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ABSTRACT

In the first part of this thesis, we construct a type A
(1)
n−1 geometric crystal on the

variety Xk := Gr(k, n) × C×, and show that it tropicalizes to the disjoint union of

the Kirillov–Reshetikhin crystals corresponding to rectangular semistandard Young

tableaux with n−k rows. A key ingredient in our construction is the Z/nZ symmetry

of the Grassmannian which comes from cyclically shifting a basis of the underlying

vector space. We show that a twisted version of this symmetry tropicalizes to com-

binatorial promotion.

In the second part, we define and study the geometric R-matrix, a birational map

R : Xk1×Xk2 → Xk2×Xk1 which tropicalizes to the combinatorial R-matrix on pairs

of rectangular tableaux. We show that R is an isomorphism of geometric crystals,

and that it satisfies the Yang–Baxter relation. In the case where both tableaux have

one row, we recover the birational R-matrix of Yamada and Lam–Pylyavskyy. Most

of the properties of the geometric R-matrix follow from the fact that it gives the

unique solution to a certain equation of matrices in the loop group GLn(C(λ)).

vi



CHAPTER 1

Introduction

1.1 Affine crystals and the combinatorial R-matrix

In the early 1990s, Kashiwara introduced the theory of crystal bases [Kas90,

Kas91]. This groundbreaking work provides a combinatorial model for the represen-

tation theory of semisimple (and more generally, Kac–Moody) Lie algebras, allowing

many aspects of the representation theory to be studied from a purely combinatorial

point of view. In type A, crystal bases can be realized as a collection of combinatorial

maps on semistandard Young tableaux, and many previously studied combinatorial

tableau algorithms turned out to be special cases of crystal theory. For example,

the Robinson–Schensted–Knuth correspondence is the crystal version of the decom-

position of the GLn-representation (Cn)⊗d into its irreducible components [Shi05];

Lascoux and Schützenberger’s symmetric group action on tableaux is a special case

of the Weyl group action on any crystal [BS17]; Schützenberger’s promotion map, re-

stricted to rectangular tableaux, is the crystal-theoretic manifestation of the rotation

of the affine type A Dynkin diagram [Shi02].

Tableau algorithms are traditionally described as a sequence of local modifications

to a tableau, such as bumping an entry from one row to the next, or sliding an entry

into an adjacent box. These combinatorial descriptions are quite beautiful, but for

some purposes, one might want a formula that describes the local transformations

in terms of a natural set of coordinates on tableaux, such as the number of j’s in

the ith row (or the closely related Gelfand–Tsetlin patterns). Kirillov and Berenstein

discovered that the Bender–Knuth involutions, which are the building blocks for

algorithms such as promotion and evacuation, act on a Gelfand–Tsetlin pattern by

simple piecewise-linear transformations [KB96]. This discovery sparked a search for

piecewise-linear formulas for other combinatorial algorithms.

This thesis is centered around the problem of finding piecewise-linear formulas for

combinatorial maps coming from affine crystal theory. Quantum affine algebras ad-

mit a class of finite-dimensional, non-highest-weight representations called Kirillov–

1
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Reshetikhin (KR) modules. The crystal bases of these representations, which we call

KR crystals, have received a lot of attention for several reasons. Kang et al. showed

that the crystal bases of highest-weight modules for quantum affine algebras can be

built out of infinite tensor products of KR crystals, and they used this construc-

tion to compute the 1 point functions of certain solvable lattice models coming from

statistical mechanics [KKM+92]. Kirillov–Reshetikhin crystals have also played a

central role in the study of a cellular automaton called the box-ball system and its

generalizations [TS90, HHI+01].

Unlike the tensor product of representations of Lie algebras and finite groups,

the tensor product of representations of quantum algebras (and thus of crystals) is

not commutative. In the case of KR crystals, however, there is a unique crystal

isomorphism

R̃ : B1 ⊗B2 → B2 ⊗B1.

This isomorphism is called the combinatorial R-matrix, and it plays an essential role

in both of the applications mentioned in the preceding paragraph. For example, the

states of the box-ball system can be represented as elements of a tensor product of

KR crystals, and the time evolution is given by applying a sequence of combinatorial

R-matrices.

In (untwisted) affine type A, Kirillov–Reshetikhin modules correspond to parti-

tions of rectangular shape (Lk), and their crystal bases, which we denote by Bk,L,

are modeled by semistandard Young tableaux of shape (Lk). If one ignores the affine

crystal operators ẽ0, f̃0, then Bk,L is the crystal associated to the irreducible sln-

module of highest weight (Lk). Shimozono showed that the affine crystal operators

are obtained by conjugating the crystal operators ẽ1, f̃1 by Schützenberger’s pro-

motion map [Shi02]. He also gave a combinatorial description of the action of the

combinatorial R-matrix on pairs of rectangular tableaux, which we now explain.

Let ∗ denote the associative product on the set of semistandard Young tableaux

introduced by Lascoux and Schützenberger (see §2.2.3 for the definition). If T ∈
Bk1,L1 and U ∈ Bk2,L2 , then there are unique tableaux U ′ ∈ Bk2,L2 and T ′ ∈ Bk1,L1

such that T ∗ U = U ′ ∗ T ′, and the combinatorial R-matrix is realized by the map

R̃ : T ⊗ U 7→ U ′ ⊗ T ′. For example, suppose

T = 1 2 2 3 4 4 4 5 ∈ B1,8 and U = 1 2 2 4 5 5 ∈ B1,6 .

The product T ∗ U can be computed by using Schensted’s row bumping algorithm

to insert the entries of U into T , starting from the left end of U ; the result is

T ∗ U =
1 1 2 2 2 4 4 4 5 5

2 3 4 5
.
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The reader may verify that the tableaux

U ′ = 1 2 2 3 4 5 and T ′ = 1 2 2 4 4 4 5 5

satisfy U ′ ∗ T ′ = T ∗ U , so R̃(T ⊗ U) = U ′ ⊗ T ′.
There is a combinatorial procedure for pulling T ∗ U apart into U ′ and T ′, so

the whole process is algorithmic. It is nevertheless natural to ask if the map R̃ can

be computed in one step, without first passing through the product T ∗ U . In the

case where T and U are both one-row tableaux, there is an elegant piecewise-linear

formula for R̃, due to Hatayama et al.

Proposition 1.1 ([HHI+01, Prop. 4.1]). Suppose T and U are one-row tableaux,

with entries at most n, and suppose R̃(T ⊗ U) = U ′ ⊗ T ′. Let aj, bj be the numbers

of j’s in T and U , respectively. Define

b′j = bj + κ̃j+1 − κ̃j, a′j = aj + κ̃j − κ̃j+1,

where

κ̃j = min
0≤r≤n−1

(bj + bj+1 + · · ·+ bj+r−1 + aj+r+1 + aj+r+2 + · · ·+ aj+n−1) ,

and all subscripts are interpreted modulo n. Then b′j, a
′
j are the numbers of j’s in U ′

and T ′, respectively.

The motivating goal of this thesis was to generalize Proposition 1.1 to a formula

for the combinatorial R-matrix on pairs of arbitrary rectangular tableaux.

1.2 Geometric lifting

How does one find—and work with—piecewise-linear formulas for complicated

combinatorial operations? A very useful method is to use tropicalization and geo-

metric lifting. Tropicalization is the procedure which turns a positive rational func-

tion (i.e., a function consisting of the operations +, ·,÷, but not −; such functions

are often called “subtraction-free” in the literature) into a piecewise-linear function

by making the substitutions

(+, ·,÷) 7→ (min,+,−).

A geometric (or rational) lift of a piecewise-linear function h̃ is any positive rational

function h which tropicalizes to h̃. Rational functions are often easier to work with

than piecewise-linear functions, since one may bring to bear algebraic and geomet-

ric techniques. Furthermore, identities proved in the lifted setting can be “pushed
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down,” via tropicalization, to results about the piecewise-linear functions and the

corresponding combinatorial maps.

For example, the formula for R̃ in Proposition 1.1 turns out to be the tropi-

calization of a rational map which solves a certain matrix equation. Given x =

(x1, . . . , xn) ∈ (C×)n, define

(1.1) g(x) =



x1 λ

1 x2

1 x3

. . .

xn−1

1 xn


.

Here λ is an indeterminate, and we view g(x) as an element of the loop group

GLn(C(λ)).

Proposition 1.2 ([Yam01], [LP12, Th. 6.2]). If x, y ∈ (C×)n are sufficiently generic,

then the matrix equation

(1.2) g(x)g(y) = g(y′)g(x′)

has two solutions: the trivial solution y′j = xj, x
′
j = yj, and the solution

(1.3)

y′j = yj
κj+1

κj
, x′j = xj

κj
κj+1

, where κj =
n−1∑
r=0

yj · · · yj+r−1xj+r+1 · · ·xj+n−1,

and subscripts are interpreted modulo n. The solution given by (1.3) is the unique

solution to (1.2) which satisfies the additional constraint

(1.4)
∏

xj =
∏

x′j and
∏

yj =
∏

y′j.

Note that the piecewise-linear map R̃ in Proposition 1.1 is the tropicalization of

the rational map R : (x, y) 7→ (y′, x′), where y′, x′ are defined by (1.3)1 (note also

that (1.4) tropicalizes to the condition
∑
aj =

∑
a′j,
∑
bj =

∑
b′j, which says that

the tableaux T and T ′ (resp., U and U ′) have the same length). Thus, the map R is

a geometric lift of the combinatorial R-matrix on pairs of one-row tableaux.

Upon learning of Propositions 1.1 and 1.2, we were deeply impressed that the

solution to a matrix equation could also describe a combinatorial procedure for

swapping pairs of tableaux. In fact, this example is just one instance of a larger

1In the tropicalization, we replace the “rational variables” xj and yj , which can be thought of as generic nonzero
complex numbers, or indeterminates, with the “combinatorial variables” aj and bj , which take on integer values.
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phenomenon. Since Kirillov–Berenstein’s work on the Bender–Knuth involutions,

many other combinatorial algorithms have been lifted to rational maps, including

the Robinson–Schensted–Knuth correspondence, the Lascoux–Schützenberger sym-

metric group action, and rowmotion on posets [KB96, Kir01, NY04, DK07, EP14].

One of the crowning achievements of the geometric lifting program is Berenstein

and Kazhdan’s theory of geometric crystals, which provides a framework for lifting

the entire combinatorial structure of crystal bases [BK00, BK07a]. Roughly speak-

ing, a geometric crystal is a complex algebraic variety X, together with rational

actions ei : C× × X → X, which are called geometric crystal operators. The geo-

metric crystal operators are required to satisfy rational lifts of the piecewise-linear

relations satisfied by (combinatorial) crystal operators. In many cases, the geometric

crystal operators are positive, and they tropicalize to piecewise-linear formulas for

the combinatorial crystal operators ẽi on a corresponding combinatorial crystal BX ;

when this happens, we say that X tropicalizes to BX . For each reductive group G,

Berenstein and Kazhdan [BK07a] constructed a geometric crystal on the flag variety2

of G which lifts the crystals associated to all the irreducible representations of G∨,

the Langlands dual group (see Remark 2.27(3)). These geometric crystals provide

a new method for constructing and studying crystals; in addition, they have proved

useful beyond combinatorics, with applications to quantum cohomology and mir-

ror symmetry, Brownian motion on Lie groups, and the local Langlands conjectures

[LT17, Chh13, BK07b].

Nakashima [Nak05] extended the definition of geometric crystal to the setting of

Kac–Moody (and in particular, affine) Lie algebras. There has been a concerted effort

to construct geometric lifts of Kirillov–Reshetikhin crystals, and to find compatible

lifts of the associated combinatorial R-matrices. In the case of the one-row affine type

A crystals mentioned above, it is straightforward to define a corresponding geometric

crystal, and Yamada’s rational map from Proposition 1.2 turns out to be an isomor-

phism of geometric crystals (see the introduction of [KOTY03]). When we began

work on this project, Kuniba–Okado–Takagi–Yamada and Kashiwara–Nakashima–

Okado had constructed a geometric crystal for the analogue of one-row KR crystals

in all non-exceptional affine types, and a compatible geometric R-matrix in types

D
(1)
n , B

(1)
n , D

(2)
n+1, A

(2)
2n−1, A

(2)
2n [KOTY03, KNO08, KNO10]. Beyond the one-row case,

Misra and Nakashima had constructed a geometric crystal for two-row tableaux in

affine type A (i.e., type A
(1)
n−1) [MN13].

In this thesis, we construct a geometric crystal on Gr(n−k, n)×C× which tropical-

izes to the disjoint union of the KR crystals Bk,L, L ≥ 0, and a compatible geometric

R-matrix on products of these geometric crystals. In the next two sections, we give

2The geometric crystal is actually constructed on G/B × T , where T is a maximal torus.
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an overview of some of the key ideas in our constructions.

1.3 Cyclic symmetry and the Grassmannian

We saw above that the geometric R-matrix in the one-row case is the solution to a

matrix equation. The same is true in the general case, and in fact, the full geometric

crystal structure is determined from the appropriate generalization of the matrix g(x)

in (1.1). Before describing this matrix, we introduce coordinates on semistandard

rectangular tableaux with k rows (and entries at most n). The entries in the ith row

of such a tableau must lie in the interval {i, i + 1, . . . , i + n − k}. If we fix the row

length L, then the ith row is determined by the n−k integers bii, bi,i+1, . . . , bi,i+n−k−1,

where bij is the number of j’s in the ith row. Thus, a k-row rectangular tableau is

determined by k(n − k) integers bij, plus the row length L. (These integers must

satisfy certain inequalities, such as non-negativity, but we ignore the inequalities in

this discussion; see §2.2.4 for full details.)

To lift the combinatorial R-matrix in the one-row case, we replaced the integer

coordinates b1, . . . , bn with rational coordinates x1, . . . , xn. In the k-row case, we

replace bij with xij, and the row length L with the rational coordinate t. It turns out

that the coordinates (xij, t) are not well-suited to defining the analogue of the matrix

(1.1) in the general case. In the k = 1 case, the coordinates x1, . . . , xn have a simple

cyclic symmetry of order n, which is reflected in the matrix (1.1).3 For k > 1, the

coordinates (xij, t) do not have any obvious cyclic symmetry. There is, however, a

“hidden” cyclic symmetry coming from Schützenberger promotion, which has order

n on rectangular tableaux with entries at most n. The key to defining the analogue of

(1.1) is to use an alternative set of coordinates which makes the action of promotion

transparent. This alternative set of coordinates comes from the Grassmannian.

Let Gr(n − k, n) denote the Grassmannian of (n − k)-dimensional subspaces in

Cn. Borrowing a construction from the work of Lusztig and Berenstein–Fomin–

Zelevinsky on total positivity [Lus94, BFZ96], we define a birational isomorphism

from the k(n− k) rational coordinates xij to a subspace N ∈ Gr(n− k, n). Let Θn−k

denote the birational map from Ck(n−k)+1 → Gr(n− k, n)× C× given by

(xij, t) 7→ (N, t) =: N |t.

(See Definition 4.1 for the definition of Θn−k.) The Grassmannian has a natural cyclic

symmetry induced by rotating a basis of the underlying n-dimensional vector space.

By “twisting” this symmetry by the parameter t, we define a map PR : N |t 7→ N ′|t,
3To see this symmetry in the matrix, one must “unfold” g(x) into an infinite periodic matrix which repeats the

sequence x1, . . . , xn along the main diagonal, and has an infinite diagonal of 1’s just below the main diagonal. See
§2.4 for the precise definition of “unfolding.”
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and we show in Theorem 4.24 that the composition Θ−1
n−k ◦PR ◦Θn−k tropicalizes to

a piecewise-linear formula for promotion on k-row rectangular tableaux. Since Θn−k

is a birational isomorphism (and there is a simple formula for its inverse), we may

do computations in terms of Plücker coordinates on the Grassmannian, and then

translate back to the coordinates (xij, t) at the end.

The analogue of (1.1) in the general k-row case is a matrix in GLn(C(λ)) filled

with ratios of Plücker coordinates. When n = 4 and k = 2, the matrix looks like

this:

g(N |t) =



P14

P34

0 λ λ
P13

P23

P24

P34

P12

P14

0 λ

1
P13

P14

t
P23

P12

0

0 1 t
P24

P12

t
P34

P23


.

Here PI is the I th Plücker coordinate of the two-dimensional subspace N . See Defi-

nition 3.2 for the general definition of g(N |t); note that the one-row case corresponds

to Gr(n− 1, n)× C×.

Suppose M |s ∈ Gr(`, n)× C× and N |t ∈ Gr(k, n)× C×. As in the one-row case,

we seek a solution to the matrix equation

(1.5) g(M |s)g(N |t) = g(N ′|t)g(M ′|s),

where N ′ ∈ Gr(k, n) and M ′ ∈ Gr(`, n). Using properties of the Grassmannian and

linear algebra, we show that for sufficiently generic M,N, s, t, there is a unique can-

didate for the solution to (1.5) (Lemma 5.8, Corollary 5.9). We define the geometric

R-matrix to be the map

R : (M |s,N |t) 7→ (N ′|t,M ′|s)

given by this unique candidate. The main technical results of this thesis are

• Theorem 5.4, which states that R does in fact give a solution to (1.5);

• Theorem 5.3, which states that R is positive, in the sense that the map

(Θ−1
k ×Θ−1

` ) ◦R ◦ (Θ` ×Θk) : ((yij, s), (xij, t)) 7→ ((x′ij, t), (y
′
ij, s))

is given by positive rational functions in yij, xij, s, and t.

The latter result shows that the geometric R-matrix can be tropicalized, and the

former result is the key to showing that R commutes with the geometric crystal

operators.
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1.4 Unipotent crystals and the loop group

Why should the geometric R-matrix satisfy a matrix equation? One explanation

comes from the notion of unipotent crystals. Let G be a reductive group, B− a

fixed Borel subgroup, and U the unipotent subgroup of the opposite Borel. In the

case G = GLn(C), one can take B− to be the lower triangular matrices and U the

upper uni-triangular matrices. Berenstein and Kazhdan [BK00] gave B− a geometric

crystal structure in which the geometric crystal operator ei is given by simultaneous

left and right multiplication by certain elements of the one parameter subgroup

in U corresponding to the ith simple root. They defined a unipotent crystal to

be a pair (X, g), where X is a variety which carries a rational action of U , and

g : X → B− is a rational map which is “compatible” with the U -action (see §2.4

for details). A unipotent crystal (X, g) induces a geometric crystal on X, in such a

way that g intertwines the geometric crystal operators on X and B− (i.e., gei = eig).

Furthermore, if (X, g) and (Y, g) are unipotent crystals, then (X×Y, g) is a unipotent

crystal, where

(1.6) g(x, y) = g(x)g(y).

This unipotent crystal induces a geometric crystal on the product X × Y , and if X

and Y tropicalize to crystals BX , BY , then X × Y tropicalizes to the tensor product

BX ⊗BY .

In our affine type A setting, the appropriate analogue of the reductive group

G is the loop group GLn(C(λ)), which consists of invertible n × n matrices over

the field of rational functions in an indeterminate λ. We take B− to be a certain

“lower triangular” submonoid of G, and U an “upper uni-triangular” subgroup (this

triangularity refers to the “unfolded” version of the matrices; see the discussion

preceding Definition 2.33). Berenstein and Kazhdan’s theory of unipotent crystals

extends essentially unchanged to this setting.

Let Xk := Gr(k, n)× C×. In §3.1, we show that the map g : Xk → B− discussed

above makes Xk into an affine type A unipotent crystal. This explains why the

geometric R-matrix ought to provide a solution to the matrix equation (1.5). Indeed,

the geometric R-matrix is supposed to be a map R : Xk1 × Xk2 → Xk2 × Xk1 which

commutes with the geometric crystal operators. Equation (1.5) says that g ◦R = g;

if this is satisfied, then since g commutes with the geometric crystal operators, we

have

(1.7) g ◦ eiR = g ◦Rei.

By the uniqueness of the solution to (1.5), (1.7) implies that R commutes with ei.
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(There is an alternative explanation, based on the combinatorial description of R̃,

for why the geometric lift of R̃ should satisfy a matrix equation; see Remark 5.15).

1.5 Related work

Misra and Nakashima recently constructed a geometric crystal which tropicalizes

to a certain limit of the crystals Bk,L [MN16]. Their construction is based on a

description of the affine crystal operators ẽ0, f̃0 in terms of lattice paths, rather than

promotion.

The idea of relating the cyclic symmetry of the Grassmannian to promotion of

rectangular tableaux is not new. In Rhoades’ work on the cyclic sieving phenomenon,

he showed that a natural cyclic shift in a certain realization of the irreducible GLn(C)-

representation corresponding to a rectangular partition permutes the dual canonical

basis according to promotion (up to a sign) [Rho10, Prop. 5.5]. Lam translated this

result into a statement about cyclic shifting in the homogeneous coordinate ring of

the Grassmannian [Lam16, Th. 12.2(4)]. Our result that the twisted cyclic shift map

tropicalizes to promotion (Theorem 4.24) was inspired by Rhoades’ result; we do not,

however, know of any direct connection between the two. More recently, Grinberg

and Roby [GR15] used the cyclic symmetry of the Grassmannian to prove that bi-

rational rowmotion on the k × (n − k) rectangle has order n, a result essentially

equivalent to Theorem 4.24. In fact, our proof is similar to theirs, although ours

arose from the parametrization Θk (which comes from the theory of total positiv-

ity), whereas theirs was inspired by Volkov’s proof of the Zamolodchikov periodicity

conjecture in type A× A [Vol07].

Our formalism is similar in some important respects to that of [KOTY03, KNO10].

In particular, the matrix g(N |t) is the analogue of the “M -matrix” (or “matrix

realization”) in those works, and our use of the uniqueness of the solution to (1.5) to

prove properties of the geometric R-matrix in Theorem 5.11 is identical to Kuniba–

Okado–Takagi–Yamada’s use of [KOTY03, Th. 3.13] to prove [KOTY03, Prop. 4.6,

4.7, 4.8].

1.6 Applications and future directions

Perhaps the most important property of the combinatorial R-matrix is that it

satisfies the Yang–Baxter relation. Akasaka and Kashiwara proved this result by an-

alyzing the poles of the R-matrix on tensor products of Kirillov–Reshetikhin modules

[AK97], and Shimozono gave a combinatorial proof using a generalization of Lascoux

and Schützenberger’s cyclage poset [Shi01]. In §5.1.2, we show that the Yang–Baxter

relation for the geometric R-matrix follows immediately (using a bit of linear algebra)
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from the fact that the geometric R-matrix satisfies the matrix equation (1.5), thereby

giving a new proof of the corresponding result for the combinatorial R-matrix.

As discussed above, the twisted cyclic shift map on the Grassmannian, which is a

geometric lift of promotion, plays a crucial role throughout this work. This map has

order n by definition, so by tropicalizing, we obtain a proof that promotion on rectan-

gular tableaux has order n.4 Two additional geometric symmetries play an important

role: transposition of the matrix g(N |t) over the anti-diagonal, which turns out to be

a geometric lift of the Schützenberger involution, and the map from a subspace to its

orthogonal complement, which is related to a lift of the “column complementation”

map on rectangular tableaux (that is, the map which replaces each column with its

complement in {1, . . . , n}, and reverses the order of the columns). We show that

these symmetries are compatible with the geometric crystal operators, which implies

that the corresponding combinatorial symmetries are compatible with the crystal

operators on rectangular tableaux. In the case of the column complementation map,

this compatibility seems to be a new result (see Remark 2.25).

The one-row geometric R-matrix of Proposition 1.2 has proved to be an inter-

esting map. It induces a birational action of the symmetric group Sm on the field

of rational functions in mn variables. Lam and Pylyavskyy called the polynomial

invariants of this action loop symmetric functions, and they showed that these invari-

ants have many properties analogous to those of symmetric functions [LP12, Lam12].

We expect that the more general geometric R-matrix constructed here will have ap-

plications to loop symmetric functions.

In fact, our original motivation for lifting the combinatorial R-matrix comes from a

conjectural connection between loop symmetric functions and the above-mentioned

box-ball system. The box-ball system exhibits soliton behavior; that is, regard-

less of the initial configuration, the balls in the system eventually form themselves

into several connected blocks, or solitons, each of which moves as a unit. Lam–

Pylyavskyy–Sakamoto [LPS16] conjectured a formula, in terms of the tropicalization

of loop symmetric functions, for determining the lengths and internal composition

of the solitons from the initial configuration of balls. Using the one-row geometric

R-matrix, they were able to prove the first case of their conjecture. To extend their

method to prove the full conjecture, one needs a lift of the combinatorial R-matrix

in the case where one of the tableaux has more than one row. We are optimistic that

our general geometric R-matrix can be used to prove the conjecture in full generality.

The (co)energy function on tensor products of Kirillov–Reshetikhin crystals is

another interesting feature of affine crystal theory which plays an important role

in the study of the box-ball system. Lam and Pylyavskyy showed that a certain

4This proof also follows from the above-mentioned result of Grinberg and Roby [GR15].
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“stretched staircase” loop Schur function tropicalizes to the coenergy function on

tensor products of arbitrarily many one-row tableaux [LP13]. As an application

of our setup, we show that a minor of the matrix g(M |s)g(N |t) tropicalizes to the

coenergy function on tensor products of two arbitrary rectangular tableaux. It would

be interesting to find a geometric coenergy function on tensor products of more

than two rectangular tableaux which simultaneously generalizes this minor and the

“stretched staircase” loop Schur function.

We hope that our methods can be extended to lift Kirillov–Reshetikhin crystals

and their combinatorial R-matrices in other affine types (beyond the analogue of

the one-row case). One potential difficulty is that most Kirillov–Reshetikhin crystals

outside of type A
(1)
n−1 are reducible as classical crystals. We suspect that this will

make it necessary to use “isotropic partial flag varieties,” rather than just “isotropic

Grassmannians,” in the other types.

1.7 Organization

Chapter 2 surveys much of the required background for this thesis. In §2.1 we

discuss notation. In §2.2 we review the combinatorics of Kirillov–Reshetikhin crystals

and the translation into piecewise-linear maps on Gelfand–Tsetlin patterns; in §2.3

we review the definition of geometric crystals; in §2.4 we discuss the loop group

and the affine version of unipotent crystals that we use; in §2.5 we review several

important results about the Grassmannian; in §2.6 we discuss the Lindström Lemma,

which enables one to compute minors of matrices in terms of paths in planar networks.

Chapter 3 revolves around the unipotent crystal map g : Xk = Gr(k, n) × C× →
GLn(C(λ)). In §3.1, we define this map, show that it makes Xk into a unipotent

crystal, and present explicit formulas for the induced geometric crystal structure on

Xk. In §3.2, we prove several important properties of the map g. In §3.3, we study

the cyclic symmetry of Xk, the geometric lift of the Schützenberger involution, and

the map from a subspace to its orthogonal complement in the dual Grassmannian.

Using the relationship between these symmetries and the map g, we show that the

symmetries are compatible with the geometric crystal structure. These symmetries

play an indispensable role in the proofs of later results.

Chapter 4 explains how to tropicalize the geometric crystal on Xk to obtain

piecewise-linear formulas for the affine crystal structure on rectangular tableaux with

n − k rows. The first step is to introduce the map Θk, which parametrizes Xk by a

complex torus of dimension k(n−k)+1. In §4.1, we define this parametrization, give

an explicit formula for its inverse, and use the Lindström Lemma to derive formulas

for Plücker coordinates in terms of the parameters. §4.2 discusses a general notion

of positive rational maps, and defines the tropicalization of such maps. In §4.3, we
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consider the tropicalization of the geometric crystal structure on (products of) Xk.

We show that the tropicalization of a function called the decoration defines a poly-

hedron whose integer points are precisely the rectangular tableaux with n− k rows

(the decoration is Berenstein and Kazhdan’s ingenious solution to the problem of

“lifting” the inequalities of the piecewise-linear setting to the geometric setting). We

then prove that the tropicalizations of the geometric crystal maps, when restricted

to the integer points of this polyhedron, agree with their combinatorial counterparts.

The key step in this proof is Theorem 4.24, which states that the cyclic shift map

PR tropicalizes to promotion. We also consider the tropicalization of the other two

symmetries, and we work out some small examples.

Chapter 5 is devoted to the geometric R-matrix R : Xk1 × Xk2 → Xk2 × Xk1 . In

§5.1, we define this map and state its two most important properties, namely that it is

positive (Theorem 5.3), and that it satisfies the identity g◦R = g (Theorem 5.4). We

show that these two results almost immediately imply that R is an isomorphism of

geometric crystals, an involution, and a solution to the Yang–Baxter equation. Using

the uniqueness of the combinatorial R-matrix R̃, we deduce that the geometric R-

matrix tropicalizes to a piecewise-linear formula for R̃. In §5.2, we define a rational

function E : Xk1×Xk2 → C which tropicalizes to the coenergy function on the tensor

product of two rectangular tableaux. In §5.3, we work out explicit formulas for R

(and thus for R̃) in the case where the first tableau has one row. We show that when

both tableaux have one row, we recover the map of Yamada and Lam–Pylyavskyy

from Proposition 1.2. Finally, we prove Theorems 5.3 and 5.4 in §5.4 and §5.5,

respectively.



CHAPTER 2

Preliminaries

2.1 Notation

Throughout this thesis, we fix an integer n ≥ 2. For two integers i and j, we write

[i, j] = {m ∈ Z | i ≤ m ≤ j}.

We often abbreviate [1, j] to [j]. We write
(

[n]
k

)
for the set of k-element subsets (or

k-subsets) of [n], and |J | for the cardinality of a set J .

Given a matrix X and two subsets I, J , we write XI,J to denote the submatrix

using the rows in I and the columns in J . If |I| = |J |, we write

∆I,J(X) = det(XI,J).

We use the term upper (resp., lower) uni-triangular to refer to matrices with zeroes

below (resp., above) the main diagonal, and 1’s on the main diagonal.

Given a subset J ⊂ [n], we write w0(J) for the set obtained by replacing each

j ∈ J with n− j + 1; J for the complement [n] \ J ; and J∗ for w0(J). For an integer

c, we write J − c for the subset of [n] obtained by subtracting c from each element

of J , and then taking the residues of the resulting integers mod n.

By affine type A, we mean the untwisted affine root system A
(1)
n−1, whose Dynkin

diagram is a cycle with n nodes. Type A refers to the root system An−1, whose

Dynkin diagram is a path with n − 1 nodes. The simple Lie algebra sln has root

system An−1, and the affine Lie algebra ŝln has root system A
(1)
n−1.

We write C× for the multiplicative group of nonzero complex numbers, and GLn

for GLn(C). Almost all the maps between algebraic varieties appearing in this thesis

are rational, so we write them with solid arrows (e.g., h : X → Y ), rather than

dotted arrows. We apologize to any algebraic geometers who are annoyed by this

choice.

13
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2.2 Crystals

In §2.2.1, we present Kashiwara’s axioms for (abstract) crystals. In §2.2.2, we

present the type A crystal structure on semistandard Young tableaux of shape λ.

We then introduce Schützenberger’s promotion map, which allows us to extend the

type A crystal structure to an affine type A crystal structure in the case where λ

is a rectangle. In §2.2.3, we review the definition of the tensor product of crys-

tals, and we describe Shimozono’s realizations of the combinatorial R-matrix and

coenergy function on tensor products of rectangular tableaux. In §2.2.4, we review

the notion of Gelfand–Tsetlin pattern, which identifies semistandard tableaux with

the integer points of a polyhedron, and we translate several maps on tableaux into

maps on Gelfand–Tsetlin patterns given by piecewise-linear formulas. We introduce

“k-rectangles” as the subset of Gelfand–Tsetlin patterns which correspond to rect-

angular tableaux with k rows.

2.2.1 Crystal axioms

Kashiwara introduced the crystal basis as the q → 0 limit of a special basis of a

module for the quantized universal enveloping algebra Uq(g), where g is a Kac–Moody

Lie algebra [Kas91]. The crystal basis can be viewed as a combinatorial skeleton of

the corresponding representation of g. Kashiwara’s theory gives rise to the following

paradigm for studying representations of g: find a model for the crystal bases in terms

of a combinatorial object (tableaux, Littelmann paths, Mirkovic–Vilonen polytopes,

rigged configurations, etc.), and then analyze the combinatorics of this model.

Kashiwara abstracted several properties of crystal bases into axioms for (abstract)

crystals, which we now state, following the presentation in [BS17]. To streamline the

presentation, we specialize the definition to types An−1 and A
(1)
n−1, which are the only

types considered in this thesis. In both cases, we use the weight lattice Λ = Zn.

Let {v1, . . . , vn} be the standard basis of Λ, and for i ∈ [n − 1], let α̃i = vi − vi+1

be the ith simple root in Λ. Let α̃∨i : Λ → Z be the ith simple coroot, the map

sending (a1, . . . , an) 7→ ai − ai+1. Let α̃0 = vn − v1 be the affine simple root, and let

α̃∨0 : (a1, . . . , an) 7→ an − a1 be the affine simple coroot. We identify the index set of

the affine simple roots and coroots with Z/nZ.

Definition 2.1. A (Kashiwara, or abstract) crystal of type An−1 (resp., type A
(1)
n−1)

consists of a set B, together with

• a weight map wt : B → Λ;

• for each i ∈ [n− 1] (resp., i ∈ Z/nZ), maps

ε̃i, ϕ̃i : B → Z≥0 and ẽi, f̃i : B → B t {0}.
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Here 0 6∈ B is an auxiliary element. The maps ẽi and f̃i are called crystal (or

Kashiwara) operators. We say that ẽi is defined on an element b ∈ B if ẽi(b) 6= 0,

and undefined if ẽi(b) = 0 (and similarly for f̃i(b)). The maps must satisfy the

following three axioms:1

1. If a, b ∈ B, then ẽi(b) = a if and only if f̃i(a) = b. In this case,

wt(a) = wt(b) + α̃i, ε̃i(a) = ε̃i(b)− 1, ϕ̃i(a) = ϕ̃i(b) + 1.

2. For b ∈ B,

ϕ̃i(b)− ε̃i(b) = α̃∨i (wt(b)).

3. For b ∈ B, ẽi(b) is defined if and only if ε̃i(b) > 0, and f̃i(b) is defined if and

only if ϕ̃i(b) > 0.

Given crystals A and B of the same type, a map ψ : A → B ∪ {0} is a strict2

morphism of crystals if

wt(ψ(a)) = wt(a) ε̃i(ψ(a)) = ε̃i(a) ϕ̃i(ψ(a)) = ϕ̃i(a)

whenever ψ(a) ∈ B, and ψ commutes with ẽi and f̃i (using the convention ψ(0) =

ẽi(0) = f̃i(0) = 0). The map ψ is an isomorphism if in addition, ψ is a bijection

A → B.

