shows that ap- is well-defined (as a partial map). Observe
that if X € B~ is an unfolded matrix and i € Z, then

~ ~ —GXZ‘+1 i+1 _
i X o B~,
%ila) v <Xn' + aXi+1,i) ©

so we have

—aXit1,
(214) i‘\l(a>X = 33\1(@) . X . /I\,L(TZ<CL,X>> Whel“e Ti(a7 X) = )(uaT—’:)lézi:Z
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This shows that ap- satisfies property (3) of Definition 2.33. It’s clear that the first
two properties are satisfied as well, so ap- is a pseudo-rational U-action.

Definition 2.36. A U-variety is an irreducible complex algebraic (ind-)variety X
together with a pseudo-rational U-action v : U x X — X. A morphism of U-varieties
is a rational map which commutes with the U-actions (when they are defined).

For example, the ind-variety B~ with the pseudo-rational U-action ag- is a U-

variety.

Definition 2.37. A unipotent crystal (of type Afjll) is a pair (V,g), where V' is a
U-variety, and g : V — B~ is a morphism of U-varieties, such that for each i € [n]
(equivalently, each i € Z), the rational function v + g(v);11, is not identically zero
(here g(v) is viewed as an unfolded matrix).

Note that the pair (B~,1d) is a unipotent crystal.
The following result, which is essentially due to Berenstein and Kazhdan ([BK00,
Theorem 3.8]) shows how to obtain a geometric crystal from a unipotent crystal.

Theorem 2.38. Let (V,g) be a unipotent crystal. Suppose v € V', and let X = g(v)
be an unfolded matriz. Define

Xiv1,

Xit1,i+1

-5(7)-

: : . 1
where . is the pseudo-rational action of U on V. These maps define a type Af%)l

v() = (X1, ., Xon) gi(z) =

geometric crystal on V.

We say that the geometric crystal on V' is induced from the unipotent crystal
(V. 9).

Proof. We first show that these maps define a geometric pre-crystal on V. The
rational functions ¢; and ; are not identically zero due to the assumption about
9(v)it1,; in Definition 2.37. The identity (2.11) is immediate. Given v € V, set
X =g),v =1 <<PC;(3)> v, and X' = ¢g(v'). View X and X’ as unfolded matrices.
By (2.14) and the assumption that g is a morphism of U-varieties, we have

X' =7i(a).X =7Zi(a) - X - Ti(1i(a, X)),

c—1
wi(v)’
of X’ using rows and columns i and 7 + 1 is

CXZ“ 0
Xit1,i C_IXi+1,i+1 ’

where a = A short computation shows that the principal two-by-two submatrix
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and the other entries on the main diagonal of X’ are equal to those of X. This proves

the identities (2.10).
To see that e; is an action, compute

-1 -1 5 -1
i ( i + 2 ) =1 <CICQ ) v =e*?(v)
& pi(v) iV i(v)

where the second equality uses (2.10).

)

¢;' (¢ (v))

I
8

)

I
8

It remains to prove the geometric Serre relations (2.12). Suppose i, j € {0,...,n—
1}. If |i — j| > 1, then 7;(a) and Z;(b) commute, and it is not hard to check that the
values of €;, ; (resp., €j, ;) are unchanged by applying e (respectively, ef), so the

Serre relation for ¢ and j holds. The case |i—j| = 1 is a somewhat lengthy calculation
inside GLj3, which is worked out in [BKO0O, §5.2, Proof of Theorem 3.8]. ]

The unipotent crystal (B, 1d) induces a geometric crystal on B~. A short com-
putation using (2.14) shows that for X € B~

(2.15) ef(X) =1, (;(;Xl)) X3 (Cg_l(—)_()l> ’

where ¢;,¢;, and ¢; are the induced geometric crystal maps on B~. Note that for
any unipotent crystal (V) g), we have by definition the formal identities

(2.16) Y =19, € = €9, i = pig, ge; = €9,

where the geometric crystal maps on the left-hand side come from the induced ge-
ometric crystal on B~, and those on the right-hand side come from the induced
geometric crystal on V.

Product of unipotent crystals

We now define the product of unipotent crystals, following [BK00]. Given u € U
and b € B~, define f(u,b) = v’ if ub = b'v', with b € B~ and v’ € U. If ub does not
have such a factorization, then S(u,b) is undefined (cf. Definition 2.35).

The following result is essentially the combination of Theorem 3.3 and Lemma
3.9 in [BKO0O]. Although Berenstein and Kazhdan work with rational actions of the
unipotent subgroup of a reductive group and we work with pseudo-rational actions
of an infinite-dimensional group, the proof is identical.

Theorem 2.39. Suppose (V,g) and (W, g) are unipotent crystals. Define g : V x
W — B~ by g(v,w) = g(v)g(w), and equip V x W with the pseudo-rational U-action

u.(v,w) = (w.v, B(u, g(v)).w).
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Then (V x W, g) is a unipotent crystal. Furthermore, the geometric crystal induced
from (V' x W, g) is the product of the geometric crystals induced from (V,g) and

(W, 9).

2.5 The Grassmannian

Here we recall some basic facts and notation concerning Grassmannians. For more
details we refer the reader to [Ful97]. As a set, the Grassmannian Gr(k,n) consists
of the k-dimensional subspaces in C". We view the Grassmannian as a projective
algebraic variety in its Pliicker embedding, and for J € ([Z]), we write P;(N) for the
J! Pliicker coordinate of the subspace N. Pliicker coordinates are projective—that
is, they are only defined up to a common nonzero scalar multiple. We represent a
point N € Gr(k,n) as the column span of a (full-rank) n x k matrix N’, so that
P;(N) is the maximal minor of N’ using the rows in J. When there is no danger of
confusion, we treat a subspace and its matrix representatives interchangeably. For
example, we may speak of the Pliicker coordinates of a full-rank n x k matrix.

There is a natural (left) action of GL,, = GL,(C) on Gr(k,n) given by matrix
multiplication. We denote the action of A € GL,, on N € Gr(k,n) by (4,N) — A-N;
this is the subspace spanned by the columns of A - N’, where N’ is an n X k matrix
representative of V.

To reduce the number of special cases needed in various arguments, we make the

following convention.

Convention 2.40. Let N’ be a full-rank n x k matrix representing a point in N €
Gr(k,n).

e Unless otherwise indicated (see the last bullet point), we label Pliicker co-
ordinates of M by sets, not by ordered lists. That is, if I € ([Z}), then
P;(N) means the determinant of the k x k submatrix of N’ using the rows
indexed by the elements of I, taken in the order in which they appear in N'.
Thus, Py 2y(N) = Ppay(IV). We will often write Pio(N) or Py o(N) instead of

P{172} (N)
o If I C [n] does not contain exactly k elements, then we set P;(N) = 0.

e If [ is any set of integers, we set P;(N) = Pp(N), where I’ is the set consisting
of the residues of the elements of I modulo n, where we take the residues to lie
in [n].

e We use the notation P;, _;, ~(N) for the determinant of the k x k matrix whose

j™ row is row i; of N’. We will only use this notation when i, ...,% are (not
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necessarily distinct) elements of [n]. Note that P.jso(N) = —P.y 1 (N) =
Pi(N).

A proof of the following classical result can be found in, e.g., [Ful97].

Proposition 2.41 (Grassmann—Pliicker relations). Let iy,...,ik+1 and ji, ..., jk—1
be elements of [n]. For N € Gr(k,n), we have

k+1
(2-17) Z(_l)rp<i1,...,iT_1,ir+1,...,ik+1>(N)P<i7-,j17---,jk—1><N) = 0.

r=1
Corollary 2.42 (Three-term Pliicker relation). Fiz k > 2. If I € (14;[?]2) and a,b,c,d
are elements of [n] satisfying a < b < ¢ <d, then for N € Gr(k,n), we have

(2.18)  Prugapy(N)Progeay(N) + Proga,ay (V) Progeey (N) = Proga,ey (V) Progsay (V).

Note that the subscripts in (2.17) are ordered lists, whereas the subscripts in
(2.18) are sets.

Basic Pliicker coordinates

Here we introduce a distinguished class of Pliicker coordinates that plays an im-
portant role throughout this thesis.

Say that a Pliicker coordinate Pj is cyclic if the elements of J are consecutive mod
n, and let Gr°(k,n) denote the open positroid cell, the open subset of Gr(k,n) where
the cyclic Pliicker coordinates do not vanish. We start by introducing a canonical
matrix representative for subspaces in Gr°(k,n).

Say that an n x k matrix N has diagonal form if its first k rows are lower tri-
angular with nonzero entries on the main diagonal, and its last £ rows are upper
uni-triangular. For example, if n = 7 and k£ = 3, then a matrix of diagonal form
looks like

ai 0 O
x ay O
x ok as
x k%
1 x %
0 1 =
0 O

where aq, as, ag are nonzero, and the x’s are arbitrary.

Lemma 2.43. Every subspace in Gr°(k,n) is the column span of a unique n X k

matrix of diagonal form.
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Proof. Suppose N € Gr°(k,n). Since Py,_g41,(IN) # 0, N can be represented by an
n x k matrix N’ whose bottom k rows are the identity matrix. Clearly A n.q(N') =
P quin—kti+1,0 (N)

P[n—k+1,n] (N)
i < k. We may therefore use Gaussian elimination on the columns of N’ to make the

for ¢ < k, so the principal minors Ap 41,4 (/N') are nonzero for

first k rows lower triangular with nonzero entries on the main diagonal. The last k
rows will still be upper uni-triangular, so we obtain a diagonal form representative
of the subspace N.

If N" and N” are diagonal form representatives of IV, and A € GL; is the change
of basis matrix, then A must be lower triangular to preserve the form of the first k
rows, and upper uni-triangular to preserve the form of the last k£ rows. This proves
uniqueness. O

Definition 2.44. A subset J C [n] is a basic subset if it consists of a single interval
of [n], or it consists of two disjoint intervals, one of which contains n. A subset
J C [n] is a reflected basic subset if it is of the form wy(J), where J is basic (and wy
replaces each i € J with n — i + 1). Every basic k-subset is of the form

for some i € [n—k+1] and j € [i—1,i+k—1].7 We refer to Py, , (vesp., Py, (s, ,)) as
a basic (resp., reflected basic) Plicker coordinate. Define Uy to be the open subset
of Gr(k,n) consisting of subspaces whose basic Pliicker coordinates are all nonzero.

Cyclic Pliicker coordinates are basic, so every element of U, has a diagonal form
representative by Lemma 2.43. If N’ is the diagonal form representative of N, then

AJ..[k](N/) PJ(N)
2.19 A pg-iry(N') = —= = e '
(2.19) gl g—i+1) (V) Aptrrn i) (N)  Prookan (V)

This observation leads to the following result.

Lemma 2.45. Fvery element of Uy is uniquely determined by its basic Plicker co-
ordinates.

Proof. Suppose N € Uy, and let N’ be its diagonal form representative. We induc-
tively show that all the entries of N’ are determined by the basic Pliicker coordinates
of N. Consider an entry N/, which is not automatically 0 or 1, and assume that N/,,,
is known for a’ < a, and for a’ = a, b < b. Expand the determinant A,y 41,4],11,5/(N')
along its last column. This gives an equation

NopDpa—pi1,a-1),1,0-1](N) = Apapi1,a,0.0(N') + a polynomial in known entries of N'.

9There is intentionally some redundancy in this notation: ifi =n —k+ 1 or j =i — 1, then Jij =n—k+1,n].
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By (2.19), the determinant on the left-hand side of this equation is a ratio of basic
Pliicker coordinates of N, and since these are nonzero, the entry N/, is determined.
O

The following result significantly strengthens Lemma 2.45, and plays a crucial role
in the arguments about positivity in later sections.

Proposition 2.46. Fvery Plicker coordinate can be expressed as a Laurent poly-
nomial in the basic (resp., reflected basic) Plicker coordinates, with non-negative

integer coefficients.
This result is proved at the end of §4.1.2.

Remark 2.47. Proposition 2.46 is a special case of the (positive) Laurent phe-
nomenon in the theory of cluster algebras. Indeed, the k(n — k) + 1 basic (resp.,
reflected basic) Pliicker coordinates are a cluster in the homogeneous coordinate ring
of Gr(k,n) (see [MS16, Figure 18]).

The dual Grassmannian

Given a subspace N C C", let Nt be the orthogonal complement of N with
respect to the non-degenerate bilinear form given by (v;,v;) = (—=1)"*14, ;, where
v1,...,v, is the standard basis. Note that if N € Gr(k,n), then Nt is in the “dual
Grassmannian” Gr(n — k,n). The Pliicker coordinates of N+ are closely related to
those of N.

Lemma 2.48. If N € Gr(k,n), then for J € ([Z}), we have
P;(N) = P7(N*)

(as projective coordinates), where J denotes the complement [n] \ J.

The proof relies on Jacobi’s identity for complementary minors of inverse matrices,
which states that

1

(2.20) Ay (X = (‘UZHZ‘]mAiT(X%

where Y S is the sum of the elements of S (see [GJPS12] for several proofs of this
classical identity). Let X¢ be the matrix obtained from X by scaling the i** row and
column by (—1)* (so (X¢);; = (—1)"7X};). If X is invertible, define X ¢ = (X 1) =
(X)~L Tt follows immediately from (2.20) that

1

(2.21) Ar (X9 = det(X)Ajj(X).
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Proof of Lemma 2.48. Let N’ be an n x k matrix whose column span is N. Choose
a k-subset I so that P;(N) # 0, and suppose I = {i; < ... < i,_1}. Let X be the
n x n matrix whose j%* column is the standard basis vector e, forj=1,...,n—k,
and whose last k£ columns are the matrix N’. Clearly X is invertible. Let N” be the
(n — k) x n matrix consisting of the first n — k rows of X ¢. Since X 'X = Id, we

have . .
0= Y (U)FNING = (-1 SN
r=1 r=1
fori=1,...,n—kand j=1,..., k. Thus, every row of the matrix N” is orthogonal

to every column of the matrix N’ with respect to the bilinear form defined above,
and since these rows are linearly independent, they span the (n — k)-dimensional

subspace N* .

1
By (2.21), we have Ps(N1) = Ay 7(X79) = F(X)AL[H,HM] (X) # 0. Com-

T
bining this with another application of (2.21), we obtain
Pi(N)  Ajpoprrn(X)  Bpg7(X79)  Py(N)

Pi(N)  Apprirm(X) Ay _y7(X—¢)  P(NY)

for all J € ([Z]). Thus, P;(N) = P;(N*1) as projective coordinates, as claimed. [J

2.6 Planar networks and the Lindstrom Lemma

By planar network, we mean a finite, directed, edge-weighted graph embedded
in a disc, with no oriented cycles. The edge weights are nonzero complex numbers
(or indeterminates which take values in C*). We assume there are r distinguished
source vertices, labeled 1,...,r, and s distinguished sink vertices, labeled 1’,...,s’.
To each such network I', we associate an r x s matrix M (T"), as follows. Define the
weight of a path to be the product of the weights of the edges in the path. The
(1, 7)-entry of M(T") is the sum of the weights of all paths from source i to sink j/,
that is,

M)y = Y wi(p).
pi—y’
We say that M(T") is the matrix associated to I', and that I' is a network repre-
sentation of M. For an example of a network and its associated matrix, see Figure
3.

The gluing of networks is compatible with matrix multiplication, in the sense that
if a planar network I is obtained by identifying the sinks of a planar network I'y with
the sources of a planar network I's, then

(2.22) M(T) = M(T;) - M(Ts).
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11 0 0 0 0

I22 12222 0 0 0
1 1o+ 723 x137023 0 0
0 1 213 + %24 T1aT24 O
O 0 1 T14 ZI25

Figure 3: A planar network and its associated matrix. Unlabeled edges have weight 1.

Let I ={i1 < ... <ipn} C[rjand J = {j1 < ... < jm} C [s] be two subsets of
cardinality m. A family of paths from I to J is a collection of m paths pi,..., pm,
such that p, starts at source i, and ends at sink j;(a), for some permutation o € S,,.
We denote such a family by F = (ps;0), and we define the weight of the family by
wt(F) =[], wt(p,). If no two of the paths share a vertex, we say that the family
is vertex-disjoint.

We refer to the following result as the Lindstrom Lemma.

Proposition 2.49 (Lindstrom [Lin73]). Let I' be a planar network with r sources
and s sinks, and let I C [r],J C [s] be two subsets of the same cardinality. Then the

minor of M (') using rows I and columns J is given by

Ay (M(T)) = Z sgn(o) wt(F),

F=(pa;o): I—J

where the sum is over vertex-disjoint families of paths from I to J.

For example, let I' be the network in Figure 3. There are three vertex-disjoint fam-
ilies of paths from {3,4} to {2/,3'}. The weights of these families are x15213, 712724,
and x93794, and in all three cases o is the identity permutation. From the matrix,
one computes

A3y 03(M(T)) = x12213 + T12T24 + To3Ta4,

in agreement with the Lindstrom Lemma.

With a single exception (in §5.3), our networks will have the property that ev-
ery vertex-disjoint family of paths is of the form (p,;1d), so the Lindstrom Lemma
expresses every minor of the associated matrix as a polynomial in the edge weights
with non-negative integer coefficients.



CHAPTER 3

Geometric and unipotent crystals on the Grassmannian

3.1 Main definitions

For k € [n — 1], let X} denote the variety Gr(k,n) x C*.! We denote a point of
Xy by NJt, where N € Gr(k,n) and t € C*. We begin by introducing an order n
cyclic symmetry of X, that plays a central role in everything that follows.

Definition 3.1. Define the cyclic shift map PR : X, — X, by PR(N|t) = N'|t, where
N’ is obtained from N by shifting the rows down by 1 (mod n), and multiplying the
new first row by (—1)*7't. We write PR; to denote the map N — N’.

For example, when n = 4 and k = 2, we have

Z11 212 —t-zyn —1- 20

Zo1 %22 PR, 211 212
—

231 %32 221 222

241 242 231 232

It’s easy to see that PR is well-defined (i.e., it does not depend on the choice of
matrix representative for the subspace N), and that PR has order n. Note that the
Pliicker coordinates of N’ = PR, (V) are given by

Pi_i(N)  iflgJ

(31) PV} = £ P,y (N) ifled

where J — 1 is obtained from J by subtracting 1 from each element (mod n).

There is also a natural order n symmetry on the loop group GL,(C(\)). Recall
from §2.4 the unfolding construction, which identifies GL,(C())) with a subset of
n-periodic matrices. Define the shift map sh on an n-periodic matrix X by

Sh(X)U = Xi—l,j—l-

ISince n is fixed throughout, we suppress the dependence on n in the notation Xj.

42
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This map is easily seen to be an automorphism of order n which preserves both B~
and U.

Now we make X}, into a unipotent crystal. For A € GL,(C(\)) and z € C, let
Al =, denote the matrix obtained by evaluating the loop parameter A at z. This is
defined as long as z is not a pole of any entry of A; the resulting matrix is invertible
if z is not a root of the determinant of A. Define a U-action U x X — X} by

(3.2) u.(N|t) = (u|xo1yp-1 - N)|t.
Note that u.(N|t) is always defined, since every element of U has Laurent polynomial
entries and determinant 1. This action makes X into a U-variety.

Definition 3.2. Define a rational map g : Xy — B~ by g(N|t) = A, where A is the
folded matrix defined by

1 i<k
4 — o Bimrri-gu@ (V)
Y Py (V)

cij =t ifj>kandi>7
A ifj>kandi<j.

For example, if N|t € Gr(2,5) x C*, then setting P; = P;(N), we have

P, P, P,
= D N S
Pys Py Psy
P. P, P
R ) P
Py Pis Psy
Py P3| Pos
3.3 Nlt) = - — = 0 A
P, P, P.
R el Sl 0
Pis  Pia Py
P. P P
0 1 tﬁ tﬁ tﬁ

P12 P23 P34

Note that ¢ is defined if and only if the cyclic Pliicker coordinates of N do not vanish,
that is, if and only if N is in the open positroid cell Gr°(k,n).

Lemma 3.3.
1. If N|t € X}, with N € Gr°(k,n), then

go PR(N|t) =shog(N|t).

2. Fori € Z/nZ, a € C, N|t € X, and X € B~, we have

PR™(Z;(a). PR(N|t)) =
sh™!(Z;(a). sh(X))

Ti—1(a).(N|t),
fi,l(a) X.
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Proof. Let X = g(N|t) and X' = g o PR(N|t) be unfolded matrices. By definition,
X;j=0ifi—j &[0,n— k], and for i — j € [0,n — k], X;; is given by

P k1 j-1ugp (V) b — 0 ifje[l,klori<y
P[j—k,j—ll(N) ’ ’ 1  otherwise

Xij = "
where i denotes the residue of i mod n in the interval [1,n]. By (3.1), we have (for

1 ifje[2k+1andi=1
Bjrj-2ui-13(N)

Xé.:tbiﬁbéj , b,=<¢—-1 ifj=k+1landi#1
! Pljj—1,-21(N) ’ / 7
0 otherwise.
By considering several cases, one verifies that b;; +b;j = bj_1j-1, SO X{j =X =

sh(X);;, proving (1).

Let v; € CF be the i row of N (more precisely, of a fixed matrix representative of
N). Acting on N by 7;(a) replaces v; with v; + av;yq if i # 0, and it replaces v,, with
Un + (712/@*1
vy with (=1)*"1tv,; the inverse map PRt_1 replaces v; with v, for ¢ # n, and it
(=DF!

avy if i = 0. The map PR, replaces v; with v;_; for ¢ # 1, and it replaces

replaces v,, with v1. From this description, it’s clear that the first identity of

(2) holds.
For the second identity of (2), let X’ = sh(X). By (2.14) and the fact that sh is

multiplicative, we have

sh™'(z;(a).X") = sh ™ (Zi(a)) - sh ™ (X') - sh ™ (Zi(73(a, X))
i_l(a) . X . @_1(7}»_1(@, X))

i—1 (CL).X,

[
8 2

I
8)

where for the second equality we use

—aX! —aX.
. X/ — i+1,04+1 _ i o X ‘
il ) Xi+aXiy, Xivio1t+aXia 7i-1(a, X)

Proposition 3.4. The pair (Xy, g) is a unipotent crystal.

