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ABSTRACT

Cyber-Physical Systems (CPS) seamlessly integrate computational devices, communication

networks, and physical processes. The performance and functionality of many critical infrastruc-

tures such as power, traffic, and health-care networks and smart cities rely on advances in CPS.

However, higher connectivity increases the vulnerability of CPS because it exposes them to threats

from both the cyber domain and the physical domain. An attack or a fault within the cyber or phys-

ical domain can subsequently affect the cyber domain, the physical domain, or both, resulting in

anomalies. An attack or a fault on CPS can have serious or even lethal consequences. Traditional

anomaly diagnosis techniques mainly focus on cyber-to-cyber or physical-to-physical interactions.

However, in practice they can often be subverted in the face of cross-domain attacks or faults. In

summary, the safety and reliability of CPS become more and more crucial every day and existing

techniques to diagnose or mitigate CPS attacks and faults are not sufficient to eliminate vulnera-

bility.

The motivation of this dissertation is to enhance anomaly diagnosis and mitigation for CPS,

covering physical-to-physical and cyber-to-physical attacks or faults. With the advantage of deal-

ing with system uncertainties and providing system state estimation, observer-based anomaly diag-

nosis is of great interest. The first task is to design a multiple observers framework to diagnose sen-

sor anomalies for continuous systems. Since CPS contain both continuous and discrete variables,

CPS are modeled as hybrid systems. Utilizing the relationship between the continuous and discrete

variables, a conflict-driven hybrid observer-based anomaly detection method is proposed, which

checks for conflicts between the continuous and discrete variables to detect anomalies. Lastly, the

observer design for hybrid systems is improved to enable observer-based anomaly diagnosis for a

wider class of hybrid systems.
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The novel observer-based anomaly diagnosis and mitigation approaches introduced in this dis-

sertation can not only diagnose anomalies caused by traditional faults, but also anomalies caused

by sophisticated attacks. This research work can benefit the overall security of critical infrastruc-

tures, preventing disastrous consequences and reducing economic loss. The effectiveness of the

proposed approaches is demonstrated mathematically and illustrated through applications to var-

ious simulated systems, including a suspension system, the Positive Train Control system and a

microgrid system.
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CHAPTER I

Introduction

Through new measurement science, advanced Internet of Things (IoT) technologies, increas-

ing computational power, and communication network speed, the cyber world and the physical

world are integrated together in a scalable way to form new type of systems, Cyber-Physical

Systems (CPS). CPS combine physical processes, computational resources, and communication

capabilities in a unified design effort [12]. CPS are ubiquitous in critical infrastructures, such as

transportation systems, power systems, and industrial control processes [12]. CPS security re-

search faces unique challenges due to the complex ways cyber components interact with physical

systems. To improve the security of CPS, the contribution of this dissertation is to extend the abil-

ity of anomaly diagnosis and mitigation to address more types of anomalies, which are caused by

not only faults but also attacks.

I.1 Security of Cyber-Physical Systems

Faults or attacks on CPS can cause damage to public safety as well as economic losses. With

the integration of the cyber and physical components, the security of CPS requires a three compo-

nent perspective: cyber, physical and cyber-physical interaction. Traditional security techniques

mainly focus on either cyber or physical components. Security of cyber components is usually

associated with mechanisms such as cryptography, intrusion detection, and many other solutions

commonly used in IT systems. Security of physical components is usually associated with model-

based or non-model based fault diagnosis and fault tolerant control traditionally used in industrial
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control systems. Although the traditional cyber and physical security mechanisms can improve the

security of CPS, in practice, they can be subverted by cross-domain attacks or faults because the

cyber-physical interaction is not taken into consideration [12, 40]. The failure to detect attacks or

faults is especially undesirable as these attacks or faults can result in safety concerns. Much more

needs to be done to secure CPS.

An example physical-to-cyber attack is side channel attack [27]. If an audio recorder is

placed closed to a 3D printer, the attacker was able to regenerate the G code of the 3D printer by

analyzing the recorded sound. Some attacks from the cyber domain can impact the physical assets,

especially the critical infrastructure. In 2000, some hackers attacked Maroochy Shire Council’s

sewage control systems in Queensland, Australia, and caused flooding with millions of liters of

sewage [81]. In 2010, Stuxnet was found to sabotage Iran’s nuclear facilities, causing the nuclear

centrifuges to spin out of control [45]. In 2015, a YouTube video demonstrated how cyber-attacks

allow hackers to remotely gain control of a vehicle through the 3G network while a driver is driving

it on a highway [60]. These real-life examples illustrate the importance and urgency of developing

new approaches to expand the capabilities of traditional techniques regarding cross-domain attacks

or faults.

Three security goals are required for a CPS: integrity, availability, and confidentiality [13].

Integrity refers to the trustworthiness of data or resources, which include the data or resources sent

or received by the sensors, actuators or controllers. Availability refers to the ability of a system

to be accessible and usable upon demand. Confidentiality refers to the ability to keep information

secret from unauthorized users. Both faults and attacks can cause anomalous behaviors in systems,

impacting the ability to achieve at least one of these three goals.

We give the formal definitions of anomaly, fault and attack [57].

Definition 1. An anomaly is an occurrence that is different from what is standard, normal, or

expected.

Definition 2. A fault is an anomaly that is related to an unwanted situation and may be associated
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with failure, malfunction, or quality degradation.

Definition 3. An attack is a purposeful action by an element external to the system that breaches

the security goals of the system.

In this dissertation, we are concerned with the anomalies caused by both faults and attacks.

Recognizing that the national and economic security depends on the reliable functioning of

critical infrastructure, National Institute of Standards and Technology (NIST) has developed a vol-

untary framework for reducing cyber risks to critical infrastructure, which consists of standards,

guidelines, and best practices [21]. The framework core includes five high-level functions: identify,

protect, detect, respond, and recover. These five functions are not only applicable to cybersecurity

risk management but also to risk management at large. The work of this dissertation falls into the

detect and respond functions. We expand the capability of traditional anomaly diagnosis and mit-

igation by considering the cyber-physical interaction components. Diagnosis consists of detection

and isolation1, which are defined as [87]

Definition 4. Detection makes a binary decision on whether an anomaly has occurred or not.

Definition 5. Isolation determines the location, and assesses the extent of the anomaly.

Additionally, mitigation is defined as [25]

Definition 6. Mitigation reduces the effect of the anomaly.

The most popular anomaly diagnosis techniques can be classified into two main categories:

model-based diagnosis and non-model based diagnosis [89]. Model-based anomaly diagnosis re-

quires a process model running in parallel with a physical process and diagnoses an anomaly by

comparing the estimates and measured process [42]. However, it assumes a system model is avail-

able. The system model is either built based on expert knowledge or learned based on a set of

data or a combination of the two. Non-model based diagnosis checks the symptoms of a set of

data, such as mean values or trends, to diagnose an anomaly [70]. This method has the advantage

1In the NIST security framework, detection process identifies the occurrence of a security event [21], which is
different from the definition of detection in this dissertation. The definition of detection process in NIST security
framework corresponds to detection and isolation in this dissertation.

3



when a system model is unavailable. However, non-model based methods are limited to a process

in the steady state and not applicable to a process with a wide operation range. Additionally, due

to the lack of system knowledge, non-model based methods have to rely on data and data history

to determine acceptable operating region and therefore can be subject to false positives or false

negatives.

As a starting point, we begin with model-based anomaly diagnosis. Among various model-

based anomaly diagnosis techniques, the observer-based anomaly diagnosis technique is one of the

central schemes, and it has the advantage of reducing the impact of system uncertainties [80]. Gaps

still exist in addressing anomalies caused by cross-domain faults or attacks for CPS using observer-

based anomaly diagnosis framework. In the next section, we discuss the gaps of observer-based

anomaly diagnosis in detail and the specific contributions this dissertation makes towards filling

the gaps.

I.2 Contributions to the Research Areas

To improve the security of CPS, this dissertation makes contributions to the following three

research areas.

We first focus on anomalies in sensors because sensors play a vital role in CPS estimation

and control and they are also the most vulnerable part of CPS [82]. We model the CPS as contin-

uous systems and work on anomaly diagnosis for continuous systems. Under the observer-based

framework, we propose new detection, isolation, and mitigation methods to improve the overall

performance of sensor anomaly diagnosis.

Then, we extend our work to hybrid systems which consist of both continuous dynamics

and discrete behavior. For CPS, considering a continuous system alone is not adequate, because

CPS contain both continuous and discrete variables. Additionally, the anomaly type is not limited

to sensor anomalies. Assuming that the discrete behavior of the hybrid systems is current-state
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observable2, we propose a new method that utilizes the relationship between the continuous and

discrete variables to identify anomalous behaviors.

Finally, we consider a wider class of hybrid systems, including hybrid systems with unob-

servable discrete events. For some hybrid systems, the discrete system is not current-state observ-

able. One of the reasons is that the discrete system contains some unobservable discrete events. To

extend our work to hybrid systems with unobservable discrete events, we propose another method

which can determine the current discrete state of the system by estimating the current continuous

dynamics of the system.

We further describe our contributions in the three main research areas in the following sub-

sections.

I.2.1 Sensor Anomaly Diagnosis and Mitigation for Continuous Systems

Although observer-based anomaly diagnosis has been developed for decades for continuous

systems, existing methods mainly focus on anomalies that occur during steady state operation.

However, an anomaly caused by an attack can happen any time, including during an observer’s

transient state. In addition, an attack can be designed to bypass a closed-loop observer-based

anomaly detection method. For example, an attack targets critical sensors which are essential for

system observability and the attack signal gradually changes the sensor value. Moreover, because

sensor anomaly diagnosis takes time, a mitigation method is needed to potentially reduce the im-

pact of a sensor anomaly during the time required for anomaly diagnosis.

Consider a train system as an example. Suppose there are two noisy sensors measuring the

train position and velocity, respectively, and an observer estimating the train position and velocity.

Since the initial state of the train is not precisely known, it takes some time for the observer to

converge. During the observer’s transient state, the estimation error is large and thus the residual

2A discrete system is current-state observable if the discrete state of the system can be uniquely determined after a
finite number of discrete events. The formal definition is introduced in Chapter IV.

5



signal is large. A large residual signal may trigger an alarm even though the system is under normal

operation. Traditionally, anomaly diagnosis is disabled during observer’s transient state to reduce

false alarms. But anomalies occurring during the observer’s transient state are not detected, which

is undesired for critical infrastructure. In addition, the position sensor is a critical sensor because

it is indispensable for state estimation. If the measurement given by the position sensor is gradu-

ally drifting, the residual signal may not exceed the threshold and a residual-based method using

closed-loop observer fails to detect it. As shown in Fig.I.1, to diagnose more sensor anomalies

and mitigate sensor anomaly during anomaly diagnosis, our contributions are to propose three new

methods that respectively:

1. enable sensor anomaly detection and reduce false alarms during the observers’ transient state;

2. detect anomalies on critical sensors; and

3. potentially mitigate the impact of the anomalous sensor during the anomaly diagnosis process.

Figure I.1: The two contributions to sensor anomaly diagnosis positioned in the space of critical
vs. non-critical sensors, and observers’ transient vs. steady state

6



I.2.2 Anomaly Detection for Hybrid Systems With Current-State Observ-

able Discrete Dynamics

The improved sensor anomaly diagnosis framework for continuous systems is not enough

for systems that have both continuous variables and discrete variables, i.e., hybrid systems. In this

section, we first introduce the limitation of the sensor anomaly diagnosis framework for hybrid

systems. Then we describe the contributions to the area of anomaly detection for hybrid systems.

I.2.2.1 Limitation of the Sensor Anomaly Diagnosis Framework for Hybrid Systems

Hybrid systems contain both continuous dynamics and discrete behavior. The improved sen-

sor anomaly diagnosis framework only considers the continuous dynamics to diagnose anomalies,

which has limitations when used for hybrid systems. As an example, a train system can have dif-

ferent operation modes, i.e., discrete states, under different scenarios. When the train is running

freely on the track, a speed controller is regulating the train speed. When the train is approaching

the next scheduled station, a position controller makes sure that the train stops at the designated

position. Since the train system considered in Section I.2.1 is a continuous system, we consider a

hybrid system example to study anomaly detection for hybrid systems with current-state observ-

able discrete dynamics [69].

I.2.2.2 Anomaly Detection for Hybrid Systems Utilizing the Relation Between the Discrete

and Continuous Components

In order to detect more types of anomalies including anomalies in continuous variables men-

tioned in Section I.2.1, we expand our work to hybrid systems which include both continuous

and discrete states. Here, we consider that each discrete state has an invariant which describes

the set of allowable continuous states and there is no discontinuity in continuous states when dis-

crete transition occurs. The proposed anomaly detection method benefits from a hybrid observer,
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which consists of a Finite State Machine (FSM) and a Set-Valued Observer (SVO). Based on all

possible anomalies for hybrid systems, three types of conflicts are defined. A conflict is a con-

tradiction between the continuous and discrete variables. The conflict-driven anomaly detection

method takes advantage of the knowledge from these continuous-discrete interactions to identify

anomalous behaviors. In the work presented in Chapter IV, the contributions are four-fold:

1. We propose a conflict-driven method with three conflict types defined based on the relation between

the discrete and the continuous variables of the hybrid systems. In addition to anomalies that can

be detected by traditional observer-based and residual-based methods, the conflict-driven anomaly

detection approach is capable of providing guarantees on the detection of some types of attacks

and faults that are undetectable using the traditional methods.

2. We define a classification taxonomy for anomalies in hybrid systems. An anomaly in a hybrid

system may affect the continuous variables or the discrete variables or both. Some anomalies are

undetectable by only considering the continuous component of the system because the anomalous

system may have a consistent input-output data with the system model under normal operation.

Some anomalies are undiagnosable by only considering the discrete component of the system

because the observed discrete event sequence of the anomalous system is the same as the system

under normal operation. In this dissertation, we classify the anomalies into eight different types

based on the variables that are affected, input-output data consistency, and diagnosability of the

anomaly.

3. We develop a new hybrid observer for anomaly detection. We use a Set-Valued Observer (SVO)

as the continuous state observer of the hybrid observer. With the SVO, we can apply the conflict-

driven method to hybrid systems with unobservable continuous components.

4. We provide a mapping between conflict types and anomaly types. Based on the occurrence of the

conflict types, we can identify if the anomaly is related to the continuous component of the system,

the discrete component or both.
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Additionally, we illustrate the effectiveness of the conflict-driven method in detecting different

types of anomalies in a realistic system, namely a simulated Positive Train Control (PTC) system

that is used as the illustrative example [69].

I.2.2.3 Positive Train Control System

The PTC system is designed to ensure safe and collision-free operation as well as high

throughput of trains in a safety-critical environment [69]. The PTC system is a hybrid system

that consists of a train and a Radio Block Controller (RBC). The train is modeled as a continuous

system, and the RBC is modeled as a discrete system. Faults or attacks can occur in either the train

system or the RBC system or both.

I.2.3 Anomaly Detection for Hybrid Systems With Unobservable Discrete

Events

The conflict-driven method described in Section I.2.2 is proposed for hybrid systems with

current-state observable discrete components. However, some hybrid systems contain unobserv-

able discrete events such that the discrete components are not current-state observable. In this

section, we first discuss the limitation of the conflict-driven method for hybrid systems with unob-

servable discrete events. Then, we describe the contributions to the area of anomaly detection for

hybrid systems with unobservable discrete events.

I.2.3.1 Limitation of the Conflict-driven Method for Hybrid Systems With Unobservable

Discrete Events

The conflict-driven method described in Section I.2.2 assumes that 1) the discrete behavior

of the hybrid systems under normal operation is observable, 2) the invariant of each discrete state

under normal operation is known, and 3) no discontinuity exists in continuous variables when a
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discrete transition occurs. However, the above three assumptions may not be true for some hybrid

systems. As an example, in the PTC system, consider a scenario where a train a is running to a

railway junction with a sensor measuring the distance from train a to any front object. There is

another train b running on one of the tracks and a human operator doing some work on the other

track. Suppose the default position of the railroad switch indicates that the front object of train a is

train b. Suddenly an unexpected (unobservable) fault occurs, causing the railroad switch to direct

train a to the other track. The front object of train a changes to the human operator. Thus there is a

discontinuity in the variable representing the position of the front object. Then the hybrid observer

used in the conflict-driven method cannot be used to detect the anomaly in this scenario. A new

anomaly detection method is thus needed for hybrid systems.

I.2.3.2 State Estimation and Anomaly Detection for Hybrid Systems With Unobservable

Discrete Events

To estimate state and detect anomalies for hybrid systems with unobservable discrete events,

we propose a new observer framework which consists of two continuous state observers. The two

continuous state observers use different sets of sensors and the same continuous system model of

the current estimated discrete state (assuming that the initial discrete state of the system is given)

to estimate the continuous state of the system. Based on the estimated continuous state trajectories,

the Recursive Least Squares (RLS) method is used to help identify the current continuous dynamics

of the system, thus knowing the current discrete state of the system. In the work presented in

Chapter V, the contributions are as follows:

1. We propose a new observer framework to estimate both the discrete and the continuous variables

for hybrid systems with unobservable discrete events;

2. We use the proposed observer framework to detect anomalies which can be modeled as unobserv-

able discrete events; and

3. We apply the proposed anomaly detection method to a realistic microgrid system to validate its
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effectiveness.

The reason we use microgrid system, instead of the PTC system, to validate the effectiveness of

the new observer framework is that the PTC system is not complex enough for our purpose. For

the PTC system, we can use the measured distance from train a to the front object to reset the

estimated continuous state by the continuous state observer. The continuous state observer can

still give a good state estimation because the continuous dynamics of the PTC system are simple

and stay the same before and after the fault mentioned in Section I.2.3.1. Such an example does

not provide enough complexity to show the need for a new observer design for hybrid systems with

unobservable discrete events. Therefore, we look to a power microgrid, which is a more complex

system, to show that a new observer is needed for state estimation and anomaly detection for hybrid

systems with unobservable discrete events.

I.2.3.3 Microgrid System

A microgrid system is an electrical energy generation, consumption, and grid-interaction

system, which consists of Distributed Energy Resources (DER) such as solar, wind, fuel cells, etc.,

loads and transmission lines, as shown in Fig. I.2 [72]. Depending on the status of the system,

either grid-tied or islanded, the switch at the Point of Common Coupling (PCC) will connect the

microgrid to the main grid or not. Knowing the status of the microgrid can help ensure worker

safety and DER management. However, the transition from the grid-tied to islanded is an unob-

servable discrete event in the case of unplanned islanding [56]. Islanding Detection Methodology

(IDM) is an algorithm that allows for the presence of an electrical island to be detected [4]. Tradi-

tional IDM can be classified into remote and local methods [48]. Remote methods are based at the

grid level where the communication between the utility and the DER is monitored. Local methods

are based at the inverter where the information at DER side is gathered to determine whether or not

the DER is islanded. Traditional IDMs are developed for single DER instead of a system with mul-

tiple DERs. In addition, the traditional IDMs cannot provide state estimation before the unplanned
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islanding is detected. Without a good state estimation during the unplanned islanding detection,

the controller of the system cannot provide a good control performance, and may even damage the

system in severe cases. An extended IDM theory is needed to address unplanned islanding detec-

tion problems in microgrids with multiple DERs, as well as provide good state estimation during

the islanding detection time period. Our proposed state estimation and anomaly detection method

for hybrid system with unobservable discrete events can be used to detect the unplanned islanding

of the microgrid system consisting of multiple DERs.

Figure I.2: Microgrid Architecture.

I.3 Expected Impact

This dissertation is expected to have the following impacts:

1. Enhance capabilities to diagnose anomalies and mitigate the impact of anomalies in CPS which

are modeled as continuous systems;

2. Enhance capabilities to detect anomalies in hybrid systems with current-state observable discrete

components; and

3. Enhance capabilities to detect anomalies in hybrid systems with unobservable discrete events.
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With the proposed anomaly diagnosis and mitigation approaches, the overall security of CPS will

be improved by expanding the types of anomalies that can be diagnosed.

I.4 Dissertation Outline

The rest of the dissertation is organized as follows. In Chapter 2, we review the relevant

literature to identify the gaps of anomaly diagnosis and mitigation for continuous systems, discrete

systems, and hybrid systems, respectively. In Chapter 3, we present our improved sensor fault

diagnosis and mitigation framework. In Chapter 4, the proposed conflict-driven anomaly detection

method for hybrid systems is introduced and validated using the PTC system. In Chapter 5, we

describe the new observer framework and present the effectiveness in state estimation and anomaly

detection for hybrid systems with unobservable discrete events. In Chapter 6, we conclude the work

of this dissertation.
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CHAPTER II

Background

A significant amount of research has been carried out for both observer-based anomaly di-

agnosis and mitigation. An observer is a system that provides an estimate of the internal state of

a given system, using measurements of the input and output of the system. The estimated internal

state of the system can give an insight into how the system is behaving internally, thus helping

diagnose anomalies in the system. Different observers have been designed for different types of

systems. For continuous systems, the continuous state observers can be classified into two major

types. One gives a single estimated continuous state, such as the Kalman filter. The other is the

Set-Valued Observer (SVO). In contrast to Kalman filter, the SVO takes a measurement history of

some time horizon and gives a non-empty set of estimated continuous states [79]. For discrete sys-

tems, a discrete state observer is usually designed as a finite state automaton to estimate the discrete

state of the system [14]. For hybrid systems, a hybrid observer is typically used as it is computa-

tionally efficient [5]. A hybrid observer consists of a continuous state observer and a discrete state

observer, estimating the continuous state and the discrete state of the system, respectively.

In this chapter, we first summarize the methods that use observers to diagnose sensor anoma-

lies and mitigate the impact of sensor anomalies for continuous systems. Then, we provide a brief

review of observer-based anomaly detection in hybrid systems that have current-state observable

discrete components. Finally, we review observer-based anomaly detection for hybrid systems

with unobservable discrete events.
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II.1 Sensor Anomaly Diagnosis and Mitigation for Continuous

Systems

A significant amount of research has been carried out to diagnose sensor anomalies using

observer-based methods due to their cost efficiency [41]. Observer-based approaches use a con-

tinuous state observer to estimate the continuous state of the system. As mentioned above, there

are two major types of continuous state observers for continuous systems. If a continuous state

observer, such as the Kalman filter, is utilized, we can estimate system output based on the es-

timated continuous state. Then a residual, which is the difference between the measured output

and the estimated output, is analyzed to detect an anomaly [20, 29, 85]. If a SVO is utilized, an

anomaly is detected when the estimated state set is empty [73, 76]. Based on our literature review,

we identified three research gaps in anomaly detection, isolation and mitigation, respectively.

The first research gap we identified is that no existing method detects a sensor anomaly dur-

ing the observers’ transient state. For sensor anomaly isolation, a system of multiple continuous

state observers is usually used, which is called the Dedicated Observer Scheme (DOS). In [19],

each continuous state observer in the DOS uses only one sensor for state estimation based on the

assumption that the system is observable with any one of the sensors. Similarly, in [9], the authors

design multiple robust sliding mode observers with different subsets of sensor measurements to

generate residuals for sensor anomaly diagnosis. Each sliding mode observer is designed to ex-

clude a particular sensor so that the residual generated by this observer is sensitive to an anomaly

in this sensor, but insensitive to anomalies in other sensors. In addition to observers designed

using different inputs and outputs of the physical system, some DOSs consist of unknown input

observers. In [1], the authors combine multiple local unknown input observers which can decou-

ple the unknown disturbances from the residual to achieve robust anomaly diagnosis for nonlinear

systems. In [46], instead of isolating unknown disturbances, the authors consider a single additive

anomaly as an unknown input, and attempt to reconstruct the anomaly with a bank of unknown
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input observers for each sensor. All of the methods mentioned above assume that the observers

have reached their steady state, so that the effect of the uncertain initial condition on a residual has

died out. Otherwise, the methods may miss alarms or generate false alarms. A method that can

detect a sensor anomaly during the observers’ transient state is needed.

The second research gap we identified is that no existing method can detect critical sensor

anomalies without hardware redundancy. Although the above mentioned methods are developed

to diagnose anomalies that occurs during the observers’ steady state, some anomalies may not be

detected by traditional anomaly diagnosis, such as anomalies caused by intelligent attacks. In [55],

the authors propose a cyber attack that injects false data in the sensor measurements and show that

a static residual-based anomaly detector cannot detect this attack. In [8], the authors propose to

protect the subset of sensor measurements which are necessary to ensure the system observability

with a static residual-based anomaly detector in order to detect sensor anomalies caused by the

cyber attacks introduced in [55]. In [62], the authors propose another kind of cyber attack, which

can bypass not only a static anomaly detector but also an anomaly detector utilizing the system

dynamics, such as a χ2 anomaly detector1. The failure to detect a sensor anomaly caused by the

cyber attack occurs because the system is not detectable according to classical control theory2

when removing the anomalous sensor and, as a result, the attacker could impose arbitrarily large

errors between the anomalous sensor measurements and the actual system outputs. The anomalous

sensors in [62] are a subset of the critical sensors that are indispensable for system observability.

A method using open-loop observers instead of closed-loop observers is needed to detect critical

sensor anomalies.

The third research gap is that no method can mitigate the impact of sensor anomalies during

the diagnosis process [50]. Some anomalies may happen quickly in systems with fast dynamics.

Although the diagnosis of an anomaly can lead to appropriate maintenance [17, 26], the physical

system may be in jeopardy during the diagnosis process. A timely mitigation technique during the

1A χ2 anomaly detector converts a Gaussian distributed residual to a χ2 distributed signal and detects an anomaly
by comparing the χ2 distributed signal with a pre-defined threshold.

2In control theory, a system is detectable if all the unobservable states are stable.
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diagnosis process may help maintain acceptable performance of the physical system. To the best

of our knowledge, sensor anomaly mitigation techniques that can be applied during the diagnosis

process have not yet been developed for sensor anomalies [50].

Based on our literature review of sensor anomaly diagnosis and mitigation for continuous

systems, three research gaps are identified for sensor anomaly diagnosis and mitigation for contin-

uous systems:

1. no existing method detects a sensor anomaly during the observers’ transient state;

2. no existing method can detect critical sensor anomalies without hardware redundancy; and

3. no method can mitigate the impact of sensor anomalies during the diagnosis process.

II.2 Anomaly Detection for Hybrid Systems with Current-State

Observable Discrete Component

Hybrid systems consist of both continuous dynamics and discrete behavior. We have re-

viewed anomaly detection techniques for continuous systems in the previous section. Even though

the aforementioned methods are effective for systems with continuous dynamics, they are com-

putationally demanding for hybrid systems with many different continuous dynamics in different

discrete states because observers with different continuous models need to run in parallel [91].

Various discrete model-based anomaly detection methods have been proposed up to date.

The fault diagnosis problem is closely related to anomaly detection. To diagnose a fault, fishbone

diagramming and fault-tree analysis are popular approaches because they are easily understood. A

fishbone diagram is a cause-effect diagram, which maps potential root causes to the problems of

the system [32]. Fault-tree analysis is a structural logic diagram (fault-tree) representing a phys-

ical system, in which low-level (software failure, hardware failure or human errors) causes are

combined with boolean logic leading to one specified top event (undesired system failure) [49].
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However, both fishbone diagramming and fault-tree analysis have certain limitations particularly

in incorporating the ordering of events [90], which can be captured by finite-state automata. Two

types of anomaly detection methods based on finite-state automata have been proposed: state-based

and event-based approaches [14,54]. A state-based approach determines if the current discrete state

is nominal or anomalous. An event-based approach determines whether an (unobservable) anoma-

lous event has occurred or not, based on observed events. Even though discrete model-based

methods are computationally efficient [78], they cannot provide sufficient resolution of continu-

ous degradations for hybrid systems [31]. Discrete model-based methods can only detect drastic

anomalies, such as a valve stuck closed. Other types of anomalies such as small changes in sensors

or actuators cannot be addressed because they cannot be efficiently modeled in a discrete system

framework [90].

As many CPS consist of both continuous dynamics and discrete behavior, hybrid model-

based approaches are promising in anomaly detection. Hybrid model-based methods include set

membership-based methods [36] and observer-based methods [39]. Given a data trajectory gen-

erated by the system, set membership-based methods check whether or not it is possible that the

trajectory is generated by the model of the system. In [35], the concept of T -detectability is defined

as a time horizon length that is enough to provide detection guarantees when given nominal and

anomalous system models. Although these methods provide necessary and sufficient conditions

in some cases for anomaly detection, they are computationally demanding as they require costly

set calculations or mixed integer programming. Set membership-based methods are also utilized

in active anomaly detection, where the goal is to design a minimal excitation that guarantees the

detection of anomalous behavior [11,34,65]. In observer-based methods, a hybrid observer is used

as it is computationally efficient [39]. A hybrid observer consists of two components: a discrete

state observer identifying the current discrete state and a continuous state observer estimating the

continuous state [5, 39]. With the estimated discrete state given by the discrete state observer, the

continuous state observer uses the corresponding continuous model and provides an estimate of the

continuous state of the system. Usually a continuous state observer that gives a single estimated
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state is used for anomaly detection. With the hybrid observer framework, traditional residual-based

methods can be applied for hybrid systems, including different residual generation methods, such

as the unknown input observer scheme [15], and some residual evaluation methods, such as fuzzy

decision logic approaches [2].

Even though residual-based methods with a hybrid observer are efficient, intuitive and easy

to implement, they can easily be circumvented by a smart attacker or by sensor faults [61, 62].

This is because the relationship between the continuous component and discrete component is

not considered in the residual-based methods. The research gap we identified is that no existing

method utilizes the relationship between the continuous component and discrete component to

detect anomalies in hybrid systems.

II.3 Anomaly Detection for Hybrid Systems with Unobservable

Discrete Events

In the previous section, we mentioned that a hybrid observer is typically used in anomaly

detection for hybrid systems. In order to use a hybrid observer, the discrete component of the

system should be current-state observable such that the discrete state observer, which is designed

as a finite state automaton, can give a unique estimated discrete state after a finite number of

discrete transitions [5]. However, for some hybrid systems, some of the discrete events may be

unobservable, thus the discrete component is not current-state observable. For these systems, the

type of hybrid observer proposed in [5] cannot be used for anomaly detection.

Traditionally, if the discrete events are unobservable, a bank of continuous state observers is

designed, each corresponding to the continuous system in one discrete state [6, 28]. Based on the

estimated continuous state provided by each continuous state observer, we can calculate a residual,

which is the the difference between the measured output and the estimated output. By analyzing

the residuals, the discrete state can be uniquely determined if the continuous dynamics of different
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discrete states are distinguishable. However, this method is computationally complex for hybrid

systems with a large number of different continuous dynamics [91]. Multiple-model estimation

algorithms have been presented in [33,51,52,92] which track the most likely discrete state set, but

the set is still very large for online estimation.

More methods have been proposed for hybrid systems with autonomous discrete transitions

triggered by continuous dynamics, where the real-time discrete events are unobservable but the

discrete transitions (guard condition3, reset function4, and linear-time properties5) are known a

priori. In [44], a particle filter-based estimation algorithm is proposed, assuming that the guard

conditions are known a priori. A method based on qualitative reasoning mechanisms using the

discrete knowledge is proposed in [63, 64] assuming that a priori and a posteriori state vector

values corresponding to the discrete transitions are known.

However, these above approaches cannot be used to distinguish discrete states of hybrid sys-

tems when only the continuous variables are measurable, the discrete events are unobservable, and

the guard conditions and the reset functions are unknown a priori. Additionally, most practical

anomalies occur with unknown conditions and times, and cannot be represented as observable

discrete events. These anomalies should be described as unobservable discrete events which tran-

sition the system from nominal discrete states to anomalous discrete states. Additionally, the guard

conditions and the reset functions corresponding to the anomaly discrete transitions are unknown

a priori. In [84], a robust hybrid observer is proposed for hybrid systems. The robust hybrid

observer consists of a continuous state observer and a discrete state observer. The continuous

state observer estimates the continuous state and monitors the discrete transitions by comparing

the residual with a threshold. When the residual exceeds the threshold, a discrete transition is de-

tected and the discrete state observer is activated to identify the new discrete state. The discrete

state observer consists of a bank of mode isolators. A mode isolator is an algorithm which checks

3Guard condition indicates when the discrete transition occurs.
4Reset function resets the value of the continuous state of the hybrid system when the corresponding discrete

transition occurs.
5 Linear-time properties specify the traces that a discrete system should exhibit [3].
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whether or not the input-output signal from the system is consistent with one specific continuous

model of the system. The mode isolators are designed as unknown input extended Kalman filters

in [84]. The number of mode isolators is the same as the number of continuous models of the

system. However, method of using mode isolators to track the emergence of unforeseen discrete

states with continuous dynamics is computationally complex when identifying the discrete state

if the hybrid system contains a large number of different continuous dynamics. Additionally, this

method assumes that there is no discontinuity in continuous states. To estimate state and detect

anomalies for hybrid systems with discontinuities in continuous variables, a predictor–corrector

set-membership method is proposed in [71]. For the prediction step, a forward reachable set is

calculated based on a union of zonotopes constructed by the current possible continuous states for

each discrete state. For the correction step, the reachable set is filtered using the image projected

by the measurements. The emptiness of the filtered reachable set indicates the infeasibility of the

corresponding discrete state. With the prediction and correction steps, the inconsistent discrete

states and inconsistent continuous state vectors in each consistent discrete state are discarded at

each time step. However, this predictor-corrector set-membership method has the drawback of

being computationally demanding because it requires intense set computation for several discrete

states at each time step.

