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Abstract 

 

With the development of micro-electro-mechanical system (MEMS) technologies, 

emerging MEMS applications such as in-situ MEMS IMU calibration, medical imaging via 

endomicroscopy, and feedback control for nano-positioning and laser scanning impose needs for 

especially accurate measurements of motion using on-chip sensors. Due to their advantages of 

simple fabrication and integration within system level architectures, capacitive sensors are a 

primary choice for motion tracking in those applications. However, challenges arise as often the 

capacitive sensing scheme in those applications is unconventional due to the nature of the 

application and/or the design and fabrication restrictions imposed, and MEMS sensors are 

traditionally susceptible to accuracy errors, as from nonlinear sensor behavior, gain and bias 

drift, feedthrough disturbances, etc. Those challenges prevent traditional sensing and estimation 

techniques from fulfilling the accuracy requirements of the candidate applications. 

The goal of this dissertation is to provide a framework for such MEMS devices to 

achieve high-accuracy motion estimation, and specifically to focus on innovative sensing and 

estimation techniques that leverage unconventional capacitive sensing schemes to improve 

estimation accuracy. Several research studies with this specific aim have been conducted, and the 

methodologies, results and findings are presented in the context of three applications. The 

general procedure of the study includes proposing and devising the capacitive sensing scheme, 

deriving a sensor model based on first principles of capacitor configuration and sensing circuit, 

analyzing the sensor’s characteristics in simulation with tuning of key parameters, conducting 



 xvi 

experimental investigations by constructing testbeds and identifying actuation and sensing 

models, formulating estimation schemes is to include identified actuation dynamics and sensor 

models, and validating the estimation schemes and evaluating their performance against ground 

truth measurements. The studies show that the proposed techniques are valid and effective, as the 

estimation schemes adopted either fulfill the requirements imposed or improve the overall 

estimation performance. Highlighted results presented in this dissertation include a scale factor 

calibration accuracy of 286 ppm for a MEMS gyroscope (Chapter 3), an improvement of 15.1% 

of angular displacement estimation accuracy by adopting a threshold sensing technique for a 

scanning micro-mirror (Chapter 4), and a phase shift prediction error of 0.39 degree for a 

electrostatic micro-scanner using shared electrodes for actuation and sensing (Chapter 5).  
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  Chapter 1

Introduction 

 

 Background and motivation 1.1

Accompanying the development of micro-electro-mechanical system (MEMS) 

technologies in the last few decades, capacitive sensing usage has been translated into a vast 

array of industrial and consumer electronics applications. The capacitive sensing principle is to 

form a capacitor by separating two or more electrodes across a dielectric (Fig. 2.1), and the 

change of capacitance due to the change of relative position of the electrodes [1] [2], dielectric 

constant [3] or addition of external capacitance can be converted into an electrical signal by 

various sensing circuits [1] [4]. Typical sensing applications include MEMS accelerometers and 

gyroscopes [5] [6], displacement and position sensors [1] [7] [8], pressure [9] and force sensors 

[10] including microphones [11], humidity sensors [3] [12], and proximity [13] and tactile 

sensors [14] [15]. Compared to other transduction mechanisms at small scales, capacitive sensors 

in general have advantages of low cost, small size, high sensitivity and low power consumption 

[1] [16].  

Recently, a number of MEMS-based applications with additional actuation and sensing 

requirements have emerged, such as generation of motion stimulus for inertial sensors or optical 

beam steering [17] [18] [19] [20]. These applications require highly accurate position and/or 

velocity measurements and may employ various on-chip sensing technologies for that purpose. 

Capacitive sensing has been proposed in many of these applications owing to its being 

comparatively easy to fabricate and easy to integrate within system level architectures [21]. 
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However, due to specifications imposed by these applications and, in some cases, the fabrication 

techniques used, the design of the capacitive sensors can be different from conventional 

capacitive sensors and pose unique challenges.  

The first challenge is that unconventional configurations of capacitive sensor electrodes 

result in nonlinear mapping between position and capacitance, which means that the traditional 

sensing circuit cannot be applied to measure motion directly based on raw sensor output. More 

specifically, the most commonly used capacitive sensors for position measurement are gap-

varying and overlapped-area-varying geometries [1] [2]. In the former configuration the gap 

between the electrodes is designed to vary, whereas in the latter the overlapped area of electrodes 

is designed to vary. The latter is typically linear, and the former is nonlinear but usually used 

over small displacements, such that nonlinearity can be neglected. By applying an AC voltage or 

current to the electrodes, an electrical signal proportional to the position can be generated and 

therefore measured [1]. In unconventional configurations examined in this dissertation [17] [22] 

[23], the motion of interest is often rotational with respect to the electrodes and frequently large 

in amplitude, such that the rotations affect either the gap between the electrodes or their 

overlapped area nonlinearly. To be able to establish the relationship between the rotation and the 

capacitance, nonlinear sensor models incorporating knowledge of capacitance as a function of 

position, and capacitance into motion information (position and/or velocity) are required. Such 

models may be derived from first principles of capacitive sensing and corresponding sensing 

circuits, or empirically. 

The second challenge is that for applications with stringent space limitations, no 

dedicated capacitive sensing module may be permissible on the MEMS device, and meaningful 

signal needs to be extracted from the same capacitor modules designed to generate electrostatic 
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forces [24]. Such a configuration increases the magnitude of feedthrough generated by the 

driving signal into the sensed output and increases the challenge of extracting meaningful 

feedback signal. Previous studies involving modeling of on-chip capacitive sensors and sensing 

circuits predominantly employ a dedicated capacitive sensing module separated from any driving 

module [1] [25]. There are other recent studies using shared electrodes for both driving and 

sensing, but they either employ conventional capacitive sensor configurations with linear 

relationships between position and capacitance [26] [27], or lack necessary modeling effort to 

characterize the amplitude-modulated and demodulation (AMDM) sensing circuit to analyze the 

principal frequency bands of the signals in presence of nonlinearities [24]. Such analysis is 

important in understanding the distribution of the frequency bands of the signal and to properly 

design the sensing circuit, especially in the presence of nonlinear features. The analysis is also 

helpful to build a sensor model to map the positions of interest and the sensing signal, and to 

integrate this type of capacitive sensor into a nonlinear motion estimation scheme.  

The third challenge, shared among the conventional and the proposed capacitive sensing 

geometries and other small-scale transducers, is that they are susceptible to gain and bias drift 

due to environmental perturbations such as temperature change [28]. In this work, some unique 

features of capacitive sensors in those unconventional capacitive sensing applications are 

proposed to be utilized to improve estimation accuracy. Primarily, in a configuration where 

capacitance is not monotonic with respect to displacement, a threshold position measurement can 

possibly be established and used to improve the estimation accuracy [29] [30] [31] [32]. Such a 

feature may be desirable in capacitive sensing schemes when it can be designed to be insensitive 

to environmental perturbations such as temperature, or assembly tolerance due to misalignment 

[33]. However, extracting such a threshold measurement is non-trivial due to existing noise and 
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bias and has not been rigorously explored previously. Other applications use other attributes of 

nonlinearity in capacitance versus position to better identify parameters in sensor and estimation 

models that may vary over time. 

This dissertation aims to present a framework for formulating estimation schemes for 

MEMS devices with nonlinear actuation capability and capacitive sensors, and to introduce 

innovative sensing and estimation techniques utilizing the unconventional design of capacitive 

sensors to achieve high-accuracy motion estimation.  

The research objectives include: 

1. Derive sensor models for each capacitive sensor application and associated sensing circuitry to 

understand relationships between motion and sensing signals. Devise effective feedthrough 

reduction methods based on characterization of the sensor design and the specific application. 

2. Develop signal processing techniques to extract threshold position measurements and 

incorporate them into motion estimation schemes. Analyze the improvement of estimation 

accuracy with threshold sensing methods used, and study the impact of various factors (sampling 

rate, noise variance, capacitance profile, etc.) that can possibly affect the performance of 

threshold sensing.  

3. Formulate motion estimation schemes incorporating nonlinear process and sensing models. 

Identify model parameters, validate the analysis and quantify the estimation performance in the 

context of the use case by constructing testbeds and performing experimental investigations for 

the studied MEMS devices. 
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 Dissertation outline 1.2

The dissertation is organized into 6 chapters in total, with the remaining chapters 

organized as follows: 

In Chapter 2, a more detailed introduction of capacitive sensors and circuits for position 

sensing is given, and the standard extended Kalman filters (EKF) for nonlinear process 

estimation is also described. 

In Chapter 3, a capacitive sensor design used in a MEMS micro-stage for in-situ MEMS 

IMU calibration is presented. An EKF based motion estimator incorporating a nonlinear sensor 

model is derived and evaluated, and a feedthrough reduction method based on repetitive 

measurement is proposed and implemented. 

In Chapter 4, a threshold position sensing principle using non-monotonic capacitance 

profile is introduced. A signal processing technique to reliably and efficiently detect threshold 

position signal is introduced and is implemented in an EKF based motion estimator with 

simulation and experiments. 

In Chapter 5, a motion estimator for a micro-scanner using shared electrodes for driving 

and sensing is presented. A nonlinear sensor model incorporating capacitance profile and an 

AMDM circuit is derived and identified. Both EKF and UKF estimators are implemented and 

experimentally investigated. 

In Chapter 6, a summary of the dissertation is provided. The major research contributions 

are highlighted, and recommendations for future works are provided. 
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  Chapter 2

Capacitive Sensing for Position Measurement and Extended Kalman Filter 

 

 Electrode configurations 2.1

Most capacitive sensors rely on a change in the geometric relationship between two 

electrodes to measure displacement. The two most common approaches are to vary the electrode 

gap or vary their overlapped area [5]. Capacitance, C, is given by  

 𝐶 =
𝜖0𝜖𝑟𝐴

𝐷
 (1) 

where 휀𝑟 is the relative static permittivity (1 for air),  휀0 is the dielectric constant (8.8542 × 10-12 

F m
-1

), 𝐴 is the overlap area of electrodes and 𝐷  is the distance between the electrodes. As 

illustrated in Fig. 2.1, either the change of 𝐷 (Fig. 2.1 (a)) or change of overlapped area A (Fig. 

2.1 (b)) between the electrodes will cause a change of capacitance. The change of capacitance 

can then be converted into a measurable electrical signal using various sensing circuits [34]. 

 

Fig. 2.1. Commonly used configurations for capacitive sensing: (a) Varying gap; (b) Varying overlapped area. 

 

In general, applications that make use of gap variation provide greater sensitivity at the 

cost of nonlinearity and a limited range of measurement. On the other hand, configurations based 

𝐷

𝐶

𝐴

𝐷

  

𝐶

 

 

 𝐷

(a) (b)
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on change in area typically provide less sensitivity but more linear behavior, and can be designed 

to provide a unique feature of a maximal capacitance when electrodes reach their position with 

maximum overlapped area, a detailed examination of such a mechanism being studied in Chapter 

4.  

 Sensing circuitry for position measurement 2.2

The function of sensing circuitry for a capacitive sensor is to convert the capacitance into 

an output signal. From a modeling perspective, the capacitor maps the position to be measured 

into a capacitance, and the sensing circuit (when at steady state output), establishes a mapping 

between the capacitance and an output signal.  

There are several types of sensing circuits for different capacitive sensing applications [1] 

[2] [5] [34]. Within the scope of this dissertation, two will be extensively applied and are 

therefore discussed here.  

The first type of sensing circuit is most commonly used in measuring the capacitance 

using an applied AC voltage [1]. By applying an AC voltage, 𝑉𝑎𝑐  to a varying area type 

capacitor, the resulting sensing current 𝐼𝑠 can be characterized as  

 𝐼𝑠 = 𝑗𝜔𝑎𝑐,𝑉𝑉𝑎𝑐𝐶𝑠(𝑥) (2) 

where 𝜔𝑎𝑐,𝑉  is the frequency of 𝑉𝑎𝑐 . Notice 𝐼𝑠  is proportional to capacitance and thus to 

displacement, 𝑥, for a varying area configuration. For a varying gap configuration, if an AC 

current is applied, one can obtain a sensing voltage Vs as  

 𝑉𝑠 =
𝐼𝑎𝑐

𝑗𝜔𝑎𝑐,𝐼𝐶𝑠(𝑥)
 (3) 

where 𝜔𝑎𝑐,𝐼  is the frequency of 𝐼𝑎𝑐 , and 𝑉𝑠  is inversely proportional to 𝐶𝑠(𝑥) and therefore is 

linear to 𝑥.   
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Since both output sensing signals contain frequency content related to the AC source 

signal (as a carrier signal), a demodulation technique needs to be applied to separate the motion 

signal carried by 𝐶(𝑥) and the carrier signal in the frequency domain. Fig. 2.2 shows two circuit 

realizations using amplitude modulation and demodulation (AMDM) principles.  

 

 

Fig. 2.2. Two AMDM circuits for measurement of capacitance (a) sensing circuit to measure 𝑪𝒔  with a single-diode 

demodulator. (b) sensing circuit to measure 𝑪𝒔 with synchronous demodulator.  

 

Fig. 2.2(a) shows use of a single diode to form an envelope detector to capture the slow 

frequency content due to 𝐶(𝑥), and (b) shows a synchronous demodulator that uses the carrier 

signal to perform demodulation. More detailed and exemplary realizations can be found in [34] 

[25] [35]. It should be noted that although the AMDM circuits provide direct measurement of 

capacitance, and have additional benefits for filtering noise and disturbances, they add 

complexity and introduce delay due to the dynamics of amplifiers and filters used for frequency 

separation.  

The second type of circuit is a DC sensing circuit to measure the rate of change of 

capacitance, as shown in Fig. 2.3.  

   𝑪   

𝑪𝒔

𝑪   

𝑪𝒔

ref

in
out

Sync. demodulator

(a) (b)
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Fig. 2.3. A schematic of the DC sensing circuit for the capacitance rate of change measurement. A DC voltage source, a 

transimpedance amplifier and a feedback resistor are used to convert the sensing current generated by the variable 

capacitance into measurable voltage output. 

A DC sensing circuit consists of a DC voltage source, a transimpedance amplifier and a feedback 

resistor. The DC voltage source applies a constant voltage 𝑉𝑑𝑐 between one side of the variable 

capacitor, 𝐶𝑠(𝑥) and the common node of the capacitor and resistor. A sensing current 𝑖𝑠 is then 

generated as the rate of change of charge with respect to time: 

 𝑖𝑠 = 𝑑(𝑉𝑑𝑐𝐶𝑠) 𝑑𝑡⁄ = 𝑉𝑑𝑐 𝑑𝐶𝑠 𝑑𝑡⁄  (4) 

𝑖𝑠  is amplified by a negative gain determined by the feedback resistance 𝑅𝑠 and the output signal 

is a voltage signal 𝑦: 

 𝑦 = −𝑅𝑠𝑖𝑠 (5) 

and 𝑦 thus becomes 

 𝑦 = −𝑉𝑑𝑐𝑅𝑠
𝑑𝐶𝑠

𝑑𝑡
 (6) 

where 𝐶𝑠(𝑥) is a function of capacitance with respect to the position 𝑥 (translational or rotational 

depending on the configuration of electrodes). Given that 𝑉𝑑𝑐 and 𝑅𝑠 are known parameters, this 

circuit provide a linear measurement of 
𝑑𝐶𝑠

𝑑𝑡
. 

The advantage of this type of circuit is that it is simple to build and has fast response and 

less distortion compared to other more complex circuits, as it does not use many active 

components such as amplifiers or nonlinear elements such as multipliers or diodes that can 

introduce higher-order dynamics or delays. The disadvantage is that it is susceptible to 

𝑪𝒔( )

𝑹𝒔

 
   

 𝒔
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feedthrough disturbances introduced by parasitic capacitance to the driving voltage applied to 

MEMS devices for actuation. Despite these drawbacks, the direct measurement of 
𝑑𝐶𝑠

𝑑𝑡
 can be 

very useful in at least three respects:  

1. the measurement of  
𝑑𝐶𝑠

𝑑𝑡
 can be integrated with respect to time and used to identify the 

capacitance vs. position function 𝐶𝑠(𝑥) if a synchronous position measurement is provided. A 

detailed identification method is described in Chapter 4 and Chapter 5.  

2. the measurement of  
𝑑𝐶𝑠

𝑑𝑡
 can be used as a source of velocity measurements for 

𝑑𝑥

𝑑𝑡
, as long as 

𝑑𝐶𝑠(𝑥)

𝑑𝑥
 is identified, since  

  
𝑑𝐶𝑠(𝑥)

𝑑𝑡
=
𝑑𝐶𝑠(𝑥)

𝑑𝑥

𝑑𝑥

𝑑𝑡
. (7) 

Such usage, and a complementary feedthrough reduction method, is described in Chapter 3.  

3. the measurement of  
𝑑𝐶𝑠

𝑑𝑡
 can serve as a sensitive indication for a threshold position, 𝑥𝑡ℎ, where 

maximum capacitance is reached due to maximal overlap of electrodes, i.e. 

 𝑥𝑡ℎ = arg max𝑥∈𝑆𝑥 𝐶𝑠(𝑥) (8) 

where 𝑆𝑥 is a set of all admissible positions of 𝑥, which in practice is bounded by the maximum 

range of position that the MEMS device can achieve. Special signal processing techniques can be 

applied to extract this threshold position measurement and are discussed in detail in Chapter 4.  

 Extended Kalman filter for nonlinear processes estimation 2.3

As mentioned in Chapter 1, due to the unconventional electrode configurations of MEMS 

devices and applications studied in this work, the devices to be discussed here have nonlinear 

capacitance models. With sufficient modeling and/or experimental effort to characterize the 

dynamics of the actuation (process model) associated with a selected transduction technology 

(piezoelectric, electrostatic, electromagnetic, etc.), as well as the structure of the MEMS device, 
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motion estimation can be well fit into a nonlinear filtering scheme. Due to its computational 

efficiency [36], the extended Kalman filter (EKF) is chosen as the first approach for estimation 

in these applications, though other types of nonlinear filtering algorithm such as the unscented 

Kalman filter (UKF), particle filter, etc., exist. In one application of Kalman filtering to a MEMS 

micro-scanner, presented in Chapter 5, an UKF is implemented and its performance is compared 

to that of an EKF.  

A Kalman filter is a realization of a Bayes filter to estimate states of a linear process 

having Gaussian distributions. It provides the optimal solution for a linear process in terms of 

minimizing the mean square error of estimation [37]. Since its publication in 1961 by Kalman 

and Bucy [38], the algorithm and its variations have been extensively used in applications such 

as navigation and tracking objects, chemical plant control and communications, etc. [39] [36]. In 

practice, the estimation problem can involve nonlinear processes. To deal with that, an EKF is 

often used due to its high computational efficiency, which is important for real-time applications 

[36]. The setting and the implementation of the EKF is described as below: 

For a discrete-time controlled process governed by a nonlinear stochastic difference 

equation: 

 𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘) + 𝑤𝑘 (9) 

and measurement model: 

 𝑦𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 (10) 

where the subscript 𝑘  stands for k-th sampling instance, and 𝑥𝑘  is states of the controlled 

process, 𝑢𝑘  is the control input, 𝑦𝑘  is measurement. 𝑓(∙)  and ℎ(∙)  stands for the nonlinear 

process model and measurement model respectively. The random variables 𝑤𝑘  and 𝑣𝑘  are 
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process and measurement noise respectively, and they are assumed to be independent of each 

other, and are modeled with zero-mean Gaussian distributions, i.e.,  

 𝑝(𝑤𝑘)~𝑁(0, 𝑄) (11) 

 𝑝(𝑣𝑘)~𝑁(0, 𝑅) (12) 

where 𝑄  is the process noise covariance matrix and 𝑅  is the measurement noise covariance 

matrix. The EKF algorithm recursively predicts a priori estimates (an unconditional expectation) 

of the states, denoted as �̂�𝑘
−; and updates them with measurement information into a posteriori 

estimates (a conditional expectation) of the states, denoted as �̂�𝑘 . More specifically, the 

estimation algorithm recursively computes the estimates as described below: 

Algorithm: EKF 

1. Prediction steps 

 compute prior state estimates and error covariance matrix 

�̂�𝑘
− = 𝑓(�̂�𝑘−1, 𝑢𝑘),      𝑃𝑘

− = 𝐹𝑘𝑃𝑘−1𝐹𝑘
𝑇 +𝑄  

2. Measurement update steps 

 compute predicted measurement 

�̂�𝑘 = ℎ(�̂�𝑘
−) 

 compute the optimal filter gain (Kalman gain) 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅)−1 

 compute posterior  state estimates and error covariance matrix 

�̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝑦𝑘 − �̂�𝑘),     𝑃𝑘 = 𝑃𝑘

− − 𝐾𝑘𝐻𝑘
𝑇𝑃𝑘

− 

 

where �̂�𝑘 is the predicted measurement and 𝐾𝑘 is the optimal filter gain (also called as Kalman 

gain). 𝑃𝑘
−  is the a priori error covariance matrix and 𝑃𝑘  is the a posteriori error covariance 

matrix, defined as: 
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 𝑃𝑘
− = 𝐸[[𝑥𝑘 − �̂�𝑘

−][𝑥𝑘 − �̂�𝑘
−]𝑇] (13) 

 𝑃𝑘 = 𝐸[[𝑥𝑘 − �̂�𝑘
−][𝑥𝑘 − �̂�𝑘

−]𝑇 | 𝑦𝑘] (14) 

Notice that in order to perform the covariance matrix computation, a first order Taylor expansion 

is performed on both the nonlinear process and measurement models. More specifically, 𝐹𝑘 is the 

Jacobian of 𝑓(∙) with first order Taylor expansion evaluated over �̂�𝑘−1 and 𝑢𝑘: 

 𝐹𝑘 =
𝜕𝑓(�̂�𝑘−1,𝑢𝑘)

𝜕𝑥𝑘−1
 (15) 

Similarly, 𝐻𝑘 is the Jacobian of ℎ(∙) with first order Taylor expansion evaluated over �̂�𝑘
−: 

 𝐻𝑘 =
𝜕ℎ(�̂�𝑘

−)

𝜕𝑥𝑘
 (16) 

In this dissertation, one of the major focuses is to derive and identify accurate sensor 

models ℎ(∙)  given a particular application and goal, capacitive sensor configuration, and 

associated sensing circuitry. The modeling efforts, identification methods, and associated 

feedthrough reduction methods are discussed in detail in Chapter 3 to Chapter 5. 
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  Chapter 3

Motion Estimation of Micro-stage for in-situ MEMS Gyroscope Calibration 

 

 Chapter overview 3.1

We first examine a rotational, parallel-plate, on-chip capacitive sensor design and a 

motion estimation method for measuring multi-axis out-of-plane tilting motion of a micro-stage 

that is used for in situ calibration of an integrated MEMS gyroscope. On-chip sensing and 

motion estimation is critical for this application, since precision in measuring high frequency 

tilting motion of the micro-stage determines how accurately an on-stage MEMS gyroscope can 

be calibrated in the field with respect to this motion. To obtain decoupled sensing signals from 

multi-axis out-of-plane tilting motion, a capacitive sensing layout with high off-axis signal 

rejection capability is introduced. With the proposed design specifications and range of tilting 

motion, a dual axis capacitive sensor model is developed, and simulation results show that the 

sensor is able to reject more than 99.90% of the off-axis signal. The sensor also permits detection 

of perturbations to stage geometry due to ambient temperature variation through the effects of 

nonlinear behavior on signal timing. To measure tilting motion with the obtained sensing signal, 

a motion estimator with extended Kalman Filter (EKF) is also developed. With assistance of a 

laser Doppler vibrometer (LDV), experiments are performed to identify the parameters of the 

motion estimator and validate its performance. The experimental results demonstrate a 286 ppm 

error in scale factor calibration of a commercial MEMS gyroscope by the micro-stage with 

moderate temperature variation. 
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This chapter is organized as follows: Chapter 3.3 provides an overview of the micro-

stage-based calibration method, a brief description of the PE stage and a description of the on-

chip capacitive sensing stage. Chapter 3.4 introduces the modeling and estimation method used 

to measure the reference motion with on-chip capacitive sensor. Chapter 3.5 presents the 

experiments and post-processing procedures. Chapter 3.6 presents results and discussion, 

followed by Chapter 3.7 with a summary. 