Proof. It’s clear that the rational functions v — ¢(v);11, are not identically zero. We
must show that g commutes with the U-actions. Since U is generated by Z;(a), we

need only show that

(3-4) 9(7i(a).v) = Ti(a).g(v)
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for all i. In fact, if we know that (3.4) holds for a particular value of ¢, then Lemma
3.3 allows us to deduce that it holds for all 7, so it suffices to consider the case i = 1.

Suppose Nt € X and a € C. Set N'|t = T1(a).(N|t), and write P; = P;(N) and
P = P;(N’). The matrix 7;(a) does not depend on A, so for any ¢, the matrix N’

is obtained from N by adding a times row 2 to row 1. Thus, we have

(3.5) P Py +aPppyupy ifleJand2¢J
. = ‘
Py otherwise

Set A= g(N|t), A = g(N'|t), and A” = 71(a).A (view these as folded matrices).
We must show that A’ = A”. By (2.14),

A" =71(a) - A-Z1 (1 (a, A)).

In words, A” is obtained from A by adding a times row 2 to row 1, and then adding
71(a, A) times column 1 to column 2. Thus, A” and A differ only in the first row and
the second column. There are four cases to consider.

Case 1: i # 1,j # 2. In this case, A]; = Aj;, and by (3.5) and the definition of g,
we see that A}, = A;; as well.

Case 2: i = 1,j = 2. By definition, A;5 and A, are equal to A if £ = 1, and 0
otherwise. The quantity 71(a, A) is defined so that A, has no constant term, so

Ay = 01 A as well.

Case 3: 1 = 1,7 # 2. In this case, we have

AT — A+, = A0 Priyupj—ke1,j-1 + aPyopj—ri1,j-1)
17 — J J
’ BPj—k,j—1)

/
_ s Pk _ AL

Pl

Case J: i # 1,7 = 2. Since the matrix entries Aji, Aj2, and Ay do not depend on

A, we have 71(a, A) = #%' We compute
Al = A+ mi(a, A)An
e Pp12y0m—k+31]
_ o P izUin—k+31] Pryupm—k+2,n] Ppyuin—k+2,n)
Priyum—rk+2,n] Pryum—k+2,n) + ap{2}U[n—k+2,n] P ki1
P[nfk+1,n] P[nkarl,n}
_ e P iyuin—k+3.0 (Pryum—it2.n]) + aP2yum—k+2n)) — 0P 230m—k+3,0 Piyuim—k+2,n)

Piiyupn—k+2.0) (Pyuin—k+2,0) + aP2yum—kt2,n))
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If k> 1and i <n—k+2, apply a three-term Pliicker relation (Corollary 2.42) to

the terms in the numerator containing a to obtain

P .
{1,i}U[n—k+3,n] :Aig

Pryum—k+2m + aPpjom-k+r20)  Plyom_kron
If2>n—]€+2, thenAﬂ:Aig:A;’Z:Ab:O, andiszl,then
P(Pi +aP,) —aPP; P, P!

Pl(P1+aP2> P1+CLP2 Pl

w Pu iyumn—k+3n) T aPpiun—k+3n
2= =

Al =t

[

By Theorem 2.38, the unipotent crystal on (X, g) induces a geometric crystal on
Xk. Unraveling the definitions, we obtain the following formulas for the geometric

crystal structure on Xj.

e The map v : X — (C*)" is given by v(N|t) = (71, ...,7), where

Pi i1 a(N
J—ﬁﬂLlﬁlgigk

Py gi—1(N)
Yi = P (N)

p RN e 1 < <o

Pi ki1 (N)
e For i € Z/nZ, the functions &;, @; : X — C* are given by

gi(N|t) = 0k P[i_k‘*‘lvi—l]u{i-*-l}(N>P[i—k+1,ﬂ (N)
Z Pi—ri1)(N) Pi—py2,i411(N)

Py gi1,i-1ufie13 (V)

Pi(NIE) = £

Bikr1g(N)
e For i € Z/nZ, the rational action e; : C* x X, — X}, is given by e§(N|t) = N'|t,
where .
c —
zi| ——== | N ifi #0
(=)t -1 o
0 . -N ifi=0.
t po(N|t)

Here z;(a) = Id + aF; ;41 for i € [n — 1], and zo(a) = Id + aE,,, where E;; is

an n X n matrix unit.

Finally, we make X}, into a decorated geometric crystal. Say that an n-periodic
matrix X is m-shifted unipotent if X;; = 0 when ¢ — 7 > m, and X;; = 1 when
1 —j = m. If X is m-shifted unipotent, define

X(X) =" Xjimore
j=1
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It is easy to see that if X is m-shifted unipotent and Y is m/-shifted unipotent, then
XY is (m + m/)-shifted unipotent, and

(3.6) X(XY) = x(X) + x(Y).

If Nt € Xj, then g(NJt) is (n — k)-shifted unipotent. For example, the matrix
g(N|t) for N € Gr(2,5) is shown above in (3.3). This matrix is 3-shifted unipotent,

and
Pss(N)  Piu(N)  Pos(N)  Pis(N)  Pau(N)
MW =B T B T Pa) T Pa(v) T Pa(v);

Definition 3.5. Define f : X, — C by

Pri-ryoi-k+20(N) | Parupmy (V)
f(Nt) = x(g(Nt)) = ’ + .
#Zk Pi—rr1, (V) Pug(N)

Lemma 3.6. The function f satisfies (2.13), so it is a decoration on Xj.

Proof. Using (2.15) and (2.16), we compute

flei(Nt)) = x(g(ef(Nt)) = x(ei (g(N[t)))

(o () o = (570

c—1 cl—1

= oy WO Sy

so (2.13) holds. O

Products

For ki, ..., kq € [n — 1], define

Since each Xy, is a unipotent crystal, the product Xy, .z, is also a unipotent crystal

.....

by Theorem 2.39, and the map ¢ : X, _, — B~ is given by

(3.7) g(w1, .. xa) = g(21) - - - g(wa).

-----

Xky...ky- By Definition/Proposition 2.32, the map f : Xy, x, — C defined by
flz1,...,xq) = f(z1) + ...+ f(zq) is a decoration. Note that Definition 3.5 and
equations (3.6), (3.7) imply that

(3.8) flzr, ... xq) = x(g(z1, ..., x4)).
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3.2 Properties of the matrix g(N|t)

Here we prove several important properties of the matrix g(N|t).

Proposition 3.7. Suppose N is in the open positroid cell Gr°(k,n), and let A =
g(N|t), viewed as a folded matriz.

1. The first k columns of A span the subspace N.
2. The matriz Al\__1)x-1, has rank k.
3. The determinant of A is (t + (—=1)F\)"F.
Proof. By Lemma 2.43, the subspace N has a diagonal form representative N'. It

follows from the definition of diagonal form that for j =1,... k,

N — P j-nuiiyuin—k+i+1,n (V) _ Pj—kt1,j-1u53 (V)
Y P j-1up—sin) (N) Bk, (N)

(recall Convention 2.40) if i € [j,j +n — k|, and Nj; = 0 otherwise. Comparing with

the definition of g, we see that N’ is equal to the first & columns of A, which proves
(1).

For (2), set A; = A[\__1)e-1,. We claim that Ap i xugy(A:) = 0 for all (k + 1)-
subsets I C [n], and j € [k + 1,n]. To see this, suppose I = {i; < -+ < igy1}, and
expand the determinant along column j:

k+1
(3.9) Aoy (A =) (DR (A 5 ARGy 1k (Ad)-
r=1
By part (1) (and the fact that Ap, 110,16 (A4:) = 1), we have
Py (N)
Apngyng(A) = ———.
\{ir }[1, k] \ 428 P[nfk:+1,n](N)

By the definition of g, we have
Py ki1j-10fi) (N)

(A ) L — P[jfkvjfl](N)
t)irsj Pk j-oiy(N) L ;
(—1)k_1t [—k+15-1U{ir} if i, < j
Plj—g,j—1)(N)
_ tP<j_k+1,j—k+2 ..... j—l,ir>(N)
Blj—t,j—1)(N)

where in the last line, the angle brackets indicate that we are taking the columns
inside the brackets in the order in which they appear in the sequence, rather than
sorting them in increasing order (see Convention 2.40). Now (3.9) becomes

k+1
P_. - 1 N P . N
Ar kg (Ar) :Z(_l)kﬂwt ikt j—kt2j-1i> () Py (N) 0

P[j—k;,j—l} (N> P[n—k-i—l,n} (N)

r=1
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by the Grassmann-Pliicker relations (Proposition 2.41).

We have shown that each of the last n — k columns of A, is in the span of the first
k, and since the first k columns have rank k by part (1), this proves (2).

For (3), let A; be as above. By part (2), it is possible to add linear combinations
of the first k columns of A; to the last n — k columns to obtain a matrix with zeroes
in the last n — k columns. Let A’ be the matrix obtained by adding the same linear
combinations of the first k£ columns of A (which are equal to the first & columns of

A;) to the last n — k columns of A. Then we have

1 if j <k

P k41,5100 (V)
AN = —k+1.j A o ) o
( )] P[j—k,j_l](N) ) ng ( 1) t+ A if ¢ <n k and 7>

0 otherwise.

For example, if n = 5 and k = 2, then A’ is of the form

« 0 t+ XN (E+N)*x (E+N)x*
x « 0 t+ A (t+ M)«
x x 0 0 t+ A
1 = 0 0 0

0 0 0 0

where the *’s are certain ratios of Pliicker coordinates. Thus, we have
det(A) = det(A’) = (=P R ((=1)kt + \)"F = (t + (=1)FA)"F,
proving (3). O

Combining Proposition 3.7 with some simple linear algebra, we obtain two state-

ments that play an important role in the study of the geometric R-matrix in §5.1.
Corollary 3.8. Suppose N|t € Xy, and B € M,(C[\,\71]).
1. The first k columns of (g(N|t) - B)|x=(—1)»-1, are contained in the subspace N.

2. If Blx_(_1)x—1; is invertible, then the matriz (B - g(N|t))|\2(—1)x-1; has rank k.
Furthermore, the first k columns have full rank, and they span the subspace
Bly—(—1ys-1 - N.

Proof. By parts (1) and (2) of Proposition 3.7, the column span of the matrix
g(N|t)|x=(1)4—1¢ is the subspace N. Multiplication of this matrix by B|y__i)k-1
on the right is equivalent to performing a sequence of (possibly degenerate) column
operations, so all columns of the resulting matrix are contained in N, proving (1).
Part (2) follows from parts (1) and (2) of Proposition 3.7, and the fact that

invertible linear transformations preserve dimension. [
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3.3 Symmetries

In §3.1, we introduced the cyclic shift map PR : X; — X, and the shift map
sh on the loop group, and we showed that the unipotent crystal map ¢ intertwines
these two maps. In this section, we study these Z/nZ symmetries in a bit more
detail, and then we study two additional symmetries of the geometric crystals X:
a geometric analogue of the Schiitzenberger involution, and the duality map from a
subspace to its orthogonal complement. In both cases, we show that g intertwines the
symmetry of the Grassmannian with a natural map on the loop group, and from this
we deduce that the symmetries are compatible with the geometric crystal structure.
This compatibility allows us to prove analogous results about (combinatorial) crystals
in §4.2. Furthermore, these symmetries play an indispensable role in proving the
main results of Chapter 5.

3.3.1 Z/nZ symmetry

Recall from §3.1 the maps PR and sh. Recall also that (X, . x,,9) is a unipotent
crystal, where g(x1,...,24) = g(z1)---g(xq). Extend PR to a map X, _, —
Xkl,...,kd by

PR(x1,...,zq4) = (PR(x1),...,PR(z4)).

Since sh is an automorphism, Lemma 3.3(1) extends to the identity
(3.10) goPR =shog

on any product X, ..

Proposition 3.9. The map PR interacts with the geometric crystal structure on
Xk, b, as follows:

1. yoPR = sh o ~, where &1(21, coyZn) = (Zn, 21y ooy Zn1);

2. e;0PR=¢;_1 and ¢, 0 PR = @, fori € Z/nZ;

3. ¢o PR =PRoef | fori€ Z/nk;

4. foPR=f.

Proof. These identities are essentially a formal consequence of (3.10) and basic prop-
erties of unipotent crystals. We will use the same technique to prove analogous re-
sults for the symmetries introduced in §3.3.2 and §3.3.3, as well as for the geometric
R-matrix in §5.1.2.

Recall that the unipotent crystal (B~,Id) induces a geometric crystal on B~
(Theorem 2.38). It is immediate from the definitions that the induced geometric
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crystal maps on B~ satisfy

(3.11) yosh=shoy eosh=¢e_1 ¢;osh=¢_;.

Combining (3.11) with (2.16) and (3.10), we have
7yoPR=~0goPR=~oshog=shoyog=shon,

proving (1). Part (2) is proved in the same way. Similarly, the function y defined
on m-shifted unipotent n-periodic matrices clearly satisfies y o sh = x, so part (4)
follows from (3.8) and (3.10).

The action e; on B~ is defined by ef(X) = T; ( el ) . X, so by Lemma 3.3(2)
and (3.11), we have

(3.12) e osh =shoe ;.
Combining (3.12) with (2.16) and (3.10), we compute

goe;oPR=¢jogoPR
=e;oshog
=shoe ;0g
=shogoef

=goPRoej ;.

If d = 1, then the identity ef o PR = PRoe¢S_; follows from Proposition 3.7(1) by
“projecting” both sides of the preceding identity onto the first k£ columns. To prove
the general case, we will show that if X and Y are products of the geometric crystals
X}, such that part (3) holds on X and Y separately, then it holds on the product
X x Y. By Definition/Proposition 2.32, the action e¢; on X x Y is given by

ciw) +oily)  _ eil@) +oily)
a@)+eily) 7 a@) e laly)

e (z,y) = (€] (x), €(y))  where ¢ =
Since we have already shown that part (2) holds on any product of the X;, we have
(3.13) e; o PR(z,y) = (e (PR(7)), &;*(PR(y))) = PR(e;1, (), €21 (y))
where

oo cem@ teinaly) o, cin(@) +einay)
Voaa@) teialy) 7 a(@) +eteia(y)

The right-most expression of (3.13) is PRoe§_;(x,y), so we are done. O




52

Remark 3.10. It is possible to deduce part (3) directly from the identity goefoPR =
g o PRoef | by appealing to Corollary 5.9. Indeed, this is how we will prove that
the geometric R-matrix commutes with the geometric crystal operators. We have
chosen to use a more elementary approach here because the only proof we know of
Corollary 5.9 relies on two difficult results about the geometric R-matrix (Theorems
5.3 and 5.4), and we want to emphasize that the simple fact proved here does not

depend on those results.

The following result plays an important role in the proof of the positivity of the
geometric R-matrix in §5.4.

Lemma 3.11. Suppose N|t € X;. Let A = g(N|t) and A" = g(PR(N|t)), and view
these as folded matrices. Then for I,J € ([:f]), we have

Ary5-1(A) iflelnJorlglulJ
(314) A]}J(A/) = (—1)7"71)\ . A[_LJ_l(A) Zf lel \ J

(—1)T_1)\_1 . A[_l,J_l(A) Zfl eJ \ I
where S — 1 is obtained from S by subtracting 1 from each element (mod n).

Proof. By (3.10), we have A" = sh(A). Observe that the submatrix sh(A); ; is
obtained from the submatrix A;_; ;1 by the following two steps:

e If 1 € I, multiply the last row by A and interchange it with the other » — 1 rows.

e If 1 € J, multiply the last column by A™! and interchange it with the other r —1

columns.

This implies (3.14). O

3.3.2 The geometric Schiitzenberger involution
For z € C*, define 7% : M,,(C[\,\71]) — X} by

(3.15) 78 (A) = N|z

z

where N is the subspace spanned by the first & columns of the n x n matrix A, =
Al =(1)t-1,. This map is undefined if the first & columns of A, do not have full rank.
Proposition 3.7(1) states that for N € Gr°(k,n) and t € C*, we have

(3.16) T o g(N|t) = N|t.

This shows that the matrix A = g(N|t) is determined by the subspace spanned by its
first k& columns (and the value of ¢). Now we consider what happens if we “project”

onto the last & rows instead of the first & columns.
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Define the flip map fl on an n x n matrix A by
(3.17) ﬂ<A)ij = An—jt1n—it1-

In words, fl reflects the matrix over the anti-diagonal. It is easy to see that fl is an

anti-automorphism, and that it satisfies

(3.18) fi> = 1d and flosh = sh™' ofl.

Definition 3.12. Define the geometric Schiitzenberger involution S : X — Xj by
S(N|t) = nFoflog(N|t).

This is a rational map which is defined when N is in the open positroid cell Gr°(k, n).
Continuing the notation used for PR, we write S; to denote the map N — N’  where
N'|t = S(N|t). Extend S to a map Xy, x, = Xg,. .k DY

(3.19) S(x1, ... xq) = (S(xg),...,5(x1)).

Note that the order of the factors is reversed.

Remark 3.13. This definition was inspired by work of Noumi and Yamada on
a geometric? lift of the Robinson—Schensted—Knuth correspondence, in which they
observed that the anti-transposition map fl plays the role of the Schiitzenberger
involution [NY04].

For example, if N|t € Gr(2,5) x C*, then setting P; = P;(N), we have (cf. (3.3))

P
=2
Psy
P. P
$235 4234
Pys  Pos
St(N) = t@ t@
Py P
P
1 s
Prs
0 1

By definition (and the fact that Ap, k1.0, (9(N|t)) = 1), the Pliicker coordinates
of N' = S;(N) are given by

P;(N')
P[n—k’—i—l,n} (N,)

2Noumi and Yamada use the term “tropical” for what we call “geometric” or “rational,” and the term “ultradis-
cretization” for what we call “tropicalization.” This terminology is common in the literature coming from Japan.

(320) - A[n—k—i—l,n],wo(J) (g(N|t))7
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where wy(.J) is the subset obtained from J by replacing each i € J with n — i+ 1.
In general, it is not so easy to express the right-hand side of (3.20) in terms of the
Pliicker coordinates of N. When J is a basic subset, however, there is a simple
expression. Recall from §2.5 the notation J; ; = [i, j] U [n — k4 j — i+ 2, n] for basic
subsets, and Uy, C Gr(k,n) for the open subset where the basic Pliicker coordinates
do not vanish.

Lemma 3.14. Suppose N|t € Xy, and N'|t = S(N|t). If N € Uy, then so is N,
and the basic Pliicker coordinates of N' are given by

PJm (N/) _ gmin(jn—k)—i+1 PJn—k—i+2,n—j(N)
P[n—k’-I-l,n} (N,) P[n—j—kr-i-l,n—j] (N) '
Proof. Set A = g(N|t), and fix a basic subset J; ;. Choose a and b so that w(J; ;) =
1,a] Ub+a+ 1,b+ k| (explicitly, a = k—j+i—1and b =n—1i—k+1).
Consider the k x k submatrix of A using the rows [b+ 1,0 + k| and the columns
[1,a]U[b+a+ 1,0+ k|. The last kK — a columns of this submatrix consist of a rows
of zeroes followed by a lower triangular (k — a) x (k — a) block, so

(3.21)

btk
Apppk)1,auptatt bk (A) = Apitpialia(A) H Arr
r=b+a+1
btk
P[rkarl 7] (N)
= Aprprapa(d) [ 75—
r=b+a+1 P[T—kﬂ“—l](N)

where ¢, =0 if r < k, and ¢, = 1 if » > k. Using (2.19) and canceling terms in the
product, we obtain

_ gmin(k—a,b) PJb+1,b+a (N) P[b+1,b+k;](N) ‘
P[n—k+1,n](N) P[b+a+1—k,b+a}(N)

Note that the Pliicker coordinates appearing here are nonzero because N € Uy.

(3:22)  Apt1prk)[Lalupratipik](A)

Let A; = Al\—(_1)x-1,. By Proposition 3.7, all the columns of A; are in the span
of the first & columns (which is N), so if a single minor using a given set of k
columns is nonzero, then those k columns also span the subspace N. Thus, the non-
vanishing and A-independence of the right-hand side of (3.22) implies that columns
[1,a]U[b+a+1,b+ k] of A; span N, so we have

An— n a a A P’I’L— n N
(3.23) k1), [Lalupratbrk) (Ae) — Pairrn) (V)

Aps1pra1aopraripik] (A)  Poriper(N)

Both minors appearing in the left-hand side of (3.23) are independent of A, so this
equation still holds if we replace A; with A. The lemma follows from combining
(3.20), (3.22), and (3.23), and replacing a, b with k—j+i—1,n—i—k+1, respectively.

O
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Specializing (3.21) to the case of cyclic Pliicker coordinates, we obtain

(3.24) P[i7i+k71](N/) — flliitk=1]n[n—k]] P[n,k+17n](N)
P[n—k—i—l,n](N/) P[n—i—2k+2,n—i—k+1]<N)

for i € Z/nZ. This shows that when N € Gr°(k,n), Si(N) € Gr°(k,n) as well, so
go S(N|t) is defined.

Proposition 3.15. Suppose (Ni|t1,. .., Nylta) € X,
Then

kgs With each N; € Gr°(k;,n).

-----

g @) S(N1|t1, . ,Nd|td) = ﬂOg(N1|t1, Ce ,Nd|td).

Proof. Since fl is an anti-automorphism, it suffices to prove the d = 1 case. Suppose
7|—k
N|t % AS A5 Nt

We must show that g(N'|t) = A’. By definition, the first k£ columns of A’ are the
diagonal form representative of N’ (note that the first £ columns of A" do not depend
on A). By Proposition 3.7(1), the first k& columns of g(N’|t) are also the diagonal
form representative of N’, so the first & columns of g(N’|t) and A" agree. It remains
to consider the last n — & columns.