Based on this literature review, existing state estimation and anomaly detection methods for

hybrid systems with unobservable discrete events at least have one of the following drawbacks:

1. a priori knowledge of discrete transitions is needed;

2. no discontinuity exists in continuous variables; or

3. they are computationally demanding.

The research gap we identified is that no existing observer design can effectively estimate states

and detect anomalies for hybrid systems with unobservable discrete events, with discontinuity in

continuous variables, and without a priori knowledge of discrete transitions.
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II.4 Summary

In this chapter, we provided a literature review of sensor anomaly diagnosis and mitiga-

tion for continuous systems, anomaly detection for hybrid systems with current-state observable

discrete transitions, and anomaly detection for hybrid systems with unobservable discrete events.

Based on the detailed literature review, we identified several research gaps that need to be ad-

dressed in order to enhance the capability of observer-based anomaly diagnosis and mitigation to

improve the overall security of CPS.

The research gaps identified for sensor anomaly diagnosis and mitigation for continuous

systems are addressed in Chapter III. The research gaps for anomaly detection for hybrid systems

with current-state observable discrete components are addressed in Chapter IV. The research gaps

found for anomaly detection for hybrid systems with unobservable discrete events are addressed in

Chapter V.
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CHAPTER III

Improved Sensor Anomaly Diagnosis and Mitigation Using Multiple Observers Approach

III.1 Introduction

As introduced in Chapter I, sensors are considered to be the weak link in Cyber-Physical

Systems (CPS) [13, 22]. A sensor anomaly that may be caused by a fault or an attack can be a

major problem that may degrade the performance of the CPS, and even put the CPS in jeopardy

in severe cases. Anomaly diagnosis and mitigation mechanisms are crucial for protecting a sys-

tem that is susceptible to sensor faults or attacks. As defined in Chapter I, diagnosis consists of

detection and isolation. Sensor anomaly detection determines the occurrence of a sensor anomaly.

Sensor anomaly isolation identifies the anomalous sensor and estimates the anomaly signal. Sensor

anomaly mitigation reduces the impact of the sensor anomaly [87]. Traditional anomaly diagnosis

mechanisms mainly focus on anomalies caused by sensor faults. However, CPS are also subject

to cross-domain attacks, i.e., attacks from the cyber domain that can cause anomalies in the phys-

ical domain. Some cross-domain sensor attacks can bypass the existing sensor anomaly diagnosis

mechanisms.

As a starting point for developing a sensor anomaly diagnosis and mitigation mechanism for

CPS, we model a Cyber-Physical System as a continuous system and assume that only one sensor

is anomalous at a time. Based on our literature review in Chapter II, we identified the following

three research gaps:

1. No existing method detects a sensor anomaly during the observers’ transient state;
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2. No existing method can detect critical sensor anomalies without hardware redundancy; and

3. No method can mitigate the impact of sensor anomalies during the diagnosis process.

We will fill these research gaps in this chapter.

In reviewing the existing methods in Section II.1 we note that one of the central schemes for

sensor anomaly diagnosis is the Dedicated Observer Scheme (DOS), which consists of multiple

observers [19]. Different observer-based approaches have been proposed under the DOS frame-

work [1, 9, 46]. Most of these methods analyze residuals, which are the difference between the

measured output and the estimated output, to diagnose anomalies. However, these residual-based

methods assume that the observers have reached their steady state, so that the effect of the uncertain

initial condition on a residual has died out. Otherwise, these methods may generate false alarms

during the observers’ transient state. An anomaly caused by an attack can happen any time, in-

cluding during the observers’ transient state. If we disable anomaly detection during the observers’

transient state, then we can have missed alarms, resulting in severe consequences. Therefore, the

first research gap we identified is that no existing method detects a sensor anomaly during the

observers’ transient state.

Based on the assumption of only one anomalous sensor, the sensors can be divided into two

sets: critical sensor set and non-critical sensor set. Critical sensors are indispensable for system

observability; if any critical sensor is removed, the system is unobservable. Non-critical sensors

are redundant; the system is still observable if any one of the non-critical sensors is removed. An

anomaly in a non-critical sensor can be diagnosed using a closed-loop observer which is designed

excluding the anomalous sensor. Some anomalies in the critical sensors may not be detected by

existing anomaly diagnosis approaches, such as anomalies caused by False Data Injection Attack

[55,61,62]. Therefore, the second research gap we identified is that no existing method can detect

critical sensor anomalies without hardware redundancy.

Some anomalies may happen quickly in systems with fast dynamics. Although the diagnosis

of an anomaly can lead to appropriate maintenance, the physical system may be in jeopardy dur-
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ing the diagnosis process. A timely mitigation technique during the diagnosis process may help

maintain acceptable performance of the physical system [50]. Therefore, the third research gap

we identified is that no method can mitigate the impact of sensor anomalies during the diagnosis

process.

In this chapter, we propose three new methods to improve the performance of the traditional

sensor anomaly diagnosis and mitigation by filling the three research gaps. With respect to the

research gaps, the contribution of this chapter is to propose three new methods that respectively

1. enable anomaly detection for some sensor anomalies during the observers’ transient state;

2. detect some anomalies on critical sensors; and

3. potentially mitigate the impact of the anomalous sensor during the diagnosis process.

These three methods are then systematically integrated with a previously developed residual-based

method to create an improved sensor anomaly diagnosis and mitigation framework. The first two

contributions are outlined in Fig. I.1.

The rest of this chapter is organized as follows. In Section III.2, an overview of problem

statement and solution is provided. In Section III.3, the mathematical description of the system is

given. In section III.4, we introduce three new methods to address the research gaps, and the pro-

posed methods are integrated with a previously developed method. In Section III.5, an illustrative

example validates the proposed methods. The summary of this chapter is given in Section III.6.

III.2 Problem / Solution Overview

As mentioned in Section III.1, we model the CPS as a linear time-invariant discrete-time

system. The problem addressed in this Chapter can be formulated as: given a linear time-invariant

discrete-time system with multiple sensors, multiple observers, a state feedback controller, a residual-

based anomaly detector, and the following assumption
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Assumption 1. Only one sensor is anomalous at a time.

The specific goals of this chapter are to

• propose a non-residual based method for sensor anomaly detection during the observers’ transient

state (Contribution 1);

• propose a method for critical sensor anomaly diagnosis (Contribution 2);

• propose a method to potentially mitigate the impact of the anomalous sensor during the diagnosis

process (Contribution 3); and

• systematically integrate the three new methods with a previously developed residual-based method

for diagnosis and mitigation.

As described in Section III.1, the sensors can be divided into two sets: critical sensor set and

non-critical sensor set. To diagnose anomalies in these two different sets of sensors, we use both

closed-loop and open-loop observers. A closed-loop observer estimated the system internal state

with a feedback from the sensor measurements. An open-loop observer is running in parallel with

the physical system, reproducing the behavior of the system.

To detect anomalies in non-critical sensors, we design one closed-loop observer with all of

the sensor measurements, and multiple closed-loop observers each with one non-critical sensor

excluded. Each observer is compared with all other observers, and the difference of estimated

states between two observers is decoupled to calculate the estimation errors of these two observers.

Thus, each observer has multiple calculated estimation errors. These calculated estimation errors

are combined to determine the overall estimation error of the observer. The convergence ratio of the

estimation error of an observer should be related to the designed state matrix of the observer, and

not affected by the uncertain initial condition. But a sensor anomaly or a disturbance can change

the convergence ratio of the estimation error. Note that a disturbance is also a kind of anomaly.

In this dissertation, we model the disturbance as the system disturbance, i.e., a disturbance added

to the state equation. A disturbance should be distinguished from a sensor anomaly. To detect
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a sensor anomaly or a disturbance, we propose the Convergence Ratio (CR) method which can

reduce the false alarms during the observers’ transient state. To distinguish a sensor anomaly from

a disturbance, bias analysis based on the calculated estimation errors is developed. In the ideal

case, the biases calculated based on the estimation errors of all observers should be the same when

the system is under disturbance, but should be different under sensor anomaly. With bounded

system noise, the bound of the difference between the calculated bias and the actual disturbance

signal can be determined. Therefore, a threshold can be selected and compared with the difference

between any two calculated biases. The threshold is specific for each pair of biases. If at least one

pair of them exceeds their threshold, the system is under sensor anomaly. If none of them exceeds

their threshold, the system is under disturbance.

To diagnose anomalies in critical sensors, we design Multiple Open-Loop Observers (MOLO),

and analyze the residuals formed based on the difference between the measured outputs of the sys-

tem and the estimated outputs. This method is only applicable to an open-loop stable or marginally

stable system. If the system is open-loop unstable, the estimation error of an open-loop observer

could diverge exponentially. To increase the estimation accuracy, we periodically update the states

of multiple open-loop observers with the state estimated by the closed-loop observer using all of

the sensor measurements when no sensor anomaly is detected. There is a trade-off between esti-

mation performance and the ability to detect a sensor anomaly. Therefore, we divide the multiple

open-loop observers into several groups. The observers within the same group are updated with

the same update frequency. To mitigate the impact of noise, the update time steps of the observers

in the same group are distributed evenly within one update period, and the residuals generated

by the observers within the same group are averaged. The averaged residual is compared with a

threshold, which is related to the known upper bound of noise and the update frequency. If the

residual is larger than the threshold, then an alarm is triggered and the states of the open-loop

observers of that group are not updated with the estimated state of the closed-loop observer until

the alarm is cleared. Logic is provided to determine whether or not the system is under sensor

anomaly based on which groups of open-loop observers trigger alarms. Then the residuals of the
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groups that trigger alarms are analyzed to determine which sensor is anomalous.

For sensor anomaly mitigation, we also need to consider two cases: anomalies in critical

sensors and anomalies in non-critical sensors. For anomalies in non-critical sensors, a closed-loop

observer without the anomalous sensor provides a better state estimation, based on which a state

feedback controller can give the control input closest to the ideal control input. Pinpointing this

closed-loop observer during the diagnosis process is the key for sensor anomaly mitigation. There-

fore, we propose the Calculated Control Input (CCI) method to switch among different observers,

and potentially mitigate the impact of the anomaly in a non-critical sensor during the diagnosis

process. For anomalies in critical sensors, none of the closed-loop observers can provide a good

state estimation. If the system is open-loop stable, we can use an open-loop observer for state

estimation to mitigate the impact of the sensor anomaly. If the system is marginally stable, the

only way to mitigate the impact of sensor anomaly is to repair the anomalous sensor.

We also need a residual-based method based on closed-loop observers for non-critical sensor

anomaly isolation. In this dissertation, we use a method adopted from [9], and call it the Calcu-

lated Outputs (CO) method. The method in [9] consists of several sliding mode observers, each

excluding a particular sensor or actuator. The sliding mode observer without the anomalous sen-

sor generates a significant residual signal. In contrast, we use a bank of Luenberger observers (or

Kalman filters) 1 for the CO method. In this case, the observers with the anomalous sensor generate

significant residuals. However, the CO method is not robust to disturbance in the system.

Table III.1 shows the abilities of the CO, CR, MOLO, and CCI methods. The CO method can

detect and isolate non-critical sensor anomalies that occur during the observers’ steady state. The

CR method can detect non-critical sensor anomalies that occur during both the observers’ transient

and steady state. The MOLO method can detect and isolate critical sensor anomalies that occur

during the observers’ steady state. The CCI method can mitigate the impact of non-critical sensor

anomalies during the sensor anomaly diagnosis process. Fig. III.1a shows when to use those four

1 The reason we use the Luenberger observers (or Kalman filters) instead of sliding mode observers is that we can
decouple observers’ estimation errors for the CR method.
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Table III.1: Abilities of the CO, CR, MOLO and CCI methods

Anomaly Detection Anomaly
Isolation

Anomaly
MitigationObservers

Transient State
Observers

Steady State
S nc CR CR, CO CO CCI
S c MOLO MOLO

methods based on their abilities. We systematically integrate them as shown in Fig. III.1b. During

the observers’ transient state, we use the CR method for non-critical sensor anomaly detection. If

a sensor anomaly is detected and the observers have already reached their steady state, then we

use the CO method for sensor anomaly isolation. The CCI method is used for non-critical sensor

anomaly mitigation during both the observers’ transient state and steady state. Suppose an anomaly

on a non-critical sensor starts at t f , and it is detected and isolated at td. During the detection delay

td − t f , the CCI method may have already switched to the observer without the anomalous sensor,

providing estimated state to the controller. The MOLO method is running in parallel with the CR,

CO, and CCI methods to diagnose a critical sensor anomaly.

III.3 Mathematical Formulation of the Problem

The analysis is carried out based on a linear time-invariant discrete-time system equipped

with multiple observers, a state feedback controller and a residual-based anomaly detector.

III.3.1 Notation

Let ‖ · ‖ denote ∞-norm, ·̃ denote estimated variables by a closed-loop observer, ·̂ denote

estimated variables by an open-loop observer. In addition, x ∈ Rnx represents a vector, where its

ith element is indicated by x(i). A ∈ Rm×n represents a matrix, where its element at the ith row and

the jth column is indicated by A(i, j). xe is the estimation error between system real state and the

estimated state by an observer. xe,µ,ν is the difference of estimated states between two closed-loop
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(a) Integration of the four methods: CO, CR,
MOLO and CCI

(b) Flow chart of the integration

Figure III.1: The improved sensor anomaly diagnosis and mitigation framework description
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observers µ and ν. x̃e,µ(ν) is the calculated estimation error of closed-loop observer µ, and the

calculation is based on xe,µ,ν. Detailed notations are shown in Appendix A.

III.3.2 Physical System

We model the physical system as a linear time-invariant discrete-time system. It has the

following form:

x(t + 1) =Ax(t) + Bu(t) + Dd(t) + w(t),

y(t) =Cx(t) + v(t) +ΓΓΓγγγ(t),
(III.1)

where x(t) ∈ Rnx is the system state, y(t) ∈ Rny is the sensor measurement, u(t) ∈ Rnu is the control

input, d(t) ∈ Rnd is the unknown disturbance, γγγ(t) ∈ R is the sensor anomaly signal added to the

sensor measurements, the process noise w(t) ∈ Rnx and the sensor noise v(t) ∈ Rny are zero mean

random vectors with bounds ‖w(t)‖ ≤ w and ‖v(t)‖ ≤ v, respectively, A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈

Rny×nx , D ∈ Rnx×nd are real constant matrices, and ΓΓΓ = [0 ... 1i f ... 0]ᵀ ∈ Rny is a sensor

anomaly vector, with 0 corresponding to the anomaly-free sensor, and 1i f corresponding to the

anomalous sensor, and i f is the index for the anomalous sensor. Based on Assumption 1, ΓΓΓ has at

most one non-zero element.

III.3.3 Closed-Loop Observers and Open-Loop Observers

At each time step, all of the sensor measurements y(t) and the control inputs u(t) are gathered

for state estimation. Two different types of observers can be utilized: closed-loop observers and

open-loop observers.

III.3.3.1 Closed-Loop Observers

A closed-loop observer corrects the estimation with a feedback from the sensor measure-

ments as shown in Fig. III.2. Based on Assumption 1, sensor measurements can be divided into
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Figure III.2: Structure of a closed-loop observer

two sets: S nc and S c. S nc contains mnc non-critical sensors. S c contains critical sensors. In order

to design multiple closed-loop observers, we need the following assumption:

Assumption 2. Set S nc contains at least one non-critical sensor, i.e., mnc > 0.

We assume without loss of generality that the rows of the output matrix C are ordered such

that the first mnc sensors are non-critical sensors. Thus, mnc + 1 closed-loop observers can be

designed. Observer 0 uses all of the sensor measurements. Observer i uses all but sensor i (i =

1,2, ...,mnc). For the closed-loop observers, we use Luenberger observers with the following form

x̃i(t + 1) =Eix̃i(t) + Liyi(t) + Bu(t)

=Eix̃i(t) + Li(Cix(t) + vi(t) +ΓΓΓiγγγ(t)) + Bu(t),
(III.2)

where x̃i(t) ∈Rnx is the state estimated by the closed-loop observer i (i = 0,1,2, ...,mnc), yi(t) ∈Rny−1

is the sensor measurements used by observer i which does not contain the ith element of y(t), vi(t)

does not contain the ith sensor noise, Ei = A−LiCi, Li ∈ Rnx×(ny−1) is the observer gain, placing

the eigenvalues of Ei in the unit circle, Ci ∈ R(ny−1)×nx is the output matrix for observer i and it

does not contain the ith row of C, and ΓΓΓi ∈ Rny−1 is the sensor anomaly vector of observer i which

does not contain the ith element of ΓΓΓ. If i = i f , then ΓΓΓi = 0ny−1. This means that observer i f does

not use the anomalous sensor i f for state estimation. The corresponding observer state matrix and

observer gain that do not use the anomalous sensor are Ei f and Li f , respectively.

Remark 1. Our assumption indicates that the system is detectable without one of the sensors in

S nc. If the system is detectable and the noise is truncated Gaussian, the time varying gain of a
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Kalman filter converges in a few steps. Therefore, for the closed-loop observers, we can also use

Kalman filters with the steady-state Kalman gains [61].

III.3.3.2 Open-Loop Observers

An open-loop observer is running in parallel with the physical system, reproducing the be-

havior of the system as shown in Fig. III.3. Due to the lack of guaranteed estimation error con-

Figure III.3: Structure of an open-loop observer

vergence, the state of the open-loop observer is updated periodically by the closed-loop observer

0 which uses all of the sensor measurements. As mentioned in Section III.2, we design M groups

of open-loop observers, each group with N observers. The observers in the same group have the

same update period. Then, an open-loop observer has the following form after one update period

x̂g,i(t + κ f ,g) =Aκ f ,g x̃0(t) +Σ
κ f ,g−1
j=0 A jBu(t + κ f ,g−1− j), (III.3)

where x̂g,i(t) ∈ Rnx is the state estimated by the open-loop observer i in group g (i = 1, ...,N, g =

1, ...,M), and κ f ,g is the update period of group g, and x̃0 is the estimated state by closed-loop

observer 0.
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III.3.4 State Feedback Controller

A state feedback controller calculates a control command based on the system state, and

applies it to the input of the system. The following assumption enables the utilization of a state

feedback controller

Assumption 3. The system is controllable.

Since the real state of the system is unknown, the controller can only use the state estimated

by a closed-loop observer with the following form [67]

u(t) = Fx̃i(t), (III.4)

where F ∈Rnu×nx is the controller gain placing the eigenvalues of A + BF in the unit circle. Notice

that an open-loop observer cannot provide as good of an estimation of performance as a closed-

loop observer due to system noise. Therefore, we use a closed-loop observer for the state feedback

controller if the system is under normal operation or under non-critical sensor anomaly. If an open-

loop stable system is under critical sensor anomaly, then we can switch to an open-loop observer

to help mitigate the impact of the sensor anomaly.

III.3.5 Residual-based Anomaly Detector

In this chapter, the residual-based anomaly detector uses the CO method, which is adopted

from [9]. In contrast to the method in [9], the CO method consists of multiple Luenberger ob-

servers as shown in (III.2), and generates the residuals based on the subtraction between the sensor

measurements yi (without the ith output) and the estimated outputs Cix̃i as shown in (III.5)

ri(t) =(yi(t)−Cix̃i(t))ᵀQi(yi(t)−Cix̃i(t)), (III.5)
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where Qi is a real constant weighting matrix for observer i2, and ri(t) ∈R is the residual generated

based on observer i.

The residual generated based on observer 0 is compared with a selected threshold θCO to de-

termine the occurrence of an anomaly. Note that the CO method cannot distinguish a disturbance

from a sensor anomaly since Luenberger observer is not robust to disturbances. So the illustration

of the CO method is under the assumption that the anomaly in the system is a sensor anomaly.

When a sensor anomaly occurs, the closed-loop observer i f , which does not use the anomalous

sensor, is not affected by the sensor anomaly, and thus provides a better state estimation compared

to other observers3. Then the residual generated by observer i f is smaller than the residuals gen-

erated by other observers (i 6= i f ). Therefore, we can locate the anomalous sensor by finding the

smallest residual among the observers from 1 to mnc. After the anomalous sensor is located, the

sensor anomaly vector ΓΓΓ is known and the estimated sensor anomaly signal is given by

γ̃γγ(t) = ΓΓΓᵀ(y(t)−Cx̃i f (t)), (III.6)

where γ̃γγ(t) ∈ R is the estimated sensor anomaly signal.

Algorithm 1 gives the procedure of the CO method. First, we calculate the residuals based on

different observers. Then, we use the residual of observer 0 for anomaly detection, and compare the

rest of the residuals for sensor anomaly isolation. The issue that the CO method cannot distinguish

a disturbance from a sensor anomaly is addressed by complementing the CO method with the

CR method introduced in Section III.4.3 which has the ability to distinguish a disturbance from a

sensor anomaly.

2Qi should be designed to make the element y( j)
i (t)−C( j,:)

i x̃i(t)( j ∈ S c), where j corresponds to the critical sensors,
have larger weighting ratios than the element corresponding to non-critical sensors.

3The demonstration is shown in Appendix VI.2.
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Algorithm 1: CO method for sensor anomaly diagnosis
function CO;
Input : y(t), x̃i(t) (i = 0,1, ...,mnc)
Output: IF , i f
//Residual generation for all observers;
for i = 0 to mnc do

ri(t) = (yi(t)−Cix̃i(t))ᵀQi(yi(t)−Cix̃i(t));
end
//Anomaly detection;
if r0(t) ≥ θCO then

IF = 1;
//Sensor anomaly isolation;
i f = mini ri(t);
IFB = i f ;
ΓΓΓ = [0 ... 1i f ... 0]ᵀ;
γ̃γγ(t) = ΓΓΓᵀ(y(t)−Cx̃i f (t));

else
IFB = 0;

end

III.4 Framework Components Description and Integration

Throughout this section, a simple system of a moving object is utilized as an illustration.

First, we simulate sensor anomalies in the moving object system equipped with the CO method-

based anomaly detector to understand its limitations. Then, three new methods are introduced and

analyzed in the deterministic case (noise free). The impact of random system noise is discussed for

each method thereafter. The simulation result shows the improvements of the proposed methods

compared to the CO method. Finally, we provide an algorithm to integrate the CO method and the

three new methods.

III.4.1 Moving Object System

The moving object system is a 1kg mass moving along a horizontal line. Two sensors are

measuring the two outputs: the velocity yv and the position yp, respectively. A state feedback

controller applies a horizontal force on the mass. The sampling time is 0.1s. The system has
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an initial state (0,0), the process noise with bound 0.001 (m/s or m), and the sensor noise with

bound 0.01 (m/s or m). The initial states of the observers are chosen as (1,0.5)4. The state space

representation of the moving object system is shown as

x(t + 1) =Ax(t) + Bu(t) + w(t),

y(t) =Cx(t + 1) + v(t),
(III.7)

where x =

 xv

xp

, y =

 yv

yp

, A =

 1 0

0.1 1

, B =

 0.1

0.005

, and C =

 1 0

0 1

.
By checking the rank of observability matrix, the moving object system is observable with

yv and yp or only yp, but unobservable with only yv. Therefore, yp ∈ S c, and yv ∈ S nc. Two

observers can be designed with observer poles placed at [0.1 0.11]. Observer 0 uses both sensor

measurements yv and yp. Observer 1 uses only yp.

Two sensor anomaly scenarios are considered:

1. anomaly α: a ramp signal with slope 0.05m/s2 (0.005m/s per time step) added to the velocity

sensor yv, saturating at 1m/s; and

2. anomaly β: a ramp signal with slope 0.001m/s (0.0001m per time step) added to the position sensor

yp, saturating at 1m.

Both anomalies start at 10s and run until the end of the simulation. Here we consider ramp anoma-

lies with small slopes because they are hard to detect compared to ramp anomalies with large slopes

or step anomalies with large magnitudes.

4The initial estimation errors of the observers are large to help us understand the limitations of a residual-based
method using closed-loop observers during the observers’ transient state
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(a) The estimated position states of both
observers x̃0, x̃1, the real state x, and the
sensor measurement y of the system un-
der sensor anomaly α

(b) Alarms IF of the CO method under
sensor anomaly α

(c) Observer index IFB selected for the
state feedback controller under sensor
anomaly α

Figure III.4: Moving object system under sensor anomaly α

III.4.2 The Impact of Sensor Anomalies

Two sensor anomaly scenarios are run on the moving object system equipped with the CO

method-based anomaly detector to show the limitations of the CO method-based anomaly detector.

Based on each limitation, a new method is discussed and proposed.

Fig. III.4-III.6 show the estimated position states of both observers x̃0, x̃1, the real state x,

and the sensor measurement y of the system equipped with the CO method-based anomaly detector

under sensor anomaly α, β and normal operation, respectively. In both Fig. III.4 and Fig. III.5,

false alarms are generated by the CO method during the observers’ transient state, which are about
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(a) The estimated position states of both
observers x̃0, x̃1, the real state x, and the
sensor measurement y of the system un-
der sensor anomaly β

(b) Alarms IF of the CO method under
sensor anomaly β

Figure III.5: Moving object system under sensor anomaly β

0.2s, when the system is actually under normal operation. From Fig. III.6, it can be seen that the

imperfect initial state of the observers causes the CO method to generate false alarms. According

to (III.5), the residual ri(t) of the CO method is a function of the observer’s estimation error under

normal operation. A large estimation error makes the residual exceed the threshold, causing false

alarms during the observers’ transient state. To enable sensor anomaly detection during observers’

transient state, the CR method, described in Section III.4.3, which utilizes the convergence ratio of

observers’ estimation error, will be applied.

As shown in Fig. III.5b, when the system is under sensor anomaly β, no alarm is generated

since the sensor anomaly is not detected by the CO method-based anomaly detector. The reason

behind this behavior is that the system is not detectable when the position sensor yp is removed,

and the sensor anomaly signal is changing slightly at each time step to avoid significant change in

the residuals. An open-loop observer (III.3) does not use any sensor for state estimation. Thus,

this issue can be potentially addressed by the MOLO method introduced in Section III.4.4.

As shown in Fig. III.4b and Fig. III.4c, although the CO method successfully locates the

anomalous sensor and then the system switches to observer 1 for state estimation after 18s, there

is an 8s detection delay and the system switches between the two observers during 13s to 18s.
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(a) The estimated position states of both
observers x̃0, x̃1, the real state x, and the
sensor measurement y of the system dur-
ing the observers’ transient state under
normal operation

(b) Alarms IF during the observers’ tran-
sient state

Figure III.6: Moving object system under normal operation

This is caused by the relatively small sensor anomaly signal compared to the system noise and the

threshold. Thus, the anomalous sensor cannot be located immediately. This detection delay makes

the maximum absolute value of the position of the mass reach 30cm as shown in Fig. III.4a. The

direct reason for this divergence is the discrepancy of the control input provided by the observer-

based state feedback controller. To address this issue, we need to switch to the closed-loop observer

without the anomalous sensor as soon as possible and continue using that observer during the

sensor anomaly diagnosis process. Thus, we propose the CCI method to compare the control input

calculated based on the state estimated by each closed-loop observer with an “ideal” control input

calculated based on the state estimated by an open-loop observer, and to switch to the observer

which gives the smallest difference between the calculated control input and the ideal control

input. This method has the potential to mitigate the impact of a non-critical anomalous sensor

during the sensor anomaly diagnosis process. The maximum absolute value of the position of the

system under the CO method will be compared with that under the CCI method in Section III.4.5.
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III.4.3 CR Method for Sensor Anomaly Detection during Transient and

Steady State

This method is proposed to detect the occurrence of an anomaly based on the convergence

of estimation error. It enables sensor anomaly detection during the observers’ transient state.

To achieve robust anomaly detection, a disturbance in the system is distinguished from a sen-

sor anomaly by analyzing the bias of the estimation error. First, this method is introduced on an

ideal control system. Then the impact of the process noise and the sensor noise are discussed.

III.4.3.1 Ideal System Case

Three different situations are considered for this method: normal operation, disturbance, and

sensor anomaly. Estimation error xe,i of closed-loop observer i, and the difference of estimated

states xe,µ,ν between two closed-loop observers µ and ν under three situations are shown in (III.8)

through (III.13).

Under normal operation

xe,i(t + 1) =x(t)− x̃i(t) = Eixe,i(t), (III.8)

xe,µ,ν(t + 1) =x̃µ(t + 1)− x̃ν(t + 1) = Eνxe,ν(t)−Eµxe,µ(t). (III.9)

Under disturbance

xe,i(t + 1) =Eixe,i(t) + Dd(t), (III.10)

xe,µ,ν(t + 1) =Eνxe,ν(t)−Eµxe,µ(t). (III.11)

Notice that (III.9) and (III.11) are the same.

41



Under sensor anomaly

xe,i(t + 1) =Eixe,i(t)−LiΓΓΓiγγγ(t), (III.12)

xe,µ,ν(t + 1) =Eνxe,ν(t)−Eµxe,µ(t)− (LνΓΓΓν−LµΓΓΓµ)γγγ(t). (III.13)

The first step of the CR method is to calculate the estimation error of each closed-loop ob-

server. The dynamics of xe,µ,ν under both normal operation and disturbance are the evolution of

the estimation errors of the two closed-loop observers xe,µ and xe,ν. Therefore, the estimation

errors of both observers can be decoupled over two time steps. However, the dynamics of xe,µ,ν

under sensor anomaly involves two unknown sensor anomaly vectors ΓΓΓµ and ΓΓΓν, and the unknown

sensor anomaly signal γγγ(t). Thus, the estimation errors cannot be correctly decoupled under sen-

sor anomaly. Lemma 1 gives the formulas for estimation error decoupling of any two different

observers.

Lemma 1. Given an ideal control system (III.1) with w(t) = 0 and v(t) = 0, the calculated esti-

mation error x̃e,µ(ν) and x̃e,ν(µ) are derived based on (III.14) and (III.15), respectively, with the

following results:

1. When the system is under normal operation or under disturbance, x̃e,µ(ν) = xe,µ and x̃e,ν(µ) = xe,ν;

2. When the system is under sensor anomaly, x̃e,µ(ν) 6= xe,µ and x̃e,ν(µ) 6= xe,ν if LνΓΓΓν 6= LµΓΓΓµ.

x̃e,µ(ν)(t) =(Eν−Eµ)−1(xe,µ,ν(t + 1)−Eνxe,µ,ν(t)), (III.14)

x̃e,ν(µ)(t) =(Eν−Eµ)−1(xe,µ,ν(t + 1)−Eµxe,µ,ν(t)), (III.15)

where Eν−Eµ = A−LνCν−A + LµCµ = LµCµ−LνCν.

Remark 2. We design Lµ and Lν to make Eν−Eµ invertible.

Proof. 1) Under normal operation or under disturbance, the evolution of xe,µ,ν (III.9) and xe,µ,ν(t) =
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xe,ν(t)−xe,µ(t) are substituted to (III.14),

x̃e,µ(ν)(t) =(Eν−Eµ)−1(Eνxe,ν(t)−Eµxe,µ(t)−Eν(xe,ν(t)−xe,µ(t))) = xe,µ(t). (III.16)

Similarly, x̃e,ν(µ)(t) = xe,ν(t).

2) Under sensor anomaly, the evolution of xe,µ,ν (III.13) and xe,µ,ν(t) = xe,ν(t)− xe,µ(t) are

substituted to (III.14),

x̃e,µ(ν)(t) =(Eν−Eµ)−1(Eνxe,ν(t)−Eµxe,µ(t)− (LνΓΓΓν−LµΓΓΓµ)γγγ(t)−Eν(xe,ν(t)−xe,µ(t)))

=xe,µ(t)− (Eν−Eµ)−1(LνΓΓΓν−LµΓΓΓµ)γγγ(t),
(III.17)

if LνΓΓΓν 6= LµΓΓΓµ, then x̃e,µ(t) 6= xe,µ(t).