 Background and motivation 3.2

Positioning and navigation are important to many modern vehicles, such as ships, 

aircraft, missiles, spacecraft, and UAVs [16]. A commonly used navigation framework for 

performing positioning and navigation consists of a signal receiver for the Global Positioning 

System (GPS) and an inertial navigation system (INS). Position estimation from both systems is 

integrated using a Kalman filter [16]. When the GPS signal is unavailable, the position 

estimation is conducted by the INS in stand-alone mode, and the accuracy of the estimation is 

critically dependent on the accuracy of its inertial measurement unit (IMU). In the last few 

decades, MEMS IMUs have overcome many shortcomings of their traditional counter-parts, 

especially in terms of cost, size, and power consumption. This has resulted in the development of 

GPS / MEMS IMU navigation applications, with examples demonstrated by Godha and Cannon 

in a land vehicle navigation [40] and in an autonomous helicopter by Wendel et al. [41].  

However, MEMS IMUs suffer from substantial drift of scale factor and bias caused by 

perturbations of environmental factors, such as temperature [42]. Such drift results in 

accumulated errors of position estimation over time during operation in stand-alone mode, 

therefore limiting their application in navigation scenarios requiring high accuracy. Taking 

gyroscopes as an example, for tactical grade navigation, the scale factor error of a gyroscope 
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needs to be about 100 to 1000 ppm (parts per million or 10
-6

), or less than 10 ppm for 

inertial/strategic grade navigation [6] [43]. 

A standard method for calibrating an INS with triads of accelerometers and gyroscopes is 

to use a six-position and rate test. It requires the INS to be mounted on a perfectly leveled frame, 

and recording the different readings induced by earth’s gravity. With this method it is possible to 

calibrate the scale factor, bias and non-orthogonality of the accelerometers by changing the 

orientation of the sensitivity axis of the accelerometers. A gyroscope is calibrated in a rate test by 

applying clockwise and counter-clockwise rotation with known magnitude around each gyro 

axis. A modified multi-position calibration method for MEMS IMUs has also been developed 

[44] [45]. This method relaxes the requirement of precise alignment of the IMU during 

calibration by taking readings from the IMU at multiple orientations within a turntable. 

Compared to the six-position and rate test, the modified multi-position calibration method does 

not require the orientations to be exactly known, therefore eliminating the need for the perfect 

alignment. The aforementioned calibration methods all require a rate table to provide precise 

rotation to the gyroscope, which requires substantial cost and manpower to perform and are 

impractical to be conducted in the field.  

As a result of the above limitations, several researchers are focusing on the development 

of various in-field or in situ calibration methods. An in-field calibration method without external 

equipment was proposed by Lotters [46] to calibrate the scale factors and biases of a triad of 

accelerometers based on the principle that the measured accelerations by the triads of 

accelerometers must be equal to the earth’s gravity. This methodology was further developed and 

led to the aforementioned modified multi-position method. Fong et al. [47] expanded this 

method to calibrate a MEMS IMU with three-axis accelerometers and three-axis gyroscopes 
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without external equipment by applying the following constraint: the gravity vector measured by 

triads of the acceleration equals to the gravity vector computed using attitude derived from the 

measurement of gyroscopes. In practice, since the reference for calibration is generated by the 

triad of accelerometers, the accuracy of calibration for the gyroscopes is limited by the precision 

of accelerometers and the obtained quasi-static states.  

Some other methods utilize the MEMS gyroscope itself to do the calibration. For 

instance, there are ongoing works using virtual rate input for in situ calibration, where the virtual 

rate is generated by an amplitude modulated input applied to the driving and sensing electrodes 

of a MEMS gyroscope [48]. This is effective in some circumstances but also has its limitations, 

for instance that the virtual rate can vary due to aging of the gyroscope over its long-term use and 

implementation can be highly device specific. 

An alternative emerging approach for in situ calibration is referred to in this work as 

micro-stage-based calibration. The core idea of the method is to migrate the actuation and 

sensing functionalities of performing in-lab IMU calibration, as by a rate table, into a MEMS 

micro-stage. The calibration process is realized by applying specific reference motions to the 

integrated MEMS IMU and comparing its measurements to the reference motion. The micro-

stage is designed specifically to perform actuation and sensing tasks for in situ calibration and is 

realized with suitable MEMS fabrication technologies. The size of the micro-stage is comparable 

to that of MEMS IMU and would allow the calibration of IMU conveniently be carried out in the 

field.  

Example micro-stage-based calibration of a gyroscope is reported by Aktakka et al. [49]. 

An important aspect of the micro-stage is to provide a reliable multi-axis reference motion. 

Nadig et al. [50] demonstrated a 3 DOF piezoelectric actuation with 50 ppm precision 
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performance, but on-chip sensing is lacking in the design which makes the long-term calibration 

process susceptible to an actuator’s property changes. Aktakka and Najafi [17] presented a 6 

DOF piezoelectric actuation stage (PE stage) with less than 0.1% off-axis tilting motion (off-axis 

motion is defined as the undesired motion other than the reference motion generated by other 

axis). Obtaining highly accurate knowledge of the reference motion applied by these stages with 

on-chip sensor and/or estimator is crucial for calibration. The reference motion can be referred 

from a pre-calibrated voltage-motion relationship of the stage or can be measured via on-chip 

sensing. Edamana et al. [29] presented sensing and estimation with high-accuracy threshold 

sensing angles for improved estimation of reference motion, and the estimation scheme was 

implemented with mixed on-chip piezoelectric sensing and off-chip optical measurements. Chen 

et al. [51] have developed a single axis capacitive sensor model to measure tilting motion, but 

neither of the latter works present experimental validation for scale factor calibration of an on-

chip MEMS IMU. Furthermore, the use of a multi-axis on-chip sensor also calls for a method to 

evaluate the impact of off-axis motion to the accuracy of calibration.  

This chapter aims to address these issues by presenting a dual axis capacitive sensor 

model that can be used to evaluate the capability of the sensor to reject off-axis signals, as well 

as track changes in sensor parameters, particularly nominal capacitive gap, as ambient conditions 

change. With the proposed sensor design and its characteristic nonlinear mapping between 

capacitance and tilting motion, a corresponding parameter identification framework is proposed 

and can be used in situations when key sensor parameters may be perturbed due to temperature 

change. Based on the inherent nonlinear relationship between angular displacement and 

capacitance, a motion estimator based on an EKF is developed. With the assistance of a laser 

Doppler vibrometer (LDV) for initial system identification and later validation, the motion 
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estimator is experimentally implemented and validated. Finally, the performance of on-chip 

capacitive sensor and motion for in situ calibration is experimentally validated through scale 

factor calibration of a MEMS gyroscope at two ambient temperature settings.  

 Description of micro-stage based calibration 3.3

3.3.1 Gyroscope model and scale factor calibration 

In this section, we evaluate how various non-ideal features of capacitive sensing 

propagate to calibration errors in a general micro-stage and inertial sensor context. To introduce 

the calibration procedure, we begin at a generic relationship between motion of the gyroscope 

and its outputs. 

For a 3-axis gyroscope, input motions are collected as:  

 𝜴 = [𝜔𝑥  𝜔𝑦  𝜔𝑧]
𝑇

 (17) 

where 𝜔𝑥, 𝜔𝑦, 𝜔𝑧 are angular velocities experienced by the gyroscope in the 𝑥, 𝑦, and 𝑧 

axes in its body frame, respectively. The angular velocities measured (or output) by the 

gyroscope are denoted as: 

 𝜴𝑰 = [𝜔𝐼,𝑥  𝜔𝐼,𝑦  𝜔𝐼,𝑧]
𝑇
 (18) 

The relation between 𝜴𝑰and 𝜴 can be represented as: 

 [

𝜔𝐼,𝑥
𝜔𝐼,𝑦
𝜔𝐼,𝑧

] = [

𝑘𝑥𝑥 𝑘𝑥𝑦 𝑘𝑥𝑧
𝑘𝑦𝑥 𝑘𝑦𝑦 𝑘𝑦𝑧
𝑘𝑧𝑥 𝑘𝑧𝑦 𝑘𝑧𝑧

]

⏟          
𝑲

[

𝜔𝑥
𝜔𝑦
𝜔𝑧
] + [

𝜔𝐼0,𝑥
𝜔𝐼0,𝑦
𝜔𝐼0,𝑧

] (19) 

where in the 3 by 3 scale factors matrix 𝑲, the diagonal terms 𝑘𝑥𝑥, 𝑘𝑦𝑦 and 𝑘𝑧𝑧 are the scale 

factors for each axis and the off-diagonal terms represents the cross-axis sensitivities, as caused 

by misalignments of axes of the triads of the gyroscopes [45]. 𝜔𝐼0,𝑥, 𝜔𝐼0,𝑦 and 𝜔𝐼0,𝑧 are biases of 

the corresponding outputs.  
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The standard laboratory calibration method for a gyroscope is based on angular rate tests. 

It requires the gyroscope be mounted on a precise rate table and be applied a series of predefined 

reference motion by the rate table, namely different angular rates in clockwise and counter-

clockwise direction. The scale factors, biases, and cross-axis sensitivities can then be identified 

via a parameter identification approach such as least-square estimation. The time period for 

identified scale factors and biases to vary is considered significantly longer than the time 

required to perform the calibration with the rate table or micro-stage (seconds to tens of 

seconds). 

In the calibration approach presented here, the MEMS IMU is mounted on the micro-

stage, and the tilting motion of 𝑥 and 𝑦 axes can be excited independently with less than 0.1% 

off-axis coupling [17], therefore the calibration of each gyroscope axis is performed with 

insignificant off-axis motion disturbance. Without losing generality, we examine the calibration 

of a single output channel of a MEMS gyroscope, and present the analysis and the experimental 

results with respect to 𝑥-axis as the representative example in this chapter. The single axis gyro 

model is simplified as: 

 𝜔𝐼 = 𝑘𝐼𝜔 + 𝜔𝐼0 (20) 

where 𝜔𝐼 is the measured gyroscope output, 𝜔 is the angular velocity experience by the 

gyroscope, 𝑘𝐼 and 𝜔𝐼0 are the scale factor and bias for the corresponding axis.  

Prior to scale factor calibration, the parameter kI in (4) is not assumed to be known. 

Rather, it is to be inferred from reference angular velocities, 𝜔, actuated by the micro-stage. 

However, the stage’s dynamic response may vary over time as well.  So the reference velocity 

must in turn be monitored by the stage’s on-chip sensing. The angular velocity estimated from 

the stage’s sensors, 𝜔𝑠, can be summarized by 
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 𝜔𝑆 = 𝑘𝑆𝜔 + 𝜔𝑆0 (21) 

where 𝑘𝑆 is the scale factor and 𝜔𝑆0 is the bias of the stage.  

Additional actuation and sensing is only beneficial if it can be performed, for at least 

some excitations, with higher accuracy than the uncalibrated performance of the gyroscope.  

Stage velocities are measured using features of the on-chip capacitance with errors that can be 

estimated from the error covariance matrices of EKF, by methods described in later sections. 

Substituting for 𝜔𝑅 by the measured ωs, (4) becomes 

 𝜔𝐼 =
𝑘𝐼

𝑘𝑆
𝜔𝑆 + (𝑘𝑆𝜔𝐼0 − 𝑘𝐼𝜔𝑆0)/𝑘𝑆 (22) 

or 

 𝜔𝐼 = 𝑘𝐼|𝑆𝜔𝑆 + 𝜔𝐼|𝑆 (23) 

where 𝑘𝐼|𝑆 is defined as the IMU scale factor given reference motions observed by the stage, and 

𝜔𝐼|𝑆 is defined as the IMU bias given reference motions observed by the stage. 

Scale factor 𝑘𝐼|𝑆, taken to represent 𝑘𝐼 if 𝑘𝑆 can be maintained close to one, is obtained 

through repeated periodic excitation of the stage at varying amplitudes. After collecting 

measurements of 𝜔𝑆 and 𝜔𝐼 at various amplitudes, a set of pairs of estimated angular velocities 

and IMU output measurements are obtained. These are averaged over many stage vibration 

oscillations to reduce measurement noise. Specifically, for a set of 𝑛 trials at different driving 

voltages, one can obtain 2𝑛 sets of observations regarding the reference motions, one is from 

IMU, denoted by 𝑛x1 column vector ΩI:  

 𝜴𝑰 = [𝜔𝐼,1   𝜔𝐼,2     ⋯  𝜔𝐼,𝑛]
𝑇
 (24) 

and another from the stage, denoted by 𝑛x1 column vector ΩS:  
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 𝜴𝑺 = [𝜔𝑆,1   𝜔𝑆,2     ⋯  𝜔𝑆,𝑛]
𝑇
 (25) 

The parameter to be estimated are defined as 𝜣 = [
𝑘𝐼|𝑆
𝜔𝐼|𝑆

] and letting 𝜴𝑺,𝑰 = [𝛀𝑺 𝑰] be 

an 𝑛x2 vector, where 𝑰 is 𝑛x1 unitary column vector, then  

 𝜴𝑰 = 𝜴𝑺,𝑰𝜣 (26) 

The parameters solved by least square estimation become 

 𝜣 = (𝜴𝑺,𝑰
𝑻 𝜴𝑺,𝑰)

−1
𝜴𝑺,𝑰
𝑻 𝜴𝑰 (27) 

3.3.2 Micro-stage based calibration 

Fig. 3.1 illustrates the idea of the micro-stage-based calibration: the stage incorporates an 

on-stage actuator and a set of sensors, and it serves as a mini rate-table source in the calibration 

process for the integrated MEMS IMU. Taking MEMS gyroscope calibration as an example, 

with a specific driving voltage, a sinusoidal rotational vibration (often referred to as tilting 

motion in the context of this dissertation) with specific amplitude and frequency is generated by 

the on-stage actuator, and the tilting motion is measured by both the on-stage MEMS gyroscope 

and the on-chip sensors (with necessary signal processing). The measurements from the 

gyroscope and stage itself are then compared for calibration of the MEMS gyroscope.  

 

Fig. 3.1. Illustration of micro-stage and MEMS IMU (left) and flowchart of micro-stage based calibration method (right). 
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3.3.3 Piezoelectric actuation stage 

The micro-stage studied in this Chapter consists of a piezoelectric actuation stage, a 

capacitive sensing substrate and an integrated 6-axis MEMS IMU [17]. The piezoelectric 

actuation stage is able to perform both translational motion and rotational motion in 𝑋, 𝑌 and 𝑍 

directions. The multi-axis actuation capability also allows the stage to reduce the off-axis tilting 

motion within 0.1 % of the amplitude by compensating off-axis motion [17]. Fig. 3.2 illustrates 

the geometric correlation between the integrated MEMS IMU, piezoelectric actuation stage and 

on-chip capacitive sensors for X and Y tilting motion. More details regarding the actuation stage 

and dynamics of actuation can be found in [17]. 

 

Fig. 3.2. A schematic of micro-stage with integrated 6-axis MEMS IMU, the stage includes a piezoelectric actuation stage 

with 6 DOF motion generation capability and a capacitive sensing stage for measuring 𝑿 and 𝒀 tilting motion. The 

schematic is to illustrate the major internal configurations of micro-stage and the dimensions are not scaled to the true 

dimensions of the device. 

3.3.4 On-chip capacitive sensor 

The goal of in situ calibration imposes stringent requirements on the size of the stage, 

which translate into requirements for high sensitivity, small size and low power consumption 

from the chosen sensing technology. Due to its high sensitivity, mature fabrication process, 

compact design and low-power dissipation, capacitive sensing becomes a natural choice for this 

application [1]. However, the scale factor and bias of capacitive sensor themselves are 
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susceptible to environmental perturbations, which calls for unique design features and that are 

robust to such perturbation.  

To fulfill such requirements, a capacitive sensor is designed to measure 𝑋 and 𝑌 tilting 

(out-of-plane rotational) motion of the stage. As illustrated by the cross-section side view shown 

in Fig. 3.3, the sensing stage is assembled underneath the actuation stage, and is composed of 

silicon pillars with specific geometry. To measure the tilting motion about each single axis, 4 

pairs of electrodes with the top to be the rotor and the bottom to be the stator are fabricated to 

form 4 capacitors. When the PE stage rotates along one axis, the capacitance, 𝐶 of each capacitor 

varies depending on its placement and the angular displacement, 휃. As shown in the top view of 

the sensor layout in Fig. 3.3, the rotors and stators are placed along the central axes in order to 

minimize the sensing current generated by off-axis rotation. The areas of the rotor electrodes are 

identical, whereas the areas of the inner stators are intentionally designed smaller than that of the 

outer stators. Such design allows for imbalanced capacitance to be generated at a specific angle, 

which can potentially improve the precision of estimation of angular position [51]. Additional 

capacitive sensors are also designed to sense  translational motion in 𝑋 and 𝑌 directions, and the 

detailed layout and dimensions of electrodes are shown in Fig. A.1 of the Appendix. 

 

Fig. 3.3. Integrated micro-stage and MEMS IMU (left, cross-sectional side view) and design of capacitive sensor for 𝑿 and 

𝒀 tilting motion (right, top view). 
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To convert the capacitance change caused by tilting motion into a measurable voltage 

signal and to reduce the parasitic capacitances and noise from the interconnections and circuits, 

an integrated charge sensing circuit using a transimpedance amplifier is implemented [52]. A 

differential readout circuit was initially used with each pair of opposite capacitors connected, but 

it was found not able to fully cancel out feedthrough and noise, attributed to differences in 

parasitic across pairs of electrodes. While additional parasitic modeling might address this issue, 

in the current work a post signal processing method is used to reduce the disturbance of 

feedthrough and noise as described in section 4.4, and each individual capacitor is used as a 

single channel in order to increase number of signal channels. Other types of amplitude 

modulation and demodulation based circuit can be potentially used as well, but the additionally 

introduced distortion to the signal could also affect the accuracy of estimation of tilting motion. 

 

Fig. 3.4. A schematic of the sensing circuit for the capacitive sensors; a transimpedance amplifier is used to convert the 

current generated by the variable capacitance into measurable voltage. 

 

As shown in Fig. 2.3, a variable capacitor and a transimpedance amplifier comprises a 

single sensing channel. With a DC bias voltage, 𝑉𝑏𝑖𝑎𝑠 applied to the common node of the sensing 

capacitor, a sensing current 𝑖𝑠   is amplified by a negative gain determined by the feedback 

resistance 𝑅𝑠 and is measured as a sensing signal 𝑦 (voltage signal), according to:  

 𝑦 = −𝑅𝑠𝑖𝑠 (28) 
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Since the sensing current 𝑖𝑠 is the rate of change of charge with respect to time, and 𝑉𝑏𝑖𝑎𝑠 is DC 

voltage, we have 

 𝑖𝑠 = 𝑑(𝑉𝑏𝑖𝑎𝑠𝐶) 𝑑𝑡⁄ = 𝑉𝑏𝑖𝑎𝑠 𝑑𝐶 𝑑𝑡⁄  (29) 

and 𝑦 becomes 

 𝑦 = −𝑉𝑏𝑖𝑎𝑠𝑅𝑠 𝑑𝐶 𝑑𝑡⁄  (30) 

where 𝐶  is a function of capacitance with respect to the tilting angles. For the purpose of 

evaluating the off-axis tilting motion to the sensing signal, a dual axis capacitive sensor model is 

derived in Chapter 3.4.3, and simulations are performed to compare it with its single model in 

Chapter 3.6.1. 

 Motion estimation 3.4

3.4.1 Overview of motion estimator 

According to Eq.3, the sensing signal, 𝑦 is a function of 𝑑𝐶/𝑑𝑡, and 𝐶  is a nonlinear 

function of 휃 (described in detail Section 3.3). Therefore, without the knowledge of 𝐶(휃), it is 

not possible to directly solve for the states related to tilting motion of the actuation stage, 

including 휃  and angular velocity, 𝜔  from sensing signal 𝑦 . To address this issue, a motion 

estimator with an EKF to estimate 휃and 𝜔 is developed, which includes the knowledge of the 

dynamics of the PE actuation stage, capacitive sensing mechanism and available measurements 

including driving voltages and measured signal from on-chip sensor.  
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Fig. 3.5. Overview of the micro-stage motion estimator; the extended Kalman filter is used to integrate the PE stage model 

and capacitive sensor model to compute a posteriori state estimates of tilting motion with the measurement of  the applied 

driving voltage and capacitive sensor signal.  