We claim that for i < n — k, we have

Al 1,0), }0li+ it k-1 (A) 5 — t o ifg<i
) ij —

(3.25) A = d;;
! ! A —i1,0),i+1,i4+4 (A) A if g >

This is clearly true when j € [i + 1,i 4+ k]. Let A; = g(N|t)|[»=(_1)s-1;- By Propo-
sition 3.7(2), all size (k + 1)-minors of A; vanish. For j < i, expand the mi-
n0r Afiyuin—k+1,n],{j}uli+1,i+k (Ar) along row i and use the fact that (A;); = 0 for
r=i+1,...,i+k—1, and (Ay);;x = (—1)*"!t to obtain

(3.26) (A1)ij Ap—kt1,n] i+1,i+k] (Ae) = EAp—kt 1.0, ) Ufi+1,i+k—1] (A) = 0.

There are no \’s in the last k£ rows of A, and (A4:);; = A;; for j < i, so we may
replace A; by A in (3.26). By (3.20), the minor Ap,_gi1n)ji+1,i+4(A4) is a ratio of
cyclic Pliicker coordinates of N’, which are nonzero by (3.24). Thus, (3.26) implies
the j < case of (3.25).

For j > 1+ k, the same reasoning gives

tA ki it h—1001 (Ae) + (= 1) (A At i+ 1,00 (Ae) = 0,

(~1)*

and since (A;);; = A;; when j > i+ k, (3.25) holds in this case as well.



56

Now (3.20) and (3.25) imply that

Piyoy—kt1,j-1(N')
A; _ An,' . — dn,' - {i}Ulj—k+1,j =g N/ t py
] J+1, +1 J+1, +1 Pb_k,]_l}(N/) ( ’ ) ¥i

for j > k + 1, which completes the proof. O

Note that as an immediate consequence of Proposition 3.15, we have

(3.27) Ar(g(S(N[E))) = Aug(n) o) (9(N]L))-

Corollary 3.16. The map S : Xy, k, — X,
of rational maps:

k, satisfies the following identities

77777

S2=1d and SoPR=PR'oS.

Proof. By Proposition 3.15, (3.18), and (3.10), we have
goSP=fPog=yg
and
goSoPR=flogoPR =floshog=shtoflog=sh™ogoS=goPR'08S.

If d = 1, then by Proposition 3.7(1), we may “project” both sides of these equations
onto the first £ columns to deduce the desired identities. The general case follows
from the d = 1 case because S and PR act separately on each component of a

product. O]

Proposition 3.17. The map S interacts with the geometric crystal structure on

Ky G follows:

1. 7S = woy, where wo(z1, ..., 2n) = (Zn, -+, 21);
2. S = pn_i and ;S =e,_; fori € Z/nkZ;

3. €S = Sec . fori € Z/nZ;

4 S =f.

Proof. The proof is very similar to that of Proposition 3.9. First note that by n-
periodicity, fl acts on an unfolded matrix X by f1(X);; = X,,_j11,—i+1,s0for X € B,
we have 1) %
g(1(X)) = S o T o (X)),
(X)) A(X) i1 Xn—in—i on-ilX)

and similarly ¢; o fl = ¢,_;, and v o fl = wyy. We also have xy o fl = y because fl

preserves the diagonals of an unfolded matrix. Parts (1), (2), and (4) follow from
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the combination of these identities with (2.16) and Proposition 3.15 (as in the proof
of Proposition 3.9).

Suppose X € B~, and set X’ = fl(X). Using (2.15), part (2), and the fact that fl
is an anti-automorphism which maps 7;(a) to z,_;(a), we compute

w0 =1 (7 (S ) (:&;))
cl—1 . c—1

Now part (3) is proved in the same way as part (3) of Proposition 3.9. In the last
step, one computes that if (3) holds for X and Y separately, then for (z,y) € X XY,

I
&)

I
&)

/—1 /—1

ecS(,y) = (¢S (y), €25 (x)) = S(es2, (), i (y))

where
/ CSOn—i<y) + 5n—i(x) o SDn—i(y) + 5n—i(x)

¢ = , Oy = :
Vo) tensi(@) T 7 i) + e leni(a)
By Definition/Proposition 2.32, ¢ _,(z, y) = (ecl{l(x) eclfl(y)), so (3) holds for X x

n—i ) En—1i

Y. ]

The Pliicker coordinates of S;(/N) will appear frequently enough in later sections

that we introduce the following notation for them:

(3.28) Q7 (N) := Puy() (Se(N)).

By Proposition 3.7(1) (resp., the definition of S), the Pliicker coordinates P;(N)
(resp., Q7 (N)) are the maximal minors of the first k& columns (resp., last k rows) of
g(N|t). Since the bottom left k x k submatrix of g(N|t) is upper uni-triangular, we

have
P;(N)
P[nkarl,n] (N)

J
— AygoN) and L) A,

(3.29) Ql[tk] )

Proposition 3.15 allows us to express the entries of the matrix g(/N|t) in terms of
the Pliicker coordinates Qf (V).

Lemma 3.18. We have
[i+1,i-+k—1]U{s} Loifi>n—k
g(NIt)i; = ¢~ , =%t ifi<n—kandi>j

[i+1,i+k|
A ifi<n—kandi <y

t
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Proof. By Proposition 3.15, we have g(N|t) = flo g o S(N|t), so

g(N[t)ij = (90 SIN[t))n—js1n—is1
= i 1P[”—i—k+2m—ilu{n—j+1}(St(N))
nothne P[n7i7k+1,nfi}(st<N))
L’L'f‘l,l"‘k?—l]U{]}(N)
= Cn—j+ln—itl [i+1,itk]

‘ (V)

/

Clearly cp—ji1n—it1 = Cij» SO We are done. O

3.3.3 Duality

In §2.5, we introduced a non-degenerate bilinear form on C" such that if N €
Gr(k,n), and Nt € Gr(n — k,n) is the orthogonal complement of N with respect to
this form, then

P;(N) = P7(N*),

where J is the complement [n]\ J (Lemma 2.48). The map studied in this section is
the composition of the map N +— N+ with the reversal of the standard basis of C"
and the geometric Schiitzenberger involution.

Let Ty, : Gr(k,n) — Gr(k,n) be the automorphism induced by reversing the
standard basis of C". Explicitly, if N is an n x k matrix representative for a subspace
N, then T, (NN) is the subspace represented by @, -N’, where @, is the permutation
matrix corresponding to the longest element of S,. Note that A (T, (N)) =
(=1)FE=D2A L . m(N), s0 Pr(Tyy(N)) = Py (N) (as projective coordinates),
where as above, wy(.J) is the subset obtained by replacing each i € J with n —i + 1.

Define p : Gr(k,n) — Gr(n — k,n) by

N(N) = Two(*NL) = Two(N)L'

Slightly abusing notation, we also write p for the map X, — X,,_; which sends
Nt + Ty (N1)|t. For J C [n], let J* = wo(J), so that

(3.30) Py(u(N)) = Py-(N).

Extend p to a map X,

..........

D = Sopu.

For N € Gr(k,n) and t € C*, let Dy(IN) = S(u(N)).
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We have seen that the unipotent crystal map g intertwines PR with sh, and S with
fl. We will now show that g"*o D(N|t) is closely related to the inverse of g*(N|t) (we
use superscripts on ¢ in this section since there are multiple Grassmannians involved).
We start by explicitly computing the inverse of g*(N|t). Define h* : X, — B~ by
hk(N|t) = B, where B is the folded matrix given by

b N 1 iti >k

331 Bl = (-1 4 ’ 7
( ) J ( ) ¥l P[ikarl,i](N) 7
(=D)"x ifi<kandi<j.

When £ is clear from context, we write h instead of h*. For example, if n = 5 and
k = 3, then writing Py = P;(N), we have

tP345 0 —\ )\P135 _)\P134
P145 P145 p145
P P P
¢ 245 ¢ 145 0 )\ A 124
P125 P125 P125
P235 P135 P125
h(N|t)=| ¢ —t t 0 Y
( | ) P123 P123 P123
-1 P134 _P124 P123 0
P234 P234 P234
0 1 P245 P235 P234

Pys  Pus  Pus
Like g, h is defined for N in the open positroid cell Gr°(k,n).

Lemma 3.20. Fort € C* and N € Gr°(k,n), we have
RF(N|t) - g*(Nt) = (t + (—=1)*)) - Id.

Proof. All matrices in this proof are folded. Arguing as in the proof of Lemma 3.3(1),
one sees that ho PR = sh o h. Thus, since sh is an automorphism, it suffices to prove
that

(B(NTH) - g(N[1))a = Bia(t + (1)),

Set B = h(N|t) and A = g(N|t), and write P; = P;(N) for the Pliicker coordi-
nates of N. By definition,

; Pi—kin{ey Pln—k+2.n)0{0}
3.32 BA)w = ByAn =Y (—1)c, - E ot
(332 (B =3 Buedu =) () ey

If i =1, then ByyApy = 0 unless £ € {1,n — k + 1}, so we have
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If © > 1, then ¢, has the same value for all nonzero terms appearing in (3.32) (the
value is t if i € [2, k] and 1 if ¢ > k), so we have BA;; = 0 by the Grassmann—Pliicker
relations (Proposition 2.41). O

In §2.5, we previously defined X° to be the matrix obtained by replacing X;; with
(—1)"" X;;. Extend this definition to unfolded matrices X € M2°(C). Note that if
A is the folding of X, and we denote the folding of X¢ by A€, then A¢ is obtained
from A by multiplying the (i, j)-entry by (—1)"*7 and replacing A\ with (—1)"), so
A§; # (=1)"7 Ayj if n is odd. Define inv on a folded matrix A € GL,(C())) by

inv(A) = adj(A)° = adj(A°),

where adj(A) is the adjoint of A (i.e., adj(A)i; = (=1)" App 1,0\ i} (A)). Note that
inv is an anti-automorphism which commutes with sh and fl, and preserves B~ and
U.

Remark 3.21. We use the adjoint rather than the inverse in the definition of inv so

that the matrix entries remain Laurent polynomials in .

Proposition 3.22. Suppose (Ny|t1, ..., Nylts) € Xy,
Then

kgs With each N; € Gr°(k;,n).

-----

B 'gOD<N1|t17. . ’Nd|td) = invog(N1|t17. . ;Nd|td),
where f = H;.lzl(tj + (—=1)kitn k=1

Proof. Since inv is an anti-automorphism, it suffices to prove the d = 1 case. That
is, we must show that for N|t € X, with N € Gr°(k,n), one has

8- 9"+ o D(N|t) = inve g*(Nt),

where = (t + (—1)ktnA)n=F-1,
Let A = ¢g*(NJt). By Proposition 3.7(3), we have

adj(A) - A = det(A) - Id = (t + (=1)* ). Id.

Comparing with Lemma 3.20, we see that adj(A) = (¢ + (—=1)*\)" %=1 . h¥(N]t), so

P ) 1 ifi>k

1 Ak {5} ’ o . .
i D N ¢, =49t ifi<kandi>j.
! Plick+1,4(N) ! J

A ifi<kandi<y

(3.33) inv(A);; =8¢
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Let A" = g" % o D(NJt). Proposition 3.15 implies that A’ = flog" % o u(NJt).
Unraveling the definitions and using Lemma 2.48, we obtain

Pio—it2n—ijufn—j+1}(Tw, (N 1))
Pr—it1,n-i) (Tuwo (N 1))
— e ' P[i+1,i+n—k—1]u{j}(NL)
nobn Pittivn—r(N+)
e Bicrangy (V)
’ Py pi1,(N)

/
Aij = Cn—j+1,n—i+l

where
1 ifj<n—k
=<t ifj>n—kandi>j
A ifjg>n—kandi<j.
Comparing with (3.33), we conclude that - A" = inv(A). O

Corollary 3.23. The map D : Xy,

tities of rational maps:

,,,,,,,,,, n—k, Satisfies the following iden-

D?*=1d DoS=SoD=yu DoPR =PRoD.

Proof. The proof that D commutes with S and PR has exactly the same form as
the proof that S commutes with PR in Corollary 3.16 (the necessary ingredients are
(3.10), Propositions 3.15 and 3.22, and the fact that inv commutes with fl and sh).
The identity S o D = pu follows from the definition of D and the fact that S is an
involution. This in turn implies D o S = p, which implies that D> = Do Sopu =
p? = 1d. ]

Proposition 3.24. The map D interacts with the geometric crystal structure on
Xy

kg @S follows:
1. If & = (Ny|ty, ..., Nygltq) and v(x) = (21,...,2n), then yD(z) = t; -+ - tgy(z)~";
2. e;D = ¢; and ¢;D = ¢; fori € Z/nZ;
3. e¢D = DeS ' fori € Z/nZ;
4. fD=f.
Proof. Suppose A € B~. We claim that
(3.34) g;(inv(A)) = pi(A4) and i(inv(A)) = g;(A).

Since sh commutes with inv, ;1 = &; o sh, and ;1 = ; o sh, it suffices to prove
these identities for i = 1. Let A’ = inv(A), and let X, X’ be the unfolded matrices
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corresponding to the folded matrices A, A’, respectively. For i,j € [n], X|; is the
constant coefficient of the polynomial A, = Ay gy, fiy (Alx=(—1)na). Since there
are no negative powers of A in the entries of A, we have

Xij = App iy (Ala=o)-

Since A|y—o is lower triangular and its (i, j)-entry is X;;, we have

B

Xy Apagyusa(Alh=o)  XoXsg-o- X

1(X') =

= = =1 (X).
Xil Apv"]v[Qan](A’)\:O) X22X33 to Xnn l( )

The first identity in (3.34) is proved similarly. Using (3.34), (2.15), the fact that inv
is an anti-automorphism, and the fact that inv fixes 7;(a) for each i, we obtain

-1

(3.35) inv(ef(A)) = ¢

1

(inv(A)).

Now parts (2) and (3) are proved in the same way as parts (2) and (3) of Propo-
sition 3.17 (the necessary ingredients are (3.34), (3.35), Proposition 3.22, and the
observation that if p(\) is any polynomial in A with nonzero constant term, then
gi(p(A) - A) = €;(A), and similarly for ¢;).

To prove (1) and (4), it suffices to consider the d = 1 case. Suppose N|t € X.
Let A = g(N|t) and B = gD(N]|t). and let B = gD(N|t). The proof of Proposition
3.22 shows that the folded matrix B is given explicitly by

P N 1 ifi>k
Bij = o [sz,z]\{]}( )’ C;j —dt ifi<kandi>;.

Y Py kg1, (N)
A ifi<kandi<j

Comparing with the definition of g, we see that B;; = t/A;;, and since y(N|t) is given
by the diagonal entries of g(N|t), (1) is proved. Similarly, the decoration f is defined
by f(N]|t) = x(g(N|t)). The matrices A and B are (n — k)- and k-shifted unipotent,
respectively, and the entries along the (n —k — 1) diagonal of the unfolding of A are
a reordering of the entries along the (k — 1) diagonal of the unfolding of B. Thus

X(A) = x(B), proving (4). O

We end this section with a result needed for the proof of the positivity of the
geometric R-matrix in §5.4.

Lemma 3.25. Suppose N|t € X,. Let A = g*(N|t) and A’ = g"*(D(N|t)), and
view these as folded matrices. Then for I,J € ([’Z]), we have

Arg(A) = (t+ (1)) P AG (A1)
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Proof. Let C' € GL,(C()\)) be a folded matrix, and suppose I,J € ([TTL]). Since
adj(C) = det(C)C~! and inv(C) is obtained from adj(C) by scaling the i row and
column by (—1)" and replacing A with (—1)"\, (2.21) implies that

(336) A[ﬁ](iﬂV(C)) = det(Cl)\:(_l)n)\>T71A377(C|>\:(_1)n>\).

Set a =t + (—1)"*\. By Proposition 3.22, we have

1
n—k o . k
q OD(N’t) —WIHVOQ (N’t)
Take the (7, .J)-minor of both sides of this equation. Proposition 3.7(3) says that
det(Aly=(—1)nn) = @™, so by (3.36), we have
1

Arg(A) = ma(”"“)“‘”ij(A|A:H)m = a" "N A (A= -m).



CHAPTER 4

From geometry to combinatorics

4.1 The Gelfand—Tsetlin parametrization

4.1.1 Definition

Recall from §2.2.4 that a k-rectangle is an array of k(n—k)+1 nonnegative integers
satisfying certain inequalities; k-rectangles parametrize the set of rectangular SSYT's
with k& rows. By replacing integers with nonzero complex numbers, we obtain a

“rational version” of k-rectangles, as follows. Let

Ty = (C)F x C*
where R, = {(7,j) |1 <i<k,i<j<i+n—Fk—1} asin §2.2.4. Denote a point of
Ty, by (Xij,t), where (¢, 7) runs over Ry. We call (X;;,t) a rational k-rectangle. Set
(4.1) xi; = Xij/Xij1

for1<i<kandi<j<i+n-—k, where weset X;; 1 :=1and X,,;,— :=t. The

quantity z;; is the rational analogue of the number of j’s in the i row of a tableau

(cf. (2.9)). Note that there are no inequality conditions on rational k-rectangles.
We now introduce a parametrization of the variety X, = Gr(k,n) x C* by the set

of rational (n — k)-rectangles.

Given a,b € [n] and z,, ..., 2, € C*, define
(4.2) Moy (2as-- -5 2) = Z ziby + Z Eyii + Z Eii
i€a,b] i€n)\[a,b] i€lat1,]

where E;; is an n X n matrix unit. For example, if n = 5, then

1
zZ2
(43) M[274} (22, Z3, 24) = 1 z3

64
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where only nonzero entries are shown.
Definition 4.1.
1. Define ®,,_ : T,,_, — GL,, by

1
D,k (Xij5,t) = H M in) (@i Tty - - i)

i=n—k
where z;; is defined by (4.1), and the terms in the product are arranged from
left to right in decreasing order of i. We call ®,_;(X;;,t) a tableau matrix.

2. Define O : T,,_x — X; by Ox(X,;,t) = N|t, where N is the subspace spanned
by the first & columns of the tableau matrix ®,_;(X;;,t). We call © the
Gelfand—Tsetlin parametrization of Xj.

Example 4.2. Suppose n =5 and k = 2. For (X;;,t) € T3, we have

11 0 0 0 0
T22 T12%22 0 0 0
(44) (D3(Xija ) = T33 (9312 + 3523)1'33 L13223733 0 0
1 g4 @o3 + 234 T13(wo3 + 34) Toaxzg 0
0 1 T13 Loy T35

where z;; is defined by (4.1). We have ©5(X;;,t) = N|t, where N is spanned by the

first two columns of this tableau matrix.

Ao X 1
Xo ' T Xy Xy

T_o(Xa)T_(a41)(Xat1) - - 2_p—1)(Xp—1)

Remark 4.3. The matrix M,y <Xa, ) has the factorization

where
2_i(2) = z2E; + 2 'Eip1i01 + B + Z Ej;.
i+l
Thus, the map ®,,_,, is a special case of Berenstein and Kazhdan’s parametrization
©p of the variety UwpU N B~ x Z(Lp), where P is a parabolic subgroup of a
reductive group G [BK07a, §3.1]. In our case, the reductive group is PGL,(C),! P
is the maximal parabolic subgroup corresponding to the k** node of the type A,_;

Dynkin diagram, wp is the Grassmannian permutation
1 ok E+1 -+
wp = )
n—k+1 --- n 1 oon—Fk
and Z(Lp) is the centralizer of the Levi subgroup of P (a one-dimensional sub-torus

of the diagonal matrices in PGL,(C)).

'PGL, (C) is the Langlands dual of SLy, (C).
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We now state two important results about the maps ®,_, and ©;. The first
result gives an explicit formula for the inverse of the map ©;. Recall the basic
Pliicker coordinates J; ; = [i, j| U [n — k + j — i+ 2, n| introduced in §2.5.

Proposition 4.4. The map Oy is an open embedding of T,,_y into Xy. The (rational)
inverse is given by N|t — (X;;,t), where

P,

— 1,7 (N)
Pj.

(4.5) X, o

+1,j<
fori1<i<n—kandi<j<i+k—1.

The second result shows that ®,,_, is closely related to the unipotent crystal map
g : X — B~. (In fact, the definition of the map g came out of our desire to
“cyclically extend” ®,,_.)

Proposition 4.5. Suppose (X;j,t) € T,,_i. If N|t = Ox(Xi;,t), then we have
g(Nt)[r=0 = Pri(Xij, 1).
Propositions 4.4 and 4.5 are proved using planar networks in §4.1.2.

4.1.2 Network representation and formulas for Pliicker coordinates

In what follows, we freely use the constructions and results about planar networks
from §2.6. Suppose (X;;,t) € T),_x, and let z;; = X;;/X; ;1 asin (4.1) (so X;,1 =1
and X ;1 :=1t). Let Ty, = Tk (Xyj,t) be the planar network on the vertex set Z?2
with

e 1 sinks labeled 1’,...,n’, with the ;% sink located at (0, j);
e n sources labeled 1,...,n, with the ji* source located at (n — k,j —n + k);

e a vertical? arrow pointing from (i,5) to (¢ — 1,7) for i« = 1,...,n — k and
j=1,..., k. The weight of this edge is 1;

e a diagonal arrow pointing from (i,7 —i) to (i —1,j —i+ 1) fori=1,...,n—k
and j = 1,...,n. The weight of this edge is z;; if 0 < j—i < k, and 1 otherwise.

The network I'y 5 is shown in Figure 4, and I's 5 appeared previously in Figure 3.

Lemma 4.6. The matriz associated to 'y ,(X;;,t) is the tableau matriz ®,,_,(X;;,t).

2We assume the network is drawn using the convention for matrix indices, that is, the first coordinate gives the
vertical position, and increases from top to bottom; the second coordinate gives the horizontal position, and increases
from left to right.



1 2/ 3 4 5
11 T12 Z13
T22 T23 T24
xr33 X34 €35
1 2 3 4 5

Figure 4: The network I'p 5. Unlabeled edges have weight 1.