It is common to visually represent a crystal by its crystal graph; this is the graph

on the vertex set B, with a directed i-labeled edge from a to b whenever f̃i(a) = b.

Figure 1 shows an example of a crystal graph.

Remark 2.2. The crystal basis of any Uq(g)-module is a crystal in the sense of

Definition 2.1 (where the definition is adapted to the appropriate root system), but

the converse is false. Stembridge introduced additional axioms that characterize

the class of crystals which come from highest-weight Uq(g)-modules when the root

system of g is simply-laced [Ste03]. For non-simply-laced types, and for non-highest

weight modules (such as Kirillov–Reshetikhin modules), there is no known axiomatic

characterization of the class of crystals arising from modules.

2.2.2 Crystal structure on tableaux

Let λ be a partition with at most n parts. A semistandard Young tableau (SSYT)

of shape λ is a filling of the Young diagram of λ with entries in [n], such that the

rows are weakly increasing, and the columns are strictly increasing. We will often
1The definition in [BS17] allows ε̃i and ϕ̃i to take values in Z ∪ {−∞}, and slightly modifies the second axiom.

Furthermore, the third axiom is not assumed, and crystals with this property are called seminormal.
2There is a weaker notion of morphism that we will not need; see [BS17, p.19].
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Figure 1: The Kirillov–Reshetikhin crystal B2,2 of type A
(1)
2 .

refer to these objects simply as tableaux. We write B(λ) to denote the set of SSYTs

of shape λ.

For each partition λ, there is an irreducible sln-representation whose basis is

indexed by B(λ), and a corresponding type An−1 crystal on the vertex set B(λ).

The weight map wt is the content of a tableau, i.e., wt(T ) = (a1, . . . , an), where ai

is the number of i’s in T . We now describe the standard procedure for computing

the maps ε̃i, ϕ̃i, ẽi, and f̃i.

Definition 2.3. For i ∈ [n− 1], the maps ε̃i, ϕ̃i, ẽi, and f̃i are defined on T ∈ B(λ)

as follows. To begin, let w be the (row) reading word of T , i.e., the word formed by

concatenating the rows of T , starting with the bottom row.3 Now apply the following

algorithm to w:

1. Cross out all letters not equal to i or i+ 1.

2. For each consecutive pair of (non-crossed out) letters of the form i + 1, i, cross

out both letters.

3. Repeat the previous step until there are no remaining pairs to cross out.

4. Let w′ be the resulting subword, which is necessarily of the form

w′ = iα (i+ 1)β.

The functions ε̃i and ϕ̃i are defined by

ε̃i(T ) = β ϕ̃i(T ) = α.
3We follow the English convention, where the rows of a Young diagram decrease in length from top to bottom.
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If β = 0, then the crystal operator ẽi(T ) is undefined; if β > 0, then ẽi(T ) is the

tableau of shape λ whose reading word is obtained from w by changing the left-most

i+ 1 in w′ into an i (it is clear that there is such a tableau). Similarly, if α = 0, then

f̃i(T ) is undefined, and if α > 0, then f̃i(T ) is the tableau of shape λ whose reading

word is obtained from w by changing the right-most i in w′ into an i+ 1.

Example 2.4. Let T =
1 1 1 2 2 2 3 3 3

2 3 3 3
. The subword of 2’s and

3’s in w is

2 3 3 3 2 2 2 3 3 3

and after (recursively) crossing out consecutive pairs of the form 3 2, we are left

with

w′ = 2 �3 �3 �3 �2 �2 �2 3 3 3 = 2 3 3 3.

Thus, we have ε̃2(T ) = 3, ϕ̃2(T ) = 1, and

ẽ2(T ) =
1 1 1 2 2 2 2 3 3

2 3 3 3
f̃2(T ) =

1 1 1 2 2 2 3 3 3

3 3 3 3
.

The reader may easily verify that the maps defined above make B(λ) into a crystal

of type An−1. A much deeper result is that this crystal arises as the crystal basis of

a Uq(sln)-module; this was proved by Kashiwara and Nakashima [KN94].

Affine crystal structure on rectangular tableaux

For k ∈ [n− 1] and L ≥ 0, define Bk,L := B(Lk), the set of SSYTs (with entries

in [n]) whose shape is the k × L rectangle. (By convention, Bk,0 consists of a single

“empty tableau.”) The type An−1 crystal structure on Bk,L can be extended to a

type A
(1)
n−1 crystal structure. This affine crystal is the crystal basis of a Kirillov–

Reshetikhin module, a finite-dimensional representation of U ′q(ŝln). Furthermore, the

Kirillov–Reshetikhin crystals in type A
(1)
n−1 are precisely the Bk,L.

We now present Shimozono’s combinatorial description of the affine crystal op-

erators ẽ0, f̃0 on Bk,L in terms of promotion [Shi02]. Let σ̃i be the Bender–Knuth

involution which interchanges the numbers of i’s and i+1’s in a semistandard tableau.

Given T ∈ B(λ), σ̃i(T ) ∈ B(λ) is obtained by applying the following procedure to

each row of T :

In a given row, suppose there are α boxes containing i which are not directly

above a box containing i + 1, and β boxes containing i + 1 which are not directly

below a box containing i. Thus, this row contains a consecutive subword of the form

iα(i+ 1)β. Replace this subword with iβ(i+ 1)α.
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Promotion is the map p̃r : B(λ)→ B(λ) defined by

(2.1) p̃r = σ̃1σ̃2 · · · σ̃n−1.

Remark 2.5. It is well-known that promotion as defined here is equivalent to the fol-

lowing algorithm based on Schützenberger’s jeu-de-taquin: remove the n’s; slide the

remaining entries outward (start by sliding into the left-most hole); fill the vacated

boxes with 0; increase all entries by 1.

Example 2.6. If T is the tableau in Example 2.4, then

σ̃2(T ) =
1 1 1 2 2 2 2 3 3

2 2 3 3

and if n = 3, we have

p̃r(T ) = σ̃1(σ̃2(T )) =
1 1 1 1 1 1 2 3 3

2 2 3 3
.

Definition 2.7. On Bk,L, define

ε̃0 = ε̃1 ◦ p̃r ϕ̃0 = ϕ̃1 ◦ p̃r

ẽ0 = p̃r−1 ◦ ẽ1 ◦ p̃r f̃0 = p̃r−1 ◦ f̃1 ◦ p̃r

where we set ẽ0(T ) = 0 if ẽ1 ◦ p̃r(T ) = 0 (equivalently, if ε̃0(T ) = 0), and f̃0(T ) = 0

if f̃1 ◦ p̃r(T ) = 0 (equivalently, if ϕ̃0(T ) = 0).

The reader may verify that the crystal operators in Figure 1 are computed by

Definitions 2.3 and 2.7.

Proposition 2.8. We have the following identities of maps on Bk,L:

1. p̃rn = Id;

2. wt ◦ p̃r = s̃h ◦ wt, where s̃h(a1, . . . , an) = (an, a1, . . . , an−1);

3. ε̃i ◦ p̃r = ε̃i−1 and ϕ̃i ◦ p̃r = ϕ̃i−1 for i ∈ Z/nZ;

4. ẽi ◦ p̃r = ẽi−1 ◦ p̃r and f̃i ◦ p̃r = p̃r ◦ f̃i−1 for i ∈ Z/nZ.

Part (1) is well-known (see, e.g., [Shi02, Rho10]). Part (2) is immediate from the

definitions. Parts (3) and (4) are due to Shimozono [Shi02, §3.3].

Remark 2.9. The definitions of ε̃0, ϕ̃0, ẽ0, and f̃0 make sense for any partition λ, and

in fact they define an affine crystal structure on B(λ) (in the sense of Definition 2.1).

When λ is not a rectangle, however, this crystal does not arise from a U ′q(ŝln) module.

This is related to the fact that the identity p̃rn = Id holds only for rectangular

tableaux [Shi02, §3.3].
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2.2.3 Tensor product of crystals

One of the most important features of crystal theory is the tensor product, which

corresponds to the tensor product of modules.

Definition 2.10. Given two crystals A,B of the same type (e.g., type An−1 or type

A
(1)
n−1), their tensor product A ⊗ B is defined as follows. The underlying set is the

Cartesian product A×B, whose elements we denote by a⊗ b. The crystal structure

is defined by4

wt(a⊗ b) = wt(a) + wt(b)

ε̃i(a⊗ b) = ε̃i(b) + max(0, ε̃i(a)− ϕ̃i(b)) ϕ̃i(a⊗ b) = ϕ̃i(a) + max(0, ϕ̃i(b)− ε̃i(a))

ẽi(a⊗b) =

ẽi(a)⊗ b if ε̃i(a) > ϕ̃i(b)

a⊗ ẽi(b) if ε̃i(a) ≤ ϕ̃i(b)
f̃i(a⊗b) =

f̃i(a)⊗ b if ε̃i(a) ≥ ϕ̃i(b)

a⊗ f̃i(b) if ε̃i(a) < ϕ̃i(b).

In the definition of ẽi and f̃i, we use the convention 0⊗ b = a⊗ 0 = 0.

It is straightforward to verify that A ⊗ B satisfies the axioms of Definition 2.1,

and that the tensor product is associative. Kashiwara proved that if A and B are

crystal bases of modules V and W , then A ⊗ B is the crystal basis of the tensor

product V ⊗W [Kas91].

It turns out that the tensor product of the type An−1 crystals B(λ) corresponds

to an associative product of semistandard tableaux that was introduced by Lascoux

and Schützenberger [LS81]. Given two tableaux T and U , the tableau product T ∗U
may be defined as the rectification of the skew-tableau obtained by placing U to the

northeast of T , as shown here:

T

U

The rectification can be computed using Schützenberger’s jeu-de-taquin slides or

Schensted’s row insertion (we refer the reader to [Ful97] for details).

The following result states that the tableau product is compatible with the tensor

product of type An−1 crystals.

Proposition 2.11. If T ∈ B(λ) and U ∈ B(µ) and s is one of the maps wt, ε̃i, ϕ̃i,

then s(T ⊗ U) = s(T ∗ U). If s = ẽi, f̃i, and s(T ⊗ U) = (T ′ ⊗ U ′) in B(λ)⊗ B(µ),

then s(T ∗ U) = T ′ ∗ U ′ in B(ν), where ν is the shape of T ∗ U .

4We use the convention of [Shi02, BS17]; Kashiwara’s original convention interchanges the roles of a and b.
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Using Proposition 2.11 and the crystal structure on tableaux defined above, one

can derive the Littlewood–Richardson rule for the decomposition of a tensor prod-

uct of sln-modules. For the proof of Proposition 2.11 and the derivation of the

Littlewood–Richardson rule, see, e.g., [Shi05] or [BS17, Ch. 9].

The combinatorial R-matrix

The tensor product of crystals is not commutative. In the case of the Kirillov–

Reshetikhin crystals Bk,L, however, there is a unique affine crystal isomorphism R̃ :

Bk1,L1 ⊗Bk2,L2 → Bk2,L2 ⊗Bk1,L1 , called the combinatorial R-matrix. The existence

and uniqueness of this isomorphism is proved using quantum groups; see [Shi02, Th.

3.19]. We now describe how this map acts on tableaux, following Shimozono [Shi02].

Proposition 2.12. Suppose (T, U) ∈ Bk1,L1 ⊗Bk2,L2.

1. There is a unique pair (U ′, T ′) ∈ Bk2,L2 ×Bk1,L1 such that T ∗ U = U ′ ∗ T ′.

2. The combinatorial R-matrix is given by R̃(T, U) = (U ′, T ′).

Proof (sketch). The Littlewood–Richardson coefficient cνλµ is equal to the number of

pairs (T, U) ∈ B(λ) × B(µ) such that T ∗ U = V , where V is a fixed element of

B(ν) (see [Ful97, §5.1, Cor. 2]). If λ and µ are rectangles, then the product of

Schur functions sλsµ is multiplicity-free (see [Ste01]). Thus, there is exactly one pair

(U ′, T ′) ∈ Bk2,L2 ×Bk1,L1 such that U ′ ∗ T ′ = T ∗ U . This proves (1).

By [Shi02, Lem. 3.8], if λ and µ are arbitrary partitions and ψ : B(λ)× B(µ)→
B(µ) × B(λ) is a bijection which commutes with the classical crystal operators

ẽ1, . . . , ẽn−1, then ψ(T, U) = (U ′, T ′) implies that T ∗ U = U ′ ∗ T ′ (this is essen-

tially a converse to Proposition 2.11). Thus, (2) follows from (1) and the existence

of R̃.

Example 2.13. If

T = 1 1 3 3 3 3 4 ∈ B1,7 and U =
1 1 1 2 3

2 2 4 4 4
∈ B2,5,

then

T ∗ U =

1 1 1 1 1 2 3 4 4 4

2 2 3 3 4

3 3

.

The reader may verify that the tableaux

U ′ =
1 1 1 2 2

3 3 3 3 4
and T ′ = 1 1 2 3 4 4 4

satisfy U ′ ∗ T ′ = T ∗ U , so R̃(T ⊗ U) = U ′ ⊗ T ′.
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Proposition 2.14. Let A,B, C be Kirillov–Reshetikhin crystals of type A
(1)
n−1.

1. The map R̃2 : A⊗ B → A⊗ B is the identity.

2. The combinatorial R-matrix satisfies the Yang–Baxter relation. That is, if R̃1 :

A⊗B⊗C → B⊗A⊗C is the map which applies R̃ to the first two factors and

does nothing to the third factor, and R̃2 : A ⊗ B ⊗ C → A ⊗ C ⊗ B is the map

which applies R̃ to the last two factors and does nothing to the first factor, then

R̃1 ◦ R̃2 ◦ R̃1 = R̃2 ◦ R̃1 ◦ R̃2

as maps from A⊗ B ⊗ C → C ⊗ B ⊗A.

The first statement follows immediately from the description of R̃ in Proposition

2.12. There are several proofs of the Yang–Baxter relation. For instance, the Yang–

Baxter relation is a consequence of Akasaka–Kashiwara’s result that every tensor

product Bk1,L1 ⊗ · · · ⊗ Bkd,Ld is connected (as an affine crystal), which in turn is

proved using quantum groups [AK97]. Shimozono gave a purely combinatorial proof

of the Yang–Baxter relation using a generalization of Lascoux and Schützenberger’s

cyclage poset [Shi01, Th. 8(A3)]. In §5.1.3, we give a new proof using the geometric

R-matrix.

The coenergy function

Another important element of affine crystal theory is the coenergy function.

Definition 2.15. Let A and B be Kirillov–Reshetikhin crystals. A function H̃ :

A⊗B → Z is a coenergy function if H̃ ◦ ẽi = ẽi for i = 1, . . . , n− 1, and H̃ interacts

with ẽ0 as follows: if a⊗ b ∈ A⊗ B and R̃(a⊗ b) = b′ ⊗ a′, then

(2.2) H̃(ẽ0(a⊗ b)) = H̃(a⊗ b) +


1 if ε̃0(a) > ϕ̃0(b) and ε̃0(b′) > ϕ̃0(a′)

−1 if ε̃0(a) ≤ ϕ̃0(b) and ε̃0(b′) ≤ ϕ̃0(a′)

0 otherwise.

Remark 2.16. A function H̃ is a coenergy function if and only if −H̃ is an energy

function, in the sense of [KKM+92, Shi02]. We have chosen to work with coenergy

instead of energy because the coenergy function Ẽ defined below naturally arises as

the tropicalization of a certain rational function on our geometric crystals.

Given T ∈ Bk1,L1 and U ∈ Bk2,L2 , define Ẽ(T ⊗ U) to be the number of boxes

in the tableau T ∗ U which are not in the first max(k1, k2) rows. It’s clear from the

nature of Schensted insertion that if T0 is the classical highest weight element of

Bk1,L1 (that is, the tableau whose ith row is filled with the number i), then

(2.3) Ẽ(T0 ⊗ U) = 0 for all U ∈ Bk2,L2 .
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Example 2.17. Let T and U be the tableaux in Example 2.13. There are two boxes

outside the first max(1, 2) rows of T ∗ U , so Ẽ(T ⊗ U) = 2.

Proposition 2.18.

1. Up to a global additive constant, there is a unique (co)energy function on Bk1,L1⊗
Bk2,L2.

2. Ẽ is a coenergy function on Bk1,L1 ⊗Bk2,L2.

Proof (sketch). For part (1), see [KKM+92, §4] and [Shi02, §3.6]. For (2), define

F̃ (T ⊗ U) to be the number of boxes in T ∗ U that are not in the first max(L1, L2)

columns. By [Shi02, Prop. 4.5 and (2.4)], F̃ is an energy function. Using the

properties of jeu-de-taquin and Schensted insertion, it is straightforward to show

that

Ẽ(T ⊗ U) + F̃ (T ⊗ U) = min(k1, k2) min(L1, L2),

so Ẽ is a coenergy function.

2.2.4 Piecewise-linear translation

We now translate many of the combinatorial maps on tableaux from the previous

section into piecewise-linear maps on arrays of integers subject to certain inequalities,

or in other words, integer points of polyhedra.

Gelfand–Tsetlin patterns

A Gelfand–Tsetlin pattern (GT pattern) is a triangular array of nonnegative in-

tegers (Aij)1≤i≤j≤n satisfying the inequalities

(2.4) Ai,j+1 ≥ Aij ≥ Ai+1,j+1

for 1 ≤ i ≤ j ≤ n − 1. Gelfand–Tsetlin patterns can be represented pictorially as

triangular arrays, where the jth row in the triangle lists the numbers Aij for i ≤ j.

For example, if n = 3, then a Gelfand–Tsetlin pattern looks like:

A11

A12 A22

A13 A23 A33

There is a natural bijection between Gelfand–Tsetlin patterns and SSYTs with

entries in [n]. Given a Gelfand–Tsetlin pattern (Aij), the associated tableau T is

described as follows: the number of j’s in the ith row of T is Aij −Ai,j−1 (we use the

convention that Ai,i−1 = 0). Equivalently, the jth row of the pattern is the shape of
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T≤j, the part of T obtained by removing numbers larger than j. In particular, the

last row of the pattern is the shape of T . Here is an example of a Gelfand–Tsetlin

pattern and the corresponding SSYT:

(2.5)

2

4 2

6 3 1

6 6 1 0

6 6 6 0 0

←→
1 1 2 2 3 3

2 2 3 4 4 4

3 5 5 5 5 5

.

Many maps on tableaux can be described by piecewise-linear formulas in the

entries of the corresponding Gelfand–Tsetlin pattern. In general, we will use the

same notation for a combinatorial map and its piecewise-linear translation, and we’ll

rely on context to determine which is meant. Here is a simple example.

Example 2.19. We describe how the maps ε̃1, ϕ̃1, ẽ1, and f̃1 act on Gelfand–Tsetlin

patterns. Let (Aij) be a Gelfand–Tsetlin pattern with corresponding tableau T .

When we apply the algorithm of Definition 2.3, every 2 in the second row of T pairs

with a 1 in the first row, so the subword of unpaired 1’s and 2’s is

w′ = 1A11−A22 2A12−A11 .

Thus, ε̃1(Aij) = A12 − A11, and when ε̃1(Aij) > 0, ẽ1(Aij) is obtained by increasing

A11 by 1, and leaving the other entries unchanged. Similarly, ϕ̃1(Aij) = A11 − A22,

and f̃1(Aij) is obtained by decreasing A11 by 1 (if the result is still a GT pattern).

There is a simple piecewise-linear formula for the Bender–Knuth involutions.

Lemma 2.20 (Kirillov–Berenstein [KB96]). Let (Aij) be a Gelfand–Tsetlin pattern.

For r ∈ [n− 1], we have σ̃r(Aij) = (A′ij), where

(2.6) A′ij =

min(Ai−1,r−1, Ai,r+1) + max(Ai,r−1, Ai+1,r+1)− Air if j = r

Aij if j 6= r

and we use the convention that A0,j =∞ and Ai,i−1 = 0.

Note that σ̃r changes only the rth row of the Gelfand–Tsetlin pattern, and for

each i, σ̃r(Air) depends only on Air and the four entries diagonally adjacent to Air in

the Gelfand–Tsetlin pattern (some of which may be “missing” if Air is on the upper

boundary of the triangle):

Ai−1,r−1 Ai,r−1

Air

Ai,r+1 Ai+1,r+1

.

Since promotion is a composition of Bender–Knuth involutions ((2.1)), Lemma

2.20 gives a recursive piecewise-linear description of promotion.
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k-rectangles

Gelfand–Tsetlin patterns can be thought of as coordinates for SSYTs of arbi-

trary shape. Here we consider the restriction of these coordinates to the subset of

rectangular tableaux.

For k ∈ [n− 1], set

(2.7) Rk = {(i, j) | 1 ≤ i ≤ k, i ≤ j ≤ i+ n− k − 1},

and define T̃k = ZRk × Z ∼= Zk(n−k)+1. We will denote a point of T̃k by b = (Bij, L),

where (i, j) runs over Rk.

Given (Bij, L) ∈ T̃k, define a triangular array (Aij)1≤i≤j≤n by

Aij =


Bij if (i, j) ∈ Rk

L if j > i+ n− k − 1

0 if j < i.

Definition 2.21. Define Bk to be the set of (Bij, L) ∈ T̃k such that (Aij) is a

Gelfand–Tsetlin pattern. We call an element of Bk a k-rectangle, and we say that

(Aij) is the associated Gelfand–Tsetlin pattern.

For example, if n = 5 and k = 3, then we may pictorially represent a 3-rectangle

(Bij, L) and its associated GT pattern as follows:

(2.8)
B11

B12 B22

B23 B33

B34

, L

 ←→

B11

B12 B22

L B23 B33

L L B34 0

L L L 0 0

.

As (2.5) and (2.8) illustrate (and the reader may easily verify), the bijection be-

tween GT patterns and SSYTs restricts to a bijection between k-rectangles and rect-

angular tableaux with k rows, with the coordinate L giving the number of columns

in the tableau. Thus, we identify

Bk =
∞⊔
L=0

Bk,L.

Sometimes it will be more convenient to work with the following alternative set of

coordinates on Bk,L. For 1 ≤ i ≤ k and i ≤ j ≤ i+ n− k, define

(2.9) bij = Bij −Bi,j−1,
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where we use the convention that Bi,i−1 = 0 and Bi,i+n−k = L for all i. Thus, bij is

the number of j’s in the ith row of the k-row rectangular tableau corresponding to

b = (Bij, L).

Symmetries of k-rectangles

Throughout this section, fix k ∈ [n− 1] and L ≥ 0.

Definition 2.22. Define rotation r̃ot : Bk → Bk by r̃ot(Bij, L) = (B′ij, L), where

B′ij = L−Bk−i+1,n−j.

Define reflection r̃efl : Bk → Bn−k by r̃ot(Bij, L) = (B′′ij, L), where

B′′ij = L−Bj−i+1,j.

The first map rotates the rectangular Gelfand–Tsetlin pattern 180 degrees, and then

replaces each entry a with L − a; the second map reflects the rectangular Gelfand–

Tsetlin pattern over a vertical axis, and then replaces each entry a with L− a.

The operations r̃ot and r̃efl have simple effects on rectangular tableaux.

Lemma 2.23. Suppose b = (Bij, L) ∈ Bk and let T, U, V be the rectangular tableaux

corresponding to b, r̃ot(b), r̃efl(b), respectively. Then

1. U is obtained by rotating T 180 degrees and replacing each entry i with n− i+1.

2. V is obtained by replacing each column of T with the complement in [n] of the

entries in that column (arranged in increasing order), and then reversing the

order of the columns.

Proof. First we prove (1). Set (B′ij, L) = r̃ot(Bij, L), and let U ′ be the SSYT obtained

by rotating T 180 degrees and replacing each entry i with n− i+ 1. Let Wij be the

number of j’s in the ith row of the tableau W . Clearly U ′ij = Tk−i+1,n−j+1. For i ∈ [k]

and j ∈ [i, i+ n− k], we have (using the convention of (2.9))

Uij = B′ij −B′i,j−1 = Bk−i+1,n−j+1 −Bk−i+1,n−j = Tk−i+1,n−j+1 = U ′ij,

so U = U ′, as claimed.

To prove (2), first consider the case L = 1. In this case, the tableau corresponding

to b is a single column of length k, or in other words, a subset S = {s1 < · · · < sk} ⊂
[n]. We must show that if b corresponds to S, then r̃efl(b) corresponds to [n] \ S.

Identify the k-rectangle b = (Bij, 1) with a partition λ inside the k × (n − k)

rectangle by setting λi = |{j |Bij = 1}| for i = 1, . . . , k. The entries s1 < · · · < sk of

the corresponding tableau are related to λ by

λi = i+ n− k − si.
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b =

1

0

0

1

1 1

1 1

1

0

0

1

r̃efl(b) =

0

0

0

1

1 0

0 0

0

1

1

0

Figure 2: An example of r̃efl in the L = 1 case (with n = 7, k = 4). Here b corresponds to the

partition (3, 2, 2, 1) and the subset {1, 3, 4, 6}; r̃efl(b) corresponds to (3, 1, 0) and {2, 5, 7}.

Equivalently, si is the position of the ith vertical step in pλ, the lattice path from the

top-right corner of the k × (n− k) rectangle to the bottom-left corner which traces

out the lower boundary of the Young diagram of λ.

Now identify the (n− k)-rectangle r̃efl(b) with a partition λ̃ inside the (n− k)× k
rectangle in the same manner. From the definition of r̃efl, one sees that the positions

of the vertical steps in pλ are precisely the positions of the horizontal steps in pλ̃, so

λ̃ corresponds to the (n−k)-subset [n]\S, as claimed. (See Figure 2 for an example.)

Now suppose L > 1. The rectangle b is equal to the entry-wise sum of the

rectangles corresponding to the individual columns of T , and the same is true of

r̃efl(b) and its corresponding tableau V . Let V ′ be the array obtained by replacing

each column of T by its complement in [n], and reversing the order of the columns.

Using the L = 1 case, we see that r̃efl(b) is also equal to the entry-wise sum of the

rectangles corresponding to the individual columns of V ′. To conclude that V = V ′,

it remains to show that V ′ is semistandard, i.e., that its rows are weakly increasing.

Let S and S ′ be the subsets of entries in two consecutive columns of V ′. The

condition for V ′ to be semistandard is that si ≤ s′i for i = 1, . . . , n− k. If this condi-

tion holds, write S 4 S ′. Let λ, λ′ be the partitions associated to S, S ′, respectively.

From the proof of the L = 1 case, one sees that

S 4 S ′ ⇐⇒ λ ⊇ λ′ ⇐⇒ λ̃′ ⊇ λ̃ ⇐⇒ [n] \ S ′ 4 [n] \ S,

where ⊆ denotes inclusion of Young diagrams. Thus, V ′ is semistandard because T

is semistandard.

In §4.3, we will use geometric crystals to prove the following compatibility of r̃ot

and r̃efl with the affine crystal structure on rectangular tableaux (see Remark 4.27).

Proposition 2.24. For i ∈ Z/nZ, we have the identities

ẽi ◦ r̃ot = r̃ot ◦ f̃n−i and ẽi ◦ r̃efl = r̃efl ◦ f̃i.
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Remark 2.25. Let S̃ denote the Schützenberger involution (also known as evacua-

tion) on semistandard tableaux. It is well-known that the restriction of S̃ to rectan-

gular tableaux is equal to r̃ot (see, e.g, [Ful97]). In general, one has ẽi ◦ S̃ = S̃ ◦ f̃n−i
for i ∈ [n− 1] (see, e.g., [LLT95, §3]).

The “column complementation” map has been studied by Stembridge in his work

on rational tableaux [Ste87], but the compatibility of this map with the classical

crystal operators does not seem to have been investigated. We conjecture that this

compatibility holds for all shapes; it would be interesting to find a combinatorial

proof, even in the rectangular case.

2.3 Geometric crystals

A geometric crystal is an analogue of a Kashiwara crystal, where the underlying

set is replaced by an algebraic variety, and the maps associated to the crystal are

replaced by rational maps on the algebraic variety. We present the definition in type

A
(1)
n−1. For more general definitions, see [BK00, BK07a, Nak05].

Let T = (C×)n be an n-dimensional complex torus. For i ∈ Z/nZ, let αi : T → C×

be the character sending (z1, . . . , zn) to zi/zi+1 (indices interpreted mod n), and let

α∨i : C× → T be the cocharacter sending z to (1, . . . , z, z−1, . . . , 1), where z is in the

ith component and z−1 is in the (i+ 1)th component (mod n).

Definition 2.26. A geometric pre-crystal of type A
(1)
n−1 consists of an irreducible

complex algebraic (ind-)variety X, together with

• a rational map γ : X → T ;

• for each i ∈ Z/nZ, rational functions εi, ϕi : X → C× which are not identically

zero,5 and a rational unital6 action ei : C× ×X → X.

We call ei a geometric crystal operator, and we usually denote its action by eci(x) in-

stead of ei(c, x). These rational maps must satisfy the following identities (whenever

both sides are defined):

1. For x ∈ X and c ∈ C×,

(2.10) γ(eci(x)) = α∨i (c)γ(x), εi(e
c
i(x)) = cεi(x), ϕi(e

c
i(x)) = c−1ϕi(x).

2. For x ∈ X,

(2.11)
εi(x)

ϕi(x)
= αi(γ(x)).

5In [BK07a], some of the εi and ϕi are allowed to be zero, but we will not need this more general setting.
6This means that ei(1, x) is defined (and thus equal to x) for all x ∈ X.
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Remark 2.27. The identities (2.10) and (2.11) are analogous to the first and second

crystal axioms in Definition 2.1. There are, however, several important subtleties to

this analogy:

1. The true analogues of ε̃i and ϕ̃i are the maps 1/εi and 1/ϕi, and the analogue

of f̃i is the rational action ec
−1

i . This is made precise in Theorem 4.23.

2. The precise connection between the geometric crystal maps and the combina-

torial crystal maps comes from tropicalization, which treats rational maps as

formal algebraic expressions rather than actual functions. Thus, the partially-

defined nature of rational maps is not analogous to the partially-defined nature

of the crystal operators. The geometric analogue of the partially-defined na-

ture of the crystal operators (and thus of the third axiom in Definition 2.1) is

the notion of decoration introduced in Definition 2.30. This is made precise in

Proposition 4.21 and Theorem 4.23.

3. The role of αi and α∨i in the geometric crystal axioms is opposite that of α̃i and

α̃∨i in the crystal axioms. For this reason, geometric crystals corresponding to

a given root system are analogues of combinatorial crystals for the Langlands

dual root system, which is obtained by interchanging roots and coroots. For

example, simply-laced root systems are self-dual, while the root system of type

Bn is Langlands dual to that of type Cn. Since the root system A
(1)
n−1 is simply-

laced, we may ignore the Langlands duality in this thesis.

A geometric pre-crystal is the analogue of a Kashiwara crystal. To upgrade a

geometric pre-crystal to a geometric crystal, one requires an additional axiom, which

can be thought of as an analogue of Stembridge’s additional crystal axioms (see

Remark 2.2). We remark, however, that the geometric crystal axiom is weaker than

the Stembridge axioms, in the sense that a geometric crystal does not necessarily

tropicalize to a crystal satisfying the Stembridge axioms.

Definition 2.28. A geometric crystal of type A
(1)
n−1 is a geometric pre-crystal of type

A
(1)
n−1 which satisfies the following geometric Serre relations :

If n ≥ 3, then for each pair i, j of distinct elements of {0, . . . , n− 1}, and c1, c2 ∈
C×, the actions ei, ej satisfy

(2.12)
ec1i e

c2
j = ec2j e

c1
i if |i− j| > 1

ec1i e
c1c2
j ec2i = ec2j e

c1c2
i ec1j if |i− j| = 1.

If n = 2, there is no Serre relation for e0 and e1, so a geometric pre-crystal of type

A
(1)
1 is automatically a geometric crystal.
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Remark 2.29. One of Berenstein and Kazhdan’s motivations for introducing geo-

metric crystals was to obtain rational actions of Weyl groups [BK07b]. The geometric

Serre relations imply that the rational maps si : X → X defined by

si(x) = e
1

αi(γ(x))

i (x)

generate a rational action of the type A
(1)
n−1 Weyl group, which is the affine symmetric

group S̃n (see Prop. 2.3 and the subsequent remark in [BK00]).

Definition 2.30. A decorated geometric (pre-)crystal of type A
(1)
n−1 is a geometric

(pre-)crystal X equipped with a rational function f : X → C such that

(2.13) f(eci(x)) = f(x) +
c− 1

ϕi(x)
+
c−1 − 1

εi(x)

for all x ∈ X and i ∈ Z/nZ. The function f is called a decoration.

Definition 2.31. A morphism of geometric (pre-)crystals X and Y is a rational map

h : X → Y such that eih = hei, and ρh = ρ for ρ = γ, εi, ϕi.

Product of geometric crystals

Berenstein and Kazhdan defined a product of decorated geometric pre-crystals

[BK00, BK07a].

Definition/Proposition 2.32. Suppose X and Y are decorated geometric pre-

crystals (of type A
(1)
n−1). Define the following rational maps on (x, y) ∈ X × Y :

γ(x, y) = γ(x)γ(y)

εi(x, y) =
εi(y)(εi(x) + ϕi(y))

ϕi(y)
ϕi(x, y) =

ϕi(x)(εi(x) + ϕi(y))

εi(x)

eci(x, y) = (ec1i (x), ec2i (y)) where c1 =
cεi(x) + ϕi(y)

εi(x) + ϕi(y)
, c2 =

εi(x) + ϕi(y)

εi(x) + c−1ϕi(y)

f(x, y) = f(x) + f(y).

These maps make X × Y into a decorated geometric pre-crystal, which we call the

product of X and Y . This product is associative.

Proof. The proof of [BK07a, Lemma 2.34] shows that the decoration on X × Y

satisfies (2.13). The remainder of this Proposition is stated as [BK07a, Claim 2.16],

and the proof is left to the reader. The various assertions are indeed straightforward

(if tedious) to verify from the definitions. Here we show that (2.10) and (2.11) hold

for X × Y .
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First, using (2.11) for the geometric pre-crystals X and Y and the fact that αi is

multiplicative, we have

εi(x, y)

ϕi(x, y)
=
εi(y)

ϕi(y)

εi(x)

ϕi(x)
= αi(γ(x)γ(y)) = αi(γ(x, y)),

so (2.11) holds for X × Y . Now let (x′, y′) = eci(x, y) = (ec1i (x), ec2i (y)). Using (2.10)

for X and Y and the identity c1c2 = c, we have

γ(x′, y′) = γ(x′)γ(y′) = α∨i (c1)γ(x)α∨i (c2)γ(y) = α∨i (c)γ(x, y),

so γ(eci(x, y)) = α∨i (c)γ(x, y). Likewise, we compute

εi(x
′, y′) =

εi(y
′)(εi(x

′) + ϕi(y
′))

ϕi(y′)
=
c2εi(y)(c1εi(x) + c−1

2 ϕi(y))

c−1
2 ϕi(y)

= c2
εi(y)(cεi(x) + ϕi(y))

ϕi(y)
= c

εi(y)(εi(x) + ϕi(y))

ϕi(y)
,

so εi(e
c
i(x, y)) = cεi(x, y). Finally, using the preceding identities and the fact that

αi(α
∨
i (c)) = c2, we have

ϕi(x
′, y′) =

εi(x
′, y′)

αi(γ(x′, y′))
=

cεi(x, y)

c2αi(γ(x, y))
= c−1ϕi(x, y).