More concretely, as depicted in Fig. 3.5, the estimation pipeline starts with the measured 

driving voltage 𝑢 as input into the model of PE stage, and outputs a priori state estimates as 휃̂− 

and �̂�− (The superscript  − stands for a priori or estimate without measurement;  + stands for a 

posteriori or estimate with measurement and   ̂stands for estimated quantities). The capacitive 

sensor model is then updated with 휃̂−. Then the EKF uses the updated sensor model, measured 

signal and the a priori state estimates to compute a posteriori estimates 휃̂+ and �̂�+. The model 

for the PE stage and capacitive sensor and the EKF are described below. 

3.4.2 Model of PE stage 

A model of the PE stage has been developed to predict the out-of-plane tilting motion 

with an input driving voltage for a specific range of driving frequencies. For the PE stage tested 

in this study, the first natural frequency is measured to be 1002 Hz for the vertical translation 

mode (Fig. 3.6, left) [17], and the second natural frequency is measured to be around 1715 Hz 

for the tilting mode (Fig. 3.6, right).. 
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Fig. 3.6. Illustration of vertical translation mode (1st natural frequency) and single axis tilting mode (2nd natural 

frequency) of PE stage 

 

It is worth mentioning that the first resonant frequency is designed to be above 1 kHz to 

avoid low frequency mechanical vibrations from the environment to be amplified by the micro-

stage. In a more practical in situ calibration application, an iterative learning control loop or 

other feedback controller can be used to damp out disturbance from the environment, as 

suggested in [29]. In this study, the experiments were performed on an optical table as a standard 

lab procedure, with mechanical vibrations from environment negligible after filtering. 

Due to the existence of parasitic capacitance within the micro-stage and associated 

printed circuit boards and chip packaging, a feedthrough signal is introduced into the sensing 

system. In order to reduce this feedthrough signal (proportional to driving voltage) while 

obtaining as large as possible motion signal, the driving frequency was chosen to be around the 

second resonant frequency (tilting mode) to permit a low driving voltage amplitude. . Due to the 

symmetric placement of actuators and control of phases of driving voltages, the vertical 

displacement of stage is measured to be at the nanometer level under the tilting excitation mode. 

Therefore, a 2
nd

-order linear time-invariant (LTI) model for the tilting mode of the PE stage 

around second natural frequency is considered sufficient for estimation purpose. The tilting 

motion presented in Fig. 3.6 can be characterized in a state space representation as 

 �̇� = 𝐴𝑐𝑥 + 𝐵𝑐𝑢 (31) 
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where in the state vector, 𝑥 = [
휃
𝜔
], 휃 and 𝜔 are angular displacement and angular velocity of the 

PE stage with respect to the corresponding center axes, respectively, 𝑢 is driving voltage. 𝐴𝑐 is 

an ℝ𝑛𝑥 × 𝑛𝑥 state matrix and 𝐵𝑐 is an ℝ𝑛𝑥 × 𝑛𝑢 input matrix. While the dimensions of 𝐴𝑐 and 𝐵𝑐 

can be expanded for a study of a multi-input-multi-output estimation and control, in this study 

we focus on studying single-axis tilting motion, such that 𝑛𝑥 is set to be 2 within the estimation 

accuracy provided by other sources of error. Due to the fact that voltages on the electrodes of the 

PZT structures are identical and either exactly in-phase or 180°  out-of-phase with same or 

proportional amplitudes, only one representative driving voltage needs to be recorded, and 𝑛𝑢 is 

1.  Then, 𝐴𝑐 and 𝐵𝑐 are defined as the following: 

 𝐴𝑐 = [
0 1
−𝜔𝑛

2 −2휁𝜔𝑛
] (32) 

 𝐵𝑐 = [
0
𝑏𝑐
] (33) 

where 𝜔𝑛  is the relevant natural frequency of the PE stage, and 휁  is its damping ratio. In 

implementation, the state representations are discretized at the sampling frequency as follows: 

 𝑥𝑘 = 𝐴𝑑𝑥𝑘−1 + 𝐵𝑑𝑢𝑘 (34) 

where 𝑥𝑘 is the discretized states, 𝑢𝑘  is the discretized driving voltage, and 𝐴𝑑  and 𝐵𝑑  are the 

ℝ𝑛𝑥 × 𝑛𝑥  and ℝ𝑛𝑥 × 𝑛𝑢 discretized state matrix and input matrix, respectively.  

3.4.3 Model of capacitive sensor 

A single axis capacitive sensor model has been developed in [51] with an assumption of 

no off-axis tilting motion. Although the assumption is valid with good off-axis motion control (< 

0.1%) provided by the stage presented [17], it is desirable from a design point of view to 

quantify the sensor’s capability for rejecting the signal caused by off-axis tilting motion. 

Therefore, a dual axis capacitance model was developed and is presented below. 
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To map the angular displacement 휃  into the sensing signal 𝑦 , we first start with the 

parallel plate of capacitance formulation 

 𝐶 = 𝑟 0𝐴

𝐷
 (35) 

where 휀𝑟 is the relative static permittivity (1 for air),  휀0 is the electric constant (8.8542 × 10
-12

 F 

m
-1

), 𝐴 is the area of overlap between the two plates, and 𝐷 is the distance between two plates. 

When two plates are no longer parallel due to the tilting motion, 𝐴 and 𝐷 will change according 

to the position and geometry of the plates, resulting in a change of capacitance 𝐶. 

As depicted in Fig. 3.7, a coordinate system is defined with the origin defined to be the 

center of the PE stage. For the purposes of this derivation, the 𝑌 axis is selected as the main-axis 

of rotation and the 𝑋 axis is the off-axis of rotation. A rotor and stator pair is defined with the 

rotor lying in the nominal horizontal plane (𝑋𝑌 plane) and the stator underneath. 휃  (positive 

defined to be clockwise with 𝑌 axis pointing away from observer) is the angular displacement of 

the main-axis and it is defined as the angle between the 𝑋 center line of the rotor and the 𝑋𝑌 

plane, and 휃  (positive defined to be clockwise with 𝑋 axis pointing away from observer) is the 

angular displacement of the off-axis and it is defined as the angle between the 𝑋 center line of 

the rotor and the 𝑋′𝑌 plane. 

 

Fig. 3.7. A depict of a capacitor formed by a pair of silicon rotor and stator with existence of rotations about both 𝑿 (off-

axis rotation) and 𝒀 (main-axis rotation) axes. The capacitance as a function of 𝜽𝑿 and 𝜽𝒀 (positive to be clockwise with 

axes pointing away from observer) is derived based on the geometric relation between the rotor and stator. 
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The capacitance formed by an arbitrarily small differential element of a rotor electrode 

and its underlying stator is expressed as 

 𝑑𝐶 = 0 𝑟𝑑𝐴

𝐷
 (36) 

where 𝑑𝐴 is the finite area on the stator projected from the rotor, and 𝐷 is the variable distance 

between the two finite areas. 𝑑𝐴 is simply the product of the finite lengths of 𝑑𝑤  and 𝑑𝑤 , 

where 𝑤  and 𝑤  are the coordinates of the finite area of the stator: 

 𝑑𝐴 = 𝑑𝑤 ∗ 𝑑𝑤  (37) 

By trigonometry, 𝐷 can be expressed as 

 𝐷 = 𝐷𝑛 − 𝑤 𝑡 𝑛휃 + 𝑤 𝑡 𝑛휃  (38) 

where  𝐷𝑛 is the neutral distance between plates. Then 𝑑𝐶 can be re-written as 

 𝑑𝐶 = 0 𝑟𝑑𝑤𝑋𝑑𝑤𝑌

(𝐷𝑛−𝑤𝑋𝑡𝑎𝑛𝜃𝑌+𝑤𝑌𝑡𝑎𝑛𝜃𝑋)
 (39) 

The total capacitance formed by the rotor and stator can be computed by evaluating the double 

integral: 

 𝐶 = ∫ ∫ 0 𝑟𝑑𝑤𝑋𝑑𝑤𝑌

(𝐷𝑛−𝑤𝑋𝑡𝑎𝑛𝜃𝑌+𝑤𝑌𝑡𝑎𝑛𝜃𝑋)

𝑤𝑋=𝑤2

𝑤𝑋=𝑤1

𝑤𝑌=𝑤4

𝑤𝑌=𝑤3
 (40) 

Eq.13 can be evaluated as  

 𝐶(휃 , 휃 ) =
− 0 𝑟

𝑡𝑎𝑛𝜃𝑋𝑡𝑎𝑛𝜃𝑌
[𝑔(𝑤2, 𝑤4) − 𝑔(𝑤2, 𝑤3) − 𝑔(𝑤1, 𝑤4) + 𝑔(𝑤1, 𝑤3)]  (41) 

with  

𝑔(𝑤 , 𝑤 ) = [(𝐷𝑛 − 𝑤 𝑡 𝑛휃 + 𝑤 𝑡 𝑛휃 ) 𝑙𝑛(𝐷𝑛 − 𝑤 𝑡 𝑛휃 + 𝑤 𝑡 𝑛휃 )] − 𝑤 𝑡 𝑛휃   (42) 

where 𝑤1 , 𝑤2 , 𝑤3  and 𝑤4  are lower and upper limits of definite integration defined by the 

dimensions and geometric relation between plates. The values of those limits together with the 

illustration are listed in Table A.1 and Fig. A.1 in the Appendix.  

To further expand the sensing readout described by Eq.3, 
𝑑𝐶

𝑑𝑡
 can be expressed as 
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𝑑𝐶(𝜃𝑋,𝜃𝑌)

𝑑𝑡
=

𝜕𝐶

𝜕𝜃𝑋

𝜕𝜃𝑋

𝜕𝑡
+

𝜕𝐶

𝜕𝜃𝑌

𝜕𝜃𝑌

𝜕𝑡
= [

𝜕𝐶

𝜕𝜃𝑋
  
𝜕𝐶

𝜕𝜃𝑌
] [
𝜔 
𝜔 
] (43) 

and let  

 ℎ(휃 , 휃 ; 휂, 𝐷𝑛) = 휂[
𝜕𝐶

𝜕𝜃𝑋
  
𝜕𝐶

𝜕𝜃𝑌
] (44) 

be a state-dependent gain of the capacitive sensor. 휂 is the effective gain of amplification and 𝐷𝑛 

is the neutral distance between plates, and  𝑃𝑠 = [휂, 𝐷𝑛] is a set of parameters describing the 

sensor to be tuned upon assembly of the sensing stage and over later environmental 

perturbations. The dual axis capacitive sensor model can be expressed as 

 𝑦 = ℎ(휃 , 휃 ; 𝑃𝑠) [
𝜔 
𝜔 
] (45) 

To obtain a single axis capacitance model, a similar derivation can be followed with assumption 

of the tilting angle of the off-axis equals to zero. For instance, by assuming 휃  = 0, one can get  

 𝐶(휃 ) =
− 𝑟 0(𝑤4−𝑤3)

𝑡𝑎𝑛 𝜃𝑌
𝑙𝑛 (

𝐷𝑛−𝑤1𝑡𝑎𝑛𝜃𝑌

𝐷𝑛−𝑤2𝑡𝑎𝑛𝜃𝑌
) (46) 

and the single axis capacitive sensing model is 

 𝑦 = ℎ(휃 ; 𝑃𝑠)𝜔  (47) 

It should be pointed out that the small angle approximation can be applied in the above 

derivation, i.e. 휃 ≈ 𝑠𝑖𝑛휃 ≈ 𝑡 𝑛휃 to <50 ppm error, therefore one can use 휃 or 𝑠𝑖𝑛휃 to replace 

𝑡 𝑛휃  in Eq. 15 and Eq. 19 with little effect on estimation results at the levels of accuracy 

obtained in this work. Thanks to the nonlinear relation between 𝐶  and 휃 , 휃 , the signal 

generated by ordinary sinusoidal tilting motion exhibits unique traits (Fig. 3.12) that can be used 

to aid identification of 𝑃𝑠, which will be further discussed in Section 4.4. 

3.4.4 Integration with EKF 

The PE stage model and the capacitive sensor model are integrated with the EKF to 

compute a posteriori state estimates. As will be shown in section 3.6.1, by analyzing the signal 
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outputs from the dual-axis capacitive sensor model and the single-axis capacitive sensor model, 

the designed capacitive sensor is capable of negating the effects of off-axis tilting motion. 

Therefore, it is then sufficient to use a single-axis capacitive sensor model in the estimator itself. 

Details of the estimation scheme are described below and summarized in Fig. 3.8. 

 

Fig. 3.8. Detailed EKF routine for motion estimation. The matrix of observation is updated with a priori estimate of 

angular position, at each step of estimation. 

 

Step1. Project a priori state estimates,  

 �̂�𝑘
− = 𝐴𝑑�̂�𝑘−1 + 𝐵𝑑𝑢𝑘 (48) 

with the PE stage model described in Eq.7, where the subscript 𝑘 stands for 𝑘-th step in the 

estimation routine, �̂�𝑘
− stands for a priori state estimates at the 𝑘-th step, �̂�𝑘

− = [
휃̂𝑘
−

�̂�𝑘
−], �̂�𝑘−1 is the 

a posteriori state estimates at the (𝑘 − 1)-th step, �̂�𝑘−1 = [
휃̂𝑘−1
�̂�𝑘−1

], 𝑢𝑘  is the measured driving 
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voltage at the 𝑘-th step, and 𝐴𝑑 and 𝐵𝑑 are the discretized state and input matrices that model the 

dynamics of the PE stage. 

 

Step 2. Project the a priori error covariance, 

 𝑃𝑘
− = 𝐴𝑑𝑃𝑘−1𝐴𝑑

𝑇 + 𝐵𝑑𝑄𝐵𝑑
𝑇 (49) 

where Pk
− is the a priori error covariance matrix at the k-th step, Pk−1 is the a posteriori error 

covariance matrix at the (k − 1)-th step, and Q is the covariance matrix of process noise.  

Step 3. Update the matrix of observation,  

 𝐻𝑘 = [
0
⋮
0

h(θ̂k
−; Ps,1)

⋮

h (θ̂k
−; Ps,ny)

] (50) 

for 𝐻𝑘 as the matrix of observation at the 𝑘-th step, 𝑛𝑦 the number of capacitive sensors (𝑛𝑦 can 

be 1 to 4 depending on number of sensing channels used), and 𝑃𝑠,1  to 𝑃𝑠,ny  representing the 

corresponding tuned parameters of the capacitive sensor model; the capacitive sensor model used 

in this estimation scheme is based on Eq.20. Since ℎ depends on 휃, it is necessary to update the ℎ 

at every step with θ̂k
− in this estimation scheme. 

Step 4. Compute the EKF gain, 

 𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅)−1 (51) 

using the a priori estimate error covariance matrices Pk
− and Hk. R is the covariance matrix of 

measurement noise. 

Step 5. Update the a posteriori state estimates by 

 �̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝑦 ,𝑘 − 𝐻𝑘�̂�𝑘

−) (52) 

where x̂k is the a posteriori state estimates at the k-th step, and ym,k is the measured signal at k-th 

step. 
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Step 6. Update the a posteriori estimation error covariance 

 𝑃𝑘 = 𝑃𝑘
− − 𝐾𝑘𝐻𝑘

𝑇𝑃𝑘
− (53) 

where Pk is the a posteriori estimate error covariance matrix at the k-th step 

 Experiments and parameter identification 3.5

3.5.1 Overview of methods 

Open-loop experiments have been previously carried out to evaluate the multi-axis 

actuation functionality of the micro-stage [17]. Owing to the good off-axis motion compensation 

provided by the actuation stage and off-axis signal rejection provided by the sensor, the 

estimation of multi-axis tilting motion can be decoupled into estimation of the tilting motion 

around each single axis. Various experiments have been performed to examine the capacitive 

sensors for both the 𝑋 and 𝑌 axes, and representative results with respect to a sample axis are 

presented in this study. 

To obtain an accurate a posteriori estimate of the tilting motion, it is necessary to first 

identify the parameters of each component in the motion estimator with accurate external 

measurements. With only on-chip capacitive sensors such measurements cannot be obtained 

prior to the calibration of the motion estimator, therefore an off-stage laser Doppler vibrometer 

(LDV) system was used to provide ground-truth measurement. 

   

Fig. 3.9. Block diagram of components involved in parameter identification (left) and the performance evaluation during 

IMU calibration (right).  
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The parameter identification and performance evaluation phases of micro-stage testing 

are illustrated in Fig. 3.9. During the parameter identification phase, the stage was excited by a 

driving voltage with a specific frequency and amplitude, and the tilting motion was measured 

with the on-chip capacitive sensor and off-stage LDV. The parameters of the models for the PE 

stage and capacitive sensor and the EKF were then identified, respectively.  

In the performance evaluation phase, the stage was excited again with different voltage 

settings and the tilting motion was measured by 3 different types of sensors: the on-chip 

capacitive sensor plus motion estimator without LDV input, on-stage MEMS gyroscope, and off-

stage LDV. The performance was then evaluated in terms of the accuracy of 𝜔 estimation, the 

scale factor and bias of the motion estimator itself, and the calibration error of scale factor for 

on-stage MEMS gyros. The motion measured by the LDV was used as the reference motion for 

both the initial parameter identification and the performance evaluation phases, but only to 

validate estimator performance in the latter. 

3.5.2 Description of setup 

 

Fig. 3.10. A photo (left) of miro-stage (9 × 9 mm) with a 6-axis InvenSense MPU-6500 MEMS IMU (3 × 3 × 0.9 mm) as 

payload and a schematic (right) of experimental set-up. A LDV is used to measure the tilting motion for parameter 

identification and performance evaluation of motion estimator. 
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As depicted in Fig. 3.10 [17], an InvenSense MPU-6500 is used as the on-stage MEMS 

IMU to be calibrated. It consists of a 3-axis gyroscope and 3-axis accelerometers, and a LDV 

system was used to measure out-of-plane tilting motion generated by the PE stage. For the 

purpose of performance evaluation of on-chip capacitive sensor and motion estimation, the key 

specs of the gyroscope are summarized in Table 3.1.  

Table 3.1. Specifications of the InvenSense MPU-6500 gyroscope [53] 

1 Derived from validation or characterization of parts, not guaranteed in production. 

Specifications Value 

Full scale range 
± 250 dps to ± 2000 dps  

(± 4.4 rad/s to ± 34.9 rad/s) 

Scale factor error (at 25℃) ± 3 % 

Bias error (at 25℃) ± 5 dps 

Scale factor variation over 

temperature (-40℃ to +85℃)
 1 ± 4 % 

Cross-axis sensitivity ± 2 % 

Total RMS noise 0.1 dps - rms 

 

The overall experimental set-up consisted of a Polytec OFV-534 sensor head with a 20x 

objective lens, a Polytec OFV-5000 vibrometer controller and a VD-09 velocity decoder with 

gain of 20 mm/s/V. In order to maximize the measured velocity signal and obtain a high signal-

to-noise ratio, the observation point of the LDV was located at the surface of the MEMS IMU 

that was at the center of the studied edges. Since the tilting angle is small (± 0.005 rad), the 

measured velocity can be approximated as the vertical velocity of the edge, and the measured 

velocity, 𝑉𝑒𝑑𝑔𝑒 is converted to angular velocity 𝜔 as: 

 𝜔 =
2𝑉𝑒𝑑𝑔𝑒

𝑊𝐼𝑀𝑈
 (54) 

where  𝐼𝑀𝑈 is the width of the MEMS IMU.  
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In order to achieve higher sampling speed, the data acquisition and log tasks were 

implemented using an Agilent InfiniiVision MSO-X 3024A oscilloscope. The analog signals 

from the capacitive sensing circuits, LDV, and the amplified driving voltage were acquired at 

12.5 MHz by the oscilloscope, and the measurements were saved at 625 kHz with a 1024-period 

averaging enabled for the purpose of noise reduction. The IMU readout was acquired using a 

serial peripheral interface (SPI) board. The actuation of the PE stage was realized using a 

National Instruments controller and voltage amplification with a LabVIEW user interface. 

A heater was used to change the ambient temperature of the set-up for temperature 

perturbation tests, while an OMEGA HH802U digital thermometer was used to continuously 

monitor the surface temperature of the DIP package. In this experiment, plastic foam was used to 

wrap the lens and sensor head of the LDV for thermal isolation and to minimize the impact of 

temperature perturbation on the LDV’s performance. 

3.5.3 Description of experiments 

To limit feedthrough signals while obtaining as large a tilting motion signal as possible, 

the excitation frequency was chosen to be near the second resonant frequency (~1715 Hz), which 

is a resonant mode of the stage associated with 𝑌 axis tilting. Operation near a resonance allows 

the stage to reach its desired tilting amplitude at relatively low voltage input, and therefore lower 

the feedthrough signal generated. The relatively high resonant frequency also generates large 

angular velocity with modest amplitude of tilting motion (Eq.20), therefore it not only allows the 

MEMS gyro to be calibrated over a wider range of velocities, but also increase strength of the 

signal generated by the capacitive sensor and thus the signal to noise ratio. The operating settings 

of reported experiments are summarized in Table 3.2. 



 39 

The first experiment was done to identify the parameters of the model of PE stage. In this 

experiment, the frequency of a sinusoidal driving voltage was swept from 1711 Hz to 1719 Hz 

with constant amplitude (0.8 V) while the frequency response of the system was recorded.  

The second experiment was conducted to validate off-axis signal rejection of capacitive 

sensor. In this experiment, the frequency of the driving voltage was set to be 1700 Hz, and the 

amplitude of the driving voltage was swept from 1.1 V to 2 V to generate variation of tilting rate. 

During the experiment, the active off-axis motion compensation was turned off to allow the stage 

to experience certain off-axis motion, and the LDV was used to measure both the main axis 

tilting motion and the off-axis tilting motion. The measured tilting motions were fed into the 

single axis sensor model (with main tilting motion as input) and the dual axis sensor model (with 

both main and off-axis tilting motion as input), and the discrepancy between the output signals 

are quantified. Detailed analysis and results is shown in section 5.1. 