Similarly, x̃e,ν(µ)(t) 6= xe,ν(t) if LνΓΓΓν 6= LµΓΓΓµ.

Based on Lemma 1, mnc estimation errors can be calculated for each observer. In ideal system

case, these mnc estimation errors are averaged to be the estimation error x̃e,i of each observer. The

combination of mnc estimation errors for a noisy system is introduced in Section III.4.3.2.

After getting the estimation errors of all of the observers, the next step is to analyze the con-

vergence behavior of the estimation error of each observer. For each observer, x̃e,i ∈ Rnx contains

nx states. The evolution matrix Ei of the estimation error of observer i may not be a diagonal ma-

trix. This causes the coupling of estimation errors between different states, which makes the ratio

of estimation error of each state non-constant. Therefore, instead of using the estimation errors

directly, we diagonalize the evolution matrix Ei using a basis of eigenvectors Vi. The diagonal

elements in the diagonalized matrix EΛ,i (eigenvalues of Ei), where EΛ,i = (Vi)−1EiVi, are the

same as the time-invariant observer poles. Then, we can define the convergence ratio to specify

the convergence of the estimation error for each state.

Definition 7. Convergence ratio is the ratio of the absolute value of estimation error along with
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time step t (III.18) is called the convergence ratio.

cri, j(t) =
1
κCR


∣∣∣∣∣∣∣∣

x̃( j)
e,Λ,i(t)

x̃( j)
e,Λ,i(t−1)

∣∣∣∣∣∣∣∣+
κCR∑
ki=2

ki

√√√√∣∣∣∣∣∣∣∣
x̃( j)

e,Λ,i(t)

x̃( j)
e,Λ,i(t− ki)

∣∣∣∣∣∣∣∣
 , (III.18)

where x̃e,Λ,i(t) = (Vi)−1x̃e,i(t), x̃( j)
e,Λ,i(t) is the jth element in x̃e,Λ,i(t), and κCR is a selected integer to

average the convergence ratios over κCR time steps.

Based on the above definition, the convergence ratio of each estimation error cri, j is actually

the same as the corresponding jth observer pole under normal operation. This is also indicated by

∣∣∣∣∣∣∣∣
x̃( j)

e,Λ,i(t)

x̃( j)
e,Λ,i(t− ki)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
(E j, j

Λ,i)
ki x̃( j)

e,Λ,i(t− ki)

x̃( j)
e,Λ,i(t− ki)

∣∣∣∣∣∣∣∣ =
∣∣∣∣(E( j, j)

Λ,i )ki
∣∣∣∣ , (III.19)

where E( j, j)
Λ,i is the jth diagonal element of matrix EΛ,iTherefore,

cri, j(t) =
∣∣∣∣E( j, j)

Λ,i

∣∣∣∣ ,∀t ≥ 0. (III.20)

An anomaly (a sensor anomaly or a disturbance) can change the convergence ratio of the

estimation error in two possible cases. One case is that an anomaly makes the estimation error

converge faster to zero. The other case is that an anomaly makes the estimation error converge

slower or diverge to some other non-zero value. In ideal system case, the anomalies in both cases

can be detected by comparing the convergence ratios with observer poles. If a convergence ratio

is larger or smaller than its corresponding observer pole, then this convergence ratio indicates the

occurrence of an anomaly. Definition 7 shows that (mnc + 1)×nx convergence ratios are calculated

at each time step. Because of the system noise, it is possible that some of the convergence ratios

indicate an anomaly even though there is no anomaly. So we define the system as an anomalous

system if as least half of the convergence ratios indicate anomaly. A threshold is selected for noisy

system as discussed in Section III.4.3.2.
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To achieve robust anomaly detection, a disturbance should be distinguished from a sensor

anomaly [41]. For this purpose, bias is defined

Definition 8. The term b(t) in an affine function x(t + 1) = Ax(t) + b(t) is called bias.

Under disturbance, the bias is Dd(t), which is the same for all observers. Under sensor

anomaly, the bias is −LiΓΓΓiγγγ(t), which is different for different observers. The disturbance signal

d(t) can be correctly determined when the system is under disturbance because of the correct

decoupled estimation error. In contrast, the sensor anomaly signal cannot be correctly determined

because of the incorrect decoupled estimation error and unknown ΓΓΓi. Based on this analysis, the

bias is calculated based on each observer according to (III.22) in Theorem 1.

Theorem 1. Given an ideal control system (III.1) with w(t) = 0 and v(t) = 0, the biases d̃µ(ν)(t) and

d̃Λ,µ(ν)(t) are calculated according to (III.21) and (III.22) respectively, with the following results:

1. When the system is under disturbance,

∀µ,ν =0,1, ...,mnc∧µ 6= ν,

d̃µ(ν)(t) =d̃Λ,µ(ν)(t) = d(t).

2. When the system is under sensor anomaly,

∀µ,ν =0,1, ...,mnc∧µ 6= ν,

d̃µ(ν)(t) =d̃ν(µ)(t),

d̃Λ,µ(ν)(t) 6=d̃Λ,ν(µ)(t) i f Vµ 6= Vν.

d̃µ(ν)(t) =(DᵀD)−1Dᵀ[x̃e,µ(ν)(t + 1)−Eµx̃e,µ(ν)(t)],
(III.21)

d̃Λ,µ(ν)(t) =((DΛ,µ)ᵀDΛ,µ)−1(DΛ,µ)ᵀ[x̃e,Λ,µ(ν)(t + 1)−EΛ,µx̃e,Λ,µ(ν)(t)], (III.22)
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where DΛ,µ = (Vµ)−1D, and EΛ,µ = (Vµ)−1EµVµ.

For the proof of Theorem 1, see Appendix VI.2.

Theorem 1 shows that (mnc + 1)×mnc biases are calculated at each time step. Each bias is

compared with other biases. If any two biases disagree with each other, then the system is under

sensor anomaly. If all of the biases agree with each other, indicating that the system is under

disturbance, then we can determine the disturbance signal by averaging all of the biases. The

combination of all of the biases for a noisy system is introduced in Section III.4.3.2.

III.4.3.2 Noisy System Case

Lemma 1 and Theorem 1 in Section III.4.3.1 show the effectiveness of the CR method in

sensor anomaly detection when the system is ideal. In practice, we also need to consider system

noise: process noise and sensor noise. When only process noise exists in the system, the output

of the system can still be correctly measured, which means the state of the system can be exactly

known. Therefore, process noise does not affect the accuracy of the estimation error calculation.

However, when sensor noise contaminates the sensor measurements, the estimation error cannot

be correctly calculated. The boundedness of sensor noise ensures the boundedness of the error of

estimation error ‖x̃e,µ(ν) − xe,µ‖. Lemma 2 and Lemma 3 give the impact of process noise and the

impact of sensor noise on the estimation error calculation, respectively.

Lemma 2. Given a control system (III.1) with bounded process noise and v(t) = 0, x̃e,µ(ν)(t) = xe,µ(t)

still holds when the system is under normal operation or under disturbance.

Proof. When the system is subject to the process noise w(t), the estimation error evolution be-

comes:

xe,µ(t + 1) =Eµxe,µ(t) + w(t). (III.23)

Then the difference of the estimated states between two observers µ and ν is the same as (III.9).
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By substituting (III.9) to (III.14), the calculated estimation error becomes

x̃e,µ(ν)(t) =(Eν−Eµ)−1[Eνxe,ν(t)−Eµxe,µ(t)−Eν(xe,ν(t)−xe,µ(t))] = xe,µ(t). (III.24)

Lemma 3. Given a control system (III.1) with bounded sensor noise and w(t) = 0, ‖x̃e,µ(ν)(t)−

xe,µ(t)‖ is bounded by ‖(Eν−Eµ)−1‖(‖Lν‖+ ‖Lµ‖)v.

For the proof of Lemma 2, see Appendix VI.2.

Lemma 3 shows that the impact of sensor noise is different for estimation errors calculated

based on different pairs of observers. Thus, when calculating the estimation error of each observer,

we combine its mnc decoupled estimation errors with different weighting ratios. The weighting

ratio is determined based on the bound of ‖x̃e,µ(ν)−xe,µ‖. If the bound of ‖x̃e,µ(ν)−xe,µ‖ is larger, then

the corresponding weighting ratio is smaller. The combined estimation error and the weighting

ratio are shown as follows

x̃e,µ(t) =Σ
mnc
ν=0,ν 6=µφνx̃e,µ(ν)(t),

Σ
mnc
ν=0,ν 6=µφν =1,

φν =
1

mnc−1

Σ
mnc
j=0, j6=µ, j 6=νeµ( j)

Σ
mnc
j=0, j6=µeµ( j)

,

xe,µ(ν) =‖(Eν−Eµ)−1‖(‖Lν‖+ ‖Lµ‖)v.

(III.25)

The sensor noise affects the accuracy of estimation error decoupling, thus affecting the con-

vergence ratios and sensor anomaly detection. Lemma 3 indicates that the impact of sensor noise

can be mitigated by choosing the observer gains Lµ and Lν with smaller norms. An observer gain

with a smaller norm, however, may reduce the convergence speed of the estimation error. Thus,

there is a trade-off in choosing observer gains. The impact of sensor noise on the convergence

ratios can also be mitigated via averaging over κCR time steps as shown in Definition 7. In addi-
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tion to techniques for mitigating the impact of sensor noise, a threshold θCR for convergence ratios

should be selected to balance the tolerance of system noise and the ability to detect an anomaly.

As discussed in Section III.4.3.1, the convergence ratios are the same as the observer poles under

normal operation but they are different from observer poles under anomaly in ideal case. However,

the observer poles are usually selected to be close to 0 to ensure fast observer’s estimation error

convergence and noise exists on the system. So we select a upper threshold θCR, which is larger

than the largest observer pole but less than one. Then the sensor anomaly, which makes the esti-

mation error converge faster, cannot be detected by the CR method. With the threshold θCR, the

lower bound of the sensor anomaly signal that can be detected is (κCR = 1)

‖γγγ(t)‖ ≥‖{(Eν−Eµ)−1} j(LνΓΓΓν−LµΓΓΓµ)‖−1

(θCR‖x
( j)
e,µ(t−1)‖+ (1 + θCR)‖{(Eν−Eµ)−1} j‖(‖Lν‖+ ‖Lµ‖)v + ‖x( j)

e,µ(t)‖),
(III.26)

where {(Eν−Eµ)−1} j is the jth row of matrix (Eν−Eµ)−1. This lower bound is proportional to the

threshold θCR and the bound of the sensor noise v.

Both the process noise and the sensor noise affect the accuracy of the bias calculation, thus

affecting the ability to distinguish a disturbance from a sensor noise. Based on the boundedness

of the process noise and the sensor noise, the error of the bias calculation ‖d̃Λ,µ(ν)(t)− d(t)‖ is

also bounded when the system is under disturbance. Lemma 4 and Lemma 5 give the bound of

‖d̃Λ,µ(ν)(t)−d(t)‖ under disturbance when the system is subject to either the process noise or the

sensor noise, respectively.

Lemma 4. Given a control system (III.1) with bounded process noise and v(t) = 0, ‖d̃Λ,µ(ν)(t)−d(t)‖

is bounded by ‖((DΛ,µ)ᵀDΛ,µ)−1(DΛ,µ)ᵀ(Vµ)−1‖w.

For the proof of Lemma 4, see Appendix VI.2.

Lemma 5. Given a control system (III.1) with bounded sensor noise and w(t) = 0, ‖d̃Λ,µ(ν)(t)−d(t)‖

is bounded ‖((DΛ,µ)ᵀDΛ,µ)−1(DΛ,µ)ᵀ(Vµ)−1‖(1 + ‖Eµ‖)‖(Eν−Eµ)−1‖(‖Lν‖+ ‖Lµ‖)v.

For the proof of Lemma 5, see Appendix VI.2.
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Combining Lemma 4 and Lemma 5, the bound of the error of the bias calculation is

‖d̃Λ,µ(ν)(t)−d(t)‖ ≤ ‖((DΛ,µ)ᵀDΛ,µ)−1(DΛ,µ)ᵀ(Vµ)−1‖(w + (1 + ‖Eµ‖)‖(Eν−Eµ)−1‖(‖Lµ‖+ ‖Lν‖)v).

(III.27)

Notice that the bounds are different for biases calculated based on different pairs of observers,

and that they are all zero-mean. Based on the bounds, one specific threshold θd,µ(ν),ζ(η) (µ,ν,ζ,η =

0, ..,mnc ∧ µ 6= ν∧ ζ 6= η) can be selected to compare with the difference between any two biases

averaged over κCR time steps, thus determining whether the system is under disturbance or sensor

anomaly. If any one pair of the biases exceeds the corresponding threshold, then the system is

under sensor noise. Otherwise, the system is under disturbance.

If the system is under disturbance, the combination of the weighted biases is considered

as the disturbance signal. The weighting ratio of each bias is determined based on the bound of

‖d̃Λ,µ(ν)(t)−d(t)‖. If the bound is larger, then the corresponding weighting ratio is smaller. The

combined bias and the weighting ratio are shown as follows

d̃(t) =Σ
mnc
ν=0,ν 6=µΣ

mnc
µ=0ψµ(ν)d̃Λ,µ(ν)(t),

Σ
mnc
ν=0,ν 6=µΣ

mnc
µ=0ψµ(ν) = 1,

ψµ(ν) =
1

(mnc + 1)mnc−1

Σ
mnc
j=0, j6=iΣ

mnc
i=0,i6=µdi( j) +Σ

mnc
j=0, j6=νdµ( j)

Σ
mnc
j=0, j6=iΣ

mnc
i=0 di( j)

,

dµ(ν) =‖((DΛ,µ)ᵀDΛ,µ)−1(DΛ,µ)ᵀ(Vµ)−1‖(w + (1 + ‖Eµ‖)‖(Eν−Eµ)−1‖(‖Lµ‖+ ‖Lν‖)v).

(III.28)

Algorithm 2 shows the procedure of the CR method. The CR method contains three steps.

The first step is to calculate the estimation error for each observer. Then the convergence ratios of

the estimation errors are used to detect the occurrence of an anomaly. If an anomaly is detected,

biases are calculated and analyzed to determine whether the anomaly is a disturbance or a sensor

anomaly.

49



Figure III.7: Alarms IF of the CR method under sensor anomaly α

Fig. III.7 shows the alarms generated by the CR method under sensor anomaly α. During

the observers’ transient state, false alarms are eliminated compared to Fig. III.4b, Fig. III.5b and

Fig. III.6b. When the system is under sensor anomaly α, there is an 2s detection delay, which is

caused by κCR for averaging the convergence ratio and the threshold θCR. The detection delay is

decreased compared to the 8s detection delay in Fig. III.4.

III.4.4 MOLO Method for Critical Sensor Anomaly Diagnosis

The MOLO method has the potential to diagnose anomalies in critical sensors. It consists of

multiple groups of open-loop observers. The states of the open-loop observers are updated period-

ically by the estimated state of the closed-loop observer using all of the sensor measurements. The

open-loop observers in different groups have different update frequencies. Residuals are formed

based on the difference between the measured outputs of the system and the estimated outputs

calculated based on the estimated states by the open-loop observers. Then the averaged residual

is analyzed to determine the occurrence of a critical sensor anomaly, and to isolate the anomalous

sensor.

In noise-free case (w(t) = 0,v(t) = 0), the MOLO method only works if the open-loop system

is stable or marginally stable. This is due to the fact that the estimation error of open-loop observer

xe,o(t) will diverge if the system is unstable, i.e., the eigenvalues of A lie outside of the unit circle,
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Algorithm 2: CR method for sensor anomaly detection
function CR;
Input : x̃i(t− κCR : t + 1)(i = 0,1, ...,mnc) from time step t− κCR to t + 1
Output: IA, IF , ID, d̃(t−1)
//Estimation error calculation;
for µ = 0 to mnc do

for ν = 0 to mnc do
if µ 6= ν then

xe,µ,ν(t) = x̃µ(t)− x̃ν(t);
xe,µ,ν(t + 1) = x̃µ(t + 1)− x̃ν(t + 1);
x̃e,µ(ν)(t) = (Eν−Eµ)−1(xe,µ,ν(t + 1)−Eνxe,µ,ν(t));
x̃e,Λ,µ(ν)(t) = (Vµ)−1x̃e,µ(ν)(t);

end
end
x̃e,µ(t) = Σ

mnc
ν=0,ν 6=µφνx̃e,µ(ν);

x̃e,Λ,µ(t) = (Vµ)−1x̃e,µ(t);
//Convergence ratio calculation;
for j = 1 to nx do

crµ, j(t) = 1
κCR


∣∣∣∣∣∣ x̃( j)

e,Λ,µ(t)

x̃( j)
e,Λ,µ(t−1)

∣∣∣∣∣∣+∑κCR
ki=2

ki

√∣∣∣∣∣∣ x̃( j)
e,Λ,µ(t)

x̃( j)
e,Λ,µ(t−ki)

∣∣∣∣∣∣
;

//Anomaly detection;
if crµ, j(t) > θCR then

IA = IA + 1;
end

end
end
//Determine whether it is a sensor anomaly or a
disturbance;
if IA ≥

(mnc+1)×nx
2 then

for i = 1 to mnc do
d̃Λ,µ(ν)(t−1) = ((DΛ,µ)ᵀDΛ,µ)−1(DΛ,µ)ᵀ[x̃e,Λ,µ(ν)(t)−EΛ,µx̃e,Λ,µ(ν)(t−1)];

end
if
Any avg(d̃Λ,µ(ν)(t−1− κCR : t−1)− d̃Λ,ζ(η)(t−1− κCR : t−1)) > θd,µ(ν),ζ(η)
then

IF = 1;
else

ID = 1;
d̃(t−1) = Σ

mnc
ν=0,ν 6=µΣ

mnc
µ=0ψµ(ν)d̃Λ,µ(ν)(t−1);

end
end
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according to (III.29).

xe,o(t) = x(t)− x̂(t) = Atxe,o(t0), (III.29)

where xe,o(t0) is the initial estimation error. After introducing system noise, the condition for the

estimation error of an open-loop observer to be bounded is given in Proposition 1.

Proposition 1. Given a control system (III.1), and an open-loop observer (III.3), the following

results can be drawn:

1. If all of the eigenvalues of A lie inside the unit circle, then the estimation error of an open-loop

observer is bounded; and

2. If one or more of the eigenvalues of A lie on the unit circle and ‖A‖ = 1, then the estimation error

of an open-loop observer is bounded.

For the proof of proposition 1, see Appendix VI.2.

For systems that do not satisfy the conditions in Proposition 1, we need to periodically update

the state of the open-loop observer with the state estimated by the closed-loop observer 0 which

uses all of the sensor measurements when no sensor anomaly is detected. The initial estimation

error of the open-loop observer is then the same as the estimation error of the closed-loop observer.

There is a trade-off between the estimation performance and the ability to detect a critical

sensor anomaly. If the update frequency is fast, then the state estimated by the open-loop observer

can track the state estimated by the closed-loop observer well, which is indicated by

xe,o(t) =Atxe(t0) +Σ
t−t0−1
i=0 Aiw(t−1− i), (III.30)

where xe(t0) is the estimation error of the closed-loop observer 0. If t is smaller, then the divergence

of Σ
t−t0−1
i=0 Aiw(t−1− i) is smaller, which means a better estimation under normal operation. How-

ever, fast update frequency can degrade the ability to detect a sensor anomaly, which is indicated
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by

r(t) = y(t)−Cx̂(t) = C(Atxe(t0) +Σ
t−t0−1
i=0 Aiw(t−1− i)) + v(t) +ΓΓΓγγγ(t). (III.31)

The ramp sensor anomaly signal γγγ(t) is increasing with the time step t. At the time step that γγγ(t) is

significant, the sensor anomaly can be detected.

The above discussion on the trade-off shows the necessity to have multiple open-loop ob-

servers for a marginally stable system with ‖A‖ > 1. In this chapter, we divide the multiple open-

loop observers into M groups. Group 1 has the slowest update frequency and group M has the

fastest update frequency. Each group has N observers with the same update frequency. Based

on the trade-off, if one group triggers an alarm, then the groups with slower update frequencies

generate alarms as well, but the groups with faster update frequencies may not generate alarms. So

if all of the groups detect a sensor anomaly, then we can say that the sensor anomaly signal has a

large slope. If only some of the groups detect a sensor anomaly, then we can say that the sensor

anomaly signal has a small slope.

Although the estimated state under the case that ‖A‖ > 1 may diverge for a marginally stable

system, we can mitigate the impact of the process noise via averaging because the process noise has

zero mean. To average the residuals, we need to find the time steps that the open-loop observers

have similar divergence caused by system noise. Taking one open-loop observer for example,

the state of the open-loop observer is updated every κ f ,g time steps and has been updated for jN

times. At time step t + ( jN − 1)κ f ,g, we need to average the residual at time steps t + ( jN − j)κ f ,g

( j = 1, ..., jN) to mitigate the impact of system noise. Proposition 2 validates the effectiveness of

averaging.

Proposition 2. Given a control system (III.1), an open-loop observer is updated every κ f ,g time

steps. The impact of the system noise on the averaged residual (VI.24) is mitigated.

ravg,g(t + ( jN −1)κ f ,g) =
1
jN

Σ
jN
j=1rg(t + ( jN − j)κ f ,g), (III.32)
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where jN is a positive integer.

For the proof of proposition 2, see Appendix VI.2.

Proposition 2 shows the averaging method if we only have one open-loop observer in each

group. Then the time steps that are needed for averaging is about jN · κ f ,g, which is large. To

reduce the time steps for averaging, we have N (N ≤ κ f ,g) open-loop observers in each group. We

evenly distribute the time steps to update the states of the open-loop observers within the same

group during one update period and we have

N =

⌊
κ f ,g

κ∆,g

⌋
, (III.33)

where κ∆,g is the update time step interval between two adjacent open-loop observers i and i + 1 in

group g. Then we calculate the average of the residuals generated by the open-loop observers in

the same group.

In order to average the residuals of N observers, we need the following definition

Definition 9. The leading observer is the open-loop observer which has not been updated for the

longest time steps among all of the observers in the same group during the time steps ( j−1) · κ∆,g

and j · κ∆,g, where j is a positive integer. The leading observer could be found according to the

following formula

Hg = d
t− κ f ,gb

t
κ f ,g
c

κ∆,g
e+ 1. (III.34)

Note that if d
t−κ f ,gb

t
κ f ,g
c

κ∆,g
e equals N, then set Hg = 1.

To average the residuals, the first step is to find the leading observer during the time steps

( j− 1) · κ∆,g and j · κ∆,g. Fig. III.8 helps explain how we average the residuals generated by a

group of three observers. Suppose we are at time step t1, which is during the first update period

κ f ,g. We simply average all the estimated states at time step t1. Suppose we are at time step t2.

Observer (g,1) has not been updated for t2 − κ f ,g time steps, which is larger than that of observer
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Figure III.8: Residuals averaging

(g,2) (t2− κ f ,g− κ∆,g) and that of observer (g,3) (t2− κ f ,g−2κ∆,g). Therefore, observer (g,1) is the

leading observer at time step t2. Based on this leading observer, we find the corresponding time

steps when the divergence is similar for the other two observers. After getting the three estimated

states, we can calculate the averaged residual at time step t2. It can been seen that the averaged

residual is generated over 2κ f ,g time steps. The following formula shows the averaged residual at

time step t

ravg,g(t) =
1
N

(ΣHg
i=1rg,i(t− (Hg− i)κ∆,g) +ΣN

i=Hg+1rg,i(t− κ f ,g + (i−Hg)κ∆,g)). (III.35)

The average of the finite zero-mean random vector (N <∞) does not exactly equal the zero

vector. Based on the bounds of the system noise and update period κ f ,g, a threshold θθθMOLO,g can

be set for each group to compare with the averaged residual ravg,g. Notice that θθθMOLO,g ∈ Rny is a

vector. We compare each element r( j)
avg,g(t) in ravg,g(t) with the corresponding element θθθ( j)

MOLO,g in

θθθMOLO,g. If r( j)
avg,g(t) ≥ θ( j)

MOLO,g, then group g triggers an alarm. Once the alarm is triggered, the

states of the group of the open-loop observers are not updated by the closed-loop observer until the

alarm is cleared.

Logic is applied to determine whether the system is under sensor anomaly or under normal

operation based on which groups trigger alarms. Based on the discussion about the trade-off, if
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a group triggers an alarm, the groups with slower update frequencies should also trigger alarms

theoretically. Therefore, we find the group g′ which has the fastest update frequency among the

groups that trigger alarms. If the majority of groups from 1 to g′ trigger alarms, i.e., the inequality

(III.36) holds, then the system is under sensor anomaly. Otherwise, it could be false alarms and

the system is under normal operation.

1
g′

Σ
g′

g=1IF,g(t) ≥ θ f , (III.36)

where θ f is a selected value with range 0.5 to 1. The sensor j, which makes the most of the groups

that trigger alarms have r( j)
avg,g(t) ≥ θθθ( j)

MOLO,g(g = 1,2, ...,g′), is identified as the anomalous sensor.

When the system is subject to a sensor anomaly on a critical sensor, the averaged residual is

ravg,g(t) =
1
N

(ΣN
i=1rg,i(t− (N − i)κ∆,g)

=
1
N

ΣN
i=1CAt3e(t− t3− (N − i)κ∆,g) +

1
N

ΣN
i=1ΓΓΓγγγ(t− (N − i)κ∆,g).

(III.37)

The above equation is drawn based on the assumption that observer N is the leading observer at

time step t and it is updated at time step t− t3. Suppose the sensor anomaly starts between time

step t− t3 and t. Theorem 1 in [61] indicates that ‖xe(t− t3− (N− i)κ∆,g)‖ < ε,∀N, where ε is a small

positive number and it is related to system noise and initial estimation error. Therefore, the sensor

anomaly signal could increase the averaged residual generated by multiple open-loop observers,

thus detected by the MOLO method. If the slope of the ramp sensor anomaly signal is arbitrarily

small, then the sensor anomaly signal can still bypass the MOLO method.

Remark 3. The sensor anomaly signal could be designed to make ΣN
i=1ΓΓΓγγγ(t− (N − i)κ∆,g) = 0 in

order to bypass the multiple open-loop observers. That means, however, the sensor anomaly signal

is changing around zero every κ∆,g time steps. If the change is small, then the impact of the

sensor anomaly is insignificant. If the change is large, then the sensor anomaly signal can cause a

significant change in the residual generated by a closed-loop observer.
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Although this approach cannot guarantee the detection of a sensor anomaly with arbitrarily

small slope, a sensor anomaly with a small slope would take a long time to disrupt the performance

of the system. In addition, if the sensor anomaly is caused by an attack, this long time increases

the cost of the attack implementation. During this time, other techniques, such as sensor fusion,

may have already detected the sensor anomaly.

Algorithm 3 shows the procedure of the MOLO method. At each time step, we first find

the leading observer. Then we average the residuals for each group. Then the averaged residual

is analyzed to determine the occurrence of a critical sensor anomaly, and isolate the anomalous

sensor. After the anomalous sensor is detected, if the system is stable or marginally stable with

‖A‖= 1, then we can directly use the state estimated by an open-loop observer for the state feedback

controller as indicated in Proposition 1. Otherwise, we need to replace the anomalous sensor.

Fig. III.9 shows the performance of the MOLO method under sensor anomaly β. In this

example, we have two groups of open-loop observers. Group 1 has update period 8s and group 2

has update period 2s. There are 20 observers in each group and the update time steps are distributed

evenly within one update period. Fig. III.9a shows the averaged residuals and Fig. III.9b shows

the alarms of the two groups. After the first update period, the averaged residual is less noisy

and the threshold of each group could be smaller. It can also be seen that the sensor anomaly is

successfully detected by Group 1 at about 27s but bypasses Group 2. This is because the update

period of Group 2 is too short compared to the slope of the sensor anomaly signal. Overall, sensor

anomaly β is successfully detected by the MOLO method compared to Fig. III.5.

III.4.5 CCI Method for non-Critical Sensor Anomaly Mitigation

The CCI method can potentially mitigate the impact of an anomaly in a non-critical sensor

during the diagnosis process. At each time step, this method selects the closed-loop observer,

based on which the state feedback controller gives the smallest divergence of the control input.

This divergence is defined as follows:
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Algorithm 3: MOLO method for critical sensor anomaly diagnosis
function MOLO;
Input : y(t),u(t), x̃0(t), IF,g(t−1), x̂g,i
Output: IF , IF,g(t), i f , x̂g,i(t + 1)
for g = 1 to M do

Hg = d
t−κ f ,gb

t
κ f ,g
c

κ∆,g
e+ 1;

if Hg > N then
Hg = 1;

end
for i = 1 to N do

if time to update x̂g,i then
x̂g,i(t) = (1− IF,g(t−1))x̃0(t) + IF,g(t−1)x̂g,i(t);
x̂g,i(t + 1) = Ax̂g,i(t) + Bu(t);

else
x̂g,i(t + 1) = Ax̂g,i(t) + Bu(t);

end
//Residuals generation;
rg,i(t) = y(t)−Cx̂g,i(t)

end
//Averaged residual;
if t ≤ κ f ,g then

ravg,g(t) = 1
N ΣN

i=1rg,i(t);
else

ravg,g(t) = 1
N (ΣHg

i=1rg,i(t− (Hg− i)κ∆,g) +ΣN
i=Hg+1rg,i(t− κ f ,g + (i−Hg)κ∆,g));

end
end
//Sensor anomaly diagnosis;
tmp = 0; //The number of groups that trigger alarms;
tmpsensor, j = 0; //The sensor that each group thinks it is
anomalous;
for g = 1 to M do

for j = 1 to nx do
if r( j)

avg,g(t) ≥ θθθ( j)
MOLO,g then

IF,g(t) = 1;
g′ = g;
tmp = tmp + 1;
tmpsensor, j = tmpsensor, j + 1;

end
end

end
if 1

g′Σ
g′

g=1IF,g(t) ≥ θ f then
IF = 1;
i f = max j tmpsensor, j;

end
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(a) The averaged residuals of the two
groups of observers: Group 1 has update
period 8s and Group 2 has update period
2s

(b) Alarms of the two groups IF,1 and IF,2

Figure III.9: The performance of the MOLO method under sensor anomaly β

Definition 10. Divergence of the control input ‖∆∆∆ui‖ is the absolute difference between the calcu-

lated control input based on the closed-loop observer and that based on an open-loop observer.

‖∆∆∆ui(t)‖ = ‖Fx̃i(t)−Fx̂(t)‖. (III.38)

The open-loop observer in the CCI method is slightly different from those used in the MOLO

method. Since the CCI method switches among several closed-loop observers from time to time,

the state of the open-loop observer should be updated to be the estimated state by the closed-loop

observer which is used for feedback at time step t. For example, if closed-loop observer i is used

for feedback at time step t, then we need to calculate the estimated state x̂(t + 1) of the open-loop

observer with the initial state x̃i(t).

First, we analyze this method in ideal system, and give the lower bound of the sensor anomaly

signal that the CCI method can switch to the observer without the anomalous sensor during the

diagnosis process. Then, we analyze the impact of system noise on the lower bound of the sensor

anomaly signal.
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III.4.5.1 Ideal System Case

Under normal operation, the divergence of the control input calculated based on a closed-

loop observer is a function of its estimation error. Under sensor anomaly, the closed-loop observer

without anomalous sensor gives the best state estimation, thus the smallest divergence. Theorem

2 demonstrates that the divergence of the control input ‖∆∆∆ui f (t + 1)‖ based on the closed-loop ob-

server i f without the anomalous sensor i f is smaller than that based on other closed-loop observers

with the anomalous sensor.

Theorem 2. Given an ideal control system (III.1) with w(t) = 0 and v(t) = 0, and a sensor anomaly

starting at time step t on sensor i f , observer i f gives the smallest divergence of the control input

‖∆∆∆ui f (t + 1)‖ if the lower bound of the sensor anomaly signal satisfies (III.39).

∀i =0,1, ...,mnc, i 6= i f ,

‖γγγ(t)‖ ≥‖FLiΓΓΓi‖
−1[‖FLi f Ci f xe,i f (t)‖+ ‖FLiCixe,i(t)‖+ ‖FAxe,i f ,i(t)‖].

