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Abstract 
 

 Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are 

devastating neurodegenerative conditions that share key clinical, pathologic, and genetic 

characteristics. Neuronal inclusions rich in the RNA binding protein TDP43 are found in 

the majority of ALS and FTD. Moreover, the most common cause of familial ALS and 

FTD is a hexanucleotide (G4C2) repeat expansion mutation within the first intron of 

chromosome 9 open reading frame 72, or C9orf72. Mutant C9orf72 transcripts undergo 

repeat associated non-AUG (RAN) translation, generating five unique dipeptide repeat 

proteins (DPRs) that accumulate in degenerating neurons in C9orf72-associated 

ALS/FTD, but their significance in disease pathogenesis remains unclear. My dissertation 

investigates C9orf72 RAN peptides, TDP43 deposition, and their respective contributions 

to neurodegeneration. My central hypothesis is that C9orf72 RAN peptides disrupt 

TDP43 metabolism, leading to neurodegeneration via TDP43-dependent RNA 

misprocessing. 

 My thesis addresses the molecular pathways responsible for neurodegeneration in 

ALS and FTD. Chapter 1 reviews central features of ALS and FTD, including an 

overview of the proposed mechanisms of C9orf72-related neurodegeneration and aspects 

of TDP43 deposition. I first determined whether C9orf72 RAN peptides, and more 

specifically which RAN peptides, are toxic to neurons. In collaboration with Dr. 

Magdalena Ivanova, we synthesized short polymers corresponding to the three sense-

strand C9orf72 RAN products, analyzed their structures by electron microscopy and 
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assessed their relative toxicity when applied to rodent primary cortical neurons. In doing 

so, we observed unique structural features for each dipeptide that correlated with their 

cellular internalization and relative toxicity. This work is described in further detail in 

Chapter 2. 

 I next began investigating the intrinsic properties of TDP43 that are critical for 

downstream neuronal toxicity in disease models. TDP43 binds thousands of transcripts, 

particularly UG-rich sequences, and TDP43-dependent toxicity is tightly tied to its ability 

to recognize RNA. Intramolecular interactions between TDP43’s RNA binding domains, 

mediated by a salt bridge, are necessary for maintaining specificity for UG sequences. 

How sequence specificity of TDP43 binding to RNA affects TDP43 accumulation and 

survival remain unclear. Here, I show that genetically engineered mutations disrupting 

the TDP43 salt bridge reduce the affinity of nucleic acid binding and eliminate 

recognition of its native RNA targets. These same mutations dramatically destabilize 

TDP43, alter nuclear localization and abrogate toxicity upon overexpression in primary 

neurons. High-throughput RNA sequencing and splicing analyses indicated that TDP43 

accumulation predominantly affects transcripts encoding components of the ribosome 

and oxidative phosphorylation pathways. These studies are illustrated in Chapter 3. 

 Chapter 4 describes relevant preliminary work with implications of a connection 

between the mutant C9orf72 repeat expansion and TDP43 deposition. Briefly, I 

demonstrate that G4C2 oligonucleotides are recognized by TDP43 variants containing salt 

bridge-disrupting mutations, and co-expression of G4C2 and TDP43 enhance cytoplasmic 

mislocalization and neuronal toxicity. Chapter 5 concludes the dissertation outlining the 
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next steps moving forward with this work. Taken together, this dissertation uncovers 

novel disease pathways that can be targeted for therapy development. 
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Chapter 1 

Introduction 

1.1 Overview 

 Amyotrophic lateral sclerosis (ALS) is a devastating disease marked by progressive 

loss of motor neurons, muscle weakness, and eventually death. Approximately half of ALS 

patients present behavioral, personality, or language abnormalities associated with 

frontotemporal dementia (FTD)1. Not only do these diseases share overlapping clinical 

features, but also genetic and pathological characteristics2-5. Neuronal and glial cytoplasmic 

inclusions rich in the RNA binding protein TDP43 are found in the majority of individuals 

with ALS and FTD6,7, implying the existence of a conserved pathogenic cascade responsible 

for neurodegeneration in both conditions. In support of this conclusion, many of the same 

mutations that cause familial ALS also result in familial FTD. First identified in 2011, the 

most prevalent mutation responsible for both familial ALS and FTD, accounting for up to 

40% of inherited disease in some populations, consists of a hexanucleotide (GGGGCC) 

repeat expansion mutation in the first intron of chromosome 9 open reading frame 72, or 

C9orf724,5. This thesis utilizes a model of ALS and FTD to investigate the molecular 

pathways leading to neurodegeneration in ALS and FTD with special focus on C9orf72 and 

TDP43. In this introductory chapter, I review key overlapping features between ALS and 

FTD, the proposed mechanisms of C9orf72-related neurodegeneration, and aspects of TDP43 
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pathogenesis. The aim of this overview is to put into context the dissertation work on ALS 

and FTD disease pathogenesis described in subsequent chapters. 

 

1.2 ALS and FTD clinical spectrum 

 ALS and FTD are thought to represent a continuous disease spectrum. Affecting 

around 2-3 per 100,000 individuals worldwide8, ALS is the most common form of motor 

neuron disease caused by the degeneration of upper and lower motor neurons of the motor 

cortex and spinal cord9,10. This adult-onset neurodegenerative disease, with a peak age of 

onset between the ages of 40 and 70, rapidly leads to muscle weakness, paralysis, and 

ultimately death due to respiratory failure within two to five years from which symptoms are 

presented9. While the majority of ALS cases are sporadic, approximately 10% of ALS cases 

are familial and are usually inherited in an autosomal dominant pattern11. ALS patients may 

also present behavioral, personality, or languages abnormalities associated with FTD2,3,12. 

FTD is characterized by the loss of the frontal and anterior temporal lobes of the brain. FTD 

is the second most common form of dementia after Alzheimer’s disease in people under the 

age of 65, with an incidence of 3-4 per 100,000 individuals13. Up to 40% of FTD cases are 

familial, and the majority of familial events are inherited in an autosomal-dominant 

manner14. Approximately 15% of FTD patients present clinical symptoms consistent with 

motor neuron dysfunction that is indistinguishable from ALS11.  

 These rapidly progressive diseases have proven to be difficult to treat due to our 

incomplete understanding of the fundamental mechanisms leading to cell death. Riluzole, an 

anti-glutamatergic agent and the first drug approved by the FDA in 1995 to treat ALS, 

prolongs lifespan by a modest 2-3 months15,16. Since then, over 60 molecules have been 
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studied as a potential treatment for ALS, but the majority of drugs have failed to achieve 

efficacy in clinical trials17. In 2017, the FDA approved a second drug to treat ALS, 

edaravone, which slowed the progression of motor dysfunction over 6 months of treatment in 

patients with less disease severity18,19. Nonetheless, these drugs do not significantly extend 

the lifespan of affected individuals. One reason for this apparent disconnect may be the 

genetic heterogeneity of the population under study. With a better understanding of the genes 

associated with ALS and FTD and the molecular pathways responsible for 

neurodegeneration, more effective therapies can be developed. 

 

1.3 The genetic overlap between ALS and FTD 

 The notion that ALS and FTD are fundamentally related and represent a continuous 

disease spectrum is supported further by evidence that mutations in several genes contribute 

to either familial ALS or FTD or both. Many of these disease-causing mutations impair 

similar molecular pathways (Table 1.1). Mutations in genes such as PGRN20,21 or MAPT22,23 

are exclusively associated with FTD and SOD124 for ALS. However, mutations in genes such 

as UBQLN2, VCP, FUS, TBK1, MATR3, TARDBP, and C9orf72 cause both ALS and FTD 

(Table 1.1). A hexanucleotide (GGGGCC) repeat expansion mutation in the first intron of 

chromosome 9 open reading frame 72, or C9orf72, is the most prevalent mutation 

responsible for both familial ALS and FTD, accounting up to 40% of inherited disease in 

some populations4,5. Mutations in the gene encoding TDP43, TARDBP (transactive response 

element DNA-binding protein 43), are rare in ALS and FTD, representing ~5% of affected 

individuals. However, pathologic cytoplasmic accumulations of TDP43 in affected brain 

regions and motor neurons are found in ~95% of ALS cases and over 50% of FTD 
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patients6,25-27. Over 40 mutations have been identified in TDP43 in ALS and FTD patients, 

and these mutations affect subcellular localization28, aggregation29, stability30,31, and stress 

granule assembly32,33. Many of the genes associated with ALS, FTD, or both have been 

found to cause abnormalities in RNA metabolism34 and impair protein homeostasis35. 

Genetic mutations associated with the RNA binding protein FUS and pathological 

cytoplasmic inclusions are observed in a small portion of patients with ALS and FTD36,37. 

Patients with mutations in other RNA binding proteins linked to ALS and FTD, such as 

TAF15 and EWSR1, also develop cytoplasmic inclusions in diseased brains38,39. Mutations in 

hnRNPA1 and hnRNPA2B1 RNA binding proteins result in TDP43 pathology40. Mutations 

in genes involved in protein homeostasis associated with ALS and FTD  include SQSTM141, 

VCP42, OPTN43, TBK144, and UBQLN245, and these mutations result in TDP43 pathology 

(Table 1.1). The frequent presence of TDP43 pathology in ALS and FTD among different 

genes with disease-causing mutations strongly suggests a common pathogenic mechanism 

involving impaired RNA metabolism and protein homeostasis (Table 1.1). 

 

1.4 C9orf72-related disease pathogenesis 

 Nucleotide repeat expansions contribute to several neurological diseases, including 

Huntington’s disease, fragile X syndrome, and the spinocerebellar ataxias46,47. How exactly 

repeat expansions contribute to each disease state depends on the specific disease in question. 

In many conditions, the nucleotide repeat occurs within the open reading frame of a protein-

coding gene, resulting in a repeating stretch of amino acids (usually glutamine) that renders 

the mutant protein prone to aggregation and neurotoxic. However, when the nucleotide repeat 

is located in non-coding regions of the genome, as with the C9orf72 hexanucleotide repeat, 
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neurodegeneration may stem from one or more alternative mechanisms. In order to 

understand how C9orf72 mutations cause neurodegeneration in ALS and FTD, it is important 

to understand the gene itself and features of the repeat expansion in C9orf72-mutation 

carriers.  

1.4.1 The C9orf72 gene, hexanucleotide repeat expansion, and transcript isoforms 

 In 2011, the most common cause of familial forms of both ALS and FTD was 

identified as a hexanucleotide (GGGGCC, or G4C2) expansion mutation within the first 

intron of the chromosome 9 open reading frame 72, or C9orf724,5. This expansion mutation 

accounts for up to 40% of familial ALS, 29% of familial FTD, and 88% of both ALS and 

FTD cases4,5. The repeat expansion is most frequent among Caucasian populations in Europe 

and North America, particularly in Finland. In contrast, C9orf72 mutations are rarely 

observed in Asian populations4,5. The mutation is inherited in an autosomal dominant manner 

with age-dependent penetrance48,49. However, it is possible for an affected individual to have 

an unaffected parent due to incomplete penetrance or a de novo variant, a phenomenon seen 

in nearly 10% of ALS patients and 5% of FTD cases11. Symptom onset occurs, 

approximately, between 30 to 80 years of age, with mean age onset in the late 50s49. Normal 

G4C2 repeat length observed in unaffected individuals is from 2 to 25 units; pathogenic 

alleles range from over 30 to hundreds or thousands of repeats4,5,50. Due to the high GC-

content of the repeat expansion, it is difficult to accurately detect large repeat sizes (greater 

than 80 units), via techniques such as repeat primed polymerase chain reaction (PCR) or 

Southern Blot hybridization. Moreover, repeat instability of large expansions may lead to 

somatic mosaicism, making it difficult to accurately quantify repeat size. High variability in 

G4C2 repeat size exists between different regions of the brain and tissues51. Even within the 



	

6 
	

same individual, repeat length may also vary among different tissues51-55. Therefore, a 

correlation between repeat length and disease severity has not been convincingly identified 

among studies51,53,55. Taken together, the G4C2 expansion mutation has made it challenging to 

define a clear correlation between repeat length, disease onset, and disease severity.  

 The C9orf72 gene consists of 11 exons and is transcribed into three major transcript 

variants encoding two protein isoforms. The transcript variants use alternative first exons, 

and depending on the transcript variant, the G4C2 expansion is either located in the promoter 

region or in the first intron of the gene (Fig. 1.1A). Transcript variants using exon 1a, which 

therefore include the hexanucleotide repeat, produce either a 222 or 481 amino acid protein 

isoform (short or long isoform, respectively). The third transcript variant using exon 1b 

generates the long protein isoform. Both fibroblasts derived from C9orf72-ALS patients and 

motor neurons derived from induced pluripotent stem cells (iPSCs) of C9orf72-ALS 

individuals suggest selective use of exon 1a compared to exon 1b56. 

  Experiments using antibodies against either C9orf72 short or long protein isoforms 

indicate differences in subcellular localization, implying distinct cellular functions. By 

immunohistochemistry, the long isoform showed diffuse cytoplasmic staining in neurons57 

and is thought to be involved in autophagy58-62. In contrast, the short C9orf72 protein isoform 

is localized to the nuclear membrane in patient brain tissue. The short isoform is suggested to 

be involved in nucleocytoplasmic transport, as it has been reported to associate with 

nucleocytoplasmic transport proteins such as Ran-GTPase and Importin β57. Interestingly, 

loss of the short isoform nuclear membrane staining correlated with cytoplasmic TDP43 

mislocalization in spinal motor neurons of C9or72-ALS cases57. Yet, it remains unclear the 
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precise biological function of each protein isoform, and exactly how these may be involved 

in disease. 

 Since the identification of the repeat expansion in C9orf72, there have been several 

studies investigating the clinical, pathological, and mechanistic features of C9orf72 

mutations in ALS and FTD. While the C9orf72 field has rapidly gained insight into the 

potential mechanisms by which C9orf72 mutations contribute to neurodegeneration, the 

primary driver of disease pathogenesis remains unclear. Three possible, non-mutually 

exclusive mechanisms have been proposed, including 1) loss of C9orf72 function, 2) RNA-

based gain of function toxicity, and 3) protein-based gain of function toxicity through non-

canonical translation of the expanded repeat. These proposed mechanisms are illustrated in 

Figure 1.1 and are described in further detail in the space that follows. 

1.4.2 Loss of C9orf72 function 

 One proposed mechanism by which C9orf72 may cause neurodegeneration is a loss 

of function toxicity due to decreased RNA and protein levels (Fig. 1.1B). Prior studies 

discovered decreased C9orf72 mRNA and protein expression levels in both iPSCs and post-

mortem brain tissue from C9orf72-mutation carriers5,48,50,54,57,63-65. The reduced expression of 

C9orf72 suggests that haploinsufficiency could be responsible for disease. Since the 

hexanucleotide repeat expansion is G-rich, haploinsufficiency may stem from the formation 

of stable G-quadruplex structures that disrupt transcription66,67. Alternatively, the 

hexanucleotide repeat expansion may result in hypermethylation of the C9orf72 locus. 

Upstream of the G4C2 repeat expansion lies a CpG island. Hypermethylation of this island is 

associated with expanded G4C2 repeats, resulting in decreased expression of C9orf72 RNA 

levels in the blood, brain, and spinal cord52,63,68. Similar to other neurological disorders 
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involving repeat expansions located in noncoding regions, such as Friedrich ataxia69 and 

fragile X syndrome70,71, repeat-dependent hypermethylation results in gene expression 

silencing52,72,73.   

 C9orf72 encodes an uncharacterized protein that is thought to function as a DENN 

(differentially expressed in normal and neoplastic cells) domain protein, regulating 

membrane trafficking in cooperation with Rab-GTPase switches that are involved in 

autophagy and endocytic transport. Prior studies demonstrated partial co-localization of 

C9orf72 with Rab proteins, such as Rab5, Rab7, and Rab11, implicated in autophagy and 

endocytic transport in primary neurons and C9orf72-ALS spinal cord motor neurons74. 

Furthermore, cell lines depleted of C9orf72 via siRNA resulted in autophagy dysregulation 

and inhibition of endocytosis74. Recent evidence suggests that the long C9orf72 protein 

isoform forms a complex with SMCR8 and WDR41, acting as a GDP/GTP exchange factor 

(GEF) for Rab proteins involved in vesicle trafficking and autophagy induction60-62,74. 

Investigations conducted by reducing expression of C9orf72 in cell lines and primary 

neurons provide evidence that C9orf72 regulates autophagy initiation by functioning as a 

Rab1a effector and interacting with ULK1 autophagy initiation complex59,60,75. In sum, these 

studies predict that the C9orf72 protein physiologically functions as a guanine exchange 

factor, though the precise role of C9orf72 in autophagy and endocytic transport leading to 

ALS and FTD pathogenesis remain unclear. Moreover, whether the hexanucleotide repeat 

expansion alters autophagy initiation or endocytic transport remains to be determined. 

 A number of studies have depleted C9orf72 in different model systems to further 

understand the normal function of the protein. Knocking down the zebrafish orthologue of 

C9orf72 with antisense morpholino oligonucleotides resulted in axonopathy and motor 
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defects; these phenotypes were rescued by expressing human C9orf72 mRNA64. These 

findings were the first to provide in vivo evidence that loss of C9orf72 function disrupts 

motor neuron function. In corroboration, deletion of the C. elegans orthologue of C9orf72 

resulted in motor neuron degeneration and locomotor deficits76. Notably, however, reduction 

of endogenous C9orf72 RNA (30-40%) in mouse brain did not result in motor or behavioral 

defects77, and neural-specific C9orf72 knockout mice failed to produce any neuronal 

abnormalities78. Other C9orf72 knockout mouse models demonstrated splenomegaly and 

lymphadenopathy phenotypes, suggesting immune system dysregulation; C9orf72-deficient 

spleens displayed elevated p62 and LC3 levels, indicating autophagy impairment79-81.While 

reduction of C9orf72 protein in mouse models does not appear to induce neuronal toxicity, it 

does recapitulate pathological features of ALS and FTD. For example, knockdown of 

C9orf72 resulted in the accumulation of p62 in primary neurons, and this phenotype was 

rescued upon expression of the long C9orf72 isoform61. Interestingly, cytoplasmic aggregates 

of phosphorylated TDP43 were observed in some cell types upon depletion of C9orf7261. 

However, the precise molecular mechanisms regarding C9orf72 and its role in membrane 

trafficking and autophagy and its contribution to ALS and FTD remain unclear. Taken 

together, C9orf72 loss of function may not be driving disease pathogenesis since depletion of 

C9orf72 is not sufficient to induce cell death; rather, a second stressor may be required for 

triggering neurodegeneration. Two gain of function mechanisms are discussed in the 

subsequent sections as potential mechanisms of disease pathogenesis. 

1.4.3 RNA gain of function 

 The second proposed mechanism by which the G4C2 repeat expansion may cause 

disease is RNA-mediated toxicity and is associated with the formation of distinct RNA foci 
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composed of the expanded repeat-containing RNA predominantly found in the nucleus5,77,82-

84 and occasionally in the cytoplasm56,65,77 (Fig 1.1C). Several neurological diseases caused 

by nucleotide repeat expansions such as myotonic dystrophy (DM), fragile X-associated 

tremor/ataxia syndrome (FXTAS) and spinocerebellar ataxia type 8 (SCA8), type 10 

(SCA10), and type 31 (SCA31) demonstrate RNA-mediated toxicity and exhibit RNA 

foci85,86. Prior studies identified sense and antisense nuclear RNA foci in C9orf72-containing 

ALS/FTD patient tissue and iPSC-derived neurons77,82,87-89, indicating that inappropriate 

sequestration of RNA binding proteins and splicing factors may be a causative factor in 

neurodegeneration. The existence of nuclear RNA foci observed in individuals carrying 

C9orf72 mutations suggests abnormal alterations in RNA metabolism. Due to the G-rich 

content, G4C2 repeats can form highly stable DNA and RNA G-quadruplexes and promote 

DNA/RNA hybrids, or R-loops, in vitro66,67,90,91. Interestingly, a prior report suggests that the 

formation of G-quadruplex structures by G4C2 repeats is length-dependent, which may 

facilitate the formation of RNA foci and bind to proteins. Furthermore, Haeusler et al. 

suggests that secondary structures formed by G4C2 repeats bind to RNA binding proteins in a 

conformation-dependent manner. In sum, distinct secondary structures of the hexanucleotide 

repeat expansion could provide insight on the pathogenic mechanisms of neurodegeneration. 

 RNA-based toxicity is thought to arise from the sequestration of essential RNA 

binding proteins and splicing factors by sense and antisense repeat-containing 

transcripts65,84,92, thereby inhibiting the normal functions of these proteins. A number of RNA 

binding proteins have been reported to co-localize with sense and anti-sense RNA foci or 

interact with G4C2 or C4G2 repeats in patient tissues and cell models, including ADARB2, 

FUS, hnRNPs, nucleolin, SRSF2, ALYREF, and Pur-α56,65,67,84,88,92,93. Using neuronal cell 
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lines expressing G4C2 repeats, sequestration of RNA binding proteins hnRNP-H and FUS, 

and RanGAP1, a nucleocytoplasmic trafficking protein, also interact directly with G4C2 

repeats in vitro94. Mislocalization of RanGAP1 has been reported in flies overexpressing the 

repeat expansion and in cells from ALS patients harboring the C9orf72 expansion 

mutation94,95, indicating defects in nuclear import as a mechanism responsible for disease. In 

support of this observation, cells treated with ASOs targeting the repeat expansion rescued 

nucleocytoplasmic transport defects94. Taken together, changes in RNA processing and 

nucleolar stress caused by the C9orf72 repeat expansion in vitro and in vivo suggest that 

G4C2 repeats may lead to disease phenotypes. 

 There is conflicting data on the extent to which RNA foci are responsible for toxicity. 

Overexpression studies using ‘RNA only’ based constructs in zebrafish suggest the repeat-

containing RNA is sufficient to induce toxicity96. Conversely, transgenic flies expressing 

interrupted G4C2 repeats containing stop codons to prevent translation were not toxic97. 

Another transgenic fly model expressing G4C2 repeats embedded within an intron formed 

nuclear RNA foci, but the flies did not exhibit a neurodegenerative phenotype98. While RNA 

foci are detected in neurons and glial cells in C9orf72 ALS and FTD cases, there seems to be 

no correlation between the burden of RNA foci with clinical and pathological features of 

disease; rather, cells with antisense RNA foci were reported to correlate with a later age at 

disease onset87,99. This would imply that RNA foci may be protective. Both sense and 

antisense RNA foci are not very abundant in cells, and one study suggests that these RNA 

foci are composed of a single molecule of repeat-containing RNA100. Therefore, the extent to 

which RNA foci impact disease remains debated.  
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1.4.4 Protein gain of function 

 The third proposed mechanism by which G4C2 repeats lead to neurodegeneration is 

by a gain of function in which expanded transcripts may undergo a unique mechanism of 

non-canonical translation, known as repeat-associated non-AUG (RAN) translation101,102. 

RAN translation has been shown to occur in other neurodegenerative diseases containing 

nucleotide repeat expansions, such as SCA8103, myotonic dystrophy type 1 (DM1)103, 

FXTAS104, and Huntington’s disease105. A number of studies have shown that C9orf72-

linked ALS and FTD patient brains contain RAN translation products generated from both 

the sense and antisense strands of the hexanucleotide repeat in every reading frame83,84,101,102. 

This includes the following five different dipeptide repeat (DPR) proteins: glycine-alanine 

(GA), glycine-proline (GP), and glycine-arginine (GR) produced from the sense strand, and 

glycine-proline (GP), alanine-proline (AP), and proline-arginine (PR) derived from the 

antisense strand (Fig. 1.1D). Although GP peptides are produced from both sense and 

antisense strands, the GP product derived from the sense strand has a predicted unique C-

terminal sequence, while the GP product derived from the antisense strand contains a stop 

codon immediately after the repeat82. 

 With the added discovery of the different dipeptides generated from the 

hexanucleotide repeat expansion, the neuropathology of C9orf72-mutation is complex. In 

conjunction with neuronal and glial TDP43-positive inclusions, C9orf72 ALS and FTD cases 

uniquely show p62-positive, TDP43-negative inclusions within neurons throughout different 

regions of the brain, particularly in the hippocampus, cerebral cortex, and cerebellum106-108. 

By immunohistochemistry, studies have demonstrated that these TDP43-negative inclusions 

contain each of the RAN translation products derived from the hexanucleotide repeat 
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expansion82-84,101,102. Immunohistochemical analyses of C9orf72-positive cases suggest 

differences in abundance among the DPRs with poly-GA-positive inclusions being the most 

abundant followed by poly-GP and poly-GR in the cortex and cerebellum84,102,109. Poly-PA 

and poly-PR-positive inclusions are rarely observed, suggesting that there is either more 

transcription of the sense transcript or RAN translation is more effective from the sense 

transcript109.  

 Previous studies suggest that accumulation of DPRs within neurons may precede 

TDP43 pathology in C9orf72-mutation carriers102,110,111. Additionally, DPR accumulation 

does not closely predict neuron loss, unlike TDP43110,112,113. Abundant TDP43 deposition is 

observed in the most vulnerable brain regions related to disease, while DPR accumulation is 

present in unaffected areas of the brain. The disconnect may imply that either 1) RAN 

translation is not the primary driver of neurodegeneration, or 2) DPRs triggers pathways that 

subsequently results in the mislocalization and accumulation of TDP43, and eventually 

inducing cell death. Alternatively, it is possible that the C9orf72 expanded RNA alone, or in 

combination with DPRs, contributes to neurodegeneration. Nonetheless, the lack of 

correlation between C9orf72 and TDP43 pathology does not imply that the two are not linked 

through similar molecular pathways that are responsible for neurodegeneration. Rather, it is 

possible that these two features of disease share overlapping molecular mechanisms. Future 

studies are warranted to establish a link. 

 To understand the significance of DPRs in ALS and FTD pathogenesis, numerous 

studies have investigated the consequences of survival from DPR expression in vitro and in 

vivo and the mechanisms by which they cause toxicity. In some model systems, expression of 

the DPRs alone is sufficient to induce cell death. Several studies suggest that the arginine-



	

14 
	

rich dipeptides, GR and PR, are the most toxic DPRs. Drosophila, zebrafish, and cell models 

expressing individual DPRs, in which alternative codons replace the G4C2-repeating 

sequence and thereby excluding any effects of RNA alone, demonstrate that GR and PR 

peptides are the most toxic96,97,114,115. Other fly models and studies involving cultured cells, 

including primary neurons, show similar toxicity upon GR and PR peptide expression114,116-

118. These arginine-rich containing peptides localize to the nucleus, induce nucleolar stress, 

impair both pre-mRNA splicing and biogenesis of ribosomal RNA, and inhibit protein 

translation in cellular and neuronal models114,116-118. From a proteomics approach, poly-PR 

was found to interact with mRNA binding proteins, ribosomal proteins, translation initiation 

factors, and translation elongation factors, suggesting that arginine-rich DPRs may cause 

disease by inhibiting global protein translation119.  

 Other cellular pathways in which GR or PR peptides may trigger neurodegeneration 

are evident in Drosophila and yeast screens that identified impairment of nucleocytoplasmic 

components upon expression of poly-GR or poly-PR95,120,121. Not only are the DPRs 

implicated in disruption of nucleocytoplasmic transport, but also the G4C2 repeat RNA may 

have a direct impact. Hexanucleotide repeat-containing RNA directly interacts with RanGAP 

and is mislocalized in fly models expressing G4C2 repeats, neurons derived from iPSCs of 

C9orf72-ALS patients, and C9or72 ALS brain tissue94. Interestingly, nuclear import defects 

observed in fly models and iPSCs from C9orf72-ALS patients are rescued by antisense 

oligonucleotides (ASOs) targeting the G4C2 repeat-containing RNA94.  