The third experiment was conducted to calibrate and the capacitive sensor model, EKF, 

and to evaluate the performance of motion estimator and the calibration error of scale factor for 

the MEMS gyro. In this experiment the ambient temperature of the set-up was changed by 12.8 

℃ by an external heater to produce a shift of scale factor and bias of the MEMS gyro. The 

frequency of the driving voltage was set to be 1700 Hz and the amplitude of driving voltage was 

swept from 1 V to 1.3 V to produce a variation in the tilting rate, and measurements of capacitive 

sensor, LDV and MEMS gyro are all recorded. At each temperature setting, the collected data 

was split into training and testing sets, with the training set used to calibrate the parameters of the 

capacitive sensor model and EKF, and the testing set used to evaluate the motion estimator’s 

performance and to calibrate MEMS gyro. The performance of the motion estimator and IMU 

are compared in sections 3.6.2 and 3.6.3. 
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Table 3.2. Summary of experiments and operational settings 

Purposes of experiment  

Driving 

frequency 

(Hz) 

Voltage 

amplitude 

(V) 

Range of 𝜔𝑝𝑝 

(rad/s) 

Temperature 

(℃) 

Identify PE stage model 1711 to 1719 0.8 48.5 to 54.3 22.8 

Validate off-axis signal 

rejection 
1700 1.0 to 2.0 29.7 to 67.0 21.3 

Identify sensor model, 

EKF; calibrate MEMS 

gyro 

1700 1.0 to 1.3 29.5 to 46.3 22.9 and 35.7 

3.5.4 Parameter identification and post-processing 

To mitigate the feedthrough signal, a feedthrough cancellation method [17] was applied 

by taking two consecutive measurements with sensing bias voltage on and off, and the difference 

of the two measurements was computed as the signal induced by the tilting motion. In addition, 

the LDV output was found to have a delay of approximately 6.9 𝜇𝑠 compared to the on-chip 

capacitive sensor measurement. This delay was compensated by shifting the LDV measurement 

with the identified value. The recorded LDV measurements were also discovered to have a 

constant bias, and it was compensated during the post-process. A low pass filter and a detrending 

filter were applied to the measured signals for the purpose of reducing noise and bias. 

The natural frequency of the resonance being excited (In this study, it is the 2
nd

 mode of 

the stage) 𝜔𝑛 and the damping ratio 휁 of the stage resonance were identified using the circle-fit 

method [54], the identified Nyquist curve fit and frequency response are shown in Fig. 3.11 and 

the results are listed in Table 3.3.  
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Fig. 3.11. Nyquist curve fit and frequency response of single axis tilting mode 

In the proposed estimation scheme, the fidelity of the capacitive sensor model is crucial 

to the final estimation accuracy. As shown in Eq.17, the parameter set 𝑃𝑠 to be identified contains 

𝐷𝑛  (neutral distance between plates) and 휂  (effective gain of amplification). To distinguish 

relevant signals, the measured readout from the capacitive sensor is defined as the measured 

signal, 𝑦 , whereas the output of capacitive sensor model (with LDV measured 휃 as input) is 

defined as a predicted signal, �̂�. The identification process is to find the optimal parameter set, 

𝑃𝑠
∗ that matches the key features between measured signal and predicted signal, as described in 

the equation below: 

 𝑃𝑠
∗ =  𝑟𝑔𝑚𝑖𝑛∑ [𝑓(𝑦 ) − 𝑓(�̂�)]

2𝑁
𝑖=1  (55) 

Here, 𝑓 is a function designed to extract key features from input signal. During the identification 

process, 𝑓 was designed to  

a. Identify 𝐷𝑛 by matching the crest-to-trough distance, 𝜆 of the waveform 

b. Identify 휂 by matching the amplitude of the waveform 

The reason behind identifying 𝐷𝑛  by matching 𝜆  is from the factor that by taking 

derivative of 𝑦, one obtains 
𝑑𝑦

𝑑𝑡
= −𝑉𝑏𝑖𝑎𝑠𝑅𝑠

𝑑2𝐶

𝑑𝑡2
 . Therefore, by imposing 

𝑑𝑦

𝑑𝑡
= 0 (crest or trough 

of the waveform) one will get solutions for 
𝑑2𝐶

𝑑𝑡2
= 0  which contain 휃  and 𝐷𝑛 . During stage 
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identification, one can substitute the measured 휃 value (by LDV) into the solutions to solve for 

the optimal 𝐷𝑛 (numerically) that minimizes the error of 𝜆 extracted from the predicted signal 

and measured signal. The advantage of such approach is that 𝜆 is invariant with respect to the 

gain of amplifier, therefore it is possible to decouple the tuning of gap and gain. Fig. 3.12 

demonstrated that 𝜆 changes with respect to the gap of the plates.  

 

Fig. 3.12. Due to the nonlinear relation between 𝑪 and 𝜽, the sensing signal output by the capacitive sensor model shows 

that the crest-to-trough distance 𝝀 changes as 𝑫𝒏 changes, such a feature is extracted and used to identify optimal 𝑫𝒏.The 

amplitude of the signals are normalized (- 0.5 to 0.5) with respect to their own amplitude for comparison purpose. 

The identified 𝐷𝑛 and 휂 are also listed in Table 3.3. 

Table 3.3. Identified parameters of model of PE stage and capacitive sensor at room temperature 

Parameter Description Value 

𝜔𝑛 2
nd

 natural frequency 1714.5 Hz 

휁 Damping ratio 0.005 

𝑏𝑐 DC gain 3782.5 rad/s
2
/V 

𝐷𝑛 Neutral distance between plates 19.2 𝜇𝑚 

휂 Effective gain of amplification -2.40752 × 10
7 

 

The covariance of measurement noise 𝑅 is identified by computing the covariance of 

measurement collected with zero input voltage. The covariance of process noise 𝑄 is identified 

by computing the error of covariance by a-prior estimated states and LDV measured states.  
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The a posteriori state estimates from the EKF is used to compute the error of scale factor 

and bias of the motion estimator, and they are corrected by compensating the a posteriori state 

estimates as the last step of parameter identification process.  

 Results and discussion 3.6

3.6.1 Evaluation of off-axis signal rejection by capacitance sensor 

To evaluate the performance of the micro-stage, several aspects of performance have 

been examined. First and foremost, to quantify the off-axis signal rejection of the capacitive 

sensor, an off-axis signal rejection ratio 𝑅𝑜𝑓𝑓 is defined to quantify the percentage of rejected 

off-axis motion in the capacitive sensor readout by comparing the outputs from single axis sensor 

model and dual axis sensor model: 

 𝑅𝑜𝑓𝑓 = 1 −
𝐸𝑦

�̅�𝑜𝑓𝑓/�̅�𝑚𝑎𝑖𝑛
 (56) 

where 𝐸𝑦 is defined as  

 𝐸𝑦 = √
1

𝑁
∑ (𝑦𝑠𝑖𝑛𝑔𝑙𝑒,𝑖 − 𝑦𝑑𝑢𝑎𝑙,𝑖)

2𝑁
𝑖=1  (57) 

where 𝑦𝑠𝑖𝑛𝑔𝑙𝑒,𝑖 is the i-th point of signals simulated by single motion capacitive sensor model and 

𝑦𝑑𝑢𝑎𝑙,𝑖 is the i-th point of signals simulated by dual motion capacitive sensor model, and 𝑁 is the 

number of sample points used for simulation. 

A simulation was performed with the measured tilting angle in the 2
nd

 experiment (Table 

3.2) fed into the single and dual axis sensor model respectively. The ranges of the main-axis 

motion to be ± 0.003 rad, and the off-axis motion ratio is swept from 1% to 50% by scaling the 

measured off-axis motion accordingly. The result (Table 3.4) suggests that with the provided 

range of tilting motion, even the off-axis tilting motion is as large as 50 % of that of the main-

axis, the proposed capacitive sensor design is still able to reject as much as 99.90 % of the 
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disturbance signal. Therefore, we conclude that with the range of tilting motion performed and 

the amount of the off-axis motion the micro-stage experienced during the experiments, the off-

axis motion does not have significant impact on the signal measured by the corresponding 

capacitive sensors, and therefore is not the major source of error in the motion estimation. This 

conclusion ensures that using single-axis capacitive sensor model is sufficient for the estimation 

scheme and simplifies its implementation. 

Table 3.4. Off-axis signal rejection ratio, Roff with respect to off-axis motion ratio 

�̅�𝑜𝑓𝑓/�̅� 𝑎𝑖𝑛 𝑅𝑜𝑓𝑓 

1 % 99.98 % 

10 % 99.98 % 

50 % 99.90 % 

From Fig. 3.13, we can see that with identified parameters and 10 % of off-axis motion 

assumed, the difference between the identified capacitance profiles and output signals from 

single and dual axis sensor models (for main-axis tilting motion) are insignificant. 

 

Fig. 3.13. Identified capacitance profiles for two representative channels from both single and dual axis capacitive sensor 

models (left), and two simulated time domain signals from the two sensor models (for main-axis tilting motion) 

respectively (right). The simulation assumes 10 % of off-axis motion for demonstration purpose.  
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3.6.2 Validation of motion estimation 

In this section, performance metric are defined to evaluate the accuracy of a posteriori 

angular velocity estimate and its scale factor and bias. All the results were evaluated using the 

testing data set which was not used in the parameter identification process, and the LDV 

measured angular velocity was used as reference measurement. For the purpose of simplicity and 

clarification, the a posteriori angular velocity estimate will be referred as 𝜔𝐸𝑆𝑇, and “by the on-

chip capacitive sensor and motion estimator” will be referred to as “by stage” in the following 

sections. To evaluate the estimation accuracy of 𝜔 measured by stage, a root-mean-square error 

(RMSE) of 𝜔 is defined as  

 𝜔𝑅𝑀𝑆𝐸  = √
1

𝑁
∑ (𝜔𝐸𝑆𝑇,𝑖 − 𝜔𝐿𝐷𝑉,𝑖)

2𝑁
𝑖=1  (58) 

where 𝑁 is the total number of samples used for evaluation. During the evaluation, the 𝜔 values 

in time series were averaged into one cycle for noise reduction, and 𝑁 was the total number of 

samples in one cycle. 

To evaluate how accurately angular velocity of the micro-stage can be measured by stage, 

the scale factor 𝛼 and bias 𝛽 of the stage are defined as  

 𝜔𝐸𝑆𝑇 = 𝛼𝜔𝐿𝐷𝑉 + 𝛽 (59) 

To compute the 𝛼 and 𝛽, one can take 𝑁 group of measurements to form 

 𝛺𝐸𝑆𝑇 = 𝛺𝐿𝐷𝑉𝛩 (60) 

where 𝛺𝐸𝑆𝑇 = [

𝜔𝐸𝑆𝑇,1
⋮

𝜔𝐸𝑆𝑇,𝑁
] , 𝛺𝐿𝐷𝑉 = [

𝜔𝐿𝐷𝑉,1
⋮

𝜔𝐿𝐷𝑉,𝑁
]  and 𝛩 = [

𝛼
𝛽], and Θ can be computed by least square method as 

 𝛩 = (𝛺𝐿𝐷𝑉
𝑇 𝛺𝐿𝐷𝑉)

−1𝛺𝐿𝐷𝑉
𝑇 𝛺𝐸𝑆𝑇 (61) 
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Fig. 3.14. Comparison of angular velocities, 𝝎, measured by LDV (black) and (red) by stage in the testing data set, the 

waveforms are averaged into one period for noise reduction and demonstration purpose. 

 

The results of evaluation at room temperature are shown in Fig. 3.14 and summarized in 

Table 3.5. Notice that once the parameters were identified with the training data set, the results 

were evaluated with a separate testing data set, in which the LDV measurements were only used 

in the comparison of the output of motion estimator. The validation result shows a 𝜔𝑅𝑀𝑆𝐸  of 

0.1140 rad/s and a mean 𝛼 of 1.0008, which mean an error of 0.08 %.  

Table 3.5. Validated RMSE, average scale factor and bias of 𝝎𝑬𝑺𝑻 of stage at room temperature 

𝜔𝑅𝑀𝑆𝐸 (rad/s) 𝛼 (unit less) 𝛽 (rad/s) 

0.1140 1.0008 - 0.0207 

3.6.3 Calibration of MEMS IMU 

Finally, the scale factor of MEMS gyroscope was evaluated by the on-chip capacitive 

sensor and motion estimator (referred as stage for simplicity), and compared to the scale factor 

evaluated by the LDV. When computing scale factor of the gyroscope, only the peak to peak 𝜔 

measurements were used, this is due to the instrumentation setting that the IMU readout was 

asynchronously sampled at about 8 kHz and logged with respect to other measurements in the 

experiments. To take into account of asynchronously sampling issue, producing the same 
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expected value, in a statistical sense, from both on-chip sensors and the IMU, the averaged 𝜔 

measurement at ±15 sample points around the peak and bottom of the waveform of the estimated 

𝜔 are used to compute the peak to peak 𝜔. As shown in Fig. 3.15, 𝜔𝑝𝑝 measured by the IMU, 

stage and LDV were fetched from time series data (noted as 𝜔𝐼𝑀𝑈,𝑝𝑝, 𝜔𝐸𝑆𝑇,𝑝𝑝  and 

𝜔𝐿𝐷𝑉,𝑝𝑝  respectively) and used to compute perform least square as: 

 𝛩𝐼𝑀𝑈 = (𝛺𝑅𝐸𝐹
𝑇 𝛺𝑅𝐸𝐹)

−1𝛺𝑅𝐸𝐹
𝑇 𝛺𝐼𝑀𝑈 (62) 

where Θ𝐼𝑀𝑈 = [
𝑆𝐹𝐼𝑀𝑈
𝐵𝑒𝑟𝑟

] , 𝑆𝐹𝐼𝑀𝑈  is the scale factor of MEMS gyroscope evaluated with 

corresponding measured reference motion, Ω𝐼𝑀𝑈 = [

𝜔𝐼𝑀𝑈,𝑝𝑝,1
⋮

𝜔𝐼𝑀𝑈,𝑝𝑝,𝑛
], Ω𝑅𝐸𝐹 = [

𝜔𝑅𝐸𝐹,𝑝𝑝,1
⋮

𝜔𝑅𝐸𝐹,𝑝𝑝,𝑛
] and Ω𝑅𝐸𝐹 

can be measurement either from motion estimator or LDV respectively. Measurement of 𝜔𝐼𝑀𝑈,𝑝𝑝 

recorded under two temperatures were first calibrated against 𝜔𝐿𝐷𝑉,𝑝𝑝 at room temperature to 

serve as an initial calibration of IMU, as a necessary step for the comparison purpose. The scale 

factors of the MEMS gyroscope are then evaluated as described in Eq.(35) under the 

corresponding temperature settings.  

 

Fig. 3.15. peak-to-peak 𝝎𝑰𝑴𝑼  vs. 𝝎𝑹𝑬𝑭 , 𝝎_𝑹𝑬𝑭 (measured by LDV and stage respectively) Scale factor of MEMS 

gyroscope under two temperature settings are computed by least square method and then compared. 
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The 𝑆𝐹𝐼𝑀𝑈 evaluated by two reference measurement under two temperature settings are 

listed in Table 3.6. At room temperature, the 𝑆𝐹𝐼𝑀𝑈 measured by LDV and stage differs by –340 

ppm. When the surface temperature rises from 22.9 ℃ to 35.7 ℃ (the increase of temperature 

was limited by instrumentation’s capabilities), the 𝑆𝐹𝐼𝑀𝑈 evaluated by LDV is 0.94571(-5.43 %), 

while the stage reports it to be 0.94593, which differs from that of LDV by 220 ppm. It should be 

pointed out the scale factor variation due to temperature reported by the datasheet is ± 4%, which 

can be interpreted as a typical MEMS gyro of this kind is expected to experience a variation of ± 

4% in scale factor under the temperature range from -40 ℃ to 80 ℃. However, as pointed out by 

the datasheet itself, this level of variation is not guaranteed in production, nor in a more realistic 

application. As matter of fact, in this experiment the tested MEMS gyro already shows more than 

5% change given a temperature rise of 12.8 ℃. The errors of calibration of scale factor (286 ppm 

as root mean square) demonstrated in this study are improvement of several orders of magnitude  

compared to the direct look-up table compensation of scale factor employed in the MEMS 

gyroscope.  

Table 3.6 Scale factors and biases measured by LDV and stage with two temperature settings  

Scale factor T1 = 22.9 ℃ T2 = 35.7 ℃ 

𝑆𝐹𝐼𝑀𝑈 by LDV 1.00000 0.94571 

𝑆𝐹𝐼𝑀𝑈 by stage 0.99966 0.94593 

𝑆𝐹𝐼𝑀𝑈 difference -340 ppm 220 ppm 

 

It is worth noting that the calibration error of scale factor of MEMS gyro only uses peak 

to peak angular velocities, and the scale factor error of the stage reported in Table 3.5 is 

computed from all the measured angular velocities. The latter is a measure of correlation 

between the reference motion and the estimates in the full range of tilting rate, which is more 

prone to distortion of the estimated waveform than just using the peak to peak values. The source 
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of distortion of the waveform can come from the residual feedthrough, noise, and the mismatch 

between the capacitance model and the true capacitance in the device, if any. Therefore it is 

possible for the scale factor error of the stage to be larger than the scale factor error of calibration 

of the MEMS gyro in this case. With that said, the experimental results demonstrate the 

methodology is capable of calibrating scale factor of MEMS gyroscope with moderate 

temperature perturbation from the environment. 

3.6.4 Benchmarks and source of error  

Representative results of in-situ calibration of scale factor of MEMS gyroscope are 

presented in Table 3.7 for the purpose of comparison.  

Table 3.7 Comparison of representative reported in-situ calibration results of MEMS gyroscope scale factor 

Method 

Best scale factor 

calibration 

accuracy 

External equipment Features 

Virtual input rate 

[55] 
350 ppm None 

Apply a known self-

generated dither signal into 

the sense-mode of gyro as 

virtual input for calibration 

Virtual input rate 

[56] 

0.35%  

(10 – 50 ℃) 
None 

Virtual electrical rotation 

mimicked with symmetry 

of the dual-mode 

architecture 

Pseudo-observation 

by hand [57] 
1200 ppm None 

Introduce pseudo-

observations for calibration 

Micro-stage 

actuator [58] 
1 % 

A micro-stage with 

piezoelectric actuation 

and an optical metrology 

system 

Multi axis calibration with 

on-chip actuation 

Micro-stage 

actuator and [29] 
258 ppm 

A micro-stage with 

piezoelectric actuation 

and sensing with optical 

Threshold position sensing 

provided for high accuracy 

reference motion 
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sensing estimation 

Micro-stage 

actuator and sensor 

(our method) [59] 

286 ppm  

(23 ℃– 36 ℃) 

A micro-stage with 

piezoelectric actuation 

and capacitive sensing 

Multi axis calibration with 

on-chip actuation and 

sensing 

The results are categorized by methodology and whether external hardware is involved. 

The best accuracies reported by the literatures are also tabulated. Among, the method presented 

in this dissertation distinguishes from all the other methods that involve using external 

equipment by relying on only on-chip sensing capability. 

In order to understand the source of error in the calibration, a sensitivity analysis has been 

conducted by sweeping the key parameters of sensor model, the induced calibration errors are 

illustrated in Fig. 3.16 [60]. 

 

Fig. 3.16 Estimated standard deviation of scale factor error (in ppm) as a function of sensor noise variance, based on EKF 

error covariance and Monte Carlo simulation of noise influence on parameter identification accuracy. 

 

The standard deviation of scale factor calibration error due to the sensor noise via three 

different contributing mechanisms is illustrated in Fig. 3.16. The noisy sensor measurement is 

assumed to generate errors in either the parameter identification of 𝐷𝑛 and 𝐺 or estimation error 

of EKF with a perfectly identified model. The key observation from Fig. 3.16 is that inaccurately 

identified parameters in the capacitive sensor model caused by noisy measurement is a much 
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more significant source of error than the direct influence of sensor noise on EKF performance 

(“stochastic error”).  

 Chapter Summary 3.7

In this chapter, we introduce a rotational parallel-plate capacitive sensor design and a 

motion estimation method for measuring multi-axis tilting motion of a micro-stage that is used 

for in situ calibration of an on-stage MEMS IMU. The developed multi-channel capacitive 

sensor and motion estimator is capable of measuring dual-axis out-of-plane tilting motion of the 

6 DOF piezoelectric actuated micro-stage, with high off-axis signal rejection ratio and ability to 

detect and compensate for effects from environmental perturbations.  

To evaluate the off-axis signal rejection capability of the sensor, a dual axis capacitive 

sensor model is derived and calibrated using its characterized nonlinear relation between 

capacitance and tilting angle. The dual-axis sensor model is compared with a single axis sensor 

model in a simulation, and the simulation result shows that the proposed capacitive sensor design 

rejects substantial off-axis signal (above 99.90 % with provided range of motion).  

To measure the tilting motion with the on-chip capacitive sensor, a motion estimator 

incorporating a PE stage model near resonance, a capacitive sensor model, and an EKF is 

developed. A series of experiments are conducted to identify the parameters of the motion 

estimator and evaluate its performance, with an LDV used to serve as ground truth measurement 

of the reference motion. The experimental results show the motion estimator with the capacitive 

sensor has a RMSE of 0.1140 rad/s and an error of scale factor of 0.08 %. In another experiment 

with two ambient temperature settings, the experimental results show that the micro-stage with 

on-chip capacitive sensor and motion estimator reports an RMS error of scale factor of a MEMS 

gyroscope to be 286 ppm over 13 ℃  temperature range, improved by several orders of 
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magnitude compared to the expected scale factor drift of the MEMS gyroscope utilized under the 

same temperatures change. 
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  Chapter 4

Threshold Sensing with Micro-scanner 

 

 Chapter overview 4.1

From the last chapter, it has been discussed that the capacitive sensor for analog 

measurement is susceptible to geometry and material property changes caused by temperature 

and other environmental variation. To overcome this issue, in this chapter we exploit a threshold 

sensing mechanism and implement a threshold signal detector to improve the state estimation 

accuracy of an EKF. The approach is validated experimentally with a MEMS electrostatic micro-

scanner. A first order derivative of Gaussian (DOG) filter is used to detect and locate rapid 

changes in voltage signal caused by crossing of a threshold angle determined by maximum 

overlap of capacitive electrodes. The event-triggered measurement is used in the update step of 

the EKF to provide intermittent but more accurate angle measurements than those of the 

capacitive sensor’s continuous output. Experiments on the electrostatic micro-scanner show that 

with the threshold signal detector incorporated, the average position estimation accuracy of the 

EKF is improved by 15.1%, with largest improvement (30.3%) seen in low signal-to-noise ratio 

(SNR) conditions. A parametric study is conducted to examine sampling frequency and 

capacitance profile, among other factors that may affect detection error and EKF accuracy.  