(III.39)

Proof. With anomalous sensor i f starting at time step t, observer i f is not affected by the anoma-

lous sensor. The estimated state x̃i(t +1) of observer i (i 6= i f ) containing the anomalous sensor and

the estimated state x̃i f (t + 1) observer i f are

x̃i(t + 1) =Eix̃i(t) + Li(Cix(t) +ΓΓΓiγγγ(t)) + Bu(t),

x̃i f (t + 1) =Ei f x̃i f (t) + Li f Ci f x(t) + Bu(t).
(III.40)

Since the initial state of the open-loop observer is the same as the estimated state of the

observer which is used for feedback at time step t, two cases should be considered:

1. At time step t, observer i (i 6= i f ) is used for feedback,

x̂(t + 1) = Ax̃i(t) + Bu(t). (III.41)
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2. At time step t, observer i f is used for feedback,

x̂(t + 1) = Ax̃i f (t) + Bu(t). (III.42)

Under case 1), the divergence of the control input of observer i f and observer i (i 6= i f ) are

shown in (III.43) and (III.44), respectively.

‖∆∆∆ui f (t + 1)‖ =‖FAxe,i f ,i(t) + FLi f Ci f xe,i f (t)‖, (III.43)

‖∆∆∆ui(t + 1)‖ =‖FLiCixe,i(t) + FLiΓΓΓiγγγ(t)‖. (III.44)

So when the lower bound of the sensor anomaly signal satisfies (III.39), observer i f gives the

smallest divergence of the control input, and is selected to provide feedback for the state feedback

controller at time step t + 1. The same result is also drawn for case 2).

Based on Theorem 2, when the system is under non-critical sensor anomaly and the sensor

anomaly signal satisfies (III.39), the CCI method can switch to the observer without the anomalous

sensor before the anomalous sensor is identified. If the magnitude or the slope of the sensor

anomaly signal is too small, then the CCI method may not be able to select the observer without

the anomalous sensor to mitigate the impact of sensor anomaly; and the lower bound of the sensor

anomaly signal during the observers’ transient state is larger than that during steady state because

of the relatively large estimation error. In order to reduce the lower bound of the sensor anomaly

signal, horizon size κCCI is introduced to calculate the divergence of the control input to consider

the impact of the integral of the sensor anomaly signal over κCCI steps. Therefore, at each time

step t, we need to recalculate the state of the open-loop observer with initial state same as the

estimated state x̃i(t + 1− κCCI) of the selected closed-loop observer at time step t + 1− κCCI . Then,
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the divergence of the control input of observer i f and i are

‖∆∆∆ui f (t + 1)‖ =‖F(−(Ei f )
κCCI xe,i f (t + 1− κCCI) + AκCCI xe,i f (t + 1− κCCI))‖, (III.45)

‖∆∆∆ui(t + 1)‖ =‖F(−(Ei)κCCI xe,i(t + 1− κCCI)−Σ
κCCI−1
j=0 (Ei) jLiΓΓΓi f (t− j) + AκCCI xe,i f (t + 1− κCCI))‖.

(III.46)

Thus, the lower bound of the integral of the sensor anomaly signal is

‖Σ
κCCI−1
j=0 F(Ei) jLiΓΓΓiγγγ(t− j)‖ ≥2‖FAκCCI xe,i f (t + 1− κCCI)‖

+ ‖F(Ei f )
κCCI xe,i f (t + 1− κCCI)‖+ ‖F(Ei)κCCI xe,i(t + 1− κCCI)‖.

(III.47)

If the sensor anomaly starts between time steps t + 1− κCCI and t, xe,i f (t + 1− κCCI) and

xe,i(t + 1− κCCI) are very small. In addition, the absolute value of the eigenvalues of Ei f and Ei

are smaller than 1. Increasing the horizon step κCCI and placing the observer poles closer to the

origin can reduce both ‖F(Ei f )
κCCI xe,i f (t + 1− κCCI)‖ and ‖F(Ei)κCCI xe,i(t + 1− κCCI)‖. For the term

‖FAκCCI xe,i f (t + 1− κCCI)‖, however, we need to consider three conditions: A is stable, marginally

stable and unstable. If the open-loop system is stable or marginally stable, i.e., the eigenvalues of

A lie inside or on the unit circle, the term ‖FAκCCI xe,i f (t + 1− κCCI)‖ is bounded. Thus, increasing

κCCI can reduce the lower bound of the sensor anomaly signal and increase the ability of the CCI

method to select the observer without the anomalous sensor. If the open-loop system is unstable,

i.e., the one or more eigenvalues of A lie inside the unit circle, the term ‖FAκCCI xe,i f (t + 1− κCCI)‖

is diverging, which reduces the ability of the CCI method. Therefore, the selection of the optimal

horizon step κCCI depends on the property of the physical system.

III.4.5.2 Noisy System Case

With system noise, the lower bound of the sensor anomaly signal is increased as shown in

Lemma 6 (the horizon step κCCI is not considered in Lemma 6).
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Lemma 6. Given a control system (III.1), and a sensor anomaly starting at time step t on sensor

i f , observer i f gives the smallest divergence of the control input if the lower bound of the sensor

anomaly signal satisfies (III.48).

∀i =0,1, ...,mnc, i 6= i f ,

‖γγγ(t)‖ ≥‖FLiΓΓΓi‖
−1(‖FLi f Ci f xe,i f (t)‖+ ‖FLiCixe,i(t)‖+ ‖FAxe,i f ,i(t)‖+ ‖FLi f ‖vi f + ‖FLi‖vi).

(III.48)

The proof is similar to that for Theorem 2.

The transient dynamics caused by switching among observers may degrade the performance

of the control system [53]. To avoid frequently switching, a threshold θCCI is used to decide when

to enable or disable the switching. θCCI should be selected to balance the frequency of switching

and the ability to mitigate the impact of the sensor anomaly.

Algorithm 4 gives the procedure of the CCI method. At each time step, the CCI method

calculates the estimated state of an open-loop observer with the initial state the same as the se-

lected observer at time step t + 1− κCCI . Then it switches to the observer which gives the smallest

divergence of the control input if the switching is enabled.

Fig. III.10 shows the system with the CCI method under sensor anomaly α. The maximum

absolute value of position under sensor anomaly is 4cm, which is smaller than that with the CO

method as shown in Fig. III.4a. During the detection delay (2s), the CCI method has already

switched to observer 1 for state estimation at 13s, thus mitigating the impact of the sensor anomaly.

III.4.6 Integration of CO, CR, MOLO and CCI Methods

In this section, the three new methods, CR, MOLO, and CCI methods are introduced and

compared with the CO methods through simulation to show the improvements.

63



Algorithm 4: CCI method for non-critical sensor anomaly mitigation
function CCI;
Input : t, x̃i(t + 1), x̃i(t + 1− κCCI) (i = 0, ...,mnc), IFB(t + 1− κCCI)
Output: IFB(t + 1)
//Open-loop observer state estimation;
if t > κCCI then

x̂(t + 1) = AκCCI x̃IFB(t+1−κCCI)(t + 1− κCCI) +Σ
κCCI−1
j=0 A jBu(t− j)

else
x̂(t + 1) = At+1x̃0(t0) +Σt

j=0A jBu(t− j)
end
//Control input calculation;
uo(t + 1) = Fx̂(t + 1);
ui(t + 1) = Fx̃i(t + 1);
‖∆∆∆ui(t + 1)‖ = ‖ui(t + 1)−uo(t + 1)‖;
if ‖∆∆∆ui(t + 1)‖ ≥ θCCI for all i then

IFB(t + 1) = mini ‖∆∆∆ui(t + 1)‖;
else

IFB(t + 1) = IFB(t);
end

(a) Estimated states of both observers
x̃0, x̃1, real state x, and sensor measure-
ment y of the system

(b) Selected observer index IFB with the
CCI method during time 10s and 20s

Figure III.10: The performance of the CCI method under sensor anomaly α
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• The CR method enables sensor anomaly detection during the observers’ transient state, and no

false alarms generated compared to CO method;

• The MOLO method successfully detects the critical sensor anomaly, while CO method fails; and

• The CCI method switches to the observer without the anomalous sensor during the diagnosis pro-

cess, and the position of the object during sensor anomaly is reduced to 0.04m compared to 0.3m

with CO method.

We systematically integrate all of the above methods to utilize their advantages, improving

the overall performance of sensor anomaly diagnosis and mitigation. Algorithm 5 shows the in-

tegration of the CO, CR, MOLO, and CCI methods. At each time step, the CCI method is used

to mitigate the impact of a potential sensor anomaly. Then the CR method determines whether

there is a anomalous sensor on the system. If the CR method flags an alarm, and if the system

observers have reached their steady state under normal operation (t > tss, where tss is the number

of time steps that is needed for observers to reach their steady state), the CO method is used to

isolate the anomalous sensor, and the system switches to the observer that can mitigate the impact

of the sensor anomaly after the anomalous sensor is isolated. Meanwhile, the MOLO method de-

tects whether there is an anomaly on a critical sensor. Robust control design in the presence of a

disturbance is not within the scope of this dissertation.

III.5 Illustrative Example

A simplified suspension system (a two-mass-two-spring system) [83] is used to test the pro-

posed algorithm with four methods. The system shown in Fig. III.11 has five states: position h1 of

mass 1, velocity ḣ1 of mass 1, distance between two mass h, velocity ḣ, and integral of h, which

is used to achieve zero steady-state error. The five states are measured by five sensors directly, as

shown in Table III.2. A controller controls the system through u. Potential disturbance comes from

the ground. We want to maintain h to stay at 0m, which is also the reference signal of this system.
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Algorithm 5: Integration of four methods
for t = t0 to the end of simulation do

//Estimated state of closed-loop observers;
x̃i(t + 1) = Eix̃i(t) + Liyi(t) + Bu(t);
//Diagnosis and Mitigation begins;
IFB(t + 1) = CCI(t, x̃i(t + 1), x̃i(t + 1− κCCI), IFB(t + 1− κCCI));
u(t + 1) = Fx̃IFB(t+1)(t + 1);
[IA, IF , ID, d̃(t−1)] = CR(x̃i(t− kCR : k + 1));
if ID = 0 and t ≥ tss then

[IF , IF,g(t), i f , x̂g,i(t + 1)] = MOLO(y(t),u(t), x̃0(t), IF,g(t−1), x̂g,i);
end
if IF = 1 and t ≥ tss then

[IF , i f ] = CO(y(t), x̃i);
IFB(t + 1) = i f ;
u(t + 1) = Fx̃IFB(t+1);

else if IF,g = 1 for any g then
if A is stable or A is marginally stable and ‖A‖ ≤ 1) then

u(t + 1) = −Fx̂g,1(t + 1);
else

Replace the anomalous sensor i f
end

else
Robust control to tolerate disturbance

end
end

Figure III.11: Simplified suspension system
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The system has sampling time 0.01s, process noise bound 0.001 (m or m/s) and sensor noise

bound 0.01 (m or m/s). The observers’ transient state is about 0.1s (10 time steps). The initial

state of the system is (0,0,0,0,0). The initial state of the observers is (0.02,0.01,1,0,0). Table

III.3 shows part of parameters of the four methods.

Table III.2: Sensors of the Simplified Suspension System

Variable Set
Sensor 1 h1 S nc
Sensor 2 ḣ1 S nc
Sensor 3 h S nc
Sensor 4 ḣ S nc
Sensor 5 Σh S c

Table III.3: Part of parameters of the four methods

CO θCO 0.012

CR
κCR 0.1s (10 time steps)
θCR 0.9

MOLO

M 2
N 20

k f ,1 10s (1000 time steps)
k f ,2 0.4s (40 time steps)

θθθ(5)
MOLO,1 0.025m
θθθ(5)

MOLO,2 0.015m

CCI
κCCI 10s (1000 time steps)
θCCI 0.001N

Four scenarios are considered as examples:

• Scenario 1: A ramp anomaly signal with slope 1m/s (0.01m per time step) added to sensor 3,

saturating at 10m;

• Scenario 2: A ramp anomaly signal with slope 1m/s (0.01m per time step) added to sensor 3,

saturating at 10m;

• Scenario 3: A ramp anomaly signal with slope 0.01m/s (0.0001m per time step) added to sensor

5, saturating at 10m; and
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• Scenario 4: A step disturbance from the ground with magnitude 0.2m, starting at t = 3000(30s).

The sensor anomalies in Scenario 1 and 3 start at t = 3000(30s). The sensor anomaly in Scenario

2 starts at t = 5(0.05s).

Fig. III.12 shows the system under a non-critical sensor anomaly happening during the steady

state of the system. During the observers’ transient state, the CR method eliminates false alarms as

shown in Fig. III.12b. At the time the sensor anomaly occurs, the CCI method switches to observer

3 for feedback as shown in Fig. III.12c, allowing more time for diagnosis. The CR method triggers

an alarm after detecting the sensor anomaly. The CO method isolates the anomalous sensor, and

calculates the sensor anomaly signal as shown in Fig. III.12d. The proposed algorithm integrating

the four methods successfully protects the system from a non-critical sensor anomaly happening

during the observers’ steady state.

Fig. III.13 shows the system under a non-critical sensor anomaly happening during the ob-

servers’ transient state. The CR method successfully detects the occurrence of the sensor anomaly

with about 0.06s time delay as shown in Fig. III.13b, which is caused by relatively large θCR (0.9)

compared to the observer poles (about 0.1). The CCI method switches to the observer without the

anomalous sensor later than the time step that the CR method detects the sensor anomaly. This is

because the observers cannot provide good state estimations during the observers’ transient state,

thus the observer without the anomalous sensor may not give the smallest divergence of the cal-

culated control input. This scenario shows the effectiveness of the CR method for sensor anomaly

detection during the observers’ transient state.

Fig. III.14 shows the system is subject to a critical sensor anomaly. In Fig. III.14b, the

averaged residuals are less noisy after the first update period. Group 1 successfully detects the

occurrence of the sensor anomaly, while group 2 does not. This scenario shows the effectiveness

of the MOLO method for a non-critical sensor anomaly diagnosis.

Fig. III.15 shows the system under disturbance from the ground. The CR method success-

fully distinguishes a disturbance from a sensor anomaly, and correctly estimates the disturbance
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(a) The estimated states of observer 0 and
observer 3 x̃0, x̃3, the real state x, and the
sensor measurement y of the system un-
der the non-critical sensor anomaly

(b) Alarms IF

(c) Observer index IFB selected for the
state feedback controller

(d) Estimated sensor anomaly signal γ̃γγ
and the real sensor anomaly signal γγγ

Figure III.12: The suspension system under a non-critical sensor anomaly happening during the
steady state of the system
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(a) The estimated states of observer 0 and
observer 3 x̃0, x̃3, the real state x, and the
sensor measurement y of the system un-
der the non-critical sensor anomaly

(b) Alarms IF

(c) Observer index IFB selected for the
state feedback controller

Figure III.13: The suspension system under a non-critical sensor anomaly happening during the
observers’ transient state
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(a) The estimated states of closed-loop
observer 0 and the open-loop observer
(1,1), x̃0, x̂1,1 the real state x, and the sen-
sor measurement y of the system

(b) Averaged residuals of both groups of
open-loop observers ravg,1,ravg,2

Figure III.14: The suspension system under a critical sensor anomaly

Figure III.15: Scenario 4: The calculated disturbance d̃ and the real disturbance d of the system
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signal.

III.6 Summary

In this chapter, the CO method and three new methods (CR, MOLO, and CCI) are integrated

to solve the sensor anomaly diagnosis and mitigation problem using multiple closed-loop and open-

loop observers. The closed-loop observers include one that uses all of the sensor measurements

for state estimation, and others that exclude a non-critical sensor. The open-loop observers do

not use any sensor measurements for state estimation. Based on these closed-loop and open-loop

observers, new methods are proposed and integrated to improve sensor anomaly diagnosis and

mitigation:

• The CR method can detect non-critical sensor anomalies during the observers’ transient state;

• The MOLO method can detect and isolate critical sensor anomalies; and

• The CCI method can mitigate the impact of non-critical sensor anomalies during the anomaly

diagnosis process.

The three new methods are integrated with a previously developed residual-based method

(CO method) to collaboratively address the sensor anomaly diagnosis and mitigation problem in

this chapter. The collaboration of the methods is illustrated in Figure III.1a and Table III.1. The

proposed algorithm allows any residual-based method to be integrated besides the CO method.

Simulation results show the effectiveness of our proposed framework.

This multi-observer sensor anomaly detection and mitigation approach can be easily ex-

tended to the multiple sensor anomalies case as long as the system observability still holds without

the anomalous sensors. Note that it may be impossible in general to detect every kind of sensor

anomaly. Some sensor anomaly may not be detected if the norm of the sensor anomaly signal

is smaller than a certain lower bound. The aim of our sensor anomaly diagnosis and mitigation
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method is to decrease this lower bound to reduce the anomalies that we cannot detect, and to allow

more time for other techniques to protect the system before it moves into a severe condition.

However, at a high level, the proposed framework has some limitations. For the critical

sensor anomalies, the proposed MOLO method cannot detect a ramp sensor anomaly signal with

arbitrary slope. The MOLO method does not provide detection guarantees for the critical sensor

anomaly. In addition, this framework is designed specifically for sensor anomalies in continuous

systems. However, many CPS cannot be simply modeled as continuous systems because many CPS

are hybrid by nature, containing both discrete and continuous variables. In hybrid CPS, different

types of anomalies may occur in either continuous process or discrete dynamics or both. Thus, the

improved sensor anomaly diagnosis and mitigation framework is not sufficient to detect anomalies

in hybrid CPS. All of these limitations are addressed in the next chapter, where we model CPS

as hybrid systems. We classify the anomalies in hybrid systems into different types. By utilizing

the relationship between the continuous and the discrete variables, we propose a new anomaly

detection method that can provide detection guarantees for various types of anomalies in hybrid

systems.
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CHAPTER IV

Conflict-driven Anomaly Detection for Hybrid Systems with Current-State Observable

Discrete Dynamics

IV.1 Introduction

In Chapter III, we improved the sensor anomaly diagnosis and mitigation framework to en-

hance the security of Cyber-Physical Systems (CPS). However, the improved framework has lim-

itations when it is used to detect general anomalies. In addition, as mentioned in Chapter I, many

CPS are hybrid systems consisting of both continuous and discrete variables. The improved sensor

anomaly diagnosis and mitigation framework in Chapter III is developed for continuous systems,

thus it is not sufficient to detect anomalies on discrete variables or both continuous and discrete

variables in hybrid CPS.

In this chapter, we propose a new anomaly detection approach that addresses the limitations

of the sensor anomaly diagnosis and mitigation framework in the detection of general anomalies

in hybrid CPS. The proposed anomaly detection approach can provide formal detection guarantees

for different types of anomalies in hybrid CPS. This approach, which is called the conflict-driven

method, uses a hybrid observer to estimate both continuous and discrete variables. Based on all

possible anomalies for hybrid systems and the fact that the continuous and discrete variables are re-

lated in hybrid systems, the conflict-driven method leverages the estimated discrete and continuous

states along with their interrelationship to detect these challenging anomalies, as opposed to the

traditional methods which analyze either the continuous system or the discrete system separately.

The contributions of this chapter are as follows:
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1. We propose a conflict-driven method to provide guarantees on the detection of some types of

anomalies that are not detectable using traditional observer-based and residual-based methods in

addition to the anomalies that can be detected by the traditional methods. In the conflict-driven

method, we define three conflict types based on the relation between the discrete and continuous

variables of the hybrid systems. The conflict-driven method detects anomalies by checking the

occurrence of the conflicts.

2. We define a classification taxonomy for anomalies in hybrid systems. An anomaly in a hybrid

system may affect the continuous variables or the discrete variables or both. Some anomalies are

undetectable by only considering the continuous component of the system because the anomalous

system may have consistent input-output data with the system model under normal operation.

Some anomalies are undiagnosable by only considering the discrete component of the system

because the observed discrete event sequence of the anomalous system is the same as the system

under normal operation. In this dissertation, we classify the anomalies into eight different types

based on the variables that are affected, input-output data consistency, and diagnosability of the

anomaly.

3. We develop a new hybrid observer for anomaly detection. We use a Set-Valued Observer (SVO)

as the continuous state observer of the hybrid observer. With the SVO, we can apply the conflict-

driven method to hybrid systems with unobservable continuous components.

4. We provide a mapping between conflict types and anomaly types. Based on the occurrence of the

conflict types, we can identify if the anomaly is related to the continuous component of the system,

the discrete component or both.

The rest of this chapter is organized as follows. In Section IV.2, we give an introduction

of the class of hybrid systems that are of interest. In Section IV.3, we briefly describe the hybrid

observer used in the conflict-driven method. In Section IV.4, we propose a classification taxon-

omy of anomalies in hybrid systems. In Section IV.5, we introduce the conflict-driven anomaly

detection method and demonstrate its effectiveness mathematically. In Section IV.6, we illustrate
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the effectiveness of the conflict-driven method using the simulated Positive Train Control (PTC)

system as introduced in Chapter I.2.2.3. A summary of this chapter is provided in Section IV.7.

IV.2 Modeling Framework

In this section, we describe the class of hybrid systems to which the conflict-driven method

can be applied. We formulate the class of hybrid systems mathematically. We partition the hy-

brid system into one nominal hybrid subsystem and at least one anomalous hybrid subsystem(s).

The nominal hybrid subsystem corresponds to the system under normal operation and different

anomalous hybrid subsystems correspond to the system under different anomalies.

IV.2.1 Notation

Let ‖ ·‖ denote∞-norm, ·̃ denote estimated variables, ∪̇ denote disjoint union, and�σ denote

the ∞-norm ball of center 0 and of radius σ. In addition, x ∈ Rnx represents a vector, where its

ith element is indicated by x(i). A ∈ Rm×n represents a matrix. The linear span of a set of vectors

is denoted by span(·). For a set X ⊂ Rnx , we denote its closure, interior, and boundary by X, Xo

and ∂X respectively. Clearly, ∂X = X\Xo. The volume of the closed set X is denoted by Vol(X).

A polyhedron X is represented by X = S et(M,m) := {x : Mx ≤m}, where M ∈ Rm×nx and m ∈ Rm.

The detailed notations used in this chapter are described in Appendix B.

IV.2.2 System Modeling

Hybrid systems consist of a set of discrete states and a set of continuous states. In this

chapter, we consider that each discrete state has an invariant which describes the set of allowable

continuous states. We focus on hybrid systems which satisfy the following conditions.

System Conditions:
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1. The hybrid system is deterministic. That is, the discrete transitions of the hybrid system are deter-

ministic and the invariant in each discrete state is well-defined.

2. The number of discrete states is finite.

3. The hybrid system is memoryless. That is, the continuous dynamics in any discrete state are

independent of the previous discrete state.

4. The discrete transitions of the hybrid systems are controlled switchings. That is, the continuous

vector field may change discontinuously when the discrete state changes [10].

5. There is no discontinuity in continuous variables.

6. The discrete component of the system is current-state observable.

7. The invariant of each discrete state is static.

Remark 4. Conditions 1 to 4 limit our work to deterministic memoryless hybrid systems with

finite discrete states and controlled switchings. Condition 5 is imposed without any reset maps.

For example, a bouncing ball with autonomous jumps and discrete velocity changes or a system

with hysteresis does not fit into our work. Condition 6 allows us to design a discrete state observer,

which gives us a unique estimated discrete state after a finite number of observable discrete events

occur. The definition of current-state observable is introduced later in Definition 12. Condition

7 does not limit the class of systems. We only need to model the system in a way such that the

invariant of each discrete state is static. If a discrete state of the hybrid system has an invariant

changing with time, we need to partition the discrete state into several discrete states with static

invariants such that the system can fit into our work. Most hybrid CPS satisfy the above list of

system conditions, such as the train system and a gantry system described in [59].

Mathematically, a hybrid system can be modeled as a hybrid automaton

H = (X ,U ,Y , Init, f ield,E,φ,η), (IV.1)
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where each element is defined as

• X = Q×X: a set of discrete and continuous states

• U = Ψ×U: a set of discrete and continuous inputs

• Y = Ω×Y: a set of discrete and continuous outputs

• Init = (q(t0),x(t0)) ∈ X : an initial state

• f ield : X ×U → X: a time-invariant vector field

• E = Ψ∪̇Ω: a set of discrete events

• φ : Q×Ψ→ Q: a set of discrete transitions

• η : X ×U → Y: an output map consisting of a discrete output map ζ and a continuous output

equation h

– ζ : Q×Ψ→Ω: a discrete output map

– h : Q×X→ Y: a continuous output equation

The hybrid automaton captures both nominal system models with a set of nominal discrete

states Qn and anomaly models with a set of anomalous discrete states Q f , where “ f ” indicates

“fault”. The set of all discrete states is defined as Q = Qn∪̇Q f . We consider that a hybrid system

contains one nominal hybrid subsystem Hn and at least one anomalous hybrid subsystem(s) H f .

An example hybrid system is shown in Fig. IV.1. The nominal hybrid subsystem corresponds to

the system under normal operation and it contains the set of nominal discrete states. Different

anomalous hybrid subsystems correspond to different anomalies. An anomalous hybrid subsystem

contains a set of anomalous discrete states. An anomaly f transits the system from the nominal hy-

brid subsystem to the corresponding anomalous hybrid subsystem. The nominal hybrid subsystem

Hn can be derived by removing Q f and the events and transitions to and from Q f . The initial state

Init, which is a combination of initial discrete state q(t0) ∈ Qn and initial continuous state x(t0), is

not required to be known.
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Figure IV.1: An example hybrid system H consisting of the nominal hybrid subsystem Hn and one
anomalous hybrid subsystem H f

For each discrete state q ∈ Q, we associate continuous dynamics that can be represented by

a Linear Time Invariant (LTI) model, subject to process and measurement noise.

f ield : x(t + 1) = Aqx(t) + Bqu(t) + w(t),

h : y(t) = Cqx(t) + v(t),
(IV.2)

where Aq ∈ Rnx×nx ,Bq ∈ Rnx×nu ,Cq ∈ Rny×nx are system matrices, x ∈ X ⊂ Rnx , u ∈ U ⊂ Rnu and

y ∈ Y ⊆ Rny are continuous states, inputs and outputs, respectively. The process and measurement

noise are represented by w ∈ Rnx and v ∈ Rny , respectively. We define the system noise as d(t) =

[w(t) v(t)]ᵀ and assume:

Assumption 4. The system noise at each time step is bounded, satisfying ∀i = t0, ..., t,d(i) ∈ Bd,

where Bd := {[w v]ᵀ : ‖w‖ ≤w,‖v‖ ≤ v} and the initial condition is bounded, satisfying x(t0) ∈Bxo ,

where Bxo := {x(t0) : ‖x(t0)‖ ≤ x}.

The continuous dynamical models of the system in anomalous discrete states are not required

to be known for anomaly detection using the conflict-driven method.

Discrete events E consists of discrete input events Ψ and discrete output events Ω. Addi-

tionally, discrete events E can be partitioned into observable events Eo and unobservable events

Euo, i.e., E = Eo∪̇Euo. Only observable events can be detected by an observer. We denote a set

of observable input events as Ψo and a set of unobservable input events as Ψuo. All of the output

events are observable.
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The ith discrete event occurs at time ti. The continuous evolutions occur in time t ∈ [ti−1 +

1, ti],∀i = 1,2, .... In reality, discrete events may occur between two adjacent sample times. We

assume:

Assumption 5. The occurrence of the discrete events can be captured at sample times. At most

one input event occurs within one sampling period. An output event occurs simultaneously with an

input event.

Note that the discrete state is changed one time step after a discrete input event occurs, that

is φ(q(ti),ψ) = q′(ti + 1), where q(ti),q′(ti + 1) ∈ Q.

To each discrete state q ∈ Q, we associate an invariant:

Invq = {x : ∀i = 1, ...,nx,βi
≤ x(i) ≤ βi, } ⊆ X, (IV.3)

where β
i

and βi are constant values. An invariant is a hyperrectangle with a bounded interval on

each continuous state variable.

To each discrete transition φ(q,ψ) = q′, we associate a guard:

G(q,q′,ψ) = {x ∈ Invq : sGx(iG) ≥ cG}, (IV.4)

where iG ∈ {1,2, ...,nx}, cG is a scalar and sG is either −1 or 1. A guard is a hyperrectangle enclosed

by the boundary of the invariant ∂Invq and the hyperplane:

P(q,q′,ψ) = {x : x(iG) = sGcG}. (IV.5)

Our definitions of guard G(q,q′,ψ) and invariant Invq indicate that cG is between the lower and

upper bounds of the state variable x(iG) of the invariant Invq, i.e., β
iG
≤ cG ≤ βiG . A guard G(q,q′,ψ)

indicates that the transition ψ will take place if and only if the ithG state variable of sGx is greater

than or equal to cG in discrete state q. An invariant Invq indicates that the system can remain in
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discrete state q if and only if the continuous state x ∈ Invq\
⋃

j G(q,q j,ψ j).

We define a post-guard hyperplane of guard G(q,q′,ψ) as:

Definition 11. Post-guard hyperplane of guard G(q,q′,ψ) is one of the hyperplanes forming the

boundary of the invariant ∂Invq, which satisfies (IV.6):

L(q,q′,ψ) = {x ∈ X : sGx(iG) ≥ cG ∧x(iG) ∈ {β
iG
,βiG}}. (IV.6)

An example of post-guard hyperplane L(q,q′,ψ) is shown in Fig. IV.2. To simplify notation,

we denote cL as the value of x(iG), where x ∈L(q,q′,ψ). If P(q,q′,ψ) forms one of the hyperplanes

of ∂Invq, then L(q,q′,ψ) = P(q,q′,ψ). Otherwise, L(q,q′,ψ)∩P(q,q′,ψ) = ∅.

Figure IV.2: Visualization of the invariant Invq (the shaded rectangle), the hyperplane P(q,q′,ψ) of
guard G(q,q′,ψ), and the post-guard hyperplane L(q,q′,ψ) of discrete state q in 2−D continuous
state space

The proposed conflict-driven method utilizes a hybrid observer for state estimation. The

framework of the hybrid observer is introduced in [5], which is designed based on the Finite State

Machine (FSM) associated with the nominal hybrid subsystem. The FSM Mn is derived by ex-

tracting the discrete behavior from Hn, which is represented by tuple (Q,Ψ,Ω,q(t0),E,φ,ζ). In

order to get a unique estimate of the discrete state with the hybrid observer after finite number of

observable events, we assume:

Assumption 6. The FSM Mn is current-state observable.

Current-state observable is defined as:
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Definition 12. A FSM is current-state observable if there exists an integer k such that for any

unknown initial discrete state, the discrete state, after the ith observable discrete input event occurs,

can be uniquely determined from the observed input/output event pairs sequence up to i, i.e., i ≥ k

[5].

Note that one observable input/output event pair is considered as one input event to the

hybrid observer. Thus, after the kth observable input/output event pair occurs, the hybrid observer

can give a unique estimated discrete state. The necessary and sufficient condition of current state

observability is given in [5]. The time that the kth observable input/output event pair occurs is

denoted as tk.

IV.2.3 Nominal Hybrid Subsystem

In the nominal hybrid subsystem, we partition the invariant of each nominal discrete state

into an intermediate region and a normal operating region. Before introducing intermediate region

and normal operating region, we first define neighbor discrete state as

Definition 13. Neighbor discrete state qN ,q of nominal discrete state q is a nominal discrete state

that can by reached via one observable discrete event ψ ∈ Ψ from the discrete state q:

qN ,q = {q j ∈ Qn : ∃P(q,q j,ψ),q 6= q j}. (IV.7)

The set of neighbor discrete states of nominal discrete state q is called neighbor set Nq.

Then the intermediate region Rin,q,q j is the set of continuous states satisfy guard G(q,q j,ψ), where

q j ∈Nq:

Rin,q,q j = {x ∈ Invq : q j ∈Nq∧ sGx(iG) ≥ cG}, (IV.8)

where x(iG) is the state variable corresponding to guard G(q,q j,ψ). Since the invariant of each

nominal discrete state is compact 1, the intermediate region Rin,q,q j is compact as well. The in-

1A hyperrectangle is closed, compact and convex.
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termediate region Rin,q is the union of the intermediate regions Rin,q,q j , where q j ∈ Nq. That is,

Rin,q =
⋃
∀q j∈Nq Rin,q,q j . The intermediate region Rin,q is not necessarily compact.