 Although many reports suggest that GR and PR dipeptides are the most toxic species, 

GA dipeptides have been shown to be toxic in mammalian cell lines and primary neurons. 

Expression of poly-GA in cell culture models results in the formation of predominantly 
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cytoplasmic aggregates114,118,122-124. These poly-GA aggregates inhibit the ubiquitin 

proteasome system (UPS), induce ER stress, and cause cell death118,123. Mass spectrometry 

analysis identified an enrichment of proteins involved in the UPS and the cargo adaptor 

Unc119 is sequestered by poly-GA inclusions in primary neurons122. In addition to the cell 

culture models, Zhang et al.125 generated transgenic mice expressing abundant poly-GA 

pathology in the central nervous system (CNS). The expression of poly-GA in these mice led 

to sequestration and disruption of HR23 proteins involved in proteasomal degradation and 

proteins involved in nucleocytoplasmic transport. In sum, these studies suggest that each 

toxic DPR may uniquely contribute to neurodegeneration through different cellular 

pathways.  

 Of the studies that investigated PA or GP dipeptides, these RAN translation products 

have not resulted in toxicity in Drosophila and cell models97,114,117,122. Nonetheless, poly-GP 

is the only DPR produced from both sense and antisense G4C2 containing transcript. This 

dipeptide can be detected in the cerebral spinal fluid of C9orf72-ALS/FTD cases126, making 

it a potentially important biomarker.  

 Whether one or more of these proposed mechanisms are primarily responsible for 

neurodegeneration has not been resolved. Determining the precise pathogenic mechanism is 

crucial for the development of effective therapies of ALS and FTD. In addition to 

investigating the mechanisms underlying C9or72-disease pathogenesis, it is essential to 

understand the molecular pathways affected by the accumulation of TDP43, a common 

feature in the brains and spinal cords of patients with ALS and FTD. 
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1.5 Features of TDP43 in ALS and FTD 

 For the majority of patients with ALS and FTD, including C9orf72-mutation carriers, 

the most striking pathologic characteristic is the cytoplasmic accumulation of TDP4325.  

TDP43 pathology is present in ~95% ALS cases and more than 50% of FTD cases25-27. In 

2006, Neumann et al. identified TDP43 within neuronal and glial inclusions in the majority 

of ALS and FTD cases6, suggesting that TDP43 is an important component in disease 

pathogenesis. Neuropathological features of TDP43 include nuclear exclusion, cytoplasmic 

inclusions, and/or aggregation. Other pathological features of TDP43 deposition include 

hyperphosphorylation, ubiquitination, and cleaved C-terminal fragments of TDP43 in the 

cytoplasm (~25 kDa and ~35kDa)6,7,127.  Cytoplasmic TDP43 aggregates are detergent-

insoluble and are mainly composed of the full-length protein or truncated C-terminal 

fragments of the protein. The mechanisms by which TDP43 accumulation results in disease 

pathogenesis remain unclear. 

1.5.1 Structure and normal function of TDP43  

 A thorough understanding of the structure and function of TDP43 is critical for 

determining how TDP43 dysfunction leads to neurodegeneration (summarized in Fig. 1.2). 

Encoded by TARDBP, TDP43 was initially identified as a transcriptional repressor factor of 

HIV128. TDP43 is ubiquitously expressed and is necessary for early embryonic 

development129-131. TDP43 is a highly conserved 414 amino acid protein that shares 

homology to heterogeneous nuclear ribonucleoprotein (hnRNP) family members, which 

function in RNA metabolism. TDP43 is a RNA/DNA binding protein that harbors a nuclear 

localization signal (NLS) at the N-terminus, two RNA recognition motifs (RRM1 and 

RRM2), a proposed nuclear export signal (NES) within RRM2, and an intrinsically 
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disordered glycine-rich domain (GRD) at the C-terminal end (Fig. 1.2A). Monomers of 

TDP43 bind to each other to form homodimers in vitro132-134, and the N-terminus of TDP43 

has been shown to play a role in regulating homodimerization134-136. Furthermore, studies 

suggest that TDP43 dimerization is important for its normal function134. The GRD includes a 

glutamine/asparagine (Q/N) prion-like domain and is involved in protein-protein interactions, 

such as FUS, hnRNPA1 and hnRNPA2/B1137-140. A proteomics study in mammalian cell 

lines identified other TDP43 interacting proteins involved in RNA metabolism, such as 

splicing factors, and components involved in protein translation140.  

 TDP43 is predominantly localized to the nucleus6,141. However, the presence of the 

NLS and NES enables TDP43 to actively shuttle between the nucleus and cytoplasm141,142 

with functions in RNA regulation such as control of transcription, splicing, transport, and 

translation143-148. In healthy neurons, a small portion of TDP43 is localized to the cytoplasm 

within RNA granules, functioning in the regulation of mRNA transport and local translation 

that are important for neuronal plasticity149,150. Under stress conditions, cytoplasmic TDP43 

is recruited into stress granules33,151,152. Within these stress granules, TDP43 plays a role in 

trafficking and stabilizing mRNAs153.  

 TDP43 binds thousands of RNA transcripts, particularly those containing UG/TG-

rich sequences143,144,154,155. Both RRM1 and RRM2 are highly evolutionarily conserved 

domains147. Due to its aggregation propensity, currently there is limited structural data of 

TDP43; only structures of both RRMs bound to UG-rich RNA sequences have been 

determined147,156,157. RRM1 and RRM2 exhibit distinct binding characteristics. RRM1 is 

primarily involved in nucleic acid recognition and has a higher affinity for specific 

sequences, and while RRM2 alone binds little RNA, its presence enhances sequence 
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specificity of TDP43 binding132,147,158,159. TDP43 can recognize a minimum of 6 UG/TG 

repeats and binding affinity increases with the number of repeat elements158. Upon RNA 

binding, intramolecular interactions between RRM1 and RRM2, mediated by a salt bridge 

between Arg151 (located in RRM1) and Asp247 (located in RRM2) are necessary for 

maintaining TDP43’s ability to recognize RNA156.   

 The RNA binding activity of TDP43 is important for several RNA processes. In vivo 

studies using high-throughput RNA sequencing revealed that TDP43 preferentially binds to 

introns, 3’ untranslated regions (UTRs), and non-coding RNAs143,144,154. RNA targets were 

enriched for Gene Ontology (GO) terms related to RNA metabolism, synaptic activity, and 

neuronal development143,144,154. TDP43 plays a role in alternative splicing by binding to UG-

rich sequences near the 3’ or 5’ splice sites of exons. For example, TDP43 is involved in 

splicing the mRNA encoding the cystic fibrosis membrane conductor receptor (CFTR) by 

binding to the (TG)m repeat region near the 3’-splice site158,160. With the diverse set of 

functions for RNA regulation by TDP43, the loss of normal TDP43 function has the potential 

to disrupt many fundamental cellular processes and subsequently result in neurodegeneration. 

1.5.2 Disease-associated TARDBP mutations 

 Over 40 mutations in TARDBP have been identified in both familial and sporadic 

ALS and FTD cases, with G298S, A315T, M337V, and A382T as the most frequent in 

patients161. TDP43 mutations have been found in  ~3% of familial ALS and ~1.5% of 

sporadic ALS162. Majority of these mutations lie within the GRD. TARDBP mutations within 

the GRD reduce TDP43 solubility, enhance cytoplasmic TDP43 mislocalization, and affect 

TDP43 clearance28,30,31,163,164. Some mutations are located within the 3’ or 5’ UTRs26,165, and 

these mutations may impair TDP43’s ability to autoregulate. Only four disease-causing 
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mutations have been identified in the RNA recognition motifs: P112H, D169G, N259S, and 

K263E166-169. Very little is known about the effects of these mutations, but the P112H and 

D169G mutations do not appear to affect RNA binding157,159. Both D169G and K263E 

mutations result in an increase in thermal stability and resistance to aggregation in vitro170. 

Mutating K263 to alanine led to a small reduction on RNA binding, but this mutation had no 

effect on TDP43’s ability to splice CFTR transcripts156. Overexpression of the N259S 

mutation in primary motor neurons resulted in cytoplasmic aggregates, but no studies have 

been conducted to determine its effect on binding168. Together, these data suggest that 

disease-associated TDP43 mutations located within the RRMs do not impair RNA binding. 

Despite the number of disease-associated TARDBP mutations, neurons of ALS and FTD 

patients show nuclear depletion and cytoplasmic accumulation of TDP43 even in the absence 

of a mutation.  

 How exactly TDP43 dysfunction leads to disease pathogenesis remains unclear. 

Because ALS and FTD patients exhibit a redistribution of nuclear TDP43 to cytoplasmic 

inclusions in neurons, both loss of function and gain of function mechanisms have been 

proposed. Given its essential role in RNA metabolism, loss of nuclear TDP43, accumulation 

of cytoplasmic TDP43, or both may have important consequences for RNA processing and 

subsequent neurodegeneration (Fig. 1.2B).  

1.5.3 Loss of function mechanisms 

 Since nuclear exclusion of TDP43 is observed in ALS and FTD patients, 

neurodegeneration may stem from a TDP43 loss of function mechanism. The effect of the 

loss of TDP43 has been investigated in different model systems. Loss of TDP-1 in C. 

elegans, the equivalent to human TDP43, results in subtle behavioral and locomotor 
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defects171,172, but paradoxically displays a modest increase in lifespan172,173. Nevertheless, 

TDP-1 and human TDP43 have been demonstrated to be functionally conserved through 

RNA binding activity147,172. Knockdown of the Drosophila TDP43 homolog, TBPH, induces 

a neuromuscular phenotype and reduces lifespan174. Knockdown of TDP43 in zebrafish using 

antisense morpholino oligonucleotides results in shortened axons with abnormal branching 

and locomotor deficits 175,176. Depletion of the TDP43 orthologs in zebrafish, tardbp and 

tardbp1, results in early lethality177. TARDBP null mice do not survive during embryonic 

development129-131, and conditional TARDBP knockout embryonic stem cells fail to 

survive178. Together, these studies demonstrate that loss of TDP43 in most model systems 

results in phenotypes resembling neurodegeneration, and that TDP43 is essential for both 

development and survival. 

 At the molecular level, loss of TDP43 affects the expression and splicing of hundreds 

of different RNAs. TDP43 is a splicing repressor143,144,179, and loss of TDP43 results in the 

inclusion of unannotated (cryptic) exons within target transcripts that lead to nonsense-

mediated decay (NMD)179-181. In contrast, overexpressing TDP43 triggers exon skipping in 

most cases182,183. A study conducted in Drosophila either lacking TBPH or overexpressing 

TDP43 identified distinct differences in gene expression, despite both fly models presenting 

similar locomotor deficits. Knockdown of TBPH resulted in widespread gene upregulation, 

while flies overexpressing TDP43 led to the opposite effect183. Surprisingly, only 79 out of 

1553 genes overlapped in both datasets, suggesting that different cellular pathways are 

affected based on TDP43 levels. Disease-associated TARDBP mutations are also capable of 

altering the expression and splicing of select RNAs through a loss of function mechanism145. 
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1.5.4 Gain of function mechanisms 

 TDP43 regulates the expression and splicing of many RNA targets, including the 

expression and splicing of its own transcript by binding to an intron in the 3’UTR137,144,146. 

This allows for the autoregulation of TARDBP to maintain tight control of TDP43 protein 

levels via a negative feedback loop146. At high levels, TDP43 binds to its own transcript 

within the 3’UTR, triggers alternative splicing, destabilizes its mRNA, and reduces protein 

expression143,144,146,184. Degradation of its own mRNA occurs through NMD or exosome-

mediated degradation144,146. Because TDP43 levels are important for cellular health, 

disruption of TDP43 autoregulation may play an important role in the cytoplasmic 

accumulation of TDP43. Indeed, increased mRNA and protein levels of TDP43 have been 

detected in ALS patients185-188, emphasizing its significance to disease. Both overexpression 

and loss of TDP43 are toxic in cell and animals models28,30,176,177,188-194. Moreover, TDP43-

related toxicity has been shown to be dose-dependent in primary neurons and in transgenic 

mice28,30,190, suggesting that tight regulation of TDP43 levels is critical for cellular health.  

 Recent studies conducted in mice provide additional evidence for a gain of function 

mechanism. A TARDBP knock-in mouse model bearing a disease-associated mutation 

(Q331K) was created via CRISPR/Cas9195. These mice exhibited cognitive dysfunction and 

TDP43 autoregulation impairment, leading to an increase in TDP43 expression levels195. 

Moreover, changes in gene expression and splicing events were observed, including changes 

in other ALS-linked genes195. Another study using mice harboring a mutation within the 

endogenous TARDBP locus (M323K) observed novel splicing events associated with 

elevated TDP43 levels, suggesting a gain of splicing function196. 
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  It is well established that overexpression of WT TDP43 or disease-associated 

mutations in model systems, including primary neurons28,30,176,189,197, rodents190,193,198,199, 

Drosophila194, yeast200, and C. elegans171,201, induce toxicity. In addition, overexpressing WT 

or mutant TDP43 recapitulates key features of sporadic ALS and FTD, including cytoplasmic 

mislocalization and aggregation of TDP4328,141,190,200,201. Previous studies support the 

hypothesis that cytoplasmic TDP43 is directly toxic. Disruption of the NLS in TDP43, 

thereby restricting TDP43 localization to the cytoplasm, enhances toxicity in primary 

neurons, flies, and transgenic mice28,202,203. In cell lines, the disruption of nuclear import 

leads to TDP43 cytoplasmic accumulation. Evidence in post-mortem FTD patient brains 

demonstrate reduced expression of nuclear import proteins204. Nucleocytoplasmic transport 

dysfunction has increasingly become a pathway of interest in ALS and FTD 

pathogenesis94,95,120,121. Mislocalization from the nucleus to the cytoplasm is not only 

observed with TDP43 but also with similar RNA binding proteins, such as FUS37 and 

hnRNPA140, suggesting conserved mechanisms of disease.  

  The role of TDP43 aggregates in neurodegeneration is not fully understood. Two 

hypotheses have been proposed in which 1) cytoplasmic aggregates promote cell death by a 

gain of function mechanism, and 2) TDP43 aggregation sequesters functional TDP43 and 

other essential proteins involved in RNA metabolism by a loss of function mechanism. 

Evidence in yeast and cell lines supports the notion that TDP43 aggregates have a toxic role, 

and that aggregation is enhanced upon disease-associated mutations in the GRD29,205-207. Due 

to the low-complexity of the prion-like sequence within TDP43’s C-terminal domain, this 

region is highly aggregation prone both in vitro and in cell culture and has the ability to 

induce cell death29,205. Prior studies demonstrated that the C-terminal domain of TDP43 is 
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capable of forming amyloid-like fibrils in vitro, subsequently recruiting other proteins and 

interfering with their normal function29. Evidence against TDP43 aggregation driving 

toxicity, however, suggests that TDP43 mislocalization and levels are more closely related to 

neurodegeneration28,30,145.  

1.5.5 The RNA binding properties of TDP43 and downstream toxicity 

 Previous studies have investigated the RNA binding properties of TDP43 in disease 

models and suggest that RNA binding by TDP43 mediates toxicity. In Drosophila, deletion 

of TDP43’s RRM1 or substitution of Trp113 to Ala almost entirely eliminates RNA binding 

and prevents downstream toxicity from TDP43 accumulation147,202. Two Phe residues (F147 

and F149) within RRM1 are required for nucleic acid recognition. Mutations of these 

residues to Leu completely abolish binding activity146,158, and similar mutations rescue 

TDP43-dependent toxicity in yeast and Drosophila191,192. Moreover, toxicity was reduced in 

transgenic flies expressing a disease-associated TDP43 mutation and deletion of RRM1, 

suggesting that RNA binding is critical for toxicity202. Although these studies suggest that the 

RNA binding properties of TDP43 have important consequences on cellular toxicity, it is 

unclear the extent to which RNA binding impacts other features of TDP43, such as 

localization, stability, and RNA processing, and how these phenotypes lead to 

neurodegeneration. 

 

1.6 Summary and goals of the dissertation 

 ALS and FTD are devastating neurodegenerative conditions that share key clinical, 

pathologic, and genetic characteristics. Since the identification of C9orf72 as the most 

common genetic cause of ALS and FTD, numerous investigations sought to identify the 
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molecular mechanisms by which the repeat expansion mutation leads to neurodegeneration. 

Whether the repeat expansion leads to (1) loss of function, (2) RNA gain of function via 

sequestration of essential RNA binding proteins within RNA foci, or (3) protein gain of 

function via RAN translation, thereby contributing to neuronal loss still remains unanswered. 

TDP43 pathology is a characteristic feature in ALS/FTD, including C9orf72-linked disease, 

and changes in TDP43 localization and levels are strongly related to neuron loss in ALS and 

FTD. Despite growing interest in ALS and FTD and the rapid pace of genetic investigations, 

treatment options for these disorders remain extremely limited. This is a result, in part, from 

our incomplete understanding of the molecular mechanisms initiating and driving disease 

progression. 

 Previous investigations have demonstrated individually that C9orf72 and TDP43 are 

strongly linked to both ALS and FTD; however, whether these common features of disease 

are connected remains unknown. The significance of the C9orf72 RAN products remain 

unclear. Previous investigations suggest that TDP43’s ability to bind RNA is essential for 

neurodegeneration upon TDP43 accumulation, but the mechanism by which TDP43 

deposition leads to neuron loss in ALS and FTD remains unclear. The primary goal of my 

dissertation is to determine the molecular pathways leading to neurodegeneration in ALS and 

FTD. My central hypothesis is that C9orf72 RAN peptides disrupt TDP43 metabolism, 

leading to neurodegeneration via TDP43-dependent RNA misprocessing. My dissertation 

research tests this hypothesis by 1) systematically evaluating RAN peptides for their effects 

on TDP43 metabolism and 2) by uncovering the molecular mechanisms responsible for 

neurodegeneration upon TDP43 accumulation. These aims are described in detail in Chapters 

2-4. While it remains unclear how C9orf72 mutations and TDP43 deposition are connected, 
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Chapter 4 sheds preliminary insight of a potential direct link between C9orf72 and TDP43.  

Finally, Chapter 5 concludes the dissertation and addresses future directions. 
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Table 1.1 Genes associated with ALS, FTD, or both, that impair RNA and/or 
protein homeostasis. 
 

Symbol Gene Name Clinical 
Manifestation 

Pathology Pathway 
implicated in 

disease 

Refs. 

PGRN progranulin FTD TDP43, 
ubiquitin 

Protein 
homeostasis 

20,21,20

8 
MAPT microtubule- 

associated 
protein Tau 

FTD Tau 
filaments, 
ubiquitin 

cytoskeleton 
dynamics 

22,23 

SOD1 Superoxide 
dismutase 1 

ALS SOD1/p62 Oxidative 
stress, Protein 
homeostasis 

24 

TDP43 TAR DNA-
binding protein 

ALS/FTD TDP43/p62 RNA 
metabolism 

6,7,167,

209,210 
FUS Fused in 

sarcoma 
ALS/FTD FUS, 

ubiquitin, 
p62 

RNA 
metabolism 

36,37  

hnRNPA1 Heterogeneous 
nuclear 

ribonucleoprotei
n A1 

ALS, 
multisystem 

proteinopathy 
(MSP) 

TDP43 RNA 
metabolism 

40 

hnRNPA2B1 Heterogeneous 
nuclear 

ribonucleoprotei
n A2B1 

ALS, MSP TDP43 RNA 
metabolism 

40 

MATR3 Matrin 3 ALS/FTD MATR3 RNA 
metabolism 

211-213 

TAF15 TATA-box 
binding protein 

associated 
factor 15 

ALS/FTD TAF15 RNA 
metabolism 

38,214,2

15 

EWSR1 Ewing’s 
sarcoma 

breakpoint 
region 1 

ALS/FTD EWSR1 RNA 
metabolism 

38,215 

ANG Angiogenin ALS TDP43 RNA 
processing 

216 

C9orf72 Chromosome 9 
open reading 

frame 72 

ALS/FTD TDP43/p62, 
DPR/p62 

Reduced 
C9orf72 

expression [?] 
Toxic RNA [?] 
Toxic protein 

aggregation [?] 

4,5 
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TIA1 TIA1 cytotoxic 
granule 

associated RNA 
binding protein 

ALS/FTD TDP43 RNA 
metabolism 
and stress 
granule 

dynamics 

217 

VCP Valosin 
containing 

protein 

ALS/FTD TDP43, 
ubiquitin 

Protein 
homeostasis 

42,218,2

19 

OPTN Optineurin ALS/FTD TDP43/p62 Protein 
homeostasis 

43 

TBK1 TANK binding 
kinase 1 

ALS/FTD TDP43/p62 Protein 
homeostasis 

44,220 

UBQLN2 Ubiquilin 2 ALS/FTD TDP43/p62, 
UBQLN2 

Protein 
homeostasis 

45 

SQSTM1 
(p62) 

Sequestosome 1 ALS/FTD TDP43/p62 Protein 
homeostasis 

41 
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Figure 1.1 Potential pathogenic mechanisms for C9orf72 mutations. (A) Schematic 
representation of the gene, C9orf72. C9orf72 consists of 11 exons. Within the first intron 
is the hexanucleotide repeat (GGGGCC). Expanded repeats above 30 units are associated 
with ALS and FTD. It is thought that the normal function of the C9orf72 protein plays a 
role in endocytic trafficking and autophagy initiation. (B) The repeat expansion may 
disrupt transcription of C9orf72, resulting in reduced mRNA and protein levels as loss of 
function mechanism. (C) Sense and anti-sense repeat RNA may sequester essential RNA 
binding proteins within nuclear foci, resulting in an RNA gain of function mechanism. 
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(D) Mutant C9orf72 transcripts may undergo repeat associated non-AUG (RAN) 
translation, generating five different dipeptide repeat proteins (DPRs): glycine-alanine 
(GA), glycine-proline (GP), glycine-arginine (GR), proline-alanine (PA), and proline-
arginine (PR). By a protein gain of function mechanism, these DPRs accumulate within 
cells and are neurotoxic. 
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Figure 1.2 TDP43 structure and function. (A) TDP43 is a 414 amino acid protein that 
contains a nuclear localization signal (NLS), two RNA recognition motifs (RRM1 and 
RRM2), a nuclear export signal (NES) within RRM2, and a glycine-rich domain (GRD). 
The NLS and NES enable TDP43 to shuttle between the nucleus and cytoplasm. 
Although both RRM1 and RRM2 are involved in DNA/RNA binding, these motifs have 
distinct properties. RRM1 has high affinity for sequences and is primarily involved in 
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RNA recognition; RRM2 binds little to nucleic acids but enhances sequence specificity of 
DNA/RNA recognized by RRM1. The GRD is involved in protein-protein interactions, 
RNA processing, and autoregulation. The GRD is aggregation prone, and majority of the 
mutations associated with ALS and FTD are found in this region. (B) At steady state in a 
healthy cell (left), TDP43 is predominantly localized in the nucleus; however, it actively 
shuttles between the nucleus and cytoplasmic serving many functions in RNA 
metabolism. However, in a disease state, TDP43 is excluded from the nucleus, 
mislocalizes to the cytoplasm, and forms aggregates; these phenotypes result in the 
disruption of RNA and protein metabolism. 
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Chapter 2 

Distinct C9orf72-aasociated dipeptide repeat structures 

correlate with neuronal toxicity* 

2.1 Abstract 

 Hexanucleotide repeat expansions in C9orf72 are the most common inherited 

cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The 

expansions elicit toxicity in part through repeat associated non-AUG (RAN) translation 

of the intronic (GGGGCC)n sequence into dipeptide repeat-containing proteins (DPRs). 

Little is known, however, about the structural characteristics and aggregation propensities 

of the dipeptide units comprising DPRs. To address this question, we synthesized 

dipeptide units corresponding to the three sense-strand RAN translation products, 

analyzed their structures by circular dichroism, electron microscopy and dye binding 

assays, and assessed their relative toxicity when applied to primary cortical neurons. 

Short, glycine-arginine (GR)3 dipeptides formed spherical aggregates and selectively 

reduced neuronal survival compared to glycine-alanine (GA)3 and glycine-proline (GP)3 

dipeptides. Doubling peptide length had little effect on the structure of GR or GP 

peptides, but (GA)6 peptides formed β-sheet rich aggregates that bound thioflavin T and
																																																								
*	This chapter represents the following manuscript: 
	
Flores BN§, Dulchavsky ME§, Krans A, Sawaya MR, Paulson HL, Todd PK, Barmada 
SJ, Ivanova MII. Distinct C9orf72-associated dipeptide repeat structures correlate with 
neuronal toxicity. 2016. PLoS ONE 11(10):e0165084. doi:10.1371/journal.pone.0165084. 
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Congo red yet lacked the typical fibrillar morphology of amyloids. Aging of (GA)6 

dipeptides increased their β-sheet content and enhanced their toxicity when applied to 

neurons. We also observed that the relative toxicity of each tested dipeptide was 

proportional to peptide internalization. Our results demonstrate that different C9orf72-

related dipeptides exhibit distinct structural properties that correlate with their relative 

toxicity. 

 

2.2 Introduction 

 A GGGGCC repeat expansion in the first intron of C9orf72 is the most common 

known inherited cause of amyotrophic lateral sclerosis and frontotemporal dementia 

(C9ALS/FTD)1,2 . This mutation explains up to 40% of all familial cases of ALS and 

FTD and 7% of all sporadic cases of these conditions. Most people have less than 28 

repeats but in patients with expansions, hundreds to thousands of pathologic repeats are 

observed3,4.  

 Three mechanisms have been proposed for neurodegeneration in association with 

(GGGGCC)n  repeats in the C9orf72  locus: (a) inhibition of C9orf72  transcription and 

expression due to enhanced methylation and/or formation of DNA/RNA hybrids1,5-7	(b) 

sequestration of essential RNA-binding proteins and other factors through the formation 

of insoluble RNA foci by sense (GGGGCC)n  and antisense (GGCCCC)n  repeat 

RNAs1,8-11 and (c) repeat associated non-AUG (RAN) initiated translation of 

(GGGGCC)n  and (GGCCCC)n repeat RNAs and the resulting accumulation of 

neurotoxic RAN dipeptide repeat proteins or DPRs9,12-18. Although more than one of 

these mechanisms may contribute to neuronal loss and disease features, we focus here on 
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the biochemical properties of the dipeptide units comprising DPRs as evidence 

increasingly supports a key role for DPRs in disease pathogenesis8,16,17,19. 

 Both sense and antisense DPRs result from the translation of GGGGCC 

expansion repeats. All five of the potential DPRs (glycine-alanine GA-, glycine-proline 

GP-, glycine-arginine GR-,alanine-proline AP- and proline-arginine PR-) have been 

reported in disease brain8,16, though the sense strand DPRs containing GP or GR appear 

to be most abundant9,20. Relatively little is known about the structure and morphology of 

DPR aggregates. Most of what is known is based on their morphological appearance in 

cellular models and patient tissues, except for the GA- containing peptide which was 

recently reported to have amyloid properties14. 

 DPRs generated via AUG-initiated translation are toxic in yeast, cultured cells 

and Drosophila, and this toxicity is largely independent of (GGGGCC)n  RNA repeat 

sequences12,13,17,19,21-28.While several studies suggest that GR- and PR- repeat proteins are 

among the most toxic DPRs, GA-containing peptides are more common in individuals 

carrying C9orf72  expansions, and GA-containing peptides demonstrated selective 

toxicity in neuronal cell lines and primary neurons9,14,17,19-30. In contrast, no toxicity was 

observed with constructs selectively expressing GP- or PA- DPRs17,23. These features, 

together with the distinct composition and distribution of DPRs in C9ALS/FTD 

brains8,16,20, suggest that each DPR possesses unique characteristics that can be best 

understood by utilizing different model systems. 