Proof. By definition,

1
(4.6) (I)nfk(Xija 75) = H M[i,z’+k} (%’z’, Tiitls- - - 7$i,i+k)-

i=n—k

It’s easy to see that the i “row” from the top of I'y,, (i.e., the part of the network

where the first coordinate is between ¢ — 1 and i) is a network representation of the
it" factor in the right-hand side of (4.6). The full network T’y ,, is obtained by gluing
these “rows” together, and the gluing of networks corresponds to multiplication of

the associated matrices. O

Now suppose N|t = O,(X;;,t). By definition, N is the subspace represented by
N’, the matrix consisting of the first k columns of ®,,_;(X;;,t). By erasing everything
to the right of the sink £" in I'y ,,, we obtain a network representation of N’. We also
contract the diagonal edges of weight 1 coming out of the first several sources to
obtain a slightly more compact network (clearly this does not change the associated
matrix), and we call the resulting network fk,n. The network f579 appears in Figure
5.

We will use the networks I';, ,, and fk,n to deduce several properties of the maps
®,,_r and ©,. We begin with a simple example. Recall that an n x k matrix is said
to have diagonal form if its first £ rows are lower triangular with nonzero entries on

the main diagonal, and its last k rows are upper uni-triangular.

Lemma 4.7. Let N’ be the first k columns of ®,_1(X;;,t). This matriz has diagonal

form, and it does not depend on the parameter t.

Proof. Fori =1,...,k, there is a single path in fkm from source 7 to sink 4/, and there
are no paths from from source 7 to source j’ for j > ¢. Similarly, fori = n—k+1,...,n,
there is a single path of weight one from ¢ to (¢ — n + k), and no paths from i to j’
for j <i—n+ k. Thus, N’ has diagonal form.
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T11 12

’
N
L4

T22 T23 T26 1
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N
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Z33 T34
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L44 T45 T48

]
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Figure 5: A vertex-disjoint family of paths in T's ¢ that contributes to the Pliicker coordinate Py346s,
and the corresponding {1, 3,4, 6, 8}-tableau.

The second assertion follows from the fact that the edge weight x;; only depends
on t when j = i + k, and the edges of weight x;,; are erased in passing from I'y,
to fk,n- ]

We would like to have formulas for the Pliicker coordinates of N (equivalently,
for the maximal minors of the diagonal form representative N’) in terms of the
parameters X;;. The Lindstrom Lemma expresses these minors as sums of monomials
in the edge weights z;; = X;;/X; j_1, where the sum runs over vertex-disjoint families
of paths in Ty ,,. We now introduce a combinatorial object that encodes these families
of paths.

For k € [n — 1], let

Dy ={(a,b) €Z*|1<a<b<k}

be the shifted staircase of size k. We identify Dy with its “Young diagram,” so that
each point (a,b) € Dy corresponds to a box in row a and column b of the diagram.
Given a subset J = {j; < jo < -+ < jx} € ([Z}), let Dy be the subset of Dy
obtained by removing j, —n + k boxes from the bottom of column r, for each r such
that j, > n — k. For example, if n = 8, then

D3 = and Dz =

Definition 4.8. Let J = {j; < -+ < jix}. A (J,k)-tableauis amap T : D) — [n—k]
satisfying the following three properties:

(a) T(a,b) < T(a,b+ 1) whenever (a,b),(a,b+1) € Dyy;
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(b) T(a,b) < T(a+ 1,b) whenever (a,b), (a +1,b) € D y;
(¢) T(a,a) = jo if jo <n—k.
We will often write J-tableau instead of (J, k)-tableau when £ is understood.
Let X;; and z;; = X;;/X; j_1 be as above. Define the weight of a J-tableau T" by

Wt(T) = H TT(a,b),T(ab)+b—a-
(a,b)ED‘Lk
If Dy is empty (i.e., if J = [n—k+1,n]), we define the weight of the unique (empty)
J-tableau to be 1.

Note that properties (a) and (b) require the rows of 7" to weakly increase, and the
columns to strictly increase.

Example 4.9. Let n = 8,k = 3. There are two {4, 5, 7}-tableaux, shown here with
their weights:

41414 41415
L44T 45T 46T 55 5 L44T45T55L56-

Lemma 4.10. Suppose (X;;,t) € T,—, and N|t = Oy(X;;,t). Then

(4.7) % = ;vvt(T)

where the sum runs over all (J, k)-tableaux T

Proof. The ratio Py(N)/Py—41,,(N) is equal to the maximal minor A;(N'), where
N’ is the diagonal form representative of N. The matrix N’ is represented by the
network Iy, so by the Lindstrom Lemma, A ;(N') is equal to the weighted sum over
vertex-disjoint families of paths pi,...,pr in f;m, where p, starts at source j, and
ends at sink /. Let py,...,p, be a (not necessarily vertex-disjoint) family of paths
such that p, goes from source 7, to sink r’. The number of diagonal edges in p, is,
by definition, equal to the number of boxes in the r** column of the diagram Dy,
Define T : Dy — [n — k] by filling the 7™ column of D, with the heights of the
diagonal edges in the 7" path (in increasing order), where the height of the edge
from (7,7) to (i — 1,7 + 1) is i. See Figure 5 for an example of a family of paths in
ka and the associated filling of D ;.

It’s clear that the association (p,)1<,<x + T is a bijection between (not necessarily
vertex-disjoint) families of paths and fillings of D satisfying properties (b) and (c)
of Definition 4.8. It’s also not hard to see that the rows of T" are weakly increasing if
and only if the family of paths is vertex-disjoint, and that the association is weight-
preserving. This completes the proof. [
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Remark 4.11. A similar result, also using an object called J-tableau to record
vertex-disjoint families of paths, appeared previously in work of Berenstein—Fomin—
Zelevinsky [BFZ96, Proposition 2.6.7]. In that setting, J-tableaux are related to flag

minors of an n X n matrix, rather than maximal minors of an n x k matrix.
Corollary 4.12. Let N|t = ©4(X;;,1).

1. For all J € ([Z]), Py(N)/Pr—k10(N) is a non-zero homogeneous polynomial
of degree |Dyj| in the quantities x;; = X;;/Xi;—1, with non-negative integer

coefficients.
2. For a basic subset J; j = [i,j] U [n—k+j—i+2,n], we have

PJi,j(N)

(48) Poparn(N) Xa"
Pinps1,m(N) ae[z‘,jl];[[n—k} j

Proof. For any J, there is at least one J-tableau, namely, the tableau with all entries
in row 7 equal to j,. The weight of every J-tableau is a monomial of degree |D ]|,
so (1) is proved.

Next, we claim that for each J; ;, there is only one J; ;-tableau. Indeed, the first
entry in the a'® row of a J; j-tableau is required to be i + a — 1, and the lengths of
the columns of Dy, ., are weakly increasing, so every entry in the at" row must be
t + a — 1. The weight of this unique tableau is

m j—it+l m+i—1
H H Lita—1,+b—1 = H Xa’j
a=1 b=a a'=i

where m = min(j —i+ 1,n — k —i+1). Since [i,m +i — 1] = [i,5] N [n — k], we
obtain (4.8). O

Now we are in position to prove Propositions 4.4 and 4.5.

Proof of Proposition 4.4. Recall that Uy is the subset of Gr(k,n) where the basic
Pliicker coordinates are nonzero. Define Uy, : Uy x C* — T, by Uy (N|t) = (Y, 1),

where

A Py, ,(N)
P PN
Suppose (X;j,t) € Ty, —i, and let N|t = O, (X;;,t). By part (2) of Corollary 4.12, the
basic Pliicker coordinates of N are monomials in the X;; (so they are nonzero), and
I X
Py, ,(N) __aclignin—k)
P, (N) I X

a€i+1,5]N[n—k]

- X2]7
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so U 0 O = Id.
Now suppose N € U. Set N|t 2 (X (X, 1) 2% N'|t. Again by part (2) of Corollary
4.12, we have
!/
2 P (N(i\/'/) = H X(/zj = H pPJw (é\jf\/)')
n—k-+1,n] a€li,j]N[n—F] aclijlnin—k) = a1
PJi,j (N) . PJi,j (N)

N PJj+1,j (N) B P[n*k+1,n](N)'
This shows that N and N’ have the same nonzero basic Pliicker coordinates, so
N = N’ by Lemma 2.45. Thus, ©; o ¥;, = Id, and we are done. O

Proof of Proposition 4.5. Let N|t = O,(X;;,1t), and let A = g(N|t)|x=o. By Lemma
4.7, the first k columns of ®,_,(X;;,t) are the diagonal form representative of N.
By Proposition 3.7(1) and inspection of the definition of g, the same is true of the
first k£ columns of A. Thus, the first k£ columns of these matrices agree.

Both A and ®,,_;(X;;,t) are lower triangular, so it remains to consider the entries
in positions (i, j), with & < j <. First suppose j = i. In the network Iy ,,, there is
a single path from source j to sink j’, and this path has weight

_ _ Blikrg(N)
Xioki=1 i i ginmeiy -1 P (N) - Pyekg-y(N)

by Corollary 4.12(2) (note that X, ;_; = 1). This shows that

T PRyegy(N) ¥

t H Xij o tPJj—k+1,j (N)

(4.9) D, (Xij, 1)

Now suppose j < i. We claim that
(4.10) Apjk1510(ik ko) (Pnk(Xig, 1) = 0.

To see this, observe that in I'y,, there is exactly one vertex-disjoint family of paths
from [j — k + 1,4] to [1,k], and the k™ path in this family “blocks off” the only
access to the sink j', so for any ¢ > j, there is no way to add a path from i to j’
which is vertex-disjoint from the other k& paths. Thus, the determinant is zero by the
Lindstrom Lemma.

The only nonzero entries in column j and rows [j —k + 1, j] U {i} of ®,_(X;;,?)
are in rows j and 4. Expand the determinant in (4.10) along the j%* column and use
(4.9), along with the fact that the first k& columns of ®,_;(X;;,t) are the diagonal
form representative of N, to get
P[y kr1g-1u( (V)

Pk (N)
Pk g(N) Pk ) (V) Pyjpari—1ugiy (V)

ij t
! P[n—k-i—l,n}(N) P[j—k,j—l](N) P[n—k:—i—l n] ( )

P .
0=, (X, 1) Nl A A (X5, t)j;
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Py ki1j-1ug(N)
Py (N)

This shows that ®,_j(X;;,t);; =t = A;;, completing the proof.

]

We end this section by proving the aforementioned result that the basic (resp.,

reflected basic) Pliicker coordinates “positively generate” all Pliicker coordinates.

Proof of Proposition 2.46. Suppose N € Uy. By Proposition 4.4, we have N|t =

P; (N
Ok(Xij,t), where X;; = PJ”—<]\)f)
J.

z+1,j(

N. We saw above that N’ is the matrix associated to the network ka(Xij, t). The
edge weights of this network are ratios of the X;;, which are themselves ratios of

Let N’ be the diagonal form representative of

basic Pliicker coordinates of N. Thus, by the Lindstrom Lemma, every minor of
N'" is a Laurent polynomial in the basic Pliicker coordinates of N with non-negative
integer coefficients. Since Uy, is a dense subset of Gr(k,n), the same is true of the
Pliicker coordinates themselves (i.e., as rational functions on the affine cone over the
Grassmannian).

To obtain the result for reflected basic Pliicker coordinates, apply the automor-
phism T, : Gr(k,n) — Gr(k,n) that was introduced at the beginning of §3.3.3. [

4.2 Positivity and tropicalization
4.2.1 Positive varieties and positive rational maps

We say that a rational function h € C(z1, ..., z4) is positive if it can be expressed
as a ratio of two nonzero polynomials in zq,..., 23 whose coefficients are positive
integers. We call such an expression a positive expression. We say that h is non-
negative if it is either positive or zero. For example, h = 2 — 2,2y + 23 is positive
A+

21+ 22
“subtraction-free” is often used in place of “positive.”)

because it has the positive expression h = (We remark that the term

We say that a rational map h = (hy, ..., hg,) : (C*)4 — (C*)% is a positive map
of tori (or simply positive) if each h; is given by a positive element of C(z1, ..., zq,).

We now introduce a notion of positivity for rational maps between varieties more
complicated than (C*)¢. Our definition is a stripped-down version of the definition
in [BKO07a].

Definition 4.13. A positive variety is a pair (X,©Ox), where X is an irreducible
complex algebraic variety, and ©x : (C*)? — X is a birational isomorphism. We say
that ©x is a parametrization of X. When there is no danger of confusion, we refer
to a positive variety by the name of its underlying variety.
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Suppose (X, Ox) and (Y, Oy) are positive varieties. A rational map h: X — Y
is a morphism of positive varieties (or simply positive) if the rational map

Oh:=0y' ochoBOy : (C)" — (C*)*®
is a positive map of tori.

Remark 4.14. If h : X — Y and g : Y — Z are rational maps, then the composition
g o h is undefined if the image of h is disjoint from the domain of g. When we say
that a composition of rational maps is positive, we implicitly guarantee that it is
defined. For example, in the previous definition, A is not positive if the image of h is
disjoint from the domain of ©3'. One nice feature of positive rational maps is that

their composition is always defined, by the following result.

Lemma 4.15. The composition of positive rational maps is positive.

Proof. Let (X,0x),(Y,0y),(Z,07) be positive varieties, and suppose h : X — Y
and g : Y — Z are positive rational maps. This means that

Oh:(C*)™ — (C)%  and  Og:(CY)%= — (C*)%

are positive maps of tori. It’s clear that ©h, being positive, is defined on all positive
real points (R-()%, and it maps these points into (Rs()®; similarly, ©g is defined
on (R+()®, so OgoOh = O(goh) is defined. Clearly this map is also a positive map

of tori, so g o h is positive. [

If (X,0x) and (Y, ©y) are positive varieties, then (X x Y, Ox x Oy) is a positive
variety, and if Z is another positive variety, it is easy to see that a rational map
(h1,he) : Z — X x Y is positive if and only if h; and hy are positive.

The most basic example of a positive variety is the d-dimensional torus ((C*)?,1d).
A more interesting example comes from the Gelfand-Tsetlin parametrization

Oy : (C)F=F) » C* — Gr(k,n) x C*

introduced in the preceding section. By definition, this map sends (Xj;,t) — NI|t,
and by Lemma 4.7, the subspace N only depends on the X;;. We denote the map
(Xij) — N by O}, so that ©,, = O, xId. Proposition 4.4 shows that ©y, is a birational
isomorphism, so the pair (Gr(k,n),©;) is a positive variety. All positive varieties
that we consider below will be products of tori and Grassmannians.

We now prove several necessary and sufficient conditions for rational maps to and
from the Grassmannian to be positive.

Say that a rational function h : []; Gr(k;, n) x (C*)* — C is Pliicker-positive if it

can be expressed as a ratio a/b, where a and b are nonzero polynomials with positive
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integer coefficients in the Pliicker coordinates of the various Grassmannians, and the
coordinates z1,...,24 of (C*)% We call such an expression a/b a Pliicker-positive

P3Py — PsP.
expression. For example, the rational function h = 13- 24 12231 is Pliicker-
PiaPsy
P14 Po3

positive because it can be expressed as h = ——— by a three-term Pliicker relation.
124734
It’s clear that Pliicker-positivity is equivalent to positivity for rational functions

on (C*)? In fact, the same is true for rational functions on [1; Gr(kj,n) x (C*).

Lemma 4.16. A rational function h : [[; Gr(k;,n) x (C)? — C is positive (i.e.,
©h = ho (I], Oy, x Id) is positive) if and only if it is Phicker-positive.

Proof. We assume that h is a rational function on Gr(k, n) to simplify notation (the
argument in the general case is the same). Let (X;;) denote the coordinates on
(Cx)k(n—k)_

Suppose h is Pliicker-positive. By Corollary 4.12(1), each Pliicker coordinate of
the subspace ©4(X;;) is given by a positive rational function in the X;;. By choosing
a Pliicker-positive expression for h and replacing the Pliicker coordinates with these
positive expressions in the X;;, we obtain a positive expression for ©h, so h is positive.

Conversely, if h is positive, we may choose a positive expression for ©h in terms
of the X;;, and replace each X;; with the ratio of Pliicker coordinates in (4.5). This
gives a Pliicker-positive expression for h o Oy, o @;1 = h. O

Lemma 4.17. Let (X,0Ox) be a positive variety, and let h : X — Gr(k,n) be a

rational map. The following are equivalent:
1. h is positive (i.e., @,;1 o ho®Ox is positive);

2. The rational functions (P;/Pr)oh : X — C* are positive for all basic k-subsets
1, J;

3. (Py/Py) o h is positive for all reflected basic k-subsets I,J;
4. (Py/Pr) o h is positive for all k-subsets I,.J.
We say that a map satisfying these equivalent conditions is Pliicker-positive.

Proof. Conditions (2)-(4) are equivalent by Proposition 2.46. We now show the
equivalence of (1) and (2). Suppose (Xj;) = @;1(]\7). Proposition 4.4 shows that

ﬁX/‘: PJ”(N) _ sz](N)
i * PJJ N) P[nkarl,n](N) ’

'+1,j(

so positivity of @;1 o h o ©x implies positivity of (Pj, ;/Pn—k+1,n) © h o Ox for all

basic subsets J; ;. Conversely, each Xj; is a ratio of basic Pliicker coordinates of N
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(again by Proposition 4.4), so if (P;/Pr) o h o ©y is positive for all basic subsets I
and J, then @;1 o h o Oy is positive. O

Lemmas 4.16 and 4.17 show that for the varieties we consider, Pliicker-positivity
is equivalent to positivity. Thus, we will use the terms “Pliicker-positive” and “pos-
itive” interchangeably from now on. As an application of this formalism, we show

that the geometric crystal maps and symmetries on Xy, 5, are positive.

d

Lemma 4.18. Each of the rational maps v, €;, i, €;, f, PR, S, D on Xy, _ x, 15 posi-

tive.

Proof. First consider the d = 1 case. From the explicit formulas for v, ¢;, p; in §3.1,
it’s clear that these maps are (Pliicker-)positive. The decoration f is positive by the
formula in Definition 3.5, and PR is positive by (3.1). By Lemma 3.14, the basic
Pliicker coordinates of S;(IV) are positive, so S is positive by Lemma 4.17. The map
p is positive by (3.30), so D = S o p is positive as well by Lemma 4.15.

Now consider ¢; : C* x X — X.. By Proposition 3.9(3) and the positivity of PR
(and PR™!), it suffices to prove that e; is positive. Suppose ¢§(N|t) = N’|t. By the
explicit description of e; in §3.1, N’ is obtained from N by adding a scalar multiple
of the second row to the first row, so P;(N') = Py(N) unless 1 € J and 2 ¢ J. The
only basic k-subset which contains 1 but not 2 is .J; 1 = {1}U[n—k+2,n], and using
the formulas in §3.1, we compute

Pryupm-kt2.0(N') = Payuin—kr2q (N) + o1 Poyupn—k+2,0(N)
’ ’ e1(Nt) ’
= Priyup-—k+2.0) (N) + (¢ = 1) - Pryupn—k42.0 (V)

= cPuyupmn—kt2,0) (V).

We conclude that every basic Pliicker coordinate of N’ is positive, so e; is positive
by lemma 4.17.

The d > 1 case is immediate for PR, S, and D; for v, ¢;, ¢;, €;, and f, it follows
from the positivity of the explicit formulas in Definition/Proposition 2.32. ]

Let ®f ; : Ty — C be the rational function (Xj;,t) — As ;(®r(Xy;,t)). The

following technical result is needed in Chapter 5.

Lemma 4.19. Let [ = {i; < --- <.} and J = {j1 < --- < j,} be two r-subsets of
[n], with r <n —k. Then the rational function CIDII“J is positive if

(4.11) i —k < js <ig for s=1,...,r,

and zero otherwise.



76

Proof. Recall from §4.1 that the matrix ®4(X;;, ) is represented by the planar net-
work I',_j,, (see Figure 4 for an example of such a network). By the Lindstréom
Lemma, Ay ;(®r(X;;,t)) is equal to the sum of the weights of the vertex-disjoint
families of paths in I',_j, from the sources in I to the sinks in J. Since the edge
weights x;; are ratios of the parameters X;; and ¢, the function @’}’7 ; 1is positive if
there is at least one vertex-disjoint family of paths from I to J, and zero if there
are no such families. Due to the ordering of the sources and sinks, a vertex-disjoint
family of paths from I to J must have paths from i, to j. for each s. There is a path
from 4, to j} if and only if i, — k < j, < s, so (4.11) is a necessary condition for ®f ;
to be nonzero.

Suppose I and J satisfy (4.11). We show that @’}’ 7 is positive by constructing
an explicit vertex-disjoint family of paths py,...,p, from [ to J. If j, = i,, then
ps is the unique path from ig to i%. If j, < iy, set a; = max(s,is — k), and let pq
be the unique path from i, to j. whose vertical steps are on the line containing the
sink a’. (Note that since there are no vertical steps on the lines containing the sinks
(n—Fk+1),...,n, the assumption s < r < n — k is necessary to guarantee the
existence of this path.) It is easy to verify that these paths are vertex-disjoint. [

4.2.2 Definition of tropicalization

Tropicalization is a procedure for turning positive® rational maps (C*)% — (C*)%
into piecewise-linear maps Z% — Z% by replacing the operations +, -, + with the
operations min, +, —, and ignoring constants. More formally, if

I mi mq
p= E Cma,..mg?1 """ R3¢

is a nonzero polynomial in zq, ..., z4 with positive integer coefficients, set

Trop(p) = min {miz1 + ...+ mgzq}.

(m1,...,mq)
Given a positive rational function h € C(zy,..., zq), define its tropicalization to be
the piecewise-linear function from Z? to Z given by

Trop(h) = Trop(p) — Trop(q),

where h = p/q is some expression of h as a ratio of polynomials with positive integer
coefficients (this definition does not depend on the choice of p and ¢ by, e.g., [BFZ96,
Lemma 2.1.6]). For example,

2
2120 + 23 . :
Tro ! = min(2z; + 29, 23) — min(dHzo, 21 + 23,0).
p(z§’+82123+4) (221 2, 23) (522, 21 3,0)

3For a more general notion of tropicalization that removes the positivity assumption, see [BK07a, §4].
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Given a positive map of tori h = (hy, ..., hg,) : (C*)% — (C*)?%, define Trop(h)
to be the piecewise-linear map (Trop(hy),..., Trop(ha,)) : Z% — Z%. If h,g :
(C)% — (C*)% are positive, then

Trop(h + g) = min(Trop(h), Trop(g)) and  Trop(hg™') = Trop(h) + Trop(g).