For each discrete state q ∈ Qn, we define a normal operating region as the set of continuous

states that are in the invariant but not the intermediate region Rin,q,

Rno,q = Invq\Rin,q. (IV.9)

To have an appropriate hybrid model for which the conflict-driven method can provide de-

tection guarantees, we pose the following assumption:

Assumption 7. The intermediate region is bounded by the hyperplane P(q,q j,ψ) corresponding

to the guard G(q,q j,ψ) and the post-guard hyperplane L(q,q j,ψ) and ∂Invq in each discrete state.

Rin,q ⊂ {x ∈ Invq : ∀q j ∈ Qn : ∃P(q,q j,ψ j),min(cG,cL) ≤ x(iG) ≤max(cG,cL)}. (IV.10)

The visualization of this assumption on 2−D space is shown in Fig. IV.3. The intermediate

region of discrete state q is the union of Rin,q,qk and Rin,q,q j . The intermediate region Rin,q is a

subset of the region bounded by the hyperplane P(q,q j,ψ j) and the hyperplane L(q,q j,ψ j) and

the region bounded by the hyperplane P(q,qk,ψk) and the hyperplane L(q,qk,ψk). System condi-

tion 5 and Assumption 7 indicate that P(q,qk,ψk) is one of the hyperplanes forming ∂Invqk and

P(q,q j,ψ j) is one of the hyperplanes forming ∂Invq j .

The basic principle of conflict-driven method is to check at each time step, whether or not the

sets of current and future continuous states, which are calculated using reachability analysis based

on the estimated set of continuous states, intersect with the invariant of the estimated discrete state.

The sets of continuous states include an initial set given by the continuous state observer, and a

forward reachable set which is the set of all continuous states that can be reached along trajectories

starting in the initial set. Reachable set calculation requires the following assumption.

Assumption 8. The continuous input signal is bounded, and the bound is known, i.e., ||u|| ≤ µ.
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Figure IV.3: Normal operating and intermediate region. P(q,qk,ψk) is the hyperplane of the guard
G(q,qk,ψk), and L(q,qk,ψk) is the post-guard hyperplane. P(q,q j,ψ j) is the hyperplane of the
guard G(q,q j,ψ j), and L(q,q j,ψ j) is the post-guard hyperplane

Remark 5. Assumption 8 and system condition 5 indicate that the normal operating regions

are connected. The reachability analysis needs the continuous system to be open-loop stable or

marginally stable such that the reachable set is non-diverging. For anomaly detection purpose, we

do not need the continuous system to be open-loop stable or marginally stable. If the time step for

reachable set calculation is selected small enough, the reachable set will not diverge too much.

The detail of calculating the time step for reachability analysis is described in Section IV.5.

IV.2.4 Anomalous Hybrid Subsystem

An anomaly f ∈ Ψuo is defined as an unobservable input event that transits the nominal

hybrid subsystem Hn to one of the anomalous hybrid subsystems H f . Comparing to the nominal

hybrid subsystem, we define that the anomalous hybrid subsystem should satisfy at least one of the

following two conditions.

Anomaly Conditions:

1. Either the continuous dynamics or the invariant of at least one of the anomalous discrete states is

different from any of the nominal discrete states.

2. The observable discrete event sequence in the anomalous hybrid subsystem is different from that

in the nominal hybrid subsystem.
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Otherwise, the anomalous hybrid subsystem behaves exactly the same as the nominal hybrid sub-

system and the impact of the anomaly is insignificant.

According to the difference between the nominal hybrid subsystem and the anomalous hy-

brid subsystem, an anomaly f either affects the continuous variables or the discrete variables or

both. The continuous dynamics that are changed under anomaly f have two different mathematical

forms: multiplicative and additive [80]. A multiplicative anomaly is represented by the product of

a variable with the anomaly itself, such as a parameter change within a process. Under an additive

anomaly, a variable is influenced by an addition of the anomaly signal itself, such as offsets of sen-

sor values. Arguably, a multiplicative anomaly can be represented by an additive anomaly model

(e.g., Section 3.5 in [24]). Thus, we restrict our attention to additive anomaly models as follows.

x(t + 1) = Aqx(t) + Bqu(t) + w(t) +Γ1Γ1Γ1γ1γ1γ1(t), (IV.11)

y(t) = Cqx(t) + v(t) +Γ2Γ2Γ2γ2γ2γ2(t), (IV.12)

where Γ1Γ1Γ1 ∈ Rnx×nx ,Γ2Γ2Γ2 ∈ Rny×ny are diagonal anomaly matrices with binary variables. The ith di-

agonal variable of Γ1Γ1Γ1 is 1 if and only if the ith state variable is added with an anomalous signal

γ1γ1γ1(t) ∈Rnx . The ith diagonal variable of Γ2Γ2Γ2 is 1 if and only if the ith output is added with an anoma-

lous signal γ2γ2γ2(t) ∈ Rny . Γ1Γ1Γ1,γ1γ1γ1 and Γ2Γ2Γ2,γ2γ2γ2 are not required to be known for anomaly detection using

conflict-driven method. Note that an additive anomaly γ1γ1γ1 on the state equation (IV.11) could be

transformed into an equivalent additive anomaly γ2γ2γ2 on the output equation (IV.12)2.

IV.3 Hybrid Observer

In this section, we give a brief overview of the hybrid observer, which consists of a discrete

state observer and a continuous state observer [5]. Under the hybrid observer framework in [5], we

propose to use a Set-Valued Observer (SVO) as the continuous state observer [79].

2Transformation between γ1γ1γ1 and γ2γ2γ2: Γ2Γ2Γ2 = CΓ1Γ1Γ1,γ2γ2γ2(t) = Σt−1
i=0Ai

qγ1γ1γ1(t−1− i).

85



Given the nominal hybrid model Hn, we design a hybrid observer to estimate both the dis-

crete state and the continuous state of the system. The hybrid observer O consists of a discrete state

observer D and a continuous state observer C, as shown in Fig. IV.4. The discrete state observer

receives observable discrete input/output event pairs (ψ(t),ω(t)) and gives q̃(t). If no event pair is

received by time t, then the estimated discrete state is the same as that at the previous time step,

i.e., q̃(t) = q̃(t−1). The estimated discrete state q̃(t) may contain a set of estimated discrete states

until the occurrence of the kth observable input/output event pair. After the occurrence of the kth

observable input/output event pair, q̃(t), which contains a unique estimate, is passed to the corre-

sponding continuous state observer. The continuous state observer is designed as a SVO [79]. The

SVO gives a set of estimated continuous states X̃(y, t) using the continuous input u(t) and output

y(t).

Figure IV.4: The structure of the hybrid observer O

IV.3.1 Discrete State Observer

The discrete state observer is represented by a Finite State Machine (FSM) which is a tuple

D = (Q̃,ED,−, q̃(t0),ED, φ̃,−), where ED = (Ψ,Ω) is the set of discrete input/output event pairs

of Mn and “-” means that D does not contain the corresponding component as general FSM

mentioned in Section IV.2.2. The discrete state observer is tracking the set of possible discrete

states that the system can be in. Therefore, no discrete output events or discrete output map are

defined for discrete state observer.

The construction of the discrete state observer D follows the steps presented in [14]. It
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starts from the initial estimated discrete state q̃(t0): with an unknown initial discrete state of Mn,

q̃(t0) = Qn. Then we need to determine the set of possible transitions out of the discrete state in the

discrete state observer and the discrete states in the nominal discrete system Mn to which it can

transition. For each estimated discrete state q̃ ∈ Q̃, we identify the input/output event pairs (ψ,ω)

that label all the transitions out of any state q′ in q̃. These events are called the active event set of

q̃. For each pair (ψ,ω) in the active event set, we identify q ∈ Qn that can be reached from q′ ∈ q̃,

and these states return as a new q̃ in Q̃. This transition is added to φ̃ satisfying:

φ̃ := {q ∈ Qn : ∃q′ ∈ q̃, q ∈ φ(q′,ψ)∧ω = ζ(q′,ψ)}. (IV.13)

Repeat this step until no new q̃ and φ̃ can be added to D.

IV.3.2 Continuous State Observer

We use the SVO as the continuous state observer to construct a set of estimated continuous

states at each time step. The set given by the SVO is a polyhedron and can be represented by a

pair of matrices. In order to use the SVO we first describe an operator Rack which allows us to

calculate matrix pairs of a polyhedron. In the remainder of this section, we describe the set-valued

estimation of the SVO and discuss the estimation accuracy of the SVO by introducing a central

estimator.

IV.3.2.1 Rack Operator

Rack gives a set of possible matrix pairs which directly characterize a set S [79]. For M1 ∈

Rm×nx ,M2 ∈Rm, and m3 ∈Rm, define S ⊆Rnx as S = {x : M1x+M2z≤m3 for some z ∈R}. Define:

Rack[(M1 M2),m3] = {(M,m) ∈ Rm̃×nx ×Rm̃ : S = S et(M,m)}, (IV.14)
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where S et(M,m) = {x : Mx ≤m}.

Note that the set S is unique but its matrix representation is not because different ma-

trix representations (M,m) may contain different redundant constraints. For the sake of com-

putational efficiency, redundant constraints are removed after selecting one of the matrix repre-

sentations. Refer to [66] for different redundant constraints removing methods. The construc-

tion of the elements M,m can be achieved by eliminating the variable z through the Fourier-

Motzkin algorithm [43]. If k variables need to be eliminated, we can use Rack iteratively. That

is, Rackk[(M1 M2),m3] = Rack[Rackk−1[(M1
′ M2

′),m3
′]], which is a multivariable form of

Rack[(M1 M2),m3]. Note that when we use Rack recursively for k times, then M2 is defined as

a Rm×k matrix corresponding to the k variables that need to be eliminated.

IV.3.2.2 Set-Valued Estimation

The SVO starts with the bound of the initial state Bxo and then at each time step computes

a set of estimated state-vectors, which is denoted as X̃(y, t− 1), based on the initial condition, the

measured output, and the (known) input. Fig. IV.5 shows how the SVO works for a 2−D system.

At each time step, the SVO computes a one-time step forward reachable set (enclosed by the green

dash-dotted line) based on the set of estimated continuous states (X̃(y, t−1), enclosed by the blue

solid line) at the previous time step, known system continuous dynamics, process noise bound, and

continuous input. Then using an output measurement and bounded measurement noise, the SVO

also computes a set of continuous states (denoted as X̂(y, t) and enclosed by the black dotted line).

The intersection of the one-time step forward reachable set and X̂(y, t) becomes the set of estimated

continuous states at the current time step X̃(y, t).

The set of state-vectors X̂(y, t) at time t based on a single measurement can be represented

by S et(M̂(t),m̂(t)):

X̂(y, t) = {x : M̂(t)x ≤ m̂(t)}, (IV.15)
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Figure IV.5: The visualization of the SVO in a 2-D system

where

M̂(t) =

 Cq

−Cq

 ,m̂(t) =

v1 + y(t)

v1−y(t)

 , (IV.16)

where 1 is a vector with all entires as “1”.

The set of estimated state-vectors X̃(y, t) at time t is represented by S et(M̃(t),m̃(t)):

X̃(y, t) = {x : M̃(t)x ≤ m̃(t)}. (IV.17)

The following three steps give the computational implementation of the SVO [79].

1. Initialization:

X̃(y, t0) = X̂(y, t0)∩Bxo , (IV.18)

where X̂(y, t0) = S et(M̂(t0),m̂(t0)) and M̂(t0),m̂(t0) are calculated using (IV.16) at time t0, and

Bxo = {x(t0) : ‖x(t0)‖ ≤ x} as mentioned in Assumption 4.

2. Calculate the set X̂(y, t) with the measured output:

X̂(y, t) = S et(M̂(t),m̂(t)), (IV.19)

where M̂(t),m̂(t) are calculated using (IV.16).

3. Calculate the set of the estimated continuous states at time step t, i.e., X̃(y, t) = S et(M̃(t),m̃(t)).

X̃(y, t) is the intersection of X̂(y, t) and all of the states evolved from X̃(y, t− 1) according to the
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known continuous dynamics, process noise bound and continuous input:

X̃(y, t) =



x(t) :



I −Aq −I

−I Aq I

0 0 I

0 0 −I

M̂(t) 0 0

0 M̃(t−1) 0




x(t)

x(t−1)

w(t−1)

 ≤



Bqu(t−1)

−Bqu(t−1)

w1

w1

m̂(t)

m̃(t−1)





, (IV.20)

where I is an identity matrix with an appropriate dimension. The first two constraints in (IV.20)

correspond to the continuous dynamics of the system defined in (IV.2), third and fourth constraints

correspond to the bound of the process noise w, fifth constraint corresponds to the set X̂(y, t) and

sixth constraint corresponds to the set X̃(y, t − 1). Note that the constraints in (IV.20) have the

following form:

M1(t)x(t) + M2(t)

x(t−1)

w(t−1)

 ≤m3(t). (IV.21)

In order to get the set of continuous states which satisfy (IV.20), we need to eliminate the variables

[x(t−1) w(t−1)]ᵀ ∈ R2nx and represent X̃(y, t)in the form of M̃(t)x(t) ≤ m̃(t). Therefore, we use

Rack operator for 2nx times iteratively:

(M̃(t),m̃(t)) ∈ Rack2nx

M1(t)x(t) + M2(t)

x(t−1)

w(t−1)

 ≤m3(t)

 . (IV.22)

Remark 6. Note that if the order of the continuous system is large (say the order is over ten) which

largely increases the number of constraints and reduces the computation speed when removing

variables using Rack, then we can use a hyperrectangle with bounded intervals on continuous

state variables to overapproximate X̃(y, t) and reduce the number of constraints, improving the

computation efficiency while introducing some conservatism.
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Theorem 3.1 in [79] demonstrates the effectiveness of the computational implementation of

the SVO. This theorem indicates that the real system state at time t is guaranteed to be within

X̃(y, t) if the system is in one of the nominal discrete states.

IV.3.2.3 Central Estimator and Estimation Error

In order to understand the estimation accuracy of the SVO, a central estimator Φc is defined

in [79], which gives a state-vector with each entry as the mean of the upper bound and the lower

bound of the set X̃(y, t) for each state variable.

(Φcy)(t) = x̃c(t), (IV.23)

where x̃(i)
c (t) = 1

2 (x̃(i)
max(t) + x̃(i)

min(t)) and i = 1,2, ...,nx, x̃(i)
max(t) = max{x̃(i) : x̃ ∈ X̃(y, t)} and x̃(i)

min(t) =

min{x̃(i) : x̃ ∈ X̃(y, t)}. Theorem 3.2 in [79] demonstrates that the performance of the central estima-

tor is pointwise optimal, which means that the current estimation error is the smallest possible for

the current measurement trajectory. Suppose the upper bound of the estimation error of the central

estimator is θθθ ∈ Rnx , i.e., |x(i)(t)− x̃(i)
c (t)| ≤ θθθ(i),∀t, then we have:

|x(i)(t)− x̃(i)
max(t)| ≤ θθθ(i),

|x(i)(t)− x̃(i)
min(t)| ≤ θθθ(i),

(IV.24)

for all i = 1,2, ...,nx [79]. Note that with overapproximation using hyperrectangles, the maximum

and minimum estimated state along each state variable are unchanged and θθθ is not affected by

overapproximation.

For convenience, we define the estimation error xe(t) as the difference between the real con-

tinuous state x(t) and the central estimate x̃c(t), i.e., xe(t) = x(t)− x̃c(t).

Remark 7. Note that the continuous state observer could also be designed using another ob-

server/estimator due to the flexibility of the hybrid observer framework. With a continuous state
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observer which has a better estimation accuracy, we can get a tighter lower bound of the anoma-

lous signal with which the conflict-driven method can provide detection guarantees.

As mentioned in Section II.2, the SVO delivers a non-empty estimated set if the system is in

a nominal discrete state. If the SVO gives an empty estimated set, the system is identified to be

in an anomalous discrete state [76]. If the input-output data sequence generated by the anomalous

hybrid system can also be generated by the nominal hybrid subsystem, the SVO gives a non-empty

estimated set and fails to detect the anomaly. In the following section, we give a classification

taxonomy of anomalies in hybrid systems.

IV.4 Types of Anomalies

In this section, we propose a classification taxonomy of anomalies f in hybrid systems con-

sidered in this chapter. We only focus on anomalies happening after the nominal hybrid subsystem

is in its steady state and assume that:

Assumption 9. An anomaly f occurs after the discrete state observer enters its steady state, i.e.,

t f ≥ tk.

Based on the types of variables that are affected, we classify the anomalies into three different

types: Type-C, Type-D, and Type-B anomalies, where C represents “continuous”, D represents

“discrete”, B represents “both”.

As mentioned in Section IV.2.4, the anomalous hybrid subsystem should satisfy at least one

of two anomaly conditions. Under Type-C anomalies, the continuous dynamics of the anomalous

hybrid subsystem are different from those of the nominal hybrid subsystem, satisfying anomaly

condition 1. Some Type-C anomalies are easy to detect because the SVO gives an empty estimated

continuous state set. But some Type-C anomalies cannot be detected by existing methods because

the input-output data sequence of the anomalous discrete state in the anomalous hybrid subsystem

satisfies the continuous dynamics of the current estimated nominal discrete state. That is, with the
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same input and the initial state, the difference of the output of the anomalous hybrid subsystem

and the output of the nominal hybrid subsystem is always smaller than a certain threshold, but

the difference of the real system states in two subsystems is larger than the upper bound of the

estimation error of the nominal hybrid subsystem. An example anomaly can be the anomaly caused

by False Data Injection Attack introduced in [61]. We define this type of anomaly as an invisible

anomaly:

Definition 14. A Type-C anomaly f is an invisible anomaly if the input-output data sequence of

the anomalous discrete state in the anomalous hybrid subsystem satisfies the continuous dynamics

of the current estimated nominal discrete state. Otherwise, we say f is an visible anomaly.

Based on the definition of visible/invisible anomaly, we additionally classify Type-C anoma-

lies into two different types: Type-Cv and Type-Civ anomalies, where the subscript v represents

“visible” and iv represents “invisible”. Type-Cv anomalies can be easily detected by existing meth-

ods. The utilized hybrid observer contains a SVO. We can use the SVO to help detect Type-Cv

anomalies. The SVO gives an empty estimated continuous state set under Type-Cv anomalies.

Type-Civ is challenging to detect because the SVO still delivers a non-empty estimated continuous

state set at each time step.

Under Type-C anomaly, the norm of the estimation error is increased because the continuous

dynamics of the anomalous hybrid subsystem are different from those used for state estimation.

If the change of the estimation error is small, the impact of the anomaly is insignificant. We only

consider the anomalies under which the norm of the estimation error is larger than the upper bound

of the estimation error in nominal hybrid subsystem:

∀t ≥ t f ,q ∈ Q f =⇒ ‖xe(t)‖ > ‖θθθ‖. (IV.25)

Under Type-D anomalies, the discrete behavior of the anomalous hybrid subsystem is dif-

ferent from that of the nominal hybrid subsystem. In discrete systems, Type-D anomalies are

classified into two different types: diagnosable anomalies Type-Dd and undiagnosable anomalies
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Type-Dud, where d represents “diagnosable” and ud represents “undiagnosable” [14].

Definition 15. A Type-D anomaly f is undiagnosable if there exist two discrete event sequences

eA (the subscript represents “anomalous”) and eN (the subscript represents “nominal”) in system

M that satisfy the following conditions:

1. eA contains f and eN does not;

2. eA is of arbitrarily long length after f ; and

3. Pro j(eA) = Pro j(eN), where operator Pro j(·) projects a list of discrete event sequence to observ-

able discrete event sequence.

When no such pair of strings exists, f is said to be diagnosable in system M.

Diagnosable anomalies can be detected using the discrete state observer because the ob-

served discrete event sequence of the anomalous hybrid subsystem is different from the discrete

event sequence of the nominal hybrid subsystem after some time. Because the hybrid system we

consider is deterministic (system condition 1) and the nominal hybrid subsystem is known, all of

the possible discrete state sequences of the nominal hybrid subsystem are known based on the ob-

served discrete event sequences of the nominal hybrid subsystem. The hybrid observer we use in

this paper contains a discrete state observer. We can compare the estimated discrete state sequence

with the possible discrete state sequences to detect whether or not a Type-Dd anomaly occurs.

Under some anomalies, both the continuous dynamics and the discrete behavior of the nom-

inal hybrid subsystem are changed. We call them Type-B anomalies. A Type-B anomaly can be

considered as a combination of Type-C and Type-D anomalies. As shown in Fig. IV.6, Type-B

anomalies can be classified into four different types: Type-Bv,d, Type-Biv,d, Type-Bv,ud, and Type-

Biv,ud anomalies.

Based on our classification taxonomy, there are eight types of anomalies: Type-Cv, Type-Civ,

Type-Dd, Type-Dud, Type-Bv,d, Type-Biv,d, Type-Bv,ud, and Type-Biv,ud. For Type-Cv, Type-Civ,

Type-Dd, Type-Dud, Type-Bv,d, Type-Biv,d and Type-Bv,ud anomalies, we provide detection guar-
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Figure IV.6: Classification taxonomy of anomalies in hybrid systems

antees with the proposed conflict-driven method. For Type-Biv,ud anomaly, the proposed conflict-

driven method can detect in some cases but it cannot provide detection guarantees.

IV.5 Conflict-driven Anomaly Detection

In this section, we first give a brief introduction of conflict-driven anomaly detection. Then

we give theoretic analysis for anomaly detection. Finally, we talk about the relationship between

the conflict types and the anomaly types.

IV.5.1 Method Description

In the conflict-driven method, we define three conflict types and check for the occurrence of

the conflicts to detect anomalies. The work flow diagram is shown in Fig. IV.7. Note that this

method is used after the hybrid observer is in the steady state, i.e., t ≥ tk.

The conflict-driven method has five steps at each time step:

1. Check the estimated discrete state sequence:

After the discrete state observer gives the estimated discrete state q̃(t) at time t, an updated esti-

mated discrete state sequence can be formed up to time t. Then the method compares the updated

estimated discrete state sequence with all of the possible discrete state sequences. If the updated
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Figure IV.7: Conflict-driven anomaly detection

estimated discrete state sequence does not satisfy any of the possible discrete state sequences, an

anomaly is detected. Note that for the estimated discrete state sequence, we only use the estimate

with a unique estimated discrete state.

2. Calculate an initial set XI(t):

Given X̃(y, t) from the SVO, define XI(t) to be a zonotope3 that overapproximates X̃(y, t). A

zonotope, which is computationally efficient for reachability analysis of hybrid system [30], is

a Minkowski sum of a finite set of line segments and defined as

Definition 16. Zonotope Z is a set such that:

Z =(x̃c,< g1, ...,gp >) = {x ∈ Rnx : x = x̃c +Σ
i=p
i=1bigi,−1 ≤ bi ≤ 1}, p ≥ nx, (IV.26)

where x̃c,gi ∈ Rnx are the center and generators, respectively.

Both p and nx determine the maximum number of vertices and facets.

3Note that the zonotope XI(t) may not be unique. In this paper, we use the smallest hyperrectangle to overapproxi-
mate X̃(y, t) and express the hyperrectangle in the form of zonotope. In this way, the zonotope XI(t) is unique.
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3. Calculate the reachable set Rδq̃(t)(XI(t)):

The δq̃(t) time-step forward reachable set Rδq̃(t)(XI(t)) starting from XI(t) is defined as

Rδq̃(t)(XI(t)) := {xR ∈ Rnx : ∃x(t0,t0+δq̃(t)),u(t0,t0+δq̃(t)−1),

x(t + 1) = Aq̃(t)x(t) + Bq̃(t)u(t),‖u‖ ≤ µ,

(x(t0) ∈ XI(t))∧ (x(t0 +δq̃(t)) = xR)},

(IV.27)

where xR is continuous state, x(t0,t0+δq̃(t)) is the trajectory of the continuous state from time t0 to

t0 + δq̃(t), u(t0,t0+δq̃(t)−1) is the trajectory of the input signal from time t0 to t0 + δq̃(t) − 1, and the

time-step δq̃(t) ∈ Z≥0 is determined off-line and will be introduced later. The reachable set satisfies

Rδq̃(t)(XI(t)) ⊆ Aδq̃(t)
q̃(t) XI(t) +�σq̃(t), (IV.28)

where σq̃(t) =
1−‖Aq̃(t)‖

δq̃(t)

1−‖Aq̃(t)‖
(‖Bq̃(t)‖µ+ w). Refer to [30] for more details about reachable set calcula-

tion using zonotopes.

4. Check for conflicts:

We define three conflict types in this paper, as shown in Fig. IV.8.

Conflict A. The initial set is an empty set, i.e., XI(t) = ∅. This is equivalent to X̃(y, t) = ∅.

Conflict B. The initial set has no intersection with the invariant of the estimated discrete state

(XI(t)∩ Invq̃(t) = ∅).

Conflict C. The δq̃(t) time steps forward reachable set has no intersection with the invariant of the

estimated discrete state, i.e., Rδq̃(t)(XI(t))∩ Invq̃(t) = ∅.

If one of these conflicts occurs, the system is in an anomalous discrete state.

5. Map conflict types to anomaly types:

Based on the observed conflict types and estimated discrete state sequence, we can determine the
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possible types of anomalies (The detailed mapping is shown in Fig. IV.12 in Section IV.5.3).

Figure IV.8: Three conflict types shown in a 2−D system. The large rectangle (with blue and
yellow regions) is the invariant Invq̃(t) with guard G(q̃(t),q′,ψ). The blue region is the normal
operating region Rno,q̃(t) and the yellow region is the intermediate region Rin,q̃(t). XI(t) is the initial
set at time step t (three XI(t)s in the figure show the three different conflict types). Rδq̃(XI(t)) is the
δq̃-reachable set starting from the initial set XI(t)

Note that for Step 3, we need to appropriately determine δq̃(t) for each discrete state offline

to avoid false alarms4 and provide detection guarantees according to the following two steps:

1. In Invq, starting from the intersection of the invariant Invq and the hyperplane corresponding to

the ith guard G(q,qi,ψi) as defined by (IV.5) and Invq, we find the minimum time steps δq,i which

satisfies

Rδq,i+1(P(q,qi,ψi)∩ Invq)∩L(q,qi,ψi) 6= ∅. (IV.29)

If (IV.29) does not have a solution, it means that Conflict C never occurs when the real continuous

state is approaching to P(q,qi,ψi)∩ Invq. Then we set δq,i = 0. Note that δq,i may be different for

different guards in the same discrete state. The reason we use δq,i +1 is that the continuous system

is a discrete-time model and we want to ensure the δq,i time-step forward reachable set, starting

from any possible real continuous state when a transition occurs, has intersection with Invq in

nominal discrete state q.

2. Let δq = mini(δq,i). Note that δq may be 0. Then we only need to check Conflicts A and B in

discrete state q.

4If δq̃(t) is too large, the reachable set could be completely outside the invariant, causing false alarms.
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IV.5.2 Anomaly Detection

In this subsection, we demonstrate the effectiveness of the conflict-driven method in the

detection of different types of anomalies: Type-C, Type-D and Type-B anomalies. To simplify the

discussion, we focus on representing the anomaly as an additive anomaly on the output equation

γ2γ2γ2.

IV.5.2.1 Type-C Anomaly

Under Type-Cv anomaly, Conflict A occurs if the norm of the anomalous signal exceeds a

certain threshold, which is given in Proposition 3. The occurrence of Conflict A indicates that

the constraints of the set of estimated continuous states X̃(y, t) described in (IV.20) are infeasible.

That is, if the norm of the anomalous signal is larger than the lower bound, then at least one of

the conditions in (M̃(t),m̃(t)) in (IV.20) is violated. Among the constraints in (M̃(t),m̃(t)), the

constraints in (M̂(t),m̂(t)) (IV.16) describing X̂(y, t) are directly related to the anomalous signal γ2γ2γ2

based on anomaly model (IV.12). Therefore, we can get the lower bound of the anomalous signal

γ2γ2γ2 (IV.31) by violating the constraints corresponding to X̂(y, t), that is,

M̂(t)x(t) > m̂(t). (IV.30)

Now we can state Proposition 3 as follows.

Proposition 3. Given a hybrid automaton H and assume the nominal hybrid automaton Hn is

available to build a hybrid observer O, if a Type-Cv anomaly occurs at time t f > tk satisfying

(IV.31), then Conflict A occurs.

‖Γ2γ2Γ2γ2Γ2γ2(t)‖ > 2v. (IV.31)
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Proof. If the anomalous signal γ2γ2γ2(t) satisfies (IV.31), then

‖y(t)−Cqx(t)−v(t)‖ > 2v. (IV.32)

Let the ith entry of y(t)−Cqx(t)− v(t) equal to ‖y(t)−Cqx(t)− v(t)‖. Then we have the

following two possibilities:

1) If y(i)(t)−C(i,:)
q x(t)−v(i)(t) > 0, then

y(i)(t)−C(i,:)
q x(t)−v(i)(t) > 2v. (IV.33)

By rearranging, we can get

−C(i,:)
q x(t) > −y(i)(t) + v(i)(t) + 2v

−C(i,:)
q x(t) > −y(i)(t) + v.

(IV.34)

2) Similarly, if y(i)(t)−C(i,:)
q x(t)−v(i)(t) < 0, then we have

C(i,:)
q x(i)(t) > y(i)(t) + v. (IV.35)

Then, (IV.20) is infeasible and Conflict A occurs, which means the input-output sequence is

inconsistent with the nominal hybrid subsystem.

As discussed before, the continuous variables are affected under Type-Civ anomaly, but the

SVO can still provide non-empty estimated continuous state set. In order to detect this type of

anomaly, we utilize the estimated states from both continuous and discrete state observers, and

take advantage of observation of a discrete event. This enables us to employ the contradictions

among estimated continuous and discrete states and the model parameters such as guards and

invariants to detect these challenging anomalies. These contradictions are formalized in Conflicts
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B and C. In what follows, we set the stage to present the main theorem-Theorem 3. This theorem

provides sufficient conditions on the lower bound of the anomalous signal under which the conflict-

driven method is guaranteed to detect Type-Civ anomalies. This lower bound is smaller than the

one presented in our previous work [86]. Similar to [86], we first find the lower bound of the

estimation error that creates either Conflict B or C, and then relate this bound to the lower bound

on the anomalous signal.

Suppose a Type-Civ anomaly occurs at time t f under which there is a large estimation error

on the ithG state variable, i.e., |xe
(iG)| > θθθ(iG), and a discrete event ψ occurs at time te > t f which

associates a guard with condition on the ithG state variable, i.e., {x ∈ Invq : sGx(iG) ≥ cG}. Without loss

of generality, we assume that the projection of Rno,q onto the ithG state variable is bounded above by

cG, i.e., HiGRno,q ≤ cG (because sG = 1), where HiG ∈ Rnx is the projection row vector with the ithG

entry “1” and “0” elsewhere. The procedure for the case where HiGRno,q ≥ −cG (because sG = −1)

is identical. When this event occurs, transitioning the system from q to q′, we can only have two

possibilities for the central estimate at time te, either x̃c(te) ∈Ro
no,q, or x̃c(te) ∈Ro

in,q,q′ . Based on

the definitions of guard, invariant, post-guard hyperplane, and Assumption 7, along the ithG state

variable the upper bound of Invq is cL and the lower bound of Invq′ is cG. For brevity in notation

and as in this section we mainly consider G(q,q′,ψ), we refer to it as G.

As mentioned above, the central estimate x̃c(te) is either in the normal operating region or

the intermediate region when an observable event occurs. Consider the first possibility where

x̃c(te) ∈Ro
no,q, that is, when the real continuous state satisfies the guard, the central estimate is in

the normal operating region of discrete state q. The visualization of this case is shown in Fig. IV.9.

The goal is to find the lower bound of the estimation error along the ithG state variable, such

that:

• The initial set XI(te + 1) has no intersection with Invq′ .