 Defining the structural characteristics of pathogenic proteins in neurodegenerative 

diseases has yielded important insights into the mechanisms of inclusion formation and 

disease pathogenesis31-33. Despite the prevalence of DPRs in C9ALS/FTD pathology and 
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their demonstrated toxicity in vitro, however, the structure of DPRs and how their 

structure relates to downstream toxicity remain unknown. Investigations of the minimal 

peptide segments that are the building blocks of amyloid fibrils have deepened our 

understanding of neurodegenerative disease pathogenesis and the aberrant behavior of 

disease-associated proteins34-37. Structural studies of these minimal units have the 

potential to uncover fundamental connections between protein structure and 

neurotoxicity, and accelerate the design of molecules that can prevent their formation. 

 Here we show that each of the three sense strand-derived dipeptide units 

underlying DPRs (GP-, GA-, and GR-), exhibits distinct structural properties that 

correlate with neurotoxicity when applied externally to primary rodent neurons. Using 

anti-DPR antibodies and fluorescence labeling, we also show that aggregates formed by 

the two toxic dipeptides, GA and GR, are internalized by neurons. These data suggest 

that short stretches of repeating GA- and GR dipeptides can adopt structural features with 

the potential to impact neuronal survival. 

 

2.3 Results 

 In humans carrying pathogenic C9orf72 mutations, several RAN translation 

products differing in primary sequence and length may be produced simultaneously16. To 

assess the properties of different DPRs, we studied individual peptides with either three 

or six repeats of GA, GP or GR motifs. These three motifs correspond to the expected 

sense translation products of the mutant (GGGGCC)n repeat sequence. 

 Longer peptides, in particular GA-containing peptides were difficult to synthesize 

and displayed a high tendency to precipitate from solution. To assess how aging affects 
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the properties of the aggregates, we analyzed peptides immediately after solubilizing 

(fresh) or after incubation at 37°C for a week (aged). When dissolving peptides, we opted 

for a buffer that would be innocuous to neurons (phosphate-buffered saline) and 

sonicated the peptides to facilitate their solubilization rather than using organic solvents. 

2.3.1 Glycine-proline peptides are resistant to aggregation and nontoxic 

 By TEM, we observed only sparse, round shaped aggregates in fresh and aged 

samples of peptides with 3 or 6 repeating GP motifs (Fig. 2.1A and 2.1E). The CD 

spectra of fresh and aged (GP)3 and (GP)6 were indistinguishable, resembling the spectra 

of other poly-proline peptides (Fig. 2.1B and 2.1F, Table 2.1)43. The FT-IR spectra of 

soluble and aged (GP)6 were also similar (Fig. S2.1). Additionally, the absorbance 

spectrum of CR, a marker of amyloid aggregates, did not change in the presence of (GP)3 

or (GP)6 (Fig. 2.1C and 2.1G). Thus, under the conditions tested GP peptides formed 

only sparse aggregates and we did not observe any difference between fresh and aged 

GP- containing samples. 

 GP-containing peptides showed little toxicity in longitudinal assessments of 

neuronal survival. For these assays, we applied fresh or aged (GP)3 and (GP)6 peptides to 

rodent primary cortical neurons and tracked the survival of neurons using a fully-

automated microscopy platform40,41. Neurons were transfected with a vector encoding 

mApple and imaged sequentially at 24-hour intervals. Individual cells were identified and 

tracked by custom-written image analysis algorithms and time of death was determined 

by changes in neuronal morphology or loss of fluorescence, sensitive measures of cell 

death in previous studies40,41,44. Using Cox proportional hazards analysis, these data were 

used to generate cumulative hazard plots and hazard ratios (HRs), representing relative 
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risks of death in comparison to a reference population (cells treated with buffer alone). 

Neither fresh nor aged GP samples were toxic when applied to primary neurons (HR 

0.98–1.14, p>0.05; Fig. 2.1D and 2.1H). Thus, (GP)3 and (GP)6 rarely aggregate and are 

nontoxic in this model system, in accord with prior results17,19,24. 

2.3.2 Glycine-arginine dipeptides form spherical neurotoxic aggregates 

 Arginine-containing dipeptides demonstrated toxicity in several cell culture and 

animal models of C9ALS/FTD19,21,23-26,29. Fresh and aged (GR)3 peptides formed 

spherical aggregates by TEM, and aged (GR)3 samples appeared more homogeneous 

than the fresh samples (Fig. 2.2A). The CD spectra of fresh and aged (GR)3 were similar 

and contained a small negative band centered at 230 nm that is often associated with type 

I β-turns (Fig. 2.2B and 2.2F)45. Secondary structure predictions indicated that about 55% 

of the protein exhibits turn and/or random coil conformation and 41% is β-sheet (Table 

2.1). Both fresh and aged peptides equally reduced CR absorbance and there was no 

apparent difference in their CR spectra (Fig. 2.2C). However, aged but not fresh (GR)3 

significantly increased the risk of death in primary rodent cortical neurons (HR 1.36, p = 

3.5x10-4) (Fig. 2.2D). The inability of (GP)3 and (GP)6 to elicit toxicity in similar assays 

(Fig. 2.1D and 2.1H) argues against a nonspecific reduction of neuronal survival caused 

by the quantities of (GR)3 used in these studies. 

 Similar to aged (GR)3, fresh and aged (GR)6 samples displayed spherical 

morphology by TEM (Fig. 2.2E). CD spectra for (GR)6 demonstrated that, like (GR)3, a 

large proportion of the peptide (56%) is turn or random coil and approximately 40% of 

fresh and aged (GR)6 samples were predicted to be in a β-sheet conformation (Fig. 2.2F 

and Table 2.1). As revealed by TEM, a large portion of the (GR)6 sample is present 
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within aggregates, which often reduces the measured CD signal. Accordingly, we utilized 

FT-IR, which has previously been used for secondary structure determination of protein 

aggregates46. With FT-IR, fresh and aged samples were nearly identical to one another, 

suggesting that there are no changes in their secondary structure (Fig. S2.1). (GR)6 also 

bound CR, with aged samples reducing the absorption maximum of CR to a lesser extent 

than fresh ones (Fig. 2.2G). Both fresh and aged (GR)6 increased the risk of death for 

rodent primary cortical neurons in longitudinal assays (HR 1.2, p = 4.8x10-3, and HR 

1.5, p = 6.6x10-9, respectively) (Fig. 2.2H). In comparison to fresh (GR)6, aged peptide 

was significantly more toxic (HR 1.25, p 0.001). Thus, aged GR dipeptides, regardless of 

their length, formed aggregates with spherical morphology that elicited toxicity when 

applied to neurons. 

2.3.3 (GA)6 forms atypical amyloid-like structures and is toxic to neurons 

 Fresh and aged (GA)3 were indistinguishable by TEM, both forming rare 

amorphous aggregates (Fig. 2.3A). CD spectra of fresh and aged (GA)3 were also similar 

(Fig. 2.3B). Neither fresh nor aged (GA)3 demonstrated detectable binding to CR (Fig. 

2.3C), and neither sample reduced neuronal survival in longitudinal studies (HR 0.86–

1.09, p>0.05; Fig 2.3D). Increasing the number of GA repeats from 3 to 6 had a striking 

effect on the structure of the peptide. By TEM, aged (GA)6 samples displayed large 

aggregates consisting of multilayered flat sheets (Fig. 2.3E), whereas fresh (GA)6 

samples contained fibrillar aggregates in addition to the flat sheets. Moreover, secondary 

structure predictions indicated a 5% increase in β-sheet content for aged (GA)6 compared 

to fresh (GA)6 (Fig. 2.3F and (Table 2.1)38. Similarly, FT-IR spectra contained bands at 

1622 cm-1 and 1698 cm-1, reminiscent of anti-parallel β-sheet (Fig. S2.1)47. As with CD 
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spectra, we noticed variations in FT-IR spectra of fresh versus aged (GA)6. 

 Both fresh and aged (GA)6 introduced a shift in the CR spectrum and an increase 

in overall CR absorbance, changes that are common for amyloid aggregates39. This shift 

in CR absorbance is highlighted by the residual absorbance of the difference spectra, 

calculated by subtracting the baseline CR spectra from the CR spectra collected in the 

presence of (GA)6 (Fig. 2.3G). Intriguingly, we observed a difference between the 

maximum residual absorbance produced by fresh (GA)6 (530 nm) and aged (GA)6 (515 

nm). The shift demonstrated by fresh (GA)6 is similar to that produced by amyloid-β 

fibrils39. 

 While both fresh and aged (GA)6 samples significantly reduced neuronal 

survival, the magnitude of the effect was much greater for aged (HR 2.88, p = 2x10-16) 

than for fresh (GA)6 samples (HR 1.29, p = 3.3x10-4; Fig. 3H). Thus, GA dipeptides 

displayed a strong correlation between β-sheet content and neuronal toxicity. 

 To further explore whether DPRs share features with amyloids, we assessed ThT 

binding for each of the peptides studied here. None of the shorter DPRs displayed 

detectable ThT binding (data not shown). Only the most toxic peptide, (GA)6, exhibited 

affinity for ThT (Fig. 2.4A), which is a common feature of amyloid aggregates. In 

addition, aged (GA)6 displayed yellow birefringence in the presence of CR (Fig. 2.4B), 

consistent with other amyloid-like aggregates48. 

 Amyloid aggregates also exhibit a distinct x-ray diffraction pattern elicited by the 

unique β-sheet conformation typical of amyloid49. As shown in Fig. 2.4C, the x-ray fiber 

diffraction pattern of aged (GA)6 contains a strong, sharp 4.4 Å reflection and a broader, 

weaker 8.6 Å reflection. However, the strand-to strand spacing implied by the 4.4 Å 
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reflection of (GA)6 is smaller than the 4.8 Å typical of β-sheet structures formed by 

amyloids. Furthermore, the 8.6 Å reflection is different than the 3.9 Å - 5.3 Å spacing 

expected for β-sheets composed of glycine and alanine (Fig. 2.4C). Thus, the diffraction 

pattern for (GA)6 suggests a highly-ordered structure. 

2.3.4 Externally applied arginine- and alanine-containing peptides are 

internalized by neurons 

 RAN translation products are usually detected within cytoplasmic inclusions of 

C9ALS/FTD brain tissue and are not typically observed extracellularly16. However, some 

amyloidogenic proteins, such as amyloid β1–42, bind lipid membranes and extracellular 

receptors to trigger toxic signal transduction cascades50. Recent evidence also suggests 

that some aggregation prone peptides and proteins may pass from one neuron to the next 

through endocytic and exosomal pathways51,52. 

 We therefore sought to determine whether externally applied DPRs could be 

internalized by neurons in culture. For detection of GP, we used commercially available 

antibodies, but for GA and GR peptides we developed specific anti-DPR antibodies. 

Polyclonal rabbit antibodies were raised against synthetically-generated (GA)6 or (GR)6 

peptide antigens. These antibodies were validated for specificity first by Western blot and 

ICC in cells transfected with ATG-V5-GA-GFP and ATG-V5- GR-GFP fusion proteins 

(Fig. S2.2). Both antibodies also recognized V5-reactive specific bands at different repeat 

sizes. Moreover, ICC using anti-DPR and –GFP antibodies showed significant co-

localization of both antibodies with the epitope tag. To determine if these antibodies are 

capable of recognizing DPR aggregates in their native state, we performed IHC in 

C9ALS/FTD brain tissues and controls. Both GA and GR stained perinuclear aggregates 
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in patient brains but not in controls (Fig. S2.2), consistent with published results8,9. 

 To determine if applied DPRs were internalized, primary neurons in culture were 

fixed 24h after peptide application, immunostained with antibodies recognizing each of 

the DPRs (GA, GP and GR) and imaged by automated microscopy (Fig. 2.5A; Fig. S2.3). 

Both nuclear and cytoplasmic inclusions were detected in several neurons treated with 

aged (GA)6 and (GR)6. In contrast, diffuse nuclear staining was noted in a small 

proportion of cells exposed to (GP)6, but the vast majority had no evidence of staining 

over background. Furthermore, DPR internalization was significantly more frequent for 

(GA)6 and (GR)6 than for (GP)6 (Fig. 2.5B), in accord with the toxicity of (GA)6 and 

(GR)6 in neurons. We did not detect intracellular DPRs in neurons treated with buffer 

alone. 

 To confirm these results, we also covalently coupled a fluorescent molecule, 

fluorescein-5-EX, succinimidyl ester (FITC), to aged (GA)6, (GP)6 and (GR)6. After 

applying the aged, labeled peptides to primary neurons in culture, the cells were fixed, 

immunostained with an antibody recognizing the pan-neuronal cytoplasmic marker 

MAP2, and imaged by laser scanning confocal microscopy (Fig. 2.5D–G). Intracellular 

inclusions were detected in neurons treated with FITC-(GA)6 and FITC-(GR)6, but not 

FITC-(GP)6 or in cells treated with FITC alone, in agreement with the lack of toxicity of 

GP dipeptides (Fig. 2.1H). Linear quantifications of the Z-sections shown in Fig. 2.5D–G 

demonstrated that the FITC-(GA)6 and FITC-(GR)6 peptides were indeed cytoplasmic, 

and not simply located along the extracellular face of the plasma membrane (Fig 2.5E–

H). In addition, intracellular deposits of FITC-(GA)6 were significantly more frequent 

than deposits of FITC-(GP)6 or FITC-(GR)6 (Fig. 2.5C), consistent with the results 
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obtained using anti-DPR antibodies (Fig. 2.5B). DPR internalization occurred less 

frequently with FITC-labeled peptides than with unlabeled DPRs, and the distribution of 

internalized FITC-labeled peptides was also different, perhaps due to the size or charge of 

the FITC moiety. Nevertheless, these data suggest that (GA)6 and (GR)6 peptides are 

efficiently taken up by neurons, and that DPR internalization correlates with toxicity. 

 

2.4 Discussion 

 Here we studied the structural characteristics of the three sense-strand derived 

DPRs that accumulate and aggregate in C9ALS/FTD. We demonstrate that different DPR 

peptides exhibit marked differences in their structural features and in their propensity to 

form aggregates. We also observed a correlation between these structures, their ability to 

enter cells, and their toxicity when applied exogenously to neurons. These findings 

suggest that specific structural conformations formed by GA- and GR- repeat proteins 

may be elemental to their toxicity and could serve as a target for future therapeutic 

strategies. 

 Our findings suggest that the length of the dipeptide repeat can influence 

aggregate structure, internalization and downstream neurotoxicity in a simple model 

system. Although RAN peptides produced in vivo from C9orf72 expansions may be 

significantly longer than those studied here, our data show that even short DPRs 

consisting of 3–6 repeat motifs formed amyloid-like structures and impaired neuronal 

survival, suggesting that these elements are sufficient for aggregation and neurotoxicity. 

Consistent with our results, Chang et al.14 showed that externally-applied GA-containing 

peptides with fifteen repeats display features of amyloid, are taken up by cells, and are 
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toxic to transformed cell lines. Thus, the ability of relatively short peptides to cause 

toxicity suggests that these peptides could accelerate neurodegeneration if present at high 

local concentrations. 

 In individuals with C9orf72mutations, RAN proteins are likely produced in 

multiple reading frames within the same cell, thus the relevance of the exogenously 

applied individual dipeptide toxicity observed here to that in the human disease remains 

to be confirmed. However, RAN proteins are detectable in the cerebrospinal fluid of 

patients with C9orf72 mutations53. Given emerging evidence for prion-like spread of 

aggregation-prone proteins in other neurodegenerative disorders, these studies suggest 

that DPRs could enhance disease progression by catalyzing the spread of toxicity from 

one cell to another14,51,52,54. 

 Of the peptides studied, (GA)6 and (GR)6 formed β-sheet structures, were taken 

up most effectively by neurons, and demonstrated toxicity in longitudinal assays, 

suggesting a potential relationship between structure, internalization, and cell death (Fig. 

5). In contrast, GP-containing peptides formed amorphous aggregates, were not 

internalized by neurons, and were not toxic despite the relatively high concentrations 

used here. In prior investigations, intrinsically overexpressed GA DPRs form cytoplasmic 

aggregates, while overexpressed GR DPRs accumulate within nuclear foci17,21,23,24,26. In 

contrast, we detected externally applied, synthetic GR DPRs within the cytoplasm of 

neurons, and GA DPRs within the nucleus. The apparent discrepancy may be due to the 

method of delivery, since other investigations noted a similar cytoplasmic deposition of 

arginine-rich DPRs when applied externally to cells in culture28. While no previous study 

examined the subcellular localization following internalization of synthetic GA DPRs, 



	

57 
	

the nuclear localization of (GA)6 resembles the nuclear aggregation of other proteins 

containing polyalanine stretches55. 

 Arginine-containing RAN translation products elicit toxicity in cellular and 

animal models of disease when exogenously applied or when intrinsically expressed 

under the control of a high-level promoter preceded by an AUG start codon17,19,21-26,53. 

Our results extend these observations, demonstrating that peptides containing three (GR) 

repeats form aggregates with distinct spherical morphology and cause neuronal death. 

Although prolonged incubation enhanced the toxicity of GR- containing peptides, the 

secondary structure and the morphology of the aggregates remained unchanged. 

However, we observed that fresh and aged (GR)6 have different affinities for CR, 

possibly reflecting subtle structural changes within the aggregates. Higher resolution 

studies will be required to reveal the packing of peptides within the aggregates that could 

account for the acquired toxicity. 

 Using several independent measures, we found that aged (GA)6 shares key 

properties with amyloid while remaining structurally distinct. Diffraction from amyloid 

fibrils typically yields a cross-β pattern, featuring two strong reflections at resolutions 

corresponding to strand-to-strand and sheet-to-sheet distances. If aged (GA)6 forms 

amyloid, we would predict a small sheet-to-sheet spacing consistent with the size of the 

glycine and alanine side chains (3.9 Å, and 5.3 Å, respectively).However, we did not 

observe either of these, nor did we observe a reflection at 4.8 Å, corresponding to the 

spacing between strands. Instead, the diffraction pattern shows strong reflections at 4.4, 

3.6, and 8.6 Å (Fig. 2.4C). One possible explanation is that (GA)6 assumes a cross-β 

diffraction pattern, but the reflection corresponding to strand-to-strand spacing is 
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extinguished by the presence of a two-fold screw symmetry axis coincident with the fibril 

axis, as is common in crystals of amyloidogenic peptides with class 1 symmetry36. In this 

case, the 4.4 Å spacing would correspond to a set of Bragg planes, closely related to the 

strand-to-strand spacing but slightly offset in angle and spaced closer together, while the 

8.6 Å spacing might arise from the distance between adjacent pairs of β-sheets. We also 

note that aged (GA)6 grows in large flat sheets, a morphology different from fibrillar 

aggregates formed by amyloids. 

 

2.5 Conclusions 

 In summary, our work defines unique structural elements for individual DPRs and 

correlates the abundance of specific structures with their cellular internalization and 

relative toxicity. The most neurotoxic dipeptide in our study, (GA)6, exhibits a distinct 

structure that is β-sheet rich and shares features with amyloid. This link between structure 

and neurotoxicity suggests that strategies targeting such conformations may effectively 

reduce RAN peptide-induced neurodegeneration and slow disease progression. 

 

2.6 Materials and methods 

Aggregation assays 

 All peptides were purchased from GenScript. Prior all experiments, we dissolved 

(GA)3, (GP)3 and (GR)3 to 20 mM and (GA)6, (GP)6 and (GR)6 to 10mM. For 

transmission electron microscopy (TEM), Congo red (CR), and toxicity assays, peptides 

were solubilized in 25mM sodium phosphate pH 7.4, 0.1M NaCl. For circular 

dichroism(CD), peptides were solubilized in 25mM sodium phosphate pH 7.4. (GA)3, 
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(GP)3, (GP)6, (GR)3 and (GR)6 were soluble and their solutions remained clear after 

incubation. (GA)6 was not fully soluble at the concentrations used. Freshly dissolved 

solutions (termed “fresh”) were analyzed immediately after dissolving and were 

compared with samples (termed “aged”) that were instead incubated at 37°C with 

agitation in an EchoThermOrbitalmixer (level 9, Torrey Pines Scientific) for 6–8 days. 

For toxicity, CR and CD, samples were additionally diluted as described in the following 

sections. 

 Both sonicated and unsonicated samples were analyzed by CD, CR binding and 

TEM. Prior sonication, the peptides were additionally diluted to 4mM ((GA)3, (GP)3 and 

(GR)3) and 2mM ((GA)6, (GP)6 and (GR)6). The peptide samples were sonicated using 

continuous mode at level 10 (output power 7–8Watts) for 15 sec by immersing the micro-

probe of 60 Sonic Dismembrator (Fisher Scientific). The probe was washed with water 

for 1 min between samples. Data from sonicated and unsonicated peptides were 

reproduced in three independent experiments, yielding similar results. 

Thioflavin T (ThT) binding assay 

 ThT was added to each of the peptide solutions (20mM (GA)3, (GP)3 and (GR)3 

and 10mM (GA)6, (GP)6 and (GR)6 dissolved in 25mM sodium phosphate pH 7.4, 0.1M 

NaCl) at a final concentration of 10µM, and 110 µl of this mixture was dispensed into 

each well of Falcon 96-well plate (black/clear, flat bottom, Corning, 353219). Plates were 

then incubated at 37°C in FLUOstar Omega (BMG Labtech Inc) and were shaken at 

200rpmusingmeander corner well shaking mode. Fluorescence was measured with gain 

set at 90%, an excitation wavelength of 440 nm and emission wavelength of 490 nm. 

Four separate replicates were measured for each sample. 
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Transmission Electron Microscopy (TEM) 

 Negatively stained specimens for TEM were prepared by applying 5 µl of sample 

(20mM (GA)3, (GP)3, and (GR)3 and 10mM (GA)6, (GP)6, and (GR)6) to hydrophilic 

400 mesh carbon coated Formvar support films mounted on copper grids (Ted Pella, Inc., 

01702-F). The samples were allowed to adhere for 4 min, rinsed twice with distilled 

water, and stained for 60–90 sec with 5 µl of 1% uranyl acetate (Ted Pella, Inc.). All 

samples were imaged at an accelerating voltage of 60 kV in a CM-100 electron 

microscope (Philips, Inc.). At least four different grids from four independent 

experiments were examined for fresh and aged samples. 

X-ray powder diffraction of (GA)6 

 Aged (GA)6 samples were centrifuged at 20,000 x g for 3 min. The pellet was 

washed twice with water, resuspended in 5 µl water, and placed between two fire-

polished silanized glass capillaries (1 mm apart) and dried at room temperature. 

Diffraction patterns were collected using a Rigaku FRD rotating anode X ray generator 

and an RAXIS-4++ imaging plate detector. Samples were oscillated 1° over a 5 min 

exposure. 

Circular Dichroism (CD) 

 CD experiments were performed with Jasco J-1500 spectrometer (JASCO 

Analytical Instruments). The samples were additionally diluted with 25mM sodium 

phosphate pH 7.5 to 0.6 mg/ml ((GA)3, (GR)3, (GA)6 and (GR)6) or 0.225mg/ml ((GP)3 

and (GP)6) before measuring their spectra from 260 nm to 195 nm. Spectra were 

collected using scanning speed of 200nm/min, data interval of 0.5nmdata, response time 

of 1 sec and bandwidth of 1 nm. Four spectra were measured for each sample, and data 
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with a heat tension less than 500 were averaged. Secondary structure was predicted using 

programs described in38. 

Congo Red (CR) birefringence 

 For birefringence analysis, aged (GA)6 was pelleted by centrifugation at 20,000 x 

g for 1 min. 120µM CR (Sigma, C-6767) was added to the precipitate in 25mM sodium 

phosphate pH 7.4, 0.1M NaCl for 30 min, sedimented by centrifugation at 20 000 x g for 

1 min, rinsed three times with water, resuspended in 10 µl of water, and dried on a glass 

slide to be examined by a light microscope (Zeiss, SteREO Discovery V8) equipped with 

light polarizers. 

CR spectral shift 

 We followed protocols described by Klunk et al.39 to determine which aggregates 

display a red shift in their spectra after binding to CR. A 7.5 µl sample of each peptide or 

buffer alone (25mM sodium phosphate pH 7.4, 0.1M NaCl) was added to 7.5 µl of 300 

µM CR, 25 mM phosphate, pH 7.4, 0.1M NaCl. All specimens were incubated at 37°C 

for 30 min. Spectra were recorded immediately after incubation using a NanoDrop ND-

100 Spectrophotometer (Thermo Scientific, Inc.). To account for contributions from light 

scatter, the spectra of untreated peptides were subtracted from the corresponding spectra 

collected from peptides treated with CR. 

Fourier Transform Infrared Spectroscopy (FT-IR) 

 For FT-IR, (GA)6, (GP)6 and (GR)6 were dissolved to 10 mM in 25 mM sodium 

phosphate pH 7.5, 0.1M NaCl prepared with deuterated water. Immediately after 

solubilizing, fresh (GA)6, (GP)6 and (GR)6 were frozen in liquid nitrogen. Aged samples 

dissolved in deuterated buffer were incubated at 37°C with agitation in an EchoTherm 
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Orbital mixer (level 9, Torrey Pines Scientific) for 6–8 days, followed by flash freezing 

in liquid nitrogen. Both fresh and aged samples were lyophilized prior to FT-IR 

measurements. Spectra were collected at room temperature in a Perkin-Elmer FT-IR 

equipped with attenuated total reflectance (ATR). 128 scans were accumulated and 

averaged for each spectrum at a resolution of 4 cm-1. Spectra were corrected for 

absorption of buffer by subtracting the spectrum of buffer alone. 

Primary neuron culture, transfection, and imaging 

 Primary mixed cortical neurons were dissected from embryonic day 20 rat pups 

and cultured at 0.6 x 106 cells/ml, as described previously40,41. Four days after plating, 

neurons were transfected with pGW1-mApple40,41 using Lipofectamine 2000 (Invitrogen, 

52887), and peptides (dissolved in 0.1M NaCl, 25 mM sodium phosphate pH 7.4), were 

applied at a final concentration of 1mM (diluted from 20mM for (GA)3, (GP)3 and 

(GR)3) or 0.5mM (diluted from 10mM for (GA)6, (GP)6 and (GR)6). “Fresh” peptides 

were applied to cells immediately after dissolving in solution whereas “aged” samples 

were applied after 6–8 days of agitation as described above. To avoid contamination, 

peptides were not subjected to sonication. Longitudinal imaging was initiated 24 hours 

post-transfection, and accomplished using an automated fluorescence microscopy 

platform as before40,41. Briefly, neurons were imaged using a Nikon TiE-B inverted 

microscope equipped with a high-numerical aperture 20X objective lens, a PerfectFocus3 

system, an ASI2000 stage with rotary encoders in the x- and y-axes, a Lambda XL Xenon 

lamp (Sutter), and an Andor iXon 897 electron-multiplied charge coupled device 

(EMCCD) digital camera. All stage, shutter, and filter wheel movements were 

coordinated by code written in publicly-available software (µManager and ImageJ). 
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Image processing and survival analysis were accomplished by original code written in 

Python or the ImageJ macro language. All statistical analyses were performed in R using 

the survival analysis package, or Prism (GraphPad). Differences in survival between 

populations of neurons were determined using the log-rank test (for 2 conditions) or Cox 

proportional hazards analysis (for > 2 conditions). 