Similar computations show that eci(x, y) is an action of C× (clearly it is unital),

and that the product is associative.

If X and Y are geometric crystals, their product is not necessarily a geometric

crystal ([BK07a, Remark 2.21]). To get around this problem, Berenstein and Kazh-

dan introduced unipotent crystals, and showed that if X and Y are induced from

unipotent crystals, then their product is a geometric crystal.

2.4 Unipotent crystals

The definition of geometric pre-crystal given in the previous section makes sense

for any reductive group G; one simply replaces the torus T = (C×)n by a maximal

torus in G, and αi, α
∨
i with the corresponding simple characters and cocharacters.

Given a geometric pre-crystal, it is in general quite difficult to verify the geometric

Serre relations, and, as mentioned above, the fact that the Serre relations hold for

X and Y does not guarantee that they hold for X × Y . Berenstein and Kazhdan

invented unipotent crystals to get around these difficulties [BK00]. The intuitive

idea behind a unipotent crystal is that a geometric pre-crystal which “comes from”

G itself will automatically satisfy the Serre relations, and will automatically behave

nicely under products.
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Nakashima extended the notions of geometric and unipotent crystals to affine (and

even Kac–Moody) groups [Nak05]. The (minimal) Kac–Moody group which corre-

sponds to the affine Lie algebra ŝln is closely related to SLn(C[λ, λ−1]), the group of

n×n matrices of determinant 1 with entries in the Laurent polynomial ring C[λ, λ−1].

For our purposes, however, we have found it necessary to allow determinants other

than 1, so we work with the bigger group GLn(C(λ)), which consists of n×n matrices

with entries in the field of rational functions in the indeterminate λ, and nonzero

determinant. We call GLn(C(λ)) the loop group,7 and λ the loop parameter.

Before giving the definition of unipotent crystals, we pause to discuss a correspon-

dence between n×n matrices with entries in C((λ)) and “infinite periodic” matrices

with entries in C. This construction generalizes the correspondence between for-

mal Laurent series and Toeplitz matrices (which is the n = 1 case), and plays an

important role in [LP12].

Unfolding

Let C((λ)) be the field of formal Laurent series in the indeterminate λ, that is,

expressions of the form
∞∑

m=m0

amλ
m

where m0 is an integer, and each am is in C. Let Mn[C((λ))] denote the ring of n×n
matrices with entries in this field.

An n-periodic matrix (over C) is a Z × Z array of complex numbers (Xij)(i,j)∈Z

such that Xij = 0 if j − i is sufficiently large, and Xij = Xi+n,j+n for all i, j. Say

that the entries Xij with i − j = k lie on the kth diagonal of X, or that k indexes

this diagonal. Thus, the main diagonal of X is indexed by 0, and higher numbers

index lower diagonals. We add these matrices entry-wise, and multiply them using

the usual matrix product: if X = (Xij) and Y = (Yij), then

(XY )ij =
∑
k∈Z

XikYkj.

The hypothesis that Xij = 0 for j − i sufficiently large ensures that each of these

sums is finite, and it is clear that the product of two n-periodic matrices is n-periodic.

Denote the ring of n-periodic matrices by M∞
n (C).

Given a matrix A = (Aij) ∈ Mn[C((λ))], where Aij =
∑
ai,jm λ

m, define an n-

periodic matrix X = (Xij) by8

Xrn+i,sn+j = ai,jr−s
7The term “loop group” does not have a fixed meaning in the literature.
8The definition in [LP12] uses s− r instead of r − s. This is equivalent to interchanging λ and λ−1.
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for r, s ∈ Z and i, j ∈ [n]. For example, if n = 2 and

A =

(
2λ−1 + 3 + 4λ+ 5λ2 λ−1 + 7 + 8λ

−3λ−1 + 1 + λ2 −2λ−1 + 5 + 6λ

)

then

X =



. . . . .
.

3 7 2 1 0 0

1 5 −3 −2 0 0

4 8 3 7 2 1

0 6 1 5 −3 −2

5 0 4 8 3 7

1 0 0 6 1 5

. .
. . . .


where the row (resp., column) indexed by 1 is the upper-most row (resp., left-most

column) whose entries are shown. The vertical and horizontal lines partition the

matrix into 2× 2 blocks whose entries are the mth coefficients of the entries of A, for

some m.

It is straightforward to check that the map A 7→ X is an isomorphism of rings.

We will refer to the n× n matrix A as a folded matrix, and the n-periodic matrix X

as an unfolded matrix. We call X the unfolding of A, and A the folding of X. When

it is important to distinguish between folded and unfolded matrices, we will try to

use letters near the beginning of the alphabet for folded matrices, and letters near

the end of the alphabet for unfolded matrices.

Definition of unipotent crystals

Every rational function in λ has a Laurent series expansion, so GLn(C(λ)) is a

subset of Mn[C((λ))], and we may talk about the unfoldings of its elements.

In what follows, we will work with the submonoid G ⊂ GLn(C(λ)) consisting

of matrices whose entries are Laurent polynomials in λ, and whose determinant is a

nonzero Laurent polynomial in λ. The purpose of restricting to this monoid is that it

is an ind-variety, so we may talk about rational maps to and from this space. (For our

purposes, an ind-variety is simply an infinite-dimensional object that admits rational

maps. We refer the reader to [Kum02] for more information about ind-varieties.)

Let B− ⊂ G be the submonoid of matrices whose unfolding is lower triangular

with nonzero entries on the main diagonal. In terms of folded matrices, this means

that all entries are (ordinary) polynomials, with the entries on the diagonal having

nonzero constant term, and the entries above the diagonal having no constant term.
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B− is naturally an ind-variety, where the mth piece consists of unfolded matrices

which are supported on diagonals 0, . . . ,m.

For a ∈ C, define the folded matrices

x̂i(a) = Id+ aEi,i+1 for i ∈ [n− 1], and x̂0(a) = Id+ aλ−1En1,

where Id is the n × n identity matrix, and Eij is an n × n matrix unit. For i ∈ Z,

set x̂i(a) = x̂i(a), where i is the residue of i mod n (in {0, . . . , n − 1}). Let U ⊂ G

be the subgroup generated by the elements x̂i(a). Note that the unfolding of each

element of U is upper uni-triangular.

The usual definition of unipotent crystals ([BK00, Nak05]) is based on rational

actions of U . We work here with a slightly weaker notion.

Definition 2.33. Let V be an irreducible complex algebraic (ind-)variety, and let

α : U × V → V be a partially-defined map. Let u.v := α(u, v). We will say that α

is a pseudo-rational U-action if it satisfies the following properties:

1. 1.v = v for all v ∈ V ;

2. If u.v and u′.(u.v) are defined, then (u′u).v = u′.(u.v);

3. For each i ∈ Z/nZ, the partially defined map from C × V → V given by

(a, v) 7→ x̂i(a).v is rational.

Remark 2.34. We suspect that it is possible to give U an ind-variety structure

so that a pseudo-rational U -action is actually a rational U -action. The difficulty is

that U is not the full set of matrices whose unfolding is upper uni-triangular, and

whose folding has determinant 1 (it is not possible to generate all the one-parameter

subgroups corresponding to positive real roots using only the x̂i(a)). Fortunately,

pseudo-rational U -actions suffice for our purposes.

Definition 2.35. Define αB− : U × B− → B− by u.b = b′ if ub = b′u′, with

b′ ∈ B−, u′ ∈ U . If ub does not have such a factorization, then u.b is undefined.

Note that if b1u1 = b2u2, then b−1
2 b1 = u2u

−1
1 is both lower triangular and upper

uni-triangular (as an unfolded matrix), so it must be the identity matrix, and thus

b1 = b2 and u1 = u2. This shows that αB− is well-defined (as a partial map). Observe

that if X ∈ B− is an unfolded matrix and i ∈ Z, then

x̂i(a) ·X · x̂i
(
−aXi+1,i+1

Xii + aXi+1,i

)
∈ B−,

so we have

(2.14) x̂i(a).X = x̂i(a) ·X · x̂i(τi(a,X)) where τi(a,X) =
−aXi+1,i+1

Xii + aXi+1,i

.
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This shows that αB− satisfies property (3) of Definition 2.33. It’s clear that the first

two properties are satisfied as well, so αB− is a pseudo-rational U -action.

Definition 2.36. A U-variety is an irreducible complex algebraic (ind-)variety X

together with a pseudo-rational U -action α : U×X → X. A morphism of U-varieties

is a rational map which commutes with the U -actions (when they are defined).

For example, the ind-variety B− with the pseudo-rational U -action αB− is a U -

variety.

Definition 2.37. A unipotent crystal (of type A
(1)
n−1) is a pair (V, g), where V is a

U -variety, and g : V → B− is a morphism of U -varieties, such that for each i ∈ [n]

(equivalently, each i ∈ Z), the rational function v 7→ g(v)i+1,i is not identically zero

(here g(v) is viewed as an unfolded matrix).

Note that the pair (B−, Id) is a unipotent crystal.

The following result, which is essentially due to Berenstein and Kazhdan ([BK00,

Theorem 3.8]) shows how to obtain a geometric crystal from a unipotent crystal.

Theorem 2.38. Let (V, g) be a unipotent crystal. Suppose v ∈ V , and let X = g(v)

be an unfolded matrix. Define

γ(v) = (X11, . . . , Xnn) εi(x) =
Xi+1,i

Xi+1,i+1

ϕi(v) =
Xi+1,i

Xii

eci(v) = x̂i

(
c− 1

ϕi(v)

)
.v

where . is the pseudo-rational action of U on V . These maps define a type A
(1)
n−1

geometric crystal on V .

We say that the geometric crystal on V is induced from the unipotent crystal

(V, g).

Proof. We first show that these maps define a geometric pre-crystal on V . The

rational functions εi and ϕi are not identically zero due to the assumption about

g(v)i+1,i in Definition 2.37. The identity (2.11) is immediate. Given v ∈ V , set

X = g(v), v′ = x̂i

(
c−1
ϕi(v)

)
.v, and X ′ = g(v′). View X and X ′ as unfolded matrices.

By (2.14) and the assumption that g is a morphism of U -varieties, we have

X ′ = x̂i(a).X = x̂i(a) ·X · x̂i(τi(a,X)),

where a = c−1
ϕi(v)

. A short computation shows that the principal two-by-two submatrix

of X ′ using rows and columns i and i+ 1 is(
cXii 0

Xi+1,i c−1Xi+1,i+1

)
,
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and the other entries on the main diagonal of X ′ are equal to those of X. This proves

the identities (2.10).

To see that ei is an action, compute

ec1i (ec2i (v)) = x̂i

(
c1 − 1

ϕi(e
c2
i (v))

)
.x̂i

(
c2 − 1

ϕi(v)

)
.v

= x̂i

(
c1 − 1

c−1
2 ϕi(v)

+
c2 − 1

ϕi(v)

)
.v = x̂i

(
c1c2 − 1

ϕi(v)

)
.v = ec1c2i (v)

where the second equality uses (2.10).

It remains to prove the geometric Serre relations (2.12). Suppose i, j ∈ {0, . . . , n−
1}. If |i− j| > 1, then x̂i(a) and x̂j(b) commute, and it is not hard to check that the

values of εi, ϕi (resp., εj, ϕj) are unchanged by applying ecj (respectively, eci), so the

Serre relation for i and j holds. The case |i−j| = 1 is a somewhat lengthy calculation

inside GL3, which is worked out in [BK00, §5.2, Proof of Theorem 3.8].

The unipotent crystal (B−, Id) induces a geometric crystal on B−. A short com-

putation using (2.14) shows that for X ∈ B−,

(2.15) eci(X) = x̂i

(
c− 1

ϕi(X)

)
·X · x̂i

(
c−1 − 1

εi(X)

)
,

where ei, εi, and ϕi are the induced geometric crystal maps on B−. Note that for

any unipotent crystal (V, g), we have by definition the formal identities

(2.16) γ = γg, εi = εig, ϕi = ϕig, gei = eig,

where the geometric crystal maps on the left-hand side come from the induced ge-

ometric crystal on B−, and those on the right-hand side come from the induced

geometric crystal on V .

Product of unipotent crystals

We now define the product of unipotent crystals, following [BK00]. Given u ∈ U
and b ∈ B−, define β(u, b) = u′ if ub = b′u′, with b′ ∈ B− and u′ ∈ U . If ub does not

have such a factorization, then β(u, b) is undefined (cf. Definition 2.35).

The following result is essentially the combination of Theorem 3.3 and Lemma

3.9 in [BK00]. Although Berenstein and Kazhdan work with rational actions of the

unipotent subgroup of a reductive group and we work with pseudo-rational actions

of an infinite-dimensional group, the proof is identical.

Theorem 2.39. Suppose (V, g) and (W, g) are unipotent crystals. Define g : V ×
W → B− by g(v, w) = g(v)g(w), and equip V ×W with the pseudo-rational U-action

u.(v, w) = (u.v, β(u, g(v)).w).
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Then (V ×W, g) is a unipotent crystal. Furthermore, the geometric crystal induced

from (V × W, g) is the product of the geometric crystals induced from (V, g) and

(W, g).

2.5 The Grassmannian

Here we recall some basic facts and notation concerning Grassmannians. For more

details we refer the reader to [Ful97]. As a set, the Grassmannian Gr(k, n) consists

of the k-dimensional subspaces in Cn. We view the Grassmannian as a projective

algebraic variety in its Plücker embedding, and for J ∈
(

[n]
k

)
, we write PJ(N) for the

J th Plücker coordinate of the subspace N . Plücker coordinates are projective—that

is, they are only defined up to a common nonzero scalar multiple. We represent a

point N ∈ Gr(k, n) as the column span of a (full-rank) n × k matrix N ′, so that

PJ(N) is the maximal minor of N ′ using the rows in J . When there is no danger of

confusion, we treat a subspace and its matrix representatives interchangeably. For

example, we may speak of the Plücker coordinates of a full-rank n× k matrix.

There is a natural (left) action of GLn = GLn(C) on Gr(k, n) given by matrix

multiplication. We denote the action of A ∈ GLn on N ∈ Gr(k, n) by (A,N) 7→ A·N ;

this is the subspace spanned by the columns of A ·N ′, where N ′ is an n× k matrix

representative of N .

To reduce the number of special cases needed in various arguments, we make the

following convention.

Convention 2.40. Let N ′ be a full-rank n× k matrix representing a point in N ∈
Gr(k, n).

• Unless otherwise indicated (see the last bullet point), we label Plücker co-

ordinates of M by sets, not by ordered lists. That is, if I ∈
(

[n]
k

)
, then

PI(N) means the determinant of the k × k submatrix of N ′ using the rows

indexed by the elements of I, taken in the order in which they appear in N ′.

Thus, P{1,2}(N) = P{2,1}(N). We will often write P12(N) or P1,2(N) instead of

P{1,2}(N).

• If I ⊂ [n] does not contain exactly k elements, then we set PI(N) = 0.

• If I is any set of integers, we set PI(N) = PI′(N), where I ′ is the set consisting

of the residues of the elements of I modulo n, where we take the residues to lie

in [n].

• We use the notation P<i1,...,ik>(N) for the determinant of the k×k matrix whose

jth row is row ij of N ′. We will only use this notation when i1, . . . , ik are (not
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necessarily distinct) elements of [n]. Note that P<1,2>(N) = −P<2,1>(N) =

P12(N).

A proof of the following classical result can be found in, e.g., [Ful97].

Proposition 2.41 (Grassmann–Plücker relations). Let i1, . . . , ik+1 and j1, . . . , jk−1

be elements of [n]. For N ∈ Gr(k, n), we have

(2.17)
k+1∑
r=1

(−1)rP<i1,...,ir−1,ir+1,...,ik+1>(N)P<ir,j1,...,jk−1>(N) = 0.

Corollary 2.42 (Three-term Plücker relation). Fix k ≥ 2. If I ∈
(

[n]
k−2

)
and a, b, c, d

are elements of [n] satisfying a ≤ b ≤ c ≤ d, then for N ∈ Gr(k, n), we have

(2.18) PI∪{a,b}(N)PI∪{c,d}(N) + PI∪{a,d}(N)PI∪{b,c}(N) = PI∪{a,c}(N)PI∪{b,d}(N).

Note that the subscripts in (2.17) are ordered lists, whereas the subscripts in

(2.18) are sets.

Basic Plücker coordinates

Here we introduce a distinguished class of Plücker coordinates that plays an im-

portant role throughout this thesis.

Say that a Plücker coordinate PJ is cyclic if the elements of J are consecutive mod

n, and let Gr◦(k, n) denote the open positroid cell, the open subset of Gr(k, n) where

the cyclic Plücker coordinates do not vanish. We start by introducing a canonical

matrix representative for subspaces in Gr◦(k, n).

Say that an n × k matrix N has diagonal form if its first k rows are lower tri-

angular with nonzero entries on the main diagonal, and its last k rows are upper

uni-triangular. For example, if n = 7 and k = 3, then a matrix of diagonal form

looks like 

a1 0 0

∗ a2 0

∗ ∗ a3

∗ ∗ ∗
1 ∗ ∗
0 1 ∗
0 0 1


where a1, a2, a3 are nonzero, and the ∗’s are arbitrary.

Lemma 2.43. Every subspace in Gr◦(k, n) is the column span of a unique n × k

matrix of diagonal form.
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Proof. Suppose N ∈ Gr◦(k, n). Since P[n−k+1,n](N) 6= 0, N can be represented by an

n×k matrix N ′ whose bottom k rows are the identity matrix. Clearly ∆[1,i],[1,i](N
′) =

P[1,i]∪[n−k+i+1,n](N)

P[n−k+1,n](N)
for i ≤ k, so the principal minors ∆[1,i],[1,i](N

′) are nonzero for

i ≤ k. We may therefore use Gaussian elimination on the columns of N ′ to make the

first k rows lower triangular with nonzero entries on the main diagonal. The last k

rows will still be upper uni-triangular, so we obtain a diagonal form representative

of the subspace N .

If N ′ and N ′′ are diagonal form representatives of N , and A ∈ GLk is the change

of basis matrix, then A must be lower triangular to preserve the form of the first k

rows, and upper uni-triangular to preserve the form of the last k rows. This proves

uniqueness.

Definition 2.44. A subset J ⊂ [n] is a basic subset if it consists of a single interval

of [n], or it consists of two disjoint intervals, one of which contains n. A subset

J ⊂ [n] is a reflected basic subset if it is of the form w0(J), where J is basic (and w0

replaces each i ∈ J with n− i+ 1). Every basic k-subset is of the form

Ji,j = [i, j] ∪ [n− k + j − i+ 2, n]

for some i ∈ [n−k+ 1] and j ∈ [i−1, i+k−1].9 We refer to PJi,j (resp., Pw0(Ji,j)) as

a basic (resp., reflected basic) Plücker coordinate. Define Uk to be the open subset

of Gr(k, n) consisting of subspaces whose basic Plücker coordinates are all nonzero.

Cyclic Plücker coordinates are basic, so every element of Uk has a diagonal form

representative by Lemma 2.43. If N ′ is the diagonal form representative of N , then

(2.19) ∆[i,j],[1,j−i+1](N
′) =

∆Ji,j ,[k](N
′)

∆[n−k+1,n],[k](N ′)
=

PJi,j(N)

P[n−k+1,n](N)
.

This observation leads to the following result.

Lemma 2.45. Every element of Uk is uniquely determined by its basic Plücker co-

ordinates.

Proof. Suppose N ∈ Uk, and let N ′ be its diagonal form representative. We induc-

tively show that all the entries of N ′ are determined by the basic Plücker coordinates

of N . Consider an entry N ′ab which is not automatically 0 or 1, and assume that N ′a′b′

is known for a′ < a, and for a′ = a, b′ < b. Expand the determinant ∆[a−b+1,a],[1,b](N
′)

along its last column. This gives an equation

N ′ab·∆[a−b+1,a−1],[1,b−1](N
′) = ∆[a−b+1,a],[1,b](N

′) + a polynomial in known entries of N ′.

9There is intentionally some redundancy in this notation: if i = n− k + 1 or j = i− 1, then Ji,j = [n− k+ 1, n].
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By (2.19), the determinant on the left-hand side of this equation is a ratio of basic

Plücker coordinates of N , and since these are nonzero, the entry N ′ab is determined.

The following result significantly strengthens Lemma 2.45, and plays a crucial role

in the arguments about positivity in later sections.

Proposition 2.46. Every Plücker coordinate can be expressed as a Laurent poly-

nomial in the basic (resp., reflected basic) Plücker coordinates, with non-negative

integer coefficients.

This result is proved at the end of §4.1.2.

Remark 2.47. Proposition 2.46 is a special case of the (positive) Laurent phe-

nomenon in the theory of cluster algebras. Indeed, the k(n − k) + 1 basic (resp.,

reflected basic) Plücker coordinates are a cluster in the homogeneous coordinate ring

of Gr(k, n) (see [MS16, Figure 18]).

The dual Grassmannian

Given a subspace N ⊂ Cn, let N⊥ be the orthogonal complement of N with

respect to the non-degenerate bilinear form given by 〈vi, vj〉 = (−1)i+1δi,j, where

v1, . . . , vn is the standard basis. Note that if N ∈ Gr(k, n), then N⊥ is in the “dual

Grassmannian” Gr(n − k, n). The Plücker coordinates of N⊥ are closely related to

those of N .

Lemma 2.48. If N ∈ Gr(k, n), then for J ∈
(

[n]
k

)
, we have

PJ(N) = PJ(N⊥)

(as projective coordinates), where J denotes the complement [n] \ J .

The proof relies on Jacobi’s identity for complementary minors of inverse matrices,

which states that

(2.20) ∆I,J(X−1) = (−1)
∑
I+

∑
J 1

det(X)
∆J,I(X),

where
∑
S is the sum of the elements of S (see [GJPS12] for several proofs of this

classical identity). Let Xc be the matrix obtained from X by scaling the ith row and

column by (−1)i (so (Xc)ij = (−1)i+jXij). If X is invertible, define X−c = (X−1)c =

(Xc)−1. It follows immediately from (2.20) that

(2.21) ∆I,J(X−c) =
1

det(X)
∆J,I(X).
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Proof of Lemma 2.48. Let N ′ be an n× k matrix whose column span is N . Choose

a k-subset I so that PI(N) 6= 0, and suppose I = {i1 < . . . < in−k}. Let X be the

n× n matrix whose jth column is the standard basis vector eij for j = 1, . . . , n− k,

and whose last k columns are the matrix N ′. Clearly X is invertible. Let N ′′ be the

(n− k)× n matrix consisting of the first n− k rows of X−c. Since X−1X = Id, we

have

0 =
n∑
r=1

(−1)i+rN ′′irN
′
rj = (−1)i−1

n∑
r=1

(−1)r+1N ′′irN
′
rj

for i = 1, . . . , n−k and j = 1, . . . , k. Thus, every row of the matrix N ′′ is orthogonal

to every column of the matrix N ′ with respect to the bilinear form defined above,

and since these rows are linearly independent, they span the (n − k)-dimensional

subspace N⊥.

By (2.21), we have PI(N
⊥) = ∆[n−k],I(X

−c) =
1

det(X)
∆I,[n−k+1,n](X) 6= 0. Com-

bining this with another application of (2.21), we obtain

PJ(N)

PI(N)
=

∆J,[n−k+1,n](X)

∆I,[n−k+1,n](X)
=

∆[n−k],J(X−c)

∆[n−k],I(X
−c)

=
PJ(N⊥)

PI(N
⊥)

for all J ∈
(

[n]
k

)
. Thus, PJ(N) = PJ(N⊥) as projective coordinates, as claimed.

2.6 Planar networks and the Lindström Lemma

By planar network, we mean a finite, directed, edge-weighted graph embedded

in a disc, with no oriented cycles. The edge weights are nonzero complex numbers

(or indeterminates which take values in C×). We assume there are r distinguished

source vertices, labeled 1, . . . , r, and s distinguished sink vertices, labeled 1′, . . . , s′.

To each such network Γ, we associate an r × s matrix M(Γ), as follows. Define the

weight of a path to be the product of the weights of the edges in the path. The

(i, j)-entry of M(Γ) is the sum of the weights of all paths from source i to sink j′,

that is,

M(Γ)ij =
∑
p : i→j′

wt(p).

We say that M(Γ) is the matrix associated to Γ, and that Γ is a network repre-

sentation of M . For an example of a network and its associated matrix, see Figure

3.

The gluing of networks is compatible with matrix multiplication, in the sense that

if a planar network Γ is obtained by identifying the sinks of a planar network Γ1 with

the sources of a planar network Γ2, then

(2.22) M(Γ) = M(Γ1) ·M(Γ2).
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1

1′

x22

x11

2

2′

x23

x12

3

3′

x24

x13

4

4′

x25

x14

5

5′

←→


x11 0 0 0 0
x22 x12x22 0 0 0
1 x12 + x23 x13x23 0 0
0 1 x13 + x24 x14x24 0
0 0 1 x14 x25



Figure 3: A planar network and its associated matrix. Unlabeled edges have weight 1.

Let I = {i1 < . . . < im} ⊂ [r] and J = {j1 < . . . < jm} ⊂ [s] be two subsets of

cardinality m. A family of paths from I to J is a collection of m paths p1, . . . , pm,

such that pa starts at source ia and ends at sink j′σ(a), for some permutation σ ∈ Sm.

We denote such a family by F = (pa;σ), and we define the weight of the family by

wt(F) =
∏m

a=1 wt(pa). If no two of the paths share a vertex, we say that the family

is vertex-disjoint.

We refer to the following result as the Lindström Lemma.

Proposition 2.49 (Lindström [Lin73]). Let Γ be a planar network with r sources

and s sinks, and let I ⊂ [r], J ⊂ [s] be two subsets of the same cardinality. Then the

minor of M(Γ) using rows I and columns J is given by

∆I,J(M(Γ)) =
∑

F=(pa;σ) : I→J

sgn(σ) wt(F),

where the sum is over vertex-disjoint families of paths from I to J .

For example, let Γ be the network in Figure 3. There are three vertex-disjoint fam-

ilies of paths from {3, 4} to {2′, 3′}. The weights of these families are x12x13, x12x24,

and x23x24, and in all three cases σ is the identity permutation. From the matrix,

one computes

∆34,23(M(Γ)) = x12x13 + x12x24 + x23x24,

in agreement with the Lindström Lemma.

With a single exception (in §5.3), our networks will have the property that ev-

ery vertex-disjoint family of paths is of the form (pa; Id), so the Lindström Lemma

expresses every minor of the associated matrix as a polynomial in the edge weights

with non-negative integer coefficients.



CHAPTER 3

Geometric and unipotent crystals on the Grassmannian

3.1 Main definitions

For k ∈ [n − 1], let Xk denote the variety Gr(k, n) × C×.1 We denote a point of

Xk by N |t, where N ∈ Gr(k, n) and t ∈ C×. We begin by introducing an order n

cyclic symmetry of Xk that plays a central role in everything that follows.

Definition 3.1. Define the cyclic shift map PR : Xk → Xk by PR(N |t) = N ′|t, where

N ′ is obtained from N by shifting the rows down by 1 (mod n), and multiplying the

new first row by (−1)k−1t. We write PRt to denote the map N 7→ N ′.

For example, when n = 4 and k = 2, we have
z11 z12

z21 z22

z31 z32

z41 z42

 PRt
7→


−t · z41 −t · z42

z11 z12

z21 z22

z31 z32

 .

It’s easy to see that PR is well-defined (i.e., it does not depend on the choice of

matrix representative for the subspace N), and that PR has order n. Note that the

Plücker coordinates of N ′ = PRt(N) are given by

(3.1) PJ(N ′) =

PJ−1(N) if 1 6∈ J
t · PJ−1(N) if 1 ∈ J

where J − 1 is obtained from J by subtracting 1 from each element (mod n).

There is also a natural order n symmetry on the loop group GLn(C(λ)). Recall

from §2.4 the unfolding construction, which identifies GLn(C(λ)) with a subset of

n-periodic matrices. Define the shift map sh on an n-periodic matrix X by

sh(X)ij = Xi−1,j−1.

1Since n is fixed throughout, we suppress the dependence on n in the notation Xk.
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This map is easily seen to be an automorphism of order n which preserves both B−

and U .

Now we make Xk into a unipotent crystal. For A ∈ GLn(C(λ)) and z ∈ C, let

A|λ=z denote the matrix obtained by evaluating the loop parameter λ at z. This is

defined as long as z is not a pole of any entry of A; the resulting matrix is invertible

if z is not a root of the determinant of A. Define a U -action U × Xk → Xk by

(3.2) u.(N |t) = (u|λ=(−1)k−1t ·N)|t.

Note that u.(N |t) is always defined, since every element of U has Laurent polynomial

entries and determinant 1. This action makes Xk into a U -variety.

Definition 3.2. Define a rational map g : Xk → B− by g(N |t) = A, where A is the

folded matrix defined by

Aij = cij
P[j−k+1,j−1]∪{i}(N)

P[j−k,j−1](N)
, cij =


1 if j ≤ k

t if j > k and i ≥ j

λ if j > k and i < j.

For example, if N |t ∈ Gr(2, 5)× C×, then setting PJ = PJ(N), we have

(3.3) g(N |t) =



P15

P45

0 λ λ
P13

P23

λ
P14

P34

P25

P45

P12

P15

0 λ λ
P24

P34

P35

P45

P13

P15

t
P23

P12

0 λ

1
P14

P15

t
P24

P12

t
P34

P23

0

0 1 t
P25

P12

t
P35

P23

t
P45

P34


.

Note that g is defined if and only if the cyclic Plücker coordinates of N do not vanish,

that is, if and only if N is in the open positroid cell Gr◦(k, n).

Lemma 3.3.

1. If N |t ∈ Xk with N ∈ Gr◦(k, n), then

g ◦ PR(N |t) = sh ◦ g(N |t).

2. For i ∈ Z/nZ, a ∈ C, N |t ∈ Xk, and X ∈ B−, we have

PR−1(x̂i(a).PR(N |t)) = x̂i−1(a).(N |t),
sh−1(x̂i(a). sh(X)) = x̂i−1(a).X.
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Proof. Let X = g(N |t) and X ′ = g ◦ PR(N |t) be unfolded matrices. By definition,

Xij = 0 if i− j 6∈ [0, n− k], and for i− j ∈ [0, n− k], Xij is given by

Xij = tbij
P[j−k+1,j−1]∪{i}(N)

P[j−k,j−1](N)
, bij =

0 if j ∈ [1, k] or i < j

1 otherwise

where i denotes the residue of i mod n in the interval [1, n]. By (3.1), we have (for

i− j ∈ [0, n− k])

X ′ij = tbij+b
′
ij
P[j−k,j−2]∪{i−1}(N)

P[j−k−1,j−2](N)
, b′ij =


1 if j 6∈ [2, k + 1] and i = 1

−1 if j = k + 1 and i 6= 1

0 otherwise.

By considering several cases, one verifies that bij + b′ij = bi−1,j−1, so X ′ij = Xi−1,j−1 =

sh(X)ij, proving (1).

Let vi ∈ Ck be the ith row of N (more precisely, of a fixed matrix representative of

N). Acting on N by x̂i(a) replaces vi with vi + avi+1 if i 6= 0, and it replaces vn with

vn + (−1)k−1

t
av1 if i = 0. The map PRt replaces vi with vi−1 for i 6= 1, and it replaces

v1 with (−1)k−1tvn; the inverse map PR−1
t replaces vi with vi+1 for i 6= n, and it

replaces vn with (−1)k−1

t
v1. From this description, it’s clear that the first identity of

(2) holds.

For the second identity of (2), let X ′ = sh(X). By (2.14) and the fact that sh is

multiplicative, we have

sh−1(x̂i(a).X ′) = sh−1(x̂i(a)) · sh−1(X ′) · sh−1(x̂i(τi(a,X
′)))

= x̂i−1(a) ·X · x̂i−1(τi−1(a,X))

= x̂i−1(a).X,

where for the second equality we use

τi(a,X
′) =

−aX ′i+1,i+1

X ′ii + aX ′i+1,i

=
−aXii

Xi−1,i−1 + aXi,i−1

= τi−1(a,X).

Proposition 3.4. The pair (Xk, g) is a unipotent crystal.

Proof. It’s clear that the rational functions v 7→ g(v)i+1,i are not identically zero. We

must show that g commutes with the U -actions. Since U is generated by x̂i(a), we

need only show that

(3.4) g(x̂i(a).v) = x̂i(a).g(v)
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for all i. In fact, if we know that (3.4) holds for a particular value of i, then Lemma

3.3 allows us to deduce that it holds for all i, so it suffices to consider the case i = 1.

Suppose N |t ∈ Xk and a ∈ C. Set N ′|t = x̂1(a).(N |t), and write PJ = PJ(N) and

P ′J = PJ(N ′). The matrix x̂1(a) does not depend on λ, so for any t, the matrix N ′

is obtained from N by adding a times row 2 to row 1. Thus, we have

(3.5) P ′J =

PJ + aP(J\{1})∪{2} if 1 ∈ J and 2 6∈ J
PJ otherwise

.

Set A = g(N |t), A′ = g(N ′|t), and A′′ = x̂1(a).A (view these as folded matrices).

We must show that A′ = A′′. By (2.14),

A′′ = x̂1(a) · A · x̂1(τ1(a,A)).

In words, A′′ is obtained from A by adding a times row 2 to row 1, and then adding

τ1(a,A) times column 1 to column 2. Thus, A′′ and A differ only in the first row and

the second column. There are four cases to consider.

Case 1: i 6= 1, j 6= 2. In this case, A′′ij = Aij, and by (3.5) and the definition of g,

we see that A′ij = Aij as well.

Case 2: i = 1, j = 2. By definition, A12 and A′12 are equal to λ if k = 1, and 0

otherwise. The quantity τ1(a,A) is defined so that A′′12 has no constant term, so

A′′12 = δk,1λ as well.