Furthermore, tropicalization respects composition of positive maps.

Definition 4.20. Suppose (X, Oy) and (Y, ©y) are positive varieties. If h: X — Y

is a positive rational map, define its tropicalization h by
h = Trop(Oh) := Trop(©;"' o ho Ox).
4.3 Recovering the combinatorial crystals

By tropicalizing the rational maps associated to the geometric crystal X,,_x, we
obtain piecewise-linear maps on ']Af‘k We will show that these piecewise-linear maps,
when restricted to the set of k-rectangles inside Ty (Definition 2.21), give formulas
for the affine crystal structure on k-row rectangular tableaux. More generally, the
tropicalizations of the maps on X,_, .k, describe the crystal structure of the
tensor product ®?:1 ||, BRL.

4.3.1 Tropicalizing the geometric crystal maps and symmetries

The first step is to show that the tropicalization of the decoration f is able to
identify the set of k-rectangles inside Ty. Recall that f : X,,_; — C is defined by

P piiyui—ntk+2(N)  Popgumy (V)
(4.12) f(N|t) = : +t—= ,
z;«;k Plinkr14(N) Pk (N)

and the decoration f : X, g, .-k, — C is the sum of the decorations on the
individual factors. Using the notation of the previous section, we have the map

@f = f e} (@n*kl X o+ X @n,kd) . Tkl,“.,kd — (C,
and since this map is positive, we have its tropicalization
f=Trop(©f) : Tky.. .k, = Z.

Proposition 4.21. Suppose b; € Tkj forj=1,...,d. Then f(bl, ..., bq) >0 if and
only if each b; is a kj-rectangle.

The proof relies on the following technical result, which is proved in §4.3.3.
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Lemma 4.22. The map Of = f 00O, : T — C is given by the formula

(413)  Of(Xyt) = X + D DR ek DD "
ic[k] Xij—1 i€lk—1] Xit1j
jelitl itn—k—1] g€liitn—k—1]

Proof of Proposition 4.21. Since f(z1,...,zq) = f(x1) + ...+ f(z4), we have

~ ~ ~

f(by,...,bq) =min(f(by),..., f(bg)),

so it suffices to consider the d = 1 case. Suppose b = (B;;, L) € Ty By inspection of
the defining inequalities of a Gelfand—Tsetlin pattern, it’s clear that b is a k-rectangle
if and only if the following inequalities are satisfied:

1. By >0

2. L > Bis

3. Bjj > B;j1foriekland je[i+1,i+n—Fk—1]

4. Bij > Bip1 41 forie [k —1] and j € [i,i+n —k —1].

-~

Tropicalizing the formula (4.13) for © f, we see that f(b) > 0 if and only if b satisfies

these inequalities. O

By Lemma 4.18, the maps v, €;, ¢;, ¢; and PR are positive. By tropicalizing, we

obtain piecewise-linear maps

and

Since e; is an action of the multiplicative group C*, €; is an action of the additive
group Z.

Theorem 4.23. Let b; be a kj-rectangle for j =1,...,d, and letb =b; ® --- ® by.
For i € Z/nZ, we have

1. 7(b) = wt(b).

2. &(b) = —£i(b) and @;(b) = —Zi(b).

3. &(b) is defined if and only if f(@(1,b)) > 0; in this case, &(1,b) = &(b).

4. fi(b) is defined if and only if f(¢;(—1,b)) > 0; in this case, ¢;(—1,b) = fi(b).

(Note that fis the tropicalization of the decoration, whereas f; is a crystal operator!)
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The key to the proof of Theorem 4.23 is the following result, which is proved in
§4.3.4.

Theorem 4.24. If b is a k-rectangle, then lgf{(b) = pr(b).

Remark 4.25. The map PR clearly has order n, so Theorem 4.24 gives a “birational”
proof that pr has order n on rectangular tableaux. Grinberg and Roby used a similar

birational technique to prove an equivalent result [GR15].

Proof of Theorem 4.23. First assume d = 1. We prove each of these statements for
¢t = 1, and then Proposition 2.8, Proposition 3.9, and Theorem 4.24 allow us to
conjugate by PR at the geometric level and pr at the combinatorial level to obtain
the statements for all 7. (In the case of v, we show that the first coordinate of 7(b)
is equal to the first coordinate of wt(b).)

Let b = (B;;, L) be a k-rectangle, and let N|t = ©,,_;(X;;,t). By definition, the
first coordinate of wt(b) is the number of 1’s in the tableau corresponding to b, which
is Bi; (since 1’s can only appear in the first row of a tableau). By the explicit formula
for v in §3.1 and Corollary 4.12(2), we see that the first coordinate of y(N|t) is equal

to
Payupes2n (V)

Pig1,0(V)

This proves (1).
For (2)-(4), we assume that k # 1,n — 1 to avoid “boundary effects” (the reader
may easily check the cases k = 1,n — 1). By Corollary 4.12(2), we have

Pyt (V) Payuieron (V) _ X

e1(N|t) =
1( | ) P[k+17n](N)P{172}U[k+3,n](N) X1

and
Ppoyukron (V) Xoo

]
Puyuperon(N) X
Thus, we have —&;(b) = B2 — By1 and —91(b) = B11 — B, and (2) follows from

comparison with Example 2.19.

pr(N[t) =

Now suppose
c @_1
Nt S Nt " (XL, 1).
By Proposition 4.4, the X;; depend only on the basic Pliicker coordinates of N, and
it was shown in the proof of Lemma 4.18 that Ppyupeson(N') = cPayup+2.n(N),
and all other basic Pliicker coordinates of N and N’ are the same. Thus, the effect
of @;ik oef 00, on (X;;,t) is to replace Xy; with ¢Xi;, and to leave the other

X;; unchanged. This means that €;(m, b) adds m to By;. Furthermore, (4.13) shows
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~ ~ -~

that if f(b) > 0, then f(e1(1,b)) > 0 if and only if Bys > By, and f(e1(—1,b)) >0
if and only if By > Bas.

We saw in Example 2.19 that €;(b) is not defined when B, = By, and otherwise
€1(b) increases By; by 1; similarly, fl(b) is not defined when Bj; = Bay, and otherwise
ﬁ(b) decreases By; by 1. This agrees with the description of e1(41, b) in the previous
paragraph, so (3) and (4) are proved.

The result for general d follows from the d = 1 case by [BK07a, Proposition
6.7]. The point is that the formulas of Definition/Proposition 2.32 tropicalize to the

formulas defining the tensor product of crystals. ]

Finally, we consider the symmetries S and D. These maps are positive by Lemma
4.18, so we may tropicalize them to get piecewise-linear maps

§P]Tk—>ﬁ‘k ﬁrjﬂfk—)ﬁ\fn,k
Recall the symmetries rot and refl from §2.2.4.
Theorem 4.26. If b is a k-rectangle, then S(b) = rot(b) and D(b) = féfi(b).

Proof. Write J;; for the basic subset [i,j] U [n — 7 + j — i+ 2,n] of size r.
Suppose (X;;,t) € Ty, and let N|t = ©,,_,(X;;,t). Set

(X1, 6) =01 o S(N[t)  and  (X/,t) =00 D(N).

i) i)

By Proposition 4.4 and Lemma 3.14, we have

o _ P (SN) R = T N
ij PJinﬁIfj (St<N)) tmin(j—i,k—i)PJg:iiiljnij (N) Xk—i+1,n—j

Tropicalizing this equality and comparing with the definition of rot, we see that
S = rot. Similarly, using Proposition 4.4, Lemma 3.14, (3.30), and the fact that

(JE ) = Jg:ﬁmfj, we compute
X PJZ?fj(St(IU(N))) _ PJ,’;;,HHM], (1(N)) _ tPJ;‘;’im(N) _ t ‘
U P, S P ) Ppe, (N Xy

Tropicalizing and comparing with the definition of r/e\zﬁ, we conclude that D = refl. [

Remark 4.27. The compatibility of rot and refl with the crystal operators on rect-
angular tableaux (Proposition 2.24) follows from this result, Theorem 4.23, and the
compatibility of S and D with the geometric crystal operators (Propositions 3.17
and 3.24).



81

4.3.2 Examples
One-row tableaux

Let (Xu,,t) = (Xi1,...,X1,-1,t) be an element of Ty, and set 1 = Xyy,2; =
X1/ X1 for j=2,...,n—1, and z,, = t/X;,_1. We have

T
1 )

1 T3
(I)l(le, t) -

Tn-1

1 Tn

By definition, ©,,_1(X3;,t) = NJt, where N is the (n — 1)-dimensional subspace
spanned by the first n — 1 columns of ®;(X;;,¢). One easily computes

P jugj+am) (N)

Pan(N)

for j=1,...,n— 1, in agreement with Proposition 4.4.

Set N[t = PR(N|t), and (X{;,t) = ©, !, (N'|t) = © PR(Xy;,t). We have

P aoiivon (N’ P nupeia (N X
X{j _ v+, ]/< ) ¢ [1,j—1uli+1, ]( ) _ 2Ll =TTy Ty,
Pla.ny(N') Pinq(N) Xin-1

and thus in terms of the variables x;, we have
(4.14) OPR(z1,...,2,) = (Tp, 21, ..., Tp1)-

Now we compute O¢§. Set N”|t = ef(N|t), and (X7}, t) = 0,1, (N"[t) = Oe§(X1;,1).

P11 (N Ce T . o .
We have pg(N|t) = t‘l[l’—”() = 12 ol o identifying subspaces with
F)[Q,n](N> 1

their diagonal form representatives, we have

(S ) 2o

Left-multiplication by z¢(a) means adding a times row 1 to row n, so we have

c—1
Apnin—1](N") = Ap -] (N) + ————Ap_1y -] (N) = ¢,
X1 Tpo1

and the other maximal minors of N” are equal to those of N. Thus, X7, = Xy,

for all j, so

(4.15) Oci(w1,...,xn) = (¢ oy, @9, .., T0 1, CTy).
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Since conjugation by PR sends €f to e§_;, (4.14) and (4.15) imply that
(4.16) Oci (1, ..., 1) = (¥1,...,cTi, ¢ Ty, 1)

for all i € Z/nZ (this can also be computed directly, of course). Thus, we re-
cover the affine geometric crystal structure on (C*)" described in the introduction
of [KOTYO03]. Note that the actions of pr and ¢, ﬁ on a one-row tableau are in-
deed given by the tropicalizations of (4.14) and (4.16), where z; is replaced with the
number of ¢’s in the tableau, and c is replaced with +1.

The case n =4, k =2

Let (X;j,t) = (Xi1, Xi2, Xa2, Xo3, t) be arational 2-rectangle. Set N|t = Oy(X;;,1),
N'|t = PR(N|[t), and (X, t) = O3 (N'|t) = © PR(X,;,t). We have

75

Xn 0 0 —t
X
Xoy 22X X 0
N= = d N = X1z
- X2 Xos an o Xoo — X ’
I e Xy,
Xll X22 1 X12 X23
0 1 X Xo

so Proposition 4.4 gives

Y Piy(N) _ t Y Pio(N') _ tX11 X9
(4.17) H P34EN’; Xog 12 P24EN/§ X11Xo3 + Xi12X9
’ Y Py (N’ _ X11Xo3 + X2 X9 Y Py (N’ _ X12X2
22 Py (N) X2 X3 % Py (N) Xoz

Now suppose (Blj, ) = (311,812,322,823,L) S P]TQ. Tropicalizing (417), we
obtain PR(B;j, L) = (B}, L), where

YR

B}y =L — Bos

B, = L+ By + Byy — min(By; + Bas, Bia + Bao)
Bly, = min(By; + Boas, Bia + Bas) — Boy — Bags

Bys = Bia + By — Bos.

(4.18)

We verify that these piecewise-linear formulas agree with the combinatorial rule
for pr for a particular tableau. Consider the following 2-row tableau T, and its

corresponding 2-rectangle:

1 2
(4.19) T = . y s 5 1.
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Using either Bender—-Knuth involutions or jeu-de-taquin, one computes

3

v
e~
—_

(4.20) pr(T) =

6 3

The reader may verify that the 2-rectangle corresponding to pr(7") agrees with the
evaluation of the piecewise-linear formulas (4.18) on the 2-rectangle corresponding

to T', in accordance with Theorem 4.24.

4.3.3 Proof of Lemma 4.22

Let N|t = ©,_,(X;;,t), and let P; = P;(N) denote the Pliicker coordinates of
N. The formula for © f follows from (4.12) and the following formulas:

P n
P Ll LA L R
Plt1,n]
P n t
5 ¢ Pen-hum _
P[l,n—k] Xl,n—k
k
Pl utrir2.n Xiipr—
3. (1, HU{}U[JFQ»}: Atr—k forr:k'—i—l,...,n—l
P[Lr—k]u[r-‘rl,n} i— Xz',z'—l—r—k—l
)= n—k X ]
4 {r}U[r+2,r+n—k] _ rr+7—1 for r = 1, . E—1.
Pryirin-t) S Xrtirss

We now prove these formulas.
By Corollary 4.12(2), we have

H Xa,n—k

Ppiyuk+2,n] _ Xk and P y—ruiny _ a€Rn—HKN[K] _ 1
Py 1 Piin—n H Xonor  Nlnk
a€ll,n—k]N[k]

which gives (1) and (2).

For (3), let J = [1,7 — k] U{r} U[r+ 2,n|, and let T" be a J-tableau (see §4.1).
The diagram D, has r — k 4+ 1 columns and min(r — k, k) rows, and the lengths
of the first 7 — k columns are weakly increasing. Since the first entry in the a* row
of T must be a, the first » — k columns are completely determined. It remains to
consider column r — k + 1, which consists of a single box in the top row. The first
r — k boxes in the top row of T are filled with 1, so we may choose any element of [k]

for the last column. If we choose %, then the weight of T"is z; 4,k H Xar—k-
a€lr—k|N[k]
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Pl kur+1n
By Corollary 4.12(2), we have % = H Xar—k. Thus, Lemma 4.10
[k+1,n] ac[r—K]N[k]
gives
k k
P[l,r—k]U{r}U[r—O—Zn] _ Z Ciirp = Xi,i—i—?”—k ‘
Pl r—kufr+1,n) — — Xiitr—k-1

For (4), let J ={r}U[r+ 2,7 +n — k], and let T be a J-tableau. The diagram
D,k has n — k columns and min(n — k, k — r) rows, and the column lengths are
weakly increasing. For a > 2, the condition T'(a,a) = j, = r + a implies that every
entry in the a™® row of 7" must be r + a. There is some choice for the first row. The
first entry must be r, but the other n — k — 1 entries can be any weakly increasing
sequence of r’s and r + 1’s. If the first row of 1" consists of r repeated b times and
r + 1 repeated n — k — b times (for 1 < b <n — k), then

Wt(T) = TrrLrpr+1 " Trptb—1Lr41r4+b+1 """ Lrdlr4n—k H Xa,r+n—k
a€lr+2,r+n—k]N[k]
- X XT‘+1,T+T7,7]€ X
- T,r+b—1X— H a,r+n—k-
r+1,74+b

a€lr+2,r+n—kN[k]

Thus, using Lemma 4.10 for the numerator and Corollary 4.12(2) for the denomina-

tor, we have

n—k

Xr-i—l,’r—i—n—k
E X’r,'r—l—b—l X | | Xa,r+n—k
1,7+b
Piyoprtarin-k b=t Lt

P[r+1,7'+n7k} H Xa,'/‘—‘rn—k b1 Xr+1,1“+b
a€[r+1,r+n—k]N[k]

n—k
a€[r+2,r+n—kN[k] Xr,rerfl

This concludes the proof.

4.3.4 Proof of Theorem 4.24

Recall from §2.2.2 that promotion is defined as the composition
pr = 0102 Opn_1,

where 7, is the r*" Bender-Knuth involution. Recall also the piecewise-linear formula
for the action of a Bender-Knuth involution on a Gelfand-Tsetlin pattern from
Lemma 2.20. Our strategy is to “detropicalize” this piecewise-linear formula to
obtain “geometric Bender-Knuth involutions,” and then to show that applying a
sequence of these involutions to an element (X;;,t) € Tj has the same effect as
applying ©PR = 0!, 0 PR0©O,,_; to (Xjj, ).
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Let (By;, L) € Tk be a k-rectangle, and let (Bi;, L) = 0,(Byj, L). By combining
Lemma 2.20 with the “embedding” of a k-rectangle into its associated Gelfand—

Tsetlin pattern (for an example, see (2.8)), we see that

ﬁr(Bz‘j, L)+ i (Bij,L)—B;, ifj=r

Bj; = o
Bi; iftg#r
(min(Bi,Lj,l, Bi,j+1> if 4 % 1 and ] # n—k—1 +1
~ B 1. ifitland j=n—k—1+1
where fij(Bija L) = bt 7& J
Bi,j-‘,—l 1f@:1andj7én—k
(L ifi=1land j=n—=k
(maX(Bi’j_l, Bi—f—l,j—i—l) if ¢ 7& k and j 7é 7
B ifi#4kand j=1
and G,(By, L) = +1,j+1 # J
Bi,jfl if i =k and ] 7£ k
0 ifir=~kand j==%k.

\

Now we naively lift this piecewise-linear formula for &, to a rational map o, :
T — Tx. That is, given (Xy;,t) € Ty, define 0,(Xy;,t) = (Xj;,t) by

1

X} = fir(Xij t) - gir(Xij, 1) - X, ifj=r
(Xifljjfl—i—Xi,jJrl 1fz7élandj7§n—k—1+z
Xi14_ fi#£land j=n—k—1+1
Where fzg(ij)t) = L=l 7& J
Xi,j+1 1fz:1andj7én—k
(¢ ifir=1land j=n—k

Xi,jlei+1,j+1
Xij1+ Xiy1j41

ifi #kandj#i

and 9i;(Xij,t) = Xit1,j41 ifi£Akandj=1
Xij-1 if i =k and j # k
1 if i =k and j = k.

\

Define pr : Ty, — T} by

pr =010z 0p_1-

Clearly Trop(pr) = pr, so to prove Theorem 4.24, it suffices to show that

(4.21) pro0 ' =61 oPR
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as rational maps from Gr(n — k,n) x C* to Tg. Given N|t € Gr(n — k,n) x C*,
define X;; by (Xj;,t) = ©,',(N]t), and define X/, by (X[;,t) = ©,, o PR(N|t).

Write P; = P;(N) for the Pliicker coordinates of N. By Proposition 4.4 and the
definition of PR, we have

P jlulk+j—i+2.n] and X g Plic1j—1)Ulk+j—i+1,n—1]

Xi‘ ==
! Plit1,j]0k+j—i+1,m] P j-1Uke+j—in—1]

Set Xi(f) = X;j,and for r =1,...,n — 1, define XZ-(;) by

(X5 8) = 0, (X 8) = 0,071 -+~ 001 (X, 1):

ij ] R

In this notation, (4.21) is the equality Xi(jl) = Xj; for all i, j. To prove this, we will
show by descending induction on r that

(4.22) Xy = x, forj=rr+1,...,n—1.

If r = n, then (4.22) is vacuously true. So suppose 1 < r < n — 1. Since o, only
changes entries in the a'® row of the GT pattern, (4.22) holds for j > r by induction,
and we need only show that for each i, we have

r 1 r+1 ]'
(423) fzr( + ’ ) : gir(Xz‘(j+ )7t> ' X_zr = Xz/r
By the induction hypothesis, the “neighborhood” of X, in the GT pattern Xi(jrﬂ)
looks like

Xi—l,'r—l Xi,r—l
X’ir
/ /
Xz r+1 Xz+1 r+1

Note that some or all of the NW, NE, and SE neighbors may be “missing,” and the
SW neighbor may be ¢. For instance, when r = n — 1, the SW neighbor is ¢ and the
SE neighbor is missing.

We claim that

Pi— r— r—i n— Pir r—i n
(4.24) fw(X(”rl t) = o [i—1,r=1]Ulk+r—it+1n—1]L Ti,r]U[k4r—i+2,n]
P[i»rfl]u[kwfwl,n} P[i,r}u[k+r—i+1,n71]
and
PZT T—1 anr r—q n—
(4.25) P (XS 1) = [ =1Vl =it 1n) iUl —it 1]

P[’LT' 1JUlk+r—in— 1]P[z+1 r|Ulk+r—i+1 n]
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First we prove (4.24). If 1 <i<kandi<r <n—k— 1+, then the NW and
SW neighbors of X;,. both exist, and we have

fzr(X(rJrl ) = X’ifl,rfl + X£7r+1

_ Pl 11Uk tr—it2,n) N P 1 Ukt r—it2,n—1

Pl r 1)Uk +r—i+1,] Pl Uk tr—it1,n-1)
_ Bicvrnuerr—ir2n Biruterr—it1n-1] + Bir—j0pptr—it1,n P10t r—it2,n-1]

P 1)Utk —it1,0) Bl Uk —ie1,n-1]
_ B gupr—it 11 Pirulktr—it2.n)

Pl r 1)Ukt —i+1,0) Pli Ul +r—it 1n—1]
where in the last step we apply a three-term Pliicker relation (Corollary 2.42) to
simplify the numerator. We have verified the “general case” of (4.24).
The three “boundary cases” of (4.24) are straightforward to verify: for instance,
ifi=1and r <n—k, then

Plorulktr+1,n-1]

flr(X(T+1 ) XirJrl =t P, ’
[1,r]Ulk+rn—1]

which agrees with the right-hand side of (4.24) (recall Convention 2.40). The other
two boundary cases are similar, and are left to the reader.
Now we prove (4.25). If 1 <i < kandi <r <n—k—1-+4, then the NE and SE

neighbors of X, both exist, and we have

/
Xi,ijXHl,jH
/
Xi»j—l + Xz'+1,j+1

Pl r—1)Ulktr—i1,0) PlirUlktr—i1,n-1]

gir(XTV 1) =

B r—quikr—it1,n) Pt 100k +r—in—1] T Pi1,r—1)0k4r—i,n) i r) Uk +r—it1,n-1]
_ P 1)Uk —i+1,0) Bl rUk+r—i1,n-1]

Pl r—1juiktr—in—1) Pt 1,00k +r—i+1,n]
where in the last step we apply a three-term Pliicker relation (Corollary 2.42) to
simplify the denominator. This verifies the “general case” of (4.25); we leave the
three “boundary cases” to the reader.
Finally, observe that the denominator of (4.24) is equal to the numerator of (4.25),

so we have

r+1) (r+1) 1
fzr( t) Yir (Xz] 7t) ’ X,

Bt uiksr—it im0 Blirlotr—itan] Dl irulksr—itin)

— t5i,1

Py e quipsr—im— 1P ruprr—itin]  PlirUktr—it2m]
Pl 1 1)Uk tr—it1n-1]

— 01
P e 1)Uktr—in—1]
= X!
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This verifies (4.23) and completes the induction, proving Theorem 4.24.