Animal work 

 All vertebrate animal work was approved by the Committee on the Use and Care 

of Animals at the University of Michigan. All experiments were carefully planned so that 

we use as few animals as possible. Pregnant female wild-type, non-transgenic Long 

Evans rats (Rattus norvegicus) were housed singly in chambers equipped with 

environmental enrichment. They were fed ad libitum a full diet (30% protein, 13% fat, 

57% carbohydrate; full information available at www.labdiet.com), and cared for by the 

Unit for Laboratory Animal Medicine (ULAM) at the University of Michigan. Veterinary 

specialists and technicians in ULAM are trained and approved in the care and long-term 

maintenance of rodent colonies, in accordance with the NIH-supported Guide for the 

Care and Use of Laboratory Animals. All rats were kept in routine housing for as little 

time as possible prior to euthanasia and dissection, minimizing any pain and/or 

discomfort. Pregnant dams were euthanized by CO2 inhalation at gestation day 20. For 

each animal, euthanasia was confirmed by bilateral pneumothorax. Euthanasia was fully 

consistent with the recommendations of the Guidelines on Euthanasia of the American 

Veterinary Medical Association and the University of Michigan Methods of Euthanasia 

by Species Guidelines. Following euthanasia, the fetuses were removed in a sterile 

manner from the uterus and decapitated. Primary cells from these fetuses were dissected 
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and cultured immediately afterwards, as described above. 

Fluorescent labeling of peptides 

 A stock solution of Fluorescein-5-EX succinimidyl ester (FITC, Molecular 

Probes, F6130) was prepared by dissolving the reagent in DMSO to a final concentration 

of 20mM. (GA)6, (GP)6 and (GR)6 were dissolved in 100mM sodium bicarbonate pH 

8.5 to 1.5mg/ml. FITC was added to (GA)6, (GP)6 and (GR)6 solution to a final 

concentration of 8.3mM, 7.0mM and 5.3mM, respectively. All reaction volumes were 

adjusted to 800 µl. The final concentration the peptides was 0.75mg/ml. To make the 

unlabeled (control) solution, 400 µl of 100 mM sodium bicarbonate pH 8.5 was mixed 

with 400 µl of 20 mM FITC stock. All solutions were incubated for 24 hours at 4°C on a 

nutator. The labeled peptides were dialyzed against 2 L of 25 mM sodium phosphate pH 

7.4; 0.1M NaCl. The dialysis buffer was changed four times. Peptide labeling was 

confirmed with MALDI-TOF (Bruker AutoFlex Speed). After 3 days of dialysis, samples 

were incubated for a week at 37°C with shaking in EchoTherm Orbital mixer (level 9, 

Torrey Pines Scientific). 

Detection of internalized FITC-labeled peptides 

 Following conjugation of each DPR to FITC, labeled DPRs were applied to 

primary rodent cortical neurons on DIV4 at a final concentration of 37.5 µg/ml. The cells 

were subjected to immunocytochemistry, as described below, using primary antibodies 

against MAP2 (dilution 1:500, Millipore, MAB3418, mouse monoclonal, clone AP20) 

and secondary anti-mouse Cy5-conjugated antibodies (dilution 1:250, Jackson 

Immunoresearch, 115-175-146, Goat whole IgG). The cells were then imaged using a 

Zeiss LSM510 laser scanning confocal microscope. For micrographs of neurons treated 
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with FITC-labeled peptides, 20 optical slices were taken for each cell with a step size of 5 

nm between slices. Z-sections were constructed using LSM Browser software (Zeiss). A 

total of > 200 neurons were counted from each population to determine the frequency of 

internalization. 

Generation and characterization of dipeptide repeat antibodies 

 Rabbit polyclonal antibodies were generated commercially by NeoScientific. 

Antisera were generated against synthetic (GA)6 or (GR)6 peptides and were affinity 

purified prior to use. Western blot validation was done on cell lysates from transfected 

COS-7 cells (purchased from ATCC) as previously described42. Briefly, COS-7 cells 

were lysed in RIPA (50mM Tris, pH8, 150mM NaCl, 0.1% SDS, 1% NP-40, 0.5% 

sodium deoxycholate) buffer supplemented with Complete mini protease inhibitor 

cocktail tablets (Sigma/Roche, 11836153001) and passed through a 27-gauge needle to 

shear DNA. Equal amounts of protein were run on a 12% SDS polyacrylamide gel. After 

transfer to PVDF membrane (0.2µm, Bio-Rad, 162–0177), blots were incubated with the 

following antibodies:mouse anti-V5 (Abcam, ab27671, mouse monoclonal, IgG2a; 

recognizes a Pk epitope in P/V proteins of the paramyxovirus SV5; dilution 1:1000), 

rabbit anti-GA (dilution 1:100) or rabbit anti-GR (dilution 1:5000) or mouse anti-β-Actin 

(Sigma, A1978, mouse monocolonal, IgG1; recognizes an epitope located in the N-

terminus of the β-isoform of actin; dilution 1:5000). At least three independent 

experiments were performed and scanned films were processed and quantified using 

ImageJ software. Peroxidase-AffiniPure Goat Anti-Rabbit IgG (H+L) (Jackson 

ImmunoResearch, 111-035-144; polyclonal; conjugated to Horseradish Peroxidase) and 

Peroxidase AffiniPureGoat Anti-Mouse IgG (H+L) (Jackson ImmunoResearch, 115-035-
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146; polyclonal; conjugated to Horseradish Peroxidase) were used as secondary 

antibodies. For immunofluorescence based validation, COS-7 cells were maintained 37°C 

in 5% CO2 incubators. Dulbecco’s modified Eagle’s medium (DMEM, Fisher, 

SH30022FS) supplemented with 10% fetal bovine serum (Fisher, MT35015CV), and 1% 

Pen-Strep were used as culture media. Cells were transfected using Lipofectamine LTX 

with Plus Reagent (Thermo Fisher, 15338100) using manufacturer’s protocol. At 48 

hours after transfection, cells were fixed with 4% paraformaldehyde for 15 minutes, 

washed, permeabilized with 0.1% triton X-100, blocked with 5% normal goat serum 

(NGS, Vector labs, S-1000) in 1X PBS containing 0.1% triton X-100, and incubated with 

mouse anti-GFP (Roche, 11814460001, mixture of clones 7.1 and 13.2 mouse 

monoclonal antibodies, IgG1k, which recognizes wild type and mutant forms of GFP; 

dilution 1:1000), rabbit anti-GA (dilution 1:100) or anti-GR (dilution 1:500) overnight. 

Slides were washed and probed with Goat anti-Mouse IgG (H+L) Secondary Antibody, 

Alexa Fluor 488 (Thermo Fisher Scientific,A-11001, goat polyclonal, immunogen: 

gamma immunoglobins heavy and light chains) and Alexa Fluor 555 labeled Goat-anti-

Rabbit (Thermo Fisher Scientific,A-21428, goat polyclonal, immunogen: gamma 

immunoglobins heavy and light chains) antibodies and visualized with an inverted 

Olympus IX71 epifluorescence microscope with Slidebook software with identical 

fluorescent settings for each slide. 

 Immunohistochemical validation of the antibodies was done as in Todd et al [42]. 

Briefly, human cerebellum from control cases or cases with C9orf72 expansions 

confirmed by repeat primed PCR testing were deparaffinized and then processed through 

a basic antigen retrieval protocol to enhance detection. Sections on slides were then 
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permeabilized with 0.1% triton X- 100, blocked in 5% NGS and 0.1% BSA, and 

incubated in primary antibodies overnight at 4°C at the following concentrations: anti-

GA (1:50), anti-GR (1:100). Following PBS washes, a Vectastain Elite ABC Kit (Rabbit 

IgG) (Vector Labs, PK-6101) was used according to manufacturer’s protocols for DAB 

staining. Samples were counterstained with hematoxylin QS (Vector Labs, H-3404) to 

identify nuclei. Selected images are representative of staining from a least three different 

slides and two patients per group. 

Detection of peptide internalization by immunocytochemistry 

 We added 0.5mM (final concentration) of fresh or aged (GA)6, (GP)6 and (GR)6 

to primary neurons (cultured as described above) 4 days after dissection (DIV4). After 24 

hours, the cells were rinsed twice in PBS (Life Technologies, 70011–044), then fixed in 

4% paraformaldehyde for 10 min. Following 2 more rinses, neurons were permeabilized 

with 0.1% Triton X-100 in PBS for 20 min at room temperature, equilibrated with 10 

mM glycine in PBS for 10 min at room temperature, then blocked in 0.1% Triton X-100, 

3% BSA (Research Products International, 9048-46-8) and 0.2% goat serum PBS for 1 

hour at room temperature. Primary antibodies against GA (1:100) and GR (1:500), both 

generated as described above, or GP (1:5000, polyclonal, Millipore ABN455, rabbit 

polyclonal), in addition to antibodies against MAP2 (1:500,Millipore MAB3418, mouse 

monoclonal, clone AP20), were added directly to the block and the samples incubated 

overnight at 4°C. All cells were rinsed twice quickly and 3 times for 10 min with PBS, 

then placed back in block solution containing the appropriate secondary antibodies (goat 

anti-mouse Cy5, Jackson ImmunoResearch, 115-175-146, whole IgG; and goat anti-

rabbit Alexa Fluor 488, Life Technologies A-11008, whole IgG) at a dilution of 1:250. 
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The cells were rinsed twice quickly in PBS, and 3 times for 10 min each in PBS 

containing Hoescht dye (Invitrogen, 33342,) at 100 nM, then twice more in PBS before 

imaging by automated microscopy. A total of > 100 neurons were counted from each 

population to determine the frequency of internalization. 
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Figure 2.1 GP dipeptides form amorphous aggregates that are innocuous to 
neurons. (A, E) Fresh and aged (GP)3 and (GP)6 peptides formed low abundance 
amorphous aggregates by TEM. (B, F) CD spectra of fresh and aged (GP)3 and (GP)6 
were indistinguishable from one another. (C, G) Neither (GP)3 nor (GP)6 peptides 
exhibited affinity for CR, and their absorbance spectra did not chance in the presence of 
CR. (D, H) Cumulative hazard plots for primary cortical neurons exposed to (GP)3 and 
(GP)6 peptides. Neither (GP)3 nor (GP)6 significantly impacted neuronal survival (p > 
0.05) compared to buffer alone. n, number of neurons per condition. Survival data were 
pooled from 8 wells per condition, in each of 3 replicates.
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Table 2.1 Secondary structure content of the peptides in this study calculated from 
their corresponding CD spectra38. 
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Figure 2.2 GR dipeptides form repeat length-independent neurotoxic aggregates. (A, 
E) The majority of aged (GR)3 and (GR)6 aggregates were spherical in shape, as 
assessed by TEM. (B, F) CD spectra of fresh and aged (GR)3 as well as fresh and aged 
(GR)6, were indistinguishable. (C, G) (GR)3 peptides produced a spectral shift from 490 
nm to 550 nm and decreased the maximum of CR absorbance at 490 nm. CR spectra in 
the presence of fresh and aged (GR)3 were indistinguishable. In contrast, absorbance 
spectra of fresh and aged (GR)6 differed, with fresh peptide showing greater decrease in 
absorbance. (D, H) In longitudinal analyses of neuronal survival, aged but not fresh 
(GR)3 significantly increased the risk of death over control neurons exposed to buffer 
alone, whereas both fresh and aged (GR)6 were significantly toxic. n, number of neurons 
per condition. *** p < 0.0003, Cox proportional hazards analysis. Survival data were 
pooled from 8 wells per condition, in each of 3 replicates. 
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Figure 2.3 GA dipeptides form repeat length-dependent neurotoxic β-sheet rich 
aggregates. (A, E) By TEM, (GA)3 formed sparse amorphous aggregates. Fresh (GA)6 
aggregates were heterogeneous, containing both fibrils and layered sheets. In contrast, 
aged (GA)6 formed large aggregates mostly composed of layered sheets. (B, F) CD 
spectra of fresh and aged (GA)3 were similar with 44% predicted β-sheet content. Aged 
(GA)6 had the largest β-sheet content among the peptides in this study (55%). (C, G) No 
change in the CR absorbance spectrum was noted for (GA)3, but fresh and aged (GA)6 
displayed increased CR absorbance, as is commonly observed for amyloid-forming 
proteins. Fresh and aged samples introduced spectral shifts to 530 nm and 515 nm, 
respectively. (D, H) Aged (GA)6 peptides, but not (GA)3 peptides, were highly toxic to 
neurons compared to buffer only control. n, number of neurons per condition. *** p < 
0.0003, Cox proportional hazard analysis. Survival data were pooled from 8 wells per 
condition, in each of 3 replicates. 
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Figure 2.4 (GA)6 forms atypical amyloid-like aggregates. (A) ThT binding assays for 
all peptides, demonstrating significant binding only for (GA)6 (red line). (B) Aged (GA)6 
in the presence of CR appeared red with unpolarized light (left) and displayed yellow 
birefringence with cross-polarized light (right). (C) X-ray diffraction pattern from (GA)6 
peptides suggests that the aggregates assume a discrete structure. 
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Figure 2.5 DPRs are internalized by neurons. (A) Fluorescence micrographs of 
neurons treated with the indicated peptide and stained with antibodies recognizing the 
pan-neuronal marker (MAP2, red), the indicated DPR (GA, GP, or GR; green), and a 
nuclear dye (4’,6-diamidino-2-phenylindole (DAPI), blue). Scale bar, 20 µm. (B) 
Frequency of DPR internalization detected by immunocytochemistry. (C) Quantification 
of the data in panels D-G, showing internalization of FITC-labeled DPRs. (D-G) 
Confocal microscopy of neurons treated with the indicated peptide shows intracellular 
accumulations of FITC–(GA)6 and –(GR)6, but not –(GP)6 or buffer. Representations of 
the y-z axis appear above, and x-z plots to the right of each micrograph.  Scale bar in (D), 
20 µm, applies to D-G. (H-K) Intensity plots of fluorescence across a line that intercepts 
the inclusions shown in D-G, demonstrating overlapping MAP2 and FITC signals for 
(GA)6 and (GR)6 but not (GP)6. For (B) and (C), ***, p < 0.05 one-way ANOVA with 
Dunnett’s test. n= 100-150 neurons per condition, pooled from 3 replicates and 2 
independent experiments. ***, p < 0.05 one-way ANOVA with Dunnett’s test. 
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Supplemental information 
 

 
 
Figure S2.1 FT-IR spectra of dipeptide repeats. To assess for secondary structure, 
fresh and aged (GA)6, (GP)6 and (GR)6 peptides were subject to FT-IR. The two bands 
at 1622 cm-1 and 1698 cm-1 in (GA)6 spectra suggest that the secondary structure of these 
aggregates is mostly β-sheet. 
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Figure S2.2. Characterization of new C9orf72 dipeptide repeat antibodies. Rabbit 
polyclonal antibodies were generated against the sense strand-derived DPRs GA and GR. 
(A) Western blot of lysates from COS-7 cells transfected with the indicated vectors. Blots 
were serially probed with the indicated DPR antibody, then V5 and then actin as a 
loading control. (B, C) Immunocytochemistry of COS-7 cells transfected with the 
indicated vectors and stained for GR (B) and GA (C) antibodies demonstrate specificity. 
(D) Immunohistochemistry of GA- and GR- protein aggregates in the cerebellum of a 
genetically confirmed C9orf72(+) ALS case. No significant staining was observed in 
control patient cerebellum.
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Figure S2.3 Detection of internalized DPRs by immunocytochemistry. 24 h after 
application of (GA)6, (GP)6 or (GR)6 peptides to live rodent primary cortical neurons, 
the cells were fixed and immunostained using antibodies against MAP2 (red) and each of 
the DPRs (green), and nuclei labeled with DAPI (blue). (A) Neurons treated with (GA)6 
displayed nuclear foci. (B) Diffuse nuclear staining was noted in a small proportion of 
cells exposed to (GP)6. (C) Following application of (GR)6, DPRs were detected within 
neuronal cytoplasmic aggregates. See Figure 2.5B for quantification of DPR 
internalization. Scale bar, 20 µm. 
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Chapter 3 

An intramolecular salt bridge linking TDP43’s RNA 

recognition motifs dictates RNA binding and TDP43-

dependent neurodegeneration* 

3.1 Abstract 

 The majority of individuals with amyotrophic lateral sclerosis (ALS) and 

frontotemporal dementia (FTD) exhibit neuronal cytoplasmic inclusions rich in the RNA 

binding protein TDP43. Even so, the relationship between TDP43’s RNA binding 

properties and neurodegeneration remain obscure. Here we show that engineered 

mutations disrupting a salt bridge between TDP43’s RNA recognition motifs interfere 

with nucleic acid binding and eliminate recognition of native TDP43 substrates. These 

same mutations dramatically destabilize TDP43, alter its subcellular localization and 

abrogate TDP43-dependent neurodegeneration. C. elegans harboring homologous TDP-1 

mutations phenocopy knockout strains, confirming the necessity of the salt bridge 

residues for TDP43 function. Moreover, the accumulation of functional TDP43, but not 

RNA binding-deficient variants, disproportionately affects the abundance and splicing of 

																																																								
*  This chapter represents the following manuscript: 
 
Flores BN, Li X, Martinez J, Beg AA, Barmada SJ. An intramolecular salt bridge linking 
TDP43’s RNA recognition motifs dictates RNA binding and TDP43-dependent 
neurodegeneration. In revision.	



	

84 
	

transcripts encoding oxidative phosphorylation and ribosome components. These studies 

demonstrate the significance of the salt bridge in sustaining TDP43 stability and RNA 

binding specificity, factors that are crucial for neurodegeneration arising from TDP43 

deposition in ALS and FTD. 

 

3.2 Introduction 

 Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are 

distinct neurodegenerative disorders that share key pathologic and genetic features1. 

Mutations in several RNA binding proteins (RBPs) cause familial ALS and FTD, 

including TDP43, FUS, hnRNPA1 and hnRNPA2B1, MATR3, and TIA12. Many of the 

most common mutations responsible for ALS and FTD, including the C9orf72 

hexanucleotide expansion3,4, result in neuronal cytoplasmic inclusions rich in TDP435,6, a 

nuclear RBP involved in RNA processing, stability, and transport7. These observations 

strongly suggest that dysfunctional RNA metabolism is a convergent pathogenic 

mechanism responsible for neurodegeneration in ALS and FTD8. 

 TDP43 contains two highly conserved RNA recognition motifs, RRM1 and 

RRM2, that exhibit distinct binding characteristics. RRM1 has a higher affinity for 

specific sequences, and while RRM2 alone binds little if any RNA, its presence enhances 

the sequence specificity of RNA recognition by RRM19-12. In Drosophila, deletion of 

TDP43’s RRM1 or substitution of Trp113 to alanine almost completely eliminates RNA 

binding and prevents downstream toxicity from TDP43 accumulation10,13. Likewise, 

mutation of two key phenylalanine residues (Phe147/149 to Leu) within RRM1 is 

sufficient to abrogate RNA binding by TDP439,14 and similar mutations rescue TDP43-
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dependent toxicity in yeast and Drosophila15,16. RNA binding by TDP43 therefore 

appears to be critical for neurodegeneration in disease models. Even so, little is known 

about the significance of sequence-specific RNA binding by TDP43, and the RNA 

substrates that mediate TDP43-related neurodegeneration remain obscure.  

 Over 40 different pathogenic mutations within the gene encoding TDP43 

(TARDBP) have been identified in families with ALS, FTD or both17. Disease-associated 

TARDBP mutations elicit gain-of-function toxicity by interfering with TDP43 

autoregulation18-20, enhancing cytoplasmic TDP43 mislocalization and deposition, and 

impacting TDP43 clearance21-25. Supporting the link between TDP43 turnover and 

neurodegeneration, toxicity is strongly and directly proportional to TDP43 abundance in 

individual cells, and stimulation of TDP43 turnover via autophagy extends neuronal 

survival and mitigates disease phenotypes in ALS and FTD models23. Additionally, the 

half-life of TDP43 within primary neurons is significantly longer than in fibroblasts or 

transformed cell lines23,24,26, indicating preferential stabilization of the protein in neurons, 

and suggesting cell type-specific differences that could be important for the selective 

vulnerability of neurons in ALS and FTD. However, the factors responsible for 

maintaining TDP43 stability, and the contribution of TDP43 clearance to 

neurodegeneration, are unknown.  

 Upon RNA binding, intramolecular interactions between RRM1 and RRM2, 

mediated by a salt bridge between Arg151 (located in RRM1) and Asp247 (located in 

RRM2) are necessary for maintaining TDP43’s ability to recognize RNA27. Here, we 

show that the RRM1-RRM2 salt bridge is pivotal not only for TDP43’s RNA binding 

properties, but also its stability. TDP43 variants lacking the salt bridge are unable to bind 
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RNA substrates, degrade rapidly and ultimately incapable of triggering 

neurodegeneration, despite cytoplasmic mislocalization in many cases. Furthermore, 

although TDP43 overexpression engenders widespread changes in RNA abundance and 

splicing, most splicing events are unrelated to the RNA binding ability of TDP43. Among 

transcripts selectively affected by the accumulation of wild-type TDP43, the ribosomal 

and oxidative phosphorylation pathways are strongly enriched, emphasizing a potential 

role for TDP43 in regulating protein synthesis and energy production. 

 

3.3 Results 

3.3.1 The R151-D247 salt bridge is essential for nucleic acid binding by TDP43 

 To determine the significance of the TDP43 RRM1-RRM2 salt bridge, we 

mutated both residues participating in the intramolecular interaction27—Arg151 (R151) 

and Asp247 (D247)—to alanine (Fig. 3.1A, B). We purified recombinant TDP43(WT), 

TDP43(R151A), and TDP43(D247A) in E. coli, then tested the ability of each variant to 

bind nucleic acid in vitro via electromobility shift assays. Since TDP43(WT) primarily 

recognizes RNA and DNA sequences rich in UG and TG repeats9,10, respectively, we first 

asked whether disruption of the RRM1-RRM2 salt bridge affects TDP43’s affinity for 

repetitive UG elements. Mobility shifts were noted for all three variants (Fig. 3.1C), 

suggesting successful recognition of (UG)12 oligonucleotides in each case, and indicating 

that the salt bridge is not necessary for RNA binding per se. 

 To determine if disruption of the RRM1-RRM2 salt bridge produced more subtle 

effects on RNA binding, we applied increasing concentrations of unlabeled (UG)12 

oligonucleotide to each preparation, and calculated a dissociation constant (Kd) and 
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cooperativity coefficient (Hill slope, h) for each TDP43 variant (Fig. 3.1D-I). The 

calculated Kd for TDP43(WT) in these assays was 41.1 ± 2.31 nM, similar to estimates 

from previous studies9-12,28,29, and the Hill slope (h) was 1.44 ± 0.14, indicating that 

TDP43 binds RNA in a cooperative manner11,30. In these quantitative assays, both the 

R151A and D247A mutations significantly reduced the affinity of TDP43 for (UG)12 

(Kd= 150 ± 6.68 nM and 155.8 ± 8.59 nM, respectively) in comparison to TDP43(WT) 

(Fig. 3.1F-I). In contrast, the R151A and D247A mutations moderately enhanced binding 

cooperativity, increasing the Hill slope to 1.94 ± 0.14 and 1.84 ± 0.15, respectively. 

 TDP43 is capable of recognizing DNA as well as RNA9,10. Therefore, we 

conducted similar binding studies using (TG)12 DNA oligonucleotides in place of (UG)12, 

noting analogous mobility shifts for all three TDP43 variants (Fig. S3.1A). However, 

more quantitative analyses revealed unique effects of the R151A and D247A mutations 

on DNA binding by TDP43: while the dissociation constant for TDP43(R151A) (27.19 ± 

1.9 nM) was not significantly different from that of TDP43(WT) (26.51 ± 2.3 nM) (Fig. 

S3.1B, C), this variant displayed marked reduction in the Hill slope, suggesting a loss of 

cooperative binding (Fig. S3.1D, E). TDP43(D247A) exhibited significantly weaker 

affinity for (TG)12 (Kd= 47.88 ± 2.326 nM) in comparison to TDP43(WT) and 

TDP43(R151A), and an intermediate Hill slope of 1.387 ± 0.118 (Fig. S3.1F, G). 

Collectively, these data indicate that the salt bridge is required for maintaining both 

binding cooperativity and affinity of TDP43 for UG/TG-rich sequences, but the specific 

consequences of salt bridge disrupting-mutations are distinct for RNA and DNA.  

 We next asked whether disruption of the RRM1-RRM2 salt bridge affects the 

sequence specificity of nucleic acid recognition by TDP43. No significant mobility shifts 
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were detected upon incubation of TDP43(WT), TDP43(R151A) or TDP43(D247A) with 

(GC)12 sequences, even at the highest protein concentrations (Fig. 3.1J). However, we 

observed clear shifts for both TDP43(R151A) and TDP43(D247A), but not TDP43(WT), 

in the presence of (AT)12 oligomers (Fig. 3.1K), suggesting that the salt bridge mutants 

display aberrant sequence specificity in vitro. Notably, the (AT)12-induced shift for 

TDP43(R151A) and TDP43(D247A) occurred at higher protein concentrations compared 

to those required for (UG)12 or (TG)12 sequences, implying a reduced affinity for (AT)12 

sequences. Indeed, in quantitative studies (Fig. S3.2) the Kd for both TDP43(R151A) 

(0.637 ± 0.052 µM) and TDP43(D247A) (1.524 ± 0.072 µM) for (AT)12 oligomers was 

significantly higher than for (UG)12 (Fig. 3.1) or (TG)12 sequences (Fig. S3.1). 

 To examine the significance of the RRM1-RRM2 salt bridge for TDP43 RNA 

binding in vivo, we overexpressed EGFP-tagged TDP43(WT), TDP43(R151A), and 

TDP43(D247A) in HEK293T cells. As a control, we also overexpressed EGFP-tagged 

TDP43(F147L, F149L), a TDP43 variant harboring mutations of two critical 

phenylalanine residues within RRM1 required for nucleic acid binding9. Following 

transfection, each TDP43 variant was immunoprecipitated and TDP43-bound RNA 

assessed by qRT-PCR. As expected, two endogenous TDP43 substrates, TARDBP and 

MALAT114,30-33, were immunoprecipitated with TDP43(WT) but not TDP43(F147L, 

F149L) (Fig. 3.1L, M), consistent with the inability of the latter to recognize RNA9. We 

also noted striking reductions in the amount of TARDBP and MALAT1 transcripts bound 

to TDP43(R151A) and TDP43(D247A). Together with the results of the above 

experiments, these data show that disruption of the salt bridge affects the affinity, 
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cooperativity and sequence specificity of nucleic acid recognition by TDP43, and 

effectively eliminates the recognition of at least a subset of native RNA targets in vivo. 