Case 3: i = 1, j 6= 2. In this case, we have

A′′1j = A1j + aA2j = λ1−δj,1P{1}∪[j−k+1,j−1] + aP{2}∪[j−k+1,j−1]

P[j−k,j−1]

= λ1−δj,1
P ′{1}∪[j−k+1,j−1]

P ′[j−k,j−1]

= A′1j.

Case 4: i 6= 1, j = 2. Since the matrix entries A11, A12, and A22 do not depend on

λ, we have τ1(a,A) = −aA22

A11+aA21
. We compute

A′′i2 = Ai2 + τ1(a,A)Ai1

= tδk,1
P{1,i}∪[n−k+3,n]

P{1}∪[n−k+2,n]

+

−atδk,1
P{1,2}∪[n−k+3,n]

P{1}∪[n−k+2,n]

P{1}∪[n−k+2,n]

P[n−k+1,n]

+ a
P{2}∪[n−k+2,n]

P[n−k+1,n]

P{i}∪[n−k+2,n]

P[n−k+1,n]

= tδk,1
P{1,i}∪[n−k+3,n](P{1}∪[n−k+2,n] + aP{2}∪[n−k+2,n])− aP{1,2}∪[n−k+3,n]P{i}∪[n−k+2,n]

P{1}∪[n−k+2,n](P{1}∪[n−k+2,n] + aP{2}∪[n−k+2,n])
.
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If k > 1 and i ≤ n − k + 2, apply a three-term Plücker relation (Corollary 2.42) to

the terms in the numerator containing a to obtain

A′′i2 =
P{1,i}∪[n−k+3,n] + aP{2,i}∪[n−k+3,n]

P{1}∪[n−k+2,n] + aP{2}∪[n−k+2,n]

=
P ′{1,i}∪[n−k+3,n]

P ′{1}∪[n−k+2,n]

= A′i2.

If i > n− k + 2, then Ai1 = Ai2 = A′′i2 = A′i2 = 0, and if k = 1, then

A′′i2 = t
Pi(P1 + aP2)− aP2Pi

P1(P1 + aP2)
= t

Pi
P1 + aP2

= t
P ′i
P ′1

= A′i2.

By Theorem 2.38, the unipotent crystal on (Xk, g) induces a geometric crystal on

Xk. Unraveling the definitions, we obtain the following formulas for the geometric

crystal structure on Xk.

• The map γ : Xk → (C×)n is given by γ(N |t) = (γ1, . . . , γn), where

γi =


P[i−k+1,i](N)

P[i−k,i−1](N)
if 1 ≤ i ≤ k

t
P[i−k+1,i](N)

P[i−k,i−1](N)
if k + 1 ≤ i ≤ n.

• For i ∈ Z/nZ, the functions εi, ϕi : Xk → C× are given by

εi(N |t) = t−δi,k
P[i−k+1,i−1]∪{i+1}(N)P[i−k+1,i](N)

P[i−k,i−1](N)P[i−k+2,i+1](N)
.

ϕi(N |t) = t−δi,0
P[i−k+1,i−1]∪{i+1}(N)

P[i−k+1,i](N)
,

• For i ∈ Z/nZ, the rational action ei : C××Xk → Xk is given by eci(N |t) = N ′|t,
where

N ′ =


xi

(
c− 1

ϕi(N |t)

)
·N if i 6= 0

x0

(
(−1)k−1

t
· c− 1

ϕ0(N |t)

)
·N if i = 0.

Here xi(a) = Id + aEi,i+1 for i ∈ [n − 1], and x0(a) = Id + aEn1, where Eij is

an n× n matrix unit.

Finally, we make Xk into a decorated geometric crystal. Say that an n-periodic

matrix X is m-shifted unipotent if Xij = 0 when i − j > m, and Xij = 1 when

i− j = m. If X is m-shifted unipotent, define

χ(X) =
n∑
j=1

Xj+m−1,j.
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It is easy to see that if X is m-shifted unipotent and Y is m′-shifted unipotent, then

XY is (m+m′)-shifted unipotent, and

(3.6) χ(XY ) = χ(X) + χ(Y ).

If N |t ∈ Xk, then g(N |t) is (n − k)-shifted unipotent. For example, the matrix

g(N |t) for N ∈ Gr(2, 5) is shown above in (3.3). This matrix is 3-shifted unipotent,

and

χ(g(N |t)) =
P35(N)

P45(N)
+
P14(N)

P15(N)
+ t

P25(N)

P12(N)
+
P13(N)

P23(N)
+
P24(N)

P34(N)
.

Definition 3.5. Define f : Xk → C by

f(N |t) = χ(g(N |t)) =
∑
i 6=k

P{i−k}∪[i−k+2,i](N)

P[i−k+1,i](N)
+ t

P[2,k]∪{n}(N)

P[1,k](N)
.

Lemma 3.6. The function f satisfies (2.13), so it is a decoration on Xk.

Proof. Using (2.15) and (2.16), we compute

f(eci(N |t)) = χ(g(eci(N |t))) = χ(eci(g(N |t)))

= χ

(
x̂i

(
c− 1

ϕi(N |t)

)
· g(N |t) · x̂i

(
c−1 − 1

εi(N |t)

))
=

c− 1

ϕi(N |t)
+ f(N |t) +

c−1 − 1

εi(N |t)
,

so (2.13) holds.

Products

For k1, . . . , kd ∈ [n− 1], define

Xk1,...,kd = Xk1 × · · · × Xkd .

Since each Xkj is a unipotent crystal, the product Xk1,...,kd is also a unipotent crystal

by Theorem 2.39, and the map g : Xk1,...,kd → B− is given by

(3.7) g(x1, . . . , xd) = g(x1) · · · g(xd).

By Theorem 2.38, the unipotent crystal (Xk1,...,kd , g) induces a geometric crystal on

Xk1,...,kd . By Definition/Proposition 2.32, the map f : Xk1,...,kd → C defined by

f(x1, . . . , xd) = f(x1) + . . . + f(xd) is a decoration. Note that Definition 3.5 and

equations (3.6), (3.7) imply that

(3.8) f(x1, . . . , xd) = χ(g(x1, . . . , xd)).
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3.2 Properties of the matrix g(N |t)

Here we prove several important properties of the matrix g(N |t).

Proposition 3.7. Suppose N is in the open positroid cell Gr◦(k, n), and let A =

g(N |t), viewed as a folded matrix.

1. The first k columns of A span the subspace N .

2. The matrix A|λ=(−1)k−1t has rank k.

3. The determinant of A is (t+ (−1)kλ)n−k.

Proof. By Lemma 2.43, the subspace N has a diagonal form representative N ′. It

follows from the definition of diagonal form that for j = 1, . . . , k,

N ′ij =
P[1,j−1]∪{i}∪[n−k+j+1,n](N)

P[1,j−1]∪[n−k+j,n](N)
=
P[j−k+1,j−1]∪{i}(N)

P[j−k,j−1](N)

(recall Convention 2.40) if i ∈ [j, j + n− k], and N ′ij = 0 otherwise. Comparing with

the definition of g, we see that N ′ is equal to the first k columns of A, which proves

(1).

For (2), set At = A|λ=(−1)k−1t. We claim that ∆I,[1,k]∪{j}(At) = 0 for all (k + 1)-

subsets I ⊂ [n], and j ∈ [k + 1, n]. To see this, suppose I = {i1 < · · · < ik+1}, and

expand the determinant along column j:

(3.9) ∆I,[1,k]∪{j}(At) =
k+1∑
r=1

(−1)k+1+r(At)ir,j∆I\{ir},[1,k](At).

By part (1) (and the fact that ∆[n−k+1,n],[1,k](At) = 1), we have

∆I\{ir},[1,k](At) =
PI\{ir}(N)

P[n−k+1,n](N)
.

By the definition of g, we have

(At)ir,j =


t
P[j−k+1,j−1]∪{ir}(N)

P[j−k,j−1](N)
if ir ≥ j

(−1)k−1t
P[j−k+1,j−1]∪{ir}(N)

P[j−k,j−1](N)
if ir < j

= t
P<j−k+1,j−k+2,...,j−1,ir>(N)

P[j−k,j−1](N)

where in the last line, the angle brackets indicate that we are taking the columns

inside the brackets in the order in which they appear in the sequence, rather than

sorting them in increasing order (see Convention 2.40). Now (3.9) becomes

∆I,[1,k]∪{j}(At) =
k+1∑
r=1

(−1)k+1+rt
P<j−k+1,j−k+2,...,j−1,ir>(N)

P[j−k,j−1](N)

PI\{ir}(N)

P[n−k+1,n](N)
= 0
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by the Grassmann–Plücker relations (Proposition 2.41).

We have shown that each of the last n−k columns of At is in the span of the first

k, and since the first k columns have rank k by part (1), this proves (2).

For (3), let At be as above. By part (2), it is possible to add linear combinations

of the first k columns of At to the last n− k columns to obtain a matrix with zeroes

in the last n− k columns. Let A′ be the matrix obtained by adding the same linear

combinations of the first k columns of A (which are equal to the first k columns of

At) to the last n− k columns of A. Then we have

(A′)ij = c′ij
P[j−k+1,j−1]∪{i}(N)

P[j−k,j−1](N)
, c′ij =


1 if j ≤ k

(−1)kt+ λ if i ≤ n− k and j > i

0 otherwise.

For example, if n = 5 and k = 2, then A′ is of the form
∗ 0 t+ λ (t+ λ)∗ (t+ λ)∗
∗ ∗ 0 t+ λ (t+ λ)∗
∗ ∗ 0 0 t+ λ

1 ∗ 0 0 0

0 1 0 0 0


where the ∗’s are certain ratios of Plücker coordinates. Thus, we have

det(A) = det(A′) = (−1)k(n−k)((−1)kt+ λ)n−k = (t+ (−1)kλ)n−k,

proving (3).

Combining Proposition 3.7 with some simple linear algebra, we obtain two state-

ments that play an important role in the study of the geometric R-matrix in §5.1.

Corollary 3.8. Suppose N |t ∈ Xk and B ∈Mn(C[λ, λ−1]).

1. The first k columns of (g(N |t) ·B)|λ=(−1)k−1t are contained in the subspace N .

2. If B|λ=(−1)k−1t is invertible, then the matrix (B · g(N |t))|λ=(−1)k−1t has rank k.

Furthermore, the first k columns have full rank, and they span the subspace

B|λ=(−1)k−1t ·N .

Proof. By parts (1) and (2) of Proposition 3.7, the column span of the matrix

g(N |t)|λ=(−1)k−1t is the subspace N . Multiplication of this matrix by B|λ=(−1)k−1t

on the right is equivalent to performing a sequence of (possibly degenerate) column

operations, so all columns of the resulting matrix are contained in N , proving (1).

Part (2) follows from parts (1) and (2) of Proposition 3.7, and the fact that

invertible linear transformations preserve dimension.
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3.3 Symmetries

In §3.1, we introduced the cyclic shift map PR : Xk → Xk, and the shift map

sh on the loop group, and we showed that the unipotent crystal map g intertwines

these two maps. In this section, we study these Z/nZ symmetries in a bit more

detail, and then we study two additional symmetries of the geometric crystals Xk:

a geometric analogue of the Schützenberger involution, and the duality map from a

subspace to its orthogonal complement. In both cases, we show that g intertwines the

symmetry of the Grassmannian with a natural map on the loop group, and from this

we deduce that the symmetries are compatible with the geometric crystal structure.

This compatibility allows us to prove analogous results about (combinatorial) crystals

in §4.2. Furthermore, these symmetries play an indispensable role in proving the

main results of Chapter 5.

3.3.1 Z/nZ symmetry

Recall from §3.1 the maps PR and sh. Recall also that (Xk1,...,kd , g) is a unipotent

crystal, where g(x1, . . . , xd) = g(x1) · · · g(xd). Extend PR to a map Xk1,...,kd →
Xk1,...,kd by

PR(x1, . . . , xd) = (PR(x1), . . . ,PR(xd)).

Since sh is an automorphism, Lemma 3.3(1) extends to the identity

(3.10) g ◦ PR = sh ◦ g

on any product Xk1,...,kd .

Proposition 3.9. The map PR interacts with the geometric crystal structure on

Xk1,...,kd as follows:

1. γ ◦ PR = s̃h ◦ γ, where s̃h(z1, . . . , zn) = (zn, z1, . . . , zn−1);

2. εi ◦ PR = εi−1 and ϕi ◦ PR = ϕi−1 for i ∈ Z/nZ;

3. eci ◦ PR = PR ◦ eci−1 for i ∈ Z/nZ;

4. f ◦ PR = f .

Proof. These identities are essentially a formal consequence of (3.10) and basic prop-

erties of unipotent crystals. We will use the same technique to prove analogous re-

sults for the symmetries introduced in §3.3.2 and §3.3.3, as well as for the geometric

R-matrix in §5.1.2.

Recall that the unipotent crystal (B−, Id) induces a geometric crystal on B−

(Theorem 2.38). It is immediate from the definitions that the induced geometric
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crystal maps on B− satisfy

(3.11) γ ◦ sh = s̃h ◦ γ εi ◦ sh = εi−1 ϕi ◦ sh = ϕi−1.

Combining (3.11) with (2.16) and (3.10), we have

γ ◦ PR = γ ◦ g ◦ PR = γ ◦ sh ◦ g = s̃h ◦ γ ◦ g = s̃h ◦ γ,

proving (1). Part (2) is proved in the same way. Similarly, the function χ defined

on m-shifted unipotent n-periodic matrices clearly satisfies χ ◦ sh = χ, so part (4)

follows from (3.8) and (3.10).

The action ei on B− is defined by eci(X) = x̂i

(
c−1
ϕi(X)

)
. X, so by Lemma 3.3(2)

and (3.11), we have

(3.12) eci ◦ sh = sh ◦ eci−1.

Combining (3.12) with (2.16) and (3.10), we compute

g ◦ eci ◦ PR = eci ◦ g ◦ PR

= eci ◦ sh ◦ g
= sh ◦ eci−1 ◦ g
= sh ◦ g ◦ eci−1

= g ◦ PR ◦ eci−1.

If d = 1, then the identity eci ◦ PR = PR ◦ eci−1 follows from Proposition 3.7(1) by

“projecting” both sides of the preceding identity onto the first k columns. To prove

the general case, we will show that if X and Y are products of the geometric crystals

Xkj such that part (3) holds on X and Y separately, then it holds on the product

X × Y . By Definition/Proposition 2.32, the action ei on X × Y is given by

eci(x, y) = (ec1i (x), ec2i (y)) where c1 =
cεi(x) + ϕi(y)

εi(x) + ϕi(y)
, c2 =

εi(x) + ϕi(y)

εi(x) + c−1ϕi(y)
.

Since we have already shown that part (2) holds on any product of the Xkj , we have

(3.13) eci ◦ PR(x, y) = (e
c′1
i (PR(x)), e

c′2
i (PR(y))) = PR(e

c′1
i−1(x), e

c′2
i−1(y))

where

c′1 =
cεi−1(x) + ϕi−1(y)

εi−1(x) + ϕi−1(y)
, c′2 =

εi−1(x) + ϕi−1(y)

εi−1(x) + c−1ϕi−1(y)
.

The right-most expression of (3.13) is PR ◦ eci−1(x, y), so we are done.
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Remark 3.10. It is possible to deduce part (3) directly from the identity g◦eci ◦PR =

g ◦ PR ◦ eci−1 by appealing to Corollary 5.9. Indeed, this is how we will prove that

the geometric R-matrix commutes with the geometric crystal operators. We have

chosen to use a more elementary approach here because the only proof we know of

Corollary 5.9 relies on two difficult results about the geometric R-matrix (Theorems

5.3 and 5.4), and we want to emphasize that the simple fact proved here does not

depend on those results.

The following result plays an important role in the proof of the positivity of the

geometric R-matrix in §5.4.

Lemma 3.11. Suppose N |t ∈ Xk. Let A = g(N |t) and A′ = g(PR(N |t)), and view

these as folded matrices. Then for I, J ∈
(

[n]
r

)
, we have

(3.14) ∆I,J(A′) =


∆I−1,J−1(A) if 1 ∈ I ∩ J or 1 6∈ I ∪ J
(−1)r−1λ ·∆I−1,J−1(A) if 1 ∈ I \ J
(−1)r−1λ−1 ·∆I−1,J−1(A) if 1 ∈ J \ I

where S − 1 is obtained from S by subtracting 1 from each element (mod n).

Proof. By (3.10), we have A′ = sh(A). Observe that the submatrix sh(A)I,J is

obtained from the submatrix AI−1,J−1 by the following two steps:

• If 1 ∈ I, multiply the last row by λ and interchange it with the other r−1 rows.

• If 1 ∈ J , multiply the last column by λ−1 and interchange it with the other r−1

columns.

This implies (3.14).

3.3.2 The geometric Schützenberger involution

For z ∈ C×, define πkz : Mn(C[λ, λ−1])→ Xk by

(3.15) πkz (A) = N |z

where N is the subspace spanned by the first k columns of the n × n matrix Az =

A|λ=(−1)k−1z. This map is undefined if the first k columns of Az do not have full rank.

Proposition 3.7(1) states that for N ∈ Gr◦(k, n) and t ∈ C×, we have

(3.16) πkt ◦ g(N |t) = N |t.

This shows that the matrix A = g(N |t) is determined by the subspace spanned by its

first k columns (and the value of t). Now we consider what happens if we “project”

onto the last k rows instead of the first k columns.
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Define the flip map fl on an n× n matrix A by

(3.17) fl(A)ij = An−j+1,n−i+1.

In words, fl reflects the matrix over the anti-diagonal. It is easy to see that fl is an

anti-automorphism, and that it satisfies

(3.18) fl2 = Id and fl ◦ sh = sh−1 ◦ fl .

Definition 3.12. Define the geometric Schützenberger involution S : Xk → Xk by

S(N |t) = πkt ◦ fl ◦ g(N |t).

This is a rational map which is defined when N is in the open positroid cell Gr◦(k, n).

Continuing the notation used for PR, we write St to denote the map N 7→ N ′, where

N ′|t = S(N |t). Extend S to a map Xk1,...,kd → Xkd,...,k1 by

(3.19) S(x1, . . . , xd) = (S(xd), . . . , S(x1)).

Note that the order of the factors is reversed.

Remark 3.13. This definition was inspired by work of Noumi and Yamada on

a geometric2 lift of the Robinson–Schensted–Knuth correspondence, in which they

observed that the anti-transposition map fl plays the role of the Schützenberger

involution [NY04].

For example, if N |t ∈ Gr(2, 5)×C×, then setting PJ = PJ(N), we have (cf. (3.3))

St(N) =



t
P45

P34

0

t
P35

P23

t
P34

P23

t
P25

P12

t
P24

P12

1
P14

P15

0 1


.

By definition (and the fact that ∆[n−k+1,n],[k](g(N |t)) = 1), the Plücker coordinates

of N ′ = St(N) are given by

(3.20)
PJ(N ′)

P[n−k+1,n](N ′)
= ∆[n−k+1,n],w0(J)(g(N |t)),

2Noumi and Yamada use the term “tropical” for what we call “geometric” or “rational,” and the term “ultradis-
cretization” for what we call “tropicalization.” This terminology is common in the literature coming from Japan.
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where w0(J) is the subset obtained from J by replacing each i ∈ J with n − i + 1.

In general, it is not so easy to express the right-hand side of (3.20) in terms of the

Plücker coordinates of N . When J is a basic subset, however, there is a simple

expression. Recall from §2.5 the notation Ji,j = [i, j]∪ [n− k+ j − i+ 2, n] for basic

subsets, and Uk ⊂ Gr(k, n) for the open subset where the basic Plücker coordinates

do not vanish.

Lemma 3.14. Suppose N |t ∈ Xk, and N ′|t = S(N |t). If N ∈ Uk, then so is N ′,

and the basic Plücker coordinates of N ′ are given by

(3.21)
PJi,j(N

′)

P[n−k+1,n](N ′)
= tmin(j,n−k)−i+1

PJn−k−i+2,n−j(N)

P[n−j−k+1,n−j](N)
.

Proof. Set A = g(N |t), and fix a basic subset Ji,j. Choose a and b so that w0(Ji,j) =

[1, a] ∪ [b + a + 1, b + k] (explicitly, a = k − j + i − 1 and b = n − i − k + 1).

Consider the k × k submatrix of A using the rows [b + 1, b + k] and the columns

[1, a] ∪ [b+ a+ 1, b+ k]. The last k − a columns of this submatrix consist of a rows

of zeroes followed by a lower triangular (k − a)× (k − a) block, so

∆[b+1,b+k],[1,a]∪[b+a+1,b+k](A) = ∆[b+1,b+a],[1,a](A)
b+k∏

r=b+a+1

Arr

= ∆[b+1,b+a],[1,a](A)
b+k∏

r=b+a+1

tcr
P[r−k+1,r](N)

P[r−k,r−1](N)

where cr = 0 if r ≤ k, and cr = 1 if r > k. Using (2.19) and canceling terms in the

product, we obtain

(3.22) ∆[b+1,b+k],[1,a]∪[b+a+1,b+k](A) = tmin(k−a,b) PJb+1,b+a
(N)

P[n−k+1,n](N)

P[b+1,b+k](N)

P[b+a+1−k,b+a](N)
.

Note that the Plücker coordinates appearing here are nonzero because N ∈ Uk.
Let At = A|λ=(−1)k−1t. By Proposition 3.7, all the columns of At are in the span

of the first k columns (which is N), so if a single minor using a given set of k

columns is nonzero, then those k columns also span the subspace N . Thus, the non-

vanishing and λ-independence of the right-hand side of (3.22) implies that columns

[1, a] ∪ [b+ a+ 1, b+ k] of At span N , so we have

(3.23)
∆[n−k+1,n],[1,a]∪[b+a+1,b+k](At)

∆[b+1,b+k],[1,a]∪[b+a+1,b+k](At)
=
P[n−k+1,n](N)

P[b+1,b+k](N)
.

Both minors appearing in the left-hand side of (3.23) are independent of λ, so this

equation still holds if we replace At with A. The lemma follows from combining

(3.20), (3.22), and (3.23), and replacing a, b with k−j+i−1, n−i−k+1, respectively.
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Specializing (3.21) to the case of cyclic Plücker coordinates, we obtain

(3.24)
P[i,i+k−1](N

′)

P[n−k+1,n](N ′)
= t|[i,i+k−1]∩[n−k]| P[n−k+1,n](N)

P[n−i−2k+2,n−i−k+1](N)

for i ∈ Z/nZ. This shows that when N ∈ Gr◦(k, n), St(N) ∈ Gr◦(k, n) as well, so

g ◦ S(N |t) is defined.

Proposition 3.15. Suppose (N1|t1, . . . , Nd|td) ∈ Xk1,...,kd, with each Nj ∈ Gr◦(kj, n).

Then

g ◦ S(N1|t1, . . . , Nd|td) = fl ◦ g(N1|t1, . . . , Nd|td).

Proof. Since fl is an anti-automorphism, it suffices to prove the d = 1 case. Suppose

N |t g7→ A
fl7→ A′

πkt7→ N ′|t.

We must show that g(N ′|t) = A′. By definition, the first k columns of A′ are the

diagonal form representative of N ′ (note that the first k columns of A′ do not depend

on λ). By Proposition 3.7(1), the first k columns of g(N ′|t) are also the diagonal

form representative of N ′, so the first k columns of g(N ′|t) and A′ agree. It remains

to consider the last n− k columns.

We claim that for i ≤ n− k, we have

(3.25) Aij = dij
∆[n−k+1,n],{j}∪[i+1,i+k−1](A)

∆[n−k+1,n],[i+1,i+k](A)
, dij =

t if j ≤ i

λ if j > i.

This is clearly true when j ∈ [i + 1, i + k]. Let At = g(N |t)|λ=(−1)k−1t. By Propo-

sition 3.7(2), all size (k + 1)-minors of At vanish. For j ≤ i, expand the mi-

nor ∆{i}∪[n−k+1,n],{j}∪[i+1,i+k](At) along row i and use the fact that (At)ir = 0 for

r = i+ 1, . . . , i+ k − 1, and (At)i,i+k = (−1)k−1t to obtain

(3.26) (At)ij∆[n−k+1,n],[i+1,i+k](At)− t∆[n−k+1,n],{j}∪[i+1,i+k−1](At) = 0.

There are no λ’s in the last k rows of A, and (At)ij = Aij for j ≤ i, so we may

replace At by A in (3.26). By (3.20), the minor ∆[n−k+1,n],[i+1,i+k](A) is a ratio of

cyclic Plücker coordinates of N ′, which are nonzero by (3.24). Thus, (3.26) implies

the j ≤ i case of (3.25).

For j > i+ k, the same reasoning gives

t∆[n−k+1,n],[i+1,i+k−1]∪{j}(At) + (−1)k(At)ij∆[n−k+1,n],[i+1,i+k](At) = 0,

and since (At)ij =
(−1)k−1t

λ
Aij when j > i+ k, (3.25) holds in this case as well.
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Now (3.20) and (3.25) imply that

A′ij = An−j+1,n−i+1 = dn−j+1,n−i+1

P{i}∪[j−k+1,j−1](N
′)

P[j−k,j−1](N ′)
= g(N ′|t)ij

for j ≥ k + 1, which completes the proof.

Note that as an immediate consequence of Proposition 3.15, we have

(3.27) ∆I,J(g(S(N |t))) = ∆w0(J),w0(I)(g(N |t)).

Corollary 3.16. The map S : Xk1,...,kd → Xkd,...,k1 satisfies the following identities

of rational maps:

S2 = Id and S ◦ PR = PR−1 ◦S.

Proof. By Proposition 3.15, (3.18), and (3.10), we have

g ◦ S2 = fl2 ◦ g = g

and

g ◦ S ◦ PR = fl ◦ g ◦ PR = fl ◦ sh ◦ g = sh−1 ◦ fl ◦ g = sh−1 ◦ g ◦ S = g ◦ PR−1 ◦S.

If d = 1, then by Proposition 3.7(1), we may “project” both sides of these equations

onto the first k columns to deduce the desired identities. The general case follows

from the d = 1 case because S and PR act separately on each component of a

product.

Proposition 3.17. The map S interacts with the geometric crystal structure on

Xk1,...,kd as follows:

1. γS = w0γ, where w0(z1, . . . , zn) = (zn, . . . , z1);

2. εiS = ϕn−i and ϕiS = εn−i for i ∈ Z/nZ;

3. eciS = Sec
−1

n−i for i ∈ Z/nZ;

4. fS = f .

Proof. The proof is very similar to that of Proposition 3.9. First note that by n-

periodicity, fl acts on an unfolded matrixX by fl(X)ij = Xn−j+1,n−i+1, so forX ∈ B−,

we have

εi(fl(X)) =
fl(X)i+1,i

fl(X)i+1,i+1

=
Xn−i+1,n−i

Xn−i,n−i
= ϕn−i(X),

and similarly ϕi ◦ fl = εn−i, and γ ◦ fl = w0γ. We also have χ ◦ fl = χ because fl

preserves the diagonals of an unfolded matrix. Parts (1), (2), and (4) follow from
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the combination of these identities with (2.16) and Proposition 3.15 (as in the proof

of Proposition 3.9).

Suppose X ∈ B−, and set X ′ = fl(X). Using (2.15), part (2), and the fact that fl

is an anti-automorphism which maps x̂i(a) to x̂n−i(a), we compute

fl(eci(X)) = fl

(
x̂i

(
c− 1

ϕi(X)

)
·X · x̂i

(
c−1 − 1

εi(X)

))
= x̂n−i

(
c−1 − 1

εi(X)

)
·X ′ · x̂n−i

(
c− 1

ϕi(X)

)
= x̂n−i

(
c−1 − 1

ϕn−i(X ′)

)
·X ′ · x̂n−i

(
c− 1

εn−i(X ′)

)
= ec

−1

n−i(fl(X)).

Now part (3) is proved in the same way as part (3) of Proposition 3.9. In the last

step, one computes that if (3) holds for X and Y separately, then for (x, y) ∈ X×Y ,

eciS(x, y) = (e
c′1
i S(y), e

c′2
i S(x)) = S(e

c′−1
2
n−i (x), e

c′−1
1
n−i (y))

where

c′1 =
cϕn−i(y) + εn−i(x)

ϕn−i(y) + εn−i(x)
, c′2 =

ϕn−i(y) + εn−i(x)

ϕn−i(y) + c−1εn−i(x)
.

By Definition/Proposition 2.32, ec
−1

n−i(x, y) = (e
c′−1
2
n−i (x), e

c′−1
1
n−i (y)), so (3) holds for X ×

Y .

The Plücker coordinates of St(N) will appear frequently enough in later sections

that we introduce the following notation for them:

(3.28) QJ
t (N) := Pw0(J)(St(N)).

By Proposition 3.7(1) (resp., the definition of S), the Plücker coordinates PJ(N)

(resp., QJ
t (N)) are the maximal minors of the first k columns (resp., last k rows) of

g(N |t). Since the bottom left k × k submatrix of g(N |t) is upper uni-triangular, we

have

(3.29)
PJ(N)

P[n−k+1,n](N)
= ∆J,[k](g(N |t)) and

QJ
t (N)

Q
[k]
t (N)

= ∆[n−k+1,n],J(g(N |t)).

Proposition 3.15 allows us to express the entries of the matrix g(N |t) in terms of

the Plücker coordinates QJ
t (N).

Lemma 3.18. We have

g(N |t)ij = c′ij
Q

[i+1,i+k−1]∪{j}
t

Q
[i+1,i+k]
t

, c′ij =


1 if i > n− k
t if i ≤ n− k and i ≥ j

λ if i ≤ n− k and i < j.
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Proof. By Proposition 3.15, we have g(N |t) = fl ◦ g ◦ S(N |t), so

g(N |t)ij = (g ◦ S(N |t))n−j+1,n−i+1

= cn−j+1,n−i+1

P[n−i−k+2,n−i]∪{n−j+1}(St(N))

P[n−i−k+1,n−i](St(N))

= cn−j+1,n−i+1
Q

[i+1,i+k−1]∪{j}
t (N)

Q
[i+1,i+k]
t (N)

.

Clearly cn−j+1,n−i+1 = c′ij, so we are done.

3.3.3 Duality

In §2.5, we introduced a non-degenerate bilinear form on Cn such that if N ∈
Gr(k, n), and N⊥ ∈ Gr(n− k, n) is the orthogonal complement of N with respect to

this form, then

PJ(N) = PJ(N⊥),

where J is the complement [n] \ J (Lemma 2.48). The map studied in this section is

the composition of the map N 7→ N⊥ with the reversal of the standard basis of Cn

and the geometric Schützenberger involution.

Let Tw0 : Gr(k, n) → Gr(k, n) be the automorphism induced by reversing the

standard basis of Cn. Explicitly, if N ′ is an n×k matrix representative for a subspace

N , then Tw0(N) is the subspace represented by Qw0 ·N ′, where Qw0 is the permutation

matrix corresponding to the longest element of Sn. Note that ∆J,[k](Tw0(N)) =

(−1)k(k−1)/2∆w0(J),[k](N), so PJ(Tw0(N)) = Pw0(J)(N) (as projective coordinates),

where as above, w0(J) is the subset obtained by replacing each i ∈ J with n− i+ 1.

Define µ : Gr(k, n)→ Gr(n− k, n) by

µ(N) = Tw0(N
⊥) = Tw0(N)⊥.

Slightly abusing notation, we also write µ for the map Xk → Xn−k which sends

N |t 7→ Tw0(N
⊥)|t. For J ⊂ [n], let J∗ = w0(J), so that

(3.30) PJ(µ(N)) = PJ∗(N).

Extend µ to a map Xk1,...,kd → Xn−k1,...,n−kd by

µ(x1, . . . , xd) = (µ(x1), . . . , µ(xd)).

Definition 3.19. Define the duality map D : Xk1,...,kd 7→ Xn−kd,...,n−k1 by

D = S ◦ µ.

For N ∈ Gr(k, n) and t ∈ C×, let Dt(N) = St(µ(N)).
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We have seen that the unipotent crystal map g intertwines PR with sh, and S with

fl. We will now show that gn−k◦D(N |t) is closely related to the inverse of gk(N |t) (we

use superscripts on g in this section since there are multiple Grassmannians involved).

We start by explicitly computing the inverse of gk(N |t). Define hk : Xk → B− by

hk(N |t) = B, where B is the folded matrix given by

(3.31) Bij = (−1)i+jc′ij
P[i−k,i]\{j}(N)

P[i−k+1,i](N)
, c′ij =


1 if i > k

t if i ≤ k and i ≥ j

(−1)nλ if i ≤ k and i < j.

When k is clear from context, we write h instead of hk. For example, if n = 5 and

k = 3, then writing PJ = PJ(N), we have

h(N |t) =



t
P345

P145

0 −λ λ
P135

P145

−λP134

P145

−tP245

P125

t
P145

P125

0 −λ λ
P124

P125

t
P235

P123

−tP135

P123

t
P125

P123

0 −λ

−1
P134

P234

−P124

P234

P123

P234

0

0 −1
P245

P345

−P235

P345

P234

P345


.

Like g, h is defined for N in the open positroid cell Gr◦(k, n).

Lemma 3.20. For t ∈ C× and N ∈ Gr◦(k, n), we have

hk(N |t) · gk(N |t) = (t+ (−1)kλ) · Id.

Proof. All matrices in this proof are folded. Arguing as in the proof of Lemma 3.3(1),

one sees that h◦PR = sh ◦h. Thus, since sh is an automorphism, it suffices to prove

that

(h(N |t) · g(N |t))i1 = δi,1(t+ (−1)kλ).

Set B = h(N |t) and A = g(N |t), and write PJ = PJ(N) for the Plücker coordi-

nates of N . By definition,

(3.32) (BA)i1 =
∑
`

Bi`A`1 =
∑
`

(−1)i+`c′i`
P[i−k,i]\{`}

P[i−k+1,i]

P[n−k+2,n]∪{`}

P[n−k+1,n]

.

If i = 1, then Bi`A`1 = 0 unless ` ∈ {1, n− k + 1}, so we have

(BA)11 = t+ (−1)kλ.
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If i > 1, then c′i` has the same value for all nonzero terms appearing in (3.32) (the

value is t if i ∈ [2, k] and 1 if i > k), so we have BAi1 = 0 by the Grassmann–Plücker

relations (Proposition 2.41).