This chapter is structured as follows: Chapter 4.2 introduces background on the DOG 

filter, and the EKF; Chapter 4.3 presents the process model, sensor model and EKF 

implementation; Chapter 4.4 presents the experimental setup; Chapter 4.5 presents the results of 
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parametric studies of factors that can impact estimator performance; Chapter 4.6 presents 

experimental results; Chapter 4.7 provides a summary. 

 Background and Motivation 4.2

4.2.1 Impact of temperature on capacitive sensing and prior studies 

As was encountered in Chapter 3, a major drawback of capacitive sensing is that its 

accuracy may be reduced by temperature and other environmental effects, which can cause 

undesired changes in geometric relations between electrodes [42] [61]. One potential solution is 

to find features of the sensing signal that correspond to specific positions that are both detectable 

and constant in the presence of unwanted geometric perturbations [32]. Such signal features can 

be used for measurement of threshold positions with high accuracy to “reset” position estimates 

and improve overall motion tracking accuracy. Design of capacitive sensors that generate 

threshold features can be intentional or a natural consequence of electrode geometry for a given 

application.  

This chapter introduces novel threshold signal detector realized with a derivative of 

Gaussian (DOG) function in the loop of an EKF. It is intended to enhance angular position and 

velocity estimation for MEMS micro-scanners. The study explores factors impacting the 

performance of the estimation scheme, such as noise level, capacitance profile of the sensor, 

sampling rate, etc.  

 Among prior research works, the idea of using threshold sensing to improve motion 

tracking can be found in Henningsson and Astrom’s work [30], in which a sensor provided a 

measurement of the center mass of a MEMS accelerometer exceeding a threshold location; 

however, that literature did not discuss the realization of such a sensing mechanism. In [51], a 

design of an out-of-plane capacitive sensor using imbalanced capacitance to indicate threshold 
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location was proposed; however, extraction of the signal was susceptible to drift of its capacitive 

signal. In [29], a Kalman filter estimation scheme with an asynchronized sensing scheme was 

proposed, in which a less accurate but frequently-measured analog signal and a highly accurate 

but infrequent (twice per period of a waveform) threshold signal were used in a Kalman filter 

estimator. That work, however, again did not address the issue of how to extract the threshold 

signal and assumed perfect detection. [32] proposed using a DOG filter to detect threshold 

crossing signals and embedded its output as a more accurate source of measurement updates 

within a Kalman filter estimator. However, experimental results were not presented, and issues 

such as sampling rate and how to fully incorporate a non-linear capacitive sensor model were not 

addressed.  

Given the limitations of previous works, it is desirable to study factors that can affect the 

usage of threshold sensing in an EKF: how is the detection error distributed and can it be well-

modelled by normal distributions? What is the relationship between the variance of error and 

factors including sensor design (capacitance profile) and operating conditions (sampling rate, 

noise)? How should one pick suitable parameters for the DOG filter to optimize EKF 

performance? 

4.2.2 Electrostatic micro-scanner and threshold sensing 

The sample device studied in this chapter, shown in Fig. 4.1(a), is an electrostatically-

driven dual-axis micro-scanner. It includes two reflective mirror surfaces for dual axes confocal 

imaging and multiple groups of comb-fingers. Each group of comb-fingers consists of a 

moveable comb and a fixed comb (Fig. 4.1 (b)). By applying driving voltage with a carefully 

selected frequency, the comb-finger can generate electrostatic torque that produces parametric 

resonance in the form of tilting motion with a frequency half that of the driving voltage [62].  
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This class of micro-scanner is designed to deflect light for imaging purposes [63]. While 

the comb-fingers are designed to serve as actuators, they can also serve as capacitive sensors to 

measure the tilting angles of the mirror. The capacitance of the comb-finger as a function of 

tilting angle [64], is 

 𝐶𝑠(휃) =
𝜖0𝜖𝑟𝑛𝐴(𝜃)

𝐷
 (63) 

where 휀𝑟 is the relative static permittivity (1 for air),  휀0 is the dielectric constant (8.8542 × 10-12 

F m
-1

), 𝐴 is the overlap area of electrodes, 𝐷 is the distance between the electrodes, 𝐶𝑠(휃) is 

sensing capacitance, 𝐴(휃) is the total area of overlap between the comb-fingers as a function of 

tilting angle 휃 , and 𝑛  is the number of pairs of comb-fingers. The capacitance reaches its 

maximum when the overlapped area is maximized.  

 

Fig. 4.1. (a) Scanning electron microscope image of a parametrically-resonant micro-scanner tested in this study. (a) 

Illustration of comb-finger electrodes used as actuators and capacitive sensors. (b) Zoomed in image of a representative 

comb-finger structure. 

Fixed combMovable comb

Mirror surfaces

Comb-finger

(a)

(c)(b)
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To transduce the capacitance change into measurable voltage signal, we employ a sensing 

circuit that applies constant bias voltage, 𝑉𝑏𝑖𝑎𝑠  at the sensing electrodes. The change of 

capacitance can be converted to a sensing current that is amplified by a feedback resistance, 𝑅𝑠, 

and trans-impedance amplifier into an analog voltage signal, ycap, by 

 𝑦𝑐𝑎𝑝 = −𝑅𝑠𝑉𝑏𝑖𝑎𝑠
𝑑𝐶𝑠(𝜃)

𝑑𝑡
 (64) 

It is worth noting that other types of sensing circuits can be applied [34]. Amplitude 

modulation and demodulation is commonly used to separate and suppress any feedthrough 

disturbance introduced by parasitic capacitance in the sensing electrodes coupling them to the 

device’s driving voltage. However, modulation/demodulation also generates other effects 

including delays and skew in the filtered signal, which will can accuracy of a threshold 

measurement. In this study, since the focus is on validating the concept of generating and 

extracting threshold angle measurements and evaluating their effectiveness in an EKF 

framework, the transimpedance approach is used. This realization is also beneficial for 

implementation using very few electrical interconnects in a compact space, such as an 

endomicroscope. To compensate for feedthrough, later experiments were performed with a 

power cut-off strategy, discussed in section IV. 

For this device, capacitance reaches its maximum value when the movable comb-fingers 

cross the mirror’s central position and fully overlap the fixed comb-fingers. With the trans-

impedance circuit, a rapid change in sign and magnitude 
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Fig. 4.2. An illustration of threshold angle crossing and mechanism of threshold angle sensing and detection. (a) 

Configurations of comb-finger (1), (2) and (3) correspond to before, at, and after threshold angle crossing. (b) Sensing 

capacitance vs. tilting angle 𝜽. (c) Tilting angle vs. time. (d) Noisy sensing signal vs. time; the crossing event generates 

rapid change of signal around (2). (e) Comparison of filtered signal by a derivative operator and a DOG operator. DOG 

operator is effective in detecting the timing of rapid signal change.  

of the output sensing signal occurs, as illustrated in Fig. 4.2 (a-d). This is referred to as the 

threshold angle for this system. 

Knowing the exact timing of the threshold angle crossing is beneficial in high accuracy 

estimation of the angular position at that time. However, in practice it can be challenging to 

determine the threshold crossing time from the measured signal due to noise and bias. Since the 

threshold position crossing corresponds to a locally maximum rate of change of voltage, it might 

be obvious to adopt a derivative operator as a first attempt to retrieve crossing information. 

However, as illustrated in Fig. 4.2(e), taking the derivative of a noisy signal does not necessarily 

provide a reliable outcome. To resolve this issue, a first order derivative of Gaussian (DOG) 

filter is proposed to extract the timing of the threshold position crossing [32]. A DOG filter is 

used as an approximated optimal filter for edge detection in the field of computer vision [65] and 

휃
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has merits of good detection (low probability of false detection), good localization (low variance 

of detection error), and one response to a single edge (one maxima or minima corresponds to one 

crossing) [66].  

While the introduction of a DOG filter provides an efficient and convenient realization 

for detecting threshold crossing timing, detection accuracy is still not perfect. In the presence of 

noise, the detected timing can deviate from the true timing. According to Canny [66], for the 

detection error in timing for a 1D step edge, 𝑒𝑡,𝑡ℎ, its variance 𝑅𝑡,𝑡ℎ is expressed as  

 Rt,th = E[et,th
2 ] =

σn
2 ∫ ḟ(τ)2dτ

w
−w

[∫ ḟ(τ)ẏ(−τ)dτ
w
−w  ]

2 (65) 

where 𝑓(𝜏) is the filter for edge detection, 𝑦(𝜏) is the signal including the edge, 𝜏 is a dummy 

variable, and 𝜎𝑛is the standard deviation of the normally distributed, zero mean additive noise to 

the sensing signal. This expression reveals that 𝑅𝑡,𝑡ℎ is proportional to the variance of noise (the 

noisier the signal, the less accurate the detection) and inversely proportional to the edge’s slope 

(the sharper the slope, the more accurate the detection). 𝑅𝑡,𝑡ℎ is a key factor in threshold sensing 

performance and can be used to derive the error covariance matrix needed in to obtain optimal 

state estimates with an EKF.  

4.2.3 Challenges 

To carry out the EKF algorithm using threshold sensing information, a value for 𝑅𝑡,𝑡ℎ is 

needed. Although (65) gives a theoretical derivation, in operation, it is difficult to obtain a signal 

𝑦(𝑡) containing an edge that is uncorrupted by noise. Hence it is desirable to estimate 𝑅𝑡,𝑡ℎ off-

line, which leads to several issues.  First, the EKF assumes the process is subject to normally 

distributed noise. We will investigate the distribution of the 𝑒𝑡,𝑡ℎ , and more importantly, the 

distribution of detection error of threshold angle, 𝑒𝜃,𝑡ℎ , to ensure that the EKF can be 
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appropriately applied. Second, the expression of 𝑅𝑡,𝑡ℎ in (65) is derived in continuous time and 

does not take sampling effects into account. Since the EKF is implemented in discrete time, 

choice of sampling rate can impact on estimation performance.  

 System modelling 4.3

In this section, the process model, sensor model, and EKF incorporated with threshold 

sensing are described. 

4.3.1 Process and sensor model 

The dynamics of the tilting motion of the micro-scanner are modeled as a 2
nd

 order, non-

linear time invariant system. 

 𝐽휃̈ + 𝑏𝑣휃̇ + 𝑘𝑠휃 = 𝜏(휃, 𝑉𝑑𝑟) (66) 

where 𝐽 is the moment of inertia of the micro-scanner, 𝑏𝑣 is the damping coefficient, and 𝑘𝑠 is 

the spring constant of a torsional spring. The torsional load generated by the comb-finger, 𝜏𝐿 is: 

 𝜏𝐿(휃, 𝑈) =  
1

2

𝑑𝐶𝑑𝑟

𝑑𝜃
𝑉𝑑𝑟

2 (67) 

where 𝑉𝑑𝑟 is the driving voltage, and 𝐶𝑑𝑟 is the driving capacitance formed by the comb-fingers 

that generate tilting motion. Let 𝑿 = [𝑥1 𝑥2]
𝑇 to be state vector, where  𝑥1 = 휃 and  𝑥2 = 휃̇ = 𝜔 

is the tilting angular velocity. Letting 𝜔𝑛 = √𝑘𝑠 𝐽⁄ , 휁 =
𝑏𝑣

2√𝐽𝑘𝑠
, where 𝜔𝑛 is the natural frequency 

of the tilting mode and 휁 is the damping ratio. (66) becomes: 

 �̇� = [
0 1
−𝜔𝑛

2 −2휁𝜔𝑛
] 𝑿 +

1

2

𝑑𝐶𝑑𝑟

𝑑𝑥1
𝑉𝑑𝑟

2 (68) 

Denoting the sampling interval to be 𝑇𝑠, and assuming that the process is subject to zero-mean, 

normally distributed process noise, the discretized process model for the EKF becomes  

 𝑿𝑘 = 𝑔(𝑿 − , 𝑉𝑑𝑟,𝑘) + 𝒗  (69) 
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where 𝑔(∙) is defined as: 

 𝑔(𝑿 − , 𝑉𝑑𝑟,𝑘) = [
1 𝑇𝑠

−
𝑘𝑠

𝐽
𝑇𝑠 1 −

𝑏𝑣

𝐽
𝑇𝑠
] 𝑿 − + [

0
𝑇𝑠

2𝐽

]
𝑑𝐶𝑑𝑟

𝑑𝑥1
(𝑘)𝑉𝑑𝑟,𝑘

2 (70) 

For the sensor model, equation (64) shows that the signal from a capacitive sensor with 

current-based readout (Fig. 4.4(c)) is proportional to the rate of change of capacitance, 𝑑𝐶𝑠/𝑑𝑡. 

Since  
dCs

dt
=
dCs

dθ

dθ

dt
,  where 

𝑑𝐶𝑠

𝑑𝜃
 is the rate change of capacitance with respect to tilting angle 휃. 

Denoting 
𝑑𝜃

𝑑𝑡
= 𝜔, we have a measurement used by the EKF, ycap, of: 

 𝑦𝑐𝑎𝑝 = [−𝑅𝑠𝑉𝑏𝑖𝑎𝑠
𝑑𝐶𝑠

𝑑𝜃
] 𝜔 = ℎ𝑐𝑎𝑝(휃)𝜔 (71) 

where ℎ𝑐𝑎𝑝(휃) = −𝑅𝑠𝑉𝑏𝑖𝑎𝑠
𝑑𝐶𝑠

𝑑𝜃
 is θ-dependent sensor gain,  𝑅𝑠 is a constant resistance, and 𝑉𝑏𝑖𝑎𝑠 

is a constant bias voltage. 

4.3.2 Extended Kalman filter with threshold sensing 

The proposed EKF includes a hybrid sensing scheme where the signal of the capacitive 

sensor is regarded as a normal analog measurement, and the detection of threshold crossing is 

applied intermittently. The procedure for applying the EKF with the fusion of the two types of 

measurements is illustrated in Fig. 4.3 and described below: 



 63 

 

Fig. 4.3. Schematic depiction of extended Kalman filter synthesizing capacitive sensing and threshold angle measurement. 

The algorithm for applying the EKF with the fusion of the two types of measurements is 

provided in Table 4.1. In Table 4.1,  𝑿  
− is the a priori state estimates at the k-th step,    

− is the 

a priori error covariance matrix at the 𝑘-th step,   −  is the a posteriori error covariance matrix 

at the (𝑘 − 1) -th step,   is the covariance matrix of process noise, and 𝑮 =
𝜕𝑔

𝜕𝑿 − 
 is the 

Jacobian of the process model. 

Depending on whether a threshold detection is positive, the form of the matrix of 

observation,   , the estimated sensing signal, �̂�𝑘  and the covariance matrix of measurement 

noise, 𝑹, will vary. 𝑅𝑐𝑎𝑝 is the measurement noise variance for the analog capacitance signal and 

𝑅𝜃,𝑡ℎ  is the variance of 𝑒𝜃,𝑡ℎ . The Kalman gain 𝑲  is then computed and a posteriori state 

estimates 𝑿   and a posteriori estimate error covariance matrix 𝑃𝑘 are finally updated with the 

measurement at the k-th step, 𝑌𝑘 . Measurement 𝒀 = [휃𝑡ℎ    𝑦𝑐𝑎𝑝,𝑘]
𝑇

 for positive detection and 

𝒀 = 𝑦𝑐𝑎𝑝,𝑘 for negative detection. 
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Table 4.1 Algorithm, EKF with Hybrid Sensing Scheme 

1. Project a priori state estimates 

𝑿 𝑘
− = 𝑔(𝑿 𝑘−1, 𝑉𝑑𝑟,𝑘);       

− = 𝑮   − 𝑮 
𝑻 +    

2. Update matrix of observation 

If threshold detection is negative 

𝒀  = [0 ℎ𝑐𝑎𝑝(휃̂𝑘
−)]𝑿 𝑘

− =   𝑿 𝑘
−;     𝑹 = 𝑅𝑐𝑎𝑝 

If threshold detection is positive 

𝒀 𝑘 = [
1 0
0 ℎ𝑐𝑎𝑝(휃̂𝑘

−)]𝑿
 
𝑘
− =   𝑿 𝑘

−;     𝑹 = [
𝑅𝜃,𝑡ℎ 0

0 𝑅𝑐𝑎𝑝
] 

3. Compute EKF gain with threshold sensing 

𝐊k = 𝐏𝐤
−𝐇𝐤

𝐓(𝐇𝐤𝐏𝐤
−𝐇𝐤

𝐓 + 𝐑)
−1

 

4. Update a posteriori state estimates 

𝑿  = 𝑿  
− +𝑲 (𝒀 − 𝒀  );       =   

− −𝑲   
𝑻  

− 

 

 Experiments and model identification 4.4

An experimental testbed was prepared and used to identify parameters of the process and 

sensor models, and to verify the effectiveness of the DOG filter in threshold crossing detection 

and the EKF using the hybrid sensing scheme.  

4.4.1 Experimental set-up and methods 

As depicted in Fig. 4.4(a), computer-generated voltage commands were transmitted to an 

NI PCIe 6251 DAQ with sampling rate of 500 kHz. The voltage command was amplified by a 

TEGAM 2340 amplifier with 20 times amplification, and the amplified driving voltage fed to the 

MEMS scanner to generate tilting motions. Tilting motion was measured by two means: 

reflection of a laser by the scanner and conversion of the capacitive sensing current as described 

in (71).  
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Laser tracking is treated as the ground truth of tilting motion. Fig. 4.4(b) shows the 

geometric relation between the MEMS scanner mounted on a dual inline package, a JDSU 1500 

helium-neon laser source, and an On-Trak 1L10 position sensing detector (PSD). The laser beam 

is emitted by the source, reflected by the scanner’s mirror surface, and received by the PSD, 

amplified by an On-Trak-301SL sensing amplifier.  

On-chip sensing is used by the EKF. Fig. 4.4(c) depicts the schematic of integrated 

driving and sensing circuitry. An AC driving voltage is fed into comb-fingers used for driving, 

and a DC bias voltage provided by a source meter, 𝑉𝑏𝑖𝑎𝑠 , is fed into comb-fingers used for 

sensing. The generated current flow through the shared grounding terminal is fed into a sensing 

circuit, which consists of a TI OPA2140 amplifier with a feedback resistance of 10 Mohm.  

Since the objective of the study is to validate the method of using a DOG filter for 

threshold angle crossing detection and EKF integration, it is useful to eliminate potential 

disturbances introduced by feedthrough of the driving voltage. Therefore, during experiments, a 

power cut-off method was applied. 

 

 

Fig. 4.4. Experimental set-up: (a) Schematic of major experimental modules and signal flow. (b) Top view of set-up and 

illustration of geometric relationship between the laser source, MEMS scanner and PSD. (c) Schematic sensing and 

driving circuitry for the MEMS scanner. 

A zero to 60 volt periodic 𝑉𝑑𝑟 was applied to the MEMS scanner, and the frequency was swept 

from 1600 Hz to 1220 Hz to reach a maximized amplitude of tilting motion given electrostatic 
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spring softening [21]. Once the tilting motion was stabilized, 𝑉𝑑𝑟was set to zero, while 𝑉𝑏𝑖𝑎𝑠 was 

maintained at a constant 10 volts. Such a sequence of voltage commands allows the micro-

scanner to freely oscillate briefly after the power cut-off, and the sensing current induced by the 

oscillation can be amplified and recorded without feedthrough disturbance.  

A total 10 trials of power cut-off experiments were performed and the 𝑉𝑑𝑟 , 𝑦𝑐𝑎𝑝  and 

𝑦𝑃𝑆𝐷were recorded at 500 kHz rate. The data was post-processed as follows for consistency: 

Each time series was truncated at the power cut-off and 80 ms afterwards (approximately 50 

periods of free oscillation). The delay between PSD measurement and sensing circuit 

measurement was experimentally calibrated to be 0.114  ms. 

To detect a threshold crossing, a DOG filter is applied to the sensing signal using the 

nlfilter function in MATLAB, which is a general sliding-neighborhood operation. The filtered 

signal is then processed with non-maximum suppression to suppress the filtered response except 

the local maxima, and these local maxima are then extracted to indicate the detected threshold 

crossing. In this study, the threshold detections are extracted in a post-processing fashion. To 

achieve a near real-time threshold detection, a buffer can be used to store measurements from 

past to present, and DOG filter can be applied to the signal in the buffer to generate a local 

maximum for threshold detection.  

4.4.2 Identification of process and sensor models 

The tilting angle measured by the PSD, 휃𝑃𝑆𝐷 is computed as 

 휃𝑃𝑆𝐷 = arctan (
𝑦𝑃𝑆𝐷𝐺𝑃𝑆𝐷

𝐿𝑚
) (72) 

where 𝐺𝑃𝑆𝐷(0.5 mm/V) is the gain of the PSD sensing amplifier and    is the distance from the 

scanner surface to PSD surface 
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Fig. 4.5. (a) Experimentally measured free oscillations vs. simulated decay curve of free oscillations with identified natural 

frequency and damping ratio of the MEMS scanner. (b) Experimentally identified sensing capacitance with respect to 

tilting angle. 

Table 4.2 Baseline setting for parametric Study 

Symbol Description Value 

𝑓𝑠 Sampling frequency 500 kHz 

휃𝑎 𝑝 Amplitude of 휃 0.15 rad 

𝑓  Motion frequency 625 Hz 

𝜎𝑛 Standard deviation of noise 0.0435 V 

𝑅𝑠 Feedback resistance 10 MΩ 

𝑉𝑏𝑖𝑎𝑠 Bias voltage 10 V 

𝑤𝐷𝑂𝐺 Width of DOG filter 400 

𝜎𝐷𝑂𝐺 Standard deviation of DOG filter 15 

 

and is measured to be 32.7 mm. A representative trajectory of the system is shown Fig. 4.5 (a); 

by fitting the decay curve using  linear viscous damping [67], 𝜔𝑛 and 휁were identified to be 

624.6 Hz and 0.0066, respectively. 

The sensor model is the sensing capacitance as a non-linear function of angle, 𝐶𝑠(휃), 

which can be experimentally identified by mapping the trajectory 𝐶𝑠(𝑡)  versus 휃𝑃𝑆𝐷(𝑡)  in 

various experiments. First, 𝐶𝑠(𝑡) is obtained by integrating 𝑦𝑐𝑎𝑝 with respect to time, from (64): 

(a) (b)
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 𝐶𝑠(𝑡) =  ∫ −𝑅𝑠𝑉𝑏𝑖𝑎𝑠𝑦𝑐𝑎𝑝𝑑𝑡
𝑡𝑓
𝑡0

 (73) 

Using the corresponding 휃𝑃𝑆𝐷(𝑡) one can establish a mapping of 𝐶𝑠(휃) and 
𝑑𝐶𝑠

𝑑𝜃
(휃) and therefore 

compute ℎ𝑐𝑎𝑝(휃)as suggested in (71). Fig. 4.5 (b) shows the identified sensor gain function 

ℎ𝑐𝑎𝑝(휃). The capacitance profile can be approximated by a Gaussian model [64]. 