CHAPTER 5

Lifting the combinatorial R-matrix

5.1 The geometric R-matrix
5.1.1 Definition of R

Fix ¢,k € [n — 1]. Consider the unipotent crystals (Xy, g) and (Xy, g) introduced
in §3.1; recall that their product is the unipotent crystal (X, x Xy, ¢), where g(u,v) =
g(u)g(v) for (u,v) € Xy x X;. Recall the geometric Schiitzenberger involution S and
the “evaluation-projection” 7* from §3.3.2. Recall also Corollary 3.8, which plays a
crucial role in the proofs below.

Define a rational map Wy, : X, x X, = Xj, by

Uy (M|s,N|t) = 7F o g(M|s, N|t).

Definition 5.1. The geometric R-matriz is the rational map R : X, x X — X, x X,
defined by
R = (‘I’k,g, So \P&k o S)

More explicitly, if R(M|s, N|t) = (N'|t,M’|s), then by Corollary 3.8(2) and
Proposition 3.15, we have
(5.1)

N’ = g(M|s)|x=(-1yp-1, - N and Se(M") = fi(g(N[t))|xe(—1)e-1s - Ss(M).

Remark 5.2. The formulas (5.1) show that N’ is the image of N under a linear
map that depends on M, s, and ¢, and Ss(M’) is the image of Ss(M) under a linear
map that depends on N,s, and t. We would very much like to have a geometric
interpretation of these linear maps.

The two crucial results about R are the following.

Theorem 5.3. The geometric R-matriz is positive.

89
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Theorem 5.4. We have the identity go R = g of rational maps from X, x X — B~.
That is, if R(u,v) = (v, u) and g(v'), g(u') are defined, then
g(u)g(v) = g(v')g(u).
Theorems 5.3 and 5.4 are proved in §5.4 and §5.5, respectively.
Remark 5.5.

1. By Lemma 4.15, the positivity of R ensures that compositions such as Rg, RS,
Re;, R?, etc., are defined (and positive).

2. To prove an equality of rational maps, it suffices to show that the equality holds
on a dense subset. We will exploit this in §5.1.2.

Most of the important properties of R are direct consequences of Theorem 5.4.

Here is an example.
Lemma 5.6. We have the identity R?> = Id of rational maps from X, x X}, to itself.
Proof. Suppose (M|s, N|t) € X; x X, and
(Mls,N[t) & (N'|t, M'|s) & (M"|s, N"|t).
By Theorem 5.4, we have
(5.2) M"|s = 7 (g(N'[t)g(M'|s)) = 7 (9(M]s)g(N]t)).

Corollary 3.8(1) ensures that the first £ columns of g(M|s)g(N|[t)[y=(—1)¢-1, are con-
tained in the subspace M. On the other hand, (5.2) shows that these columns span
the subspace M”, so we conclude that M" = M.

Let pi, po be the projections of X, x X onto the first and second factors, respec-
tively. We have shown that p; R? = p;. It’s clear that p, = Sp;.S and R commutes
with S, so we have

p2R* = Sp1SR* = Sp R*S = p,

as well. ]
Recall the notation Q7 (N) := Pys)(Si(N)).

Corollary 5.7. Suppose M|s € X, N|t € Xy, and (N'|t, M'|s) = R(M|s,N|t). Let
B = g(M|s)g(N|t), B; = B|=_1)t-15, and By = B|,_(_1ys-1,. For (-subsets J and
k-subsets I, we have

P(N')  Apm(B) QUM  Apry1n),5(Bs)

(5.3) - -
P krim(N') A 1,0, (Br) QU (M) Ap—rr1m(Bs)

(54) PJ(M) — AJM(Bs> Q{(N) . A[n—k-}—l,n],I(Bt)

Pretrrm) (M) Apaegirn0(Bs) FN)  Apekrrnu (B
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Proof. The equalities (5.3) follow from the definition of R and Proposition 3.15. The
equalities (5.4) follow from Lemma 5.6, Theorem 5.4, and (5.3). O

5.1.2 Properties of R

For k = (ki,...,kq) € [n — 1] set Xx = X, .
izl,...,d—l,letai(k):(kl,...,kiﬂ,k,-,...,kd),andlet

Ri : Xk — Xoi(k)

be the map which acts as the geometric R-matrix on factors ¢ and ¢ + 1, and as the
identity on the other factors.

Say that a point N|t € Xy is positive if t > 0, and P;(N) > 0 for all J. Let Uy be
the subset of Xy consisting of (Ny|t1, ..., Ny|ts) such that each V;|¢; is positive, and
the ¢; are distinct. Note that g is defined on Uy, and since the geometric R-matrix

is positive and involutive, each R; is a bijection from Uy to Uy, ).

Lemma 5.8. If (N1]ty,. .., Ng|ty) € Uk, then
Wil © g(N1|t17 R Nd|td) = N1|t1-

In other words, the first ki columns of the matriz g(Ni|tq, . .. ,Nd|td>’)\:(_1)k1—1t1 span
the subspace Nj.

Proof. Let B = g(Nilt1,..., Nglta), and By, = B|,_(_1ji-1,,- By Corollary 3.8(1),
the first ky columns of B;, are contained in the subspace /N;. Thus, it suffices to show
that the first k; columns of By, have full rank whenever (Ny|ty,. .., Ng|tq) € Uk.
Let
(N3lta, ..., Nijta, Ni|t1) = Rg—10 -0 Ri(Ni|t1, ..., Nalta).

By repeated applications of Theorem 5.4, we have B = g(Ni|ta, ..., Nj|ta, Ni|t1).
Since the absolute values of the t; are distinct, g(Ny|ta, ..., Njlta)l\o(—1ym-14, 18 in-
vertible by Proposition 3.7(3), so the first k1 columns of B;, have full rank by Corol-
lary 3.8(2). O

Corollary 5.9. Suppose (Milty, ..., My|ta), (Ni|t1,. .., Ng|tq) € Uk. If
(55) g(M1’t1>-"7Md’td) :g(letly-'-aNd‘td)

then M; = N; for each i.

Proof. Lemma 5.8 shows that M; = N;. By Proposition 3.7(3), the matrix g(N:|t;)
is invertible (in the ring M, (C()\))), so we may multiply both sides of (5.5) by

g(Ny|t;)~! and reduce to a smaller value of d. O
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Remark 5.10. Corollary 5.9 does not hold for arbitrary points in Xy, even in the
case n =2,k = (1,1).

Theorem 5.11.
1. R: Xy, X Xy, = Xy, X Xy, 15 an isomorphism of geometric crystals.
2. R:Xp X Xy, = X, x Xy, commutes with the symmetries PR, S, and D.

3. R satisfies the Yang-Bazter relation. That is, we have the equality
(56) RleRl = R2R1R2

of rational maps X, ry ks — Xk ks -

Proof. First we prove (1). By Lemma 5.6, R is invertible, with inverse R : Xj, X
Xk, = Xy, X Xp,. Let p be one of the maps 7, ¢;, ;. By (2.16) and Theorem 5.4, we
have

pR = pgR = pg = p.
It remains to show that R commutes with e;. Again by (2.16) and Theorem 5.4,

we have
(5.7) gRe; = ge; = e;g = e;gR = ge;R.
Suppose x = (Ny|t1, Na|ta2) € Uy, ,, and ¢ > 0. Let
X' = (Nyltz, Nilt1) = Ref(x),
x" = (N |ta, N{|t1) = €S R(x).

Since R and e; are positive maps, we have x',x” € Uy, s,, and by (5.7), we have
g(x") = g(x"). Thus, Re(x) = efR(x) by Corollary 5.9. Since the set of points

{(¢,x)|c>0and x € Uy, 4, }

is dense in C* x X, ,, we conclude that Re; = ¢, R.

The proof of (2) is formally the same as the proof of Re; = e; R, with (3.10) and
Propositions 3.15, 3.22 playing the role of (2.16) (we also use the positivity of the
three symmetries).

The proof of (3) is similar. Suppose x = (Ny|t1, Na|te, Ns|ts) € Uk, ky.ks, and set

x' = (N3ts, Ny|ta, Ni|t1) = RiRy Ry (x),
x" = (N3|ts, Ny|t2, N{'[t1) = RaRy Ry(x).

Theorem 5.4 implies that ¢g(x) = g(x) = ¢g(x”), and since x’,x" € Uy, x, 1, , We have
x" = x” by Corollary 5.9. Since Uy is dense in Xy, this proves (5.6). O
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Remark 5.12. Lemma 5.6 and Theorem 5.11(3) show that the maps R; satisfy
the relations of the simple transpositions in the symmetric group. That is, if we
repeatedly apply geometric R-matrices to consecutive factors in a product X, x

- x X}, the result depends only on the final permutation of factors; this means
that for any permutation o € Sy, there is a well-defined map R, : Xy — X, ).

There is an efficient way to pick off the first and last factors of the image of a
point in Uy under R,. Indeed, if x = (z1,...,24) = (N1|t1,..., Ng|ts) € Ux and
Rq(x) = (1, - - - Ty(q))» then we have

/ ko) ' ko (ay
To() = M., © g(x), Ty =950 Tio) © flo g(x)

by Theorem 5.4, Lemma 5.8, Proposition 3.15, and the fact that S commutes with
R.

5.1.3 Recovering the combinatorial R-matrix

By Theorem 5.4, the map OR : Ty, x Ty, — Ty, x Ty, is positive, so we may
define
R = TI‘Op(@R) : Tkl X Tk2 — Tk2 X Tkl'

Theorem 5.13. Ifa is a ky-rectangle and b is a ky-rectangle, then E(a@b) = é(a@b),

where R is the combinatorial R-matriz.

Proof. By (3.8) and Theorem 5.4, we have fR = f, where f is the decoration. Thus,
Proposition 4.21 and Theorems 4.23 and 5.11(1) imply that for any L;, L, > 0, R
restricts to an affine crystal isomorphism B*-M @ BF2l2 — BF2l2 @ kLl The

combinatorial R-matrix is the unique such isomorphism, so we are done. O

Remark 5.14. Theorem 5.13 allows us to deduce the Yang—Baxter relation for the
combinatorial R-matrix from the Yang Baxter relation for the geometric R-matrix,
thereby giving a new proof of the former.

Remark 5.15. We used the crystal-theoretic characterization of the combinatorial
R-matrix to prove that R tropicalizes to R. Here we outline an alternative proof
based on the combinatorial characterization of R in terms of the tableau product
(Proposition 2.12). The idea is that

the product of tableau matrices tropicalizes to the product of tableaux,

where the tableau matrix ®5(X;;, ) is the n x n matrix from §4.1. To be a bit more
precise, let a be a k;-rectangle corresponding to the tableau 7', and b a ko-rectangle
corresponding to the tableau U. Let (C;;) be the Gelfand-Tsetlin pattern correspond-
ing to the tableau 7'+ U. Theorem 3.9 in [Fril7] states that the product of tableau
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matrices Oy, () Py, (y) uniquely determines positive rational functions Z;;(x, y) which
tropicalize to formulas for C;; in terms of the entries of a and b. (In fact, the Z;; are
ratios of left-justified minors of the product matrix.) If O©R(z,y) = (¢/,2’), then by
Theorem 5.4 and Proposition 4.5 we have

Py, (x)q)kQ (y) = Py, (y,)q)kl ((L‘/)7

so the rectangular tableaux U’ and T obtained by tropicalizing v’ and x’ satisfy
UxT =T=xU.

The special case of [Fril7, Th. 3.9] where k; = ks = 1 was proved by Noumi and
Yamada in their work on a geometric lift of the RSK correspondence [NY04]. The
general case is proved by iterating the one-row case. The technical details take up a
lot of space, however, and since we do not yet have an application for this result, we

have chosen to omit the proof.

At the end of §5.3, we give explicit formulas for © R and R in a small example.

5.2 The geometric coenergy function

Recall that a Z-valued function on a tensor product of two Kirillov—Reshetikhin
crystals is a coenergy function if it is invariant under the crystal operatorsey, ..., e, 1,
and it interacts with €y in a prescribed way (Definition 2.15). In this section, we “lift”
the combinatorial definition to define a notion of geometric coenergy function. We
show that a certain minor of the product matrix g(M|s)g(N|t) defines a geometric
coenergy function on Xj, x X,, and that this function tropicalizes to the coenergy
function E defined in §2.2.3.

Definition 5.16. A rational function H : X, x X, — C is a geometric coenergy
function it Hoef = H fori =1,...,n — 1, and H interacts with ej as follows: if
(u,v) € Xy, x X, and R(u,v) = (v',u'), then

€

o(u) + C‘lwo(v)) (cao(v’) + wo(U’)> '

go(u) + wo(v) g0(v") + @o(u')

(5.8) H(eg(u,v)) = H(u,v) (

We now show that this definition “tropicalizes to” the combinatorial definition.

Lemma 5.17. If H s a positive geometric coenergy function on Xg, X Xy,, then the
piecewise-linear function H:= Trop(OH), when restricted to BM~ %k @ Bnk2l2 ¢

Ty, X Tpk,, 1S a coenergy function.

Proof. Clearly Ho € = H fori = l,...,n—1. Ifa®b € B *ul1 g pr-k2l2 and

R(a®b) = (b ® ), then by tropicalizing (5.8) and using Theorems 4.23 and 5.13
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(plus the identity max(c,d) = — min(—c, —d)), we obtain

H((a®b)) = H(a®b) + max(5y(a), Fo(b)) — max(Zo(a), Zo(b) + 1)
+ max(gy(V'), po(a’)) — max(gq(b") — 1, Po(a’))
(a) > 1 if &) > Gold)
Sl if(a) < Go(b) |0 i E ) < Fold)

This shows that H satisfies (2.2). O

Definition 5.18. Define F : X, x X;, — C by

E(u,v) = Ay g0 w1 (9(w)g(v)),
where k£ = min(ky, ks).

Note that the last k rows of g(u) and the first & columns of g(v) are independent of
A, so by the Cauchy—Binet formula, F is indeed complex-valued. In fact, the Cauchy—
Binet formula gives a simple expression for E in terms of Pliicker coordinates. Recall
the notation Q7 (M) := P, () (Ss(M)).

Lemma 5.19. If (M|s, N|t) € X, X Xg,, then

( Qron P
2 @I P TR 2R

re(ta—ha+inl) 8

Qi(M)  Pm(N) .
Z BT (A1) Pra—tas 1. (V) if k1 < ko

Ie(["—?ﬁ-kﬂ) s

(5.9) E(M|s,N|t) =

where I' = [ky — ko) UL, and I" =T U [n — ko + k1 + 1,n].

Proof. We assume k; > ks (the case ky < ko is similar). By Cauchy—Binet,

E(M|s,N|t) = Z Afn—ts+1,0,1(9(M|5)) A 1y (9 (N 1))

[|=ks
The bottom-left k; x ki submatrix of g(M|s) is upper uni-triangular, so

A["*k1+1,n]v[k1*kz]UI(g(M|S)) if I C [kl — ko + 1, n]

A[nfk2+1,n],l(g(M|s)) = .
0 otherwise.

This together with (3.29) proves the k; > ko case of (5.9). O

Proposition 5.20. E : X, x Xy, = C is a geometric coenergy function.
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Proof. Suppose u = M|s € X, and v = Nt € Xy,. Set B = g(u)g(v), R(u,v) =
(v',u’), and k = min(ky, ka). Since e commutes with the unipotent crystal map g,

we have
E(ef(u,v)) = Ap—g1,0,m (€5 (B))-

By (2.15), the folded matrix e$(B) is obtained from the folded matrix B by adding
a multiple of row i+ 1 to row ¢, and a multiple of column i to column ¢+ 1 (mod n).
If i € [n — 1], then these row and column operations do not change the determinant
of a bottom-left justified submatrix, so F is invariant under ef.

Now consider €f. By (2.15), we have

1 -1
(5.10)  Eleg(u,v)) = Ap—psinl, k] (]30 ()Fl ¢ ) - B -z (/\_lc >>

wo(u, v) eo(u,v)

where x¢(z) is the n X n matrix with 1’s on the diagonal and z in position (n,1).
Suppose k = ky. The left-hand side of (5.10) does not depend on A, so we may
substitute A = (—1)*71¢ into the right-hand side and obtain

E(eg(us v)) = Ak 1,0,k (1’0 ((_lt)kl o > Bi - o ((_175)“ o 1)) ’

(,DO(U,U> 50(“71})

where B; = B[y_(_1)t-1;. By multi-linearity of the determinant (or by Cauchy-
Binet), we have

. 1 ¢c—1
(5.11) E(eg(u,v)) = Ap—ppim),m (Be) + gWA{I}U[n—k-‘rl,n—l],[k}(Bt)
lct—1
teo(u,v)

1(c—1)(ct=1)
2 A n— n— n B .
2 o (u, v)eo(u, v) {1}Uln—k+1,n—1,12,k]U{ }( t)

A k41,0, 2,60{n} (Bt)

Restrict to the open set where (—1)"**25 £ ¢, so that g(M|s)|x=(_1ys-1; is invert-
ible by Proposition 3.7(3), and B; has rank k& by Corollary 3.8(2). In a rank k£ matrix,
any set of k columns which are linearly independent span the same subspace, so we

have

Ayuin—k+1,n-1],2,ku{n} (Bt) _ Ayuin—k+1,n-1],1% (Bt)
Alp—kt1,0),12,60{n} (Bt) A —i1,0),18 (B)

(5.12)

on the open set where both denominators are nonzero. (Since we are trying to prove
an identity of rational maps, we may restrict to open subsets.) Using (5.12) and the
fact that Ap_py1.n),k(B) = E(u,v), we may rewrite (5.11) as

(5.13) E(eg(u,v)) = E(u,v)(1 + 21)(1 + 22)
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where
(5.14)
g Lol Apupkinoym(B) LT = 1 Apknmeiom (B).
to(u,v)  Ap—psrmm(B) teo(u,v)  Ap—iging ik (Br)

Now we compute

w.v) — ool = v 50(vl)+900(u/)
wo(u,v) = po(v',u") = po(v') 2o (')

_ 1 Appim—nuay e (Br) g0(v) + ¢o(u)
t Aprt1,0,pm(Br) go(v')

where the first equality comes from Theorem 5.11(1), the second equality comes

from Definition/Proposition 2.32, and the final equality is the formula for ¢y on X,
together with (5.3). Similarly, by Proposition 3.17(2), the formula for £y on X}, and
(5.4), we have

go(u,v) = 50(U)M — O(S(v))M

wo(v) vo(v)
_ LApkr1m)2k0(n) (Br) go(u) + 9o (v)
t Akt (Br) wo(v)

Substituting these expressions into (5.14), we get

— Deo(v/ -1
515, NGt 0 B Gl )
£0(v') + po(u) go(u) + ¢o(v)
and then (5.8) is obtained by substituting (5.15) into (5.13).

The k = k; case is dealt with similarly, using the substitution A = (—1)""!s
instead of A\ = (—1)k~1¢. O

The function E is positive by Lemma 5.19 and the positivity of S, so we may define
E = Trop(OF) : Ty_g, X Tp_s, — Z. Recall the coenergy function E introduced in
§2.2.3.

Theorem 5.21. The restriction ofE to BrFul @ Bkl s equal to E.

The proof of this theorem relies on a technical lemma. At the end of §4.2.1,
we defined a rational function ®; ; : T — C by ®f ;(Xj;,t) = Ars(Pp(Xy, 1))
for any subsets I, J of the same cardinality. Let I = [k + 1,n], and let J be any
(n — k)-element subset of [n]. By Lemma 4.19, (bfkﬂ,nw is positive (it’s clear that
the required inequalities hold in this case), so we may tropicalize it to obtain a

piecewise-linear function (ID[k RS T, — Z.

Lemma 5.22. Fiz L > 0, and let by be the classical highest weight element of the
KR crystal B¥F. For all J € (n[ﬁ]k), we have EI\Df‘cﬂlmJ(bo) =0.
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Proof. Suppose b = (B;;,L) € B*Land let b;j = B;; — B, j_1 be the number of j’s
in the i row of the corresponding tableau, as in (2.9). Let T, (b) be the network
Lykn(Xij,t) from §4.1, but with weights b;; instead of z;;, and 0 instead of 1 on
unlabeled edges. By the Lindstrom Lemma, we have

~ B . —

Plpirgys(0) = min  wH(F),
where F runs over vertex-disjoint families of paths in I';,_j ,(b) from [k + 1,n] to J,
and gvvt(]-" ) is the sum of the weights of the edges in the paths.

The classical highest weight element by € B*" corresponds to the SSYT whose
ith row is filled with the number ¢, so we have
L ifi=j

(bo)ij =
! 0  otherwise.