In §2.5, we previously defined Xc to be the matrix obtained by replacing Xij with

(−1)i+jXij. Extend this definition to unfolded matrices X ∈ M∞
n (C). Note that if

A is the folding of X, and we denote the folding of Xc by Ac, then Ac is obtained

from A by multiplying the (i, j)-entry by (−1)i+j and replacing λ with (−1)nλ, so

Acij 6= (−1)i+jAij if n is odd. Define inv on a folded matrix A ∈ GLn(C(λ)) by

inv(A) = adj(A)c = adj(Ac),

where adj(A) is the adjoint of A (i.e., adj(A)ij = (−1)i+j∆[n]\{j},[n]\{i}(A)). Note that

inv is an anti-automorphism which commutes with sh and fl, and preserves B− and

U .

Remark 3.21. We use the adjoint rather than the inverse in the definition of inv so

that the matrix entries remain Laurent polynomials in λ.

Proposition 3.22. Suppose (N1|t1, . . . , Nd|td) ∈ Xk1,...,kd, with each Nj ∈ Gr◦(kj, n).

Then

β · g ◦D(N1|t1, . . . , Nd|td) = inv ◦ g(N1|t1, . . . , Nd|td),

where β =
∏d

j=1(tj + (−1)kj+nλ)n−kj−1.

Proof. Since inv is an anti-automorphism, it suffices to prove the d = 1 case. That

is, we must show that for N |t ∈ Xk, with N ∈ Gr◦(k, n), one has

β · gn−k ◦D(N |t) = inv ◦ gk(N |t),

where β = (t+ (−1)k+nλ)n−k−1.

Let A = gk(N |t). By Proposition 3.7(3), we have

adj(A) · A = det(A) · Id = (t+ (−1)kλ)n−k · Id.

Comparing with Lemma 3.20, we see that adj(A) = (t+ (−1)kλ)n−k−1 · hk(N |t), so

(3.33) inv(A)ij = β · c′ij
P[i−k,i]\{j}(N)

P[i−k+1,i](N)
, c′ij =


1 if i > k

t if i ≤ k and i ≥ j

λ if i ≤ k and i < j

.
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Let A′ = gn−k ◦ D(N |t). Proposition 3.15 implies that A′ = fl ◦ gn−k ◦ µ(N |t).
Unraveling the definitions and using Lemma 2.48, we obtain

A′ij = cn−j+1,n−i+1

P[k−i+2,n−i]∪{n−j+1}(Tw0(N
⊥))

P[k−i+1,n−i](Tw0(N
⊥))

= cn−j+1,n−i+1

P[i+1,i+n−k−1]∪{j}(N
⊥)

P[i+1,i+n−k](N⊥)

= cn−j+1,n−i+1

P[i−k,i]\{j}(N)

P[i−k+1,i](N)

where

cij =


1 if j ≤ n− k
t if j > n− k and i ≥ j

λ if j > n− k and i < j.

Comparing with (3.33), we conclude that β · A′ = inv(A).

Corollary 3.23. The map D : Xk1,...,kd → Xn−kd,...,n−k1 satisfies the following iden-

tities of rational maps:

D2 = Id D ◦ S = S ◦D = µ D ◦ PR = PR ◦D.

Proof. The proof that D commutes with S and PR has exactly the same form as

the proof that S commutes with PR in Corollary 3.16 (the necessary ingredients are

(3.10), Propositions 3.15 and 3.22, and the fact that inv commutes with fl and sh).

The identity S ◦ D = µ follows from the definition of D and the fact that S is an

involution. This in turn implies D ◦ S = µ, which implies that D2 = D ◦ S ◦ µ =

µ2 = Id.

Proposition 3.24. The map D interacts with the geometric crystal structure on

Xk1,...,kd as follows:

1. If x = (N1|t1, . . . , Nd|td) and γ(x) = (z1, . . . , zn), then γD(x) = t1 · · · tdγ(x)−1;

2. εiD = ϕi and ϕiD = εi for i ∈ Z/nZ;

3. eciD = Dec
−1

i for i ∈ Z/nZ;

4. fD = f .

Proof. Suppose A ∈ B−. We claim that

(3.34) εi(inv(A)) = ϕi(A) and ϕi(inv(A)) = εi(A).

Since sh commutes with inv, εi−1 = εi ◦ sh, and ϕi−1 = ϕi ◦ sh, it suffices to prove

these identities for i = 1. Let A′ = inv(A), and let X,X ′ be the unfolded matrices
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corresponding to the folded matrices A,A′, respectively. For i, j ∈ [n], X ′ij is the

constant coefficient of the polynomial A′ij = ∆[n]\{j},[n]\{i}(A|λ=(−1)nλ). Since there

are no negative powers of λ in the entries of A, we have

X ′ij = ∆[n]\{j},[n]\{i}(A|λ=0).

Since A|λ=0 is lower triangular and its (i, j)-entry is Xij, we have

ϕ1(X ′) =
X ′21

X ′11

=
∆[2,n],{1}∪[3,n](A|λ=0)

∆[2,n],[2,n](A|λ=0)
=
X21X33 · · ·Xnn

X22X33 · · ·Xnn

= ε1(X).

The first identity in (3.34) is proved similarly. Using (3.34), (2.15), the fact that inv

is an anti-automorphism, and the fact that inv fixes x̂i(a) for each i, we obtain

(3.35) inv(eci(A)) = ec
−1

i (inv(A)).

Now parts (2) and (3) are proved in the same way as parts (2) and (3) of Propo-

sition 3.17 (the necessary ingredients are (3.34), (3.35), Proposition 3.22, and the

observation that if p(λ) is any polynomial in λ with nonzero constant term, then

εi(p(λ) · A) = εi(A), and similarly for ϕi).

To prove (1) and (4), it suffices to consider the d = 1 case. Suppose N |t ∈ Xk.

Let A = g(N |t) and B = gD(N |t). and let B = gD(N |t). The proof of Proposition

3.22 shows that the folded matrix B is given explicitly by

Bij = c′ij
P[i−k,i]\{j}(N)

P[i−k+1,i](N)
, c′ij =


1 if i > k

t if i ≤ k and i ≥ j

λ if i ≤ k and i < j

.

Comparing with the definition of g, we see that Bii = t/Aii, and since γ(N |t) is given

by the diagonal entries of g(N |t), (1) is proved. Similarly, the decoration f is defined

by f(N |t) = χ(g(N |t)). The matrices A and B are (n− k)- and k-shifted unipotent,

respectively, and the entries along the (n−k−1)th diagonal of the unfolding of A are

a reordering of the entries along the (k − 1)th diagonal of the unfolding of B. Thus

χ(A) = χ(B), proving (4).

We end this section with a result needed for the proof of the positivity of the

geometric R-matrix in §5.4.

Lemma 3.25. Suppose N |t ∈ Xk. Let A = gk(N |t) and A′ = gn−k(D(N |t)), and

view these as folded matrices. Then for I, J ∈
(

[n]
r

)
, we have

∆I,J(A′) = (t+ (−1)n−kλ)r−(n−k)∆J,I(A|λ=(−1)nλ).
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Proof. Let C ∈ GLn(C(λ)) be a folded matrix, and suppose I, J ∈
(

[n]
r

)
. Since

adj(C) = det(C)C−1 and inv(C) is obtained from adj(C) by scaling the ith row and

column by (−1)i and replacing λ with (−1)nλ, (2.21) implies that

(3.36) ∆I,J(inv(C)) = det(C|λ=(−1)nλ)
r−1∆J,I(C|λ=(−1)nλ).

Set α = t+ (−1)n−kλ. By Proposition 3.22, we have

gn−k ◦D(N |t) =
1

αn−k−1
inv ◦ gk(N |t).

Take the (I, J)-minor of both sides of this equation. Proposition 3.7(3) says that

det(A|λ=(−1)nλ) = αn−k, so by (3.36), we have

∆I,J(A′) =
1

α(n−k−1)r
α(n−k)(r−1)∆J,I(A|λ=(−1)nλ) = αr−(n−k)∆J,I(A|λ=(−1)nλ).



CHAPTER 4

From geometry to combinatorics

4.1 The Gelfand–Tsetlin parametrization

4.1.1 Definition

Recall from §2.2.4 that a k-rectangle is an array of k(n−k)+1 nonnegative integers

satisfying certain inequalities; k-rectangles parametrize the set of rectangular SSYTs

with k rows. By replacing integers with nonzero complex numbers, we obtain a

“rational version” of k-rectangles, as follows. Let

Tk = (C×)Rk × C×

where Rk = {(i, j) | 1 ≤ i ≤ k, i ≤ j ≤ i+ n− k− 1} as in §2.2.4. Denote a point of

Tk by (Xij, t), where (i, j) runs over Rk. We call (Xij, t) a rational k-rectangle. Set

(4.1) xij = Xij/Xi,j−1

for 1 ≤ i ≤ k and i ≤ j ≤ i+ n− k, where we set Xi,i−1 := 1 and Xi,i+n−k := t. The

quantity xij is the rational analogue of the number of j’s in the ith row of a tableau

(cf. (2.9)). Note that there are no inequality conditions on rational k-rectangles.

We now introduce a parametrization of the variety Xk = Gr(k, n)×C× by the set

of rational (n− k)-rectangles.

Given a, b ∈ [n] and za, . . . , zb ∈ C×, define

(4.2) M[a,b](za, . . . , zb) =
∑
i∈[a,b]

ziEii +
∑

i∈[n]\[a,b]

Eii +
∑

i∈[a+1,b]

Ei,i−1

where Eij is an n× n matrix unit. For example, if n = 5, then

(4.3) M[2,4](z2, z3, z4) =


1

z2

1 z3

1 z4

1


64
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where only nonzero entries are shown.

Definition 4.1.

1. Define Φn−k : Tn−k → GLn by

Φn−k(Xij, t) =
1∏

i=n−k

M[i,i+k](xii, xi,i+1, . . . , xi,i+k),

where xij is defined by (4.1), and the terms in the product are arranged from

left to right in decreasing order of i. We call Φn−k(Xij, t) a tableau matrix.

2. Define Θk : Tn−k → Xk by Θk(Xij, t) = N |t, where N is the subspace spanned

by the first k columns of the tableau matrix Φn−k(Xij, t). We call Θk the

Gelfand–Tsetlin parametrization of Xk.

Example 4.2. Suppose n = 5 and k = 2. For (Xij, t) ∈ T3, we have

(4.4) Φ3(Xij, t) =


x11 0 0 0 0

x22 x12x22 0 0 0

x33 (x12 + x23)x33 x13x23x33 0 0

1 x12 + x23 + x34 x13(x23 + x34) x24x34 0

0 1 x13 x24 x35


where xij is defined by (4.1). We have Θ2(Xij, t) = N |t, where N is spanned by the

first two columns of this tableau matrix.

Remark 4.3. The matrix M[a,b]

(
Xa,

Xa+1

Xa

, . . . ,
Xb−1

Xb−2

,
1

Xb−1

)
has the factorization

x−a(Xa)x−(a+1)(Xa+1) · · ·x−(b−1)(Xb−1)

where

x−i(z) = zEii + z−1Ei+1,i+1 + Ei+1,i +
∑

j 6=i,i+1

Ejj.

Thus, the map Φn−k is a special case of Berenstein and Kazhdan’s parametrization

Θ−P of the variety UwPU ∩ B− × Z(LP ), where P is a parabolic subgroup of a

reductive group G [BK07a, §3.1]. In our case, the reductive group is PGLn(C),1 P

is the maximal parabolic subgroup corresponding to the kth node of the type An−1

Dynkin diagram, wP is the Grassmannian permutation

wP =

(
1 · · · k k + 1 · · · n

n− k + 1 · · · n 1 · · · n− k

)
,

and Z(LP ) is the centralizer of the Levi subgroup of P (a one-dimensional sub-torus

of the diagonal matrices in PGLn(C)).
1PGLn(C) is the Langlands dual of SLn(C).
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We now state two important results about the maps Φn−k and Θk. The first

result gives an explicit formula for the inverse of the map Θk. Recall the basic

Plücker coordinates Ji,j = [i, j] ∪ [n− k + j − i+ 2, n] introduced in §2.5.

Proposition 4.4. The map Θk is an open embedding of Tn−k into Xk. The (rational)

inverse is given by N |t 7→ (Xij, t), where

(4.5) Xij =
PJi,j(N)

PJi+1,j
(N)

for 1 ≤ i ≤ n− k and i ≤ j ≤ i+ k − 1.

The second result shows that Φn−k is closely related to the unipotent crystal map

g : Xk → B−. (In fact, the definition of the map g came out of our desire to

“cyclically extend” Φn−k.)

Proposition 4.5. Suppose (Xij, t) ∈ Tn−k. If N |t = Θk(Xij, t), then we have

g(N |t)|λ=0 = Φn−k(Xij, t).

Propositions 4.4 and 4.5 are proved using planar networks in §4.1.2.

4.1.2 Network representation and formulas for Plücker coordinates

In what follows, we freely use the constructions and results about planar networks

from §2.6. Suppose (Xij, t) ∈ Tn−k, and let xij = Xij/Xi,j−1 as in (4.1) (so Xi,i−1 := 1

and Xi,i+k := t). Let Γk,n = Γk,n(Xij, t) be the planar network on the vertex set Z2

with

• n sinks labeled 1′, . . . , n′, with the jth sink located at (0, j);

• n sources labeled 1, . . . , n, with the jth source located at (n− k, j − n+ k);

• a vertical2 arrow pointing from (i, j) to (i − 1, j) for i = 1, . . . , n − k and

j = 1, . . . , k. The weight of this edge is 1;

• a diagonal arrow pointing from (i, j − i) to (i− 1, j − i+ 1) for i = 1, . . . , n− k
and j = 1, . . . , n. The weight of this edge is xij if 0 ≤ j−i ≤ k, and 1 otherwise.

The network Γ2,5 is shown in Figure 4, and Γ3,5 appeared previously in Figure 3.

Lemma 4.6. The matrix associated to Γk,n(Xij, t) is the tableau matrix Φn−k(Xij, t).
2We assume the network is drawn using the convention for matrix indices, that is, the first coordinate gives the

vertical position, and increases from top to bottom; the second coordinate gives the horizontal position, and increases
from left to right.



67

1

1′

2

2′

x33

x22

x11

3

3′

x34

x23

x12

4

4′

x35

x24

x13

5

5′

Figure 4: The network Γ2,5. Unlabeled edges have weight 1.

Proof. By definition,

(4.6) Φn−k(Xij, t) =
1∏

i=n−k

M[i,i+k](xii, xi,i+1, . . . , xi,i+k).

It’s easy to see that the ith “row” from the top of Γk,n (i.e., the part of the network

where the first coordinate is between i− 1 and i) is a network representation of the

ith factor in the right-hand side of (4.6). The full network Γk,n is obtained by gluing

these “rows” together, and the gluing of networks corresponds to multiplication of

the associated matrices.

Now suppose N |t = Θk(Xij, t). By definition, N is the subspace represented by

N ′, the matrix consisting of the first k columns of Φn−k(Xij, t). By erasing everything

to the right of the sink k′ in Γk,n, we obtain a network representation of N ′. We also

contract the diagonal edges of weight 1 coming out of the first several sources to

obtain a slightly more compact network (clearly this does not change the associated

matrix), and we call the resulting network Γk,n. The network Γ5,9 appears in Figure

5.

We will use the networks Γk,n and Γk,n to deduce several properties of the maps

Φn−k and Θk. We begin with a simple example. Recall that an n× k matrix is said

to have diagonal form if its first k rows are lower triangular with nonzero entries on

the main diagonal, and its last k rows are upper uni-triangular.

Lemma 4.7. Let N ′ be the first k columns of Φn−k(Xij, t). This matrix has diagonal

form, and it does not depend on the parameter t.

Proof. For i = 1, . . . , k, there is a single path in Γk,n from source i to sink i′, and there

are no paths from from source i to source j′ for j > i. Similarly, for i = n−k+1, . . . , n,

there is a single path of weight one from i to (i− n+ k)′, and no paths from i to j′

for j < i− n+ k. Thus, N ′ has diagonal form.
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1′

5

x11

x22

x33

x44

2′

6

x12

x23

x34

x45

3′

7

x13

x24

x35

x46

4′

8

x14

x25

x36

x47

5′

9

x15

x26

x37

x48

4

3

2

1
1 1 2 2 3

3 3 4

4

Figure 5: A vertex-disjoint family of paths in Γ5,9 that contributes to the Plücker coordinate P13468,
and the corresponding {1, 3, 4, 6, 8}-tableau.

The second assertion follows from the fact that the edge weight xij only depends

on t when j = i + k, and the edges of weight xi,i+k are erased in passing from Γk,n

to Γk,n.

We would like to have formulas for the Plücker coordinates of N (equivalently,

for the maximal minors of the diagonal form representative N ′) in terms of the

parameters Xij. The Lindström Lemma expresses these minors as sums of monomials

in the edge weights xij = Xij/Xi,j−1, where the sum runs over vertex-disjoint families

of paths in Γk,n. We now introduce a combinatorial object that encodes these families

of paths.

For k ∈ [n− 1], let

Dk = {(a, b) ∈ Z2 | 1 ≤ a ≤ b ≤ k}

be the shifted staircase of size k. We identify Dk with its “Young diagram,” so that

each point (a, b) ∈ Dk corresponds to a box in row a and column b of the diagram.

Given a subset J = {j1 < j2 < · · · < jk} ∈
(

[n]
k

)
, let DJ,k be the subset of Dk

obtained by removing jr−n+ k boxes from the bottom of column r, for each r such

that jr > n− k. For example, if n = 8, then

D3 = and D{4,5,7},3 = .

Definition 4.8. Let J = {j1 < · · · < jk}. A (J, k)-tableau is a map T : DJ,k → [n−k]

satisfying the following three properties:

(a) T (a, b) ≤ T (a, b+ 1) whenever (a, b), (a, b+ 1) ∈ DJ,k;
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(b) T (a, b) < T (a+ 1, b) whenever (a, b), (a+ 1, b) ∈ DJ,k;

(c) T (a, a) = ja if ja ≤ n− k.

We will often write J-tableau instead of (J, k)-tableau when k is understood.

Let Xij and xij = Xij/Xi,j−1 be as above. Define the weight of a J-tableau T by

wt(T ) =
∏

(a,b)∈DJ,k

xT (a,b),T (a,b)+b−a.

If DJ,k is empty (i.e., if J = [n−k+1, n]), we define the weight of the unique (empty)

J-tableau to be 1.

Note that properties (a) and (b) require the rows of T to weakly increase, and the

columns to strictly increase.

Example 4.9. Let n = 8, k = 3. There are two {4, 5, 7}-tableaux, shown here with

their weights:

4 4 4

5
x44x45x46x55

4 4 5

5
x44x45x55x56.

Lemma 4.10. Suppose (Xij, t) ∈ Tn−k, and N |t = Θk(Xij, t). Then

(4.7)
PJ(N)

P[n−k+1,n](N)
=
∑
T

wt(T )

where the sum runs over all (J, k)-tableaux T .

Proof. The ratio PJ(N)/P[n−k+1,n](N) is equal to the maximal minor ∆J(N ′), where

N ′ is the diagonal form representative of N . The matrix N ′ is represented by the

network Γk,n, so by the Lindström Lemma, ∆J(N ′) is equal to the weighted sum over

vertex-disjoint families of paths p1, . . . , pk in Γk,n, where pr starts at source jr and

ends at sink r′. Let p1, . . . , pr be a (not necessarily vertex-disjoint) family of paths

such that pr goes from source jr to sink r′. The number of diagonal edges in pr is,

by definition, equal to the number of boxes in the rth column of the diagram DJ,k.

Define T : DJ,k → [n − k] by filling the rth column of DJ,k with the heights of the

diagonal edges in the rth path (in increasing order), where the height of the edge

from (i, j) to (i − 1, j + 1) is i. See Figure 5 for an example of a family of paths in

Γk,n and the associated filling of DJ,k.

It’s clear that the association (pr)1≤r≤k 7→ T is a bijection between (not necessarily

vertex-disjoint) families of paths and fillings of DJ,k satisfying properties (b) and (c)

of Definition 4.8. It’s also not hard to see that the rows of T are weakly increasing if

and only if the family of paths is vertex-disjoint, and that the association is weight-

preserving. This completes the proof.
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Remark 4.11. A similar result, also using an object called J-tableau to record

vertex-disjoint families of paths, appeared previously in work of Berenstein–Fomin–

Zelevinsky [BFZ96, Proposition 2.6.7]. In that setting, J-tableaux are related to flag

minors of an n× n matrix, rather than maximal minors of an n× k matrix.

Corollary 4.12. Let N |t = Θk(Xij, t).

1. For all J ∈
(

[n]
k

)
, PJ(N)/P[n−k+1,n](N) is a non-zero homogeneous polynomial

of degree |DJ,k| in the quantities xij = Xij/Xi,j−1, with non-negative integer

coefficients.

2. For a basic subset Ji,j = [i, j] ∪ [n− k + j − i+ 2, n], we have

(4.8)
PJi,j(N)

P[n−k+1,n](N)
=

∏
a∈[i,j]∩[n−k]

Xaj.

Proof. For any J , there is at least one J-tableau, namely, the tableau with all entries

in row r equal to jr. The weight of every J-tableau is a monomial of degree |DJ,k|,
so (1) is proved.

Next, we claim that for each Ji,j, there is only one Ji,j-tableau. Indeed, the first

entry in the ath row of a Ji,j-tableau is required to be i + a − 1, and the lengths of

the columns of DJi,j ,k are weakly increasing, so every entry in the ath row must be

i+ a− 1. The weight of this unique tableau is

m∏
a=1

j−i+1∏
b=a

xi+a−1,i+b−1 =
m+i−1∏
a′=i

Xa′j

where m = min(j − i + 1, n − k − i + 1). Since [i,m + i − 1] = [i, j] ∩ [n − k], we

obtain (4.8).

Now we are in position to prove Propositions 4.4 and 4.5.

Proof of Proposition 4.4. Recall that Uk is the subset of Gr(k, n) where the basic

Plücker coordinates are nonzero. Define Ψk : Uk×C× → Tn−k by Ψk(N |t) = (Yij, t),

where

Yij =
PJi,j(N)

PJi+1,j
(N)

.

Suppose (Xij, t) ∈ Tn−k, and let N |t = Θk(Xij, t). By part (2) of Corollary 4.12, the

basic Plücker coordinates of N are monomials in the Xij (so they are nonzero), and

PJi,j(N)

PJi+1,j
(N)

=

∏
a∈[i,j]∩[n−k]

Xaj∏
a∈[i+1,j]∩[n−k]

Xaj

= Xij,
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so Ψk ◦Θk = Id.

Now suppose N ∈ Uk. Set N |t Ψk7→ (X ′ij, t)
Θk7→ N ′|t. Again by part (2) of Corollary

4.12, we have

PJi,j(N
′)

P[n−k+1,n](N ′)
=

∏
a∈[i,j]∩[n−k]

X ′aj =
∏

a∈[i,j]∩[n−k]

PJa,j(N)

PJa+1,j
(N)

=
PJi,j(N)

PJj+1,j
(N)

=
PJi,j(N)

P[n−k+1,n](N)
.

This shows that N and N ′ have the same nonzero basic Plücker coordinates, so

N = N ′ by Lemma 2.45. Thus, Θk ◦Ψk = Id, and we are done.

Proof of Proposition 4.5. Let N |t = Θk(Xij, t), and let A = g(N |t)|λ=0. By Lemma

4.7, the first k columns of Φn−k(Xij, t) are the diagonal form representative of N .

By Proposition 3.7(1) and inspection of the definition of g, the same is true of the

first k columns of A. Thus, the first k columns of these matrices agree.

Both A and Φn−k(Xij, t) are lower triangular, so it remains to consider the entries

in positions (i, j), with k < j ≤ i. First suppose j = i. In the network Γk,n, there is

a single path from source j to sink j′, and this path has weight

t

Xj−k,j−1

∏
i∈[j−k+1,j]∩[n−k]

Xij

Xi,j−1

= t
PJj−k+1,j

(N)

PJj−k,j−1
(N)

= t
P[j−k+1,j](N)

P[j−k,j−1](N)

by Corollary 4.12(2) (note that Xj,j−1 = 1). This shows that

(4.9) Φn−k(Xij, t)jj = t
P[j−k+1,j](N)

P[j−k,j−1](N)
= Ajj.

Now suppose j < i. We claim that

(4.10) ∆[j−k+1,j]∪{i},[1,k]∪{j}(Φn−k(Xij, t)) = 0.

To see this, observe that in Γk,n, there is exactly one vertex-disjoint family of paths

from [j − k + 1, j] to [1, k], and the kth path in this family “blocks off” the only

access to the sink j′, so for any i > j, there is no way to add a path from i to j′

which is vertex-disjoint from the other k paths. Thus, the determinant is zero by the

Lindström Lemma.

The only nonzero entries in column j and rows [j − k + 1, j] ∪ {i} of Φn−k(Xij, t)

are in rows j and i. Expand the determinant in (4.10) along the jth column and use

(4.9), along with the fact that the first k columns of Φn−k(Xij, t) are the diagonal

form representative of N , to get

0 = Φn−k(Xij, t)ij
P[j−k+1,j](N)

P[n−k+1,n](N)
− Φn−k(Xij, t)jj

P[j−k+1,j−1]∪{i}(N)

P[n−k+1,n](N)

= Φn−k(Xij, t)ij
P[j−k+1,j](N)

P[n−k+1,n](N)
− t

P[j−k+1,j](N)

P[j−k,j−1](N)

P[j−k+1,j−1]∪{i}(N)

P[n−k+1,n](N)
.
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This shows that Φn−k(Xij, t)ij = t
P[j−k+1,j−1]∪{i}(N)

P[j−k,j−1](N)
= Aij, completing the proof.

We end this section by proving the aforementioned result that the basic (resp.,

reflected basic) Plücker coordinates “positively generate” all Plücker coordinates.

Proof of Proposition 2.46. Suppose N ∈ Uk. By Proposition 4.4, we have N |t =

Θk(Xij, t), where Xij =
PJi,j(N)

PJi+1,j
(N)

. Let N ′ be the diagonal form representative of

N . We saw above that N ′ is the matrix associated to the network Γk,n(Xij, t). The

edge weights of this network are ratios of the Xij, which are themselves ratios of

basic Plücker coordinates of N . Thus, by the Lindström Lemma, every minor of

N ′ is a Laurent polynomial in the basic Plücker coordinates of N with non-negative

integer coefficients. Since Uk is a dense subset of Gr(k, n), the same is true of the

Plücker coordinates themselves (i.e., as rational functions on the affine cone over the

Grassmannian).

To obtain the result for reflected basic Plücker coordinates, apply the automor-

phism Tw0 : Gr(k, n)→ Gr(k, n) that was introduced at the beginning of §3.3.3.

4.2 Positivity and tropicalization

4.2.1 Positive varieties and positive rational maps

We say that a rational function h ∈ C(z1, . . . , zd) is positive if it can be expressed

as a ratio of two nonzero polynomials in z1, . . . , zd whose coefficients are positive

integers. We call such an expression a positive expression. We say that h is non-

negative if it is either positive or zero. For example, h = z2
1 − z1z2 + z2

2 is positive

because it has the positive expression h =
z3

1 + z3
2

z1 + z2

. (We remark that the term

“subtraction-free” is often used in place of “positive.”)

We say that a rational map h = (h1, . . . , hd2) : (C×)d1 → (C×)d2 is a positive map

of tori (or simply positive) if each hi is given by a positive element of C(z1, . . . , zd1).

We now introduce a notion of positivity for rational maps between varieties more

complicated than (C×)d. Our definition is a stripped-down version of the definition

in [BK07a].

Definition 4.13. A positive variety is a pair (X,ΘX), where X is an irreducible

complex algebraic variety, and ΘX : (C×)d → X is a birational isomorphism. We say

that ΘX is a parametrization of X. When there is no danger of confusion, we refer

to a positive variety by the name of its underlying variety.
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Suppose (X,ΘX) and (Y,ΘY ) are positive varieties. A rational map h : X → Y

is a morphism of positive varieties (or simply positive) if the rational map

Θh := Θ−1
Y ◦ h ◦ΘX : (C×)d1 → (C×)d2

is a positive map of tori.

Remark 4.14. If h : X → Y and g : Y → Z are rational maps, then the composition

g ◦ h is undefined if the image of h is disjoint from the domain of g. When we say

that a composition of rational maps is positive, we implicitly guarantee that it is

defined. For example, in the previous definition, h is not positive if the image of h is

disjoint from the domain of Θ−1
Y . One nice feature of positive rational maps is that

their composition is always defined, by the following result.

Lemma 4.15. The composition of positive rational maps is positive.

Proof. Let (X,ΘX), (Y,ΘY ), (Z,ΘZ) be positive varieties, and suppose h : X → Y

and g : Y → Z are positive rational maps. This means that

Θh : (C×)d1 → (C×)d2 and Θg : (C×)d2 → (C×)d3

are positive maps of tori. It’s clear that Θh, being positive, is defined on all positive

real points (R>0)d1 , and it maps these points into (R>0)d2 ; similarly, Θg is defined

on (R>0)d2 , so Θg ◦Θh = Θ(g ◦h) is defined. Clearly this map is also a positive map

of tori, so g ◦ h is positive.

If (X,ΘX) and (Y,ΘY ) are positive varieties, then (X ×Y,ΘX ×ΘY ) is a positive

variety, and if Z is another positive variety, it is easy to see that a rational map

(h1, h2) : Z → X × Y is positive if and only if h1 and h2 are positive.

The most basic example of a positive variety is the d-dimensional torus ((C×)d, Id).

A more interesting example comes from the Gelfand–Tsetlin parametrization

Θk : (C×)k(n−k) × C× → Gr(k, n)× C×

introduced in the preceding section. By definition, this map sends (Xij, t) 7→ N |t,
and by Lemma 4.7, the subspace N only depends on the Xij. We denote the map

(Xij) 7→ N by Θk, so that Θk = Θk×Id. Proposition 4.4 shows that Θk is a birational

isomorphism, so the pair (Gr(k, n),Θk) is a positive variety. All positive varieties

that we consider below will be products of tori and Grassmannians.

We now prove several necessary and sufficient conditions for rational maps to and

from the Grassmannian to be positive.

Say that a rational function h :
∏

j Gr(kj, n)× (C×)d → C is Plücker-positive if it

can be expressed as a ratio a/b, where a and b are nonzero polynomials with positive
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integer coefficients in the Plücker coordinates of the various Grassmannians, and the

coordinates z1, . . . , zd of (C×)d. We call such an expression a/b a Plücker-positive

expression. For example, the rational function h =
P13P24 − P12P34

P12P34

is Plücker-

positive because it can be expressed as h =
P14P23

P12P34

by a three-term Plücker relation.

It’s clear that Plücker-positivity is equivalent to positivity for rational functions

on (C×)d. In fact, the same is true for rational functions on
∏

j Gr(kj, n)× (C×)d.

Lemma 4.16. A rational function h :
∏

j Gr(kj, n) × (C×)d → C is positive (i.e.,

Θh := h ◦ (
∏

j Θkj × Id) is positive) if and only if it is Plücker-positive.

Proof. We assume that h is a rational function on Gr(k, n) to simplify notation (the

argument in the general case is the same). Let (Xij) denote the coordinates on

(C×)k(n−k).

Suppose h is Plücker-positive. By Corollary 4.12(1), each Plücker coordinate of

the subspace Θk(Xij) is given by a positive rational function in the Xij. By choosing

a Plücker-positive expression for h and replacing the Plücker coordinates with these

positive expressions in the Xij, we obtain a positive expression for Θh, so h is positive.

Conversely, if h is positive, we may choose a positive expression for Θh in terms

of the Xij, and replace each Xij with the ratio of Plücker coordinates in (4.5). This

gives a Plücker-positive expression for h ◦Θk ◦Θ
−1

k = h.

Lemma 4.17. Let (X,ΘX) be a positive variety, and let h : X → Gr(k, n) be a

rational map. The following are equivalent:

1. h is positive (i.e., Θ
−1

k ◦ h ◦ΘX is positive);

2. The rational functions (PJ/PI) ◦h : X → C× are positive for all basic k-subsets

I, J ;

3. (PJ/PI) ◦ h is positive for all reflected basic k-subsets I, J ;

4. (PJ/PI) ◦ h is positive for all k-subsets I, J .

We say that a map satisfying these equivalent conditions is Plücker-positive.

Proof. Conditions (2)-(4) are equivalent by Proposition 2.46. We now show the

equivalence of (1) and (2). Suppose (X ′ij) = Θ
−1

k (N). Proposition 4.4 shows that

j∏
s=i

X ′sj =
PJi,j(N)

PJj+1,j
(N)

=
PJi,j(N)

P[n−k+1,n](N)
,

so positivity of Θ
−1

k ◦ h ◦ ΘX implies positivity of (PJi,j/P[n−k+1,n]) ◦ h ◦ ΘX for all

basic subsets Ji,j. Conversely, each X ′ij is a ratio of basic Plücker coordinates of N
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(again by Proposition 4.4), so if (PJ/PI) ◦ h ◦ ΘX is positive for all basic subsets I

and J , then Θ
−1

k ◦ h ◦ΘX is positive.

Lemmas 4.16 and 4.17 show that for the varieties we consider, Plücker-positivity

is equivalent to positivity. Thus, we will use the terms “Plücker-positive” and “pos-

itive” interchangeably from now on. As an application of this formalism, we show

that the geometric crystal maps and symmetries on Xk1,...,kd are positive.

Lemma 4.18. Each of the rational maps γ, εi, ϕi, ei, f,PR, S,D on Xk1,...,kd is posi-

tive.

Proof. First consider the d = 1 case. From the explicit formulas for γ, εi, ϕi in §3.1,

it’s clear that these maps are (Plücker-)positive. The decoration f is positive by the

formula in Definition 3.5, and PR is positive by (3.1). By Lemma 3.14, the basic

Plücker coordinates of St(N) are positive, so S is positive by Lemma 4.17. The map

µ is positive by (3.30), so D = S ◦ µ is positive as well by Lemma 4.15.

Now consider ei : C××Xk → Xk. By Proposition 3.9(3) and the positivity of PR

(and PR−1), it suffices to prove that e1 is positive. Suppose ec1(N |t) = N ′|t. By the

explicit description of ei in §3.1, N ′ is obtained from N by adding a scalar multiple

of the second row to the first row, so PJ(N ′) = PJ(N) unless 1 ∈ J and 2 6∈ J . The

only basic k-subset which contains 1 but not 2 is J1,1 = {1}∪ [n−k+2, n], and using

the formulas in §3.1, we compute

P{1}∪[n−k+2,n](N
′) = P{1}∪[n−k+2,n](N) +

c− 1

ϕ1(N |t)
· P{2}∪[n−k+2,n](N)

= P{1}∪[n−k+2,n](N) + (c− 1) · P{1}∪[n−k+2,n](N)

= cP{1}∪[n−k+2,n](N).

We conclude that every basic Plücker coordinate of N ′ is positive, so e1 is positive

by lemma 4.17.