3.3.2 The RRM1-RRM2 salt bridge is required for TDP43-mediated 

neurodegeneration 

 Since over 80% of ALS arises sporadically yet nonetheless displays TDP43 

pathology5,34,35, overexpression of TDP43(WT) may mimic aspects of sporadic disease 

pathogenesis. Supporting this notion, overexpression of TDP43(WT) in multiple model 

systems is sufficient to reproduce key features of disease, including cytoplasmic TDP43 

mislocalization, the formation of ubiquitinated TDP43 aggregates, and 

neurodegeneration15,21,23,36-39. Given the effects of salt bridge-disrupting mutations on the 

nucleic acid binding properties of TDP43 (Fig. 3.1), and prior evidence suggesting that 

RNA binding by TDP43 is required for toxicity13,15, we surmised that TDP43(R151A) 

and TDP43(D247A) would display reduced toxicity in comparison to TDP43(WT) when 

overexpressed. To test this hypothesis, we cultured primary mixed cortical neurons from 

rodents and transfected them with vectors encoding mApple, to visualize the cell body, 

and EGFP-tagged versions of TDP43(WT), TDP43(R151A) or TDP43(D247A). Neurons 

were also transfected with mApple and EGFP alone, as a negative control. Using 

automated microscopy21,23, we imaged transfected neurons at regularly spaced 24 hr 

intervals, for a total of 10 days. Individual neurons were then identified and tracked by 

custom-written algorithms, and time of death determined by programs that detect 

abnormal cellular morphology (i.e. blebbing) or loss of mApple fluorescence (Fig. 3.2A), 

sensitive indicators of cell death established in prior studies23,40,41. Differences in survival 

between populations of neurons were measured relative to a reference group and 



	

90 
	

expressed as a hazard ratio (HR). As noted in previous investigations21,23,41, 

overexpression of TDP43(WT) significantly increased the risk of death over EGFP alone 

(HR 5.04, p < 2x10-16), and the F147L/F149L mutation effectively reduced TDP43-

dependent toxicity. The HR for the comparison of TDP43(F147L, F149L) and 

TDP43(WT) was 0.27 (p < 2x10-16), indicating an 80% reduction in toxicity (Fig. 3.2B) 

associated with the F147L/F149L double mutant. The R151A and D247A mutations 

similarly decreased the toxicity of TDP43 when overexpressed in neurons, by 75% and 

68% respectively (p < 2x10-16 for both comparisons). Given the reduced ability of 

TDP43(R151A) and TDP43(D247A) to bind nucleic acid (Fig. 3.1), these results imply 

that RNA binding activity is crucial for TDP43-mediated neurodegeneration. 

Because R151 lies within RRM1 and D247 within RRM2, we next asked if 

deletion of RRM1 or RRM2 could recapitulate the effects of each mutation on TDP43-

dependent toxicity. When expressed in primary mixed cortical neurons, both 

TDP43(ΔRRM1) and TDP43(ΔRRM2) were significantly less toxic than TDP43(WT) 

(Fig. 3.2C; HR 0.26 and HR 0.51, respectively, p < 2x10-16 for both comparisons). In 

fact, neurons expressing TDP43(ΔRRM1) displayed a reduced risk of death in 

comparison to the negative control (EGFP alone; HR 0.7, p < 2x10-16), suggesting a 

neuroprotective effect associated with this construct, and further implying that RRM1 is 

necessary for TDP43-related toxicity. Conversely, overexpression of TDP43(ΔRRM2) 

increased the risk of death by 42% in comparison to EGFP alone (HR 1.42, p < 2x10-16). 

Together with prior data highlighting the ability of RRM1, but not RRM2, to bind RNA 

in vitro9,11,12, these observations provide strong evidence linking RNA binding to toxicity 

from TDP43 overexpression.  
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 Over 40 different mutations occurring within the TARDBP locus are associated 

with familial ALS and FTD17, and overexpression of pathogenic TDP43 mutants is just as 

toxic or even more toxic than TDP43(WT) 21,23,38,42-44. To determine if the RRM1-RRM2 

salt bridge is required for mutant TDP43-related neurodegeneration, we transfected 

rodent primary cortical neurons with EGFP alone, or EGFP-tagged versions of the 

pathogenic TDP43(M337V) variant carrying the R151A, D247A or F147L/F149L 

mutations. Transfected neurons were imaged by automated microscopy, as before, and 

the risk of death within each population assessed by survival analysis. In doing so, we 

observed significant reductions in toxicity when the R151A, D247A, or F147L/F149L 

mutations were introduced on the pathogenic M337V background (Fig. 3.2D). The 

TDP43(D247A, M337V) double mutant displayed more toxicity than the other variants, 

suggesting that the D247A mutation prevents most but not all neurodegeneration 

associated with the M337V mutation. Nonetheless, these data demonstrate that the 

RRM1-RRM2 salt bridge and RNA binding are essential for toxicity caused by 

overexpression of WT as well as pathogenic mutant TDP43. 

3.3.3 Mutations that disrupt the RRM1-RRM2 salt bridge enhance TDP43 turnover 

 The RRM1-RRM2 salt bridge helps maintain the tertiary structure of TDP4327, 

which in turn may be important for protein folding and stabilization. To determine 

whether the RRM1-RRM2 salt bridge stabilizes TDP43, we turned to optical pulse 

labeling (OPL), a technique enabling measurement of protein half-life within living 

cells23,45,46. TDP43 variants were tagged with Dendra2, a green fluorescent protein that is 

irreversibly converted to a red fluorescent state upon illumination with low wavelength 

(405 nm) light47 (Fig. 3.3A). Each pulse of 405 nm light creates a finite amount of 
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photoconverted, red-fluorescent TDP43-Dendra2. Over time, the red fluorescence 

decreases as the protein is degraded, providing a means of calculating TDP43-Dendra2 

turnover within each cell23. 

Rodent primary cortical neurons were transfected with Dendra2-tagged versions 

of TDP43(WT) or TDP43 carrying the R151A, D247A, or F147L/F149L mutations, and 

imaged by automated microscopy after a brief pulse of 405 nm illumination. Single-cell 

red fluorescence intensities were tracked over time, and TDP43 half-life determined for 

neurons expressing each of the TDP43 variants (Fig. 3.3B, C). In this way, we observed 

striking destabilization of TDP43 carrying the R151A and D247A mutations—the 

median half-life dropped from 58.5 hr for TDP43(WT)-Dendra2, to 15.3 hr and 21.8 hr 

for Dendra2-tagged versions of TDP43(R151A) and TDP43(D247A), respectively (p < 

0.0001 for both comparisons). Additionally, the F147L/F149L mutation similarly reduced 

TDP43 half-life, indicating that deficiencies in RNA binding, disruption of 

intramolecular interactions, or both are sufficient to destabilize TDP43. 

 Many misfolded proteins are quickly degraded by the ubiquitin-proteasome 

system (UPS) during or soon after translation48. To determine if the R151A, D247A or 

F147L/F149L mutations triggered UPS-dependent protein degradation, we treated 

neurons expressing each of the Dendra2-tagged TDP43 variants with 25 nM MG132, a 

reversible UPS inhibitor49, then assessed protein half-life by automated microscopy and 

OPL (Fig. 3.3D). We again noted significant destabilization of TDP43 by the R151A, 

D247A and F147L/F149L mutations, but in each case, treatment with MG132 effectively 

prolonged protein half-life. At higher doses of MG132 we noted nearly complete 

inhibition of mutant TDP43 degradation (Fig. S3.3). These results imply that 
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manipulations that prevent TDP43 from binding RNA or interfere with the TDP43 

RRM1-RRM2 salt bridge trigger protein misfolding and subsequent degradation by the 

UPS.  

3.3.4 Both RNA binding and protein stability drive TDP43-dependent toxicity 

 Our data show that mutations that disrupt the RRM1-RRM2 salt bridge abrogate 

TDP43-mediated toxicity (Fig. 3.2) in conjunction with reduced nucleic acid binding 

(Fig. 3.1) and accelerated protein turnover (Fig. 3.3). To determine which of these effects 

is primarily responsible for mitigating neurodegeneration upon TDP43 overexpression, 

we pursued two complementary strategies. First, we asked if TDP43-related toxicity 

could be recapitulated by replacing the TDP43 RNA recognition motifs (RRM1 and 

RRM2) with those from a different RNA binding protein (Fig. 3.4A). Neurons 

overexpressing TDP43(PUM2)—a chimera consisting of the RNA binding domain of 

Pumilio 2 (PUM2, a murine Puf protein50,51) in place of RRM1 and RRM2—displayed  

significantly elevated risk of death in comparison to EGFP alone (Fig. 3.4B, C; HR 2.54, 

p < 2x10-16). No significant difference in survival was observed between cells expressing 

TDP43(WT) or TDP43(PUM2), indicating that the PUM2 RNA binding domain was able 

to fully complement RRM1-RRM2 in reproducing TDP43-dependent toxicity in primary 

neurons. In contrast, only slight toxicity was observed upon overexpression of the PUM2 

RNA binding domain alone in comparison to EGFP (HR 1.19, p= 3.78 x 10-5; Fig. 3.4B). 

We then mutated 3 conserved residues within helix 7 of the PUM2 RNA binding domain 

(mPUM2), effectively disrupting substrate recognition by PUM252. These mutations 

significantly reduced the toxicity of TDP43(PUM2) (Fig. 3.4B), reinforcing the 

relationship between RNA binding activity and neurodegeneration. In addition, whereas 
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TDP43(PUM2) exhibited a diffuse distribution within the nucleus of transfected neurons, 

TDP43(mPUM2) formed multiple, spherical nuclear puncta (Fig. 3.4C). As discussed 

below, we observed similar puncta within the nuclei of neurons expressing 

TDP43(F147L, F149L). These results suggest that TDP43 forms nuclear puncta when it 

fails to bind to RNA, similar to the related RNA binding proteins FUS53 and MATR354 

(Malik et al., in press).  

Since the RNA sequence recognized by PUM2 (UGGANAUA)50 shares some 

similarity with the UG-rich sequences bound by TDP4332, we suspected that the 

recapitulation of TDP43-dependent toxicity by TDP43(PUM2) could be due to 

overlapping RNA substrates. To test this notion, we instead replaced the TDP43 RRM1-

RRM2 domains with the RNA binding domain of the bacteriophage PP7 coat protein55. 

Unlike PUM2, PP7 recognizes unique stem-loop structures formed by repeating elements 

of 25 nucleotides56,57. While overexpression of TDP43(PP7) was significantly less toxic 

than TDP43(WT) (Fig. 3.4D; HR 0.73, p < 2x10-16), it was still substantially more toxic 

than EGFP alone (HR 2.05, p < 2x10-16). Taken together, these data show that TDP43-

mediated neurodegeneration strongly depends on the ability of TDP43 to bind RNA, but 

the sequence specificity required for toxicity is less stringent.  

 We next asked if modulating TDP43 stability impacts neurodegeneration upon 

TDP43 overexpression. To enhance TDP43 clearance, we fused a destabilizing sequence 

(CL1)58,59 to TDP43-Dendra2, and expressed the construct in primary neurons. Using 

automated microscopy and OPL, we noted a marked reduction in the half-life of 

TDP43(WT)-Dendra2-CL1 compared to TDP43(WT)-Dendra2 (Fig. 3.4E), indicating 

effective destabilization of the CL1 fusion protein. We then assessed neuronal lifetimes 
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in transfected neurons by automated microscopy and survival analysis. In these studies, 

the artificially destabilized TDP43(WT)-Dendra2-CL1 fusion was significantly less toxic 

than TDP43(WT)-Dendra2 (HR 0.64, p < 2 x 10-16 ; Fig. 3.4F), suggesting that rapid 

turnover of TDP43 limits its toxicity. We also sought to destabilize TDP43(WT) using a 

PEST sequence; like CL1, this domain triggers rapid protein clearance in many 

contexts60. Nevertheless, TDP43(WT)-PEST exhibited only a slight reduction in half-life 

compared to TDP43(WT), and a similarly modest enhancement of toxicity in longitudinal 

assessments of neuronal survival (Fig. S3.4). These data have two important implications: 

first, substantial destabilization of TDP43 is required to prevent neurodegeneration in 

overexpression models. Secondly, mutations that eliminate RNA binding or disrupt the 

RRM1-RRM2 salt bridge may mitigate toxicity not just by interfering with RNA 

recognition, but also by destabilizing TDP43. 

3.3.5 Manipulation of the RRM1-RRM2 salt bridge modifies TDP43 stability and 

toxicity 

 Among the residues that are capable of forming non-covalent interactions with 

arginine, glutamate forms the most stable interaction, followed by aspartate and 

arginine61,62. We therefore generated the D247E mutation, which we predicted would 

form a stronger interaction with R151. We also swapped the residues participating in the 

salt bridge itself (R151D-D247R) (Fig. 3.4G). EGFP-tagged versions of each TDP43 

variant were overexpressed in HEK293T cells, immunoprecipitated using anti-EGFP 

antibodies, and bound RNA substrates assessed by qRT-PCR. In contrast to TDP43(WT), 

TDP43 variants carrying the D247E and R151D-D247R mutations were incapable of 

pulling down TARDBP and MALAT1 transcripts (Fig. 3.4H, I). Similar effects were 
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observed for TDP43 variants harboring R151D or D247R mutations individually (Fig. 

S3.5). These findings suggest that RNA recognition by TDP43 depends on unique 

properties of the R151-D247 interaction.  

 Since the RRM1-RRM2 salt bridge is necessary for maintaining TDP43 stability 

(Fig. 3.3), we expected that modification of the salt bridge would affect TDP43 turnover 

as well as its RNA binding properties. We therefore created Dendra2-tagged versions of 

TDP43 carrying the D247E, D247R, R151D and R151D-D247R mutations, expressed 

them in primary cortical neurons, and measured TDP43 half-life by automated 

microscopy and OPL (Fig. 3.4J, K). Compared to TDP43(WT), each of these variants 

demonstrated accelerated turnover, suggesting that targeted manipulation of the RRM1-

RRM2 salt bridge, including changes meant to strengthen the salt bridge, leads to protein 

misfolding and subsequent degradation.  

 In light of these data, we predicted that modifications to the RRM1-RRM2 salt 

bridge would mitigate TDP43-dependent toxicity. We tested this idea by expressing 

EGFP-tagged versions of each variant in primary neurons, imaging the cells by 

automated microscopy and comparing the risk of death among populations by survival 

analysis (Fig. 3.4L). Overexpression of TDP43(D247E) and TDP43(R151D-D247R) was 

less toxic than TDP43(WT) (HR 0.6, p < 2x10-16; and HR 0.21, p < 2x10-16, respectively), 

consistent with our expectations. However, unlike TDP43(R151D-D247R)-expressing 

neurons, cells transfected with TDP43(D247E) exhibited a significantly greater risk of 

death compared to EGFP alone (HR 2.76, p < 2x10-16). To determine if either the R151D 

or D247R mutations could account for the loss of toxicity upon TDP43(R151D-D247R) 

overexpression, we created TDP43 variants carrying each mutation singly. Neurons 
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expressing TDP43(R151D) showed no difference in survival compared to those 

transfected with EGFP alone, while overexpression of TDP43(D247R) significantly 

increased the risk of death in comparison to EGFP (HR 2.2, p < 2x10-16). Thus, any 

changes to R151 completely prevented TDP43-mediated toxicity upon overexpression, 

indicating that this residue is critical for neurodegeneration upon TDP43 accumulation.  

 If R151 is indeed required for TDP43-related toxicity, then R151 mutations 

should outweigh other factors that govern TDP43 toxicity, including protein half-life. To 

test this, we compared the half-life of each TDP43 variant (as measured by OPL) with the 

risk of death in primary neurons overexpressing each variant. Among the R151 variants, 

TDP43(R151A) displayed the shortest half-life, followed by TDP43(R151D), and 

TDP43(R151D-D247R) (Fig. S3.6A). Despite their distinct half-lives, all R151 variants 

exhibited identical and minimal toxicity when overexpressed. Conversely, the toxicity of 

D247 variants varied proportionally with their measured half-life, with the least stable 

variant (D247A) demonstrating minimal toxicity, and the most stable variant (D247E) 

exhibiting the greatest toxicity (Fig. S3.6B). These results not only confirm the critical 

nature of the R151 residue for TDP43-related toxicity, but also indicate that half-life is an 

important predictor of neurodegeneration when this residue is intact. 

3.3.6 Mutations affecting the RRM1-RRM2 salt bridge alter subcellular TDP43 

localization  

Given the prominent effects of salt bridge mutations on TDP43-mediated toxicity, 

the apparent relationship between cytoplasmic TDP43 mislocalization and 

neurodegeneration13,21, and the physical proximity of the salt bridge to the putative 

TDP43 nuclear export signal (NES)63,64, we asked whether the RRM1-RRM2 salt bridge 



	

98 
	

regulates subcellular TDP43 localization. Initial, qualitative inspection of transfected 

neurons demonstrated cytoplasmic TDP43 mislocalization in association with all 

mutations, with the exception of D247E and the F147L/F149L double mutant (Fig. 

S3.7A). We noted the formation of nuclear and cytoplasmic puncta in cells expressing 

TDP43(R151D), TDP43(R151D-D247R), and TDP43(D247A), as well as large, 

spherical nuclear puncta in neurons transfected with TDP43(F147L, F149L). Mirroring 

this phenomenon, select RNA binding-deficient TDP43 variants were enriched within the 

detergent-insoluble fraction of transfected HEK293T cells (Fig. S3.8). This insolubility 

suggests a phase transition similar to that observed for RNA binding-deficient MATR3 

variants in neurons (Malik et al., in press) and myoblasts54. 

To gauge TDP43 localization quantitatively and on the single-cell level, we 

measured the abundance of TDP43 separately within the nuclear and cytoplasmic 

compartments of transfected primary neurons, and calculated a nuclear-cytoplasmic ratio 

reflecting TDP43 distribution in individual cells (Fig. S3.7B, C). Consistent with our 

initial observations of TDP43 localization, we observed significant reductions in the 

nuclear-cytoplasmic ratio for all mutations affecting the RRM1-RRM2 salt bridge except 

D247E. Furthermore, the nuclear-cytoplasmic ratio was slightly but significantly higher 

in cells expressing TDP43(D247E) and TDP43(F147L, F149L). Since many variants 

were unable to recognize endogenous TDP43 targets by RNA IP (Figs. 3.1, 3.4) and 

displayed reduced toxicity in comparison to TDP43(WT) (Figs. 3.2, 3.4), these findings 

suggest that (a) nuclear TDP43 localization is independent of RNA binding per se, and 

(b) toxicity arising from cytoplasmic TDP43 mislocalization requires RNA binding. 
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3.3.7 A residue participating in the RRM1-2 salt bridge is required for native 

TDP43 function 

 All previous experiments were performed on a background of endogenous TDP43 

expression, making it difficult to ascertain the functional significance of mutations 

affecting the RRM1-RRM2 salt bridge. To circumvent this limitation, we introduced the 

equivalent of the R151A mutation in the C. elegans TDP43 orthologue (tdp-1) by 

CRISPR/Cas9 genome engineering65. The RRM1 and RRM2 domains of TDP43 are 

highly conserved across species10 (Fig. 3.5A), such that the R219A mutation in C. 

elegans TDP-1 is homologous to R151A in human TDP43. To target the tdp-1 locus, a 

ribonucleoprotein (RNP) mixture containing a sgRNA specific for the tdp-1 locus, 

recombinant S. pyogenes Cas9, and a single-stranded homology-directed repair template 

encoding the R219A mutation, was microinjected into the gonads of adult C. elegans 

hermaphrodites. Heterozygous F1 knock-in mutants were identified by PCR 

amplification and restriction enzyme digestion, and correct editing was confirmed by 

sequencing the entire tdp-1 genomic open reading frame. Homozygous tdp-1 (R219A) 

knock-in animals were subsequently identified in the F2 generation and heritable lines 

were established.  

 Because the R151A mutation in human TDP43 interferes with RNA binding (Fig. 

3.1) and dramatically destabilizes the protein (Fig. 3.3), we suspected that the R219A 

mutation in C. elegans TDP-1 would functionally mirror the subtle behavioral and 

longevity phenotypes observed in TDP-1 knockout animals66,67. Supporting this notion, 

we observed a significant decrease in body length for tdp-1 (R219A) worms compared to 

wild type N2 control worms; notably, these mutant worms were similar in length to tdp-1 
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(ok803) knockout animals (Fig. 3.5B, C). Locomotor metrics (track length, wavelength, 

amplitude) were similarly reduced in tdp-1 (R219A) and tdp-1 (ok803) knockout worms 

compared to wild-type animals (Fig. 3.5D-F), while body bending in liquid media was 

reciprocally increased in tdp-1 (R219A) and tdp-1 (ok803) knockout worms (Fig. 3.5G). 

Consistent with previous studies67,68, we detected a modest but significant increase in the 

lifespan of tdp-1 (ok803) knockout animals in comparison to WT worms (Fig. 3.5H). tdp-

1 (R219A) animals also displayed an analogous lifespan extension, suggesting that the 

tdp-1 (R219A) mutation closely phenocopies the TDP-1 knockout in C. elegans. Taken 

together, these data provide strong evidence that the R219 residue, homologous to R151A 

in human TDP43, is required for native TDP-1 function in C. elegans. 

3.3.8 Overexpression of wild-type TDP43, but not salt bridge mutants, primarily 

affects ribosomal and mitochondrial transcripts  

Given the consistent toxicity associated with WT TDP43, but not variants of 

TDP43 carrying salt bridge-disrupting mutations, we reasoned that transcriptomic 

comparison of cells expressing each of the variants would highlight the RNAs most 

closely associated with toxicity. We therefore overexpressed EGFP-tagged versions of 

TDP43(WT), TDP43(R151A), and TDP43(D247A) in HEK293T cells, purified total 

RNA, and performed high-throughput RNA sequencing to assess differences in transcript 

abundance and splicing associated with each variant. HEK293T cells transfected with 

EGFP alone and TDP43(F147L, F149L) served as negative controls for these 

experiments (Fig. 3.6A). 

From an average of >26M reads, we mapped 17,620 unique transcripts in each of 

the conditions. In comparison to EGFP alone, we observed 1,026 differentially expressed 



	

101 
	

genes (DEGs) in cells overexpressing TDP43(WT) that were not detected upon 

overexpression of the other TDP43 variants (Fig. 3.6B). Conversely, only 21 and 24 

DEGs were identified in cells transfected with TDP43(R151A) or TDP43(F147L, 

F149L), respectively, and an intermediate number (163) were noted in TDP43(D247A)-

expressing cells (Fig. 3.6B). All TDP43 variants were overexpressed at equivalent levels, 

as determined by TARDBP transcript levels (Fig. 3.6C) and EGFP fluorescence (data not 

shown). Consistent with our previous data showing recognition of MALAT1 transcripts by 

TDP43(WT) but not TDP43(R151A), TDP43(D247A) or TDP43(F147L, F149L) (Fig. 

3.1), MALAT1 was significantly downregulated only in TDP43(WT)-expressing cells 

(Fig. 3.6D). 

To determine if transcripts preferentially affected by TDP43(WT) were 

concentrated within defined functional pathways, we classified transcripts according to 

gene ontology69 (GO; Fig. 3.6E). In doing so, we noted profound enrichment for 

transcripts involved in the ribosomal and oxidative phosphorylation pathways (false 

discovery rate (FDR), 6.8 x 10-5 and 0.03, respectively; Fig. 3.6F, G). Based on the 

results of previous studies implicating RNA transport in ALS/FTD pathogenesis70-73, we 

also focused on this pathway, noting a non-significant trend (FDR, 0.222) towards 

enrichment for transcripts that function in RNA transport (Fig. 3.6H). The effects of 

TDP43 variants on gene expression followed the same pattern we observed for toxicity in 

primary neurons (Fig. 3.2): in each case, the magnitude of change was greatest for 

TDP43(WT), intermediate for TDP43(D247A), and minimal for TDP43(R151A) and 

TDP43(F147L, F149L). Taken together, these data demonstrate a proportional 
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relationship between the degree of toxicity and differential gene expression in the 

ribosomal and oxidative phosphorylation pathways.  

One of TDP43’s primary functions is the suppression of unannotated (cryptic) 

exons during pre-mRNA splicing32,74-76. We therefore investigated differences in splicing 

generated by overexpression of EGFP-tagged versions of TDP43(WT), TDP43(R151A), 

TDP43(D247A) and TDP43(F147L, F149L). We calculated a percent splicing index 

(PSI) for all events77, in the process identifying 9,339 unique splicing events that 

demonstrated a significant (FDR < 0.05) fold change of > 1.5 in cells overexpressing 

TDP43(WT)-EGFP compared to EGFP alone (Fig. 3.7A). These unique splicing events 

were not shared among cells expressing the other TDP43 variants. We then determined 

the PSI for each of these events upon expression of EGFP-tagged TDP43(F147L, 

F149L), TDP43(R151A), or TDP43(D247A) (Fig. 3.7B-D). Surprisingly, only 3,968 

splicing events (42.5%) are unique to TDP43(WT), which alone among the tested 

variants demonstrates appreciable binding to native substrates (Fig. 3.1). These results 

therefore suggest that most splicing events attributable to TDP43 overexpression occur 

independently of direct RNA binding by TDP43, and have few consequences for cellular 

survival. 

To isolate splicing changes tied specifically to TDP43-mediated toxicity, we 

concentrated our analysis on the splicing events detected selectively in cells expressing 

TDP43(WT) (Fig. 3.7E). By GO analysis, the ribosome pathway was significantly 

overrepresented among these transcripts (FDR 1.4x10-13), consistent with the gene 

expression data for TDP43(WT) (Fig. 3.6). Transcripts selectively affected by 

TDP43(WT) were also highly enriched for the spliceosome, proteasome, and RNA 
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transport pathways (Table S3.1). To visualize genes most affected by TDP43(WT)-

induced splicing abnormalities, we plotted the 100 splicing events with the largest 

magnitude change, including the 50 top repressed and included events (Fig. 3.7F). We 

noted several genes within this list that function within nucleocytoplasmic transport 

(KPNA2, TNPO1, NXF1) and ribosomal (RPS16, RPS20) pathways, in keeping with the 

results of GO analysis. In many cases, abnormal splicing was most significant for 

TDP43(WT), intermediate for TDP43(D247A), and minimal for TDP43(R151A) and 

TDP43(F147L, F149L) expression. Thus, as with transcriptional changes noted upon 

expression of TDP43 variants (Fig. 3.6), the phenotype observed for TDP43(WT) was 

most profound, followed by TDP43(D247A) and lastly TDP43(R151A) and 

TDP43(F147L, F149L). 

We also examined the types of splicing abnormalities unique to TDP43(WT) 

overexpression (Fig. 3.7G). In agreement with the purported function of TDP43 as a 

splicing repressor30,32,74, the largest single category of splicing changes elicited by 

TDP43(WT) overexpression featured abnormal intron retention (36%). The second most 

common change involved exon skipping—29% of changes demonstrated a single skipped 

exon, and another 5% exhibited skipping of 2 consecutive exons. The remaining 30% of 

changes featured alternative cassette splicing, including new 3’ or 5’ splice sites (13% 

and 10%, respectively), or alternative start sites, last exons or first exons (<3% each). 

Additionally, we noted several unannotated splicing events or junctions among those 

influenced selectively by TDP43(WT) (Fig. 3.7H, I), supporting a role for TDP43 in 

preventing cryptic exon inclusion74-76. 
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3.4 Discussion 

 We took advantage of the intricate relationship between protein structure and 

function to probe the RNA binding properties of TDP43, and how these characteristics 

dictate its stability and propensity for toxicity in neuronal models of ALS and FTD. 

Engineered mutations that disrupt an intramolecular salt bridge between TDP43’s RRMs 

reduce the affinity and sequence-specificity of RNA and DNA binding by TDP43. As a 

result of these mutations, TDP43 is incapable of recognizing its native substrates or 

stimulating neurodegeneration upon overexpression in neurons. We also leveraged the 

intrinsic contrast between TDP43(WT) and versions of TDP43 lacking an intact RRM1-

RRM2 salt bridge to identify the direct transcriptomic and splicing changes most 

significantly associated with TDP43-dependent toxicity, thereby implicating dysfunction 

within the ribosomal and oxidative phosphorylation pathways in ALS and FTD 

characterized by TDP43 deposition.  