Thus, the only edges in I',_x ,(by) with nonzero weights are to the left of source k+1,

so all edges in the paths that contribute to if“k 1,1, (bo) have weight zero. O

Proof of Theorem 5.21. By Proposition 5.20 and Lemma 5.17, Eisa coenergy func-
tion on B Fult @ pr-k2lz By Proposition 2.18(1), the coenergy function on such
crystals is unique up to a global additive constant, so it suffices to show that E and
E agree on a single element of B"*1:L1 @ Brn—k2.Lz,

Assume k; < ks (the other case is basically the same). If (x,y) € T, g, X Tp_g,,
then by Lemma 5.19, (3.29), and Proposition 4.5, we have

OFE(z,y) = Z fr()g1(y)

Ie([”*’?ﬁ’“ﬂ)

where

f[(l’) = A[n—kl—&-l,n],l(q)nflﬂ (95))7 91(3/) = AIU[n—kg—i—kl—H,n},[kQ}(q)nfkg (y))

Thus,

-~

(5.16) E(a®b)= min (fr(a) + (b)),

where E,/g} are the tropicalizations of f;, g; (which are positive by Lemma 4.19).

Since the bottom ko X kg submatrix of ®,_g,(y) is upper uni-triangular, we have

g[nszJrl,nszJrkﬂ(y) = 1 for all Y, SO

(517) E[n—k2+1,n—k2+k1](b) =0
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for all b.

Let ag be the classical highest weight element of B"~*X1 By Lemma 5.22, we
have fr(ap) = 0 for all I € (EZ]) Together with (5.16) and (5.17), this implies that
E(ag®b) =0 for all b € B k2L By (2.3), E(ap®b) = 0 for all b € B *2L2_ 5o

we are done. O]

Corollary 5.25 in the next section gives an explicit formula for OF : T, _x, X
T,—x, — C in the case ky =n — 1.

5.3 One-row tableaux

Here we give a more explicit description of the geometric R-matrix on T, x T}, in
the case ¢ = 1. When k = 1 as well, we recover the one-row geometric (or birational)
R-matrix of Yamada and Lam—Pylyavskyy that was discussed in §1.2. At the end of
the section we demonstrate our formulas in a small example.

Let X = (X11,X12,...,X1n-1,8) € Ty be a rational l-rectangle, and define
T, ..., %, by x5 = X1/ X1 ;-1 (where Xyp:=1 and Xy, :=s). Let Y = (Y};,t) € Ty,
be a rational k-rectangle. Suppose

OR(X,Y) = (Vi 1), (Xi;, ),

R 15

and define 7’ as above. We will work through the various definitions from earlier
sections to obtain formulas for Y;; and x; in terms of the inputs z;,Y;;, and ¢.

Set Nt = 0, 1 (Y),N'|t = 0, +(Y'),A = g(0,_1(X))g(0,_,(Y)), and A, =
Al=(1yn-k-14. For I € (n[ﬁ]k), define

Pii1,n(N)

(518) T — T](X, Y) = A],[n—k]<At) PI(N)

By (5.3) and Proposition 4.4 (applied to both Y;; and Y}}), we have

(5.19) Y, =Y, Tli,5)0lk+j—i+2,n]
Tli+1,§]Uk+j—i+1,n]

Y

so we are led to the study of the quantities 7;. By the Cauchy-Binet formula and
Proposition 3.7(1),

(520) T — ZALJ(CL\:(_Dn—k—lt)
J

where C' = ¢(0,,_1(X)). Lemma 4.10 expresses the Pliicker coordinates of N in
terms of the Y;; by summing over J-tableaux, so we regard these Pliicker coordinates

as well-understood. Now we explicitly compute the minors of the matrix C. Note
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1/ 2/ 3/

T T2 T3

Figure 6: A network representation of the matrix g(©,_1(X)). Vertical edges have weight 1.

that C has xy,..., 2, on the main diagonal, 1’s just beneath the main diagonal, A
in the top-right corner, and zeroes elsewhere. For example, if n = 4, then

T 0 0 A
1 2o 0 O
c=g@)=| P
0 0 1 x4

Lemma 5.23. Let C' = ¢(0,-1(X)), and let I = {i; < ... <.} be an r-subset of
[n], withr <n—1. Fore= (e,...,€¢) € {0,1}", define

I—e={i1—e€,...,i, — €6} C [n],

where if i1 = € = 1, we take iy — ey =n. If [ — e has r elements, then we have

(_1)r—1)\ H Lig Zf 7;1 = €1 = 1

(5.21) Apr(C) = slea=0
H T4, otherwise.

If J e ([Z]) is not of the form I — € for e € {0,1}", then Ay ;(C) = 0.

Note that by expanding along the last column of C', we have det(C') = (—1)""'\+
H?Zl xj, so the restriction » < n — 1 is necessary.

Proof. Observe that C' is the matrix associated to the planar network in Figure 6.
In this network, there are two edges coming out of each source i: an edge to sink
i’, and an edge to sink (i — 1)’ (mod n). Thus, if there is a vertex-disjoint family of
paths from the sources in I to the sinks in .J, then J = I — € for some € € {0,1}"; if
J is not of this form, then Ay ;(C) is zero by the Lindstrom Lemma.

We claim that for any r-subset J, there is at most one vertex-disjoint family of
paths from I to J. To see this, note that the underlying (undirected) graph of the
network is a cycle of length 2n, and a vertex-disjoint family of paths from I to J is a
perfect matching in the subgraph induced by the vertices in [ and J. Since r < n—1,
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the subgraph induced by the vertices in I and J is a forest, and there is at most one
perfect matching in any forest.

Suppose I — € has r elements. In this case, let ps be the path connecting 75 and
(is — €)', for s = 1,...,r. The family of paths (ps) is clearly vertex-disjoint, and it

has weight
AT @ fi=a=1
s|es=0
H X, otherwise.
5]es=0

The permutation associated to this family has sign (—1)""!' if i; = ¢, = 1, and is the

identity otherwise, so (5.21) follows from the Lindstrém Lemma. ]

In light of Lemma 5.23, (5.20) becomes

| Pr_.(N)
(522) T = t511,1561,1 . xis C—,
26: 51;[:0 (V)

where the sum is over € € {0,1}"7* such that I — € has n — k elements. For example,
if n =7 and k = 4, then writing P, for P;(N), we have

212425 Pras + 21205 P35 + 01 P134 + tx3wa Pasy + t24 Pysy + 1Py

T145 =
Piys

Combining (5.19) and (5.22), we have a reasonably explicit formula for the Y
Now we turn to the 2. For j € Z/nZ, define

/.
i

(5.23) ki = K (X, Y) = Tanjn-1 (X, Y).

Proposition 5.24. We have

Furthermore, we have the formula

n—k

o Ptk rhrs1y (V)
(5.24) kj = T ks jihtstl *** Ljpno1tok— ’
’ SZ:; ’ ’ ! Ptk jn-1)(NV)

where

1 ifn+2-s5s<j+k<n+1
a/jyszk: °
0 otherwise

Fach subscript of k and x is interpreted mod n.
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Proof. By Theorem 5.4, we have the matrix equation
(5.25) 9(0n-1(X))g(N1t) = g(N'[t)g(On-1(X")).

The diagonal entries of ¢(0,_1(X)) are x1,...,2,, so by equating the constant co-
efficients of the diagonal entries of both sides of (5.25) and using the definition of
g(N|t) (plus Convention 2.40), we obtain

Pitkrrjen (V) Pyrkrrjea(N) Akt jnlin—# (Ar)
P[j+k,j+n—1](N) P[j+k,j+n—1](N) A[j+k,j+n—1],[n—k}(f4t)

K .
This shows that x; =z;—

By (5.22), we have

Kj+1

| Pletsint)e(N)
K = $oi1.10e1,1 T [+k.j+n—1]—¢
’ Z I = Btk gin-1(N)

s|es=0

(to compute [j + k,j +n — 1] — ¢, first identify [j + k,j + n — 1] with a subset
{iy < ... <'i,_t} of [n] by reducing mod n, and then subtract e, from the s smallest
element of this subset). There are n —k+ 1 choices of € such that [j+k, j+n—1] —¢
has n — k elements, and one may easily verify that each of these choices gives a term
from the right-hand side of (5.24). O

Corollary 5.25. The geometric coenergy function OF : T; x T, — C is given by

n—k

@E(X, Y) =Rk (X, Y) = Z Thts+1Tk+s+2 ** '$nYk,k+s—1,
s=0

where Yy p—1 = 1.

Proof. By definition, O©E(X,Y") = Aji1,n),n—k (A), and since this minor is indepen-
dent of A, it is equal to k1(X,Y). The explicit formula for x;(X,Y") follows from
(5.24) and Proposition 4.4. O

Recovering the one-row geometric R-matrix

Now we specialize further to the case k = 1. Let Y = (Y31,...,Y1,-1,t), and
define y; = Y1;/Y1,;-1, where Yo := 1 and Y}, :=t. As above, let N|t = ©,_1(Y).
By Proposition 3.7(1) and Lemma 5.23, we have

Popniat (V) Appgarin-11(9(@n—1(Y)) w1+ Yo Yo" Ya1 ifb<a

Papngy (V) App -1 (9(@n1(Y)) 1y (Yo ypo1)™ b ifa<b
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for a,b € [n]. Setting k =1 in (5.24) and using t = y; - - - y,,, We obtain

n—j
Pn j+s (N)
kj = Z Ljts+1Tj+s+2" " '-Tj-i—n—l%
s=0 n|\{j
n—1
Pia)\j+s—n} (V)
+1 Tjgs1Tjqs+2 " Tjtn—1
S;H e ’ Pap53(N)

n—1
= E YY1 Yt 1T s T4 L
s=0

where as above, each subscript of x and y is interpreted mod n.

Proposition 5.26. The map

OR: ((x1, . yxn), Wy s yn)) = (W, 0h), (2], .., 2)))

s given by
n—1
r_ o R r_ kg _
Y5 = Yj ) Ly = Xj ’ Kj = YiYj+1 - Yj+s—1Lj+s+1L5+s42 " Lj4n—1
Rj Rjt+1 —0

where subscripts are interpreted mod n.

Ii .
Proof. By the preceding discussion, we have 7’ = x; J_ Arguing as in the proof
Kj+1
H .
of Proposition 5.24, we have z;y; = y}z}, so y; = ij—H. O
K

J
Thus, in the one-row by one-row case, our geometric R-matrix agrees with the

map found by Yamada [YamO01] and Lam-Pylyavskyy [LP12] (cf. Proposition 1.2).

A small example

Set n = 4. Suppose X = (Xi1, X192, X13,5) € T, Y = (Y1, Yio, Yoo, Yo3,t) € Ty,
and (Y, X’) = OR(X,Y). Define
r1 = Xn To = X12/X11 T3 = X13/X12 Ty = S/Xls,
and define 2, analogously. Define y;; by (4.1), i.e.,
yn =Y vy =Ye/Yi1  yiz=1t/Yi3
Yoo = Yoo Yoz = Yo3/Yoo w14 =1/Yo3
Note that ¢ = y11912013 = Yooyosy2a. Let N|t = O5(Y) € Gr(2,4) x C*. Using the

definition of O, one computes that N is the column span of the matrix

Y11 0
Y22 Y12Y22
1 yi2+yas

0 1
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Set P; = P;(N). By (5.19), Proposition 5.24, and (5.22), we have

T14 T To4 T
(5.26) Yi=Yu— Y,=Yp— Yp=Yn— Y=Yy,
T34 To4 T34 T34
K1 K9 K3 K4
5.27 ) =1 — Th = 19— Th = T3— T = 14—,
(5.27) L= 2 = T2 3= Ta 4= T
where
T304 P3y + 14 Poy + Pog
K1 = T3 = 2 = X3T4 + T4Y22 + Y22Y23
34
2104 P1y + 11 Py + tPsy
Ko = T4 = 2 = 1124 + T1(Y12 + Y23) + Y12Y13
14
2109 P1g + two Poy + 1Py Y11Y13
K3 = Ti2 = = T1T2 + Tol13 +
Py Y22
Tox3Pog + x3 P13 + Pro Y Y11Y12
K4 = Toz = J2 = T9Z3 + T3 = (y12 + y23) + -
23 Y22Y23 Y23
ToxaPoy + 19 Pog + x4 Py + Pi3 Y11
Tos = = Xo%y + ToYos + (T4 + Y12 + Yo3).

Py Y22

By tropicalizing these formulas, one obtains piecewise-linear formulas for the
combinatorial R-matrix on B' ® B2 Specifically, let A = (Ayy, A1z, A3, L1) be
a l-rectangle, let B = (By1, Bia, Bag, Bag, L2) be a 2-rectangle, and let B’ @ A" =

~

R(A ® B). Define
a = An as = Ajp — Aqy as = A13 — Ay ay = Ly — A13,
bi1 = Byx bi2 = B2 — B1s bis = Ly — By
bye = B bas = Baz — By bas = Ly — Bos,

so that a; is the number of j’s in the one-row tableau corresponding to A, and b;; is
the number of j’s in the i row of the two-row tableau corresponding to B. Define

/ /
aj, b;; analogously.

For I € ([3]), let 77 be the tropicalization of 77, where x;, y;; is replaced with a;, b;;
in the tropicalization. Let k; = T{j12,4+3}. For example,

R1 = T34 = min(ag + a4, as + baa, bao + b)),

?24 = min(ag + Ay, a9 -+ b23, b11 — b22 -+ min(a4, b12, 623)).
By tropicalizing (5.26) and (5.27), we have

/ _ ~ ~ / _ ~ ~
Bi, = Bi1 + Tia — a4 Bly = Bia + Ti2 — T

/ ~ ~ ! ~ ~
B5y = Bay + Toy — T34 By = Ba3 + Taz — T4,

1 ~ ~ / ~ ~ ! ~ ~ l ~ ~
a; = a1+ K1 — Ka Qy = Q2 + K2 — K3 a3 = a3 + K3 — Ky ay = Q4+ Kg — K1.
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Example 5.27. Let A, B correspond to the tableaux T, U from Example 2.13. We

have

b b b 3 1 1
a; Qag a3 a4 = 2 0 4 1 and 1 12 1 = .
bae  baz  boy 2

We compute
%1:7734:m1n 5 3 2)

(

(3,2 +m1n(1,0) 2)=2
K3 =T = min(2,1,2) =1

(

(1,

%2 = %14 = min

K4 = To3 = min(4,5 4+ min(1,0),4) =4
To4 = min(1,0,1 + min(1,1,0)) =0,

SO
B, =3+2-2 =3 af, =24+2-2=2
B, =B3+1)+1-0 =5 o ay =04+2-1=1
By =2+0-2 =0 ay =4+1—-4=1
By =(24+0)+4-2 =4 ay =1+4-2=3.

The rectangles B’ and A’ correspond to the tableaux U’ and T” from Example 2.13,
so we have verified that B = R in this case. Also, by Corollary 5.25, we have
E(A ® B) = k1(A ® B) = 2, which agrees with the coenergy of T'® U computed in
Example 2.17.

5.4 Proof of the positivity of the geometric R-matrix

In this section we prove Theorem 5.3, which states that the geometric R-matrix
is positive. We start by reducing this theorem to a statement about the positivity
of certain minors of the folded matrix g(NN|t) (Proposition 5.29), and then we prove
Proposition 5.29 using the Lindstrém Lemma, the positivity of the symmetries PR, S,
and D, and a careful analysis of the structure of g(N|t).

Reduction to Proposition 5.29

Recall the notions of positive varieties and positive rational maps from §4.2.1. Let
X be a positive variety, A an indeterminate, and f : X — C[)] a rational map, i.e.,
a map of the form

f=fo+r firx+... + f\%

where f; : X — C are rational functions. For an integer r, we say that f is r-non-
negative if for each 4, the rational function (—1)"~1f; is non-negative, and we say
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that f is r-positive if f is r-non-negative and nonzero. For example, for any positive
variety X, the constant function f =1 — X\ 4+ A\? is r-positive for even 7, but not for
odd 7.

We will need the following observation, whose proof is immediate.

Lemma 5.28. If f : X — C[\] is r-non-negative (resp., r-positive), then the rational
function f : X x C* — C defined by f(x,z) = f(x)|x=(=1yr—12 is non-negative (resp.,

positive).

For two r-subsets I, J C [n], let Ay ;: X — C[)\] denote the rational map which
sends N|t to the minor As ;(g(N|t)). Say that a subset of [n] is a cyclic interval if
its elements are consecutive mod n. Define a cyclic interval of a subset I C [n] to be

a maximal collection of elements of I which form a cyclic interval.

Proposition 5.29. Let I, J C [n] be two subsets of size r, at least one of which has
no more than two cyclic intervals, and let Ay j : Xy, — C[A] be the rational map just

defined. Then
1. ifr <k, Ay is r-non-negative;

2.ifr >k, Aryis equal to (t + (—1)*X\)""*f; ;, where f1; is an r-non-negative
map X, — C[\].

Remark 5.30. We expect that Proposition 5.29 holds without the restriction on I
and J. We need this restriction in our proof because we do not know the correct
generalization of Definition 5.33 and Proposition 5.34 to subsets with more than two

cyclic intervals.

Before proving Proposition 5.29, we explain how it implies Theorem 5.3. Since
the geometric Schiitzenberger involution S is positive, it suffices to show that the
map Vi, @ Xy x X — X is positive. Suppose (M|s,N|t) € X, x X, and let
N'|t = Uy (M]|s,N|t),A = g(M]|s), and A, = Ay_(_yy»-1,. Fix a k-subset I. By
(5.1) and the Cauchy-Binet formula, we have

Pi(N') = Z Ar,7(Ay)Pr(N).

If I has at most two cyclic intervals, then by Proposition 5.29 and Lemma 5.28, there
are non-negative rational functions fr ; : Xy x C* — C such that

A],J(At) _ (S + (_l)ﬂ-l—k—lt)max((),k—f)fLJ(M|S7 t).

Furthermore, by Proposition 3.7(3), we have det(4;) = (s + (—1)*"*=1#)"~ so A, is
invertible for (M|s,t) in an open subset of X, x C*. This means that at least one of

the rational functions f7 ; is nonzero.



107

If I and I’ are k-subsets with at most two cyclic intervals, then on an open subset
of Xy x X}, we have

PN > frs(M]s, t)Ps(N)
Pr(NY) 5™ foy(M]s,t)Py(N)

where f7 7, frr,; are non-negative rational functions which are not all zero. In par-
ticular, this is true when I and I’ are basic k-subsets (Definition 2.44), so W, is
positive by Lemma 4.17.

Proof of Proposition 5.29
I: Exploiting the symmetries
We first use the positivity of the symmetries PR, S, and D to make some further

reductions. Suppose I and J are r-subsets, and consider the rational map Ay ; :

X, — C[A]. By (3.27), we have
AI,J oS = Awo(J),wo(I)7

so since S is positive, r-non-negativity (resp., r-positivity) of A; ; is equivalent to
that of Ay, (s),we(r)- This allows us to reduce to the case where J has at most two
cyclic intervals.

Lemma 3.25 allows us to reduce to the case r < k, as follows. Assume Proposition
5.29 holds for r < k, and fix r > k. For I, J € ([:f}), Lemma 3.25 gives the equality

Ay =(t+ (=1)"A)""(Ag1lx21mr0 D)

of rational maps X; — C[)]. Suppose I or J (equivalently, I or J) has at most two
cyclic intervals. By our assumption, the rational map Az7: X, — C[A] is (n —1)-
non-negative, so A777| A=(—1)nx 1S T-non-negative. Since D is positive, Proposition
5.29 holds for Ay ;.

Lemma 3.11 shows that

A[_Lj_l 1f1€]ﬂJor1¢]UJ
AI,J oPR = (_1)r—1/\ . A]_Lj_l iflel \ J
(—1)T_1>\_1 . A],LJ,l ifleJ \ I

This, together with the positivity of PR and PR™, implies the following result.

Lemma 5.31. A;; is r-non-negative (resp., r-positive) if and only if Ar_q -1 is
r-non-negative (resp., r-positive).
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Recall that a subset is “reflected basic” if it is an interval of [n], or it consists
of two disjoint intervals of [n], one of which contains 1 (Definition 2.44). Every
subset with at most two cyclic intervals is a cyclic shift of a reflected basic subset, so
combining the observations above, we see that it suffices to prove Proposition 5.29

in the case where r < k, and J is a reflected basic subset.

II: Non-negativity of minors that do not depend on A

Let A be the folded matrix g(N|t), where N|t € X;. Here we view A as an array
of n? rational maps A;; : X; — C[)\]. By the definition of g, the maps A;; split up
into three categories:

a nonzero map to C ifti—n+k<j<i
(5.28) A;jis { anonzeromap to C-\  if j>i+k

0 ifj<i—n+kori<j<i+k.
In the second case, we say that A;; depends on \; otherwise we say that A;; is inde-
pendent of X. Given subsets I,.J C [n], say that the submatrix A; ; is independent of
A if A;; is independent of A for alli € I, j € J. If A; ;is independent of A, then A ;

is a rational function X, — C, so r-positivity of A; ; is the same thing as (ordinary)
positivity of Ay ;.

Lemma 5.32. Let [ = {iy < --- < i,} and J = {j1 < -+ < j.} be two r-subsets
of [n], with r < k. If the submatriz Ay ; is independent of A\, then the rational map
A; .y is positive (equivalently, r-positive) if

(5.29) s—n+k<j, <i for s=1,...,r,
and zero otherwise.

Proof. Recall that (ID?:]’“ : T\,—, — Cis the rational map (X;;,t) — Ar j(Pn—i(Xij, 1)).
Since A; ; is independent of A, Proposition 4.5 implies that

n—k
(I)LJ = A[,J o @k

By Lemma 4.19, CD?,}’“ is positive if (5.29) holds, and zero otherwise, so the same is
true of Ay ; (since by definition, Ay ; is positive if and only if A; ;o Oy is positive).
]

ITI: Reflected basic subsets and zero rows

Following Convention 2.40, we interpret an interval [c,d] C Z as a cyclic interval
of [n] by reducing each element of [c,d] mod n. As usual, [c,d] is the empty set if
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¢ > d. For example, if n > 6, then [—2, 3] and [n — 2, n+ 3] both represent the cyclic
interval [1,3] U [n —2,n], but [n — 2, 3] is the empty set.