The threshold location, 휃𝑡ℎ is identified by computing the average angular displacement 

at which the peak capacitance is reached among the experimental measurements. Nominally, 휃𝑡ℎ 

should be zero for the planar micro-scanner geometry, but in practice a non-zero value may 

occur due to finite fabrication tolerance of electrodes and residual stresses. In this device 휃𝑡ℎ was 

calibrated to be 0.0037 rad.  

 Parametric study of factors impacting threshold detection 4.5

In this section, parametric studies investigate the properties of the error of threshold 

detection and some contributing factors, including the sensor map and sampling rate. A 

sinusoidal tilting motion is simulated within the capacitive sensor model described by (71), with 

additive, zero-mean normally distributed measurement noise. The signal generated by the 

capacitive sensing model is passed into a DOG filter to compute the detection error in timing 

𝑒𝑡,𝑡ℎ  and detection error in threshold angle 𝑒𝜃,𝑡ℎ . Baseline settings from experimental device 

identification are summarized in Table 4.2.  

4.5.1 Sampling rate effects 

In (3), sampling rate is not singled out as a factor that affects the detection of threshold 

signal. However, this is not the case during digital implementation, as a low sampling rate 

introduces quantization error and a high sampling rate may allow excessive sensor noise into the 

filtering process. Therefore a series of simulations was conducted, from the baseline in Table 4.2, 



 69 

and the sampling rate was swept from 50 kHz to 5 MHz. The filter size was adjusted 

proportionally to maintain a fixed ratio between the filter size and the period of the waveform. 

The signal-to-noise ratio (SNR) was also varied by multiplying 𝜎𝑛 by factors of 0.1 and 10. 

 

Fig. 4.6. (a) Variance of detection error in threshold angle vs. sampling frequency. (b) Variance of detection error in 

threshold angle vs. maximum sensor gain slope. 

 

The simulation result is shown in Fig. 4.6(a). The result shows that 𝑅𝑡,𝑡ℎ increases as 

sampling rate is slower than 1250 kHz, mainly due to quantization noise. As the sampling rate 

increases, 𝑅𝑡,𝑡ℎ increases, attributed to noisier samples being taken into the filtering process. This 

suggest that an optimal selection for sampling frequency for a given threshold sensor exists, and 

one can properly size the data acquisition system to achieve the lowest variance of detection 

timing error without overreaching for fast sampling capability. 

4.5.2 Sensor map effects 

Equation ( 65 ) suggests that the variance of detection timing error is inversely 

proportional to the rate of change of the signal �̇�(𝑡), meaning that a sharper and more abrupt 

change of signal amplitude can be more accurately located in a statistical sense. To test the 

significance of the change, one way is to change of the capacitance profile formed by the 

electrodes. More specifically, we are interested in 𝑑𝐶𝑠/𝑑휃 around threshold location, as higher 

(a) (b)
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values will prompt higher �̇�𝑐𝑎𝑝(𝑡) as suggested in (71). In this study, a modified logistic function 

is used to generate a modelled sensor gain, ℎ̂𝑐𝑎𝑝 as: 

 ℎ̂𝑐𝑎𝑝(θ) = 𝑁𝑔(
1

1+e−𝑁𝜃𝜃
− 0.5) (74) 

where 𝑁𝑔 is the normalization factor for gain, and 𝑁𝜃 is the normalization factor for angle.  

The modelled sensing capacitance simply takes the integration of ℎ̂𝑐𝑎𝑝(휃) with respect to 

tilting angle: 

 

Fig. 4.7. Sweep of maximum sensor gain slope. (a) Sensing capacitance becomes sharper around threshold angle as 𝑵𝜽 

increase. (b) Sensor gain slope becomes steeper around threshold angle as 𝑵𝜽 increases. 

 �̂�𝑠(휃) = −
1

𝑅𝑠𝑉𝑏𝑖𝑎𝑠
∫ ℎ̂𝑐𝑎𝑝(θ)
𝜃𝑚𝑎𝑥

𝜃𝑚𝑖𝑛
𝑑휃 (75) 

By sweeping 𝑁𝜃  one can vary the maximum sensor gain at the vicinity of threshold 

location, with larger 𝑁𝜃 corresponding to steeper slop and more drastic change of capacitance at 

휃𝑡ℎ, as depicted depicted in Fig. 4.7.  The experimentally identified sensor gain was used as a 

baseline to generate a series of sensor model with 𝑁𝜃 swept from 0.2 to 5.  Fig. 4.6 (b) shows 

corresponding simulation results. We find that 𝑅𝑡,𝑡ℎ  decreases as expected as the maximum 

sensor gain slope increases.  The significance of this change is comparable at various sensor 

noise densities. 

Increase 𝑁𝜃

Increase 𝑁𝜃

(a) (b)
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 Experimental results and discussion 4.6

In this section, experimental results are presented to evaluate the effect of different DOG 

filters on threshold detection and EKF performance. The decaying tilting motion of the micro-

scanner after power cut-off provides an opportunity to vary SNR by segmenting trajectories. 

Therefore, for each trial the measurements and estimated states are divided into 4 segments, with 

SNR ranging from 85 to 1. For conciseness, the EKF using the hybrid sensing scheme of 

capacitive analog sensing and threshold sensing is abbreviated as HYB. 

4.6.1 Effect of DOG filter on threshold detection 

The EKF implementation assumes that process noise and measurement noise are 

normally distributed. Therefore, it is helpful to verify the distribution of measurement noise of 

the threshold sensor. Threshold angle measurement noise is defined as the error between the 

threshold angle and the ground truth angle at the instant of detection, denoted as 𝑒𝜃,𝑡ℎ. Here, 𝑒𝑡,𝑡ℎ 

and 𝑒𝜃,𝑡ℎ are computed by taking the differences between the timing and angle at the detected 

threshold crossing and their ground truth values, respectively.  

Fig. 4.8 shows a representative distribution of 𝑒𝜃,𝑡ℎ with sampling condition of 2.5 MHz. 

These results suggest that with noisy sensor measurements, varying sampling rate only affects 

the mean and variance of the error of threshold angle 
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Fig. 4.8. Comparison between the sampled error of threshold angle detections and normal distribution with 

corresponding mean and variance. 

The distribution of 𝑒𝑡,𝑡ℎ and 𝑒𝜃,𝑡ℎ  computed from experimental measurements was 

analyzed using the Kolmogorov-Smirnov test [68]. Results indicate that the error distribution can 

be well-modeled by normal distributions at the tested conditions, shown in Fig. 4.9. 

 

Fig. 4.9. Distribution of detection errors in threshold angle from experimental measurements at different signal-to-noise 

ratios can be well modeled by normal distributions. 

Different settings for the DOG filter were also applied to 𝑦𝑐𝑎𝑝 and the EKF to evaluate 

itheir impact on the variance of 𝑒𝜃,𝑡ℎand accuracy of state estimation. The filter size 𝑤𝐷𝑂𝐺 was 

swept from 80 sample points to 400 sample points and 𝜎𝐷𝑂𝐺  was swept from 1.5 to 45. No 

significant performance variation was found in varying 𝑤𝐷𝑂𝐺  while keeping 𝜎𝐷𝑂𝐺 the same. 

However, as shown in Fig. 4.11, the variance of 𝑒𝜃,𝑡ℎ varies as 𝜎𝐷𝑂𝐺 varies for all four cases, 

which suggests a large 𝜎𝐷𝑂𝐺 is beneficial in reducing overall error variance.  

 𝜽,   (   )
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4.6.2 Effect of threshold sensing on EKF 

A representative estimation result is depicted in Fig. 4.10. The ground truth (EXP) and 

estimated tilting motion (EKF and HYB) are shown. Fig. 4.10 (a) shows the change in estimator 

output with introduction of threshold crossing detection: 휃̂ by HYB is corrected at the instant of 

threshold crossing detection and therefore is closer to the ground truth value. Fig. 4.10 (d) 

shows that the local maxima of the DOG filter response corresponds to the vicinity of the 

maximal rate of change of 𝑦𝑐𝑎𝑝 and serves as a detection of threshold angle crossing. The four 

snapshots demonstrate that the detection method is robust under various SNR conditions.  

Root mean square error (RMSE) of tilting angle 휃𝑅𝑀𝑆𝐸  is defined as a performance 

metric: 

 휃𝑅𝑀𝑆𝐸  = √
1

𝑁
∑ (휃̂𝑖 − 휃𝑃𝑆𝐷,𝑖)

2𝑁
𝑖=1  (76) 

where 휃𝑖  is a posteriori estimate of tilting angle and 휃𝑃𝑆𝐷,𝑖 is the tilting angle measured by the 

PSD at the i-th sampling instance, and 𝑁 is the number of sampling instants. A normalized root 

mean square error (NRMSE) of tilting angle, 휃𝑁𝑅𝑀𝑆𝐸 is also defined and examined: 

 휃𝑁𝑅𝑀𝑆𝐸 =
𝜃𝑅𝑀𝑆𝐸

�̅�𝑎𝑚𝑝
 (77) 

where 휃̅𝑎 𝑝  is the average amplitude of the corresponding waveforms. 휃𝑅𝑀𝑆𝐸  and 휃𝑁𝑅𝑀𝑆𝐸  are 

evaluated for the overall trajectories as well as each segment. 
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Fig. 4.10. A representative experimental measurement and estimation result in time domain. (a) Four snapshots of 

threshold angle crossing detection improving tilting angle estimation. (b) Overall trajectories of tilting angle measurement 

and estimations. (c);Overall trajectories of sensing signal and response of DOG filter. (d) Corresponding snapshots of 

sensing signal, where local maxima of filtered response detects threshold angle crossing. 

To evaluate the improvement made by introducing threshold sensing to the EKF, the 휃𝑅𝑀𝑆𝐸  

within each segment of estimation trajectory generated by the two estimators are computed. Here 

휃𝑅𝑀𝑆𝐸,𝑡ℎ  denotes the RMSE computed using 50 sample points after each threshold detection 

occurred. The results are listed in Table 4.3. 

 

Time (ms)

Time (ms)

(a)

(b)

(c)

(d)
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Fig. 4.11. Variance of detection error in threshold angle during experiments with respect to the standard deviation of 

DOG filter. 

Table 4.3 Summary of RMSE of estimated tilting angle 

 SNR 85 SNR 22 SNR 5 SNR 1 Overall 

EKF 휃𝑅𝑀𝑆𝐸  0.0050 0.0029 0.0026 0.0025 0.0034 

HYB 휃𝑅𝑀𝑆𝐸  0.0047 0.0023 0.0019 0.0018 0.0029 

𝜽𝑹𝑴𝑺𝑬 reduce 6.9% 21.4% 27.6% 30.3% 15.1% 

EKF 휃𝑅𝑀𝑆𝐸,𝑡ℎ 0.0055 0.0051 0.0050 0.0049 0.0051 

HYB 휃𝑅𝑀𝑆𝐸,𝑡ℎ 0.0041 0.0045 0.0049 0.0045 0.0045 

𝜽𝑹𝑴𝑬,   reduce 26.0% 11.6% 2.6% 8.1% 12.3% 

 

From Table 4.3, we can see that the largest percentage improvement of total RMSE 

happens with SNR = 1. The largest improvement of RMSE after threshold detection location 

happens with SNR = 85. The result shows that the threshold sensing adds the greatest local 

accuracy in high SNR conditions, but is more beneficial for overall EKF performance when SNR 

is low. 
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Fig. 4.12. Normalized RMSE with different signal-to-noise ratios and  various 𝝈𝑫𝑶𝑮settings. Under noisy condition (low 

SNR), increasing 𝝈𝑫𝒐𝑮  effectively increases threshold detection accuracy and therefore increases state estimation 

accuracy of the EKF. 

 

The trend of 휃𝑁𝑅𝑀𝑆𝐸 of each segment with respect to different 𝜎𝐷𝑂𝐺is shown in Fig. 4.12. 

For segments with high SNR (85 and 22), the change of 𝜎𝐷𝑂𝐺  does not significantly change 

휃𝑁𝑅𝑀𝑆𝐸. However, for segments with low SNR (5 and 1), the analysis shows increasing 𝜎𝐷𝑂𝐺 

significantly reduces 휃𝑁𝑅𝑀𝑆𝐸 , which suggests that the performance of EKF with threshold 

sensing is sensitive to selection of 𝜎𝐷𝑂𝐺. 

 Chapter summary 4.7

In this chapter, we presented a principle of threshold position sensing to indicate crossing 

of pre-determined threshold position that is relatively robust to geometric perturbations in non-

monotonic capacitance profile, which can be used to improve its measurement accuracy for the 

associated threshold positions or angles, and therefore improve the overall performance of the 

sensor or estimator using such sensor. 

We introduce a method for utilizing a first order derivative of Gaussian (DOG) operator 

to detect threshold crossing from noisy signal and integrated this detection mechanism into an 

EKF to estimate states from a non-linear process. To verify the effectiveness of the method, 
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experimental and simulation studies have been conducted to estimate the tilting angle of an 

electrostatic micro-scanner and quantify various factors that might affect the error of threshold 

detection and EKF performance. Simulation shows: (1) an optimal sampling frequency exists for 

a minimal variance of detection timing error; (2) increasing 𝐺𝑐𝑎𝑝(휃) around threshold angle 

reduces variance of detection error in timing and angle, beneficial for improving EKF accuracy.  

Experimental results show that use of the threshold sensing mechanism improved EKF 

performance across SNR conditions on a MEMS micro-scanner, with best improvement of a 

30.3% reduction in RMSE of tilting angle estimation. On average, using threshold sensing 

improves the RMSE by 15.1% across a range of SNR scenarios. A sweep of width 𝜎𝐷𝑂𝐺 of the 

DOG filter also shows that for low SNR, threshold detection accuracy is more sensitive to DOG 

filter parameter such as 𝜎𝐷𝑂𝐺 and therefore needs to be selected carefully to so that EKF can 

maximize the performance improvement of using the DOG filter. 
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  Chapter 5

Motion Estimation with Shared Electrodes for Driving and Sensing 

 

 Chapter overview 5.1

In this last case study in this dissertation, a method to estimate tilting motion of an 

electrostatic micro-scanner used for laser scanning in endomicroscopy is presented, with size 

constraints requiring use of the same electrodes for both actuation and sensing. The estimated 

amplitude and phase shift will be the focus of evaluating estimator performance, as these can be 

helpful to reduce the blur and distortion of image reconstruction given perturbations to scanning 

mirror dynamics over time. To overcome the limitation that no dedicated sensing electrodes are 

available, the method adopts an amplitude modulation-demodulation (AMDM) circuit design 

customized for the mirror to separate feedthrough generated by the high driving voltage. A 

process model based on non-linear parametric resonant dynamics of the micro-scanner and a 

sensor model including a large angle Gaussian based capacitance model and a sensing circuit 

model are derived and parameters are identified with experimental measurements. An extended 

Kalman filter (EKF) and an unscented Kalman filter (UKF) are implemented to incorporate the 

process model and sensor model to provide high-accuracy motion estimation. Experimental 

results show that the UKF achieved 0.39 degree root-mean-square error (RMSE) in estimated 

mirror phase delay, significantly improving on EKF performance.  

The chapter is organized as following: Chapter 5.3 describes the method, including 

process modeling, sensor modeling and circuit analysis, Chapter 5.4 describes the experiments 
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setup and procedures, Chapter 5.5 presents results including the identified process and sensor 

model, and performance evaluation of EKF and UKF. Finally, a summary is provided in Chapter 

5.6.  

 Background and motivation 5.2

To elaborate on optical imaging applications first introduced in Chapter 4, with the 

continuing development of micro-electro-mechanical system (MEMS) technology, MEMS 

scanners have been used in an array of applications involving laser scanning and displays [21]. 

One interesting application is to use MEMS scanners in endomicroscope devices [69], such as a 

confocal endomicroscopes [70] or multiphoton endomicroscopes [71]. Conventional confocal 

and multiphoton microscopes are based on laser scanning with galvanometers, which consist of a 

motor and mirror with position feedback to provide high speed laser scanning [72]. However, the 

size of galvanometers (on the scale of centimeters) limits their usefulness in endoscopic 

instruments, and MEMS scanners are instead proposed as miniature actuators with reflective 

mirror surfaces to perform laser scanning.  

MEMS scanners can be classified by their actuation principles into four main categories: 

electrostatic, electromagnetic, piezoelectric and electrothermal. Among these categories, the 

electrostatic micro-scanner uses the attractive forces generated by two oppositely charged plates 

or electrodes as the actuation force to rotate a mirror for directional laser scanning. Electrostatic 

actuators have advantages of comparatively straightforward fabrication and integration into 

microscopy systems, and therefore comprise the majority of endomicroscope scanners in the 

literature [21]. For large field-of-view with high resolution, these scanners must achieve large 

deflection angles, and therefore are usually designed to have high quality factor and be operated 

at or near their resonant frequencies [73]. As a result, this type of scanner suffers from resonance 
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shift due to material property variation (density, thermal expansion, Poisson’s ratio and elastic 

constants) and thermal expansion mismatch (due to usage of multilayer structures consisting of 

different materials) caused by temperature perturbation [28]. In the absence of feedback, 

resonance shift will introduce error in phase and amplitude information to be used in the image 

reconstruction process. Incorrect phase information will lead to blurred images due to misplaced 

pixels while incorrect amplitude information will lead to distorted images.  One solution is to 

provide state estimation for accurate phase and amplitude measurement from the motion of the 

scanner during operation using on-chip sensing. Image reconstruction can then be adapted 

accordingly. Knowing dynamic state trajectories during scanner motion can also be helpful for 

device health monitoring and fault detection. 

Previous works have combined electrostatic actuation with on-chip sensors, in some 

cases by other sensing mechanisms including piezoresistive sensing [74] and piezoelectric 

sensing [19] [75]. More commonly, capacitive sensing is used with electrostatic actuation, given 

its advantages for ease of design, fabrication, and integration alongside electrostatic driving 

electrodes.  For example, Hofmann et al. presented a high-Q electrostatic resonator device using 

dedicated capacitive sensing comb electrodes to provide phase feedback [73]. However, all of 

these designs require extra space on-chip and increase the number of electric interconnects 

needed between the instrument and control circuitry, both of which are difficult to accommodate 

in small endomicroscopy instruments (2.4 – 5 mm) [69]. Meanwhile, compact chips experience 

significant feedthrough disturbance between driving voltage inputs and sensor outputs due to 

parasitic capacitances in all of the above sensing schemes. Therefore, it is desirable to use the 

same capacitors for both actuation and sensing purpose, but this further increases feedthrough 

effects.  
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Hung et al. [76] have recently presented a bi-axial micro-scanner with electrostatic 

actuation and sensing using the same capacitor. The sensing signal was used in a phase-locked 

loop to ensure that the device would consistently be operated at resonance of its fast axis.  A 

closed-loop controller for the scanner’s slow axis was demonstrated subsequently [77]. However, 

those works did not provide continuous fast axis motion tracking, and did not integrate 

knowledge of actuator dynamics, capacitance profile with respect to position, and sensing circuit 

behavior to permit state estimation across the full range of tilting motion.  

More advanced filtering and estimation techniques to account for some of the above 

phenomena have been demonstrated in certain similar prior applications. A parallel plate 

configuration for a capacitive sensor was designed to provide on-chip sensing for out-of-plane 

tilting motion of a MEMS device, with feedthrough in the signal eliminated by taking the 

difference of sensing signals from repetitive measurements with and without bias voltages [51, 

59]. In [29] [78], a sensing scheme with  an extended Kalman filter (EKF) that used unique 

nonlinear features of electrodes to detect threshold events for improved angular position was 

demonstrated, but with feedthrough eliminated by purposely interrupting the device’s driving 

voltage during sensor use. Those methods either require that driving commands be strictly 

repeated or intermittently set to zero, and therefore are difficult be applied with closed-loop 

feedback control. 

This study aims to provide high-accuracy motion tracking from an endoscopic micro-

scanner with shared sensing and driving electrodes by introducing several new elements to state 

estimator models and design for MEMS scanners. The method is based on a dedicated amplitude 

modulate and demodulation (AMDM) circuit designed to extract meaningful sensing signal in 

the presence of feedthrough generated by the scanner’s input voltage. Extending upon existing 
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frequency separation assumptions for AMDM capacitive sensing schemes, frequency separation 

analysis is conducted in the presence of nonlinear mirror and sensor dynamics, such as large 

deflection capacitance and envelope detection effects. A process model is incorporated based on 

parametrically resonant scanner dynamics. The effectiveness of feedthrough rejection is then 

analyzed based on these nonlinear effects. An extended Kalman filter and an unscented Kalman 

filter are used to incorporate the non-linear actuation and measurement models into state 

estimation, and their performance is compared. The resulting estimation scheme provides the 

most complete solution for electrostatic micro-scanner motion tracking in endomicroscopic laser-

scanning applications yet reported. 

 Methods 5.3

5.3.1 Target accuracy of phase shift estimation 

A target for estimation accuracy of phase shift tracking has been developed and is 

described below. Since the goal of the motion estimation for a scanner is to improve image 

registration, the resolution of the timing of a pixel is determined by the sampling frequency of 

the imaging system. Let 𝑓𝑠  denote the sampling rate of image registration; the resolution of 

timing information, 𝛿𝑡 can then be expressed as: 

 𝛿𝑡 =
𝛼

𝑓𝑠
 (78) 

where 𝛼  is a integer number used to control resolution of timing as multiples of sampling 

interval. Let 𝑓𝑟𝑒𝑠 to be the mechanical resonant frequency of the scanner, then the phase shift 

error, 𝛿𝜙, can be converted to 

 𝛿𝜙 =
𝛿𝑡

1/𝑓𝑟𝑒𝑠
= 𝛼

𝑓𝑟𝑒𝑠

𝑓𝑠
 (79) 
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In this study, we chose 𝛼 to be 2 to represent the resolution of 2 sampling instants, and 𝑓𝑠 to be 

10 MHz based on the DAQ sampling capability and 𝑓𝑟𝑒𝑠 to be 15.5 kHz for the selected device. 

Therefore, the target phase shift estimation accuracy is computed to be 0.18 degrees of phase 

angle.  