 The calculated Hill coefficient for TDP43(WT) (h = 1.44 ± 0.14 for RNA, h = 

1.973 ± 0.291 for DNA) suggests that nucleic acid binding by TDP43 is highly 

cooperative, as could be seen with multiple allosteric binding sites or protein 

dimerization. The latter possibility is consistent with prior studies demonstrating TDP43 

dimerization in vitro and in vivo11,78-80.  Both the R151A or D247A mutations reduce the 

Hill coefficient for DNA binding, but subtly increase the Hill coefficient for RNA 

binding. Additionally, the R151A mutation reduced the affinity of TDP43 for RNA but 

not DNA substrates. These results imply that TDP43 binds RNA and DNA substrates 

through distinct mechanisms, mediated in part by the R151 and D247 residues. Notably, 

the D247A mutation within RRM2 affected both the affinity and cooperativity of 
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binding, suggesting that RRM2 plays a more substantial role in nucleic acid binding than 

previously appreciated9,10,12. Consistent with this observation, artificial mutations in the 

RRM2 domain of endogenous mouse TDP43 effectively impair RNA binding and result 

in a loss of native TDP43 function19.  

 Unlike TDP43(WT), both TDP43(R151A) and TDP43(D247A) are capable of 

binding sequences other than (UG)12/(TG)12 in vitro, implying that the RRM1-RRM2 salt 

bridge is necessary for maintaining sequence specificity, as previously suggested12,27. 

These results are also consistent with a model whereby RRM1 provides a high-affinity 

nucleic acid binding surface, while RRM2 tunes the sequence specificity of binding. In 

this scenario, the R151-D247 salt bridge linking RRM1 and RRM2 is required for both 

affinity and specificity exhibited by full-length TDP43. Whether stochastic or regulated 

interruption of salt bridge in vivo may enable TDP43 to bind non-canonical sequences is 

unknown, and requires further investigation.  

 Consistent with an integral role for RNA binding in TDP43-mediated 

toxicity13,15,16, the protective effect of the R151A and D247A mutations was comparable 

to that of mutations that eliminate RNA binding altogether (F147L, F149L), or deletion 

of RRM1 itself. Notably, the R151A mutation phenocopied the F147L/F149L double 

mutant more closely, while the D247A mutation elicited an intermediate phenotype. The 

D247A mutation leaves RRM1 fully intact, and since the majority of high affinity RNA 

binding is accomplished by RRM19,10,12, TDP43(D247A) may still recognize many 

conventional TDP43 targets. Supporting this notion, the number of DEGs and 

alternatively spliced transcripts in cells overexpressing TDP43(D247A) were more 

similar to TDP43(WT) than either TDP43(R151A) or TDP43(F147L, F149L) (Fig. 3.7).  
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 In light of the dual effects of each of these engineered mutations on TDP43 RNA 

binding and stability, we pursued several approaches to determine which of these 

outcomes was most closely tied to TDP43-dependent toxicity. First, we substituted the 

RNA binding domains of PUM2 or PP7 for those of TDP43, and assessed 

neurodegeneration upon overexpression. Chimeric proteins incorporating the PUM2 

RNA binding domains completely recapitulated TDP43-mediated toxicity, while those 

containing the PP7 RNA binding domain partially restored toxicity. Second, inactive 

versions of the PUM2 RNA binding domain were incapable of mirroring toxicity when 

fused to TDP43 and overexpressed in neurons. Third, attaching the CL1 degron to 

TDP43(WT) effectively destabilized the protein and significantly reduced its toxicity 

when overexpressed. These data indicate that both RNA binding and protein stability are 

important factors underlying TDP43-dependent toxicity.  

 Supporting this notion, we observed a distinct relation between the stability of 

D247 variants and TDP43-related toxicity in primary neurons, but a similar correlation 

was not observed for R151 variants. One possibility is that RNA recognition via RRM1, 

which requires the R151 residue27, is crucial for downstream toxicity mediated by 

TDP43. In the setting of an intact RRM1, alterations to protein stability can further 

modulate the severity of neuron loss in TDP43-overexpressing cells. Since the half-life of 

TDP43 within neurons is substantially longer than in other cell types23-25, the proportional 

relationship between TDP43 stability and toxicity may contribute to the enhanced 

susceptibility of neurons to TDP43-mediated cell death. Additional studies are warranted 

to determine if specific neuron subtypes display different TDP43 clearance rates, and 
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whether intrinsic differences in TDP43 turnover reflect selective neuronal vulnerability in 

ALS and FTD.  

 We observed substantial mislocalization of TDP43 variants carrying artificial 

mutations that interfered with RNA binding and the integrity of the RRM1-RRM2 salt 

bridge. These results suggest that the nucleocytoplasmic transport of TDP43 is closely 

linked to its ability to bind RNA81. Alternatively, mutations that disrupt the RRM1-

RRM2 salt bridge may partially unfold the protein, making the putative NES within 

RRM2 more accessible. Arguing against this possibility, we and others were unable to 

detect TDP43 nuclear export driven by this putative NES or its predicted chaperone, 

exportin-181-83. Despite the previously noted toxicity of cytoplasmic TDP4313,21, all of the 

mislocalized TDP43 variants were less toxic than TDP43(WT), which maintained a 

primarily nuclear localization. Therefore, without the ability to recognize RNA, even 

cytoplasmic TDP43 is no longer toxic. A similar discrepancy was noted upon knockdown 

of the debranching enzyme DBR1; in this case, DBR1 knockdown increased the 

abundance of unprocessed intron lariats that were recognized by TDP43, effectively 

sequestering or inactivating cytoplasmic TDP4384. 

 Overexpressing TDP43(WT) recapitulates key aspects of sporadic 

ALS/FTD15,21,23,36-39, and disease-associated TARDBP mutations elicit gain-of-function 

toxicity in animal models18,19 that is mirrored by TDP43 overexpression. While useful for 

investigating the mechanisms of TDP43-dependent neurodegeneration, overexpression 

models complicate the study of loss-of-function mutations such as those affecting the 

TDP43 RRM1-RRM2 salt bridge. We therefore created C. elegans expressing 

endogenous TDP-1(R219A), a variant homologous to human TDP43(R151A). These 
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animals were almost identical to tdp-1 knockout animals in morphology, behavior, and 

lifespan, indicating that the R219A mutation completely inactivates TDP-1. Unlike other 

TDP43 orthologs in Drosophila and mice85-88, C. elegans TDP-1 is not required for 

survival, but it functions similarly to mammalian TDP43 in many aspects, including its 

ability to recognize UG-rich sequences with high affinity10. Our data therefore provide 

strong evidence that disrupting R151 and the RRM1-2 salt bridge is sufficient to 

eliminate TDP43 function.   

 TDP43 is a splicing repressor30,32, and its depletion promotes the inclusion of 

cryptic exons within target transcripts and their subsequent destabilization by nonsense 

mediated RNA decay74-76. Conversely, TDP43 overexpression elicits exon skipping in 

most cases19,89,90. In accord with these findings, intron retention and exon skipping were 

among the most common splicing changes associated with TDP43 overexpression. 

Furthermore, we detected a profound enrichment of abnormal splicing events within 

ribosomal protein encoding transcripts selectively in cells overexpressing TDP43(WT), 

suggesting that functional TDP43 directly affects the splicing of these transcripts. Like 

many RNA binding proteins, including TDP43, ribosomal proteins bind their own 

transcripts and regulate their abundance by modulating mRNA splicing91,92. TDP43 may 

regulate ribosomal protein-encoding transcripts by repressing their splicing, much like 

ribosomal proteins themselves. We also detected a significant overrepresentation of the 

RNA transport and proteolysis pathways among differentially spliced transcripts in cells 

overexpressing TDP43(WT), but not TDP43 variants unable to bind RNA. These results 

reflect global deficits in RNA transport and proteolysis observed in ALS and FTD 

models46,70-72,93, testifying to the conserved nature of these abnormalities and indicating a 
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potential niche for TDP43 in maintaining nucleocytoplasmic trafficking and protein 

homeostasis. 

 TDP43 recognizes thousands of RNAs bearing UG-rich sequences30,32, 

complicating the identification of transcripts whose processing underlies TDP43-

dependent neurodegeneration. To address this issue, we identified transcripts displaying 

significant changes in abundance or splicing in cells overexpressing TDP43(WT), but not 

in cells transfected with RNA binding-deficient TDP43 variants. In doing so, we noted 

that mRNAs encoding components of the ribosomal and oxidative phosphorylation 

pathways were highly enriched among downregulated transcripts selectively in 

TDP43(WT)-expressing cells. This pattern of enrichment is strikingly similar to that 

observed in human induced pluripotent stem cells (iPSCs) from individuals with 

pathogenic C9orf72 mutations, one of the most common mutations responsible for ALS 

and FTD3,4, and in iPSCs overexpressing TDP43 (**Tank and Figueroa-Romero et al., in 

press). These observations imply that dysregulation of ribosomal and oxidative 

phosphorylation pathways are convergent, downstream events in ALS and FTD 

pathogenesis, inextricably linked with TDP43 deposition and RNA binding. Therapies 

that act on these pathways, therefore, are likely to be particularly effective in extending 

neuronal survival and preventing neurodegeneration in ALS and FTD. 

 

3.5 Materials and methods 

Plasmids 

 The plasmids pGW1-TDP43(WT)-EGFP, pGW1-TDP43(WT)-Dendra2, pGW1-

TDP43(M337V)-EGFP, pGW1-EGFP, and pGW1-mApple were created as described 
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previously21,23. Primers used for site-directed mutagenesis (Table S3.2) or PCR 

amplification (Table S3.3) were ordered from Integrated DNA Technologies (IDT). 

TDP43 variants were generated from TDP43(WT)-EGFP, TDP43(M337V)-EGFP, or 

TDP43(WT)-Dendra2 by site-directed mutagenesis using the Pfu Ultra high-fidelity 

polymerase (Agilent Technologies) according to the manufacturer’s protocol (Table 

S3.2). 

 To create TDP43(PUM2)-EGFP, the PUM2 RNA binding domain (courtesy of 

Dr. Aaron Goldstrohm) was excised from pFN21A-PUM2-R6SYE (a PUM2 variant in 

which the RNA recognition amino acids of the 6th repeat are mutated to SYE50) using 

XmaI and AgeI, and ligated into pGW1-EGFP cut with the same enzymes, generating 

pGW1-PUM2-EGFP. We then amplified amino acids 1-106 of TDP43(WT) from pGW1-

TDP43(WT)-EGFP using PrimeStar GXL DNA polymerase (Takara) following the 

manufacturer’s protocol (Table S3.3). The 318 bp product was digested with BstBI and 

XmaI restriction enzymes and ligated into pGW1-PUM2-EGFP that had been cut with 

the same enzymes. Next, amino acids 263-414 of TDP43(WT) from pGW1-TDP43(WT)-

EGFP were amplified by PCR (Table S3.3). The resulting 453 bp fragment was digested 

with AgeI and ligated into pGW1-TDP43(AA1-106)-PUM2-EGFP that had also been cut 

with AgeI, generating pGW1-TDP43(PUM2)-EGFP. To create an RNA binding-deficient 

version of this construct (pGW1-TDP43(mPUM2)-EGFP), 3 critical residues within helix 

7 of the PUM2 RNA binding domain52 were mutated by site-directed mutagenesis (Table 

S3.2). 

 To make pGW1-TDP43(PP7)-EGFP, the TDP43(PUM2)-EGFP plasmid 

described above was cut with XmaI and AgeI to remove both PUM2 (1044 bp fragment) 
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and the C-terminal end (AA263-414) of TDP43. A 850 bp fragment encoding the RNA 

binding domain of PP7 (plasmid pHR-PP7-3xmCherry94, courtesy of Dr. Nils Walter) 

was amplified by PCR (Table S3.3) and ligated into TDP43(AA1-106)-EGFP-pGW1 cut 

with XmaI and AgeI. The vector was then digested with AgeI to re-insert the C-terminal 

end of TDP43 to generate the final product, pGW1-TDP43(PP7)-EGFP. 

 For pGW1-TDP43(ΔRRM1-2)-EGFP, the pGW1-TDP43(AA1-106)-PUM2-

EGFP plasmid described above was digested with XmaI and AgeI to remove the PUM2 

fragment. The C-terminal end of TDP43 (AA263-414) was then amplified by PCR using 

the primers described above and inserted into the cut vector. To generate 

TDP43(ΔRRM1)-EGFP or TDP43(ΔRRM2)-EGFP, we first amplified the RRM2 and 

RRM1 domains from pGW1-TDP43-EGFP by PCR (Table S3.3). The TDP43(ΔRRM1-

2)-EGFP construct was then cut with XmaI followed by insertion of the PCR products 

encoding the RRM2 or RRM1 domains, respectively, cut with the same enzyme. 

 To generate pGW1-TDP43(WT)-Dendra2-CL1, TDP43(WT) was PCR amplified 

from pGW1-TDP43(WT)-EGFP (Table S3.3) and ligated into pGW1-empty vector using 

NheI and AgeI restriction sites. The following Dendra2-CL1 sequence with flanking 

AgeI and SalI restriction sites was ordered as a G-block from IDT (the CL1 sequence is 

underlined): 5’ – ACC GGT TGC CAC CAT GAA CAC CCC GGG AAT TAA CCT 

GAT CAA GGA GGA CAT GCG CGT GAA GGT GCA CAT GGA GGG CAA CGT 

GAA CGG CCA CGC CTT CGT GAT CGA GGG CGA GGG CAA GGG CAA GCC 

CTA CGA GGG CAC CCA GAC CGC CAA CCT GAC CGT GAA GGA GGG CGC 

CCC CCT GCC CTT CAG CTA CGA CAT CCT GAC CAC CGC CGT GCA CTA 

CGG CAA CCG GGT GTT CAC CAA GTA CCC CGA GGA CAT CCC CGA CTA 
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CTT CAA GCA GAG CTT CCC CGA GGG CTA CAG CTG GGA GCG CAC CAT 

GAC CTT CGA GGA CAA GGG CAT CTG CAC CAT CCG CAG CGA CAT CAG 

CCT GGA GGG CGA CTG CTT CTT CCA GAA CGT GCG CTT CAA GGG CAC 

CAA CTT CCC CCC CAA CGG CCC CGT GAT GCA GAA GAA GAC CCT GAA 

GTG GGA GCC CAG CAC CGA GAA GCT GCA CGT GCG CGA CGG CCT GCT 

GGT GGG CAA CAT CAA CAT GGC CCT GCT GCT GGA GGG CGG CGG CCA 

CTA CCT GTG CGA CTT CAA GAC CAC CTA CAA GGC CAA GAA GGT GGT 

GCA GCT GCC CGA CGC CCA CTT CGT GGA CCA CCG CAT CGA GAT CCT 

GGG CAA CGA CAG CGA CTA CAA CAA GGT GAA GCT GTA CGA GCA CGC 

CGT GGC CCG CTA CAG CCC CCT GCC CAG CCA GGT GTG GGC ATG CAA 

GAA CTG GTT CTC TAG CCT GTC CCA CTT CGT CAT CCA TCT GTA AGT CGA 

C– 3’. The Dendra2-CL1 fragment was digested with AgeI and SalI and inserted into 

pGW1-TDP43(WT) cut with the same enzymes to make TDP43(WT)-Dendra2-CL1. 

 To create pGW1-TDP43(WT)-PEST-Dendra2, the following PEST sequence with 

flanking AgeI restriction sites was ordered as a G-Block from IDT: 5’ – ACC GGT TGC 

CAC CAT GCA TGG CTT CCC TCC AGA GGT GGA GGA GCA AGA TGA TGG 

CAC TCT CCC CAT GAG CTG CGC TCA AGA GAG TGG CAT GGA TCG TCA 

CCC CGC TGC TTG CGC CTC GGC TCG CAT CAA CGT GAA ACC GGT – 3’. The 

PEST sequence was digested with AgeI and inserted into TDP43(WT)-Dendra2 cut with 

the same enzyme to generate TDP43(WT)-PEST-Dendra2. 

Purification of recombinant TDP43 

 TDP43(WT), TDP43(R151A) or TDP43(D247A) was expressed in BL21 DE3 E. 

coli cells from the plasmid pE-6xHis-SUMO-TDP43 (a gift from Dr. James Shorter). 
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Induction was carried out with 1 mM isopropyl-β-D-1-thiogalactopyranoside and cells 

were grown at 15°C for 16 hr. Cell pellets were resuspended in lysis buffer (50 mM 

HEPES, 2% TritonX-100, 300 mM NaCl, 5% glycerol, 50 mM imidazole, 2 mM BME, 

EDTA-free protease inhibitor cocktail, 5 µM pepstatin, and 20 mg/mL lysozyme) and 

incubated on ice for 30 minutes. Following sonication on ice, cell lysates were 

centrifuged for 20 min at 11,000 x g at 4°C. Recombinant protein was purified by binding 

to Ni-NTA resin (Qiagen), rinsed with 25 mL of wash buffer 4 times (50 mM HEPES, 2 

% TritonX-100, 300 mM NaCl, 5% glycerol, 50 mM imidazole, and 2 mM BME), and 

released with 2 mL of elution buffer (50 mM HEPES, 500 mM NaCl, 300 mM imidazole, 

5% glycerol, and 5 mM DTT) at room temperature (RT), collecting five 2 mL fractions. 

Protein was dialyzed twice for 1 hr in 1 L of final buffer (50 mM HEPES and 500 mM 

NaCl), and dialyzed once in 1 L of final buffer overnight at 4°C. 

Electromobility shift assays 

 Binding assays were performed with purified full-length recombinant TDP43 

protein and either ssRNA labeled probes tagged with a 5’ 800nm infrared (IR) moiety or 

ssDNA labeled probes tagged with a 5’ 700nm IR moiety (IDT). Binding reactions were 

performed in binding buffer (12.5 mM HEPES, pH 7.8, 50 mM KCl, 2.5 mM MgCl2, 0.5 

mM TCEP, 25 µg/mL BSA, 0.01% NP-40) with 50% glycerol, 1µg/µl poly-dIdC, 100 

pM of labeled probe, and recombinant protein (concentrations indicated in figure 

legends). Reactions were incubated on ice for 5 min followed by 25 min at RT. 

Electrophoresis of 6% acrylamide gels were performed at 100 V. For competition assays, 

labeled ssRNA or ssDNA probes were incubated prior to the addition of unlabeled 

ssRNA or ssDNA oligos, respectively, for another 30 min at RT. Images were acquired 
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using the LI-COR Odyssey platform. Intensities for each of the IR-labeled probe/protein 

complexes were determined using Image Studio 2.0 and plotted in GraphPad Prism. The 

dissociation constant (Kd) and hill coefficient (h) were determined in GraphPad Prism 

using the nonlinear least squares regression fit equation.  

RNA immunoprecipitation  

  HEK293T cells were transfected with WT and pGW1-TDP43-EGFP variants 

using Lipofectamine 2000 (ThermoFisher) following the manufacturer’s protocol. Forty-

eight hours post-transfection, cell pellets were resuspended in lysis buffer (50 mM 

HEPES, pH 7.5, 50 mM KCl, 0.5% sodium deoxycholate, 0.1% SDS, 0.5% NP-40, 0.5 

mM DTT, and EDTA-free protease inhibitor cocktail) and incubated on ice for 30 min. 

Following sonication on ice, cell lysates were centrifuged at 13,000 x g for 10 min at 

4°C. 400 µg protein was added to Dynabeads Protein G magnetic beads (Invitrogen) and 

1 µg/µl of anti-GFP (Rabbit, Immunology Consultants Laboratory) and incubated 

overnight at 4°C. Protein/antibody/bead complexes were washed with 50 mM HEPES pH 

7.5, 300 mM KCl, 0.5% NP-40, 0.5 mM DTT, and EDTA-free protease inhibitor 

cocktail. 

RT-PCR and quantitative RT-PCR 

 Total RNA was extracted using RNeasy Mini Kit (Qiagen) following the 

manufacturer’s protocol. To synthesize cDNA, 1 µg of total RNA was used in a 20 µl 

reaction volume with the Bio-Rad iScript cDNA synthesis kit according the 

manufacturer’s protocol. The reactions were incubated at 25°C for 5 min, 42°C for 30 

min, and 85°C for 5 min. PCR was carried out in a 25 µl reaction volume with 0.5 µl of 

cDNA, 200 nM primers, and GoTaq Master Mix (Promega). For quantitative RT-PCR 
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(qRT-PCR), reactions were carried out using Step One Plus Realtime PCR system 

(Applied Biosystems). Reactions were carried out using SYBR Green Master Mix 

(Applied Biosystems), with 200 nM primers, and 0.5 µl cDNA, according to the 

following parameters: 4 min at 95°C, then 30 cycles at 95°C for 30 sec, 58°C for 30 sec 

and 72°C for 30 sec. Relative gene expression was calculated using the ΔΔCt method. 

Values obtained from TDP43 variants were scaled to those from TDP43(WT) and plotted 

in GraphPad Prism. The following primers were used for qRT-PCR amplification: 

TARDBP, 5’- GTG GCT CTA ATT CTG GTG CAG -3’ and 5’- CAC AAC CCC ACT 

GTC TAC ATT -3’, and MALAT1, 5’- GAC GGA GGTT GAG ATG AAG C -3’ and 5’- 

ATT CGG GGC TCT GTA GTC CT -3’. 

Differential solubility 

 HEK293T cells were transfected with WT and pGW1-TDP43-EGFP variants 

using Lipofectamine 2000 (Thermofisher) according to the manufacturer’s protocol. Cells 

were washed and collected in cold PBS 48 hr after transfection. Cells were centrifuged at 

7,000 x g for 5 min at 4°C and resuspended in RIPA buffer with protease inhibitors. 

Following lysis on ice for 15 min, cells were centrifuged at 21,000 x g for 15 min at 4°C. 

The supernatant was removed and saved as the RIPA-soluble fraction. The RIPA-

insoluble pellet was then washed in 1 mL RIPA, and contents were resuspended in urea 

buffer (7 M urea, 2 M thiourea, 4% CHAPS, 30 mM Tris, pH 8.5). Samples were 

centrifuged at 21,000 x g for 15 min at 4°C, and the supernatant was saved as the urea-

soluble fraction. 

 For SDS-PAGE, stock sample buffer (10% SDS, 20% glycerol, 0.0025% 

bromophenol blue, 100 mM EDTA, 1 M DTT, 20 mM Tris, pH 8) was diluted in all 
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samples. For RIPA-soluble fractions, 10 ug of sample were boiled for 10 min. For urea-

soluble fractions, equal volumes of sample for each condition were mixed 1:1 with water, 

and these samples were not boiled. Samples were then loaded onto 4-15% gradient gels 

(Bio-Rad). After transfer to 0.2 µm PVDF membrane (Bio-Rad), blots were incubated in 

3% BSA in 0.2% Tween-20 with the following antibodies: mouse anti-GAPDH 

(Millipore, MAB374; dilution 1:1000) and rabbit anti-TDP43 (Cell Signaling; dilution 

1:1000). Blots were then washed in 0.2% TBST and incubated at RT for 1 hr with 

AlexaFluor goat anti-mouse 594 (ThermoFisher) and goat anti-rabbit 488 

(ThermoFisher), both diluted 1:10,000 in 3% milk in 0.2% TBST. Blots were washed in 

0.2% TBST before imaging with the LI-COR Odyssey platform. 

Primary neuron transfections  

  Primary mixed cortical neurons were dissected from embryonic day 19-20 Long-

Evans rat pups and cultured at 0.6 x 106 cells/mL in 96 well cell culture plates (TPP), as 

previously described23,41. At in vitro day (DIV) 3-4, neurons were transfected with 0.2 µg 

DNA and 0.5 µL Lipofectamine 2000 (ThermoFisher) per well, per the manufacturer’s 

protocol, with the exception that cells were incubated with Lipofectamine/DNA 

complexes for only 20 min at 37°C before rinsing. For live-cell nuclear staining, cells 

were rinsed with media containing Hoechst 33258 Dye (Invitrogen) at 1:5000.  Following 

transfection, cells were maintained in NEUMO photostable medium containing SOS 

supplement (Cell Guidance Systems). For experiments that involved MG132 (Millipore), 

drug was added to a final concentration of either 25 nM or 500 nM 18 hr post-

transfection; cells were imaged 6 h following drug addition. 
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Longitudinal fluorescence microscopy and image analysis 

 Automated longitudinal fluorescence microscopy began 24 hr post-transfection 

for 10 days, as previously described21,40,41,45. Briefly, images were acquired by an 

inverted Nikon Ti microscope equipped with a 20x objective lens, a PerfectFocus system, 

a Lambda XL Xenon lamp (Sutter) with 5 mm liquid light guide (Sutter), and either an 

Andor iXon3 897 EMCCD camera or Andor Zyla4.2 (+) sCMOS camera. All stage, 

shutter, and filter wheel movements were carried out by custom code written in publicly 

available software (µManager, ImageJ). 

 Image processing, survival analyses, and fluorescent intensity measurements were 

accomplished using scripts written in Python or the ImageJ macro language. Neurons 

were identified by morphology, size, and fluorescence intensity. Cell death was 

determined for each neuron by rounding of the soma, degenerating processes, and loss of 

fluorescence. 

C. elegans tdp-1(R219A) CRISPR/Cas9 mutant generation   

 For all experiments, the Bristol N2 strain was used as the wild type control and 

was the parental strain for all transgenic lines created in this study. N2 animals were 

modified by CRISPR/Cas9 gene editing using direct injection of CRISPR/Cas9 

ribonucleoproteins as previously described65.  In brief, single-stranded oligonucleotide 

homology directed repair templates (ssODN-HDR) containing 40-50 bp 5’ and 3’ 

homology arms flanking the 20-mer sgRNA target site were designed containing the edit 

of interest, a unique in-frame restriction site (SacI), and conservative nucleotide changes 

to prevent sgRNA:Cas9  cleavage. The ssODN-HDR templates were ordered as 

Ultramers from Integrated DNA Technologies (IDT), and recombinant S. pyogenes Cas9 
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nuclease was purchased from IDT as well. A synthetic single guide RNA (5’- UUU GUC 

AGA AUG UCA UCA GU-3’) was purchased from Synthego, Inc.  The R219A ssODN-

HDR repair template contained the following sequence: 5’- TCT TCT TCA GAT AAA 

ACG AAA GTC GGA TGG AAA CTC AAA AGG ATT TGG ATT CGT TGC GAT 

GAG CTC TGT AGG TGA ACA AAA TAA AGT ATT AGC TAT CCC ACA GCA 

CAT GAT TGA TGG TCG -3’. Correctly edited animals were back crossed six times to 

N2 and the entire tdp-1 genomic DNA open reading frame was analyzed by PCR and 

Sanger sequencing.   

Behavioral and longevity assays in C. elegans  

  Worms were grown at 20°C on NGM plates seeded with OP50 Escherichia coli.  

For all behavioral assays, synchronized L4 larval animals were obtained using sodium 

hypochlorite.  For all assays, the scorer was blind to the genotype.  For locomotion 

assays, 10-15 seven-day adult worms were picked and transferred to 35mm NGM plates 

seeded with OP50.  Worms were filmed for one-minute using custom built video-

acquisition hardware, and locomotor metrics were analyzed using WormLab software 

(MBF Biosciences). For locomotion assays on NGM plates, at least 127 

animals/genotype were quantified in 3 replicate trials. For thrash assays, 10-15 animals 

were placed in 1 mL of M9 media at room temperature. After a one-minute acclimation 

period, a one-minute video was recorded and analyzed using the thrash assay function in 

WormLab software (MBF Biosciences). At least 96 animals/genotype were quantified in 

3 replicate trials. Longevity assays were conducted at 20°C to minimize temperature 

fluctuations and ensure constant conditions. For each strain at least 20 L4 larvae were 

transferred to NGM plates containing OP50 E. coli lawns. A total of at least 5 plates were 
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used per strain for a total of at least 100 worms per strain. Longevity assays were 

replicated in 3 independent trials. Animals were transferred every 2-3 days as needed to a 

fresh plate. The viability of the worms was assessed daily, and animals that failed to 

respond to stimulation by touch were considered dead. In respect to the timeline, day 0 

reflected the day L4 larvae were transferred to NGM plates containing OP50 E. coli 

lawns.   