Given a subset J C [n], let Z(J) be the rows of the submatrix A, ; which are
identically zero. We call Z(J) the zero rows of the columns J. (By convention, we
set Z(0) = 0.) Tt follows from (5.28) that the j** column of A has zeroes in rows
[ — k+ 1,7 — 1]. This implies that if s > 1 and ¢ € Z, then

(5.30) Z(le,e+s—1])=[c—k+s,c—1].

Definition 5.33. Fix r < k,a € [0,7], and b € [0,n — 7], and consider the reflected
basic r-subset
J% =T11,a]U[a+b+1,7+0).

(Note that every reflected basic r-subset is of this form.) Let Z; be the zero rows of
columns [1, a], and let Zy be the zero rows of columns [a + b+ 1,r + b]. We say that
a subset I € ([:]) satisfies condition Cy, (or Cqp if 7 is understood) if

Inz(J*" =9, INZ| <r—a, 1IN Zy| < a.

Note that if r = k, then |Z;| = k —a and |Z5| = a by (5.30), and Z(J*?) is empty
because each row of A has only k—1 zeroes. Thus, condition C¥, always holds. Note
also that by (5.30), we have

(5.31)
7, — 0 ifa:()’ 72 — r+b—k+1,a+10 ifa<'r”
n+a—k+1,n ifa>0 0 ifa=r
and thus
[r+b—Fk+1,0] ifa=0
(5.32) Z(J"") =S In+a—k+1l,a+b]Uln+r+b—k+1,n] ifacl,r—1]
n+r—Fk+1,n] ifa=r.

Proposition 5.34. Fiz r < k. Let J*" be a reflected basic r-subset, and let Z, =
Z([1,a]), Zo = Z([a+ b+ 1,7 +b]) be the zero rows of the two intervals of J*°. Then
for I € ([Z]), the rational map Aj jes is r-positive if I satisfies condition Cyy, and

zero otherwise.

Thanks to the reductions based on PR, .S, and D, Proposition 5.34 implies Propo-
sition 5.29. The proof of Proposition 5.34 is rather technical. The idea is to use
Lemma 5.32 and the cyclic shifting map to show that a large class of the minors
Aj jas are r-positive, and then to show that all other minors of the form A ju» are
either zero, or can be expressed as positive Laurent polynomials in the minors that

are known to be r-positive. We carry out the first step with the following lemma.
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Lemma 5.35. Fixr <k.

1. The submatriz Ay jab is independent of A if and only if I C [r+b—k 4+ 1,n],

ora =r.

2. If A; jes is independent of N, then Aj jau is positive (equivalently, r-positive) if
I satisfies condition C,p, and zero otherwise.

3. If there is some c such that J** —c = J¥Y and the submatriz Ap  gap 18
independent of X, then Proposition 5.34 holds for Aj jer. Here S — c is the
subset obtained by subtracting c from each element of S, and interpreting the

result mod n.

Proof. Let I = {i; < ... < i} and J* = {j; < ... < j,}. By (5.28), A is
independent of A if and only if j —7 < k, so A; jas is independent of A if and only if

(5.33) gy — iy < k.

If a = r, then J** = [r], so (5.33) holds for every I. If a # r, then j, = r + b, so
(5.33) holds if and only if i, > r + b — k. This proves (1).
Now suppose Ay jas is independent of A. Specializing Lemma 5.32 to the case

J = J%b we see that Ay jes is positive if I satisfies

(5.34) » (s, 8 +n — k] ifs=1,...,a
. ZS
s+bs+b+n—Fk ifs=a+1,...,m

and zero otherwise. So to prove (2), we must show that:

Given the assumption I C [r+b—k+1,n] ora =r, I satisfies condition Cyy if
and only if I satisfies (5.34).

To see this, first suppose a € [r — 1]. In this case, (5.34) is equivalent to the three

inequalities
(5.35) o <n+a-—k, lay1 > a+b+1, i <r+b+n-—=k.

Using (5.31), (5.32) and considering separately the cases r +b > k and r + b < k,
it is straightforward to check that for I C [r +b — k + 1,n], (5.35) is equivalent to
condition Cyp. If @ = r, (5.34) is equivalent to the first inequality of (5.35); if a = 0,
(5.34) is equivalent to the last two inequalities of (5.35). The verification of the claim
in these cases is similar.

For (3), suppose Ap jaw is independent of A, where I'=T—cand J*V = Job—¢.
The cyclic symmetry of the locations of zeroes in the matrix A implies that I’ satisfies
condition Cyp if and only if I satisfies condition C, ;. Thus, Proposition 5.34 holds

for A jap by Lemma 5.31 and part (2). O
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IV: Conclusion of the proof

We now complete the proof of Proposition 5.29 (and thus the proof of Theorem
5.3) by proving Proposition 5.34.

Suppose I does not satisfy condition C,y. If I N Z(J*?) # (), then the submatrix
Aj jes has a row of zeroes, so its determinant vanishes. If |[I N Z;| > r — a, then the
first @ columns of A; j.» have at least r — a + 1 zero rows, so again the determinant
vanishes. The case |I N Z3| > a is similar.

Now suppose I satisfies condition C,p. If J*? is contained in a cyclic interval of
size k, then there is some ¢ so that J%* — ¢ = J** C [k]. The first k columns of A
are independent of A, so A jas is r-positive by Lemma 5.35(3).

Assume that J%* is not contained in a cyclic interval of size k. The zeroes in
each row of A are located in k — 1 cyclically consecutive columns, so in this case, the
submatrix Ay, jas does not have a row of zeroes. In other words, Z(J**) = 0, so
the first part of condition C,} is automatically satisfied. Also, Z; and Z, are both
non-empty, and |Z1| = k — a, |Zs| = k — r + a, so I satisfies condition C,, if and
only if

|Z\I|>k—r fori=1,2.

Thus, we need to show that A; s+ is r-positive whenever

(5.36) Ve (kZ_1T> Y, € (kZ_2T> and € (["] \ (YT} UYQ)).

Let Y1, Ys, and I be as in (5.36). Suppose first that I D Z; \ Y;. In this case,
since Z; = [n+ a — k4 1,1}, the lower left (r — a) x a submatrix of A; je» consists

entirely of zeroes, so we have

AI,J‘lvb (A) = AI’,[I,@] (A)AI”,[a+b+1,r+b] (A>7

where I' = I\ (Z;\Y7) and I"” = Z;\ Y;. The first k columns and the last k rows of A
are independent of A, so the submatrices Ap |1, and Apr (44411, are independent
of A. The a-subset I" is disjoint from Z,, so I’ satisfies condition Cf ; similarly, since
ZhNZy = Z(Jup) = 0, the r —a subset I” is disjoint from Z,, so I” satisfies condition
C’g;ib. Thus, Ap 14 and Ap jayp41,44 are positive rational functions by Lemma
5.35(2), so A; jap is a positive (hence r-positive) rational function.

If I D Zy\ Y, set ¢ = a+b, so that J¥° — ¢ = Jr—anr=b Let I' = [ — ¢,
Zy = Zy —c, and Y] = Yy —c. Clearly Z] consists of the zero rows of columns
1,7 —al, and I' O Z] \ Y/, so Ap_jr-an-r—s is r-positive by the previous paragraph,
and Aj jas is r-positive by Lemma 5.31.

It remains to consider the case where I 2 Z;\'Y; for i = 1,2. This case is subtler,
and we proceed indirectly. Set S = [n]\ (Y7 UY3). Call a subset of S an S-interval
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if it is of the form SN {c,d], with 1 < ¢ < d < n. Let I be a basic r-subset of S; this
means that I consists of one or two S-intervals, and if there are two S-intervals, one
of them contains the largest element of S. If I C [r+b— k + 1,n], then A; jas is
r-positive by Lemma 5.35, so suppose I ¢ [r+ b — k + 1,n]. We claim that

(5.37) Icl,a+bUn+a—Fk+1,nl.

To prove (5.37), recall that Z; = [n+a—k+1,n],and Zo = [r+b—k+1,a+1b|.
Since I ¢ [r+b—k+ 1,n], we must haver +b—k+1>2,so[r+b—k+1,a+ b

is an “honest” (i.e., non-cyclic) interval of [n], and we have
S=[Lr+b—klU(Z\Y2)Ula+b+1,n+a—klU(Z \Y).

By assumption, [ is a basic r-subset of S which intersects [1,7 + b — k| and does
not contain all of Z; \ Y5 or Z; \ Y;. There are two possibilities: either I is a single
S-interval contained in [1,74+b—k|U Zy\ Ys, or I = [} U Iy, where I is an S-interval
contained in [1,7 4+ b — k] U Z5 \ Ya, and I, is an S-interval contained in Z; \ Y. In
either case, I N[a+b+1,n+a— k] =0, so (5.37) holds.

Now let I’ = I — (a+b), and note that J** — (a +b) = J ="t By (5.37), we
have

I'cin—b—k+1n=[r+Mm—-—r—->0—k+1,n],

so Ay jas is T-positive by Lemma 5.35.

Let J be an r-subset of S. Proposition 2.46 says that A jo» can be expressed as
a positive Laurent polynomial in the A; o, with I basic. We have shown that these
Ay jeb are r-positive, and furthermore, it’s clear from the proof that each of these
Ay ja» is a monomial with respect to A. It follows that A jas is r-positive (although
not necessarily a monomial). We have shown that A; ja» is r-positive whenever I
satisfies (5.36), so we are done.

5.5 Proof of the identity go R =g

In this section we prove Theorem 5.4. Suppose u = M|s € X, and v = N|t € X.
Let A = g(u)g(v) (viewed as a folded matrix), and let A, = A|,__1ys-1;, and A, =
Al=(1ye-15. Define o' = N[t € X and v’ = M'[s € X; by R(u,v) = (v,u’). We
must show that
(5.38) g(u)g(v) = g(v")g(u).

For I € (), let P; = P;(N'), and for J € (")), let Q; = QI (M") = Py (Ss(M")).
By (5.3), we have

Py _ Aq i (As)

P jiin Dkt (Ar)

Qi] _ A[nff+l,n],J<As)
Q/[g] A[n—f—i—l,n],[ﬁ] (As)

and

(5.39)
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The key to the proof of Theorem 5.4 is the following identity.

Proposition 5.36. Forr =1,...,n, we have
1ot} _ v Pl mi\fa}
—1jU{r nda  |n—kn\1a
(5.40) (1 (1)) T = S (e ihelind
(4] a=1 [n—k+1,n]

(Note that by Convention 2.40, the terms on the right-hand side of (5.40) with
a < n — k are zero, and the left-hand side is zero when r < ¢ —1.)
Before proving this identity, we use it to deduce Theorem 5.4. Consider the folded

matrices

B=(t+ (1)) -g) and  C=h()g(u)g(v)

where h : X, — B~ is defined by (3.31). The left-hand side of (5.40) is equal to
B, by Lemma 3.18, and the right-hand side is equal to C,,,. by the definition of h,
so Proposition 5.36 says that B,, = C,, for all r. Recall the cyclic shift map PR
and the shift automorphism sh from §3.1. Since shog = g o PR by Lemma 3.3(1),
shoh = hoPR by a similar argument, and PR commutes with R by Theorem 5.11(2),
the equality of the last rows of B and C' implies that B = C.

By Lemma 3.20, the matrix h(v') satisfies

g () = (t+ (=1)") - Id,

so left-multiplying B and C' by g(v') gives the desired equality (5.38).
Proof of Proposition 5.36. Let

n

P/n—kn a
pr(N) = Z (_1)n+a%flar
a=n—k [n—k+1,n]
be the right-hand side of (5.40). Let X be the unfolding of A. The entries of the
matrices g(u) and g(v) are at most linear in A, so the entries of their product A are
at most quadratic in A, and

Aij = Xij + A Xnpij + N Xonyi -

Recall from §3.1 that an unfolded matrix X is m-shifted unipotent if X;; = 0 when
i—j >m, and X;; =1 when ¢ — j = m. The matrices g(u) and g(v) are (n — {)-
and (n — k)-shifted unipotent, respectively, so their product is (2n — ¢ — k)-shifted
unipotent. This implies, in particular, that if a > n — k, then A,, is either constant
or linear in A, so p.(A) is a polynomial of degree at most one. Proposition 5.36 is

therefore an immediate consequence of the following two claims:

1. (=1)*'t is a root of p,(\);
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/
2. the coefficient of A in p,(A) is (—1)’“%.
[4]

To prove the first claim, let D = (A;)p—kmn),<1,2,..kr> denote the (generalized)
submatrix of A; consisting of the last k£ 4+ 1 rows, and columns 1,...,k,r, in that
order. If r € [k], then clearly det(D) = 0; if r ¢ [k], then det(D) is still zero because
g(v)|x=(1)k-1; has rank & by Proposition 3.7(2). On the other hand, expanding the
determinant along column r gives det(D) = p,((—1)*"t), so (1) follows.

It remains to prove the second claim. Since the coefficient of A in A, is X140,
claim (2) can be rephrased as the identity

/ n P
—1]U{r n+a - [n—k,n]\{a
(5.41) e D D Co VS e AV
[€] a=n—k [n—k+1,n]

If r <{—1, then X, 1., = 0for a > n—k (since X is (2n — ¢ — k)-shifted unipotent),
so (5.41) holds trivially in this case.

To prove (5.41) for r > ¢, we start by massaging the (folded) matrices g(u) and
g(v) into a simpler form. By Proposition 3.7(2), the matrix g(u)|y=(_1)¢-1, has rank
¢. This means that we may add linear combinations of the last £ rows of g(u) (which
are linearly independent, and do not depend on \) to the first n — £ rows to obtain

the matrix g(u)*, where

g(u)ij ifi>n—0+1
gw)i; =9 A+ (=1)s)g(u),; ifj—i>"
0 otherwise.

Similarly, we may add linear combinations of the first & columns of g(v) to the last

n — k columns to obtain the matrix g(v)*, where

g(v)i; if j <k
gy = A+ (=D )g(v)y; ifj—i>k
0 otherwise.

*

Define A* = g(u)*g(v)*. See Figure 7 for an example of the matrices g(u)*, g(v)*,
and A*.

Given two subsets I,.JJ C [n] of the same cardinality, say that (I,J) is a good
pair if I contains or is contained in the interval [n — ¢ + 1,n], and J contains or is
contained in the interval [1,k]. The construction of g(u)* and g(v)*, together with
the Cauchy—Binet formula, implies that

(5.42) Arg(A")=Ar,(A) if (I,J) is a good pair.
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x 0 A Ax * 0 A Ak X11 + A )\X52 )\X53 )\X54
* *x 0 A * x 0 A _ X21 X22 + A )\Xﬁg )\X64
1 * x 0 1 * = 0 - X31 X32 X33 + A )\X74
0 1 *x = 0 1 *x = X1 X2 X3 Xag+ A
0 0 As (A+s)x * 0 A+t (A+t)x
0 0 0 A+s ok 0 A+t
1 =x * 0 1 =% 0 0
0 1 * 0 1 0 0
Ats (A+8)Xs2 0 0
| o At s 0 0
N X31 X32 A+t A+t X7
X41 X42 0 A+t

Figure 7: Suppose n = 4,f =k =2, and u = M|s,v = N|t € Xy. The first line shows the product
g(u)g(v) = A, where the #’s are ratios of Pliicker coordinates of M or N, possibly scaled
by s or t, and X is the unfolding of A. The next lines show the product g(u)*g(v)* = A*,
with the blocks of A* indicated.

Set
ay = A+ (—1)'s, = A+ (=1t

The reader may easily verify that the entries of A* are given by

(

X ifi>n—/C+1and j <k
O Xpti i ifi<n—/fand j <k
(5.43) (A%)y = o . ’ .
ar Xntij ifi>n—/4+1and j>k+1
(s Xoptiy Hi<n—Cand j>k+1

In other words, A* has the block form

n—t a B oo
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QSX%l QSX%Q 0 0 0 0 gt
o asXga | 0 0 0 0 0
0 Qg 0 0 0 0 0
Xy X | oy Xi1g o Xiis i Xiie o Xiiy
Xs51 Xs2 | O oy ;X125 X1 X127
Xe1 Xe2 | O 0 oy X136 X137
X7 X2 | 0 0 0 o ot X147

Figure 8: The matrix A* in the case n = 7,¢ = 4,k = 2, with blocks indicated.

where G is filled with the constant terms of the corresponding entries of A, E' and
H with the coefficients of A\ in the corresponding entries of A, and F with the
coefficients of A\? in the corresponding entries of A (examples are shown in Figures 7
and 8). Furthermore, the matrices F, ), G, H satisfy:

e H and fl(F) (see §3.3.2) are upper uni-triangular;
e all entries in the first column and last row of F' are zero.

Taken together, these properties imply that row n — ¢ (resp., column k + 1) of A*
has only one nonzero entry, namely, (A*),_rr = s (resp., (A*)p—rt16+1 = ).

The argument now splits into two cases.

Case 1: { # k.

First note that the argument used to deduce Theorem 5.4 from Proposition 5.36
can be reversed to deduce the latter from the former, so these two results are
in fact equivalent. Thanks to Proposition 3.15 and the fact that the geometric
Schiitzenberger involution commutes with the geometric R-matrix, (5.38) holds for
(u,v) € Xp x X}, if and only if it holds for (S(v), S(u)) € Xi x X,. Thus, the ¢, k case
of Theorem 5.4 is equivalent to the k, ¢ case, so the same is true of Proposition 5.36,
and we may assume ¢ > k here.

Using (5.42), (5.43), and the fact that the matrix H defined above is upper uni-

triangular (it may be helpful to refer to Figure 8), we compute

Ap—rr1m)e-10{r} (A) = Apeg1n),je-1j0() (A7)

n

_ (_1)k(€7k)affk:fl Z (_1)ain+kAZrA[n—k,n]\{a},[k](A*)

a=n—k

_ (_1)k(€—k)af—k Z (_1)a_n+an+a,7"A[nfk,n]\{a},[k}(A)-

a=n—k

In particular,

A[n,”l’nug] (A) = (— 1)k(€_k)aff_kA[nfk+l,n},[k] (A>7



117

and thus

n

A n—_0+1,n],[(—1]u{r (A) a—n A n—k,n]\{a},[k (A)
(5.44) [A +1,n),[ }u{j _ Z (—1) +an+a7r A[ N\ a}[ ]A
n—+1,n,4 (A) k1,0, [k (4)

a=n—k

By (5.39), the two sides of (5.41) are obtained by evaluating the two sides of
(5.44) at X\ = (—=1)*'s and A\ = (=1)*"'¢, respectively. Note, however, that the
entries of the submatrix Ap,_¢41 )% do not depend on the value of A, so since k < ¢,
the right-hand side of (5.44) is independent of X\. This means the left-hand side is
also independent of A, and (5.41) follows.

Case 2: { = k.

Since Xy qqk is 1 when a = n—k and 0 when a > n—k, (5.41) clearly holds when
r=k. Fix r > k + 1. Let 2z denote the coefficient of A in Ap,_ n] uiry (4). We will
deduce (5.41) by computing z in two ways. On the one hand, we use (5.42), (5.43),
and the fact that the only nonzero entry in the (n — k)th row of A*is Ay, , = a,
to compute

Ap— k), Mufr} (A) = Apkon muir (A7)

n

—a, Y (=D)AL Ap gy e (A7)

a=n—k+1
= Qs Z (_]-)a_n+k_an—l—a,TA[n—k—‘rl,n]\{a},[k—l]<A>a
a=n—k+1
which shows that
(545) e —(8 + t) Z (—1)a_n n_,_a,TA[n,kJan]\{a}’[k,l} (A)
a=n—k+1

On the other hand, the coefficient of A in the determinant Ap,_ ) kjugry (4) can be
computed from the unfolded matrix X by taking the alternating sum of determinants
of submatrices of columns [1, k] U {r} of X, where k of the rows come from [n — k, n|

and one row comes from [2n — k,2n], i.e.,

n

(5.46) 2= ) (=) Ak fahuntal ot (X).

a=n—k

Consider the term in this sum with a = n — k. Expanding the determinant along
row 2n — k (it may be helpful to refer to the first line of Figure 7), we obtain

A 1,00 {2n—k}1uir (X) = Xon—kr Ap—tr1,0], 1 (X) = Apiet 1,0, r—1]u{r} (X).
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Observe that the entries of the bottom-left & x & submatrix of A do not depend on
A, and the entries A, for a > n — k + 1 are polynomials in A\ of degree at most one.
This means that

(5.47)  Ap—krin, )] (X) = Apcig 1, w1 (A) = Apcikr 10,k (As) = Ap—rr1,n), 1 (Ae)

and

Ap— k1) -1} (X) = A g0 e-1ugr} (A)

- A Z (_1)n—a n+a,rA[n—k+1,n}\{a},[k—l](A)-
a=n—k+1

Since the left-hand side of this equation is independent of A\, we may substitute
A = (=1)*1s into the right-hand side to obtain

Ap—pr 1,0, fe-110{rH (X) = Aok, k—1jugr) (As)

n

— (=D > ()" Xngar At fap -1 (A).

a=n—k+1

By similar reasoning,

Atk fap)0ntad, 10 (X) = Xntar (A fad, 1 (Ar) =t k1,0 () 5-1(4))

fora=n—k+1,...,n.
Putting all of this together, we may rewrite (5.46) as

(5.48) 2z = (—1)"Xon—pr Aperstng i) (A) — (= 1) A1), e—1jugry (As)

) DT N (Do a1 (A = (5 + O D kit g, i1 (A))-

a=n—k+1

Equating the expressions for z in (5.45) and (5.48), we obtain

At 1,0 e—110fr} (As) = Xon—kr Apn—ig1,0), 1] (A)

+ ) D) T T X Ak fa (A

a=n—k+1

Divide both sides of this equation by Ap, k41,0, (A) and use (5.47) and (5.39) to
obtain (5.41). This completes the proof. O
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