5.3.2 System dynamics and process model 

The electrostatic micro-scanner studied in this study is a dual axis micro-scanner, shown 

in Fig. 5.1. The multiple groups of comb-fingers are incorporated to generate electrostatic force 

and rotate the scanner with external voltage excitation. To minimize voltage requirements and 

external connections, all stator comb fingers are connected to the same voltage source, and all 

rotor (mirror) fingers are connected to ground. As a planar structure, out-of-plane motion 

(whether translation or rotation) is not generated at all frequencies, but only near integer 

multiples of the natural frequency of free vibration, via parametric resonance.  

 

Fig. 5.1. Dual axis electrostatic micro-scanner studied in this chapter. The electrodes are shared for both driving and 

sensing purpose.  

The governing equation of the torsional force acting on the mirror structure is 

characterized as: 
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 𝑇(𝑡) =
1

2

𝑑𝐶𝑠(𝑡)

𝑑𝜃
𝑉(𝑡)2 (80) 

where 𝐶𝑠 is the total capacitance formed by the comb-fingers, 휃 is the tilting angle of the micro-

scanner and 𝑉 is the driving voltage. The equation of motion is described as:  

 𝐽휃̈ + 𝑏휃̇ + 𝑘휃 =
1

2

𝑑𝐶𝑠(𝑡)

𝑑𝜃
𝑉(𝑡)2 (81) 

where 𝐽 is the moment of inertia of rotation, 𝑏 is damping coefficient, and 𝑘  is the torsional 

spring constant of the device. Defining states 𝑥1 = 휃  and 𝑥2 = 휃̇ , defining 𝐶𝑠
′ =

𝑑𝐶𝑠

𝑑𝜃
, and 

denoting the sampling interval as 𝑇𝑠 , (79) then can be discretized with a first order Taylor 

expansion as: 

 [𝑥1,𝑘
𝑥2,𝑘
] = [

𝑥1,𝑘−1 + 𝑇𝑠𝑥2,𝑘−1

−
𝑇𝑠𝑘

2

𝐽2
𝑥1,𝑘−1 + (1 −

𝑇𝑠𝑏

𝐽
) 𝑥2,𝑘−1 +

𝑇𝑠𝐶𝑘
′

2𝐽
𝑉𝑘
2] (82) 

where the subscript 𝑘 stands for k-th sampling instance in the discretized time domain. Assuming 

the process is corrupted by additive zero mean, normally distributed process noise   , and 

𝑿 = [𝑥1,𝑘 𝑥2,𝑘]𝑇, (82) can be represented as  

 𝑿 = 𝑔(𝑿 − , 𝑉𝑘) +    (83) 

The covariance matrix of 𝑤𝑘 is denoted as  , and   is computed as 

  = 𝑄𝜃 [

1

4
𝑇𝑠
4 1

2
𝑇𝑠
3

1

2
𝑇𝑠
3 𝑇𝑠

2
] (84) 

where 𝑄𝜃 is the noise variance of angular position. 

5.3.3 Sensing principle and measurement model 

Since 𝐶𝑠 is a function of 휃, the same comb-fingers used to produce electrostatic force for 

actuation can be used as position sensors. In this study, we use an AMDM circuit to provide 

amplitude modulated voltage to both drive the electrostatic mirror at its resonant frequency and 
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to demodulate the sensing current to measure the tilting motion of the device.   Use of AMDM 

techniques to implement capacitive sensing is common, and has been applied to use of a single 

driving/sensing channel in the past.  However, several aspects of the micro-scanner application 

here present particular challenges. These include a nonlinear capacitance function, relatively 

close spacing of driving and sensing frequencies due to the fast mirror response, limited 

transmission bandwidth to the scanner at the end of a long endoscopy instrument, and need to 

effectively model the demodulation process to avoid distortion of the sensor output. 

 

Fig. 5.2. Schematic of driving and sensing circuit (1), place holder for frequency domain analysis 

 

As shown in Fig. 5.2, the circuit applied in this work consists of an amplification stage (a 

transimpedance amplifier with a feedback resistor), a high pass filter, a low pass filter and an 

envelope detector.  An analysis is conducted to study the distribution of the frequency spectrum 

of the sensing signal. In this analysis, the parasitic capacitance is modeled as an additive 

capacitor 𝐶𝑝 connected in parallel with 𝐶𝑠, and the voltage outputs after the amplification stage, 

high pass filter, low pass filter, and the envelope detector are noted as 𝑉𝑜1 , 𝑉𝑜2 , 𝑉𝑜3 , 𝑦𝑐𝑎𝑝 , 

respectively.  

+
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In order to obtain the relationship between the circuit output and the position of tilting 

motion over large angles, a model for 𝐶𝑠(휃)is necessary for further derivation. In the analysis of 

frequency components of circuit outputs, 𝐶𝑠 is assumed to be a quadratic function of 휃. 

 𝐶𝑠(𝑡) =  𝑠휃(𝑡)
2 + 𝑏𝑠 (85) 

where  𝑠 is the scale factor of the capacitance model and 𝑏𝑠  is the static capacitance of the 

capacitance model. While the model in (83) is simpler than the true capacitance function, this 

model is used based on the observation the capacitance profile of a comb-finger is symmetric 

about 휃  and thus can be modeled by even number of order of polynomials [79], and the 

polynomial is simpler to analyze with respect to frequency content compared to other type of 

nonlinear functions during derivation. 

Frequency analysis proceeds as follows: First, since the operating frequency of the 

electrostatic scanner is almost always around its resonance, the phase shifts introduced by the 

amplifiers are assumed to be constant, and such phase shifts can be calibrated during 

experimental methods. Then,  휃 can be modeled by a sinusoidal function, as  

 휃 = 휃0sin (
𝜔𝑑𝑟

2
𝑡 + 𝜙) (86) 

where 휃0 is amplitude of tilting motion, and 𝜙 is the phase of the tilting motion generated by the 

scanner’s dynamic response.  By substitution of (84) into (83), we have  

 𝐶𝑠(𝑡) =  𝐶휃0
2 sin2 (

𝜔𝑑𝑟

2
𝑡 + 𝜙) + 𝑏𝐶 (87) 

By applying trigonometric identity sin2 (
𝛼

2
) =

1

2
[1 − cos(α)], we have 

 𝐶𝑠(𝑡) =  −
𝑎𝐶

2
휃0
2 cos(𝜔𝑑𝑟𝑡 + 2𝜙) + (

𝑎𝐶

2
휃0
2 + 𝑏𝐶) (88) 

Therefore, 𝐶𝑠 is a sinusoidal function with frequency of 𝜔𝑑𝑟, and the total capacitance 𝐶𝑡(𝑡) can 

be expressed  
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 𝐶𝑡(𝑡) = −
𝑎𝑐

2
휃0
2 cos(𝜔𝑑𝑟𝑡 + 2𝜙) + (

𝑎𝑐

2
휃0
2 + 𝑏𝑐 + 𝐶𝑝) (89) 

Let  𝑡 = −
𝑎𝐶

2
휃0
2 and 𝑏𝑡 =

𝑎𝐶

2
휃0
2 + 𝑏𝐶 + 𝐶𝑝. We have  

 𝐶𝑡(𝑡) =  𝑡𝑐𝑜𝑠(𝜔𝑑𝑟𝑡 + 2𝜙) + 𝑏𝑡 (90) 

The derivative of 𝐶𝑠(𝑡) with respect to time is 

 
𝑑𝐶𝑠(𝑡)

𝑑𝑡
=
𝑎𝑡

2
휃0
2𝜔𝑑𝑟 sin(𝜔𝑑𝑟𝑡 + 2𝜙) (91) 

At the amplification stage, the sensing current generated by the all the capacitance in the 

circuit under external voltage 𝑉 can be amplified as: 

 𝑉𝑜1 = 𝑅𝑓
𝑑(𝑉(𝑡)(𝐶𝑠(𝑡)+𝐶𝑝))

𝑑𝑡
 (92) 

where 𝑅𝑓 is the feedback resistance, and 𝑉𝑜1 can be further expressed as 

 𝑉𝑜1 = 𝑉𝑅𝑓
𝑑𝐶𝑠(𝑡)

𝑑𝑡
+ 𝐶𝑠𝑅𝑓

𝑑𝑉(𝑡)

𝑑𝑡
+ 𝐶𝑝𝑅𝑓

𝑑𝑉(𝑡)

𝑑𝑡
 (93) 

By using a summing amplifier, input 𝑉 to the scanner’s comb finger electrodes is implemented 

as 

 𝑉(𝑡) = 𝑉𝑑𝑟(𝑡) + 𝑉𝑐(𝑡) (94) 

where 𝑉𝑑𝑟 is the driving voltage,  

 𝑉𝑑𝑟(𝑡) = 𝑉𝑑𝑟0sin (𝜔𝑑𝑟𝑡) (95) 

and 𝑉𝑐 is the carrier voltage,  

 𝑉𝑐(𝑡) = 𝑉𝑐0sin (𝜔𝑐𝑡) (96) 

where 𝑉𝑑𝑟0 is the amplitude of driving voltage, 𝜔𝑑𝑟 is the frequency of driving voltage, 𝑉𝑐0 is the 

amplitude of carrier voltage and 𝜔𝑐 is the carrier frequency.  

Substituting the expression for 𝑉 into (91), and applying the chain rule, we have 
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 𝑉𝑜1 =
𝑑𝐶𝑠(𝑡)

𝑑𝑡
𝑉𝑑𝑟0𝑅𝑓 sin(𝜔𝑑𝑟𝑡) +

𝑑𝐶𝑠(𝑡)

𝑑𝑡
𝑉𝑐0𝑅𝑓 sin(𝜔𝑐𝑡) + 𝜔𝑑𝑟𝐶𝑠(𝑡)𝑉𝑑𝑟0𝑅𝑓 sin(𝜔𝑑𝑟𝑡) +

𝜔𝑐𝐶𝑠(𝑡)𝑉𝑐0𝑅𝑓 sin(𝜔𝑐𝑡) + 𝜔𝑑𝑟𝐶𝑝𝑉𝑑𝑟0𝑅𝑓 sin(𝜔𝑑𝑟𝑡) + 𝜔𝑐𝐶𝑝𝑉𝑐0𝑅𝑓 sin(𝜔𝑐𝑡) (97) 

We denote each component in 𝑉𝑜1 (x) by 𝑉𝑛 subsequently: 

 𝑉𝑜1 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4 + 𝑉5 + 𝑉6 (98) 

From the trigonometry identities, it can be shown that 𝑉1, 𝑉3 and 𝑉5 are at the frequency band of 

2𝜔𝑑𝑟, and 𝑉2, 𝑉4 and 𝑉6 are at frequency bands of 𝜔𝑐 + 𝜔𝑑𝑟 and 𝜔𝑐 − 𝜔𝑑𝑟. As illustrated in Fig. 

5.3, the voltage components with frequency above 2𝜔𝑑𝑟 are selected by the high pass filter (𝑉2, 

𝑉4, 𝑉6). By selecting 𝜔𝑐 ≫ 𝜔𝑑𝑟, the magnitude of 𝑉2 can be neglected compared to 𝑉4 and 𝑉6. 

Therefore 𝑉𝑜2 can be approximated as 

 𝑉𝑜2 ≈  𝐻𝑃𝐹(𝑉4 + 𝑉6) =  𝐻𝑃𝐹𝜔𝑐𝑉𝑐0𝑅𝑓sin (𝜔𝑐𝑡)𝐶𝑡(𝑡) (99) 

where  𝐻𝑃𝐹is the gain of the high pass filter.  

 

 

Fig. 5.3. Frequency spectra illustration of sensing circuits 

 

The capacitive sensing signal 𝑦𝑐𝑎𝑝 can be recovered using an envelope detector and a low 

pass filter. The envelope detector consists of a diode, a resistor as load and a low pass filter. The 
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output current of diode can be modeled using a square-law function [80], therefore voltage 

response of the envelope detector, 𝑉𝑜3 is modeled as  

 𝑉𝑜3 =  𝑑𝑉𝑜2 + 𝑏𝑑𝑉𝑜2
2  (100) 

where  𝑑  is the scale factor of envelope detector model, and 𝑏𝑑  is the bias of the envelope 

detector model. Substituting 𝑉𝑜2 and let  𝑜3 =  𝐻𝑃𝐹 𝑑𝜔𝑐𝑉𝑐0, 𝑏𝑜3 = 𝑏𝑑 𝐻𝑃𝐹𝜔𝑐
2𝑉𝑐0

2 , we have 

 𝑉𝑜3 =  𝑜3𝑐𝑜𝑠(𝜔𝑐𝑡)𝐶𝑡(𝑡) + 𝑏𝑜3𝑐𝑜𝑠
2(𝜔𝑐𝑡)𝐶𝑡(𝑡)

2 (101) 

Expanding the quadratic term and applying trigonometry identities in (99), we have  

 𝑉𝑜3 =  𝑜3 𝑡𝑐𝑜𝑠(𝜔𝑐𝑡) cos(𝜔𝑑𝑟𝑡 + 2𝜙) +  𝑡𝑏𝑡𝑐𝑜𝑠(𝜔𝑐𝑡) +
1

4
𝑏𝑜3 𝑡

2 cos(2𝜔𝑑𝑟𝑡 + 4𝜙) +

𝑏𝑜3 𝑡𝑏𝑡𝑐𝑜𝑠(𝜔𝑑𝑟𝑡 + 2𝜙) +
1

4
𝑏𝑜3 𝑡

2 cos(2𝜔𝑐𝑡) cos(2𝜔𝑑𝑟𝑡 + 4𝜙) +

𝑏𝑜3 𝑡𝑏𝑡𝑐𝑜𝑠(2𝜔𝑐𝑡) cos(𝜔𝑑𝑟𝑡 + 2𝜙) +
1

2
𝑏𝑜3 (

1

2
 𝑡
2 + 𝑏𝑡

2) cos(2𝜔𝑐𝑡) +
1

2
𝑏𝑜3 (

1

2
 𝑡
2 + 𝑏𝑡

2) (102) 

The corresponding frequency bands for each component of 𝑉𝑜3 are illustrated in Fig. 5.3, and a 

low pass filter with cut-off frequency slightly above 𝜔𝑑𝑟 is applied to 𝑉𝑜3.Therefore for output 

response of low pass filter, 𝑦𝑐𝑎𝑝 can be expressed as 

 𝑦𝑐𝑎𝑝 =  𝐿𝑃𝐻𝑏𝑜3 𝑡𝑏𝑡𝑐𝑜𝑠(𝜔𝑑𝑟𝑡 + 2𝜙) +
1

2
 𝐿𝑃𝐹𝑏𝑜3 (

1

2
 𝑡
2 + 𝑏𝑡

2) (103) 

where  𝐿𝑃𝐹 is the gain of the low pass filter. By eliminating the term of 𝑐𝑜𝑠(𝜔𝑑𝑟𝑡 + 2𝜙) using 

(86), and lumping all coefficients together, we have 

 𝑦𝑐𝑎𝑝(𝑡) =  𝑐𝑖𝑟𝐶𝑠(휃(𝑡)) + 𝑏𝑐𝑖𝑟 (104) 

where  𝑐𝑖𝑟 is gain of sensing circuit, and 𝑏𝑐𝑖𝑟 is bias of sensing circuit. The above analysis shows 

that the 𝑦𝑐𝑎𝑝 is a linear function of 𝐶𝑠, and the coefficients  𝑐𝑖𝑟, 𝑏𝑐𝑖𝑟 of can be identified using 

experimental methods once the circuit components is finalized. By modelling the nonlinear 

function 𝐶𝑠  of 휃  and identifying the relevant parameters, one can establish the overall 

measurement model 𝑦𝑐𝑎𝑝(휃). 



 90 

During estimator implementation, the capacitance model 𝐶𝑠(휃)  was modeled with a 

Gaussian function instead of a quadratic function used in the sensing circuit modeling [64]: 

 𝐶𝑠(휃) = 𝐶0𝑒
−(

𝜃

𝜃0
)
2

+ 𝐶𝑏 (105) 

where 𝐶0 is the nominal capacitance, 𝐶𝑏 is the capacitance bias and 휃0  is the nominal angular 

displacement. The reason for choosing the Gaussian function for implementation is that it gives a 

bounded asymptotic value for 𝐶𝑠  when 휃  approaches its maximum or minimum value, and 

therefore can effectively prevent 𝐶𝑠
′ to overflow in the recursive updating in EKF or UKF.  A 

drawback is that frequency component analysis above does not exactly represent the real system, 

though the Gaussian function can also be reduced to a quadratic in Taylor expansion by 

excluding higher-order terms. 

As a final sensor model for estimator design, replacing 𝐶𝑠(휃) as defined in (105) into 

(104) and assuming that an additive zero mean normally distributed noise, 𝑣𝑘  corrupts the 

measurment, we have a nonlinear discretized measurement model  

 𝑦𝑐𝑎𝑝,𝑘 =  𝑐𝑖𝑟 [𝐶0𝑒
−(

𝑥1,𝑘
𝜃0
)
2

+ 𝐶𝑏] + 𝑏𝑐𝑖𝑟 + 𝑣𝑘 (106) 

or  

 𝑦𝑐𝑎𝑝,𝑘 = ℎ(𝑥1,𝑘) + 𝑣𝑘 (107) 

The parameters of  𝑐𝑖𝑟, 𝑏𝑐𝑖𝑟, 휃0, 𝐶0 and 𝐶𝑏 remain to be identified in experimentally and/or from 

component specifications.. 

5.3.4 EKF and UKF description 

In order to estimate tilting motion, an EKF and an UKF were implemented. Both filters 

assume the state distribution can be represented by Gaussian Random Variables, and the process 

and / or the measurement model are non-linear. The difference between the two lies in the 
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methods used to estimate the mean and covariance of the states after propagation by the non-

linear models. The details of the algorithms are described below, and their performance are 

evaluated and presented in Chapter 5.5. The superscript – stands for a priori, and subscript 𝑘 or 

𝑘 − 1 stands for k-th sampling instance. 

Algorithm 1: EKF 

1. Project a priori state estimates 

𝑿 𝑘
− = 𝑔(𝑿 𝑘−1, 𝑉𝑘),       

− = 𝑮   − 𝑮 
𝑻 +    

2. Propagating measurement model 

�̂�𝑐𝑎𝑝,𝑘 = ℎ(�̂�1,𝑘
− ) 

3. Project a posteriori state estimates 

𝑲𝑘 =   
−  

𝑻(    
−  

𝑻 + 𝑅)
−1

 

𝑿  = 𝑿  
− +𝑲 (𝑦𝑐𝑎𝑝,𝑘 − �̂�𝑐𝑎𝑝,𝑘),       =   

− −𝑲   
𝑻  

− 

 

where 𝑿 𝑘
− is the a priori states estimation,   

− is the a priori error covariance matrix, 𝐺𝑘 is the 

Jacobian matrix of process model,   is the covariance matrix of process noise, �̂�𝑐𝑎𝑝,𝑘  is the 

estimated measurement, 𝐻𝑘  is the Jacobian matrix of measurement model, 𝑲  is the Kalman 

gain, 𝑅 is covariance matrix of measurement noise, 𝑿   is the a posteriori states estimation and 

𝑃𝑘 is the a posteriori error covariance matrix. 

Compared to performing first order Taylor expansion to linearize the non-linear models 

(aka Jacobian matrix) in the EKF algorithm, the UKF selects a minimal number of sigma points 

to estimate the a priori and a posteriori mean and covariance of states, and therefore have more 

accurate estimation [81]. The UKF algorithm is described below. 
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Algorithm 2: UKF 

1. Set sigma points 

𝑿 − 
𝒔 𝒈

= {(𝑿 𝑘−1
𝑖 , 𝑖)|𝑖 = 0…2𝑛𝑎𝑢𝑔)} 

2. Project a priori state estimates 

𝑿  
 ,− = 𝑔(𝑿  − 

 ),      𝑿  
− = ∑  𝑖2𝑛𝑎𝑢𝑔

𝑖=0
𝑿  
 ,−

 

  , 
− = ∑  𝑖[𝑿  

 ,− − 𝑿  
−][𝑿  

 ,− − 𝑿  
−]
𝑇

2𝑛𝑎𝑢𝑔

𝑖=0

+   

3. Propagating measurement model 

�̂�𝑐𝑎𝑝,𝑘
𝑖 = ℎ(�̂�1,𝑘

𝑖,−),        �̂�𝑐𝑎𝑝,𝑘 = ∑  𝑖�̂�𝑘
𝑖2𝑛𝑎𝑢𝑔

𝑖=0
 

𝑃𝑦,𝑘 = ∑  𝑖[�̂�𝑐𝑎𝑝,𝑘
𝑖 − �̂�𝑐𝑎𝑝,𝑘]

2𝑛𝑎𝑢𝑔

𝑖=0

[�̂�𝑐𝑎𝑝,𝑘
𝑖 − �̂�𝑐𝑎𝑝,𝑘]

𝑇
+ 𝑅 

4. Project a posteriori state estimates 

   , = ∑  𝑖[𝑿  
 ,− − 𝑿  

−]

2𝑛𝑎𝑢𝑔

𝑖=0

[�̂�𝑐𝑎𝑝,𝑘
𝑖 − �̂�𝑐𝑎𝑝,𝑘]

𝑇
+ 𝑅 

𝐾𝑘 = 𝑃𝑥𝑦,𝑘𝑃𝑦,𝑘
−1 

𝑿  
 = 𝑿  

 ,− + 𝐾𝑘(𝑦𝑐𝑎𝑝,𝑘
𝑖 − �̂�𝑐𝑎𝑝,𝑘

𝑖 ),     , =   , 
− + 𝐾𝑘𝑃𝑦,𝑘𝐾𝑘

𝑇 

 

where 𝑿 − 
𝒔 𝒈

 is a set of sigma vectors and their associated weights, 𝑿 𝑘−1
𝑖  is a sigma vector and 

 𝑖  is its associated weight. 𝑿  
 ,−

 is sigma vector transformed by the process model, 𝑿  
− is the 

mean of a priori states estimation,   , 
−  is the a priori error covariance matrix,   is the 

covariance matrix of process noise, �̂�𝑐𝑎𝑝,𝑘
𝑖  is the estimated measurement with ith sigma vector, 

�̂�𝑐𝑎𝑝,𝑘 is the estimated measurement, 𝑃𝑦,𝑘 is the covariance of measurement estimation,    ,  is 

the cross covariance between estimated states and measurement, 𝑅 is the covariance matrix of 

measurement noise, 𝑿  
  is the mean of a posteriori states estimates and   ,  is the a posteriori 

error covariance matrix.  
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 Experiments 5.4

This section describes the experimental set-up and the procedure of experiments for 

model identification and estimation validation and evaluation. Necessary post-analysis is also 

described. 