We denote such minimum estimation error corresponding to G by z∗G. To find z∗G, it suffices to find

the minimum z such that for all x̃c(te + 1) the upper bound of XI(te + 1) is smaller than the lower
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(a) (b)

(c)

Figure IV.9: Visualization in 2 − D when x̃(te) ∈ Ro
no,q and Conflict B occurs under Type-Civ

anomaly: (a) At time te, cG ≤ HiG < ε, discrete event ψ occurs. (b) At time te + 1, the discrete
state is changed to q′ and the real continuous state is evolved to x(te +1), satisfying the continuous
dynamics described by state matrices (Aq′ ,Bq′). Thus, x(te + 1) ∈ R1(x(te)) and HiGR1(x(te)) ≤
HiGAq′x(te) +σq′
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bound of Invq′ along the ithG state variable,

HiG x̃c(te + 1) + HiGθθθ < cG. (IV.36)

Note that at time te, the continuous state of the system along the ithG state variable HiGx(te) is

greater than or equal to cG, i.e., HiGx(te) ≥ cG. Meanwhile, HiGx(te) is smaller than the maximum

value of the one time step forward reachable set from P(q,q′,ψ)∩ Invq along the ithG state variable,

i.e., HiGx(te) < ε, where ε = max(HiGR1(P(q,q′,ψ)∩ Invq)), as shown in Fig. IV.9a. After the

occurrence of event ψ, the estimated discrete state is changed to q′ at time te +1. If the state matri-

ces of the anomalous discrete state are still (Aq,Bq), which are different from the estimated state

matrices (Aq′ ,Bq′), then the Type-Civ anomaly becomes Type-Cv anomaly which can be detected

by observing the occurrence of Conflict A. If the state matrices of the anomalous discrete state are

changed to (Aq′ ,Bq′) after the occurrence of event ψ, then the SVO still provides non-empty set of

the estimated continuous states under the Type-Civ anomaly. In the following we consider the case

that the state matrices of the anomalous discrete state are changed to (Aq′ ,Bq′) after the occurrence

of event ψ. As shown in Fig. IV.9b, the set of all possible continuous states at time te + 1 can be

represented by:

∀x(te) ∈ Invq,cG ≤HiGx(te) < ε,

x(te + 1) ∈ R1(x(te)) ⊆ Aq′x(te) +�σq′ ,

(IV.37)

where σq′ = ‖Bq′‖µ+ w.

Combining (IV.36), (IV.37) and the fact that z = HiGx−HiG x̃e, we can pose the problem of

finding z∗G as a robust optimization problem.

z∗G =min
z

z

s. t. z ≥ 0, z ≥HiGAq′x +σq′ + HiGθθθ− cG

∀x ∈ Invq′ ,cG ≤HiGx ≤ ε,

(IV.38)
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(a) (b)

Figure IV.10: Visualization in 2D when x̃c(te) ∈ Ro
in,q,q′ and Conflict C occurs under Type-Civ

anomaly: (a) At time te, the maximum estimation error along x(iG) state variable is d, i.e., d =

|HiG x̃c(te)− cG |. (b) The reachable set at time te is Rδq(XI(te)) and its lower bound is HiGAδq
q x−σq

By utilizing robust optimization method [7], we can convert (IV.38) to a linear programming

problem as follows:

z∗G =min
J,z

z

s. t.

11
z−

J
ᵀρ1ρ1ρ1

0

 ≥
σq′ + HiGθθθ− cG

0


ΛΛΛᵀJ ≥ (HiGAq′)ᵀ, J ≥ 0,

(IV.39)

where 0 ∈R2n×1 is a zero vector. x is in a polytopic uncertain set, i.e., ΛΛΛx ≤ ρ1ρ1ρ1 for problem (IV.38),

where ΛΛΛ ∈ R2n×n, ρ1ρ1ρ1 ∈ R2n×1 and J ∈ R2n×1 is a variable of the optimization problem.

For the second possibility, i.e., x̃c(te) ∈Ro
in,q,q′ , we are seeking the lower bound of the esti-

mation error along the ithG state variable such that it satisfies the following:

• The reachable set for δq time steps from any point within the initial set XI(te) has no intersection

with Invq.

The visualization of this case is shown in Fig. IV.10. Considering the worst case that the continuous

state is the furthest to the upper bound of ∂Invq along the ithG state variable, i.e., HiGx(te) = cG, our

objective can be equivalently changed to find the minimum distance between cG and HiG x̃c(te). We

denote this minimum distance by d∗G. Define d = |HiG x̃c(te)−cG | as the distance between P(q,q′,ψ)
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and the estimated state along the ithG state variable, which is also the maximum estimation error at

time te given the central estimated continuous state x̃c(te). With this definition, the initial set at time

te can be represented as XI(te) = {x : HiGx ∈ [cG +d−HiGθθθ,cG +d +HiGθθθ]} as shown in Fig. IV.10a.

Starting from this initial set XI(te), the projection of the reachable set for δq time steps forward

onto the ithG state variable becomes HiGAδq
q x±σq, ∀x ∈ XI(te), where σq =

1−‖Aq‖
δq

1−‖Aq‖
(‖Bq‖µ+ w). As

shown in Fig. IV.10b, if the lower bound of the reachable set Rδq(XI(te)) is greater than cL, i.e.,

HiGAδq
q x−σq > cL, ∀x ∈ XI(te), then it is guaranteed that the δq time-step forward reachable set

starting from this initial set XI(te) has no intersection with the invariant Invq. We can pose the

problem of finding d∗G as the following robust optimization problem.

d∗G =min
d

d

s. t. d ≥ 0, HiGAδq
q x−σq ≥ cL

∀x ∈ Invq,x ∈ XI(te).

(IV.40)

With a change of variables and by employing the robust optimization techniques [7], we can write

an equivalent problem to (IV.40) as a linear program.

d∗G =min
D,J

HiGD

s. t.

HiGAδq
q

HiG

D−

J
ᵀρ2ρ2ρ2

0

 ≥
σq + cL

0


ΛΛΛᵀJ ≥ − (HiGAδq

q )ᵀ, J ≥ 0, D ≥ 0,

(IV.41)

where 0 is a zero vector with proper dimension, and D ∈ Rn is a vector with the ithG entry d and

other entries “0”. x is in a polytopic uncertain set, i.e., ΛΛΛx ≤ ρ2ρ2ρ2, where ρ2ρ2ρ2 ∈R2n×1 and J ∈R2n×1 is

the dual variable.

Now that we have introduced z∗G and d∗G, we can present the main result of the paper.

Theorem 3. Given a hybrid automaton H with the nominal hybrid automaton Hn available to
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build a hybrid observer O. Suppose a Type-Civ anomaly f occurs at time t f . If an event ψ ∈ Ψo

occurs at te > t f , which is supposed to transit the system from discrete state q to q′, and the guard

G(q,q′,ψ) is a condition on the real continuous state which is affected by the anomaly f , i.e.,

G(q,q′,ψ) : sGx(iG) ≥ cG and |xe
(iG)| ≥ θθθ(iG), then the conflict-driven method is guaranteed to detect

the anomaly, if the anomaly f satisfies:

‖Γ2Γ2Γ2γ2γ2γ2(t)‖ >max(‖Cq‖z∗q + ‖Cqθθθ‖+ 2v,‖Cq‖d∗q + ‖Cqθθθ‖+ 2v), (IV.42)

where z∗q = maxq′ z∗G and d∗q = maxq′ d∗G can be derived by solving the robust optimization problems

(IV.38) and (IV.40), respectively for all possible q′.

Proof. The solution z∗G is the lower bound of the estimation error which ensures XI(te +1)∩ Invq′ =

∅, i.e. Conflict B. The value of z∗G varies from one guard to another. Therefore, by considering z∗q,

we guarantee that at the discrete state q, regardless of guard, Conflict B occurs, if the estimation

error is larger than z∗q. On the other hand, the solution d∗G is the lower bound of the estimation error,

which ensures Rδq(XI(te))∩ Invq = ∅, i.e., Conflict C. The value of d∗G varies for different guards,

hence, we similarly take the maximum of these values for all possible q′, which is d∗q. Then it is

guaranteed that if the estimation error is larger than d∗q, regardless of guard, Conflict C occurs. By

combining the two conditions, we can conclude that if the estimation error xe(t) is larger than the

maximum value of z∗q and d∗q, then Conflict B or C is guaranteed to occur.

With the lower bound of the estimation error, we can get the lower bound of the anomalous

signal of Type-Civ anomaly based on (IV.12) such that Conflict B or C is guaranteed to occur.

Since the SVO is still giving non-empty estimated set under Type-Civ anomaly,

‖y(t)− ỹc(t)‖ ≤ ‖Cqθθθ‖+ v, (IV.43)
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where ỹc(t) = Cqx̃c(t) is the estimated output based on the central estimate. Then we have

‖Cqx(t) + v(t) +Γ2Γ2Γ2γ2γ2γ2(t)−Cqx̃c(t)‖ ≤ ‖Cqθθθ‖+ v

‖Cqxe(t) + v(t) +Γ2Γ2Γ2γ2γ2γ2(t)‖ ≤ ‖Cqθθθ‖+ v

‖Γ2Γ2Γ2γ2γ2γ2(t)‖− ‖Cqxe(t)‖− ‖v(t)‖ ≤ ‖Cqθθθ‖+ v.

(IV.44)

Then we have

‖Cqxe(t)‖ ≥ ‖Γ2Γ2Γ2γ2γ2γ2(t)‖− ‖v(t)‖− ‖Cqθθθ‖− v. (IV.45)

Based on (IV.42), it is clear that

‖Cq‖‖xe(t)‖ ≥max(‖Cq‖z∗q,‖Cq‖d∗q)

‖xe(t)‖ ≥max(z∗q,d
∗
q).

(IV.46)

Therefore the conflict-driven method provides guarantees on the detection of anomalous

signals that satisfy condition (IV.42), regardless of where the estimated state is located in the Invq

at the time of event. This concludes the proof.

Remark 8. Note that with the SVO as the continuous state observer, the value of z∗q and d∗q are

smaller than those in [86]. Therefore, the lower bound of the anomalous signal with which the

conflict-driven method can provide detection guarantee is smaller than that in [86].

IV.5.2.2 Type-D Anomaly

Under Type-D anomaly, the continuous dynamics of the anomalous discrete state are the

same as those of one of the nominal discrete states. There are two cases under a Type-D anomaly:

1) The continuous dynamics are the same as those of the current estimated discrete state; 2) The

continuous dynamics are different from those of the current estimated discrete state. Based on the

difference between the anomalous hybrid subsystem and the nominal hybrid subsystem mentioned
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(a) (b)

Figure IV.11: Visualization in 2−D under Type-D anomaly: (a) Conflict B occurs under the case
that Invo

q f
∩ Invo

qn
= ∅; (b) Conflict C occurs under the case that Invo

q f
∩ Invo

qn
= ∅

in Section IV.2.4, the invariant of at least one of the anomalous discrete states is different from

the estimated discrete state under the first case. Therefore, it is possible that the initial set or the

reachable set does not intersect with the invariants of the estimated discrete states and Conflict B

or C occurs as shown in Fig. IV.11. The conflict-driven method can guarantee to detect the first

case of Type-Dud anomalies if the open set of the invariants of the anomalous discrete states do

not intersect with those of the nominal discrete states, i.e., Invo
qn
∩ Invo

q f
= ∅, as demonstrated in

Proposition 4. Under the second case, Conflict A will occur because the continuous dynamics of

the anomalous discrete states are different from the continuous dynamics of the estimated discrete

states, which is demonstrated in Proposition 5.

Proposition 4. Given a hybrid automaton H and assume the nominal hybrid automaton Hn is

available to build a hybrid observer O. Suppose a Type-D anomaly f occurs such that the discrete

state is changed from qn ∈ Qn to q f ∈ Q f , then the conflict-driven method is guaranteed to detect

the anomaly if Invo
qn
∩ Invo

q f
= ∅ and one of the following is true:

∃i ∈[1,nx]

min
x∈Invq̃(t)

‖x(i)− x̃(i)
c (t)‖ ≥ θθθ(i),

(IV.47)
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or

∃iG ∈[1,nx],∀x ∈ XI(t)

HiGAδq̃(t)
q̃(t) x−σq̃(t) > βiG

or

HiGAδq̃(t)
q̃(t) x +σq̃(t) < βiG

.

(IV.48)

Proof. Before Type-D anomaly occurs, the estimated discrete state q̃(t) is the nominal discrete

state qn, i.e., q̃(t) = qn. Under Type-D anomaly and the case that the continuous dynamics of the

anomalous discrete state are the same as the continuous dynamics of the current estimated nominal

discrete state, we have |xe(t)| ≤ θθθ. If (IV.47) is true, then the initial set XI(t) with the central estimate

x̃c(t) does not have any intersection with Invq̃(t), i.e., Invq̃(t)∩XI(t) = ∅. Conflict B occurs and the

anomaly is detected. In (IV.48), HiGAδq̃(t)
q̃(t) x−σq̃(t) is the lower bound of the reachable set along the

ithG state variable and HiGAδq̃(t)
q̃(t) x +σq̃(t) is the upper bound of the reachable set along the ithG state

variable. If (IV.48) is true, then the reachable set Rδq̃(t)(XI(t)) has no intersection with the invariant

Invq̃(t). Conflict C occurs and the anomaly is detected.

Proposition 5. Given a hybrid automaton H and assume the nominal hybrid automaton Hn is

available to build a hybrid observer O. Suppose a Type-D anomaly f occurs such that the discrete

state is changed from qn ∈ Qn to q f ∈ Q f and (Aqn ,Bqn) of qn is different from (Aq f ,Bq f ) of qn, then

the conflict-driven method is guaranteed to detect the anomaly if the following is infeasible:



I −Aqn −I

−I Aqn I

0 0 I

0 0 −I

0 −Cq f Aq f −Cq f

0 Cq f Aq f Cq f




x(t)

x(t−1)

w(t−1)

 ≤



Bqnu(t−1)

−Bqnu(t−1)

w1

w1

v1− (y(t)−Cq f Bq f u(t−1))

v1 + (y(t)−Cq f Bq f u(t−1))



, (IV.49)

where I, 0 and 1 have appropriate dimensions.
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Proof. The first two constraints in (IV.49) correspond to the continuous evolution in estimated dis-

crete state qn. Third and fourth constraints in (IV.49) correspond to the bound of the process noise.

Fifth and sixth constraints in (IV.49) correspond to the measurement in anomalous discrete state q f .

The infeasibility of (IV.49) means the input-output data sequence of the anomalous discrete state

is different from that of the current estimated discrete state and the SVO gives an empty estimated

continuous state set. Therefore, Conflict A occurs and the Type-D anomaly is detected.

Note that by utilizing both continuous and discrete dynamics of the system to detect anoma-

lies, the conflict-driven method may detect a Type-D anomaly whether or not it is diagnosable.

According to Propositions 4 and 5, the conflict-driven method can provide detection guarantees

for Type-D anomalies, including undiagnosable anomalies, if 1) the invariants of the anomalous

discrete states do not intersect with the invariants of the nominal discrete states; or 2) the contin-

uous dynamics of the anomalous discrete states are different from those of the current estimated

discrete state.

IV.5.2.3 Type-B Anomaly

We have demonstrated the detection of Type-Cv, Type-Civ, Type-Dd, and Type-Dud anoma-

lies, which are summarized in Table. IV.1. Note that for Type-Dd anomaly, we use the discrete state

observer instead of checking the occurrence of the conflicts. Type-B anomalies combine Type-C

and Type-D anomalies. The conflict-driven method can also guarantee to detect Type-Bv,d, Type-

Bv,ud and Type-Biv,d anomalies. This method can detect but cannot provide detection guarantees

for Type-Biv,ud anomaly. Under Type-Biv,ud anomaly, if the incorrect estimated continuous state

set is consistent with the current estimated discrete state, then the conflict-driven method fails to

detect it.
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Table IV.1: Summary of Anomaly Detection

Anomaly Type Detection Guarantee?
Type-Cv If the anomalous signal satisfies (IV.31)
Type-Civ If an observable discrete input event occurs and the

anomalous signal satisfies (IV.42)
Type-Dd Yes
Type-Dud If the invariants of the anomalous discrete states do

not intersect with the invariants of the nominal dis-
crete states except the boundaries or the continuous
dynamics of the anomalous discrete state are differ-
ent from those of the current estimated state.

Type-Bv,d Yes
Type-Bv,ud Yes
Type-Biv,d Yes
Type-Biv,ud Not guaranteed. But it may be detected using the

conflict-driven method

IV.5.3 Relationship Between Conflict Types and Anomaly Types

With the occurrence of different conflict types and the estimated discrete state sequence, we

can determine the types of associated anomalies as well.

A mapping between the conflict types and the types of anomalies is shown in Fig. IV.12.

The inconsistency of the discrete event sequence means the anomaly is Type-Dd, Type-Bv,d or

Type-Biv,d. The occurrence of Conflict A means that the input-output sequence from system in the

anomalous discrete state is different from that in a nominal discrete state. Then we can conclude

that the anomaly type could be either Type-Cv, Type-Bv,d or Type-Bv,ud. The occurrence of Conflict

B or Conflict C means that the anomaly could be any type except Type-Cv. Note that the possible

types of anomalies are the same when Conflict B or Conflict C occurs.

Under some anomalies, multiple conflict types occur. If the discrete event sequence is incon-

sistent and Conflict A occurs, the anomaly is Type-Bv,d. If the discrete event sequence is inconsis-

tent and Conflict B or C occurs, the anomaly is Type-Biv,d. If Conflict B or C occurs and Conflict

A follows, the anomaly is Type-Bv,d or Type-Bv,ud. If Conflict B or C occurs, and Conflict A and
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the inconsistent discrete event sequence occur, then the anomaly is Type-Bv,d, which is shown as

the dash line in Fig.IV.12. The timing of the occurrence of different conflict types and inconsistent

discrete event sequence depends on the system and anomaly specifications. Note that Conflicts B

and C cannot occur after Conflict A because the initial set XI(t) is empty after the occurrence of

Conflict A.

Figure IV.12: Mapping between the anomaly types and the conflict types

Remark 9. With the types of conflicts and the observed events, we can have some information

about the anomalies in the system. If we know all of the possible anomalies in the system and the

corresponding anomalous hybrid subsystem, then we can end up doing anomaly isolation.

IV.6 Simulation Results

In this section, we revisit the Positive Train Control (PTC) system introduced in Chapter

I.2.2.3 with a specific scenario. We present the hybrid model, and select five different types of

anomalies in the system. Then we show the effectiveness of the conflict-driven method.

IV.6.1 Positive Train Control system

We give a simple representation of the train dynamics and Radio Block Controller (RBC)

reflecting the informal PTC cooperation protocol [23, 68]. The system diagram is shown in Fig.

IV.13. Note that the “conflict-driven monitor” is what we contribute in this chapter. We model

the train and its local controller as a hybrid system. The error signal is the continuous input to
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the system and the measured train position and velocity are the continuous outputs of the system.

The RBC takes discrete output events from the system and commands discrete input events to the

system. Both the discrete and the continuous input and output signals are sent to the conflict-driven

monitor to detect anomalies. If an anomaly is detected, the monitor notifies the Automatic Train

Protection (ATP) to brake the train. The PTC protocol consists of four discrete states (operating

modes) as shown in Fig. IV.14, which corresponds to the nominal Finite State Machine (FSM)

Mn:

1. far (faraway): the local train controller regulates the train speed freely, which is called Movement

Authority (MA).

2. neg (negotiation): the train communicates with the RBC asking for MA-extension.

3. cor (correcting): the train is braking.

4. fsa (failstate): the train is at full stop and awaits for manual clearance by the train operator.

Figure IV.13: Positive Train Control system diagram

Based on the hybrid system modeling framework in Section IV.2.2, we additionally partition

each mode of the PTC protocol into several discrete states such that the invariant of each discrete

state is a hyperrectangle. The continuous dynamics and the invariant in each discrete state depend

on the specific scenario. In this chapter, we consider that a train is scheduled to stop at the next

113



Figure IV.14: Finite State Machine Mn of the Positive Train Control protocol

station. Suppose the train is equipped with a GPS receiver and a speedometer and has two different

local controllers with different parameters: one speed controller and one position controller. If the

train is in the far or neg mode, the train is controlled by the speed controller and the continuous

dynamics are described by matrices (Av,Bv). The difference between the far and the neg modes

is that the speed in the neg mode is unchanged. If the train is commanded to stop at the station,

the PTC protocol transits to the cor mode. In the cor mode, the train is controlled by the position

controller and the continuous dynamics are described by (Ap,Bp) under normal operation. The

continuous state of the train is x = [xp xv x f ]ᵀ, where xp, xv, x f are the train position, speed

and force, respectively. The continuous output of the train is y = [yp yv]ᵀ, where yp,yv are the

measured train position and speed, respectively. If the train is in the far mode, the reference speed

is 45m/s. If the train is in the cor mode, the reference position of the train is a ramp signal ending

at the station location and the train stops at the station under normal operation.

An example Type-Civ anomaly is shown in Fig. IV.15, which is in the anomaly mode cor-

responding to the anomalous hybrid subsystem. When the anomaly occurs, the system transits to

the anomaly mode with continuous dynamics described by matrices (Av,Bv,Γ2Γ2Γ2). If this anomaly

is detected, the system transits into the cor mode with the continuous dynamics (Ab,Bb). During

braking, if the anomaly is resolved, the system follows the command from the RBC to stop at the

station. Otherwise, the train comes to a full stop and then transits to the fsa mode, waiting for the

manual clearance by the train operator.

The system parameters are shown in Table IV.2. The normal operating regions and the inter-

mediate regions of the nominal discrete states are shown in Fig. IV.16. The green regions are the
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Table IV.2: PTC system parameters

Parameters Values
One track segment length 2000m

Location of sensors 1500m,3500m
Station location 5500m

Desired train speed in far mode 45m/s
Sampling time 0.1s

Figure IV.15: Nominal hybrid automaton Hn (in black solid lines) and an example Type-Civ
anomaly (in red dotted lines) of the PTC system. The numbers show the discrete states and state
matrices represent the continuous dynamics in the discrete states. No continuous dynamics in dis-
crete state 9 because the train is at full stop. In the anomaly mode, there are other anomalous
discrete states which are not shown in the figure
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normal operating regions when the train is in far mode. The violet regions are the normal operating

regions when the train is in the neg mode. The orange region is the normal operating region when

the train is in cor mode. The yellow regions are the intermediate regions in the nominal discrete

states.

Figure IV.16: The normal operating regions (the green, violet and orange regions) and the inter-
mediate regions (yellow regions) of the PTC system

The time step for reachability analysis of each discrete state is δ4 = δ5 = 9 and the rest are

δi = 0 when we follow the steps described in Section IV.5.

IV.6.2 Anomaly Detection Result

We choose the following five anomaly scenarios to illustrate the effectiveness of the conflict-

driven method. The first four anomalies are Type-Cv, Type-Civ, Type-Dd and Type-Dud. As dis-

cussed in Section IV.5, Type-Bv,d, Type-Bv,ud and Type-Biv,d anomalies are easy to detect because

they combine either Type-Cv or Type-Dd anomaly, which are easy to detect. For Type-B anomaly,

we choose the Type-Biv,ud anomaly.

• Type-Cv: A ramp anomalous signal with slope 100N/s is added to the state variable x f and this

anomaly could be due to an unexpected injection on the driving force from the train controller.

• Type-Civ: A ramp anomalous signal with slope 0.05m/s is added to the measured train position yp.

• Type-Dd: The RBC always grants the MA-extension.
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• Type-Dud: The train received commands from the RBC 40 seconds later than that under normal

operation.

• Type-Biv,ud: Combination of Type-Civ and Type-Dud anomalies.

The above anomalies start at 50s, transiting the system from the far mode (discrete state 2) to the

anomaly mode, and run until the end of the simulation. The effect of these anomalies if undetected

are as follows: Under the Type-Cv anomaly, the train arrives at the station earlier. Under the Type-

Civ anomaly, the train stops at a wrong location. Under the Type-Dd anomaly, the train remains in

the far mode and passes the station without stopping. Under the Type-Dud anomaly, the train first

passes the station and then the train position controller makes the train come back to the station.

Under the Type-Biv,ud anomaly, the train stops at a wrong location.

1) Type-Cv Anomaly: The SVO gives an empty estimated continuous state set under this

anomaly. Fig. IV.17 shows the detection performance of the conflict-driven method. After time

t = 58.4s, the estimated sets X̃(y, t) given by the SVO are empty and Conflict A occurs. This is

because after time t = 58.4s, the set of continuous states calculated based on the input signal (one

time-step forward reachable set starting from the estimated continuous state set at the previous time

step) and the set of continuous states calculated based on the output measurement do not intersect

with each other, i.e., the input-output data of the anomalous hybrid subsystem is inconsistent with

that of the nominal hybrid subsystem.

Figure IV.17: Simulation result under the Type-Cv anomaly with the occurrence of Conflict A

2) Type-Civ Anomaly: This anomaly cannot be detected by traditional methods. As shown in

Fig. IV.18, the conflict-driven method detects this anomaly at time 90.1s when Conflict C occurs.
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The estimated discrete state is 5, indicating that the train is communicating with the RBC to ask

for MA-extension. But the reachable set Rδ5(XI(901)) indicates that the train has already received

commands from the RBC. Therefore, Conflict C occurs, i.e., Rδ5(XI(901))∩ Inv5 = ∅.

Figure IV.18: Simulation result under the Type-Civ anomaly with the occurrence of Conflict C

3) Type-Dd Anomaly: This anomaly can be detected by existing discrete model-based meth-

ods. Fig. IV.19a shows that the anomaly is detected by the discrete state observer at time 90.4s.

At time 90.4s when Conflict B occurs, the estimated discrete state changed from 5 to 3 because

the RBC grants the MA-extension. But the discrete state under normal operation should change to

6, i.e., the RBC should deny the MA-extension. At time 90.4s Conflict B also occurs as shown in

Fig. IV.19b. The invariant of discrete state 3 along the position xp state variable is from 5500m to

7500m but the upper bound of the initial set XI(904) at time 90.4s is 3978m, i.e., XI(904)∩ Inv3 = ∅.

(a) Inconsistent discrete state sequence (b) Conflict B occurs

Figure IV.19: Simulation result under the Type-Dd anomaly
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4) Type-Dud Anomaly: This anomaly cannot be detected by existing discrete model-based

methods. As shown in Fig. IV.20, the conflict-driven method detects the anomaly at time t =

90.1s and Conflict C occurs. The estimated discrete state is 5. Because it takes 40 seconds more

for the train to receive command from the RBC than under normal operation, the reachable set

Rδ5(XI(901)) does not intersect with the invariant of the discrete state 5.

Figure IV.20: Simulation result under the Type-Dud anomaly with the occurrence of Conflict C

5) Type-Biv,ud Anomaly: Existing methods cannot detect general Type-Biv,ud anomalies.

The conflict-driven method cannot provide detection guarantees but has the possibility to detect a

Type-Biv,ud anomaly. Fig. IV.21 shows the detection performance of the conflict-driven method

under the Type-Biv,ud anomaly. This anomaly is detected by the conflict-driven method at time

90.1s when Conflict C occurs. The reason that this method can detect this anomaly is that the

estimated continuous state set is inconsistent with the estimated discrete state. Under Type-Biv,ud

anomaly, the estimated continuous state is larger than the actual continuous state. If the discrete

event “deny the MA-extension” occurs earlier than the system under normal operation and the

estimated discrete state changes from 5 to 6 earlier, then Conflicts B and C may not occur. Finding

the conditions for Type-Biv,ud anomaly that can be detected by the conflict-driven method is part

of future work.

IV.7 Summary

Hybrid CPS can be modeled as hybrid systems since hybrid CPS contain continuous dy-

namics and discrete behavior. In this chapter, we propose a classification taxonomy of anomalies
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Figure IV.21: Simulation result under the Type-Biv,ud anomaly with the occurrence of Conflict C

in hybrid systems based on the variables that are affected by the anomalies and the input-output

data consistency. We classify the anomalies in hybrid systems into eight different types: Type-

Cv, Type-Civ, Type-Dd, Type-Dud, Type-Bv,d, Type-Bv,ud, Type-Biv,d and Type-Biv,ud. To detect

these challenging anomalies in hybrid systems, we utilize the relation between the continuous and

discrete variables and propose a novel anomaly detection method: conflict-driven method.

This method utilizes a hybrid observer which consists of a discrete state observer and a

continuous state observer to detect various types of anomalies in hybrid systems. The discrete

state observer is designed as a finite-state automaton to estimate the discrete state of the system.

The continuous state observer is designed as a Set-Valued Observer (SVO) to estimate a set of

continuous states of the hybrid system. Based on the relation between the discrete and continuous

variables in hybrid systems, we define three different conflict types. We demonstrate that the

conflict-driven method is guaranteed to detect Type-Cv, Type-Civ, Type-Dd, Type-Dud, Type-Bv,d,

Type-Bv,ud, and Type-Biv,d anomalies under certain conditions. Additionally, we give a mapping

between the types of conflicts and the types of anomalies.

We used a simplified Positive Train Control (PTC) system to illustrate the effectiveness of

the conflict-driven method. Based on the simulation results, we showed that the conflict-driven

method can also detect some Type-Biv,ud anomaly even though the conflict-driven method cannot

provide detection guarantees for Type-Biv,ud anomalies.

The conflict-method expands the capabilities of anomaly detection in hybrid systems, how-

ever, this method has some limitations when applied to more general hybrid systems. The hybrid

120



observer used in the conflict-driven method requires the discrete component of the hybrid system

to be current-state observable in order to give a unique estimated discrete state. However, some

hybrid systems contain unobservable discrete events such that the discrete components are not

current-state observable. Moreover, this method requires the knowledge of guard conditions is

known a priori. Sometimes it may be impossible to know the guard conditions a priori. In addi-

tion, the hybrid observer uses the SVO as the continuous state observer to estimate the continuous

state of the system. The SVO requires that no discontinuity exists in continuous variables. Thus,

the hybrid observer cannot be used for hybrid systems with discontinuity in continuous variables

during discrete transitions. To address these limitations, we propose a new observer framework

which only uses the continuous measurements for state estimation and anomaly detection. This

framework is presented in the next chapter.
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CHAPTER V

A Novel Hybrid Observer Design for State Estimation and Anomaly Diagnosis Applied to

Hybrid Systems with Unobservable Discrete Events

V.1 Introduction

In Chapter IV, we proposed the conflict-driven anomaly detection method for hybrid sys-

tems. However, the conflict-driven method has some limitations when applied to a wider class of

hybrid systems as discussed in Section IV.7. In the hybrid system formalism in Section IV.2.2,

each discrete transition is associated with a discrete event and a guard condition. For some hybrid

systems, each discrete transition is also associated with a reset function, which resets the value of

the continuous state of the system when a discrete transition occurs. In addition, the guard condi-

tions and reset functions corresponding to the discrete transitions may be unknown a priori and the

discrete events are unobservable. Estimating the state and diagnosing anomalies for these hybrid

systems can be challenging.

In this chapter, we propose a new observer framework which consists of two continuous state

observers to estimate state and diagnose anomalies for hybrid systems with unobservable discrete

events, such as the microgrid system with unplanned islanding mentioned in Section I.2.3.3. The

two continuous state observers use different sets of sensors and the same continuous system model

associated with the current estimated discrete state (assuming that the initial discrete state of the

system is given) to estimate the continuous state of the system. Based on the estimated continu-

ous state trajectories, the Recursive Least Squares (RLS) method is used to estimate the current

continuous model of the system. To determine the current discrete state of the system, we run
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multiple continuous models in parallel for a finite time period, including the known continuous

models of the system and the estimated continuous model provided by the RLS. The discrete state

can be uniquely determined if the continuous dynamics of different discrete states are distinguish-

able1. We call this framework the Convergence Ratio Multi-model Hybrid Observer (CRMMHO)

framework. The contributions of this chapter are as follows:

1. We propose the CRMMHO framework to estimate both the discrete and the continuous variables

for hybrid systems with unobservable discrete events;

2. We use the CRMMHO framework to diagnose anomalies in more general hybrid systems; and

3. We apply the CRMMHO framework in the simulated microgrid system to validate its effectiveness.

V.2 Problem Formulation

In this section, we describe the class of hybrid systems of interest and formally state the

problem.