The d > 1 case is immediate for PR, S, and D; for γ, εi, ϕi, ei, and f , it follows

from the positivity of the explicit formulas in Definition/Proposition 2.32.

Let Φk
I,J : Tk → C be the rational function (Xij, t) 7→ ∆I,J(Φk(Xij, t)). The

following technical result is needed in Chapter 5.

Lemma 4.19. Let I = {i1 < · · · < ir} and J = {j1 < · · · < jr} be two r-subsets of

[n], with r ≤ n− k. Then the rational function Φk
I,J is positive if

(4.11) is − k ≤ js ≤ is for s = 1, . . . , r,

and zero otherwise.
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Proof. Recall from §4.1 that the matrix Φk(Xij, t) is represented by the planar net-

work Γn−k,n (see Figure 4 for an example of such a network). By the Lindström

Lemma, ∆I,J(Φk(Xij, t)) is equal to the sum of the weights of the vertex-disjoint

families of paths in Γn−k,n from the sources in I to the sinks in J . Since the edge

weights xij are ratios of the parameters Xij and t, the function Φk
I,J is positive if

there is at least one vertex-disjoint family of paths from I to J , and zero if there

are no such families. Due to the ordering of the sources and sinks, a vertex-disjoint

family of paths from I to J must have paths from is to j′s for each s. There is a path

from is to j′s if and only if is− k ≤ js ≤ is, so (4.11) is a necessary condition for Φk
I,J

to be nonzero.

Suppose I and J satisfy (4.11). We show that Φk
I,J is positive by constructing

an explicit vertex-disjoint family of paths p1, . . . , pr from I to J . If js = is, then

ps is the unique path from is to i′s. If js < is, set as = max(s, is − k), and let ps

be the unique path from is to j′s whose vertical steps are on the line containing the

sink a′s. (Note that since there are no vertical steps on the lines containing the sinks

(n − k + 1)′, . . . , n′, the assumption s ≤ r ≤ n − k is necessary to guarantee the

existence of this path.) It is easy to verify that these paths are vertex-disjoint.

4.2.2 Definition of tropicalization

Tropicalization is a procedure for turning positive3 rational maps (C×)d1 → (C×)d2

into piecewise-linear maps Zd1 → Zd2 by replacing the operations +, ·,÷ with the

operations min,+,−, and ignoring constants. More formally, if

p =
∑

cm1,...,mdz
m1
1 · · · z

md
d

is a nonzero polynomial in z1, . . . , zd with positive integer coefficients, set

Trop(p) = min
(m1,...,md)

{m1z1 + . . .+mdzd}.

Given a positive rational function h ∈ C(z1, . . . , zd), define its tropicalization to be

the piecewise-linear function from Zd to Z given by

Trop(h) = Trop(p)− Trop(q),

where h = p/q is some expression of h as a ratio of polynomials with positive integer

coefficients (this definition does not depend on the choice of p and q by, e.g., [BFZ96,

Lemma 2.1.6]). For example,

Trop

(
z2

1z2 + z3

z5
2 + 8z1z3 + 4

)
= min(2z1 + z2, z3)−min(5z2, z1 + z3, 0).

3For a more general notion of tropicalization that removes the positivity assumption, see [BK07a, §4].
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Given a positive map of tori h = (h1, . . . , hd2) : (C×)d1 → (C×)d2 , define Trop(h)

to be the piecewise-linear map (Trop(h1), . . . ,Trop(hd2)) : Zd1 → Zd2 . If h, g :

(C×)d1 → (C×)d2 are positive, then

Trop(h+ g) = min(Trop(h),Trop(g)) and Trop(hg±1) = Trop(h)± Trop(g).

Furthermore, tropicalization respects composition of positive maps.

Definition 4.20. Suppose (X,ΘX) and (Y,ΘY ) are positive varieties. If h : X → Y

is a positive rational map, define its tropicalization ĥ by

ĥ = Trop(Θh) := Trop(Θ−1
Y ◦ h ◦ΘX).

4.3 Recovering the combinatorial crystals

By tropicalizing the rational maps associated to the geometric crystal Xn−k, we

obtain piecewise-linear maps on T̃k. We will show that these piecewise-linear maps,

when restricted to the set of k-rectangles inside T̃k (Definition 2.21), give formulas

for the affine crystal structure on k-row rectangular tableaux. More generally, the

tropicalizations of the maps on Xn−k1,...,n−kd describe the crystal structure of the

tensor product
⊗d

j=1

⊔
LB

kj ,L.

4.3.1 Tropicalizing the geometric crystal maps and symmetries

The first step is to show that the tropicalization of the decoration f is able to

identify the set of k-rectangles inside T̃k. Recall that f : Xn−k → C is defined by

(4.12) f(N |t) =
∑
i 6=n−k

P{i−n+k}∪[i−n+k+2,i](N)

P[i−n+k+1,i](N)
+ t

P[2,n−k]∪{n}(N)

P[1,n−k](N)
,

and the decoration f : Xn−k1,...,n−kd → C is the sum of the decorations on the

individual factors. Using the notation of the previous section, we have the map

Θf = f ◦ (Θn−k1 × · · · ×Θn−kd) : Tk1,...,kd → C,

and since this map is positive, we have its tropicalization

f̂ = Trop(Θf) : T̃k1,...,kd → Z.

Proposition 4.21. Suppose bj ∈ T̃kj for j = 1, . . . , d. Then f̂(b1, . . . , bd) ≥ 0 if and

only if each bj is a kj-rectangle.

The proof relies on the following technical result, which is proved in §4.3.3.
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Lemma 4.22. The map Θf = f ◦Θn−k : Tk → C is given by the formula

(4.13) Θf(Xij, t) = Xkk +
t

X1,n−k
+

∑
i∈[k]

j∈[i+1,i+n−k−1]

Xij

Xi,j−1

+
∑
i∈[k−1]

j∈[i,i+n−k−1]

Xij

Xi+1,j+1

.

Proof of Proposition 4.21. Since f(x1, . . . , xd) = f(x1) + . . .+ f(xd), we have

f̂(b1, . . . , bd) = min(f̂(b1), . . . , f̂(bd)),

so it suffices to consider the d = 1 case. Suppose b = (Bij, L) ∈ T̃k. By inspection of

the defining inequalities of a Gelfand–Tsetlin pattern, it’s clear that b is a k-rectangle

if and only if the following inequalities are satisfied:

1. Bkk ≥ 0

2. L ≥ B1,n−k

3. Bij ≥ Bi,j−1 for i ∈ [k] and j ∈ [i+ 1, i+ n− k − 1]

4. Bij ≥ Bi+1,j+1 for i ∈ [k − 1] and j ∈ [i, i+ n− k − 1].

Tropicalizing the formula (4.13) for Θf , we see that f̂(b) ≥ 0 if and only if b satisfies

these inequalities.

By Lemma 4.18, the maps γ, εi, ϕi, ei and PR are positive. By tropicalizing, we

obtain piecewise-linear maps

ε̂i, ϕ̂i : T̃k1,...,kd → Z γ̂ : T̃k1,...,kd → Zn P̂R : T̃k1,...,kd → T̃k1,...,kd

and

êi : Z× T̃k1,...,kd → T̃k1,...,kd .

Since ei is an action of the multiplicative group C×, êi is an action of the additive

group Z.

Theorem 4.23. Let bj be a kj-rectangle for j = 1, . . . , d, and let b = b1 ⊗ · · · ⊗ bd.
For i ∈ Z/nZ, we have

1. γ̂(b) = wt(b).

2. ε̂i(b) = −ε̃i(b) and ϕ̂i(b) = −ϕ̃i(b).

3. ẽi(b) is defined if and only if f̂(êi(1,b)) ≥ 0; in this case, êi(1,b) = ẽi(b).

4. f̃i(b) is defined if and only if f̂(êi(−1,b)) ≥ 0; in this case, êi(−1,b) = f̃i(b).

(Note that f̂ is the tropicalization of the decoration, whereas f̃i is a crystal operator!)
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The key to the proof of Theorem 4.23 is the following result, which is proved in

§4.3.4.

Theorem 4.24. If b is a k-rectangle, then P̂R(b) = p̃r(b).

Remark 4.25. The map PR clearly has order n, so Theorem 4.24 gives a “birational”

proof that p̃r has order n on rectangular tableaux. Grinberg and Roby used a similar

birational technique to prove an equivalent result [GR15].

Proof of Theorem 4.23. First assume d = 1. We prove each of these statements for

i = 1, and then Proposition 2.8, Proposition 3.9, and Theorem 4.24 allow us to

conjugate by PR at the geometric level and p̃r at the combinatorial level to obtain

the statements for all i. (In the case of γ, we show that the first coordinate of γ̂(b)

is equal to the first coordinate of wt(b).)

Let b = (Bij, L) be a k-rectangle, and let N |t = Θn−k(Xij, t). By definition, the

first coordinate of wt(b) is the number of 1’s in the tableau corresponding to b, which

is B11 (since 1’s can only appear in the first row of a tableau). By the explicit formula

for γ in §3.1 and Corollary 4.12(2), we see that the first coordinate of γ(N |t) is equal

to
P{1}∪[k+2,n](N)

P[k+1,n](N)
= X11.

This proves (1).

For (2)-(4), we assume that k 6= 1, n− 1 to avoid “boundary effects” (the reader

may easily check the cases k = 1, n− 1). By Corollary 4.12(2), we have

ε1(N |t) =
P{2}∪[k+2,n](N)P{1}∪[k+2,n](N)

P[k+1,n](N)P{1,2}∪[k+3,n](N)
=
X11

X12

and

ϕ1(N |t) =
P{2}∪[k+2,n](N)

P{1}∪[k+2,n](N)
=
X22

X11

.

Thus, we have −ε̂1(b) = B12 − B11 and −ϕ̂1(b) = B11 − B22, and (2) follows from

comparison with Example 2.19.

Now suppose

N |t
ec17→ N ′|t

Θ−1
n−k7→ (X ′ij, t).

By Proposition 4.4, the X ′ij depend only on the basic Plücker coordinates of N ′, and

it was shown in the proof of Lemma 4.18 that P{1}∪[k+2,n](N
′) = cP{1}∪[k+2,n](N),

and all other basic Plücker coordinates of N and N ′ are the same. Thus, the effect

of Θ−1
n−k ◦ eci ◦ Θn−k on (Xij, t) is to replace X11 with cX11, and to leave the other

Xij unchanged. This means that ê1(m, b) adds m to B11. Furthermore, (4.13) shows
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that if f̂(b) ≥ 0, then f̂(ê1(1, b)) ≥ 0 if and only if B12 > B11, and f̂(ê1(−1, b)) ≥ 0

if and only if B11 > B22.

We saw in Example 2.19 that ẽ1(b) is not defined when B12 = B11, and otherwise

ẽ1(b) increases B11 by 1; similarly, f̃1(b) is not defined when B11 = B22, and otherwise

f̃1(b) decreases B11 by 1. This agrees with the description of ê1(±1, b) in the previous

paragraph, so (3) and (4) are proved.

The result for general d follows from the d = 1 case by [BK07a, Proposition

6.7]. The point is that the formulas of Definition/Proposition 2.32 tropicalize to the

formulas defining the tensor product of crystals.

Finally, we consider the symmetries S and D. These maps are positive by Lemma

4.18, so we may tropicalize them to get piecewise-linear maps

Ŝ : T̃k → T̃k D̂ : T̃k → T̃n−k.

Recall the symmetries r̃ot and r̃efl from §2.2.4.

Theorem 4.26. If b is a k-rectangle, then Ŝ(b) = r̃ot(b) and D̂(b) = r̃efl(b).

Proof. Write Jri,j for the basic subset [i, j] ∪ [n− r + j − i+ 2, n] of size r.

Suppose (Xij, t) ∈ Tk, and let N |t = Θn−k(Xij, t). Set

(X ′ij, t) = Θ−1
n−k ◦ S(N |t) and (X ′′ij, t) = Θ−1

k ◦D(N |t).

By Proposition 4.4 and Lemma 3.14, we have

X ′ij =
PJn−ki,j

(St(N))

PJn−ki+1,j
(St(N))

=
tmin(j−i+1,k−i+1)PJn−kk−i+2,n−j

(N)

tmin(j−i,k−i)PJn−kk−i+1,n−j
(N)

=
t

Xk−i+1,n−j
.

Tropicalizing this equality and comparing with the definition of r̃ot, we see that

Ŝ = r̃ot. Similarly, using Proposition 4.4, Lemma 3.14, (3.30), and the fact that

(Jki,j)
∗ = Jn−kk−j+i,n−j, we compute

X ′′ij =
PJki,j(St(µ(N)))

PJki+1,j
(St(µ(N)))

= t
PJkn−k−i+2,n−j

(µ(N))

PJkn−k−i+1,n−j
(µ(N))

= t
PJn−kj−i+2,j

(N)

PJn−kj−i+1,j
(N)

=
t

Xj−i+1,j

.

Tropicalizing and comparing with the definition of r̃efl, we conclude that D̂ = r̃efl.

Remark 4.27. The compatibility of r̃ot and r̃efl with the crystal operators on rect-

angular tableaux (Proposition 2.24) follows from this result, Theorem 4.23, and the

compatibility of S and D with the geometric crystal operators (Propositions 3.17

and 3.24).
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4.3.2 Examples

One-row tableaux

Let (X1j, t) = (X11, . . . , X1,n−1, t) be an element of T1, and set x1 = X11, xj =

X1j/X1,j−1 for j = 2, . . . , n− 1, and xn = t/X1,n−1. We have

Φ1(X1j, t) =



x1

1 x2

1 x3

. . .

xn−1

1 xn


.

By definition, Θn−1(X1j, t) = N |t, where N is the (n − 1)-dimensional subspace

spanned by the first n− 1 columns of Φ1(X1j, t). One easily computes

P[1,j]∪[j+2,n](N)

P[2,n](N)
= x1x2 · · ·xj = X1j

for j = 1, . . . , n− 1, in agreement with Proposition 4.4.

Set N ′|t = PR(N |t), and (X ′1j, t) = Θ−1
n−1(N ′|t) = Θ PR(X1j, t). We have

X ′1j =
P[1,j]∪[j+2,n](N

′)

P[2,n](N ′)
= t

P[1,j−1]∪[j+1,n](N)

P[1,n−1](N)
= t

X1,j−1

X1,n−1

= xnx1 · · ·xj−1,

and thus in terms of the variables xi, we have

(4.14) Θ PR(x1, . . . , xn) = (xn, x1, . . . , xn−1).

Now we compute Θec0. SetN ′′|t = ec0(N |t), and (X ′′1j, t) = Θ−1
n−1(N ′′|t) = Θec0(X1j, t).

We have ϕ0(N |t) = t−1
P[1,n−1](N)

P[2,n](N)
= t−1x1 · · ·xn−1

1
, so identifying subspaces with

their diagonal form representatives, we have

N ′′ = x0

(
(−1)n−2

t

c− 1

ϕ0(N |t)

)
·N = x0

(
(−1)n

c− 1

x1 · · ·xn−1

)
·N.

Left-multiplication by x0(a) means adding a times row 1 to row n, so we have

∆[2,n],[n−1](N
′′) = ∆[2,n],[n−1](N) +

c− 1

x1 · · ·xn−1

∆[n−1],[n−1](N) = c,

and the other maximal minors of N ′′ are equal to those of N . Thus, X ′′1j = c−1X1j

for all j, so

(4.15) Θec0(x1, . . . , xn) = (c−1x1, x2, . . . , xn−1, cxn).
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Since conjugation by PR sends eci to eci−1, (4.14) and (4.15) imply that

(4.16) Θeci(x1, . . . , xn) = (x1, . . . , cxi, c
−1xi+1, . . . , xn)

for all i ∈ Z/nZ (this can also be computed directly, of course). Thus, we re-

cover the affine geometric crystal structure on (C×)n described in the introduction

of [KOTY03]. Note that the actions of p̃r and ẽi, f̃i on a one-row tableau are in-

deed given by the tropicalizations of (4.14) and (4.16), where xi is replaced with the

number of i’s in the tableau, and c is replaced with ±1.

The case n = 4, k = 2

Let (Xij, t) = (X11, X12, X22, X23, t) be a rational 2-rectangle. SetN |t = Θ2(Xij, t),

N ′|t = PR(N |t), and (X ′ij, t) = Θ−1
2 (N ′|t) = Θ PR(Xij, t). We have

N =



X11 0

X22
X12

X11

X22

1
X12

X11

+
X23

X22

0 1


and N ′ =


0 −t
X11 0

X22
X12

X11

X22

1
X12

X11

+
X23

X22

 ,

so Proposition 4.4 gives

(4.17)
X ′11 =

P14(N ′)

P34(N ′)
=

t

X23

X ′12 =
P12(N ′)

P24(N ′)
=

tX11X22

X11X23 +X12X22

X ′22 =
P24(N ′)

P34(N ′)
=
X11X23 +X12X22

X22X23

X ′23 =
P23(N ′)

P34(N ′)
=
X12X22

X23

.

Now suppose (Bij, L) = (B11, B12, B22, B23, L) ∈ T̃2. Tropicalizing (4.17), we

obtain P̂R(Bij, L) = (B′ij, L), where

(4.18)

B′11 = L−B23

B′12 = L+B11 +B22 −min(B11 +B23, B12 +B22)

B′22 = min(B11 +B23, B12 +B22)−B22 −B23

B′23 = B12 +B22 −B23.

We verify that these piecewise-linear formulas agree with the combinatorial rule

for p̃r for a particular tableau. Consider the following 2-row tableau T , and its

corresponding 2-rectangle:

(4.19) T =
1 1 2 2 2 3

2 3 3 4 4 4
←→

2

5 1

6 3

.
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Using either Bender–Knuth involutions or jeu-de-taquin, one computes

(4.20) p̃r(T ) =
1 1 1 2 3 3

2 3 3 4 4 4
←→

3

4 1

6 3

.

The reader may verify that the 2-rectangle corresponding to p̃r(T ) agrees with the

evaluation of the piecewise-linear formulas (4.18) on the 2-rectangle corresponding

to T , in accordance with Theorem 4.24.

4.3.3 Proof of Lemma 4.22

Let N |t = Θn−k(Xij, t), and let PJ = PJ(N) denote the Plücker coordinates of

N . The formula for Θf follows from (4.12) and the following formulas:

1.
P{k}∪[k+2,n]

P[k+1,n]

= Xkk

2. t
P[2,n−k]∪{n}

P[1,n−k]

=
t

X1,n−k

3.
P[1,r−k]∪{r}∪[r+2,n]

P[1,r−k]∪[r+1,n]

=
k∑
i=1

Xi,i+r−k

Xi,i+r−k−1

for r = k + 1, . . . , n− 1

4.
P{r}∪[r+2,r+n−k]

P[r+1,r+n−k]

=
n−k∑
j=1

Xr,r+j−1

Xr+1,r+j

for r = 1, . . . , k − 1.

We now prove these formulas.

By Corollary 4.12(2), we have

P{k}∪[k+2,n]

P[k+1,n]

=
Xkk

1
and

P[2,n−k]∪{n}

P[1,n−k]

=

∏
a∈[2,n−k]∩[k]

Xa,n−k∏
a∈[1,n−k]∩[k]

Xa,n−k
=

1

X1,n−k

which gives (1) and (2).

For (3), let J = [1, r − k] ∪ {r} ∪ [r + 2, n], and let T be a J-tableau (see §4.1).

The diagram DJ,n−k has r − k + 1 columns and min(r − k, k) rows, and the lengths

of the first r − k columns are weakly increasing. Since the first entry in the ath row

of T must be a, the first r − k columns are completely determined. It remains to

consider column r − k + 1, which consists of a single box in the top row. The first

r−k boxes in the top row of T are filled with 1, so we may choose any element of [k]

for the last column. If we choose i, then the weight of T is xi,i+r−k
∏

a∈[r−k]∩[k]

Xa,r−k.
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By Corollary 4.12(2), we have
P[1,r−k]∪[r+1,n]

P[k+1,n]

=
∏

a∈[r−k]∩[k]

Xa,r−k. Thus, Lemma 4.10

gives

P[1,r−k]∪{r}∪[r+2,n]

P[1,r−k]∪[r+1,n]

=
k∑
i=1

xi,i+r−k =
k∑
i=1

Xi,i+r−k

Xi,i+r−k−1

.

For (4), let J = {r} ∪ [r + 2, r + n − k], and let T be a J-tableau. The diagram

DJ,n−k has n − k columns and min(n − k, k − r) rows, and the column lengths are

weakly increasing. For a ≥ 2, the condition T (a, a) = ja = r + a implies that every

entry in the ath row of T must be r + a. There is some choice for the first row. The

first entry must be r, but the other n − k − 1 entries can be any weakly increasing

sequence of r’s and r + 1’s. If the first row of T consists of r repeated b times and

r + 1 repeated n− k − b times (for 1 ≤ b ≤ n− k), then

wt(T ) = xrrxr,r+1 · · ·xr,r+b−1xr+1,r+b+1 · · ·xr+1,r+n−k
∏

a∈[r+2,r+n−k]∩[k]

Xa,r+n−k

= Xr,r+b−1
Xr+1,r+n−k

Xr+1,r+b

∏
a∈[r+2,r+n−k]∩[k]

Xa,r+n−k.

Thus, using Lemma 4.10 for the numerator and Corollary 4.12(2) for the denomina-

tor, we have

P{r}∪[r+2,r+n−k]

P[r+1,r+n−k]

=

n−k∑
b=1

Xr,r+b−1
Xr+1,r+n−k

Xr+1,r+b

∏
a∈[r+2,r+n−k]∩[k]

Xa,r+n−k∏
a∈[r+1,r+n−k]∩[k]

Xa,r+n−k
=

n−k∑
b=1

Xr,r+b−1

Xr+1,r+b

.

This concludes the proof.

4.3.4 Proof of Theorem 4.24

Recall from §2.2.2 that promotion is defined as the composition

p̃r = σ̃1σ̃2 · · · σ̃n−1,

where σ̃r is the rth Bender–Knuth involution. Recall also the piecewise-linear formula

for the action of a Bender–Knuth involution on a Gelfand–Tsetlin pattern from

Lemma 2.20. Our strategy is to “detropicalize” this piecewise-linear formula to

obtain “geometric Bender–Knuth involutions,” and then to show that applying a

sequence of these involutions to an element (Xij, t) ∈ Tk has the same effect as

applying Θ PR = Θ−1
n−k ◦ PR ◦Θn−k to (Xij, t).
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Let (Bij, L) ∈ T̃k be a k-rectangle, and let (B′ij, L) = σ̃r(Bij, L). By combining

Lemma 2.20 with the “embedding” of a k-rectangle into its associated Gelfand–

Tsetlin pattern (for an example, see (2.8)), we see that

B′ij =

f̃ir(Bij, L) + g̃ir(Bij, L)−Bir if j = r

Bij if j 6= r

where f̃ij(Bij, L) =


min(Bi−1,j−1, Bi,j+1) if i 6= 1 and j 6= n− k − 1 + i

Bi−1,j−1 if i 6= 1 and j = n− k − 1 + i

Bi,j+1 if i = 1 and j 6= n− k
L if i = 1 and j = n− k

and g̃ij(Bij, L) =


max(Bi,j−1, Bi+1,j+1) if i 6= k and j 6= i

Bi+1,j+1 if i 6= k and j = i

Bi,j−1 if i = k and j 6= k

0 if i = k and j = k.

Now we naively lift this piecewise-linear formula for σ̃r to a rational map σr :

Tk → Tk. That is, given (Xij, t) ∈ Tk, define σr(Xij, t) = (X ′ij, t) by

X ′ij =

fir(Xij, t) · gir(Xij, t) ·
1

Xir

if j = r

Xij if j 6= r

where fij(Xij, t) =


Xi−1,j−1 +Xi,j+1 if i 6= 1 and j 6= n− k − 1 + i

Xi−1,j−1 if i 6= 1 and j = n− k − 1 + i

Xi,j+1 if i = 1 and j 6= n− k
t if i = 1 and j = n− k

and gij(Xij, t) =



Xi,j−1Xi+1,j+1

Xi,j−1 +Xi+1,j+1

if i 6= k and j 6= i

Xi+1,j+1 if i 6= k and j = i

Xi,j−1 if i = k and j 6= k

1 if i = k and j = k.

Define pr : Tk → Tk by

pr = σ1σ2 · · ·σn−1.

Clearly Trop(pr) = p̃r, so to prove Theorem 4.24, it suffices to show that

(4.21) pr ◦Θ−1
n−k = Θ−1

n−k ◦ PR
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as rational maps from Gr(n − k, n) × C× to Tk. Given N |t ∈ Gr(n − k, n) × C×,

define Xij by (Xij, t) = Θ−1
n−k(N |t), and define X ′ij by (X ′ij, t) = Θ−1

n−k ◦ PR(N |t).
Write PJ = PJ(N) for the Plücker coordinates of N . By Proposition 4.4 and the

definition of PR, we have

Xij =
P[i,j]∪[k+j−i+2,n]

P[i+1,j]∪[k+j−i+1,n]

and X ′ij = tδi,1
P[i−1,j−1]∪[k+j−i+1,n−1]

P[i,j−1]∪[k+j−i,n−1]

.

Set X
(n)
ij = Xij, and for r = 1, . . . , n− 1, define X

(r)
ij by

(X
(r)
ij , t) = σr(X

(r+1)
ij , t) = σrσr+1 · · ·σn−1(Xij, t).

In this notation, (4.21) is the equality X
(1)
ij = X ′ij for all i, j. To prove this, we will

show by descending induction on r that

(4.22) X
(r)
ij = X ′ij for j = r, r + 1, . . . , n− 1.

If r = n, then (4.22) is vacuously true. So suppose 1 ≤ r ≤ n− 1. Since σa only

changes entries in the ath row of the GT pattern, (4.22) holds for j > r by induction,

and we need only show that for each i, we have

(4.23) fir(X
(r+1)
ij , t) · gir(X(r+1)

ij , t) · 1

Xir

= X ′ir.

By the induction hypothesis, the “neighborhood” of Xir in the GT pattern X
(r+1)
ij

looks like
Xi−1,r−1 Xi,r−1

Xir

X ′i,r+1 X ′i+1,r+1

.

Note that some or all of the NW, NE, and SE neighbors may be “missing,” and the

SW neighbor may be t. For instance, when r = n− 1, the SW neighbor is t and the

SE neighbor is missing.

We claim that

(4.24) fir(X
(r+1)
ij , t) = tδi,1

P[i−1,r−1]∪[k+r−i+1,n−1]P[i,r]∪[k+r−i+2,n]

P[i,r−1]∪[k+r−i+1,n]P[i,r]∪[k+r−i+1,n−1]

and

(4.25) gir(X
(r+1)
ij , t) =

P[i,r−1]∪[k+r−i+1,n]P[i,r]∪[k+r−i+1,n−1]

P[i,r−1]∪[k+r−i,n−1]P[i+1,r]∪[k+r−i+1,n]

.
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First we prove (4.24). If 1 < i ≤ k and i ≤ r < n− k − 1 + i, then the NW and

SW neighbors of Xir both exist, and we have

fir(X
(r+1)
ij , t) = Xi−1,r−1 +X ′i,r+1

=
P[i−1,r−1]∪[k+r−i+2,n]

P[i,r−1]∪[k+r−i+1,n]

+
P[i−1,r]∪[k+r−i+2,n−1]

P[i,r]∪[k+r−i+1,n−1]

=
P[i−1,r−1]∪[k+r−i+2,n]P[i,r]∪[k+r−i+1,n−1] + P[i,r−1]∪[k+r−i+1,n]P[i−1,r]∪[k+r−i+2,n−1]

P[i,r−1]∪[k+r−i+1,n]P[i,r]∪[k+r−i+1,n−1]

=
P[i−1,r−1]∪[k+r−i+1,n−1]P[i,r]∪[k+r−i+2,n]

P[i,r−1]∪[k+r−i+1,n]P[i,r]∪[k+r−i+1,n−1]

where in the last step we apply a three-term Plücker relation (Corollary 2.42) to

simplify the numerator. We have verified the “general case” of (4.24).

The three “boundary cases” of (4.24) are straightforward to verify: for instance,

if i = 1 and r < n− k, then

f1r(X
(r+1)
ij , t) = X ′1,r+1 = t

P[0,r]∪[k+r+1,n−1]

P[1,r]∪[k+r,n−1]

,

which agrees with the right-hand side of (4.24) (recall Convention 2.40). The other

two boundary cases are similar, and are left to the reader.

Now we prove (4.25). If 1 ≤ i < k and i < r ≤ n− k− 1 + i, then the NE and SE

neighbors of Xir both exist, and we have

gir(X
(r+1)
ij , t) =

Xi,j−1X
′
i+1,j+1

Xi,j−1 +X ′i+1,j+1

=
P[i,r−1]∪[k+r−i+1,n]P[i,r]∪[k+r−i+1,n−1]

P[i,r−1]∪[k+r−i+1,n]P[i+1,r]∪[k+r−i,n−1] + P[i+1,r−1]∪[k+r−i,n]P[i,r]∪[k+r−i+1,n−1]

=
P[i,r−1]∪[k+r−i+1,n]P[i,r]∪[k+r−i+1,n−1]

P[i,r−1]∪[k+r−i,n−1]P[i+1,r]∪[k+r−i+1,n]

where in the last step we apply a three-term Plücker relation (Corollary 2.42) to

simplify the denominator. This verifies the “general case” of (4.25); we leave the

three “boundary cases” to the reader.

Finally, observe that the denominator of (4.24) is equal to the numerator of (4.25),

so we have

fir(X
(r+1)
ij , t) · gir(X(r+1)

ij , t) · 1

Xir

= tδi,1
P[i−1,r−1]∪[k+r−i+1,n−1]P[i,r]∪[k+r−i+2,n]

P[i,r−1]∪[k+r−i,n−1]P[i+1,r]∪[k+r−i+1,n]

·
P[i+1,r]∪[k+r−i+1,n]

P[i,r]∪[k+r−i+2,n]

= tδi,1
P[i−1,r−1]∪[k+r−i+1,n−1]

P[i,r−1]∪[k+r−i,n−1]

= X ′ir.
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This verifies (4.23) and completes the induction, proving Theorem 4.24.



CHAPTER 5

Lifting the combinatorial R-matrix

5.1 The geometric R-matrix

5.1.1 Definition of R

Fix `, k ∈ [n− 1]. Consider the unipotent crystals (X`, g) and (Xk, g) introduced

in §3.1; recall that their product is the unipotent crystal (X`×Xk, g), where g(u, v) =

g(u)g(v) for (u, v) ∈ X`×Xk. Recall the geometric Schützenberger involution S and

the “evaluation-projection” πkz from §3.3.2. Recall also Corollary 3.8, which plays a

crucial role in the proofs below.

Define a rational map Ψk,` : X` × Xk → Xk by

Ψk,`(M |s,N |t) = πkt ◦ g(M |s,N |t).

Definition 5.1. The geometric R-matrix is the rational map R : X`×Xk → Xk×X`

defined by

R = (Ψk,`, S ◦Ψ`,k ◦ S).

More explicitly, if R(M |s,N |t) = (N ′|t,M ′|s), then by Corollary 3.8(2) and

Proposition 3.15, we have

(5.1)

N ′ = g(M |s)|λ=(−1)k−1t ·N and Ss(M
′) = fl(g(N |t))|λ=(−1)`−1s · Ss(M).

Remark 5.2. The formulas (5.1) show that N ′ is the image of N under a linear

map that depends on M, s, and t, and Ss(M
′) is the image of Ss(M) under a linear

map that depends on N, s, and t. We would very much like to have a geometric

interpretation of these linear maps.

The two crucial results about R are the following.

Theorem 5.3. The geometric R-matrix is positive.

89
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Theorem 5.4. We have the identity g◦R = g of rational maps from X`×Xk → B−.

That is, if R(u, v) = (v′, u′) and g(v′), g(u′) are defined, then

g(u)g(v) = g(v′)g(u′).

Theorems 5.3 and 5.4 are proved in §5.4 and §5.5, respectively.

Remark 5.5.

1. By Lemma 4.15, the positivity of R ensures that compositions such as Rg, RS,

Rei, R
2, etc., are defined (and positive).

2. To prove an equality of rational maps, it suffices to show that the equality holds

on a dense subset. We will exploit this in §5.1.2.

Most of the important properties of R are direct consequences of Theorem 5.4.

Here is an example.

Lemma 5.6. We have the identity R2 = Id of rational maps from X` ×Xk to itself.

Proof. Suppose (M |s,N |t) ∈ X` × Xk, and

(M |s,N |t) R−→ (N ′|t,M ′|s) R−→ (M ′′|s,N ′′|t).

By Theorem 5.4, we have

(5.2) M ′′|s = π`s(g(N ′|t)g(M ′|s)) = π`s(g(M |s)g(N |t)).

Corollary 3.8(1) ensures that the first ` columns of g(M |s)g(N |t)|λ=(−1)`−1s are con-

tained in the subspace M . On the other hand, (5.2) shows that these columns span

the subspace M ′′, so we conclude that M ′′ = M .

Let p1, p2 be the projections of X` × Xk onto the first and second factors, respec-

tively. We have shown that p1R
2 = p1. It’s clear that p2 = Sp1S and R commutes

with S, so we have

p2R
2 = Sp1SR

2 = Sp1R
2S = p2

as well.

Recall the notation QJ
t (N) := Pw0(J)(St(N)).

Corollary 5.7. Suppose M |s ∈ X`, N |t ∈ Xk, and (N ′|t,M ′|s) = R(M |s,N |t). Let

B = g(M |s)g(N |t), Bs = B|λ=(−1)`−1s, and Bt = B|λ=(−1)k−1t. For `-subsets J and

k-subsets I, we have

(5.3)
PI(N

′)

P[n−k+1,n](N ′)
=

∆I,[k](Bt)

∆[n−k+1,n],[k](Bt)

QJ
s (M ′)

Q
[`]
s (M ′)

=
∆[n−`+1,n],J(Bs)

∆[n−`+1,n],[`](Bs)

(5.4)
PJ(M)

P[n−`+1,n](M)
=

∆J,[`](Bs)

∆[n−`+1,n],[`](Bs)

QI
t (N)

Q
[k]
t (N)

=
∆[n−k+1,n],I(Bt)

∆[n−k+1,n],[k](Bt)
.
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Proof. The equalities (5.3) follow from the definition of R and Proposition 3.15. The

equalities (5.4) follow from Lemma 5.6, Theorem 5.4, and (5.3).