RNA-sequencing, gene expression and splicing analysis 

 HEK293T cells were transfected with pGW1-EGFP, pGW1-TDP43(WT)-EGFP, 

pGW1-TDP43(R151A)-EGFP, pGW1-TDP43(D247A)-EGFP, or pGW1-TDP43(F147L, 

F149L)-EGFP using Lipofectamine 2000 (ThermoFisher), following the manufacturer’s 

protocol. Total RNA was extracted using RNeasy Mini Kit (Qiagen) following the 

manufacturer’s protocol. Purified RNA was submitted to the University of Michigan 

Sequencing Core for library generation (Illumina) and sequenced using the Illumina Hi-

Seq 4000 platform (stranded mRNA, paired end 50 cycle, 2 lanes). FastQC 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) (version v0.11.3) was used for 

quality control. The Tuxedo Suite software package was used for alignment, differential 

expression analysis, and post-analysis diagnostics95-97. Briefly, reads were aligned to the 

reference mRNA transcriptome (hg19)98 using TopHat (version 2.0.13) and Bowtie2 

(version 2.2.1). Default parameter settings for alignment were used, with the exception of 

“b2-very-sensitive.” To ensure high quality data was used for expression quantification 

and differential expression analysis, FastQC was used post-alignment. For expression 

quantitation, normalization, and differential expression analysis, Cufflinks/CuffDiff 

(version 2.2.1) was used, and hg19.fa was set as the reference genome sequence. The 
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following parameter settings was used: “multi-read-correct” to adjust expression 

calculations for reads that map in more than one locus, and “compatible-hits-norm” and 

“upper-quartile-norm” form normalization of expression value. Diagnostic plots were 

generated using the CummeRbund R package. Custom scripts were used to format and 

annotate the differential expression data from CuffDiff. Genes and transcripts that are 

differentially expressed were identified based on the following criteria: test status = 

“OK”, FDR ≤ 0.05, and fold change ≥ ± 1.5. To model the biological relevance of 

differentially expressed genes, Advaita Bio’s iPathwayGuide 

(http://www.advaitabio.com/ipathwayguide) was used, and EGFP was set as the control. 

For analysis of splicing changes, trimmed reads were aligned to hg38 genome reference 

using HISAT299 with Gencode gene annotation (version 27). Discordant or mixed 

mapping between mates in a pair was disabled using the “--no-mixed --no-discordant” 

parameters. Properly mapped alignments with quality > 20 were selected and analyzed 

using the bioconductor packages SGSeq77 and Limma100. Specifically, analyzeFeatures() 

was run to predict transcript features from the alignments; annotate() was run to annotate 

features with known transcripts from library “TxDb.Hsapiens.UCSC.hg38.knownGene”; 

analyzeVariants() was run to identify splice events, obtain counts for each splice variant 

and compute estimates of relative splice usage; plotFeatures() and plotVariants() were 

used to plot splice graphs and heatmaps of expression levels for selected genes; and 

diffSplice() from Limma was run to test differential splice variant usage for the four 

comparisons: TDP43(WT)-EGFP vs EGFP, TDP43(F147L, F149L)-EGFP vs EGFP, 

TDP43(R151A)-EGFP vs EGFP, and TDP43(D247A)-EGFP vs EGFP. 
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Statistical analyses 

 Statistical analyses were performed in either R or GraphPad Prism. For survival 

analyses, the publically available R survival package was used to determine differences 

among populations through Cox proportional hazards analysis. Half-life was determined 

for individual cells by using a custom-written R script that fits log-transformed TRITC 

intensities for each cell, normalized to the intensity measured immediately following 

photoconversion, to a linear equation23. Statistical differences among half-lives, 

nuclear/cytoplasmic ratios, and locomotor metrics were determined by one-way ANOVA 

with either Dunnett’s multiple comparisons test or Tukey’s post hoc test in GraphPad 

Prism. For qRT-PCR analyses, differences among groups were determined using the 

Kruskal-Wallis test. 
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Figure 3.1 Disruption of TDP43’s salt bridge impairs nucleic acid recognition. (A) 
Structure of RRM1 and RRM2 from TDP43 (blue) in complex with UG-repeat RNA (in 
green), highlighting the salt bridge between Arg151 and Asp247 (in red). The structure 
was generated in FirstGlance in Jmol, PDB identification code 4bs2, deposited by 
Lukavsky et al. (2013)27. (B) Schematic representation of TDP43, depicting the RRM1-
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RRM2 salt bridge and F147/F149, two residues necessary for nucleic acid recognition9. 
(C) Electromobility shift assay (EMSA) of recombinant TDP43(WT) and mutants at 
increasing protein concentrations (12 fmol to 4 pmol) mixed with labeled (UG)12 
oligonucleotides (100 pM). (D, F, H) Unlabeled (UG)12 oligonucleotides were added at 
increasing concentrations (1-400 nM) with 0.5 pmol protein and 100 pM of labeled 
(UG)12 sequences. Three independent replicates for each protein were quantified in E, G, 
I, to generate dissociation constants (Kd) and Hill slopes for each variant. (J) EMSA of 
TDP43 variants at increasing protein concentrations (0.5-16 pmol) with 100 pM of 
labeled (GC)12 oligonucleotides. Among the conditions tested, no shift was observed for 
WT or mutant TDP43 variants. (K) EMSA of TDP43 variants at increasing protein 
concentrations (0.5-16 pmol) with 100 pM of labeled (AT)12 sequences, demonstrating 
shifts for both TDP43(R151A) and TDP43(D247A), but not TDP43(WT). (L, M) RNA 
immunoprecipitation of EGFP-tagged versions of TDP43(WT), TDP43(F147L, F149L), 
TDP43(R151A), or TDP43(D247A) expressed in HEK293T cells. The abundance of 
bound TARDBP (L) or MALAT1 (M) transcripts were measured by qRT-PCR. For C, D, 
F, H, J, and K, arrowheads indicate protein-DNA complexes, while arrows point to 
unbound oligonucleotides. For E, G, and I, data were pooled from 3 independent 
replicates, the Kd and Hill coefficient were determined by the nonlinear least squares 
regression fit equation, and the plots show mean ± SD. For L and M, data were pooled 
from 3 independent replicates, and plots show mean ± SEM. 
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Figure 3.2 Disruption of the RRM1-RRM2 salt bridge abrogates TDP43-mediated 
neurotoxicity. (A) Automated fluorescence microscopy. Primary rodent cortical neurons 
were transfected with mApple, a survival and morphology marker, and TDP43 variants 
fused to EGFP. Individual neurons were programmatically identified by mApple 
fluorescence (green outlines) and given unique identifiers (green numbers). Cell death 
(red outline) was determined by loss of fluorescence, rounding of the soma, or 
elimination of neuritic processes. Scale bar: 20 µm. (B) Overexpressing TDP43(WT)-
EGFP significantly increases the cumulative risk of death compared to neurons 
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expressing EGFP (HR 5.04, p < 2x10-16). Mutations that disrupt the salt bridge (R151A 
or D247A) and mutations that eliminate RNA binding (F147L, F149L), significantly 
reduce the risk of death compared to neurons expressing TDP43(WT) (HR 0.25, 0.32, 
and 0.27, respectively, p < 2x10-16 for all comparisons). (C) Deletion of RRM2 or both 
RRM1-RRM2 significantly improve survival compared to TDP43(WT) (HR 0.51 and 
0.31, respectively, p < 2x10-16, for both comparisons). Deletion of RRM1 reduces the risk 
of death compared to TDP43(WT) (HR 0.26, p < 2x10-16) and EGFP alone (HR 0.7, p < 
2x10-16). (D) Expression of TDP43(M337V)-EGFP significantly increases the risk of 
death (HR 4.26, p < 2x10-16) compared to EGFP. The F147L/F149L, R151A, and D247A 
mutations significantly reduce the toxicity of TDP43(M337V)-EGFP (HR 0.34, 0.26, and 
0.39, respectively, p < 2x1016 for all comparisons). n, number of neurons. *** p < 2x10-

16, Cox proportional hazards. Survival analyses were pooled from 3 independent 
experiments, with 8 wells per condition for each replicate. 
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Figure 3.3 Mutations that interfere with the RRM1-RRM2 salt bridge or RNA binding 
destabilize TDP43. (A) Optical pulse labeling (OPL) of primary cortical neurons using 
automated fluorescence microscopy. Neurons were transfected with EGFP and TDP43-Dendra2 
variants, photoconverted with a pulse of 405 nm of light, and imaged over time. The time-
dependent loss of photoconverted TDP43-Dendra2 (detected in the TRITC channel) for each cell 
was used to calculate protein half-life. Scale bar: 50 µm. Pre, before photoconversion. (B) Box 
plot of protein half-life. The median TDP43(WT)-Dendra2 half-life (58.5 hr) was significantly 
greater than that of TDP43(R151A)-Dendra2 (15.3 hr), TDP43(D247A)-Dendra2 (21.8 hr), and 
TDP43(F147L, F149L)-Dendra2 (13.2 hr). (C) Cumulative frequency plot of the protein half-life 
data from B. **** p < 0.01, one-way ANOVA with Dunnett’s test. n, number of neurons. (D) 6 
hr prior to OPL, cells were treated with either DMSO or 25 nM MG132. Treatment of MG132 
significantly extended the half-life of Dendra2 and TDP43-Dendra2 variants compared to DMSO 
controls. **** p < 0.01, one-way ANOVA with Tukey’s test. For B data pooled from 4 biological 
replicates. For D data accumulated from 300-1400 cells, over 3 biological replicates.
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Figure 3.4 RNA binding and protein stability are essential for TDP43-dependent 
neurodegeneration. (A) Schematic representation of EGFP-tagged TDP43 constructs in 
which the region comprised of RRM1-RRM2 is replaced with RNA binding domains 
(RBDs) from PUM2 or PP7. (B) TDP43(PUM2)-EGFP expression significantly 
increased the cumulative risk of death compared to EGFP alone (HR 2.54, p < 2x10-16). 
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No significant difference was observed among neurons expressing TDP43(WT)-EGFP or 
TDP43(PUM2)-EGFP. Expression of the PUM2 RBD marginally elevated the risk of 
death compared to EGFP alone (HR 1.19, p= 3.78 x 10-5). RNA binding-deficient 
versions of the PUM2 RBD (mPUM2) significantly reduced the risk of death compared 
to TDP43(PUM2)-EGFP (HR 0.45, p < 2x10-16). (C) Fluorescent images of 
representative neurons overexpressing mApple (RFP) and EGFP-tagged TDP43(WT), 
TDP43(PUM2), or TDP43(mPUM2), demonstrating a diffuse distribution within the 
nucleus for all TDP43 variants, but TDP43(mPUM2) exhibited multiple puncta within 
the nucleus. Scale bar: 20 µm. (D) Expression of TDP43(PP7) reduced the risk of death 
in comparison to TDP43(WT) (HR 0.73, p < 2x10-16) but remained significantly toxic 
compared to EGFP alone (HR 2.05, p < 2x10-16). (E) Schematic representation of 
Dendra2-tagged TDP43(WT) and TDP43(WT)-CL. By OPL, the median TDP43-
Dendra2 half-life dropped from 51.9 h to 19.8 h with addition of the destabilizing CL 
degron. f, Both TDP43(WT)-Dendra2 and TDP43(WT)-Dendra2-CL significantly 
elevated the risk of death compared to Dendra2 alone (HR 1.82 and 1.18, p < 2x10-16 and 
p= 1.23 x 10-10, respectively). Expression of TDP43(WT)-Dendra2-CL significantly 
decreased the risk of death compared to TDP43(WT)-Dendra2 (HR 0.64, p < 2x10-16). 
(G) Diagram of EGFP-tagged TDP43 carrying mutations tested in H-I. H-I, HEK293T 
cells were transfected with EGFP-tagged versions of TDP43(WT), TDP43(R151D-
D247R) or TDP43(D247E) prior to immunoprecipitation with anti-GFP antibodies. 
TARDBP (H) and MALAT1 (I) transcripts were amplified from total RNA by qRT-PCR. 
For each, a representative image of the PCR products assessed by PAGE (top) and 
quantification of band intensity normalized to TDP43(WT) (bottom) are shown. (J) A 
significant decrease in protein half-life was observed for all TDP43 mutants compared to 
TDP43(WT), as determined by OPL. (K) Cumulative frequency plot of data shown in J. 
(L) Longitudinal fluorescence microscopy of neurons overexpressing EGFP-tagged 
TDP43 variants or EGFP alone. TDP43(WT)-EGFP expression was significantly toxic to 
cells compared to EGFP alone (HR 4.42, p < 2x10-16). A significant reduction in toxicity 
was observed for all TDP43 mutants compared to TDP43(WT)-EGFP (TDP43(R151D)-
EGFP, HR 0.23; TDP43(D247R)-EGFP, HR 0.48; TDP43(R151D-D247R)-EGFP, HR 
0.21; TDP43(D247E)-EGFP, HR 0.6; p < 2x10-16 for all comparisons). Cells expressing 
either TDP43(D247R)-EGFP or TDP43(D247E)-EGFP demonstrated a significantly 
elevated risk of death compared to those expressing EGFP alone (HR 2.2 and 2.76, 
respectively, p < 2x10-16 for both comparisons). Data were pooled from 3 independent 
replicates for B, D, and L and 4 replicates for F, *** p < 2x10-16, Cox proportional 
hazards. For E, data were pooled from 4 independent experiments, **** p < 0.0001, 
unpaired t test. For H and I, data were pooled from 3 independent experiments, **** p < 
0.05, Kruskal-Wallis with Dunn’s test. For J, data were pooled from 4 replicates, **** p 
< 0.05, one-way ANOVA with Dunnett’s test. For B, D-F, K, and L, n, number of 
neurons.
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Figure 3.5 The tdp-1(R219A) knock-in phenocopies TDP-1 null mutations in C. 
elegans. (A) Interspecies sequence conservation of TDP43’s RRM1 domain. Highly 
conserved residues are highlighted in green. Conservation of R151 (in bold) is 
highlighted. (B) Representative images of 7 d old wild-type (N2), tdp-1 (ok803) 
knockout, and mutant tdp-1 (R219A) animals.  Scale bar: 200 mm. (C-F) Behavioral 
assays of 7 d old animals measuring worm length, track length, wavelength, and 
amplitude on NGM plates. Both ok803 and R219A animals displayed significantly 
reduced locomotor metrics compared to N2 animals on NGM plates. (G) Thrash assay 
measuring the number of body bends per minute in liquid media. R219A, but not ok803, 
animals displayed a significant increase in the number of body bends per minute 
compared to N2. (H), An increase in survival was observed for both ok803 and R219A 
animals compared to N2, but no significant difference was observed between ok803 and 
R219A worms. (C-F) data were pooled from 3 independent experiments, totaling n≥127 
animals/genotype; **** p < 0.0001, one-way ANOVA, Dunnett’s post-hoc. (G), data 
were pooled from 3 independent experiments, totaling n≥96 animals/genotype; **** p < 
0.001, one-way ANOVA, Dunnett’s post-hoc. (H), data were pooled from 3 replicates, 
totaling 418 animals/genotype; **** p < 0.0001, log-rank test. Plots in C-G show mean ± 
SEM.



	

137 
	

 
 
Figure 3.6 TDP43(WT) overexpression selectively affects the ribosomal and 
oxidative phosphorylation pathways. (A) Diagram of EGFP-tagged TDP43 variants 
used for subsequent experiments. HEK293T cells were transfected with EGFP-tagged 
versions of TDP43(WT), TDP43(R151A), TDP43(D247A), TDP43(F147L, F149L), or 
EGFP alone, and subject to high-throughput RNA-sequencing. (B) Venn diagram 



	

138 
	

depicting the number of differentially expressed genes (DEGs) for each condition, in 
comparison to EGFP alone. (C) TARDBP transcript levels are similar among all TDP43 
variants, demonstrating equivalent overexpression in each case. (D) Levels of MALAT1, 
an established TDP43 target transcript, were significantly downregulated only in 
TDP43(WT)-expressing cells. (E) Venn diagram showing significant enrichment for 
functional pathways according to gene ontology (GO) analysis. Among downregulated 
mRNAs, transcripts involved in the ribosomal (F) and oxidative phosphorylation (G) 
pathways (false discovery rate (FDR) = 6.8 x 10-5 and 0.03, respectively) were highly 
enriched, with a trend towards enrichment for transcripts related to RNA transport (H, 
FDR = 0.222).
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Figure 3.7 TDP43(WT) overexpression promotes intron retention and exon 
skipping. (A) 9,339 differential splicing events involving 4,819 genes were noted in 
TDP43(WT)-EGFP overexpressing cells. (B-D) Of these splicing events, 34.2% were 
also found upon overexpression of TDP43(F147L, F149L)-EGFP, 29.3% with 
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TDP43(R151A)-EGFP, and 38.7% with TDP43(D247A)-EGFP. (E) 3,968 transcripts 
(42.5%) were differentially and selectively spliced by TDP43(WT)-EGFP. (F) Heat map 
of the 50 top repressed and 50 top included splicing events. (G) Categorization of 
abnormal splicing events noted selectively with TDP43(WT) overexpression. RI, intron 
retention. A3SS, alternative 3’ splice sites. A5SS, alternative 5’ splice sites. ALE, 
alternative last exon. AFE, alternative first exon. AS, alternative start. SE, skipping of 
one exon. S2E, skipping of 2 exons. MXE, mutually exclusive exons. (H) Representative 
examples of abnormal splicing in NDUFS6 (H) and ITPR3 (I) transcripts, with schematic 
diagrams of exons (E) and splice junctions (J) above heat maps displaying the read 
density for each junction. Unannotated exons/junctions are shown in red.
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Supplemental information 
 

 
 
Figure S3.1 Salt bridge disrupting mutations of TDP43 reduce the cooperativity and 
affinity for (TG)12 sequences. (A) EMSA of recombinant TDP43 variants at increasing 
protein concentrations (12 fmol to 4 pmol) incubated with labeled (TG)12 
oligonucleotides (100 pM). (B, D, F) Unlabeled (TG)12 oligomers were added at 
increasing concentrations (1-400 nM) with 0.5 pmol protein and 100 pM of labeled 
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(TG)12 sequences. Three independent replicates for each protein were quantified in C, E, 
G to calculate dissociation constants (Kd) and Hill slopes. For A, B, D, F, arrowheads 
mark protein-DNA complexes, while arrows indicate free DNA oligomers. For C, E, and 
G, Kd and Hill coefficient were determined by the nonlinear least squares regression fit 
equation, and each plot displays mean ± SD.
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Figure S3.2 TDP43(R151A) and TDP43(D247A) recognize (AT)12 oligonucleotides in 
vitro. (A, C) Competition EMSA of recombinant TDP43(R151A) or TDP43(D247A) (16 
pmol) incubated with unlabeled (AT)12 sequences at increasing concentrations (0.01-5 
µM) and 100 pM of labeled (AT)12. Dissociation constants (Kd) and Hill slopes were 
quantified from three independent replicates in B and D. For A and C, arrowheads point 
to protein-DNA complexes, and arrows show unbound DNA. For B and D, the nonlinear 
least squares regression fit equation was used to determine both Kd and Hill coefficient; 
each plot displays mean ± SEM.
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Figure S3.3 High doses of MG132 completely stabilize RNA binding-deficient 
TDP43 variants. (A) Box plot of protein half-life. Neurons were treated with either 
DMSO or 500 nM MG132 6 hr prior to OPL. The half-life of Dendra2 and TDP43-
Dendra2 mutants significantly increased compared to DMSO controls. **** p< 0.01 one-
way ANOVA with Tukey’s test. Data represents from 300-1700 cells, over 3 independent 
replicates. Plots show median (black line), interquartile range (IQR, thick box), and 3 x 
IQR (whiskers).
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Figure S3.4 Fusion of a PEST sequence modestly affects TDP43(WT) stability and 
toxicity. (A) Schematic representation of Dendra2-tagged TDP43(WT) and TDP43(WT)-
PEST. By OPL, the median half-life of TDP43-Dendra2 dropped from 52.2 hr to 44.8 hr 
in the presence of the destabilizing PEST sequence. (B) Neurons expressing 
TDP43(WT)-Dendra2 or TDP43(WT)-PEST-Dendra2 demonstrated an elevated risk of 
death in comparison to cells expressing Dendra2 alone (HR 1.93 and 2.14, respectively; p 
< 2x10-16 for both, Cox proportional hazards). TDP43(WT)-PEST-Dendra2 was modestly 
more toxic than TDP43(WT)-Dendra2 (with TDP43(WT)-Dendra2 as a reference, HR 
1.11, p= 6.37x10-6). For A, data were pooled from 3 biological replicates, **** p < 
0.0001, unpaired t test. Plot shows median (black line), interquartile range (IQR, thick 
box), and 3 x IQR (whiskers). For B, data were pooled from 3 independent replicates, 
*** p < 2x10-16, Cox proportional hazards. For A and B, n represents the number of 
neurons.
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Figure S3.5 Mutations disrupting the RRM1-RRM2 salt bridge weaken TDP43’s 
ability to recognize native substrates. (A) Schematic representation of EGFP-tagged 
TDP43, illustrating mutations tested in B and C. HEK293T cells were transfected with 
TDP43(WT), TDP43(R151D), or TDP43(D247R) and immunoprecipitated with 
antibodies against GFP. Bound TARDBP (B) or MALAT1 (C) transcripts were amplified 
from total RNA by qRT-PCR. For B and C, data were pooled from 3 independent 
replicates. Plots show mean ± SEM, ** p < 0.05, Kruskal-Wallis with Dunn’s test.
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Figure S3.6 Arg151 mutations interrupt the proportional relationship between 
TDP43 stability and toxicity. While no relationship was observed between half-life and 
toxicity for R151 variants (A), D247 variants displayed a positive linear relationship 
between half-life and toxicity (B). Nonlinear least square regression equation was used to 
fit a line and generate the r2 value for the relationship between half-life and toxicity. For 
A and B, error bars represent 95% confidence intervals.
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Figure S3.7 Manipulating the RRM1-RRM2 salt bridge affects subcellular TDP43 
localization. (A) Fluorescent microscopy of primary neurons expressing mApple (RFP) 
and EGFP-tagged TDP43 variants. Nuclei were stained with Hoechst 33258. Scale bar: 
20 µm. (B and C)  Subcellular TDP43-EGFP localization was quantified by measuring 
the fluorescence intensity of TDP43 within the nuclear and cytoplasmic compartments 
separately for each neuron. The nuclear-cytoplasmic ratio for TDP43(WT) was 6.9 ± 
0.087 SEM. (B) All variants of R151 significantly decreased the TDP43-EGFP nuclear-
cytoplasmic ratio. (C) Mutating D247 to either alanine or arginine significantly decreased 
TDP43-EGFP nuclear-cytoplasmic ratio, while mutating D247 to glutamate significantly 
increased TDP43-EGFP nuclear localization. Data in B and C represent at least 3 
independent experiments, ****p < 0.0001, one-way ANOVA with Dunnett’s post-hoc. 
Plots in B, C show mean ± SEM; n, number of neurons.
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Figure S3.8 Mutations that interfere with RNA binding also reduce solubility. A, 
HEK293T cells were transfected with TDP43 variants, sonicated in RIPA buffer or 
extracted with urea buffer as indicated, and immunoblotted with anti-TDP43 antibodies.  
(B, C) Each TDP43 mutant was enriched within the urea-soluble fraction, compared to 
TDP43(WT). Data represent 3 independent replicates, ***p< 0.0001, one-way ANOVA 
with Dunnett’s post-hoc. Plots in B, C show mean ± SEM.
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Table S3.1 Pathways in which spliced transcripts were most affected from 
TDP43(WT) overexpression. 
 

KEGG Term p FE Bonf. Benj. FDR Genes 

Ribosome 6.6x10-17 3.0 3.1x10-14 3.1x10-14 1.4x10-13 

RPL18, RPL17, RPL19, RPL14, RPL13, RPS27L, RPS2, RPS3, 
RPLP0, RPLP1, RPL10, RPL11, RPL12, MRPL32, MRPL33, 
MRPL2, MRPL1, MRPL4, MRPL3, MRPS5, MRPL9, MRPS2, 
RPS18, RPS16, MRPS18A, RPS13, UBA52, MRPS17, MRPS16, 
MRPS11, MRPS10, RPS15A, RPL36, RPL37, MRPL10, RPS27, 
RPL30, RPS28, MRPL15, RPL32, RPL6, RPL31, RPL34, RPL9, 
RPL8, RPL3, RPL5, RPL7A, RPL10A, RPS24, RPSA, RPL26, 
RPL27, MRPS21, RPS6, RPS8, RPL28, RPS7, RPL23, RPL18A, 
RPL21, RPL37A 

Spliceosome 5.5x10-10 2.5 1.5x10-7 7.7x10-8 7.2x10-7 

HNRNPA1L2, NCBP1, CHERP, SRSF10, TRA2B, U2AF2, 
U2SURP, TRA2A, CWC15, SNU13, SF3B6, XAB2, SF3B4, 
SF3B2, HNRNPA3, HNRNPM, SF3B1, TCERG1, PLRG1, 
USP39, DHX15, MAGOHB, HNRNPC, ACIN1, RBM25, 
PRPF40A, RBM22, SNRPA1, ALYREF, SF3A2, DDX5, 
HNRNPA1, SF3A1, RBMX, HNRNPU, PRPF6, SRSF2, 
EIF4A3, PPIE, SRSF5, PPIH, SRSF6, SLU7, SNRNP40, 
SNRPC, PUF60, PRPF38B, THOC1, PRPF38A, SNRPG 

Proteasome 6.1x10-8 3.4 1.7x10-5 5.7x10-6 8.1x10-5 
PSMA7, PSMB5, PSMA1, PSMB4, PSMD14, PSMB7, 
PSMD13, PSMC5, PSMC4, PSMD11, PSMA5, PSMC3, PSME2, 
PSMA4, PSMC2, PSMA3, POMP, PSMD2, PSMD3, PSME3, 
PSME4, PSMD7, PSMD8 

Cell cycle 1.5x10-7 2.3 4.3x10-5 1.1x10-5 2.0x10-4 

E2F3, FZR1, E2F4, PKMYT1, TTK, CHEK1, PTTG1, 
CDC16,ZBTB17, CDC45, ORC4, MYC, ORC1, CUL1, BUB3, 
TFDP1, STAG1, CDC7, CDK1, ANAPC2, ANAPC5, RBL1, 
ANAPC4, TP53, SKP2, MCM2, SKP1, MCM3, MCM4, CDC27, 
WEE1, CDC25A, MCM6, CDC25B, CCNB1, HDAC1, PLK1, 
PCNA, BUB1B, MDM2, ANAPC7, SMC1A, GADD45B 

RNA transport 8.6x10-7 2.0 2.4x10-4 4.9x10-5 1.1x10-3 

XPO1, NCBP1, RANGAP1, PNN, PRMT5, MAGOHB, NUP37, 
DDX20, ACIN1, TPR, TGS1, KPNB1, EIF2B4, EIF2B5, 
CLNS1A, NUP88, RAN, EIF2S3, NUP85, UBE2I, TACC3, 
EIF4G1, EIF4A3, EIF4G2, EIF4G3, AAAS, EIF4A2, EIF4A1, 
THOC6, NUP107, THOC1, NUP98, ELAC2, STRAP, PABPC4, 
NDC1, SUMO2, NUP214, EIF3B, EIF3G, EIF3E, NUP50, 
XPOT, GEMIN2, ALYREF, RNPS1, NXF1, CASC3, FXR1, 
EIF4B, SEC13, EIF4E2 

Base excision 
repair 6.6x10-6 3.4 1.9x10-3 3.1x10-4 8.8x10-3 

APEX2, LIG1, NEIL3, POLE, NEIL1, MBD4, XRCC1, SMUG1, 
POLD4, MPG, MUTYH, POLE2, POLD1, POLD2, TDG, 
PCNA, PARP2 

DNA 
replication 2.6x10-5 3.1 7.4x10-3 1.1x10-3 3.5x10-2 

LIG1, POLE, RNASEH1, POLA2, MCM2, MCM3, MCM4, 
RNASEH2C, MCM6, RFC5, POLD4, RFC1, POLE2, POLD1, 
PRIM2, POLD2,PCNA 

 
Table S3.2 Primer sets for PCR amplification. 
 