V.2.1 Notation

Let ‖ · ‖ denote∞-norm, ·̃ denote estimated variables. In addition, x ∈Rn represents a vector,

where its ith element is indicated by x(i). A ∈ Rn×m represents a matrix, where its ith row and jth

column are indicated by A(i,:) and A(:, j), respectively. The detailed notations are shown in Appendix

C.
1Two continuous systems are distinguishable if for any non-zero initial continuous states and the same input, the

outputs of the two continuous systems are not identical for a finite time period [58].
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V.2.2 Hybrid Systems

In this chapter, we consider the class of hybrid systems that can be represented by a tuple

H = (X ,U ,Y, Init, f ield,φ,h, fr), where each element is defined as

• X = Q×X: a set of discrete and continuous states

• U = Ψ×U: a set of discrete and continuous inputs

• Y: a set of continuous outputs

• Init = (q(t0),x(t0)) ∈ X : an initial state

• f ield : X ×U → X: a time-invariant vector field

• φ : Q×Ψ→ Q: a set of discrete transitions

• h : Q×X→ Y: a continuous output equation

• fr : x(ti) = fr(x(ti−1),ψ(i)): a reset function, where ti is the time when the ith discrete event occurs

For each discrete state q ∈Q, we associate continuous dynamics that can be represented by a Linear

Time Invariant (LTI) model, subject to process and measurement noise.

f ield : x(t + 1) = Aqx(t) + Bqu(t) + w(t)

h : y(t) = Cx(t) + v(t)
(V.1)

where x ∈ Rnx ,u ∈ Rnu ,y ∈ Rny are the system continuous state, continuous input and continuous

output, Aq ∈ Rnx×nx ,Bq ∈ Rnx×nu are system matrices which depend on the discrete state q, C ∈

Rny×nx is the system output matrix, which is the same for all q ∈ Q. The process and measurement

noise are represented by w ∼N (0,W) and v ∼N (0,V), respectively, where ‖w‖ ≤ w and ‖v‖ ≤ v.

The initial continuous state x(t0) is unique but unknown.
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To each discrete transition φ(q,ψ) = q′, we associate a guard condition:

G(q,q′,ψ) = {x ∈ Rnx : sGx ≥ cG} (V.2)

where cG is a vector and sG is a matrix. The guard condition indicates that the discrete transition

ψ occurs if the system is in discrete state q and the continuous state satisfies sGx ≥ cG.

In this chapter, we assume

Assumption 10. The initial discrete state q(t0) is known.

The ith discrete event ψ(i) occurs at time ti. The continuous evolutions of the system in one

discrete state occur in time t ∈ [ti−1 + 1, ti], for all i = 1,2, .... We assume

Assumption 11. No discrete event occurs between two adjacent sample time boundaries and at

most one discrete event occurs at one sample time boundary.

Assumption 12. The matrix pair (Aq,C) is observable for the initial discrete state q(t0) ∈ Q.

As mentioned in Section V.1, we use Kalman filters in the proposed CRMMHO framework.

To ensure the convergence of Kalman filter gains, we assume:

Assumption 13. The continuous system in each discrete state is stable or marginally stable, i.e.,

λ(Aq) ≤ 1,∀q ∈ Q, where λ(Aq) is the eigenvalues of matrix Aq.

The objective of this chapter is to design an observer for state estimation and anomaly diag-

nosis for hybrid systems that

1. not all discrete events ψ are observable; and

2. not all guard conditions G(q,q′,ψ) and reset functions fr are known a priori.

Remark 10. Note that the proposed CRMMHO framework still works under the extreme case that

there are no observable discrete events ψ and we do not have any knowledge of guard conditions

G(q,q′,ψ) and reset functions fr.
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V.3 Observer Design

In this section, we first introduce the proposed Convergence Ratio Multi-model Hybrid Ob-

server (CRMMHO) framework for the class of hybrid systems described in Section V.2. Then

we demonstrate the effectiveness of the CRMMHO framework. Finally, we show how to use the

CRMMHO framework to diagnose anomalies.

V.3.1 Observer Framework Description

As shown in Fig. V.1, the CRMMHO framework for state estimation and anomaly diagnosis

consists of two continuous state observers and integrates three methods: the Convergence Ratio

(CR) [85], the Recursive Least Squares (RLS) [37] and the model selection. The two continuous

state observers are designed to be Kalman filters2, which estimate the continuous state of the

system using different sets of measured outputs. The continuous state observer 0 uses all of the

measured outputs. The continuous state observer 1 uses any subset of measured outputs, which still

ensure the observability of the continuous system. Based on the estimated continuous states x̂0 and

x̂1 by the two continuous state observers, the CR method calculates the estimation errors x̃e,0 and

x̃e,1 for both of the continuous state observers. If the norm of x̂0− x̂1 is larger than a threshold θCR,

it indicates that a discrete transition has occurred and the continuous state observers enter their

transient state. Then the estimated state x̃ is updated based on x̃e,0. Otherwise, x̃ = x̂0. After some

time steps, the norm of x̂0 − x̂1 will reach a steady state and not change much at each time step.

Then, we record the time step tss and start to use an on-line system identification method, which

is the RLS in this chapter3, to recursively estimate the current system matrices at each time step.

When the norm of a posteriori error of the RLS is smaller than a certain threshold θRLS , it means

that the matrix estimation has converged and we record the number of time steps ∆tRLS needed

for the estimated matrices to converge. Then the estimated system matrices are used by the model

2The continuous state observers can also be designed as Luenberger observers [85].
3Note that we can use other on-line system identification method under the CRMMHO framework.
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selection method to determine the current discrete state. In the model selection method, multiple

continuous system models run in parallel for ∆t time steps (the derivation of ∆t is given in Step 7 in

Section V.3.1.3) with x̃(tss) as the initial continuous state. The multiple running models include all

known continuous models and the estimated continuous model by the RLS. Based on each model,

we can calculate a residual, which is the difference between the measured output from the system

and the output calculated from the model. The norms of the residuals from the running models are

compared. The model with the smallest norm of the residual corresponds to the estimated discrete

state if the continuous dynamics of the current discrete state are distinguishable from all of other

known continuous dynamics. However, it is possible that the system enters some unknown discrete

state with unknown continuous dynamics. If the norm of the smallest residual is much larger than

the norm of the residual calculated based on the estimated continuous dynamics from the RLS,

then the system is considered to be subject to some unknown anomaly.

Remark 11. Note that the model selection method in the CRMMHO framework only runs multiple

models for a short period of time ∆t. If the system stays in one discrete state much longer than

∆RLS , then the maximum value of ∆t is given by Equation (V.15). In addition, the model selection

method only calculates a single output vector for each model at one time step. But set-membership

methods give a set of output vectors (or state vectors) for one model at one time step. The amount of

computation time running the multiple continuous models for ∆t time steps is less than the amount

of computation time used by set-membership methods running multiple models all the time. Thus,

the proposed CRMMHO framework is more computationally efficient.

Remark 12. In the model selection method, we compare the norm of the residuals from multiple

continuous models to determine the current discrete state. The residuals are functions of system

dynamics. The concepts of large or small residual norm are used for purpose of development,

selection and solution of the model selection method. We assume that the dynamics of different

continuous models are similar to the extent that the concept of large and small residual norm can

be universally applied. The validation of this discussion is system-specific and part of future work.

First, we briefly describe how Kalman filter and the RLS work in Sections V.3.1.1 and
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Figure V.1: The CRMMHO framework

V.3.1.2, respectively. Then we give a detailed description of the CRMMHO framework in Sec-

tion V.3.1.3.

V.3.1.1 Kalman Filter

The Kalman filter is the most widely used state estimator for linear systems with known

uncertainties. The standard Kalman filter derivation is given here

x̂(t|t−1) = Aqx̂(t−1) + Bqu(t−1)

P(t|t−1) = AqP(t−1)Aᵀq + W

K(t) = P(t|t−1)Cᵀ(V + CP(t|t−1)Cᵀ)−1

x̂(t) = x̂(t|t−1) + K(t)(y(t)−Cx̂(t|t−1))

P(t) = (I−K(t)C)P(t|t−1)(I−K(t)C)ᵀ+ K(t)VKᵀ(t)

(V.3)

where K is the Kalman gain and P is the covariant matrix reflecting the accuracy of estimates. It

is well known that the Kalman gain K will converge if the system is open-loop stable [61]. In

practice the Kalman gain usually converges in a few steps. Without loss of generality, we assume

the Kalman filter to be already in the steady state and define

P, lim
t→∞

P(t|t−1), K, PCᵀ(V + CPCᵀ)−1. (V.4)
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Based on Assumption 13, we use the constant Kalman gains in the CRMMHO framework and its

demonstration.

V.3.1.2 Recursive Least Squares

The RLS is an on-line system identification method which can use given measurements to

estimate unknown system parameters. We use the RLS to estimate the continuous system matrices

(Ã, B̃).

In our case, we have

x(t) =

[
Aq Bq

] x(t−1)

u(t−1)

 (V.5)

where u(t− 1) is known, and we use x̃ as an estimate of x. Let ΞΞΞ =

Ã
ᵀ

B̃ᵀ

 and ξξξ =

x̃u
. RLS finds

the best linear function ΞΞΞ that computes the value of x̃ from the values of ξξξ. Then ΞΞΞ can be used to

estimate
[
Aq Bq

]
. The RLS procedure is as follows:

εεεo(t) = x̃0(t)−ΞΞΞᵀ(t−1)ξξξ(t−1)

ΞΞΞ(t) = ΞΞΞ(t−1) +
GRLS(t−1)ξξξ(t−1)

1 +ξξξᵀ(t−1)GRLS(t−1)ξξξ(t−1)
εεε
ᵀ
o(t)

GRLS(t) = GRLS(t−1)−
GRLS(t−1)ξξξ(t−1)ξξξᵀ(t−1)GRLS(t−1)

1 +ξξξᵀ(t−1)GRLS(t−1)ξξξ(t−1)

(V.6)

where εεεo is a priori error and GRLS is the adaptation gain. Initially, define GRLS(t0) = cI, where c

is a large positive constant (e.g. 1000) and I is an identify matrix.

V.3.1.3 Work Flow of the CRMMHO Framework

As shown in Fig. V.2, the detailed work flow of the CRMMHO framework is described as

follows:
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Figure V.2: Flow chart of the CRMMHO framework

1. Initialization:

The estimated initial discrete state is the same as the real initial discrete state q̃(t0) = q(t0) = q0

based on Assumption 10. The initial guess for the RLS is ΞΞΞ(0) =

A
ᵀ
q0

Bᵀq0

 and GRLS(t0) = cI.

2. Estimate x̂0(t) and x̂1(t) using two Kalman filters:

Note that the two Kalman filters are using the same estimated continuous state at the previous time

step x̃(t−1) for state estimation. With constant Kalman gains, the estimated continuous states by
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the two Kalman filters are given as follows:

x̂0(t) = Aq̃x̃(t−1) + Bq̃u(t−1) + K0(y(t)−C(Aq̃x̃(t−1) + Bq̃u(t−1)))

= x̂(t|t−1) + K0(y(t)−Cx̂(t|t−1))

= (I−K0C)x̂(t|t−1) + K0y(t)

x̂1(t) = Aq̃x̃(t−1) + Bq̃u(t−1) + K1(y1(t)−C1(Aq̃x̃(t−1) + Bq̃u(t−1)))

= x̂(t|t−1) + K1(y1(t)−C1x̂(t|t−1))

= (I−K1C1)x̂(t|t−1) + K1y1(t)

(V.7)

where x̂0 ∈Rnx , x̂1 ∈Rnx are the estimated continuous states by continuous state observers 0 and 1,

respectively, C1 ∈ Rn′y×nx is the output matrix used by continuous state observer 1, y1 ∈ Rn′y is the

output variable used by continuous state observer 1, and x̂(t|t− 1) = Aq̃x̃(t− 1) + Bq̃u(t− 1). Note

that n′y < ny.

Then compare the norm of the difference of the estimated continuous states ‖x̂0 − x̂1‖ with the

threshold θCR. If ‖x̂0 − x̂1‖ > θCR, then continue on Step 3. Otherwise, stay in Step 2 for the next

time step. Note that the threshold θCR may be different for different discrete states because the

impact of the noise on state estimation is different in different discrete states. Adaptive θCR should

be used to make sure the change of discrete state can be successfully detected. Refer to [77] on

how to determine an adaptive threshold using a data-driven method.

3. Calculate the estimation errors x̃e,0(t), x̃e,1(t) using the CR method:

x̃e,0(t) = (I−K0C)(K0C−K1C1)†(x̂0(t)− x̂1(t))

x̃e,1(t) = (I−K1C1)(K0C−K1C1)†(x̂0(t)− x̂1(t)),
(V.8)

where (K0C−K1C1)† is the pseudo-inverse of matrix (K0C−K1C1), that is (K0C−K1C1)† =

[(K0C−K1C1)ᵀ(K0C−K1C1)]−1(K0C−K1C1)ᵀ.

4. Calculate the estimated continuous state x̃(t):
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x̃(t) = x̂0(t) + x̃e,0(t) (V.9)

5. Check whether or not the continuous state estimation has entered a new steady state:

When the system enters a new discrete state, ‖x̂0 − x̂1‖ reaches a new steady state which is larger

than θCR. We compare the following

|‖x̂0(t + 1)− x̂1(t + 1)‖− ‖x̂0(t)− x̂1(t)‖|
‖x̂0(t)− x̂1(t)‖

(V.10)

which indicates the change of ‖x̂0 − x̂1‖, with a threshold θdi f f to determine whether or not the

continuous state estimation has entered a new steady state. If (V.10) is smaller than θdi f f , record

the current time step tss and continue on Step 6. Otherwise, go back to Step 2 for the next time

step.

6. Estimate the system matrices using the RLS following the procedure introduced in Section V.3.1.2.

Then the estimated system matrices (Ã, B̃) are as follows

Ã = [ΞΞΞ(1:nx,1:nx)]ᵀ

B̃ = [ΞΞΞ(nx+1:nx+nu,1:nx)]ᵀ
(V.11)

In addition, we use a posteriori error εεε to track the convergence of the system matrices estimation

εεε(t) = x̃(t)−ΞΞΞᵀ(t)ξξξ(t) (V.12)

If ‖εεε(t + 1)‖ ≤ θRLS , then we record the time steps ∆tRLS for convergence and continue on Step 7.

Otherwise, we go back to Step 2 for the next time step.

7. Determine the discrete state of the system:

For each known continuous model and the estimated continuous model, we can calculate the output
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starting from time tss:

yo,q̂(tss + j) = Cxo,q̂(tss + j)

= CA j
q̂x(tss) +Σ

j−1
i=0 CAi

q̂Bq̂u(tss + j−1− i)
(V.13)

where q̂ = 0,1,2,3..., 0 indicates the continuous model estimated by the RLS, 1,2,3... indicate the

continuous models of discrete states 1,2,3..., respectively, xo,q̂ and yo,q̂ are the state and output

calculated using the continuous model.

The residual is the difference between the measured output from the system and the calculated

output from each continuous model:

rq̂(tss + j) = y(tss + j)−yo,q̂(tss + j) (V.14)

We introduce a similarity index for each continuous model to help find the continuous model which

has the closest behavior to the current continuous dynamics of the system. The similarity index for

each continuous model is defined as the mean of the norm of the residual calculated based on the

continuous model:

Iq̂ =
1
∆t

Σ∆t
j=1‖rq̂(tss + j)‖, where ∆t = max(∆tRLS ,

2nx−ny

ny−nu
) (V.15)

Then we compare the smallest Iq̂, where q̂ 6= 0 with I0. If Iq̂ < θI I0, where θI is a pre-defined

threshold, then the system is currently in discrete state q̂ and the estimated discrete state q̃ equals

to q̂. Otherwise, the system is in an unknown discrete state.

Note that two discrete events may occur close to each other or even in adjacent time steps.

For example, discrete event ψ1 makes the system transition from discrete state 1 to 2 and discrete

event ψ2 makes the system to transition from discrete state 2 to 3. Suppose ψ2 occurs right after the

occurrence of ψ1 and the matrix estimation by the RLS has not converged. Then the CRMMHO
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cannot identify the discrete state 2 after the occurrence of discrete event ψ1. The CRMMHO only

estimates the current discrete state, which is 3. Suppose ψ2 occurs after the matrix estimation by

the RLS has converged. Then the CRMMHO can identify both the discrete state 2 and discrete

state 3 with some time delay. An extreme case is that the system never stays in one discrete state

for a long time such that the matrix estimation by the RLS never converges. Then the CRMMHO

framework can only estimate the continuous state of the system.

V.3.2 Demonstration

Among the seven steps in the CRMMHO framework mentioned in Section V.3.1, there are

three key steps. One is the CR method which estimates the continuous state of the system. The

second is the RLS method which estimates the continuous model of the current discrete state.

The third is the model selection which estimates the current discrete state of the system. In this

section, we demonstrate the effectiveness of the CR, the RLS and the model selection methods

mathematically, respectively.

The CR method uses two continuous state observers to calculate the estimation errors of

the two observers. Then the calculated estimation errors are used to correct the continuous state

estimated by the plain Kalman filter. In [85], it is demonstrated that the CR method can provide

a good estimation error calculation using Luenberger observers when the system is subject to

process noise. Theorem 4 demonstrates that the same result remains for Kalman filters in the case

that the Kalman filters are using incorrect state matrices for state estimation. The reason that the

CR method is not affected by incorrect state matrices is that the two continuous state observers

(Kalman filters) are using the same state matrices for state estimation. The CR method takes the

difference of the estimated states of the two continuous state observers to calculate the estimation

errors, then the effect of the incorrect state matrices are canceled out.

Theorem 4. Given a hybrid system H, suppose the difference of the state matrices between the

discrete states q1 and q2 is (∆∆∆Aq1,q2 ,∆∆∆Bq1,q2), where ∆∆∆Aq1,q2 = Aq1 −Aq2 and ∆∆∆Bq1,q2 = Bq1 −Bq2 ,
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then the estimation errors x̃e,0, x̃e,1 calculated using Equation (V.8) are the same as the actual

estimation errors of the two observers in sensor noise free case, i.e., v = 0.

Proof. The linear system of discrete states q1 and q2 is

x(t + 1) = Aqx(t) + Bqu(t) + w(t)

y(t) = Cx(t)
(V.16)

where q = q1,q2.

At time ti when a discrete transition occurs, the discrete state is changed from q1 to q2. Since

the discrete event is unobservable, the observers are still using the state matrices (Aq1 ,Bq1) for state

estimation after time ti.

Let us focus on observer 0 in this proof. The proof is similar for observer 1.

The estimated continuous state given by observer 0 is shown in Equation (V.7). Then the

estimation error of observer 0 is

xe,0(t) = x(t)− x̂0(t)

= x(t)− (I−K0C)x̂(t|t−1)−K0y(t)

= (I−K0C)(x(t)− x̂(t|t−1))

(V.17)

The estimation difference of the two observers is

x̂0(t)− x̂1(t) = xe,1(t)−xe,0(t)

= (K0C−K1C1)(x(t)− x̂(t|t−1))
(V.18)
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Then the calculated estimation error for observer 0 based on Equation (V.8) is

x̃e,0(t) = (I−K0C)(K0C−K1C1)†(x̂0(t)− x̂1(t))

= (I−K0C)(x(t)− x̂(t|t−1))

= xe,0(t)

(V.19)

Therefore, with inaccurate state matrices, the estimation error can still be correctly calculated

in the sensor noise free case.

According to [85], the CR method is affected by sensor noise. Here we give the upper bound

of the calculation error of the estimation error under bounded sensor noise.

xe,0(t)− x̃e,0(t) = xe,0(t)− (I−K0C)(K0C−K1C1)†(x̂0(t)− x̂1(t))

= (I−K0C)(K0C−K1C1)†(K1v1(t)−K0v(t))
(V.20)

So the upper bound is ‖(I−K0C)(K0C−K1C1)†(K1 + K0)‖v.

Remark 13. According to Theorem 4, the calculation of the estimation error does not require the

continuous dynamics of discrete state q2 to be observable. Therefore, we only assume that the

continuous dynamics of the initial discrete state q(t0) are observable in Assumption 12 to ensure

the estimation error convergence in the initial discrete state.

With the calculated estimation error, we can update the estimated continuous state of the

system x̃(t) according to Equation (V.9). With the updated estimated continuous state, we use the

RLS to calculate the state matrices of discrete state q2. Proposition 6 demonstrates the convergence

of the estimated matrices by proving that the norm of a posteriori error εεε(t) (V.12) is smaller

than the norm of a priori error εεεo (V.6) in the noise free case. We state the proposition here for

convenience. For the detailed proof, refer to [16].

Proposition 6. In the RLS algorithm (V.6), the norm of a posteriori error εεε(t) is smaller than the

norm of a priori error εεεo at each time step.
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With the estimated continuous system matrices by the RLS method, we can use the estimated

matrices as a reference to help determine the current discrete state of the system. As mentioned in

Section V.1, we can uniquely determine the discrete state of the system if the current continuous

dynamics are distinguishable from the continuous dynamics of other discrete states. The formal

definition of distinguishability is given in [58].

Definition 17. The continuous dynamics (Aq1 ,Bq1) and (Aq2 ,Bq2) are said to be distinguishable

on [t0, t0 + T ], if for any non-zero

(xq1(t0),xq2(t0),u(·)) ∈ Rnx ×Rnx ×Rnu , (V.21)

the outputs yq1(·) and yq2(·) are not identical to each other on [t0, t0 + T ].

The necessary and sufficient condition for distinguishability in the noise free case in con-

tinuous time is given in [58]. The theorem and its proof for the discrete-time continuous system

is similar to that in [58]. For convenience, we restate the theorem and give its proof under our

modeling formalism.

Theorem 5. The continuous models described by Equation (V.1) (w = 0,v = 0) of two discrete

states q1 and q2 with the same initial condition x(ti) are distinguishable in time [ti, ti + ∆t] if and

only if

∆t ≥
2nx−ny

ny−nu
and 2nx > ny and ny > nu

and

Dq1,q2 =



Cq1,q2 0 0 ... 0

Cq1,q2Aq1,q2 Cq1,q2Bq1,q2 0 ... 0

Cq1,q2A2
q1,q2

Cq1,q2Aq1,q2Bq1,q2 Cq1,q2Bq1,q2 ... 0

... ... ... ... 0

Cq1,q2A∆t
q1,q2

Cq1,q2A∆t−1
q1,q2

Bq1,q2 ... ... Cq1,q2Bq1,q2



(V.22)
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has full column rank, where

Aq1,q2 =

Aq1 0

0 −Aq2


Bq1,q2 =

Bq1

Bq2


Cq1,q2 =

[
C −C

]
(V.23)

Proof. The outputs of (Aq1 ,Bq1) and (Aq2 ,Bq2) with the same initial continuous state x(ti) are

yq1(ti + j) = CA j
q1x(ti) + CΣ

j−1
i=0 Ai

q1
Bq1u(ti + j−1− i)

yq2(ti + j) = CA j
q2x(ti) + CΣ

j−1
i=0 Ai

q2
Bq2u(ti + j−1− i)

(V.24)

Suppose q1 is the actual current discrete state and q2 is one of the possible discrete states of the

system. The residual rq2(ti + j) is

rq2(ti + j) = yq1(ti + j)−yq2(ti + j)

= C(A j
q1 −A j

q2)x(ti) + CΣ
j−1
i=0 (Ai

q1
Bq1 −Ai

q2
Bq2)u(ti + j−1− i)

(V.25)

If the continuous dynamics of discrete states q1 and q2 are distinguishable, then rq2(t + j) = 0,∀ j =

0,1, ...,∆t holds only when the initial continuous state x(ti) and all of the inputs u are 0, i.e.,

Dq1,q2



x̃(ti)

x̃(ti)

u(ti)

...

u(ti +∆t−1)


= 0 (V.26)

admits only trivia solution. That is, the matrix Dq1,q2 ∈ R((∆t+1)×ny)×(2nx+∆t×nu) is a square or tall

matrix ((∆t + 1)×ny ≥ 2nx +∆t×nu) and has full column rank.
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Suppose the current discrete state of the system is q1 during the model selection step. If

the continuous dynamics of two discrete states q1 and q2 satisfy Theorem 5, then the residual

calculated based on the continuous models of q2 is non-zero in time [tss, tss + ∆t] in the noise free

case. If the continuous dynamics of all of the discrete states are distinguishable, then we can

uniquely determine the current discrete state. Otherwise, the discrete state which has the smallest

norm of residual is not guaranteed to be the actual discrete state of the system. Theorem 5 provides

the condition of distinguishability in the noise free case. However, the hybrid system we consider

in this chapter contains process and sensor noise as described in Section V.2. If the continuous

dynamics of discrete states q1 and q2 are distinguishable, the residual rq2 calculated in the noisy

system case may still equal to 0 because of the system noise. Therefore, we provide a condition to

address the noisy system case. Since the discrete state q1 is the current discrete state of the system,

the continuous dynamics of q1 are subject to system noise. The discrete state q2 is one of the

possible discrete states of the system and the continuous dynamics of q2 are ideal (w = 0,v = 0).

Then, the outputs of (Aq1 ,Bq1) and (Aq2 ,Bq2) with the same initial continuous state x(tss) are

yq1(tss + j) = CA j
q1x(tss) + CΣ

j−1
i=0 Ai

q1
Bq1u(tss + j−1− i) + CΣ

j−1
i=0 Ai

q1
w(tss + j−1− i) + v(tss + j)

yq2(tss + j) = CA j
q2x(tss) + CΣ

j−1
i=0 Ai

q2
Bq2u(tss + j−1− i)

(V.27)

The residual rq2(tss + j) is

rq2(tss + j) = yq1(tss + j)−yq2(tss + j)

= C(A j
q1 −A j

q2)x(tss) + CΣ
j−1
i=0 (Ai

q1
Bq1 −Ai

q2
Bq2)u(tss + j−1− i)

+ CΣ
j−1
i=0 Ai

q1
w(tss + j−1− i) + v(tss + j)

(V.28)

If rq2(tss + j) 6= 0,∀ j = 0,1, ...,∆t, then it is guaranteed that the continuous dynamics of q1 and q2 are

not the same. That means if the following holds from time tss to time tss + ∆t, then the continuous

139



dynamics of q1 and q2 are different:

∀ j = 0,1, ...,∆t

‖C(A j
q1 −A j

q2)x(tss) + CΣ
j−1
i=0 (Ai

q1
Bq1 −Ai

q2
Bq2)u(tss + j−1− i)‖ ≥ ‖CΣ

j−1
i=0 Ai

q1
w(tss + j−1− i) + v(tss + j)‖

≥ ‖C‖Σ j−1
i=0 ‖Aq1‖

iw + v
(V.29)

Note that the condition (V.29) is a sufficient condition. It is possible that we can distinguish

the two continuous models of discrete states q1 and q2 although (V.29) is not satisfied.

V.3.3 Anomaly Diagnosis

Anomalies may occur in hybrid systems, causing a change in continuous dynamics. Some

anomalies have been studied before and we know how those anomalies affect the continuous dy-

namics of the system, especially the anomalies caused by traditional faults. For the anomalies that

we have a priori knowledge about, we can model them as discrete states which are part of the hy-

brid systems associated with unobservable discrete events. The CRMMHO framework can detect

anomalies by detecting the occurrence of the discrete event and isolate anomalies by identifying

the current discrete state. For some anomalies, however, we do not have a priori knowledge, espe-

cially the anomalies caused by attacks. For the anomalies that we do not have a priori knowledge

about, we do not model them as part of the hybrid system model. The CRMMHO framework

can detect anomalies by detecting a change in the continuous dynamics of the system, and the

continuous dynamics estimated by the RLS can provide some insight about the anomalies.

V.4 Simulation Result

In this section, we show the simulation result of our motivating example - the microgrid

system. First, we present the hybrid model of the microgrid system. Then, we compare the state
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estimation performance of the proposed CRMMHO framework with a plain Kalman filter.

V.4.1 Microgrid System

As introduced in Section V.1, unplanned islanding may occur within the system, threatening

worker safety and interrupting Distributed Energy Resource (DER) management. Traditional Is-

landing Detection Methodology (IDM) can detect the occurrence of the unplanned islanding, but

they cannot provide state estimation during the diagnosis.

As shown in Fig. I.2, the microgrid system we consider in this chapter contains two DERs,

two buses, one transmission line and two local loads. The hybrid model of the microgrid system

contains three discrete states under normal operation: grid-tied, islanded and synchronization, as

illustrated in Fig. V.3. Suppose initially the system is in the islanded discrete state and it is

commanded to connect to the grid; then the system transitions to the synchronization discrete state

to synchronize the amplitude and phase of the voltage in the microgrid with that in the grid. After

the synchronization is finished, the microgrid is connected to the grid and the system transitions to

the grid-tied discrete state. Under normal operation, the islanding is scheduled, which transitions

the system from the grid-tied discrete state to the islanded discrete state. The continuous model

in each discrete state contains 40 continuous states, all of which are measured. For the detailed

modeling of the microgrid, refer to [72].

The proposed observer framework CRMMHO contains two Kalman filters. Suppose all of

the continuous state variables can be directly measured. Kalman filter 0 uses all 40 measurements

and Kalman filter 1 uses 24 measurements for state estimation. The parameters of the proposed

observer framework are shown in Table V.1. Note that in order to compare the following thresh-

olds with corresponding variables (the difference of the estimated continuous states between the

two continuous state observers and residual), we normalize the variables based on the mean and

141



standard deviation of the variables under normal operation, as shown in (V.30).

xnorm =
x− x
σx

(V.30)

where xnorm is the variable, x is the mean of the variable, and σx is standard deviation of the

variable.

Table V.1: Parameters of the CRMMHO framework

Parameters Value

θCR 4

θdi f f 4

θRLS 4

θI 100

To illustrate the effectiveness of the CRMMHO framework, we consider the unplanned is-

landing scenario. We run the simulation for 10s. An unplanned islanding occurs at time 3s and the

system stays in the islanded discrete state until the end of the simulation.

Figure V.3: Hybrid model of the microgrid system

V.4.2 Simulation Result

We compare the result of the CRMMHO framework with the plain Kalman filter 0 to show

the effectiveness of the CRMMHO framework in state estimation and anomaly diagnosis. For
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continuous state estimation, we compare the 15th estimated state variable, the current of bus 1 on

the q-axis4, which is used by the power controller to control the DER on bus 1 when the system is

in the islanded discrete state. If the estimation of the current is bad, the controller cannot provide

good control performance for the system, and may even damage the system under severe cases.

Fig. V.4 shows the real and the estimated currents by the CRMMHO and the plain Kalman filter

0. From the simulation result we can see that after the unplanned islanding occurs, the estimated

current by the plain Kalman filter has an offset compared to the real current in the steady state.

The reason that the plain Kalman filter cannot provide a good state estimation after the occurrence

of the unplanned islanding is because the continuous model used by the observer is the continuous

model in the grid-tied discrete state as opposed to the continuous model in the islanded discrete

state. In contrast, the estimated current by the CRMMHO can track the real current well. Fig. V.5

shows the real and the estimated discrete state by the CRMMHO. The estimated discrete state is

uniquely determined at 4.1s, which is 1.1s after the occurrence of the unplanned islanding. The

1.1s detection delay is caused by the convergence time of ‖x̂0− x̂1‖ and the RLS. In summary, the

anomaly caused by the unplanned islanding is successfully diagnosed and we can provide a good

state estimation during the diagnosis of the unplanned islanding.

Figure V.4: The real current x(15), the estimated continuous currents x̃(15), x̂(15)
0 by the CRMMHO

and the plain Kalman filter 0 under unplanned islanding (note that the real current x(15) overlaps
with the estimated continuous state x̃(15) by the CRMMHO)

4In a synchronous machines, the axis of the field winding in the direction of the DC field is the d-axis. 90 degrees
later than the d-axis is the q-axis [38].
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Figure V.5: The real discrete state q, estimated discrete state q̃ by the proposed observer under
unplanned islanding

V.5 Conclusion & Future Work

In this chapter, we proposed a novel observer framework, the Convergence Ratio Multi-

model Hybrid Observer (CRMMHO), for state estimation and anomaly diagnosis for hybrid sys-

tems with unobservable discrete events. The CRMMHO consists of two continuous state observers

and three major methods: the Convergence Ratio (CR), the Recursive Least Squares (RLS) and the

model selection. First, the CR method estimates the continuous state of the system. Then, the RLS

method estimates the continuous system matrices. Finally, the model selection method uniquely

determines the current discrete state. We demonstrated the CRMMHO framework in state esti-

mation and anomaly detection mathematically and showed its effectiveness using the simulated

microgrid system.