5.1.2 Properties of R

For k = (k1, . . . , kd) ∈ [n − 1]d, set Xk = Xk1,...,kd = Xk1 × · · · × Xkd . For

i = 1, . . . , d− 1, let σi(k) = (k1, . . . , ki+1, ki, . . . , kd), and let

Ri : Xk → Xσi(k)

be the map which acts as the geometric R-matrix on factors i and i+ 1, and as the

identity on the other factors.

Say that a point N |t ∈ Xk is positive if t > 0, and PJ(N) > 0 for all J . Let Uk be

the subset of Xk consisting of (N1|t1, . . . , Nd|td) such that each Ni|ti is positive, and

the ti are distinct. Note that g is defined on Uk, and since the geometric R-matrix

is positive and involutive, each Ri is a bijection from Uk to Uσi(k).

Lemma 5.8. If (N1|t1, . . . , Nd|td) ∈ Uk, then

πk1t1 ◦ g(N1|t1, . . . , Nd|td) = N1|t1.

In other words, the first k1 columns of the matrix g(N1|t1, . . . , Nd|td)|λ=(−1)k1−1t1 span

the subspace N1.

Proof. Let B = g(N1|t1, . . . , Nd|td), and Bt1 = B|λ=(−1)k1−1t1 . By Corollary 3.8(1),

the first k1 columns of Bt1 are contained in the subspace N1. Thus, it suffices to show

that the first k1 columns of Bt1 have full rank whenever (N1|t1, . . . , Nd|td) ∈ Uk.

Let

(N ′2|t2, . . . , N ′d|td, N ′1|t1) = Rd−1 ◦ · · · ◦R1(N1|t1, . . . , Nd|td).

By repeated applications of Theorem 5.4, we have B = g(N ′2|t2, . . . , N ′d|td, N ′1|t1).

Since the absolute values of the ti are distinct, g(N ′2|t2, . . . , N ′d|td)|λ=(−1)k1−1t1 is in-

vertible by Proposition 3.7(3), so the first k1 columns of Bt1 have full rank by Corol-

lary 3.8(2).

Corollary 5.9. Suppose (M1|t1, . . . ,Md|td), (N1|t1, . . . , Nd|td) ∈ Uk. If

(5.5) g(M1|t1, . . . ,Md|td) = g(N1|t1, . . . , Nd|td)

then Mi = Ni for each i.

Proof. Lemma 5.8 shows that M1 = N1. By Proposition 3.7(3), the matrix g(N1|t1)

is invertible (in the ring Mn(C(λ))), so we may multiply both sides of (5.5) by

g(N1|t1)−1 and reduce to a smaller value of d.



92

Remark 5.10. Corollary 5.9 does not hold for arbitrary points in Xk, even in the

case n = 2,k = (1, 1).

Theorem 5.11.

1. R : Xk1 × Xk2 → Xk2 × Xk1 is an isomorphism of geometric crystals.

2. R : Xk1 × Xk2 → Xk2 × Xk1 commutes with the symmetries PR, S, and D.

3. R satisfies the Yang–Baxter relation. That is, we have the equality

(5.6) R1R2R1 = R2R1R2

of rational maps Xk1,k2,k3 → Xk3,k2,k1.

Proof. First we prove (1). By Lemma 5.6, R is invertible, with inverse R : Xk2 ×
Xk1 → Xk1 ×Xk2 . Let ρ be one of the maps γ, εi, ϕi. By (2.16) and Theorem 5.4, we

have

ρR = ρgR = ρg = ρ.

It remains to show that R commutes with ei. Again by (2.16) and Theorem 5.4,

we have

(5.7) gRei = gei = eig = eigR = geiR.

Suppose x = (N1|t1, N2|t2) ∈ Uk1,k2 , and c > 0. Let

x′ = (N ′2|t2, N ′1|t1) = Reci(x),

x′′ = (N ′′2 |t2, N ′′1 |t1) = eciR(x).

Since R and ei are positive maps, we have x′,x′′ ∈ Uk2,k1 , and by (5.7), we have

g(x′) = g(x′′). Thus, Reci(x) = eciR(x) by Corollary 5.9. Since the set of points

{(c,x) | c > 0 and x ∈ Uk1,k2}

is dense in C× × Xk1,k2 , we conclude that Rei = eiR.

The proof of (2) is formally the same as the proof of Rei = eiR, with (3.10) and

Propositions 3.15, 3.22 playing the role of (2.16) (we also use the positivity of the

three symmetries).

The proof of (3) is similar. Suppose x = (N1|t1, N2|t2, N3|t3) ∈ Uk1,k2,k3 , and set

x′ = (N ′3|t3, N ′2|t2, N ′1|t1) = R1R2R1(x),

x′′ = (N ′′3 |t3, N ′′2 |t2, N ′′1 |t1) = R2R1R2(x).

Theorem 5.4 implies that g(x′) = g(x) = g(x′′), and since x′,x′′ ∈ Uk3,k2,k1 , we have

x′ = x′′ by Corollary 5.9. Since Uk is dense in Xk, this proves (5.6).
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Remark 5.12. Lemma 5.6 and Theorem 5.11(3) show that the maps Ri satisfy

the relations of the simple transpositions in the symmetric group. That is, if we

repeatedly apply geometric R-matrices to consecutive factors in a product Xk1 ×
· · · × Xkd , the result depends only on the final permutation of factors; this means

that for any permutation σ ∈ Sd, there is a well-defined map Rσ : Xk → Xσ(k).

There is an efficient way to pick off the first and last factors of the image of a

point in Uk under Rσ. Indeed, if x = (x1, . . . , xd) = (N1|t1, . . . , Nd|td) ∈ Uk and

Rσ(x) = (x′σ(1), . . . , x
′
σ(d)), then we have

x′σ(1) = π
kσ(1)
tσ(1)
◦ g(x), x′σ(d) = S ◦ πkσ(d)tσ(d)

◦ fl ◦ g(x)

by Theorem 5.4, Lemma 5.8, Proposition 3.15, and the fact that S commutes with

R.

5.1.3 Recovering the combinatorial R-matrix

By Theorem 5.4, the map ΘR : Tk1 × Tk2 → Tk2 × Tk1 is positive, so we may

define

R̂ = Trop(ΘR) : T̃k1 × T̃k2 → T̃k2 × T̃k1 .

Theorem 5.13. If a is a k1-rectangle and b is a k2-rectangle, then R̂(a⊗b) = R̃(a⊗b),

where R̃ is the combinatorial R-matrix.

Proof. By (3.8) and Theorem 5.4, we have fR = f , where f is the decoration. Thus,

Proposition 4.21 and Theorems 4.23 and 5.11(1) imply that for any L1, L2 ≥ 0, R̂

restricts to an affine crystal isomorphism Bk1,L1 ⊗ Bk2,L2 → Bk2,L2 ⊗ Bk1,L1 . The

combinatorial R-matrix is the unique such isomorphism, so we are done.

Remark 5.14. Theorem 5.13 allows us to deduce the Yang–Baxter relation for the

combinatorial R-matrix from the Yang–Baxter relation for the geometric R-matrix,

thereby giving a new proof of the former.

Remark 5.15. We used the crystal-theoretic characterization of the combinatorial

R-matrix to prove that R tropicalizes to R̃. Here we outline an alternative proof

based on the combinatorial characterization of R̃ in terms of the tableau product

(Proposition 2.12). The idea is that

the product of tableau matrices tropicalizes to the product of tableaux,

where the tableau matrix Φk(Xij, t) is the n× n matrix from §4.1. To be a bit more

precise, let a be a k1-rectangle corresponding to the tableau T , and b a k2-rectangle

corresponding to the tableau U . Let (Cij) be the Gelfand-Tsetlin pattern correspond-

ing to the tableau T ∗ U . Theorem 3.9 in [Fri17] states that the product of tableau
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matrices Φk1(x)Φk2(y) uniquely determines positive rational functions Zij(x, y) which

tropicalize to formulas for Cij in terms of the entries of a and b. (In fact, the Zij are

ratios of left-justified minors of the product matrix.) If ΘR(x, y) = (y′, x′), then by

Theorem 5.4 and Proposition 4.5 we have

Φk1(x)Φk2(y) = Φk2(y
′)Φk1(x

′),

so the rectangular tableaux U ′ and T ′ obtained by tropicalizing y′ and x′ satisfy

U ′ ∗ T ′ = T ∗ U .

The special case of [Fri17, Th. 3.9] where k1 = k2 = 1 was proved by Noumi and

Yamada in their work on a geometric lift of the RSK correspondence [NY04]. The

general case is proved by iterating the one-row case. The technical details take up a

lot of space, however, and since we do not yet have an application for this result, we

have chosen to omit the proof.

At the end of §5.3, we give explicit formulas for ΘR and R̃ in a small example.

5.2 The geometric coenergy function

Recall that a Z-valued function on a tensor product of two Kirillov–Reshetikhin

crystals is a coenergy function if it is invariant under the crystal operators ẽ1, . . . , ẽn−1,

and it interacts with ẽ0 in a prescribed way (Definition 2.15). In this section, we “lift”

the combinatorial definition to define a notion of geometric coenergy function. We

show that a certain minor of the product matrix g(M |s)g(N |t) defines a geometric

coenergy function on Xk1 × Xk2 , and that this function tropicalizes to the coenergy

function Ẽ defined in §2.2.3.

Definition 5.16. A rational function H : Xk1 × Xk2 → C is a geometric coenergy

function if H ◦ eci = H for i = 1, . . . , n − 1, and H interacts with ec0 as follows: if

(u, v) ∈ Xk1 × Xk2 and R(u, v) = (v′, u′), then

(5.8) H(ec0(u, v)) = H(u, v)

(
ε0(u) + c−1ϕ0(v)

ε0(u) + ϕ0(v)

)(
cε0(v′) + ϕ0(u′)

ε0(v′) + ϕ0(u′)

)
.

We now show that this definition “tropicalizes to” the combinatorial definition.

Lemma 5.17. If H is a positive geometric coenergy function on Xk1 ×Xk2, then the

piecewise-linear function Ĥ := Trop(ΘH), when restricted to Bn−k1,L1 ⊗ Bn−k2,L2 ⊂
T̃n−k1 × T̃n−k2, is a coenergy function.

Proof. Clearly Ĥ ◦ ẽi = Ĥ for i = 1, . . . , n − 1. If a ⊗ b ∈ Bn−k1,L1 ⊗ Bn−k2,L2 and

R̃(a ⊗ b) = (b′ ⊗ a′), then by tropicalizing (5.8) and using Theorems 4.23 and 5.13
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(plus the identity max(c, d) = −min(−c,−d)), we obtain

Ĥ(ẽ0(a⊗ b)) = Ĥ(a⊗ b) + max(ε̃0(a), ϕ̃0(b))−max(ε̃0(a), ϕ̃0(b) + 1)

+ max(ε̃0(b′), ϕ̃0(a′))−max(ε̃0(b′)− 1, ϕ̃0(a′))

= Ĥ(a⊗ b) +

0 if ε̃0(a) > ϕ̃0(b)

−1 if ε̃0(a) ≤ ϕ̃0(b)
+

1 if ε̃0(b′) > ϕ̃0(a′)

0 if ε̃0(b′) ≤ ϕ̃0(a′)
.

This shows that Ĥ satisfies (2.2).

Definition 5.18. Define E : Xk1 × Xk2 → C by

E(u, v) = ∆[n−k+1,n],[k](g(u)g(v)),

where k = min(k1, k2).

Note that the last k rows of g(u) and the first k columns of g(v) are independent of

λ, so by the Cauchy–Binet formula, E is indeed complex-valued. In fact, the Cauchy–

Binet formula gives a simple expression for E in terms of Plücker coordinates. Recall

the notation QJ
s (M) := Pw0(J)(Ss(M)).

Lemma 5.19. If (M |s,N |t) ∈ Xk1 × Xk2, then

(5.9) E(M |s,N |t) =



∑
I∈([k1−k2+1,n]

k2
)

QI′
s (M)

Q
[k1]
s (M)

PI(N)

P[n−k2+1,n](N)
if k1 ≥ k2

∑
I∈([n−k2+k1]

k1
)

QI
s(M)

Q
[k1]
s (M)

PI′′(N)

P[n−k2+1,n](N)
if k1 ≤ k2

where I ′ = [k1 − k2] ∪ I, and I ′′ = I ∪ [n− k2 + k1 + 1, n].

Proof. We assume k1 ≥ k2 (the case k1 ≤ k2 is similar). By Cauchy–Binet,

E(M |s,N |t) =
∑
|I|=k2

∆[n−k2+1,n],I(g(M |s))∆I,[k2](g(N |t)).

The bottom-left k1 × k1 submatrix of g(M |s) is upper uni-triangular, so

∆[n−k2+1,n],I(g(M |s)) =

∆[n−k1+1,n],[k1−k2]∪I(g(M |s)) if I ⊂ [k1 − k2 + 1, n]

0 otherwise.

This together with (3.29) proves the k1 ≥ k2 case of (5.9).

Proposition 5.20. E : Xk1 × Xk2 → C is a geometric coenergy function.
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Proof. Suppose u = M |s ∈ Xk1 and v = N |t ∈ Xk2 . Set B = g(u)g(v), R(u, v) =

(v′, u′), and k = min(k1, k2). Since eci commutes with the unipotent crystal map g,

we have

E(eci(u, v)) = ∆[n−k+1,n],[k](e
c
i(B)).

By (2.15), the folded matrix eci(B) is obtained from the folded matrix B by adding

a multiple of row i+ 1 to row i, and a multiple of column i to column i+ 1 (mod n).

If i ∈ [n− 1], then these row and column operations do not change the determinant

of a bottom-left justified submatrix, so E is invariant under eci .

Now consider ec0. By (2.15), we have

(5.10) E(ec0(u, v)) = ∆[n−k+1,n],[k]

(
x0

(
λ−1 c− 1

ϕ0(u, v)

)
·B · x0

(
λ−1 c

−1 − 1

ε0(u, v)

))
where x0(z) is the n × n matrix with 1’s on the diagonal and z in position (n, 1).

Suppose k = k2. The left-hand side of (5.10) does not depend on λ, so we may

substitute λ = (−1)k−1t into the right-hand side and obtain

E(ec0(u, v)) = ∆[n−k+1,n],[k]

(
x0

(
(−1)k−1

t

c− 1

ϕ0(u, v)

)
·Bt · x0

(
(−1)k−1

t

c−1 − 1

ε0(u, v)

))
,

where Bt = B|λ=(−1)k−1t. By multi-linearity of the determinant (or by Cauchy–

Binet), we have

(5.11) E(ec0(u, v)) = ∆[n−k+1,n],[k](Bt) +
1

t

c− 1

ϕ0(u, v)
∆{1}∪[n−k+1,n−1],[k](Bt)

+
1

t

c−1 − 1

ε0(u, v)
∆[n−k+1,n],[2,k]∪{n}(Bt)

+
1

t2
(c− 1)(c−1 − 1)

ϕ0(u, v)ε0(u, v)
∆{1}∪[n−k+1,n−1],[2,k]∪{n}(Bt).

Restrict to the open set where (−1)k1+k2s 6= t, so that g(M |s)|λ=(−1)k−1t is invert-

ible by Proposition 3.7(3), and Bt has rank k by Corollary 3.8(2). In a rank k matrix,

any set of k columns which are linearly independent span the same subspace, so we

have

(5.12)
∆{1}∪[n−k+1,n−1],[2,k]∪{n}(Bt)

∆[n−k+1,n],[2,k]∪{n}(Bt)
=

∆{1}∪[n−k+1,n−1],[k](Bt)

∆[n−k+1,n],[k](Bt)

on the open set where both denominators are nonzero. (Since we are trying to prove

an identity of rational maps, we may restrict to open subsets.) Using (5.12) and the

fact that ∆[n−k+1,n],[k](Bt) = E(u, v), we may rewrite (5.11) as

(5.13) E(ec0(u, v)) = E(u, v)(1 + z1)(1 + z2)
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where

(5.14)

z1 =
1

t

c− 1

ϕ0(u, v)

∆{1}∪[n−k+1,n−1],[k](Bt)

∆[n−k+1,n],[k](Bt)
, z2 =

1

t

c−1 − 1

ε0(u, v)

∆[n−k+1,n],[2,k]∪{n}(Bt)

∆[n−k+1,n],[k](Bt)
.

Now we compute

ϕ0(u, v) = ϕ0(v′, u′) = ϕ0(v′)
ε0(v′) + ϕ0(u′)

ε0(v′)

=
1

t

∆[n−k+1,n−1]∪{1},[k](Bt)

∆[n−k+1,n],[k](Bt)

ε0(v′) + ϕ0(u′)

ε0(v′)
,

where the first equality comes from Theorem 5.11(1), the second equality comes

from Definition/Proposition 2.32, and the final equality is the formula for ϕ0 on Xk,

together with (5.3). Similarly, by Proposition 3.17(2), the formula for ε0 on Xk, and

(5.4), we have

ε0(u, v) = ε0(v)
ε0(u) + ϕ0(v)

ϕ0(v)
= ϕ0(S(v))

ε0(u) + ϕ0(v)

ϕ0(v)

=
1

t

∆[n−k+1,n],[2,k]∪{n}(Bt)

∆[n−k+1,n],[k](Bt)

ε0(u) + ϕ0(v)

ϕ0(v)
.

Substituting these expressions into (5.14), we get

(5.15) z1 =
(c− 1)ε0(v′)

ε0(v′) + ϕ0(u′)
, z2 =

(c−1 − 1)ϕ0(v)

ε0(u) + ϕ0(v)
,

and then (5.8) is obtained by substituting (5.15) into (5.13).

The k = k1 case is dealt with similarly, using the substitution λ = (−1)k1−1s

instead of λ = (−1)k2−1t.

The function E is positive by Lemma 5.19 and the positivity of S, so we may define

Ê = Trop(ΘE) : T̃n−k1 × T̃n−k2 → Z. Recall the coenergy function Ẽ introduced in

§2.2.3.

Theorem 5.21. The restriction of Ê to Bn−k1,L1 ⊗Bn−k2,L2 is equal to Ẽ.

The proof of this theorem relies on a technical lemma. At the end of §4.2.1,

we defined a rational function Φk
I,J : Tk → C by Φk

I,J(Xij, t) = ∆I,J(Φk(Xij, t))

for any subsets I, J of the same cardinality. Let I = [k + 1, n], and let J be any

(n − k)-element subset of [n]. By Lemma 4.19, Φk
[k+1,n],J is positive (it’s clear that

the required inequalities hold in this case), so we may tropicalize it to obtain a

piecewise-linear function Φ̂k
[k+1,n],J : T̃k → Z.

Lemma 5.22. Fix L ≥ 0, and let b0 be the classical highest weight element of the

KR crystal Bk,L. For all J ∈
(

[n]
n−k

)
, we have Φ̂k

[k+1,n],J(b0) = 0.
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Proof. Suppose b = (Bij, L) ∈ Bk,L, and let bij = Bij − Bi,j−1 be the number of j’s

in the ith row of the corresponding tableau, as in (2.9). Let Γn−k,n(b) be the network

Γn−k,n(Xij, t) from §4.1, but with weights bij instead of xij, and 0 instead of 1 on

unlabeled edges. By the Lindström Lemma, we have

Φ̂k
[k+1,n],J(b) = min

F :[k+1,n]→J
w̃t(F),

where F runs over vertex-disjoint families of paths in Γn−k,n(b) from [k + 1, n] to J ,

and w̃t(F) is the sum of the weights of the edges in the paths.

The classical highest weight element b0 ∈ Bk,L corresponds to the SSYT whose

ith row is filled with the number i, so we have

(b0)ij =

L if i = j

0 otherwise.

Thus, the only edges in Γn−k,n(b0) with nonzero weights are to the left of source k+1,

so all edges in the paths that contribute to Φ̂k
[k+1,n],J(b0) have weight zero.

Proof of Theorem 5.21. By Proposition 5.20 and Lemma 5.17, Ê is a coenergy func-

tion on Bn−k1,L1 ⊗ Bn−k2,L2 . By Proposition 2.18(1), the coenergy function on such

crystals is unique up to a global additive constant, so it suffices to show that Ê and

Ẽ agree on a single element of Bn−k1,L1 ⊗Bn−k2,L2 .

Assume k1 ≤ k2 (the other case is basically the same). If (x, y) ∈ Tn−k1 × Tn−k2 ,
then by Lemma 5.19, (3.29), and Proposition 4.5, we have

ΘE(x, y) =
∑

I∈([n−k2+k1]
k1

)

fI(x)gI(y)

where

fI(x) = ∆[n−k1+1,n],I(Φn−k1(x)), gI(y) = ∆I∪[n−k2+k1+1,n],[k2](Φn−k2(y)).

Thus,

(5.16) Ê(a⊗ b) = min
I∈([n−k2+k1]

k1
)
(f̂I(a) + ĝI(b)),

where f̂I , ĝI are the tropicalizations of fI , gI (which are positive by Lemma 4.19).

Since the bottom k2 × k2 submatrix of Φn−k2(y) is upper uni-triangular, we have

g[n−k2+1,n−k2+k1](y) = 1 for all y, so

(5.17) ĝ[n−k2+1,n−k2+k1](b) = 0
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for all b.

Let a0 be the classical highest weight element of Bn−k1,L1 . By Lemma 5.22, we

have f̂I(a0) = 0 for all I ∈
(

[n]
k1

)
. Together with (5.16) and (5.17), this implies that

Ê(a0 ⊗ b) = 0 for all b ∈ Bn−k2,L2 . By (2.3), Ẽ(a0 ⊗ b) = 0 for all b ∈ Bn−k2,L2 , so

we are done.

Corollary 5.25 in the next section gives an explicit formula for ΘE : Tn−k1 ×
Tn−k2 → C in the case k1 = n− 1.

5.3 One-row tableaux

Here we give a more explicit description of the geometric R-matrix on T` ×Tk in

the case ` = 1. When k = 1 as well, we recover the one-row geometric (or birational)

R-matrix of Yamada and Lam–Pylyavskyy that was discussed in §1.2. At the end of

the section we demonstrate our formulas in a small example.

Let X = (X11, X12, . . . , X1,n−1, s) ∈ T1 be a rational 1-rectangle, and define

x1, . . . , xn by xj = X1j/X1,j−1 (where X10 := 1 and X1n := s). Let Y = (Yij, t) ∈ Tk
be a rational k-rectangle. Suppose

ΘR(X, Y ) = ((Y ′ij, t), (X
′
1j, s)),

and define x′j as above. We will work through the various definitions from earlier

sections to obtain formulas for Y ′ij and x′j in terms of the inputs xj, Yij, and t.

Set N |t = Θn−k(Y ), N ′|t = Θn−k(Y
′), A = g(Θn−1(X))g(Θn−k(Y )), and At =

A|λ=(−1)n−k−1t. For I ∈
(

[n]
n−k

)
, define

(5.18) τI = τI(X, Y ) = ∆I,[n−k](At)
P[k+1,n](N)

PI(N)
.

By (5.3) and Proposition 4.4 (applied to both Yij and Y ′ij), we have

(5.19) Y ′ij = Yij
τ[i,j]∪[k+j−i+2,n]

τ[i+1,j]∪[k+j−i+1,n]

,

so we are led to the study of the quantities τI . By the Cauchy–Binet formula and

Proposition 3.7(1),

(5.20) τI =
∑
J

∆I,J(C|λ=(−1)n−k−1t)
PJ(N)

PI(N)
,

where C = g(Θn−1(X)). Lemma 4.10 expresses the Plücker coordinates of N in

terms of the Yij by summing over J-tableaux, so we regard these Plücker coordinates

as well-understood. Now we explicitly compute the minors of the matrix C. Note
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x1 x2 x3 xn−1 xn· · ·

1

1′

2

2′

3

3′

n− 1

(n− 1)′

n

n′

λ

Figure 6: A network representation of the matrix g(Θn−1(X)). Vertical edges have weight 1.

that C has x1, . . . , xn on the main diagonal, 1’s just beneath the main diagonal, λ

in the top-right corner, and zeroes elsewhere. For example, if n = 4, then

C = g(Θ3(X)) =


x1 0 0 λ

1 x2 0 0

0 1 x3 0

0 0 1 x4

 .

Lemma 5.23. Let C = g(Θn−1(X)), and let I = {i1 < . . . < ir} be an r-subset of

[n], with r ≤ n− 1. For ε = (ε1, . . . , εr) ∈ {0, 1}r, define

I − ε = {i1 − ε1, . . . , ir − εr} ⊂ [n],

where if i1 = ε1 = 1, we take i1 − ε1 = n. If I − ε has r elements, then we have

(5.21) ∆I,I−ε(C) =


(−1)r−1λ

∏
s | εs=0

xis if i1 = ε1 = 1∏
s | εs=0

xis otherwise.

If J ∈
(

[n]
r

)
is not of the form I − ε for ε ∈ {0, 1}r, then ∆I,J(C) = 0.

Note that by expanding along the last column of C, we have det(C) = (−1)n+1λ+∏n
j=1 xj, so the restriction r ≤ n− 1 is necessary.

Proof. Observe that C is the matrix associated to the planar network in Figure 6.

In this network, there are two edges coming out of each source i: an edge to sink

i′, and an edge to sink (i− 1)′ (mod n). Thus, if there is a vertex-disjoint family of

paths from the sources in I to the sinks in J , then J = I − ε for some ε ∈ {0, 1}r; if

J is not of this form, then ∆I,J(C) is zero by the Lindström Lemma.

We claim that for any r-subset J , there is at most one vertex-disjoint family of

paths from I to J . To see this, note that the underlying (undirected) graph of the

network is a cycle of length 2n, and a vertex-disjoint family of paths from I to J is a

perfect matching in the subgraph induced by the vertices in I and J . Since r ≤ n−1,
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the subgraph induced by the vertices in I and J is a forest, and there is at most one

perfect matching in any forest.

Suppose I − ε has r elements. In this case, let ps be the path connecting is and

(is − εs)′, for s = 1, . . . , r. The family of paths (ps) is clearly vertex-disjoint, and it

has weight 
λ
∏

s | εs=0

xis if i1 = ε1 = 1∏
s | εs=0

xis otherwise.

The permutation associated to this family has sign (−1)r−1 if i1 = ε1 = 1, and is the

identity otherwise, so (5.21) follows from the Lindström Lemma.

In light of Lemma 5.23, (5.20) becomes

(5.22) τI =
∑
ε

tδi1,1δε1,1 ·
∏

s | εs=0

xis ·
PI−ε(N)

PI(N)
,

where the sum is over ε ∈ {0, 1}n−k such that I− ε has n−k elements. For example,

if n = 7 and k = 4, then writing PJ for PJ(N), we have

τ145 =
x1x4x5P145 + x1x5P135 + x1P134 + tx3x4P457 + tx4P357 + tP347

P145

.

Combining (5.19) and (5.22), we have a reasonably explicit formula for the Y ′ij.

Now we turn to the x′j. For j ∈ Z/nZ, define

(5.23) κj = κj(X, Y ) = τ[j+k,j+n−1](X, Y ).

Proposition 5.24. We have

x′j = xj
κj
κj+1

.

Furthermore, we have the formula

(5.24) κj =
n−k∑
s=0

xj+k+sxj+k+s+1 · · ·xj+n−1t
aj,s,k

P[j+k−1,j+n−1]\{j+k+s−1}(N)

P[j+k,j+n−1](N)

where

aj,s,k =

1 if n+ 2− s ≤ j + k ≤ n+ 1

0 otherwise
.

Each subscript of κ and x is interpreted mod n.
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Proof. By Theorem 5.4, we have the matrix equation

(5.25) g(Θn−1(X))g(N |t) = g(N ′|t)g(Θn−1(X ′)).

The diagonal entries of g(Θn−1(X)) are x1, . . . , xn, so by equating the constant co-

efficients of the diagonal entries of both sides of (5.25) and using the definition of

g(N |t) (plus Convention 2.40), we obtain

xj
P[j+k+1,j+n](N)

P[j+k,j+n−1](N)
= x′j

P[j+k+1,j+n](N
′)

P[j+k,j+n−1](N ′)
= x′j

∆[j+k+1,j+n],[n−k](At)

∆[j+k,j+n−1],[n−k](At)
.

This shows that x′j = xj
κj
κj+1

.

By (5.22), we have

κj =
∑
ε

tδi1,1δε1,1 ·
∏

s | εs=0

xis
P[j+k,j+n−1]−ε(N)

P[j+k,j+n−1](N)

(to compute [j + k, j + n − 1] − ε, first identify [j + k, j + n − 1] with a subset

{i1 < . . . < in−k} of [n] by reducing mod n, and then subtract εs from the sth smallest

element of this subset). There are n−k+1 choices of ε such that [j+k, j+n−1]− ε
has n− k elements, and one may easily verify that each of these choices gives a term

from the right-hand side of (5.24).

Corollary 5.25. The geometric coenergy function ΘE : T1 × Tk → C is given by

ΘE(X, Y ) = κ1(X, Y ) =
n−k∑
s=0

xk+s+1xk+s+2 · · · xnYk,k+s−1,

where Yk,k−1 := 1.

Proof. By definition, ΘE(X, Y ) = ∆[k+1,n],[n−k](A), and since this minor is indepen-

dent of λ, it is equal to κ1(X, Y ). The explicit formula for κ1(X, Y ) follows from

(5.24) and Proposition 4.4.

Recovering the one-row geometric R-matrix

Now we specialize further to the case k = 1. Let Y = (Y11, . . . , Y1,n−1, t), and

define yj = Y1j/Y1,j−1, where Y10 := 1 and Y1n := t. As above, let N |t = Θn−1(Y ).

By Proposition 3.7(1) and Lemma 5.23, we have

P[n]\{a}(N)

P[n]\{b}(N)
=

∆[n]\{a},[n−1](g(Θn−1(Y ))

∆[n]\{b},[n−1](g(Θn−1(Y ))
=
y1 · · · ya−1

y1 · · · yb−1

=

yb · · · ya−1 if b ≤ a

(ya · · · yb−1)−1 if a ≤ b
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for a, b ∈ [n]. Setting k = 1 in (5.24) and using t = y1 · · · yn, we obtain

κj =

n−j∑
s=0

xj+s+1xj+s+2 · · ·xj+n−1

P[n]\{j+s}(N)

P[n]\{j}(N)

+ t

n−1∑
s=n−j+1

xj+s+1xj+s+2 · · ·xj+n−1

P[n]\{j+s−n}(N)

P[n]\{j}(N)

=
n−1∑
s=0

yjyj+1 · · · yj+s−1xj+s+1xj+s+2 · · ·xj+n−1

where as above, each subscript of x and y is interpreted mod n.

Proposition 5.26. The map

ΘR : ((x1, . . . , xn), (y1, . . . , yn)) 7→ ((y′1, . . . , y
′
n), (x′1, . . . , x

′
n))

is given by

y′j = yj
κj+1

κj
, x′j = xj

κj
κj+1

, κj =
n−1∑
s=0

yjyj+1 · · · yj+s−1xj+s+1xj+s+2 · · ·xj+n−1

where subscripts are interpreted mod n.

Proof. By the preceding discussion, we have x′j = xj
κj
κj+1

. Arguing as in the proof

of Proposition 5.24, we have xjyj = y′jx
′
j, so y′j = yj

κj+1

κj
.

Thus, in the one-row by one-row case, our geometric R-matrix agrees with the

map found by Yamada [Yam01] and Lam–Pylyavskyy [LP12] (cf. Proposition 1.2).

A small example

Set n = 4. Suppose X = (X11, X12, X13, s) ∈ T1, Y = (Y11, Y12, Y22, Y23, t) ∈ T2,

and (Y ′, X ′) = ΘR(X, Y ). Define

x1 = X11 x2 = X12/X11 x3 = X13/X12 x4 = s/X13,

and define x′j analogously. Define yij by (4.1), i.e.,

y11 = Y11 y12 = Y12/Y11 y13 = t/Y13

y22 = Y22 y23 = Y23/Y22 y14 = t/Y23

.

Note that t = y11y12y13 = y22y23y24. Let N |t = Θ2(Y ) ∈ Gr(2, 4) × C×. Using the

definition of Θk, one computes that N is the column span of the matrix
y11 0

y22 y12y22

1 y12 + y23

0 1

 .
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Set PJ = PJ(N). By (5.19), Proposition 5.24, and (5.22), we have

(5.26) Y ′11 = Y11
τ14

τ34

Y ′12 = Y12
τ12

τ24

Y ′22 = Y22
τ24

τ34

Y ′23 = Y23
τ23

τ34

,

(5.27) x′1 = x1
κ1

κ2

x′2 = x2
κ2

κ3

x′3 = x3
κ3

κ4

x′4 = x4
κ4

κ1

,

where

κ1 = τ34 =
x3x4P34 + x4P24 + P23

P34

= x3x4 + x4y22 + y22y23

κ2 = τ14 =
x1x4P14 + x1P13 + tP34

P14

= x1x4 + x1(y12 + y23) + y12y13

κ3 = τ12 =
x1x2P12 + tx2P24 + tP14

P12

= x1x2 + x2y13 +
y11y13

y22

κ4 = τ23 =
x2x3P23 + x3P13 + P12

P23

= x2x3 + x3
y11

y22y23

(y12 + y23) +
y11y12

y23

τ24 =
x2x4P24 + x2P23 + x4P14 + P13

P24

= x2x4 + x2y23 +
y11

y22

(x4 + y12 + y23).

By tropicalizing these formulas, one obtains piecewise-linear formulas for the

combinatorial R-matrix on B1 ⊗ B2. Specifically, let A = (A11, A12, A13, L1) be

a 1-rectangle, let B = (B11, B12, B22, B23, L2) be a 2-rectangle, and let B′ ⊗ A′ =

R̂(A⊗B). Define

a1 = A11 a2 = A12 − A11 a3 = A13 − A12 a4 = L1 − A13,

b11 = B11 b12 = B12 −B11 b13 = L2 −B12

b22 = B22 b23 = B23 −B22 b24 = L2 −B23,

so that aj is the number of j’s in the one-row tableau corresponding to A, and bij is

the number of j’s in the ith row of the two-row tableau corresponding to B. Define

a′j, b
′
ij analogously.

For I ∈
(

[4]
2

)
, let τ̃I be the tropicalization of τI , where xj, yij is replaced with aj, bij

in the tropicalization. Let κ̃j = τ̃{j+2,j+3}. For example,

κ̃1 = τ̃34 = min(a3 + a4, a4 + b22, b22 + b23),

τ̃24 = min(a2 + a4, a2 + b23, b11 − b22 + min(a4, b12, b23)).