5.4.1 Description of set-up 

The experimental set up is depicted in Fig. 5.4. The two command voltages were added 

using a summing amplifier and then amplified by a TEGAM 2340 amplifier with 20 times 

amplification. The amplified amplitude modulated driving voltage was fed into a dual axis 

electrostatic micro-scanner (Fig. 5.1).  Experiments were conducted during both continuous 

operation (for estimator evaluation) and ring-down (for parameter identification). 

 

Fig. 5.4. Schematic of experimental set-up. A optical sensing system is used to provide ground truth measurement of the 

tilting motion. 

 

The tilting motion of the micro-scanner was transduced into the sensing signal 𝑦𝑐𝑎𝑝 by 

the sensing circuit described in section 5.3-B (Fig. 5.2) and recorded by the DAQ system.  

As shown in Fig. 5.5, an optical sensing stage with an ON-TRAK PSM 2-10 position 

sensing detector (PSD) was also used to measure the tilting angle as shown in Fig. 5.5. A laser 

beam was directed to a BS004 Thorlabs beam splitter, and half of the laser is reflected and 
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directed to the mirror surface of the MEMS scanner at a 0º incidence angle. With the MEMS 

scanner driven by external voltage stimulus, the mirror surface rotates around its axis and reflects 

the incoming beam to the same beam splitter, and half of the reflected beam will be received by 

the PSD and converted into a voltage signal 𝑦𝑃𝑆𝐷. 𝑦𝑃𝑆𝐷 was converted into angular displacement 

and then treated as ground truth, which is used to identify parameters of actuator and sensor 

model and to evaluate the performance of EKF and UKF. 

Table 5.1 Experimental settings for electrostatic micro-scanner 

Symbol Description Value 

𝑉𝑑𝑟0 Amplitude of driving voltage 30 V 

𝑉𝑐0 Amplitude of carrier voltage 6 V 

𝑓𝑑𝑟 Frequency of driving voltage 31.10 to 31.15 kHz 

𝑓𝑐 Frequency of carrier voltage 500 kHz 

𝑅𝑓 Feedback resistors 17.86 kohm 

𝑉𝑏𝑖𝑎𝑠 Bias voltage  23.76 V 

 

 

During ring-down tests, the capacitive sensing signal, PSD readout are recorded using a 

NI PCIe 6251 DAQ with 16 bit resolution and 1 MHz sampling rate. A customized LabVIEW 

program was developed to send command voltage and log data. During steady state frequency 

sweeps, a dual channel function generator was used to provide command carrier voltage and 

provide voltage to the driving circuit, while an Agilent InfinitiVision DSO-X 2024A 

oscilloscope was used to record the driving voltage, capacitive sensing signal, PSD readout. 
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Fig. 5.5. Schematic of optical sensing device. A beam splitter is used to deflect the laser beams from the source and from 

the MEMS scanner in order to reduce the distortion generated. 

5.4.2 Experimental procedures 

Two types of experiments were performed in order to identify the actuator and sensor 

models and to evaluate estimators’ performance.  

The first type of experiments is to identify the actuator model and capacitance profile 

using ringdown tests [75]. The driving voltage was swept in frequency from high to low at 31.10 

kHz to reach the scanner’s maximum tilting amplitude. After the tilting motion stabilized, the 

driving voltage was changed from AC to DC to allow the scanner to free oscillate with a constant 

bias voltage. The sensing voltage created by the ringdown motion under constant bias was then 

recorded. 

The second type of experiments is steady state frequency sweeps. During these 

experiments, the scanner was excited with amplitude modulated driving voltages, and the sensing 

signal, PSD measurement and driving voltages were recorded to train and evaluate the 

estimators. The driving voltage, 𝑉𝑑𝑟 was set to be 0 to 60 V amplitude and swept in frequency 

from 31.10 kHz to 31.15 kHz. The carrier voltage, 𝑉𝑐  was set to be 500 kHz in and 12 V 

amplitude. The experimental settings are summarized in Table 5.1. 
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5.4.3 Post-process 

The data were post-processed to identify the parameters in process model, sensor model, 

and estimators. The data set obtained in the steady state frequency sweeps was also split into a 

training set and testing set to allow training and test of parameter values with separate 

measurements.  

 Results and discussion 5.5

This section presents results of motion tracking tests. The identified parameters for the 

process model and sensor model are presented. The EKF and UKF estimator are validated 

against ground truth measurement, and their performances are compared and discussed. 

5.5.1 Actuator model identification 

The actuator model is identified by first calculating the moment of inertia, 𝐽  using the 

dimensions of design parameter of micro-scanner, and then fitting the decay curve of the 

experimentally measured ringdown trajectory using a linear viscous damping and spring constant 

[75]. The identified parameters are shown in  

Table 5.2.  

 

Fig. 5.6. Measurement of ringdown test and fitted decay curve for actuator model parameter identification 
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The capacitance model was identified using experimental by mapping the trajectory 𝐶𝑠(𝑡) 

versus 휃(𝑡)measured by PSD in the ringdown tests [51]. First, 𝐶𝑠(𝑡) is obtained by integrating 

𝑦𝑐𝑎𝑝 with respect to time.  

 𝐶𝑠(𝑡) =  ∫ −𝑅𝑠𝑉𝑏𝑖𝑎𝑠𝑦𝑐𝑎𝑝𝑑𝑡
𝑡𝑓
𝑡0

 (108) 

where 𝑉𝑏𝑖𝑎𝑠 is the DC bias voltage applied to the capacitance during the ringdown tests. Then 휃0, 

𝐶0  and 𝐶𝑏  are identified by fitting the Gaussian model described in (103). The parameters 

associated with the circuit  𝑐𝑖𝑟  and 𝑏𝑐𝑖𝑟  are identified using steady state measurements. The 

parameters are summarized in  

Table 5.2, and the identified capacitance profile is shown in Fig. 5.7. 

Table 5.2 Identified parameters of actuator model, sensor model, EKF and UKF 

Symbol Description Value 

𝐽 Moment of inertia 1.15 × 10
-14

 kg m
2
 

𝑘 Spring constant 1.10 × 10
-4

 N m 

𝑏𝑣 Viscous damping coefficient 5.95 × 10
-12

 N m/s 

𝑄𝑎 Covariance of process noise 10
11

 m/s
2
 

휃0 Nominal angular displacement 0.2 rad 

𝐶0 Nominal capacitance 5.71 pF 

𝐶𝑏 Parasitic capacitance 9.79 pF 

 𝑐𝑖𝑟 Circuit scale factor -0.3574 V/pF 

𝑏𝑐𝑖𝑟 Circuit bias 6.3945 V 

𝑅 Covariance of measurement noise 1.92 × 10
-4

 V
2
 

 

5.5.2 Sensor model identification 

During testing, frequency content was observed using spectral analysis on the 

oscilloscope, and locations of significant amplitude at relevant points in the filtering process 
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were observed to qualitatively agree with the frequency content predicted by the analysis, though 

full quantitative analysis of the intermediate signals was not performed. The sensing capacitance 

is identified by building correspondence between the identified capacitance and ground truth 

angle measurement [78]. A capacitance model is fit to the experimentally identified capacitance 

profile to extend the mapping between the angle and capacitance, the identified model is 

described by (103) and shown in Fig. 5.7.  

 

Fig. 5.7. Experimentally identified capacitance profile and modeled capacitance profile. 

 

5.5.3 Estimators performance comparison 

Fig. 5.8 shows the driving voltage, measured and estimated tilting angle and sensor 

output. The discrepancy between the estimated sensing shows that EKF introduces error during 

the linearization of process and observation model. 
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Fig. 5.8. Experimentally measured driving voltage (top), tilting angle measured by optical sensing (EXP) and estimated by  

EKF, UKF (mid), measured and estimated sensing output by optical sensing, EKF and UKF respectively (bottom). 

The performance of the estimators is evaluated with two metrics: estimation accuracy of 

tilting angle and phase shift. The phase shift of the micro-scanner is defined as the difference of 

the timing between the peak value of an angular displacement and the prior peak value of the 

driving voltage. The estimation accuracy of phase shift is computed by the root-mean-square 

error (RMSE) between the estimated phase shift and the phase shift computed using ground truth 

measurement: 

 𝜙𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝜙𝑒𝑠𝑡,𝑖 − 𝜙 𝑒𝑎𝑠,𝑖)
𝑁
𝑖=0  (109) 

where 𝜙𝑅𝑀𝑆𝐸  is RMSE of phase shift estimation, 𝜙𝑒𝑠𝑡,𝑖  is the phase shift for ith period of 

estimated tilting motion, 𝜙 𝑒𝑎𝑠,𝑖 is the phase shift for ith period of ground truth tilting motion 

and 𝑁 is the total number of period of tilting motion. Similarly, the RMSE of tilting angle is 

defined as: 
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 휃𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (휃𝑒𝑠𝑡,𝑖 − 휃 𝑒𝑎𝑠,𝑖)
𝑁
𝑖=0  (110) 

where 휃𝑅𝑀𝑆𝐸  is RMSE of tilting angle estimation, 휃𝑒𝑠𝑡,𝑖  is the estimated tilting angle at ith 

sampling instance, 𝜙 𝑒𝑎𝑠,𝑖 is the ground truth tilting angle at the i-th sampling instanc and 𝑁 is 

the total number of sampling instances. 
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Fig. 5.9. Measured and Estimated tilting angles and phase shift, and RMSE of tilting angle and phase shift. 

 

Fig. 5.9 shows the peak to peak amplitude and phase shift by measurement and estimation, and 

corresponding RMSEs. From the comparison, the UKF gives better estimation accuracy than the 

EKF. The RMSE in all the testing data set is summarized in Table 5.3. 

Table 5.3 RMSE of estimated phase shift and amplitude by implemented estimators 

Estimator RMSE amplitude (deg) RMSE phase shift (deg) 

EKF 5.04 1.82 

UKF 0.63 0.39 

 

 Chapter summary 5.6

We present a method to estimate tilting motion of electrostatic micro-scanner used for 

scanning purpose in an endoscopy. The estimated amplitude and phase shift can be helpful to 

reduce the blur and distortion of the image reconstructed. The challenge of the present 
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application is to fetch meaningful sensing signal related to the tilting motion of the scanner 

without adding structures dedicated for sensing due to the restriction imposed on the size of the 

device. Therefore we propose a method to implement high-accuracy state estimation using same 

comb-fingers for both driving and sensing purpose.  

The method includes an AMDM circuit design to separate feedthrough generated by the 

high driving voltage.  Novelties of the proposed sensor and estimator implementation include a 

process model based on non-linear parametric dynamics of micro-scanner and a non-linear 

sensor model including a Gaussian based capacitance model and a nonlinear circuit model. 

Model parameters are identified with experimental measurements. Both EKF and UKF 

estimators are used to incorporate the models into phase angle and tilt angle measurement, and 

estimation performance are examined and compared.  

The results show that the UKF achieved 0.39 degree RMSE in phase estimation and 0.63 

degree RMSE in amplitude estimation, while the EKF achieved 1.82 degree RMSE in phase 

estimation and 5.04 degree RMSE in amplitude estimation. The higher estimation accuracy of 

the UKF over EKF is likely due to the UKF being more accurate in estimating mean and 

covariance of states propagated by non-linear models than the EKF. 
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  Chapter 6

Concluding Remarks 

 

 Summary 6.1

The main objective of this dissertation has been to present a framework for performing 

high accuracy motion estimation for a selection of MEMS devices with capacitive sensors and 

integrated actuation capability. In Chapter 2, conventional electrode configurations for position 

sensing with commonly used sensing circuitries and the standard extended Kalman filter (EKF) 

for nonlinear process estimation were introduced. The dissertation then presented three 

applications and formulations of the motion estimation problems for their specific actuation 

schemes, nonlinear capacitive sensing configurations, and associated signal processing 

techniques, to achieve high-accuracy motion estimation in each application.  

In Chapter 3, an EKF motion estimator for a MEMS micro-stage with 6-DOF 

piezoelectric actuation and a rotational parallel-plate capacitive sensor design was introduced. 

The estimated motion is used as reference motion for in-situ calibration of an on-stage MEMS 

inertial measurement unit (IMU). In order to provide highly accurate motion estimation, the 

capacitive sensors are designed to reduce off-axis motion sensitivity, and repetitive 

measurements with different bias voltage are made to reduce feedthrough. A nonlinear sensor 

model is derived to map the rotational motion into capacitance and is experimentally identified. 

Experiments show that the calibrated scale factor accuracy of a test MEMS gyroscope improves 

two orders of magnitude compared to operation without the micro-stage calibration. 
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In Chapter 4, a concept for threshold position sensing based on non-monotonic 

capacitance profiles was examined, analyzed and experimentally validated with a dual axis 

electrostatic micro-scanner. The threshold position sensing provides sensitive and highly 

accurate indication of certain position information from the electrodes, and it is largely 

insensitive to environmental perturbations such as temperature. In order to extract the threshold 

signal from noises and bias, a derivative of Gaussian (DOG) filter is designed to detect the rapid 

change of signal due to threshold position crossings. An EKF based motion estimator with 

augmented sensor model for threshold detection is presented and implemented. Experimental 

results show that use of threshold sensing on average improves EKF estimation accuracy by 

15.1% across all tested SNR conditions.   

In Chapter 5, EKF and unscented Kalman filter (UKF) motion estimation schemes were 

presented for an electrostatic micro-scanner used for scanning purposes in endoscopic 

microscopy. The estimated amplitude and phase shift can be helpful to reduce the blur and 

distortion of the image reconstructed. Due to stringent space limitations, the sensing signal has to 

be obtained with the same comb-fingers used for both driving and sensing. The implemented 

method includes an amplitude modulation-demodulation (AMDM) circuit design to separate 

feedthrough generated by the high driving voltage.  A sensor model incorporating a Gaussian 

capacitance profile and circuit principle frequency analysis are presented. Model parameters are 

identified with experimental measurements. Both EKF and UKF estimators are used to 

incorporate the models into phase angle and tilt angle measurement, and estimation performance 

is examined and compared.  
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The pros and cons of the methods associated with capacitive sensors that have been 

discussed in this dissertation are summarized in Table 6.1.  

Table 6.1 Summary of pros and cons for discussed methods associated with capacitive sensors 

Methods Pros Cons 

Capacitive sensor for 

analog measurement 
 Plenty of existing designs 

 Prone to temperature 

change 

Capacitive sensor for 

threshold measurement 

 High accuracy 

measurement of threshold 

location 

 Robust to temperature 

change.  

 Requires special structure  

 Need DC circuit and prone 

to feedthrough 

AMDM circuit 
 Separate feedthrough in 

frequency domain 

 Complicated circuit design 

 More delays and undesired 

dynamics 

DC circuit 

 Easier to design and 

implement 

 Easier to derive sensor model  

 Less delay and undesired 

dynamics  

 Does not separate feedthrough 

in frequency domain 

EKF 

 Easier to implement 

 Lower computational 

complexity 

 Plenty of examples in literature  

 Low accuracy  

(~1
st
 order Taylor) 

UKF 
 Higher accuracy  

(~3
rd

 order Taylor)  

 Higher computational 

complexity 

 Selection of sigma points 

requires a lot of tuning 

 

It is worth noting that even though the estimation schemes of EKF and UKF in this study are 

performed in off-line computation, the EKF still shows advantages over UKF in terms of 

computational complexity. The main reason for fast computation is that the EKF does not 

involve a sigma point sampling process therefore has fewer tates to update in each recursive 

steps.  
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 Research contributions 6.2

The contributions of the dissertation include: 

1. Design of a rotational parallel-plate capacitive sensor configurations with derivation and 

identification of corresponding nonlinear sensor models to use nonlinear features to improve 

system performance. 

2. Development of signal processing technique to reliably and efficiently detect threshold 

position signals formed by the unique capacitive sensor configurations, and integration of these 

detection techniques into estimation schemes and experimental validation of effectiveness in 

terms of estimation accuracy improvement. 

3. Development of a nonlinear sensor model for electrostatic micro-scanners using shared 

electrodes for sensing and driving. The sensor model is important to analyze the principle 

frequency bands of sensing single and serve as a design guideline for band pass filter selection 

for the separation of feedthrough. It also provides a framework for designing and analyzing the 

sensing circuit to retrieve sensing signals during multi-DOF actuation using shared electrodes.  

4. Description of a framework for integrating the proposed nonlinear capacitive sensor models 

and dynamic models of actuators for the MEMS devices into nonlinear filters such as the EKF 

and UKF. 

 Recommendations for future works 6.3

6.3.1 Non-orthogonality calibration 

The in-situ MEMS IMU calibration method discussed in Chapter 3 has limitations of lack 

of rate table testing and possible presence of misalignment errors. Future work would require 

compact circuit integration for full rate table calibration and validation, especially over a larger 

temperature range in an environmentally controlled setting. Meanwhile, the current method does 
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not separate the error of 𝑆𝐹𝐼𝑀𝑈 from any errors of non-orthogonality that may be introduced by 

misalignment of triads of the gyroscope within the IMU [45], misalignment between the IMU 

and the micro-stage, and any mismatch between the center of rotation and the center of the IMU. 

Potential future works to improve the calibration method include investigating how to make use 

of multi-axis excitation to improve calibration performance and how to calibrate non-orthogonal 

error terms caused by possible misalignment between the micro-stage and MEMS IMU and the 

mismatch between the center of rotation and the center of the MEMS IMU. To identify those 

deterministic error terms to add to the current method will be a beneficial supplement to the 

presented calibration method.  

6.3.2 Threshold sensing without complete power cut-off 

The experimental validation of threshold position sensing shows it is effectiveness in 

improving estimation accuracy in the absence of inference from any feedthrough signal. Future 

studies in this topic are suggested to focus on investigating methods of using threshold sensing 

based motion estimation without complete power cut-off. One potential path is to have periodic 

and brief AC power cut-off periods to avoid feedthrough and switch to a DC bias voltage supply 

for threshold sensing based estimation during these periods.  Effects of transient dynamic effects 

during these brief cut-off periods would have to be evaluated. 

6.3.3 Multi-axis motion estimation with shared electrodes 

In this dissertation, single axis motion estimation using shared electrodes for driving and 

sensing is shown. For micro-scanners used for endomicroscope applications, multi-degree-of-

freedom actuation is required to achieve designated scanning patterns. Therefore, a higher order 

motion estimator using shared electrodes can be more helpful to improve imaging quality. In 

order to achieve that goal, a more sophisticated sensing circuit is required to incorporate 
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bandpass filtering for motion signals carried at two or more resonant frequencies, and an 

expanded analysis and modeling effort for the sensor model including the circuit will be very 

helpful in terms of understanding the frequency bands of the signal and providing design 

guidelines for bandpass filter selections. An accurate multi-DOF process modeling effort would 

also be necessary in nonlinear filter implementation to compensate for potential sensor signal 

degradation due to multiple motion signals mixing. 

6.3.4 Optimization for on-line estimation 

Future works regarding optimization of the estimation scheme is also recommended to 

implement online estimation schemes for near real-time feedback control, image registration and 

in-situ sensor calibration purposes. Potential paths include reducing sampling rate while 

maintaining acceptable estimation accuracy, only performing sensor measurement updates in an 

EKF / UKF when needed and optimizing Jacobian matrix computation in the EKF, etc. 
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Appendix  

 

Table A.1 lists the upper and lower limits of the integration to evaluate each sensing 

capacitance shown in Fig. A.1 with dual axis capacitive sensor model. 

Table A.1. Upper and lower limits of integration for each sensing capacitor 

 𝑤1 𝑤2 𝑤3 𝑤4 

1A − 0.5  − 0.5 + 𝑆𝐴 − 0.5 𝑆𝐴 0.5 𝑆𝐴 

1B 0.5 − 𝑆𝐴 − 𝐷𝑊 − 𝑆  0.5 − 𝑆𝐴 − 𝐷𝑊 − 0.5 𝑆𝐴 0.5 𝑆𝐴 

2A 0.5 − 𝑆𝐴 0.5 − 𝑆𝐴 − 𝑆  − 0.5 𝑆𝐴 0.5 𝑆𝐴 

2B − 0.5 + 𝑆𝐴 + 𝐷𝑊 − 0.5 + 𝑆𝐴 + 𝐷𝑊 + 𝑆  − 0.5 𝑆𝐴 0.5 𝑆𝐴 

 

Fig. A.1 illustrates the geometric relation of the rotors and stators with more detailed 

dimensional variables. 𝐷𝑊 is the distance between the inner and outer stator, and   is the total 

distance across the rotors.  

 

Fig. A.1. Design of capacitive sensor for 𝑿 and 𝒀 rotational motion (top view) with key dimensions labels (left); CAD 

drawing (top view) of all electrodes layout for sensing 𝑿 and 𝒀 rotational and translation motions (right) 

  

 𝑆𝐴  𝑆 

Rotor

Stator

𝑌

𝑋
Z  

To measure 

𝑋 axis rotation 
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𝑌 axis rotation 
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  𝑅
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Table A.2 tabulates key dimensions of capacitive sensors presented in Chapter 3 and Fig. 

A.1. With these dimensions, the capacitance model described by Eq.(41) and Eq.(42) can be 

evaluated. 

Table A.2 Dimension of capacitive sensors with rotational parallel-plate configuration 

Symbol Design Parameter Value (𝝁 ) 

 𝑆𝐴 Width of large stator electrode 400 

 𝑆  Width of small stator electrode 320 

 𝑅 Width of each rotor electrode 520 

  Width of sensing stage 2780 

𝐷𝑊 Distance between stators 195 
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