The CRMMHO has the following advantages compared to existing methods. It does not

require a priori knowledge of the discrete transitions. The discontinuity in continuous variables is

allowed. The CRMMHO is more computationally effective because: 1) it only uses two continuous

state observers to estimate the continuous state of the system; and 2) the multiple continuous

models only run for a short period of time and give a single output vector for each model per time

step to determine the discrete state of the system. Note that this framework is flexible. The RLS

method can be replaced with other on-line system identification methods and the model selection

method can be replaced with any model falsification [74, 75] or model invalidation methods [35].
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More work needs to be done on improving the CRMMHO framework. The CRMMHO

framework assumes that the initial discrete state of the system is given. However, the initial dis-

crete state may not be known a priori. To relax the assumption of the known initial discrete state,

we can run multiple continuous state observers in parallel, each corresponding to one known con-

tinuous models. By checking the convergence of the residual of each continuous state observer,

we can determine the initial discrete state. In addition, in order to determine the discrete state

of the system by analyzing residuals, we assume that the dynamics of different continuous mod-

els are similar to the extent that the concept of large and small residual norm can be universally

applied. This assumption needs to be validated for specific system in the future. Under the CR-

MMHO framework, there are some thresholds, such as θCR, θI that we need to determine based

on the specific system that we apply to. In order to determine θI , we need quantify the level of

distinguishability based on the noise level. The impact of different levels of distinguishability on

the residual should be studied, providing guidance on setting θI .
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CHAPTER VI

Conclusions and Future Work

VI.1 Conclusions

This dissertation focuses on improving the security of Cyber-Physical Systems (CPS) by en-

hancing the utility of traditional observer-based anomaly diagnosis and mitigation methods. With

the integration of the cyber world and the physical world, CPS have fast responses to the sur-

rounding environment, such as changing markets and disturbances. As the world transitions to full

integration of the cyber and physical realms, the unique challenges that CPS security face include

not only traditional physical faults or attacks but also faults or attacks from the cyber domain.

These cross-domain faults or attacks can cause anomalies in the physical systems, or even threaten

public safety. In this dissertation, we enhance the security of CPS by improving on the traditional

anomaly diagnosis and mitigation approaches that address anomalies caused by faults or attacks.

We leverage the observer-based approach which is one of the most widely used anomaly diagnosis

and mitigation techniques. An observer-based approach has the advantage that it can not only di-

agnose anomalies but also estimate the current state of the system. The estimated system state can

help human operators understand how to resolve the anomaly as well as ensure the safety of the

system.

The work done in the dissertation can be divided into three major parts, which are presented

in Chapters III, IV and V, respectively. We have summarized the contributions of each chapter

using a microgrid system as an example.

In Chapter III, we focus on anomalies in sensors and model CPS as continuous systems.
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Under the multi-observer framework, three new methods are proposed and integrated to improve

sensor anomaly diagnosis and mitigation. The three new methods respectively:

1. enable anomaly detection for some sensor anomalies during the observers’ transient state;

2. detect some anomalies on critical sensors; and

3. potentially mitigate the impact of the anomalous sensor during the diagnosis process.

If we take one operation mode of the microgrid system as an example, such as the islanded op-

eration mode, then the multi-observer sensor anomaly diagnosis and mitigation framework can

be used to diagnose sensor anomalies and mitigate the impact of these sensor anomalies in the

microgrid system.

In Chapter IV, we extend the work in Chapter III to hybrid systems, which consist of both

continuous dynamics and discrete behavior. Additionally, the anomaly type is not limited to sensor

anomalies. Assuming that the discrete behavior of hybrid systems is current-state observable, the

contributions of this chapter are:

1. We propose a conflict-driven method to provide guarantees on the detection of some types of

anomalies that are not detectable using traditional observer-based and residual-based methods in

addition to the anomalies that can be detected by the traditional methods.

2. We define a classification taxonomy for anomalies in hybrid systems based on the variables that

are affected, input-output data consistency, and diagnosability of the anomaly.

3. We develop a new hybrid observer, which uses a Set-Valued Observer (SVO) as the continuous

state observer, for anomaly detection. With the SVO, we can apply the conflict-driven method to

hybrid systems with unobservable continuous components.

4. We provide a mapping between conflict types and anomaly types. Based on the occurrence of the

conflict types, we can identify if the anomaly is related to the continuous component of the system,

the discrete component or both.
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Using the microgrid system as an example, we can take all three operation modes (islanded, grid-

tied and synchronization) into consideration. Assuming that we know when and which discrete

event occurs if the system is under normal operation (the discrete events of the system are observ-

able), we also know the invariants (allowable continuous state space) of the system in different

nominal discrete states. Suppose the microgrid system is accidentally connected to the grid before

the microgrid voltage is synchronized with the voltage in the grid. Then the conflict-driven method

can detect the anomaly because the phase and the frequency of the islanded microgrid voltage are

outside the invariant of the system in grid-tied operation mode.

In Chapter V, we consider a wider class of hybrid systems, including hybrid systems with

unobservable discrete events. With unobservable discrete events, the discrete behavior of the hy-

brid systems may not be current-state observable and the conflict-driven anomaly detection method

is not applicable. We address this in Chapter V with the contributions being:

1. We propose the Convergence Ratio Multi-model Hybrid Observer (CRMMHO) framework to esti-

mate both the discrete and the continuous variables for hybrid systems with unobservable discrete

events;

2. We use the CRMMHO framework to diagnose anomalies in more general hybrid systems; and

3. We apply the CRMMHO framework in the simulated microgrid system to validate its effectiveness.

For the microgrid system, if the discrete events of the system are not observable, then the conflict-

driven method proposed in Chapter IV because the hybrid observer used in the conflict-driven

method cannot estimate the discrete state of the system. The CRMMHO framework proposed

in Chapter V is able to address this issue. If unexpected and unobservable islanding occurs to

the grid-tied microgrid system, the CRMMHO framework can detect and isolate this anomaly by

identifying that the discrete state of the microgrid is changed to islanded.
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VI.2 Future Work

This dissertation enhances the utility of traditional observer-based anomaly diagnosis and

mitigation methods in securing CPS. The methods proposed in this dissertation present opportuni-

ties for future work.

For hybrid system anomaly diagnosis, the invariant set is crucial since it describes the rela-

tionship between the continuous and discrete variables. In Chapter IV, the invariant set is formed

based on both the continuous dynamics and safety constraints of the system for the corresponding

discrete state. We use a hyperrectangle to do overapproximation which introduces some conser-

vatism. The hyperrectangle may contain some continuous states which can never be reached when

the system is under normal operation. In the future, we can use polyhedrons with fewer constraints

to do overapproximation during set calculation to balance the estimation accuracy and the com-

putation speed. In addition, an invariant of a discrete state may be a function of the continuous

dynamics of the previous discrete state. Using a pre-determined invariant may also require an

overapproximation. This can be addressed by determining the invariant of each discrete state dy-

namically. If we use a model predictive controller to control the system, we would have knowledge

of the control input that we will apply to the system for next several time steps. With the known

control input, we can calculate more conservative reachable sets as well as invariant sets dynami-

cally to improve the estimation accuracy. In the future, we can integrate the conflict-driven method

and the model predictive control to improve hybrid system anomaly diagnosis.

We have already done anomaly mitigation for continuous CPS in Chapter III. However, no

work is done for anomaly mitigation for hybrid CPS in this dissertation. A majority of previous

literature introduces off-line anomaly mitigation algorithms developed for hybrid systems [88].

However, anomalies may change system behavior abruptly, and anomaly mitigation strategies must

be used on-line or even used before the anomaly is diagnosed so that the stability and safety of the

system is maintained under anomalies. The results of anomaly mitigation for continuous systems

or discrete systems may not be directly applied to hybrid systems since some hybrid systems

149



may contain unique properties, such as Zeno behavior or instability caused by fast switchings.

Additionally, anomalies in hybrid system could disrupt both the continuous dynamics and discrete

behavior. So the anomaly mitigation strategies should maintain both the continuous performance

including various stabilities, such as Lyapunov stability and input-to-state stability, and the discrete

specifications that the hybrid system should follow. Developing an on-line anomaly mitigation

algorithm for hybrid systems would represent an important extension of current capabilities.

In observer-based anomaly diagnosis, the fidelity of the system model is crucial to the diag-

nosis performance. If the system model is perfectly known, observer-based anomaly diagnosis can

guarantee the diagnosis of anomalies and provide zero false positives. However, in reality, there

are always system uncertainties, such as system noise and system modeling error and large parts

of systems are poorly or not observable. Acquiring a high fidelity system model is never an easy

task. Moreover, a high fidelity model may consume a lot of computational power. However, a

low fidelity model can cause significant false positives and false negatives. To apply the proposed

observer-based anomaly diagnosis proposed in this dissertation, it is important to understand and

measure the diagnosis performance. Receiver Operating Characteristic (ROC) curve, which is a

graphical plot illustrating the diagnostic ability of an anomaly diagnosis algorithm, could be used

to help human operators choose the optimal threshold used in the diagnosis algorithm which can

balance false positives or false negatives and the fidelity of the system model. Measuring the

performance of different diagnosis algorithms for a specific system is one of our future works.

The main assumption of observer-based anomaly diagnosis is that the physics-based system

model is known a priori. However, in real applications, the physics-based system model may not

be available. Or maybe only part of the system has a known physics-based system model. There

are other types of models besides physics-based models that can be used to represent a system

and support anomaly diagnosis. For example, a statistical model could be developed using a data-

driven method. Phenomenological models define relationships of variables to capture aspects of

the physics or chemistry of the system; these model forms are often tuned statistically. Different
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types of models may capture different aspects of the system. The models developed using these

methods can be used as a replacement for the models used in the observer-based anomaly diag-

nosis methods. However, as these models are non-deterministic, there may be false positives or

negatives, which may be partially addressed by integrating these different types of models together

to achieve better anomaly diagnosis. Intuitively, there are two ways of integration: a structural way

and a non-structural way. In a structural way, we need to translate different models using a stan-

dardized model template in such a way so that the information provided by different models can be

shared among the models. In a non-structural way, different types of models can be integrated us-

ing neural networks or other clustering approaches. Designing a flexible framework to effectively

integrate various system models to diagnose anomalies in CPS is a future research direction.

As mentioned in Chapter I, CPS integrate the cyber world and the physical world to form

large scale systems. CPS are composed of multi-domain subsystems. Modeling large scale CPS

is challenging. One potential solution is to build CPS models in a distributed way. In distributed

modeling, the system is decomposed into sub-systems spatially with weak interactions between

them. Then those sub-systems are integrated together concurrently [18]. Another potential solution

could be combinatorial modeling. Similar to distributed modeling, in combinatorial modeling, the

system is also decomposed into sub-systems. But the decomposition may not be based on spatial

distribution and strong coupling may still exist between sub-systems. When combining the sub-

system models, the coupling between the sub-system models should be taken into consideration.

Additionally, the level of abstraction of the sub-system models should be consistent. Lastly, the

CPS model should be verified such that it can provide sufficient resolution for different usage

purposes, such as control and anomaly diagnosis. Modeling and verification of large scale CPS

model is another future research direction.

In this dissertation, we demonstrated the effectiveness of the proposed methods using dif-

ferent simulated systems, such as the suspension system, the Positive Train Control system and

the microgrid system. By using different simulated systems, we have illustrated that our proposed
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methods have wide applications in various CPS. The application domain of the proposed meth-

ods is broader than the investigated applications. To make an actual contribution to the industry,

we need to implement the proposed methods in real systems. For each proposed observer-based

anomaly diagnosis and mitigation method, there are some thresholds that need to be pre-defined

by human operators with some knowledge of the system. The values of the thresholds are system-

specific. When implementing the proposed methods in a real system, how to tune the thresholds

using the ROC curve to achieve satisfactory anomaly diagnosis performance is a future research

direction.

As CPS are prevalent in critical infrastructures, the security of CPS faces different kinds of

challenges in real applications. Sophisticated anomaly diagnosis is needed to enhance the security

of CPS compared to either physical systems or cyber systems. It is impossible to make CPS

impregnable since there may always be a smart attacker designing an intelligent attack on the

system. The aim of proposing new anomaly diagnosis is to increase the cost of launching an attack

and decrease the losses caused by an anomaly.
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Appendix A

Appendices of Chapter III

Proof of CO method

Theorem 0 Given an ideal control system (III.1) with w(t) = 0 and v(t) = 0, when sensor i f is

anomalous at time step t, the observer i f gives the smallest norm estimation error if the anomaly

signal satisfies

‖γγγ(t)‖ > ‖LiΓΓΓi‖
−1(‖Ei f xe,i f (t)‖+ ‖Eixe,i(t)‖), i 6= i f . (VI.1)

Proof. When sensor i f is anomalous, ΓΓΓi f = 0(m−1)×1. Then the estimation error of observer i f is

xe,i f (t + 1) =x(t + 1)− x̃i f (t + 1) = Ei f xe,i f (t). (VI.2)

In contrast, the estimation error of observer i (i 6= i f ) is

xe,i(t + 1) =x(t + 1)− x̃i(t + 1) = Eixe,i(t)−LiΓΓΓiγγγ(t). (VI.3)

Therefore, if (VI.1) holds, the following is true

‖xe,i f (t + 1)‖ < ‖xe,i(t + 1)‖ ∀i = 0,1...,mnc∧ i 6= i f . (VI.4)
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Remark 14. Remark: There is no physical meaning for ‖γγγ(t)‖. Theorem 0 gives a lower bound of

γγγ(t) that the residual-based detection method could be used to select observer i f , which is the one

without the anomalous sensor i f .

Proof of Theorem 1

Theorem 1 Given an ideal control system (III.1) with w(t) = 0 and v(t) = 0, the biases d̃µ(ν)(t) and

d̃Λ,µ(ν)(t) are calculated according to (III.21) and (III.22) respectively, with the following results:

1. When the system is under disturbance,

∀µ,ν =0,1, ...,mnc∧µ 6= ν,

d̃µ(ν)(t) =d̃Λ,µ(ν)(t) = d(t).

2. When the system is under sensor anomaly,

∀µ,ν =0,1, ...,mnc∧µ 6= ν,

d̃µ(ν)(t) =d̃ν(µ)(t),

d̃Λ,µ(ν)(t) 6=d̃Λ,ν(µ)(t) i f Vµ 6= Vν.

d̃µ(ν)(t) =(DᵀD)−1Dᵀ[x̃e,µ(ν)(t + 1)−Eµx̃e,µ(ν)(t)], (VI.5)

d̃Λ,µ(ν)(t) =((DΛ,µ)ᵀDΛ,µ)−1(DΛ,µ)ᵀ[x̃e,Λ,µ(ν)(t + 1)−EΛ,µx̃e,Λ,µ(ν)(t)], (VI.6)

where DΛ,µ = (Vµ)−1D, and EΛ,µ = (Vµ)−1EµVµ.

Proof. 1) According to Lemma 1, x̃e,µ(ν) = xe,µ if a disturbance exists. By substituting (III.10) to
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(III.21), the calculated bias becomes

d̃µ(ν)(t) =(DᵀD)−1Dᵀ[Eµxe,µ(t) + Dd(t)−Eµxe,µ(t)] = d(t). (VI.7)

Similarly,

d̃Λ,µ(ν)(t) =((DΛ,µ,)ᵀDΛ,µ)−1(DΛ,µ)ᵀ(Vµ)−1[Eµeµ(t) + Dd(t)−Eµxe,µ(t)] = d(t). (VI.8)

2) Under sensor anomaly, the estimation error cannot be correctly calculated. Therefore,

x̃e,µ(ν) in (III.17) and xe,µ in (III.12) are substituted to (III.21) to calculate the difference between

two biases based on two observers,

d̃µ(ν)(t)− d̃ν(µ)(t) = (DᵀD)−1Dᵀ[xe,µ(t + 1)−Eµeµ(t) + Eµ(Eν−Eµ)−1(LνΓΓΓν−LµΓΓΓµ)γγγ(t)

−xe,ν(t + 1) + Eνxe,ν(t)−Eν(Eν−Eµ)−1(LνΓΓΓν−LµΓΓΓµ)γγγ(t)]

=0.

(VI.9)

When the biases are calculated based on (III.22), then

d̃Λ,µ(ν)(t) =((DΛ,µ)ᵀDΛ,µ)−1(DΛ,µ)ᵀ(Vµ)−1[x̃e,µ(ν)(t + 1)−Eµx̃e,µ(ν)(t)], (VI.10)

d̃Λ,ν(µ)(t) =((DΛ,ν)ᵀDΛ,ν)−1(DΛ,ν)ᵀ(Vν)−1[x̃e,ν(µ)(t + 1)−Eνx̃e,ν(µ)(t)], (VI.11)

are obtained for observer µ and ν, respectively. Based on (VI.9), the following is true

x̃e,µ(ν)(t + 1)−Eµx̃e,µ(ν)(t) = x̃e,ν(µ)(t + 1)−Eνx̃e,ν(µ)(t). (VI.12)

So if Vµ 6= Vν, then ((DΛ,µ)ᵀDΛ,µ)−1(DΛ,µ)ᵀ(Vµ)−1 6= ((DΛ,ν)ᵀDΛ,ν)−1(DΛ,ν)ᵀ(Vν)−1. Thus d̃Λ,µ(ν)(t) 6=

d̃Λ,ν(µ)(t).
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Proof of Lemma 3

Lemma 3 Given a control system (III.1) with bounded sensor noise and w(t) = 0, ‖x̃e,µ(ν)(t)−

xe,µ(t)‖ is bounded by ‖(Eν−Eµ)−1‖(‖Lν‖+ ‖Lµ‖)v.

Proof. When sensor noise exists in the system, the estimation error evolution becomes

xe,µ(t + 1) = Eµxe,µ(t)−Lµvµ(t). (VI.13)

Then, the difference of the estimated states between two observers µ and ν becomes

xe,µ,ν(t + 1) = Eνxe,ν(t)−Eµxe,µ(t)−Lνvν(t) + Lµvµ(t). (VI.14)

Therefore, the calculated estimation error becomes

x̃e,µ(ν)(t) = xe,µ(t)− (Eν−Eµ)−1(Lνvν(t)−Lµvµ(t)). (VI.15)

So, ‖x̃e,µ(ν)(t)−xe,µ(t)‖ is bounded by ‖(Eν−Eµ)−1‖(‖Lν‖+ ‖Lµ‖)v.

Proof of Lemma 4

Lemma 4 Given a control system (III.1) with bounded process noise and v(t) = 0, ‖d̃Λ,µ(ν)(t)−d(t)‖

is bounded.

Proof. Estimation error can still be correctly calculated when the system is subject to process noise

as proved in Lemma 2.
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Then the bias calculated based on (III.22) becomes

d̃Λ,µ(ν)(t) =d(t) + ((DΛ,µ)ᵀDΛ,µ)−1(DΛ,µ)ᵀ(Vµ)−1w(t). (VI.16)

Therefore, ‖d̃Λ,µ(ν)(t)−d(t)‖ is bounded by ‖((DΛ,µ)ᵀDΛ,µ)−1(DΛ,µ)ᵀ(Vµ)−1‖w.

Proof of Lemma 5

Lemma 5 Given a control system (III.1) with bounded sensor noise and w(t) = 0, ‖d̃Λ,µ(ν)(t)−d(t)‖

is bounded.

Proof. When the system has sensor noise, by substituting (VI.15) to (III.22),

d̃Λ,µ(ν)(t) =d(t)− ((DΛ,µ)ᵀDΛ,µ)−1(DΛ,µ)ᵀ(Vµ)−1[

(Eν−Eµ)−1(Lνvν(t + 1)−Lµvµ(t + 1))−Eµ(Eν−Eµ)−1(Lνvν(t)−Lµvµ(t))].
(VI.17)

Therefore, ‖d̃Λ,µ(ν)(t)−d(t)‖ is bounded by ‖((DΛ,µ)ᵀDΛ,µ)−1(DΛ,µ)ᵀ(Vµ)−1‖(1+‖Eµ‖)‖(Eν−Eµ)−1‖(‖Lν‖+

‖Lµ‖)v.

Proof of Proposition 1

Proposition 1 Given a control system (III.1), and an open-loop observer (III.3), the following

results can be drawn:

1. If all of the eigenvalues of A lie inside the unit circle, then the estimation error of an open-loop

observer is bounded;

2. If one or more of the eigenvalues of A lie on the unit circle and ‖A‖ = 1, then the estimation error

of an open-loop observer is bounded.

157



Proof. The real state of the system is

x(t) = Atx(t0) +Σt−1
i=0AiBu(t−1− i) +Σt−1

i=0Aiw(t−1− i). (VI.18)

The state estimated by the open-loop observer is

x̂(t) = Atx̂(t0) +Σt−1
i=0AiBu(t−1− i). (VI.19)

Then, the estimation error of the open-loop observer is

xe,o(t) =Atxe,o(t0) +Σt−1
i=0Aiw(t−1− i). (VI.20)

1. If all of the eigenvalues of A lie inside the unit circle, then Atxe,o(t0) is converging and according

to [47]

lim
i→∞
{Ai} j1, j2 = 0 j1, j2 = 1, ...,n, (VI.21)

where {Ai} j1, j2 is the element at the jth1 row and the jth2 column of Ai. Let Ā( j1, j2) = max({Ai} j1, j2),

where i = 0,1, ..., t−1 and Ā is formed by Ā( j1, j2). Then,

Σt−1
i=0Aiw(t−1− i) ≤ĀΣt−1

i=0w(t−1− i). (VI.22)

Since the random process noise w has zero-mean and bound w, Σt−1
i=0Aiw(t− 1− i) is bounded as

well.

2. If one or more of the eigenvalues of A lie on the unit circle, then Atxe,o(t0) is bounded. The other

term Σt−1
i=0Aiw(t− 1− i) is a linear combination of the random vector Aiw(t− 1− i). For a vector

Aw(t), each element is a linear combination of zero-mean random variables in vector w(t) with the

elements in the same row of A as coefficients

A( j,:)w(t) = Σn
i=1A( j,i)w( j)(t). (VI.23)
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Since ‖A‖ = 1, i.e., Σn
i=1|A

( j,i)| ≤ 1 based on the definition of ∞-norm, Aw(t) is a zero-mean ran-

dom vector with bound w. Thus, Aiw(t− 1− i) is also a zero-mean random vector with bound w.

Therefore, Σt−1
i=0Aiw(t−1− i) is bounded.

Proof of Proposition 2

Proposition 2 Given a control system (III.1), an open-loop observer is updated every κ f ,g time

steps. The impact of the system noise on the averaged residual (VI.24) is mitigated.

ravg,g(t + ( jN −1)κ f ,g) =
1
jN

Σ
jN
j=1rg(t + ( jN − j)κ f ,g), (VI.24)

where jN is a positive integer.

Proof. Since the process noise and sensor noise are zero-mean vectors,

Σ∞i=0w(i) =0nx×1,

Σ∞i=0v(i) =0ny×1.

(VI.25)

The residual generated by a single open-loop observer over one update period is

rg(t + ( jN − j)κ f ,g) = y(t + ( jN − j)κ f ,g)−Cx̂g(t + ( jN − j)κ f ,g)

=Cx(t + ( jN − j)κ f ,g) + v(t + ( jN − j)κ f ,g)−Cx̂g(t + ( jN − j)κ f ,g)

=CAte(( jN − j)κ f ,g) + v(t + ( jN − j)κ f ,g) +Σt−1
i=0CAiw(t−1 + ( jN − j)κ f ,g− i).

(VI.26)

159



Then the averaged residual is

ravg,g(t + ( jN −1)κ f ,g) =
1
jN

Σ
jN
j=1rg(t + ( jN − j)κ f ,g)

=
1
jN

Σ
jN
j=1(CAte(( jN − j)κ f ,g) + v(t + ( jN − j)κ f ,g) +Σt−1

i=0CAiw(t−1 + ( jN − j)κ f ,g− i)).

(VI.27)

If jN →∞, then

ravg,g(t + ( jN −1)κ f ,g) =
1
jN

Σ
jN
j=1CAtxe(( jN − j)κ f ,g). (VI.28)

Therefore, the impact of system noise is mitigated.

Tables of Notations in Chapter III

Table A.1: Table of Matrices

Matrices Meaning
A,B,C,D,F,ΓΓΓ System matrices, controller gain, and sensor anomaly vector
Ci,Li,ΓΓΓi,Ei Output matrix, observer gain, anomaly vector, state matrix for observer

i, Ei = A−LiCi
Vi A collection of eigenvectors of matrix Ei
EΛ,i,BΛ.i,DΛ,i Transformed matrices for observer i

Table A.2: Table of Variables

Variables Meaning
x,y,u,w,v,d,γγγ System state, output, input, process noise, sensor noise, disturbance and

sensor anomaly signal
w,v Bounds of the process noise and the sensor noise
mnc Number of the non-critical sensors
nx,ny,nu,nd Dimensions of system state, output, input, and disturbance
S nc,S c Sets of non-critical sensors and critical sensors
yi,vi Output and sensor noise for observer i
xe,i,xe,o Estimation error of closed-loop observer i and an open-loop observer
x̃i Estimated state by closed-loop observer i
x̂g,i Estimated state by open-loop observer i in group g
tss Time steps for a closed-loop observer to reach its steady state
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Table A.3: Table of Variables

Indicators,
index

Meaning

IA, IF , ID Alarms for anomaly, sensor anomaly, and disturbance
i f Anomalous sensor index
IFB Index of the closed-loop observer for feedback

Table A.4: Table of Notations for the CO Method

Meaning
Qi Weighting matrix for observer i
θCO Threshold for the CO method
ri The residual generated by closed-loop observer i
γ̃γγ Calculated anomaly signal

Table A.5: Table of Notations for the CR Method

Meaning
xe,µ,ν The difference of estimated states of two observers
x̃e,µ(ν), x̄e,µ(ν) Estimation error of observer µ calculated based on observers µ and ν and its

upper bound
x̃e,Λ,µ(ν) The calculated estimation error of observer µ after changing the coordinates
x̃e,µ Overall estimation error of observer µ, which is a function of x̃e,µ(ν), ν =

0,1, ...,mnc∧ ν 6= µ

x̃e,Λ,µ Overall estimation error of observer µ after changing the coordinates
cri, j Convergence ratio of the jth state estimation error of observer i
d̃µ(ν) The bias based on the calculated estimation error x̃e,µ(ν)
d̃Λ,µ(ν), d̄µ(ν) The bias based on the calculated estimation error x̃e,Λ,µ(ν) and its upper bound
κCR Time steps for the CR method
θCR Threshold to determine the occurrence of an anomaly
θd,µ(ν),ζ(η) Threshold to distinguish a sensor anomaly from a disturbance
φν Weighting ratio of calculated estimation error x̃e,µ(ν)
ψµ(ν) Weighting ratio of calculated bias d̃Λ,µ(ν)
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Table A.6: Table of Notations for the MOLO Method

Meaning
M,N The number of open-loop observers groups and the number of open-loop ob-

servers in one group
κ f ,g, κ∆,g Update period, update interval between two adjacent open-loop observers for

group g
rg,i Residual signal of observer i in group g
Hg,ravg,g Leading observer, averaged residual in group g
θθθMOLO,g Threshold for the MOLO

Table A.7: Table of Notations for the CCI Method

Meaning
κCCI , θCCI Horizontal window, threshold for the CCI method
∆∆∆ui Control input difference of closed-loop observer i

Table A.8: Table of Other Notations

Meaning
x( j) The jth element of a vector x
A( j,:) The jth row of a matrix A
A( j1, j2) The element at jth1 row jth2 column of a matrix A
‖ · ‖ The infinity norm ‖ · ‖∞
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Appendix B

Appendices of Chapter IV

Tables of Notations in Chapter IV

Table B.1: Table of Systems

Meaning
H,Hn,H f ,Mn Hybrid automaton, nominal hybrid automaton, anomalous hybrid au-

tomaton and nominal Finite State Machine
X , U , Y , Init,
f ield, E, φ, η

State, input, output, initial state, field vector, discrete events, discrete
transitions, and output map of hybrid automaton H

X,U,Y A set of continuous states, inputs and outputs
Q,Ψ,Ω A set of discrete states, inputs and outputs
Ψo,Ψuo A set of observable input events and a set of unobservable input events
E,Eo,Euo A set of discrete events, E = Ψ∪̇Ω, a set of observable events and a set

of unobservable events
ζ A discrete output map
h A continuous output equation
Qn,Q f A set of nominal discrete states and a set of anomalous discrete states
Invq,βi

,βi Invariant of discrete state q, the lower bound and the upper bound of the
invariant along the ith state variable

G(q,q′,ψ),
P(q,q′,ψ)

Guard condition and its hyperplane corresponding to discrete transition
φ(q,ψ) = q′

L(q,q′,ψ) Post-guard hyperplane of guard G(q,q′,ψ)
qN ,q Neighbor discrete state of nominal discrete state q
Nq Neighbor set of nominal discrete state q
Rin,q,Rno,q Intermediate region and normal operating region of discrete state q
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Table B.2: Table of System Matrices

Meaning
Aq,Bq,Cq,ΓΓΓ1,ΓΓΓ2 System matrices of discrete state q and anomaly vector on state equation

and output equation, respectively

Table B.3: Table of System Variables

Meaning
x,y,u,w,v, γγγ1, γγγ2,
d

System state, output, input, process noise, sensor noise, anomaly sig-
nals added to the state equation and output equation, respectively, and
system noise d = [w v]ᵀ

w,v,µ Upper bounds of the norm of process noise, sensor noise and input,
respectively

Bd,Bxo Bounds of system noise and uncertain initial continuous state, respec-
tively

nx,ny,nu Dimensions of system state, output, and input

Table B.4: Table of Observer Variables

Meaning
O,C,D Hybrid observer, continuous state observer and discrete state observer
q̃(t), X̂(y, t),
X̃(y, t), x̃c(t)

Estimated discrete state, a set of possible continuous states based on
a single measurement, estimated continuous state set, and the central
estimated continuous state at time step t

xe Estimation error of the continuous state observer
θθθ Upper bound of the estimation error of the central estimated continuous

state
Rack Rack operator used by the Set-Valued Observer (continuous state ob-

server)

Table B.5: Table of the Conflict-driven Method

Meaning
XI(t) Initial set at time step t
Z, x̃c,gi Zonotope and its center and generators
Rδq̃(t)(XI(t)) δq̃(t)-time step forward reachable set starting from initial set XI(t)

Table B.6: Table of Variables Used in Robust Optimization

Meaning
HiG Projection row vector with the ithG entry “i” and “0” elsewhere
J,ρρρ1,ρρρ2,ΛΛΛ Matrices and vectors used in robust optimization after changing variables
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Table B.7: Table of Positive Train Control System

Meaning
xp, xv, x f Train position, speed and force
yp,yv Measured train position, speed and force
(Av,Bv),
(Ap,Bp),
(Ab,Bb)

Continuous dynamics under speed control and position control, and during
braking, respectively
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Appendix C

Appendices of Chapter V

Tables of Notations in Chapter V

Table C.1: Table of Systems

Meaning
H Hybrid automaton
X , U , Y , Init,
f ield, φ, h, fr

State, input, output, initial state, field vector, discrete transitions, con-
tinuous output equation, and reset function of hybrid automaton H

X,U,Y A set of continuous states, inputs and outputs
Q,Ψ A set of discrete states and inputs
G(q,q′,ψ) Guard condition corresponding to discrete transition φ(q,ψ) = q′

Aq,Bq,C System matrices of discrete state q

Table C.2: Table of System Variables

Meaning
x,y,u,w,v System continuous state, output, input, process noise and sensor noise
w,v Upper bounds of the norm of process noise and sensor noise, respec-

tively
W, V Covariance matrix of process noise and sensor noise, respectively
nx,ny,nu Dimensions of system continuous state, output, and input
∆∆∆Aq1,q2 , ∆∆∆Bq1,q2 Difference of state matrices between discrete states q1 and q2
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Table C.3: Table of Observer and the Convergence Ratio (CR) Variables

Meaning
q̃, x̂0, x̂1, x̃ Estimated discrete state, estimated continuous state by continuous state

observer 0, estimated continuous state by continuous state observer 1,
estimated continuous state by the CRMMHO

xe,0,xe,1 Estimation errors of the continuous state observers 0 and 1, respectively
x̃e,0,x̃e,1 Calculated estimation errors of the continuous state observers 0 and 1,

respectively
P Covariance matrix of Kalman filter
K Kalman filter gain
tss The steady state time step of the CR method
θCR Threshold for the difference of the estimated continuous states of the

two continuous state observers
θdi f f Threshold for the change of the difference of the estimated continuous

states of the two continuous state observers

Table C.4: Table of the Recursive Least Squares (RLS) Variables

Meaning
Ã, B̃ Estimated system matrices
ΞΞΞ, ξξξ Estimated matrix ΞΞΞᵀ = [Ã B̃] and input vector
GRLS The RLS adaptation gain
εεεo, εεε A priori error and a posteriori error
∆tRLS Time steps used for the RLS to converge

Table C.5: Table of the Model Selection Variables

Meaning
yo,q̃ Output of continuous model q̃
rq̃ Residual signal of continuous model q̃
Iq̃ Similarity index of continuous model q̃
θI Threshold for the model selection method
∆t Time steps used to run the models
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