By tropicalizing (5.26) and (5.27), we have

B′11 = B11 + τ̃14 − τ̃34 B′12 = B12 + τ̃12 − τ̃24

B′22 = B22 + τ̃24 − τ̃34 B′23 = B23 + τ̃23 − τ̃34,

a′1 = a1 + κ̃1 − κ̃2 a′2 = a2 + κ̃2 − κ̃3 a′3 = a3 + κ̃3 − κ̃4 a′4 = a4 + κ̃4 − κ̃1.
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Example 5.27. Let A,B correspond to the tableaux T, U from Example 2.13. We

have

a1 a2 a3 a4 = 2 0 4 1 and
b11 b12 b13

b22 b23 b24

=
3 1 1

2 0 3
.

We compute

κ̃1 = τ̃34 = min(5, 3, 2) = 2

κ̃2 = τ̃14 = min(3, 2 + min(1, 0), 2) = 2

κ̃3 = τ̃12 = min(2, 1, 2) = 1

κ̃4 = τ̃23 = min(4, 5 + min(1, 0), 4) = 4

τ̃24 = min(1, 0, 1 + min(1, 1, 0)) = 0,

so
B′11 = 3 + 2− 2 = 3

B′12 = (3 + 1) + 1− 0 = 5

B′22 = 2 + 0− 2 = 0

B′23 = (2 + 0) + 4− 2 = 4

and

a′1 = 2 + 2− 2 = 2

a′2 = 0 + 2− 1 = 1

a′3 = 4 + 1− 4 = 1

a′4 = 1 + 4− 2 = 3.

The rectangles B′ and A′ correspond to the tableaux U ′ and T ′ from Example 2.13,

so we have verified that R̂ = R̃ in this case. Also, by Corollary 5.25, we have

Ê(A⊗ B) = κ̃1(A⊗ B) = 2, which agrees with the coenergy of T ⊗ U computed in

Example 2.17.

5.4 Proof of the positivity of the geometric R-matrix

In this section we prove Theorem 5.3, which states that the geometric R-matrix

is positive. We start by reducing this theorem to a statement about the positivity

of certain minors of the folded matrix g(N |t) (Proposition 5.29), and then we prove

Proposition 5.29 using the Lindström Lemma, the positivity of the symmetries PR, S,

and D, and a careful analysis of the structure of g(N |t).

Reduction to Proposition 5.29

Recall the notions of positive varieties and positive rational maps from §4.2.1. Let

X be a positive variety, λ an indeterminate, and f : X → C[λ] a rational map, i.e.,

a map of the form

f = f0 + f1λ+ . . .+ fdλ
d,

where fi : X → C are rational functions. For an integer r, we say that f is r-non-

negative if for each i, the rational function (−1)(r−1)ifi is non-negative, and we say
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that f is r-positive if f is r-non-negative and nonzero. For example, for any positive

variety X, the constant function f = 1− λ+ λ2 is r-positive for even r, but not for

odd r.

We will need the following observation, whose proof is immediate.

Lemma 5.28. If f : X → C[λ] is r-non-negative (resp., r-positive), then the rational

function f : X ×C× → C defined by f(x, z) = f(x)|λ=(−1)r−1z is non-negative (resp.,

positive).

For two r-subsets I, J ⊂ [n], let ∆I,J : Xk → C[λ] denote the rational map which

sends N |t to the minor ∆I,J(g(N |t)). Say that a subset of [n] is a cyclic interval if

its elements are consecutive mod n. Define a cyclic interval of a subset I ⊂ [n] to be

a maximal collection of elements of I which form a cyclic interval.

Proposition 5.29. Let I, J ⊂ [n] be two subsets of size r, at least one of which has

no more than two cyclic intervals, and let ∆I,J : Xk → C[λ] be the rational map just

defined. Then

1. if r ≤ k, ∆I,J is r-non-negative;

2. if r > k, ∆I,J is equal to (t + (−1)kλ)r−kfI,J , where fI,J is an r-non-negative

map Xk → C[λ].

Remark 5.30. We expect that Proposition 5.29 holds without the restriction on I

and J . We need this restriction in our proof because we do not know the correct

generalization of Definition 5.33 and Proposition 5.34 to subsets with more than two

cyclic intervals.

Before proving Proposition 5.29, we explain how it implies Theorem 5.3. Since

the geometric Schützenberger involution S is positive, it suffices to show that the

map Ψk,` : X` × Xk → Xk is positive. Suppose (M |s,N |t) ∈ X` × Xk, and let

N ′|t = Ψk,`(M |s,N |t), A = g(M |s), and At = Aλ=(−1)k−1t. Fix a k-subset I. By

(5.1) and the Cauchy–Binet formula, we have

PI(N
′) =

∑
J

∆I,J(At)PJ(N).

If I has at most two cyclic intervals, then by Proposition 5.29 and Lemma 5.28, there

are non-negative rational functions fI,J : X` × C× → C such that

∆I,J(At) = (s+ (−1)`+k−1t)max(0,k−`)fI,J(M |s, t).

Furthermore, by Proposition 3.7(3), we have det(At) = (s+ (−1)`+k−1t)n−`, so At is

invertible for (M |s, t) in an open subset of X`×C×. This means that at least one of

the rational functions fI,J is nonzero.
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If I and I ′ are k-subsets with at most two cyclic intervals, then on an open subset

of X` × Xk, we have

PI(N
′)

PI′(N ′)
=

∑
fI,J(M |s, t)PJ(N)∑
fI′,J(M |s, t)PJ(N)

,

where fI,J , fI′,J are non-negative rational functions which are not all zero. In par-

ticular, this is true when I and I ′ are basic k-subsets (Definition 2.44), so Ψk,` is

positive by Lemma 4.17.

Proof of Proposition 5.29

I: Exploiting the symmetries

We first use the positivity of the symmetries PR, S, and D to make some further

reductions. Suppose I and J are r-subsets, and consider the rational map ∆I,J :

Xk → C[λ]. By (3.27), we have

∆I,J ◦ S = ∆w0(J),w0(I),

so since S is positive, r-non-negativity (resp., r-positivity) of ∆I,J is equivalent to

that of ∆w0(J),w0(I). This allows us to reduce to the case where J has at most two

cyclic intervals.

Lemma 3.25 allows us to reduce to the case r ≤ k, as follows. Assume Proposition

5.29 holds for r ≤ k, and fix r > k. For I, J ∈
(

[n]
r

)
, Lemma 3.25 gives the equality

∆I,J = (t+ (−1)kλ)r−k(∆J,I |λ=(−1)nλ ◦D)

of rational maps Xk → C[λ]. Suppose I or J (equivalently, I or J) has at most two

cyclic intervals. By our assumption, the rational map ∆J,I : Xn−k → C[λ] is (n− r)-
non-negative, so ∆J,I |λ=(−1)nλ is r-non-negative. Since D is positive, Proposition

5.29 holds for ∆I,J .

Lemma 3.11 shows that

∆I,J ◦ PR =


∆I−1,J−1 if 1 ∈ I ∩ J or 1 6∈ I ∪ J
(−1)r−1λ ·∆I−1,J−1 if 1 ∈ I \ J
(−1)r−1λ−1 ·∆I−1,J−1 if 1 ∈ J \ I.

This, together with the positivity of PR and PR−1, implies the following result.

Lemma 5.31. ∆I,J is r-non-negative (resp., r-positive) if and only if ∆I−1,J−1 is

r-non-negative (resp., r-positive).
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Recall that a subset is “reflected basic” if it is an interval of [n], or it consists

of two disjoint intervals of [n], one of which contains 1 (Definition 2.44). Every

subset with at most two cyclic intervals is a cyclic shift of a reflected basic subset, so

combining the observations above, we see that it suffices to prove Proposition 5.29

in the case where r ≤ k, and J is a reflected basic subset.

II: Non-negativity of minors that do not depend on λ

Let A be the folded matrix g(N |t), where N |t ∈ Xk. Here we view A as an array

of n2 rational maps Aij : Xk → C[λ]. By the definition of g, the maps Aij split up

into three categories:

(5.28) Aij is


a nonzero map to C if i− n+ k ≤ j ≤ i

a nonzero map to C · λ if j ≥ i+ k

0 if j < i− n+ k or i < j < i+ k.

In the second case, we say that Aij depends on λ; otherwise we say that Aij is inde-

pendent of λ. Given subsets I, J ⊂ [n], say that the submatrix AI,J is independent of

λ if Aij is independent of λ for all i ∈ I, j ∈ J . If AI,J is independent of λ, then ∆I,J

is a rational function Xk → C, so r-positivity of ∆I,J is the same thing as (ordinary)

positivity of ∆I,J .

Lemma 5.32. Let I = {i1 < · · · < ir} and J = {j1 < · · · < jr} be two r-subsets

of [n], with r ≤ k. If the submatrix AI,J is independent of λ, then the rational map

∆I,J is positive (equivalently, r-positive) if

(5.29) is − n+ k ≤ js ≤ is for s = 1, . . . , r,

and zero otherwise.

Proof. Recall that Φn−k
I,J : Tn−k → C is the rational map (Xij, t) 7→ ∆I,J(Φn−k(Xij, t)).

Since AI,J is independent of λ, Proposition 4.5 implies that

Φn−k
I,J = ∆I,J ◦Θk.

By Lemma 4.19, Φn−k
I,J is positive if (5.29) holds, and zero otherwise, so the same is

true of ∆I,J (since by definition, ∆I,J is positive if and only if ∆I,J ◦ Θk is positive).

III: Reflected basic subsets and zero rows

Following Convention 2.40, we interpret an interval [c, d] ⊂ Z as a cyclic interval

of [n] by reducing each element of [c, d] mod n. As usual, [c, d] is the empty set if
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c > d. For example, if n ≥ 6, then [−2, 3] and [n− 2, n+ 3] both represent the cyclic

interval [1, 3] ∪ [n− 2, n], but [n− 2, 3] is the empty set.

Given a subset J ⊂ [n], let Z(J) be the rows of the submatrix A[n],J which are

identically zero. We call Z(J) the zero rows of the columns J . (By convention, we

set Z(∅) = ∅.) It follows from (5.28) that the jth column of A has zeroes in rows

[j − k + 1, j − 1]. This implies that if s ≥ 1 and c ∈ Z, then

(5.30) Z([c, c+ s− 1]) = [c− k + s, c− 1].

Definition 5.33. Fix r ≤ k, a ∈ [0, r], and b ∈ [0, n− r], and consider the reflected

basic r-subset

Ja,b = [1, a] ∪ [a+ b+ 1, r + b].

(Note that every reflected basic r-subset is of this form.) Let Z1 be the zero rows of

columns [1, a], and let Z2 be the zero rows of columns [a+ b+ 1, r+ b]. We say that

a subset I ∈
(

[n]
r

)
satisfies condition Cr

a,b (or Ca,b if r is understood) if

I ∩ Z(Ja,b) = ∅, |I ∩ Z1| ≤ r − a, |I ∩ Z2| ≤ a.

Note that if r = k, then |Z1| = k−a and |Z2| = a by (5.30), and Z(Ja,b) is empty

because each row of A has only k−1 zeroes. Thus, condition Ck
a,b always holds. Note

also that by (5.30), we have

(5.31)

Z1 =

∅ if a = 0

[n+ a− k + 1, n] if a > 0
, Z2 =

[r + b− k + 1, a+ b] if a < r

∅ if a = r
,

and thus

(5.32) Z(Ja,b) =


[r + b− k + 1, b] if a = 0

[n+ a− k + 1, a+ b] ∪ [n+ r + b− k + 1, n] if a ∈ [1, r − 1]

[n+ r − k + 1, n] if a = r.

Proposition 5.34. Fix r ≤ k. Let Ja,b be a reflected basic r-subset, and let Z1 =

Z([1, a]), Z2 = Z([a+ b+ 1, r+ b]) be the zero rows of the two intervals of Ja,b. Then

for I ∈
(

[n]
r

)
, the rational map ∆I,Ja,b is r-positive if I satisfies condition Ca,b, and

zero otherwise.

Thanks to the reductions based on PR, S, and D, Proposition 5.34 implies Propo-

sition 5.29. The proof of Proposition 5.34 is rather technical. The idea is to use

Lemma 5.32 and the cyclic shifting map to show that a large class of the minors

∆I,Ja,b are r-positive, and then to show that all other minors of the form ∆I,Ja,b are

either zero, or can be expressed as positive Laurent polynomials in the minors that

are known to be r-positive. We carry out the first step with the following lemma.
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Lemma 5.35. Fix r ≤ k.

1. The submatrix AI,Ja,b is independent of λ if and only if I ⊂ [r + b − k + 1, n],

or a = r.

2. If AI,Ja,b is independent of λ, then ∆I,Ja,b is positive (equivalently, r-positive) if

I satisfies condition Ca,b, and zero otherwise.

3. If there is some c such that Ja,b − c = Ja
′,b′ and the submatrix AI−c,Ja′,b′ is

independent of λ, then Proposition 5.34 holds for ∆I,Ja,b. Here S − c is the

subset obtained by subtracting c from each element of S, and interpreting the

result mod n.

Proof. Let I = {i1 < . . . < ir} and Ja,b = {j1 < . . . < jr}. By (5.28), Aij is

independent of λ if and only if j − i < k, so AI,Ja,b is independent of λ if and only if

(5.33) jr − i1 < k.

If a = r, then Ja,b = [r], so (5.33) holds for every I. If a 6= r, then jr = r + b, so

(5.33) holds if and only if i1 > r + b− k. This proves (1).

Now suppose AI,Ja,b is independent of λ. Specializing Lemma 5.32 to the case

J = Ja,b, we see that ∆I,Ja,b is positive if I satisfies

(5.34) is ∈

[s, s+ n− k] if s = 1, . . . , a

[s+ b, s+ b+ n− k] if s = a+ 1, . . . , r,

and zero otherwise. So to prove (2), we must show that:

Given the assumption I ⊂ [r + b− k + 1, n] or a = r, I satisfies condition Ca,b if

and only if I satisfies (5.34).

To see this, first suppose a ∈ [r− 1]. In this case, (5.34) is equivalent to the three

inequalities

(5.35) ia ≤ n+ a− k, ia+1 ≥ a+ b+ 1, ir ≤ r + b+ n− k.

Using (5.31), (5.32) and considering separately the cases r + b ≥ k and r + b < k,

it is straightforward to check that for I ⊂ [r + b − k + 1, n], (5.35) is equivalent to

condition Ca,b. If a = r, (5.34) is equivalent to the first inequality of (5.35); if a = 0,

(5.34) is equivalent to the last two inequalities of (5.35). The verification of the claim

in these cases is similar.

For (3), suppose AI′,Ja′,b′ is independent of λ, where I ′ = I−c and Ja
′,b′ = Ja,b−c.

The cyclic symmetry of the locations of zeroes in the matrix A implies that I ′ satisfies

condition Ca′,b′ if and only if I satisfies condition Ca,b. Thus, Proposition 5.34 holds

for ∆I,Ja,b by Lemma 5.31 and part (2).
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IV: Conclusion of the proof

We now complete the proof of Proposition 5.29 (and thus the proof of Theorem

5.3) by proving Proposition 5.34.

Suppose I does not satisfy condition Ca,b. If I ∩ Z(Ja,b) 6= ∅, then the submatrix

AI,Ja,b has a row of zeroes, so its determinant vanishes. If |I ∩ Z1| > r − a, then the

first a columns of AI,Ja,b have at least r − a+ 1 zero rows, so again the determinant

vanishes. The case |I ∩ Z2| > a is similar.

Now suppose I satisfies condition Ca,b. If Ja,b is contained in a cyclic interval of

size k, then there is some c so that Ja,b − c = Ja
′,b′ ⊂ [k]. The first k columns of A

are independent of λ, so ∆I,Ja,b is r-positive by Lemma 5.35(3).

Assume that Ja,b is not contained in a cyclic interval of size k. The zeroes in

each row of A are located in k− 1 cyclically consecutive columns, so in this case, the

submatrix A[n],Ja,b does not have a row of zeroes. In other words, Z(Ja,b) = ∅, so

the first part of condition Ca,b is automatically satisfied. Also, Z1 and Z2 are both

non-empty, and |Z1| = k − a, |Z2| = k − r + a, so I satisfies condition Ca,b if and

only if

|Zi \ I| ≥ k − r for i = 1, 2.

Thus, we need to show that ∆I,Ja,b is r-positive whenever

(5.36) Y1 ∈
(

Z1

k − r

)
, Y2 ∈

(
Z2

k − r

)
, and I ∈

(
[n] \ (Y1 ∪ Y2)

r

)
.

Let Y1, Y2, and I be as in (5.36). Suppose first that I ⊃ Z1 \ Y1. In this case,

since Z1 = [n+ a− k + 1, n], the lower left (r − a)× a submatrix of AI,Ja,b consists

entirely of zeroes, so we have

∆I,Ja,b(A) = ∆I′,[1,a](A)∆I′′,[a+b+1,r+b](A),

where I ′ = I \(Z1\Y1) and I ′′ = Z1\Y1. The first k columns and the last k rows of A

are independent of λ, so the submatrices AI′,[1,a] and AI′′,[a+b+1,r+b] are independent

of λ. The a-subset I ′ is disjoint from Z1, so I ′ satisfies condition Ca
a,0; similarly, since

Z1∩Z2 = Z(Ja,b) = ∅, the r−a subset I ′′ is disjoint from Z2, so I ′′ satisfies condition

Cr−a
0,a+b. Thus, ∆I′,[1,a] and ∆I′′,[a+b+1,r+b] are positive rational functions by Lemma

5.35(2), so ∆I,Ja,b is a positive (hence r-positive) rational function.

If I ⊃ Z2 \ Y2, set c = a + b, so that Ja,b − c = Jr−a,n−r−b. Let I ′ = I − c,

Z ′1 = Z2 − c, and Y ′1 = Y2 − c. Clearly Z ′1 consists of the zero rows of columns

[1, r − a], and I ′ ⊃ Z ′1 \ Y ′1 , so ∆I′,Jr−a,n−r−b is r-positive by the previous paragraph,

and ∆I,Ja,b is r-positive by Lemma 5.31.

It remains to consider the case where I 6⊃ Zi \Yi for i = 1, 2. This case is subtler,

and we proceed indirectly. Set S = [n] \ (Y1 ∪ Y2). Call a subset of S an S-interval



112

if it is of the form S ∩ [c, d], with 1 ≤ c ≤ d ≤ n. Let I be a basic r-subset of S; this

means that I consists of one or two S-intervals, and if there are two S-intervals, one

of them contains the largest element of S. If I ⊂ [r + b − k + 1, n], then ∆I,Ja,b is

r-positive by Lemma 5.35, so suppose I 6⊂ [r + b− k + 1, n]. We claim that

(5.37) I ⊂ [1, a+ b] ∪ [n+ a− k + 1, n].

To prove (5.37), recall that Z1 = [n+ a− k+ 1, n], and Z2 = [r+ b− k+ 1, a+ b].

Since I 6⊂ [r + b− k + 1, n], we must have r + b− k + 1 ≥ 2, so [r + b− k + 1, a+ b]

is an “honest” (i.e., non-cyclic) interval of [n], and we have

S = [1, r + b− k] ∪ (Z2 \ Y2) ∪ [a+ b+ 1, n+ a− k] ∪ (Z1 \ Y1).

By assumption, I is a basic r-subset of S which intersects [1, r + b − k] and does

not contain all of Z2 \ Y2 or Z1 \ Y1. There are two possibilities: either I is a single

S-interval contained in [1, r+ b−k]∪Z2 \Y2, or I = I1∪ I2, where I1 is an S-interval

contained in [1, r + b− k] ∪ Z2 \ Y2, and I2 is an S-interval contained in Z1 \ Y1. In

either case, I ∩ [a+ b+ 1, n+ a− k] = ∅, so (5.37) holds.

Now let I ′ = I − (a+ b), and note that Ja,b − (a+ b) = Jr−a,n−r−b. By (5.37), we

have

I ′ ⊂ [n− b− k + 1, n] = [r + (n− r − b)− k + 1, n],

so ∆I,Ja,b is r-positive by Lemma 5.35.

Let J be an r-subset of S. Proposition 2.46 says that ∆J,Ja,b can be expressed as

a positive Laurent polynomial in the ∆I,Ja,b with I basic. We have shown that these

∆I,Ja,b are r-positive, and furthermore, it’s clear from the proof that each of these

∆I,Ja,b is a monomial with respect to λ. It follows that ∆J,Ja,b is r-positive (although

not necessarily a monomial). We have shown that ∆I,Ja,b is r-positive whenever I

satisfies (5.36), so we are done.

5.5 Proof of the identity g ◦R = g

In this section we prove Theorem 5.4. Suppose u = M |s ∈ X` and v = N |t ∈ Xk.

Let A = g(u)g(v) (viewed as a folded matrix), and let At = A|λ=(−1)k−1t, and As =

A|λ=(−1)`−1s. Define v′ = N ′|t ∈ Xk and u′ = M ′|s ∈ X` by R(u, v) = (v′, u′). We

must show that

(5.38) g(u)g(v) = g(v′)g(u′).

For I ∈
(

[n]
k

)
, let P ′I = PI(N

′), and for J ∈
(

[n]
`

)
, letQ′J = QJ

s (M ′) = Pw0(J)(Ss(M
′)).

By (5.3), we have

(5.39)
P ′I

P ′[n−k+1,n]

=
∆I,[k](At)

∆[n−k+1,n],[k](At)
and

Q′J
Q′[`]

=
∆[n−`+1,n],J(As)

∆[n−`+1,n],[`](As)
.
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The key to the proof of Theorem 5.4 is the following identity.

Proposition 5.36. For r = 1, . . . , n, we have

(5.40) (t+ (−1)kλ)
Q′[`−1]∪{r}

Q′[`]
=

n∑
a=1

(−1)n+a
P ′[n−k,n]\{a}

P ′[n−k+1,n]

Aar.

(Note that by Convention 2.40, the terms on the right-hand side of (5.40) with

a < n− k are zero, and the left-hand side is zero when r ≤ `− 1.)

Before proving this identity, we use it to deduce Theorem 5.4. Consider the folded

matrices

B = (t+ (−1)kλ) · g(u′) and C = h(v′)g(u)g(v)

where h : Xk → B− is defined by (3.31). The left-hand side of (5.40) is equal to

Bnr by Lemma 3.18, and the right-hand side is equal to Cnr by the definition of h,

so Proposition 5.36 says that Bnr = Cnr for all r. Recall the cyclic shift map PR

and the shift automorphism sh from §3.1. Since sh ◦ g = g ◦ PR by Lemma 3.3(1),

sh ◦h = h◦PR by a similar argument, and PR commutes with R by Theorem 5.11(2),

the equality of the last rows of B and C implies that B = C.

By Lemma 3.20, the matrix h(v′) satisfies

g(v′)h(v′) = (t+ (−1)kλ) · Id,

so left-multiplying B and C by g(v′) gives the desired equality (5.38).

Proof of Proposition 5.36. Let

pr(λ) =
n∑

a=n−k

(−1)n+a
P ′[n−k,n]\{a}

P ′[n−k+1,n]

Aar

be the right-hand side of (5.40). Let X be the unfolding of A. The entries of the

matrices g(u) and g(v) are at most linear in λ, so the entries of their product A are

at most quadratic in λ, and

Aij = Xij + λXn+i,j + λ2X2n+i,j.

Recall from §3.1 that an unfolded matrix X is m-shifted unipotent if Xij = 0 when

i − j > m, and Xij = 1 when i − j = m. The matrices g(u) and g(v) are (n − `)-
and (n − k)-shifted unipotent, respectively, so their product is (2n − ` − k)-shifted

unipotent. This implies, in particular, that if a ≥ n− k, then Aar is either constant

or linear in λ, so pr(λ) is a polynomial of degree at most one. Proposition 5.36 is

therefore an immediate consequence of the following two claims:

1. (−1)k−1t is a root of pr(λ);
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2. the coefficient of λ in pr(λ) is (−1)k
Q′[`−1]∪{r}

Q′[`]
.

To prove the first claim, let D = (At)[n−k,n],<1,2,...,k,r> denote the (generalized)

submatrix of At consisting of the last k + 1 rows, and columns 1, . . . , k, r, in that

order. If r ∈ [k], then clearly det(D) = 0; if r 6∈ [k], then det(D) is still zero because

g(v)|λ=(−1)k−1t has rank k by Proposition 3.7(2). On the other hand, expanding the

determinant along column r gives det(D) = pr((−1)k−1t), so (1) follows.

It remains to prove the second claim. Since the coefficient of λ in Aar is Xn+a,r,

claim (2) can be rephrased as the identity

(5.41)
Q′[`−1]∪{r}

Q′[`]
=

n∑
a=n−k

(−1)k+n+a
P ′[n−k,n]\{a}

P ′[n−k+1,n]

Xn+a,r.

If r ≤ `−1, then Xn+a,r = 0 for a ≥ n−k (since X is (2n−`−k)-shifted unipotent),

so (5.41) holds trivially in this case.

To prove (5.41) for r ≥ `, we start by massaging the (folded) matrices g(u) and

g(v) into a simpler form. By Proposition 3.7(2), the matrix g(u)|λ=(−1)`−1s has rank

`. This means that we may add linear combinations of the last ` rows of g(u) (which

are linearly independent, and do not depend on λ) to the first n− ` rows to obtain

the matrix g(u)∗, where

g(u)∗ij =


g(u)ij if i ≥ n− `+ 1

(λ+ (−1)`s)g(u)ij if j − i ≥ `

0 otherwise.

Similarly, we may add linear combinations of the first k columns of g(v) to the last

n− k columns to obtain the matrix g(v)∗, where

g(v)∗ij =


g(v)ij if j ≤ k

(λ+ (−1)kt)g(v)ij if j − i ≥ k

0 otherwise.

Define A∗ = g(u)∗g(v)∗. See Figure 7 for an example of the matrices g(u)∗, g(v)∗,

and A∗.

Given two subsets I, J ⊂ [n] of the same cardinality, say that (I, J) is a good

pair if I contains or is contained in the interval [n − ` + 1, n], and J contains or is

contained in the interval [1, k]. The construction of g(u)∗ and g(v)∗, together with

the Cauchy–Binet formula, implies that

(5.42) ∆I,J(A∗) = ∆I,J(A) if (I, J) is a good pair.
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
∗ 0 λ λ∗
∗ ∗ 0 λ
1 ∗ ∗ 0
0 1 ∗ ∗



∗ 0 λ λ∗
∗ ∗ 0 λ
1 ∗ ∗ 0
0 1 ∗ ∗

 =


X11 + λ λX52 λX53 λX54

X21 X22 + λ λX63 λX64

X31 X32 X33 + λ λX74

X41 X42 X43 X44 + λ




0 0 λ+ s (λ+ s)∗
0 0 0 λ+ s
1 ∗ ∗ 0
0 1 ∗ ∗



∗ 0 λ+ t (λ+ t)∗
∗ ∗ 0 λ+ t
1 ∗ 0 0
0 1 0 0



=


λ+ s (λ+ s)X52 0 0

0 λ+ s 0 0
X31 X32 λ+ t (λ+ t)X74

X41 X42 0 λ+ t


Figure 7: Suppose n = 4, ` = k = 2, and u = M |s, v = N |t ∈ X2. The first line shows the product

g(u)g(v) = A, where the ∗’s are ratios of Plücker coordinates of M or N , possibly scaled
by s or t, and X is the unfolding of A. The next lines show the product g(u)∗g(v)∗ = A∗,
with the blocks of A∗ indicated.

Set

αs = λ+ (−1)`s, αt = λ+ (−1)kt.

The reader may easily verify that the entries of A∗ are given by

(5.43) (A∗)ij =


Xij if i ≥ n− `+ 1 and j ≤ k

αsXn+i,j if i ≤ n− ` and j ≤ k

αtXn+i,j if i ≥ n− `+ 1 and j ≥ k + 1

αsαtX2n+i,j if i ≤ n− ` and j ≥ k + 1.

In other words, A∗ has the block form

αsE

G

αsαtF

αtH

n− `

`

k n− k
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

αsX81 αsX82 0 0 0 0 αsαt

αs αsX92 0 0 0 0 0
0 αs 0 0 0 0 0
X41 X42 αt αtX11,4 αtX11,5 αtX11,6 αtX11,7

X51 X52 0 αt αtX12,5 αtX12,6 αtX12,7

X61 X62 0 0 αt αtX13,6 αtX13,7

X71 X72 0 0 0 αt αtX14,7


Figure 8: The matrix A∗ in the case n = 7, ` = 4, k = 2, with blocks indicated.

where G is filled with the constant terms of the corresponding entries of A, E and

H with the coefficients of λ in the corresponding entries of A, and F with the

coefficients of λ2 in the corresponding entries of A (examples are shown in Figures 7

and 8). Furthermore, the matrices E,F,G,H satisfy:

• H and fl(E) (see §3.3.2) are upper uni-triangular;

• all entries in the first column and last row of F are zero.

Taken together, these properties imply that row n − ` (resp., column k + 1) of A∗

has only one nonzero entry, namely, (A∗)n−`,k = αs (resp., (A∗)n−`+1,k+1 = αt).

The argument now splits into two cases.

Case 1: ` 6= k.

First note that the argument used to deduce Theorem 5.4 from Proposition 5.36

can be reversed to deduce the latter from the former, so these two results are

in fact equivalent. Thanks to Proposition 3.15 and the fact that the geometric

Schützenberger involution commutes with the geometric R-matrix, (5.38) holds for

(u, v) ∈ X`×Xk if and only if it holds for (S(v), S(u)) ∈ Xk×X`. Thus, the `, k case

of Theorem 5.4 is equivalent to the k, ` case, so the same is true of Proposition 5.36,

and we may assume ` > k here.

Using (5.42), (5.43), and the fact that the matrix H defined above is upper uni-

triangular (it may be helpful to refer to Figure 8), we compute

∆[n−`+1,n],[`−1]∪{r}(A) = ∆[n−`+1,n],[`−1]∪{r}(A
∗)

= (−1)k(`−k)α`−k−1
t

n∑
a=n−k

(−1)a−n+kA∗ar∆[n−k,n]\{a},[k](A
∗)

= (−1)k(`−k)α`−kt

n∑
a=n−k

(−1)a−n+kXn+a,r∆[n−k,n]\{a},[k](A).

In particular,

∆[n−`+1,n],[`](A) = (−1)k(`−k)α`−kt ∆[n−k+1,n],[k](A),
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and thus

(5.44)
∆[n−`+1,n],[`−1]∪{r}(A)

∆[n−`+1,n],[`](A)
=

n∑
a=n−k

(−1)a−n+kXn+a,r

∆[n−k,n]\{a},[k](A)

∆[n−k+1,n],[k](A)
.

By (5.39), the two sides of (5.41) are obtained by evaluating the two sides of

(5.44) at λ = (−1)`−1s and λ = (−1)k−1t, respectively. Note, however, that the

entries of the submatrix A[n−`+1,n],[k] do not depend on the value of λ, so since k < `,

the right-hand side of (5.44) is independent of λ. This means the left-hand side is

also independent of λ, and (5.41) follows.

Case 2: ` = k.

Since Xn+a,k is 1 when a = n−k and 0 when a ≥ n−k, (5.41) clearly holds when

r = k. Fix r ≥ k + 1. Let z denote the coefficient of λ in ∆[n−k,n],[k]∪{r}(A). We will

deduce (5.41) by computing z in two ways. On the one hand, we use (5.42), (5.43),

and the fact that the only nonzero entry in the (n − k)th row of A∗ is A∗n−k,k = αs

to compute

∆[n−k,n],[k]∪{r}(A) = ∆[n−k,n],[k]∪{r}(A
∗)

= αs

n∑
a=n−k+1

(−1)a−n+k−1A∗ar∆[n−k+1,n]\{a},[k−1](A
∗)

= αsαt

n∑
a=n−k+1

(−1)a−n+k−1Xn+a,r∆[n−k+1,n]\{a},[k−1](A),

which shows that

(5.45) z = −(s+ t)
n∑

a=n−k+1

(−1)a−nXn+a,r∆[n−k+1,n]\{a},[k−1](A).

On the other hand, the coefficient of λ in the determinant ∆[n−k,n],[k]∪{r}(A) can be

computed from the unfolded matrix X by taking the alternating sum of determinants

of submatrices of columns [1, k]∪{r} of X, where k of the rows come from [n− k, n]

and one row comes from [2n− k, 2n], i.e.,

(5.46) z =
n∑

a=n−k

(−1)n−a∆([n−k,n]\{a})∪{n+a},[k]∪{r}(X).

Consider the term in this sum with a = n− k. Expanding the determinant along

row 2n− k (it may be helpful to refer to the first line of Figure 7), we obtain

∆[n−k+1,n]∪{2n−k},[k]∪{r}(X) = X2n−k,r∆[n−k+1,n],[k](X)−∆[n−k+1,n],[k−1]∪{r}(X).
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Observe that the entries of the bottom-left k × k submatrix of A do not depend on

λ, and the entries Aar for a ≥ n− k + 1 are polynomials in λ of degree at most one.

This means that

(5.47) ∆[n−k+1,n],[k](X) = ∆[n−k+1,n],[k](A) = ∆[n−k+1,n],[k](As) = ∆[n−k+1,n],[k](At)

and

∆[n−k+1,n],[k−1]∪{r}(X) = ∆[n−k+1,n],[k−1]∪{r}(A)

− λ
n∑

a=n−k+1

(−1)n−aXn+a,r∆[n−k+1,n]\{a},[k−1](A).

Since the left-hand side of this equation is independent of λ, we may substitute

λ = (−1)k−1s into the right-hand side to obtain

∆[n−k+1,n],[k−1]∪{r}(X) = ∆[n−k+1],[k−1]∪{r}(As)

− (−1)k−1s
n∑

a=n−k+1

(−1)n−aXn+a,r∆[n−k+1,n]\{a},[k−1](A).

By similar reasoning,

∆([n−k,n]\{a})∪{n+a},[k]∪{r}(X) = Xn+a,r

(
∆[n−k,n]\{a},[k](At)− t∆[n−k+1,n]\{a},[k−1](A)

)
for a = n− k + 1, . . . , n.

Putting all of this together, we may rewrite (5.46) as

(5.48) z = (−1)kX2n−k,r∆[n−k+1,n],[k](A)− (−1)k∆[n−k+1,n],[k−1]∪{r}(As)

+
n∑

a=n−k+1

(−1)n−aXn+a,r(∆[n−k,n]\{a},[k](At)− (s+ t)∆[n−k+1,n]\{a},[k−1](A)).

Equating the expressions for z in (5.45) and (5.48), we obtain

∆[n−k+1,n],[k−1]∪{r}(As) = X2n−k,r∆[n−k+1,n],[k](A)

+
n∑

a=n−k+1

(−1)n−a+kXn+a,r∆[n−k,n]\{a},[k](At).

Divide both sides of this equation by ∆[n−k+1,n],[k](A) and use (5.47) and (5.39) to

obtain (5.41). This completes the proof.
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