Point Mutations Amino 
Acid(s) Primers Sequences 

F147L/F149L 147,149 
Forward 5’ – GGT CAT TCA AAG GGG CTT GGC 

CTT GTT CGT TTT ACG G – 3’ 

Reverse 5’ – CCG TAA AAC GAA CAA GGC CAA 
GCC CCT TTG AAT GAC C – 3’ 

R151A 151 
Forward 5’ – GGT TTG GCT TTG TTG CTT TTA 

CGG AAT ATG – 3’ 

Reverse 5’ – CAT ATT CCG TAA AAG CAA CAA 
AGC CAA ACC – 3’ 

R151D 151 
Forward 5’ – GGG GTT TGG CTT TGT TGA TTT 

TAC GGA ATA TG – 3’ 

Reverse 5’ – CAT ATT CCG TAA AAT CAA CAA 
AGC CAA ACC CC – 3’ 
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D247A 247 
Forward 5’ – CTC TTT GTG GAG AGG CCT TGA 

TCA TTA AAG G – 3’ 

Reverse 5’ – CCT TTA ATG ATC AAG GCC TCT 
CCA CAA AGA G – 3’ 

D247R 247 
Forward 5’ – CTC TTT GTG GAG AGC GCT TGA 

TCA TTA AAG – 3’ 

Reverse 5’ – CTT TAA TGA TCA AGC GCT CTC 
CAC AAA GAG – 3’ 

D247E 247 
Forward 5’ – GTC TCT TTG TGG AGA GGA GTT 

GAT CAT TAA AGG AAT C – 3’ 

Reverse 5’ – GAT TCC TTT AAT GAT CAA CTC 
CTC TCC ACA AAG AGA C – 3’ 

mPUM2 255, 256, 
259 

Forward 5’ – CAC AAA TTT GCC GCC GCT GTA 
GTA GCA AAG TGT GTT ACT C – 3’ 

Reverse 5’ – GAG TAA CAC ACT TTG CTA CTA 
CAG CGG CGG CAA ATT TGT G – 3’ 

 
 
Table S3.3 Primer sets for site-directed mutagenesis. 
 

PCR Product Amino 
Acid(s) Primers Sequences 

PP7 1-283 
Forward 5’ – TCC AAA ACC ATC GTT CTT TCG G 

– 3’ 

Reverse 5’ – TCC TCC TCC GCT TCC TCC ACT A 
– 3’ 

TDP43 N-terminus 1-106 
Forward 5’ – ATG TCT GAA TAT ATT CGG GTA 

ACC G – 3’ 

Reverse 5’ – TAA ATC GGA TGT TTT CTG GAC T 
– 3’ 

TDP43 C-terminus 263-414 
Forward 5’ – AAG CAC AAT AGC AAT AGA CAG 

TTA G– 3’ 

Reverse 5’ – TCC CCA GCC AGA AGA CTT AGA 
ATC C – 3’ 

TDP43(RRM1) 107-176 
Forward 5’ – ATA GTG TTG GGT CTC CCA T– 3’ 

Reverse 5’ – GCT TCT CAA AGG CTC ATC TT– 3’ 

TDP43(RRM2) 191-262 
Forward 5’- CTT CCT AAT TCT AAG CAA AGC 

CAA G -3’ 

Reverse 5’– AGG TTC GGC ATT GGA TAT ATG 
AAC GC – 3 

TDP43(WT) 1-414 
Forward 5’– GCT AGC GCC ACC ATG TCT GAA 

TAT ATT– 3’ 

Reverse 5’– ACC GGT CCC AAA CCT CTA CCG 
TCC CA– 3’ 
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Chapter 4 

C9orf72 mutations enhance TDP43 cytoplasmic mislocalization 

and neuronal toxicity 

4.1 Abstract 

 The majority of individuals with ALS and FTD exhibit neuronal cytoplasmic 

inclusions rich in the RNA binding protein, TDP43, and the most common mutation 

responsible for familial forms of both disorders consists of a hexanucleotide (G4C2) 

repeat expansion mutation in the first intron of chromosome 9 open reading frame 72, or 

C9orf72. Family members with this mutation may develop ALS, FTD, or both. TDP43 

pathology is a characteristic feature of C9orf72-linked disease, and changes in TDP43 

localization and levels are strongly predictive of neuron loss in ALS/FTD. Even so, the 

link between C9orf72 expansions, TDP43 deposition, and neurodegeneration remains 

unclear. TDP43 binds thousands of RNA transcripts, particularly UG-rich sequences, and 

TDP43-dependent toxicity is closely tied to its ability to recognize RNA. Intramolecular 

interactions between TDP43’s RNA binding domains, mediated by a salt bridge, are 

necessary for maintaining sequence specificity. Here, we show that TDP43 harboring 

mutations that disrupt the salt bridge recognize G4C2 oligonucleotides in vitro. Mutations 

that alter the salt bridge also enhance TDP43 mislocalization, but abrogate TDP43-

dependent toxicity. In ongoing work, we are testing if TDP43 directly binds the C9orf72 

repeat expansion upon disruption of the salt bridge. These studies provide a potential 
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connection between C9orf72 mutations and TDP43 pathology, and highlight previously 

uncharacterized properties of TDP43 that may serve as targets for therapy development. 

 

4.2 Introduction 

 A hexanucleotide (GGGGCC) repeat expansion located in the first intron of 

C9orf72 is the most common genetic cause of both ALS and FTD1,2. Unaffected 

individuals possess less than 30 repeats; expansions greater than 30 and up to 4000 units 

are linked to ALS and FTD1-3. Because the repeat expansion is located in a non-coding 

region, neurodegeneration may stem from one or more overlapping mechanisms. Briefly, 

first the expansion may disrupt C9orf72 transcription, resulting in loss of function4-10. 

C9orf72 knockout animals fail to show symptoms of ALS/FTD11-13, however, arguing 

against this possibility. Second, repeat RNA may sequester essential RNA binding 

proteins within nuclear foci14-16. Although, these foci are typical of C9orf72-related 

ALS/FTD, they do not appear to affect cellular health. Third, mutant C9orf72 transcripts 

undergo translation through repeat associated non-AUG (RAN) translation, generating 

six dipeptide repeat proteins (DPRs)17-21. These peptides can be detected in C9orf72 

expansion carriers, but are concentrated in brain regions that appear to be unaffected in 

ALS/FTD (i.e. cerebellum)22,23. Conversely, changes in TDP43 deposition and levels are 

strongly predictive of neuron loss in ALS/FTD24. Even so, the connection between 

mutant C9orf72 transcripts, TDP43 deposition, and neurodegeneration remains 

fundamentally unclear. 

 TDP43 pathology is a characteristic feature in ALS and FTD, including C9orf72-

linked disease1. TDP43 binds thousands of transcripts, particularly UG-rich sequences, 
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and TDP43-dependent toxicity is tightly tied to its ability to recognize RNA25,26. 

Intramolecular interactions between 2 RNA recognition motifs (RRM1 and RRM2)—

mediated by a salt bridge between Arg151 (located in RRM1) and Asp247 (located in 

RRM2)—are necessary for maintaining specificity for UG sequences27. In Chapter 3, we 

demonstrated that engineered mutations disrupting TDP43’s salt bridge reduce the 

affinity and sequence specificity of nucleic acid binding by TDP43. Moreover, these 

mutations dramatically abrogate TDP43-dependent toxicity. Our work demonstrates the 

significance of the salt bridge in sustaining RNA binding specificity, and TDP43’s ability 

to bind to RNA is an important driver for TDP43-dependent toxicity. Here, we 

hypothesize that disruption of the salt bridge enables sequestration of TDP43 by mutant 

C9orf72 transcripts, eventually leading to nuclear TDP43 clearance, cytoplasmic 

deposition of TDP43, and subsequent cell death. Consistent with this notion, here we 

show that salt-bridge disrupting TDP43 variants recognize a single G4C2 stretch of DNA 

oligonucleotides in vitro. Co-expression of the C9orf72 repeat expansion and TDP43 

variants enhances cytoplasmic TDP43 mislocalization and toxicity in primary neurons. 

Additional work is warranted to thoroughly evaluate the potential interaction between 

G4C2 repeats and mutations disrupting TDP43’s RRM1-RRM2 salt bridge. Below I will 

discuss our preliminary work thus far. 

 

4.3 Results 

4.3.1 C9orf72 hexanucleotide repeat expansions are selectively toxic to neurons 

 We first determined whether overexpression of the G4C2 repeat expansion is toxic 

to primary neurons. To do this, we generated EGFP-tagged constructs containing G4C2 
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repeats of pathogenic length (71, 66, or 69 units) (Fig. 4.1A). Repeats were placed in 

front of EGFP in each of the three reading frames relative to EGFP. Repeats in the +0, or 

native, reading frame correspond to poly-GA, and repeats in the +1 or +2 reading frames 

correspond to poly-GP or poly-GR, respectively. Although EGFP contains a start and 

stop codon, no AUG codon is present above the repeat (Fig. 4.1A). Rodent primary 

cortical neurons were transiently transfected with vectors encoding mApple, to visualize 

the cell body, and the EGFP-tagged G4C2 repeats. As a negative control, neurons were 

transfected with mApple and EGFP alone. By automated fluorescence microscopy28,29, 

transfected neurons were imaged longitudinally at 24-hour intervals for 10 days. Using 

custom-written algorithms, individual neurons were identified and tracked to note the last 

time the cell was seen alive. Death was determined by cellular morphology or loss of 

fluorescence, sensitive measures of cell death in previous studies28,30,31. Using Cox 

proportional hazards analysis, differences in survival between populations of neurons 

were measured relative to a reference group and given a hazard ratio (HR). We observed 

differences in toxicity between each of the repeat-containing constructs compared to 

EGFP alone. Repeats in the +0 reading frame were not significantly toxic to neurons (HR 

1.07, p= 0.21) (Fig. 4.1B). However, repeats in the +1 and +2 reading frames increased 

the cumulative risk of death compared to EGFP alone (HR 1.32 and 1.16, p= 2.45x10-7 

and 0.008, respectively) (Fig. 4.1B). Interestingly, repeats in the GP reading frame 

relative to EGFP were the most toxic. Among the DPRs, multiple studies have shown that 

the arginine-rich dipeptides, GR and PR, are the most toxic DPRs32-36, and GA peptides 

has some selective toxicity in neuronal cell lines and primary neurons37-39. However, GP 

peptides do not elicit toxicity. While we cannot discriminate between G4C2 RNA versus 
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individual DPRs with these constructs, our results suggest that there may be sequence 

context differences that cause toxicity; though, this remains to be determined. For 

subsequent overexpression studies, we used (G4C2)66-EGFP because it was the most 

toxic to neurons. 

 Next, we sought to determine whether our repeat-containing constructs undergo 

RAN translation to produce DPRs. To test this, primary neurons overexpressing mApple 

and (G4C2)66-EGFP were fixed 48h after transfection, immunostained with antibodies 

detecting each DPR (GA, GP, and GR) and imaged by automated microscopy (Fig. 

4.1C). Both nuclear and cytoplasmic diffuse staining was observed with anti-GA 

antibodies in cells expressing the repeat expansion, but no signal was detected in EGFP 

alone expressing cells (Fig. 4.1C). Using antibodies against GP dipeptides, nuclear 

staining was detected in neurons expressing EGFP alone, suggesting non-specific 

interactions (Fig. 4.1C). However, neurons expressing the repeats presented a greater 

signal above background in the nucleus compared to EGFP alone, suggesting GP 

production via RAN translation. Neurons expressing (G4C2)66 resulted in a diffuse 

nuclear stain with antibodies against GR dipeptides (Fig. 4.1C). We observed similar 

patterns for each DPR in cells expressing (G4C2)69-EGFP or (G4C2)71-EGFP plasmids 

(data not shown). Taken together, these findings demonstrate that overexpression G4C2 

repeats, of pathogenic length, are toxic to neurons, and these repeats are RAN translated, 

resulting in detectable DPRs. 

4.3.2 Localization of endogenous TDP43 is unaffected by G4C2 repeats or DPRs 

 TDP43 mislocalization and aggregation are characteristic features of C9orf72-

related disease1, and changes in TDP43 localization and levels are strongly related to 
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neuron loss in ALS and FTD28,29, but the connection between C9orf72 mutations and 

TDP43 metabolism remains unclear. Therefore, we asked whether C9orf72 RAN 

translation products disrupt TDP43 trafficking. To determine the subcellular localization 

of endogenous TDP43 in the presence of C9orf72 RAN translation products, either fresh 

or aged synthetic (GA)3, (GP)3, or (GR)3 dipeptides were applied to primary neurons. 

Cells were also treated with buffer (buffer in which peptides were solubilized) alone as a 

control. Twenty-four hours after peptide application, cells were immunostained with 

antibodies against MAP2, a pan-neuronal cytoplasmic marker, and TDP43 to detect 

endogenous TDP43. To quantitatively assess TDP43 localization, the abundance of 

TDP43 was measured separately within the nuclear and cytoplasmic compartments of 

individual neurons, and a nuclear-cytoplasmic ratio was calculated to reflect TDP43 

distribution in each neuron. We observed no significant change of endogenous TDP43 

localization when treated with dipeptides compared to buffer control (Fig. 4.2A). It is 

possible that (GN)3 dipeptides are not efficiently internalized by neurons, and thus, 

incapable of altering TDP43 localization effectively. Alternatively, perhaps 

mislocalization of TDP43 by the DPRs is dependent on TDP43 levels. Therefore, we next 

overexpressed EGFP-tagged TDP43(WT) and mApple, a cytoplasmic marker, and treated 

cells with either fresh or aged synthetic (GA)3, (GP)3, or (GR)3 dipeptides and assessed 

the localization of exogenous TDP43. Here, we detected a significant reduction in the 

nuclear-cytoplasmic ratio of TDP43 among cells treated with fresh or aged (GA)3 

dipeptides, but not (GP)3 or (GR)3 dipeptides. This suggests that short GA dipeptides are 

sufficient to induce mislocalization of exogenous TDP43 to the cytoplasm.  
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4.3.3 Disruption of TDP43’s RRM1-RRM2 salt bridge enables TDP43 to bind to 

G4C2 oligonucleotides in vitro 

 In Chapter 3 we engineered mutations that disrupt an intramolecular salt bridge 

between RRM1-RRM2 of TDP43 to investigate the RNA binding properties of TDP43, 

and how these characteristics dictate its vulnerability for toxicity in primary neurons. 

TDP43 variants bearing mutations that disrupt the salt bridge exhibit a reduction in 

affinity and sequence-specificity of nucleic acid recognition by TDP43 (Fig. 3.1). 

Moreover, these TDP43 variants impair binding to its native substrates (Fig. 3.1). From 

these observations, we next sought to determine whether TDP43 is capable of binding to 

G4C2 oligonucleotides in vitro. Using purified recombinant TDP43(WT), 

TDP43(R151A), and TDP43(D247A), we tested the ability of each variant to bind G4C2 

DNA via electromobility shift assays (EMSAs). We first tested the ability of each TDP43 

variant to recognize oligonucleotides of a single G4C2 unit, (G4C2)1. At increasing protein 

concentrations, we observed clear shifts for both TDP43(R151A) and TDP43(D247A), 

but not TDP43(WT), in the presence of (G4C2)1 oligonucleotides (Fig. 4.3A), suggesting 

that the salt bridge mutants display aberrant sequence recognition in vitro. 

 We also asked whether the salt bridge-disrupting mutations are capable of 

recognizing G4C2 expanded repeats. Next we tested the ability of each TDP43 variant to 

recognize six G4C2 units, (G4C2)6. Unlike the (G4C2)1 oligonucleotides, we detected a 

faint shift for both TDP43(R151A) and TDP43(D247A), but not TDP43(WT), induced 

by (G4C2)6 oligomers (Fig 4.3B). Notably, we observed a strong signal in the wells of the 

gel for all conditions, including the negative control ((G4C2)6 only). This observation 

suggests the possibility of (G4C2)6 sequences forming secondary structures, hindering its 
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ability to migrate completely through the acrylamide gel. Supporting this notion, previous 

investigations demonstrated that short (G4C2)n RNA and DNA (2-8 units) are capable of 

forming G-quadruplex structures in vitro16,40-42, and the mobility of these oligomers is 

decreased in the presences of potassium ions, suggesting that the formation of G-

quadruplexes is K+ dependent16,40. Our electromobility shift assays were performed in 

presence of KCl, suggesting that our (G4C2)6 DNA oligomers are likely forming 

secondary structures and impairing its mobility. Therefore, it is possible that TDP43 

variants are capable of binding to (G4C2)6 oligomers in vitro, and these effects may be 

observed under conditions less favorable for secondary structure formation by G4C2 

repeats. Further investigation is required to assess the interaction between salt bridge-

disrupting TDP43 variants and expanded G4C2 repeats. 

4.3.4 Neuronal toxicity and cytoplasmic mislocalization of TDP43 are enhanced 

upon co-expression of (G4C2)66 and TDP43 variants. 

 Because we identified a potential interaction between G4C2 expanded repeats and 

TDP43 salt bridge-disrupting variants in vitro, we sought to determine the effects on 

neuronal survival upon overexpression of the G4C2 repeat expansion and TDP43 variants. 

Primary neurons were co-transfected with (G4C2)66-EGFP or EGFP alone and mApple-

tagged versions of TDP43(WT, R151A, or D247A) or mApple alone. As a negative 

control, neurons were co-transfected with EGFP and mApple. By longitudinal 

fluorescence microscopy, transfected cells were assessed for survival. Expression of 

(G4C2)66 alone modestly increased the risk of death compared to EGFP-expressing cells 

(Fig. 4.4A, B; HR 1.25, p= 0.0003). As noted in previous investigations28-30, 

overexpression of TDP43(WT) significantly increased the risk of death compared to 
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mApple alone (HR 2.58, p < 2x10-16). However, co-expression of TDP43(WT) and 

(G4C2)66 dramatically enhanced toxicity based on expression of either alone, suggesting 

a synergistic effect from the accumulation of TDP43 (Fig. 4.4A, B; HR 4.2, p < 2x10-16). 

Similar to our prior studies investigating neuronal survival upon overexpression of 

TDP43(R151A) or TDP43(D247A) (Fig. 3.2B), both variants significantly abrogated 

toxicity compared to TDP43(WT)-expressing cells (Fig. 4.4A, B; HR 0.35 and 0.66, 

respectively, p < 2x10-16 for both comparisons). Cells expressing both TDP43(R151A) 

and (G4C2)66 displayed a significant increase in the cumulative risk of death compared to 

cells expressing TDP43(R151A) and EGFP (HR 1.39, p= 1.24x10-7) (Fig 4.4A). In 

addition, cells expressing both TDP43(D247A) and (G4C2)66 significantly enhanced 

toxicity compared to cells expressing TDP43(D247A) and EGFP (Fig. 4.4B; HR 2.68, p 

< 2x10-16). Among the salt bridge-disrupting TDP43 mutants, the effect of the repeat 

expansion was additive for TDP43(R151A) but synergistic for TDP43(D247A), 

suggesting differences in the interaction between mutant TDP43 and expanded repeats. In 

Chapter 3, we observed differences in toxicity upon expression of TDP43(R151A) and 

TDP43(D247A), where the latter TDP43 variant was more toxic. The differences in 

toxicity may be due to the particular residue that is altered: any manipulation to R151 

resulted in minimal toxicity, whereas manipulations to D247 varied proportionally, 

depending on the strength of the interaction with R151. Therefore, R151 seems to have a 

pivotal role in TDP43-related toxicity. Taken together, these data suggest a potential 

interaction between TDP43 and G4C2 repeats with consequences for neuronal survival. 

Additional studies are necessary to confirm and extend these findings. 
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 Our studies involving synthetic RAN peptides suggested that TDP43 localization 

is mostly unaffected by exogenous peptide application, with the exception of cells 

overexpressing TDP43(WT) in the presence of (GA)3 peptides (Fig. 4.2). While the 

application of synthetic peptides to neurons allows for the assessment on the effect of 

each unique DPR, it does not accurately reflect disease since all RAN proteins are likely 

generated within the same cell. Moreover, it excludes any effects that G4C2 expanded 

RNA may have within the cell. It is likely that either transcribed G4C2 expanded RNA or 

RAN translation, or both, contribute to disease pathogenesis. Therefore, we asked 

whether expression of the G4C2 repeat expansion affects TDP43 localization. Primary 

neurons were co-transfected with (G4C2)66-EGFP or EGFP alone and mApple-tagged 

versions of TDP43(WT, R151A, or D247A) or mApple alone. The subcellular 

localization of TDP43 was determined by fluorescence microscopy, measuring mApple 

fluorescence in the nucleus and cytoplasm separately to generate a nuclear-cytoplasmic 

ratio. Similar to our previous study (Fig. S3.7), both TDP43(R151A) and TDP43(D247A) 

reduce the nuclear-cytoplasmic ratio compared to TDP43(WT)-expressing cells (Fig. 

4.4C). However, cytoplasmic mislocalization of TDP43 was further enhanced upon 

overexpression of (G4C2)66 among all TDP43 variants (Fig. 4.4C). These data suggest 

that expression of C9orf72 RNA or peptides produced by RAN translation, or both, affect 

TDP43 localization.  

 

4.4 Discussion and future directions 

 Here, we started to investigate whether there is a connection between C9orf72 and 

TDP43 and disease pathogenesis. Very little is known as to whether these two common 
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features of disease converge to similar molecular pathways. Our preliminary data suggest 

that salt bridge-disrupting mutations (R151A or D247A) are capable of recognizing G4C2 

DNA sequences in vitro, unlike TDP43(WT) (Fig. 4.3). These results are consistent with 

our previous observations that both TDP43(R151A) and TDP43(D247A) recognize 

sequences other than (UG)12/(TG)12 in vitro (Figs. 3.1 and S3.2). Furthermore, these 

observations confirm that the RRM1-RRM2 salt bridge is critical for maintaining 

sequence specificity of TDP43 for TG or UG-rich sequences, as previously identified27,43. 

While our EMSAs revealed a clear shift, indicating binding, of TDP43(R151A) and 

TDP43(D247A) with a single stretch of G4C2 DNA, it was not as obvious with multiple 

units of G4C2 DNA oligomers (Fig. 4.3). One possible explanation for the unclear results 

with (G4C2)6 DNA oligonucleotides is that the repeats have the propensity to form 

secondary structures, impairing its ability to migrate through the acrylamide gel. 

Supporting this notion, prior studies demonstrated the formation of highly stable G-

quadruplexes of short (G4C2)n DNA or RNA sequences16,40-42, and these secondary 

structures migrate slowly through acrylamide gels16,40.  Furthermore, G-quadruplexes are 

stabilized by potassium or sodium ions but destabilized in the presence of lithium 

ions44,45; our assays were performed in the presence of potassium ions (Fig. 4.3). In the 

presence of lithium, we did not detect binding between (G4C2)6 DNA and TDP43 

variants (data not shown). This observation may suggest that the secondary structure of 

G4C2 repeats could be important for nucleic acid recognition by TDP43. Nonetheless, 

further investigations are required in order to draw firm conclusions. 

 As part of our investigation to test the interaction between G4C2 repeats and 

TDP43, we started a collaboration with Dr. Christopher Pearson’s group from the 
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Hospital for Sick Children to test if TDP43 variants directly interact with (G4C2)n or 

(C4G2)n RNA or DNA oligonucleotides via EMSAs. Preliminary evidence suggests that 

TDP43(WT) binds G-rich DNA and RNA and C-rich RNA in vitro, and that TDP43’s 

structure changes in the presence of G-rich RNA and DNA, determined by circular 

dichroism (CD) spectra (data not shown). Additionally, we are interested in determining 

the CD spectra of TDP43(R151A) and TDP43(D247A) in the presence of G-rich RNA 

and DNA. Another important step to take is to determine whether an interaction between 

TDP43 variants and G4C2 repeats occurs in cells. One prior study suggests that TDP43 

recognizes and transports G-quadruplex-forming, including (G4C2)n, RNAs in cells46. To 

test whether an interaction occurs between TDP43 variants and G4C2 repeats, we are 

interested in performing pull-down assays upon co-expression of TDP43 variants and 

G4C2 expanded repeats in HEK293 cells.  

 We observed a synergistic effect in neurons upon overexpression of TDP43(WT) 

or TDP43(D247A) in the presence of expanded G4C2 repeats (Fig. 4.4B). Notably, the 

synergistic effect observed in TDP43(D247A) and (G4C2)66 co-expressing cells did not 

fully mimic the effect seen in TDP43(WT) and ((G4C2)66 co-expressing cells (Fig. 4.4B). 

Additionally, the effects on survival observed in neurons co-expressing TDP43(R151A) 

and (G4C2)66 was minimal (Fig. 4.4A). The differences in TDP43-dependent toxicity we 

observed in the presence of (G4C2)66 followed a similar trend based on our previous 

studies, in which cells expressing TDP43(WT) was the most toxic, intermediate for 

TDP43(D247A), and minimal for TDP43(R151A) (Fig. 3.2B). Taken together, these data 

imply a potential difference in (G4C2)n RNA substrate recognition by TDP43 variants, if 

such a direct interaction is occurring in neurons. However, to confirm this notion, 
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additional studies are necessary. Mutating two key Phe residues (F147L/F149L) within 

RRM1 is sufficient to eliminate RNA binding by TDP4347,48, and similar mutations 

rescue TDP43-dependent toxicity in yeast and Drosophila49,50. To determine whether 

G4C2 repeats mediate TDP43-related toxicity upon binding, we are interested in assessing 

neuronal survival upon co-expressing TDP43(F147L/F149L) and (G4C2)66. If G4C2 RNA 

mediates TDP43-related toxicity through a direct interaction, then we expect to not 

observe neuronal toxicity in these conditions. 

 We hypothesize that disruption of the salt bridge enables sequestration of TDP43 

by mutant C9orf72 transcripts, eventually leading to nuclear TDP43 clearance, 

cytoplasmic deposition of TDP43, and subsequent cell death. Consistent with this notion, 

our preliminary data suggest that expression of expanded G4C2 RNA enhances 

cytoplasmic mislocalization of not only the salt bridge-disrupting TDP43 mutants but 

also TDP43(WT) (Fig. 4.4C). To confirm the relationship between G4C2 expanded RNA 

and TDP43 mislocalization, the next step is to assess the localization of 

TDP43(F147L/F149L), which forms large spherical nuclear puncta (Fig. S3.7), upon 

expression of (G4C2)66. If TDP43 and G4C2 expanded RNA interact directly, then no 

change in the subcellular distribution should occur, as the F147L/F149L double mutant 

abrogates TDP43’s ability to bind RNA47. To determine whether C9orf72 repeat 

expansions affect the accumulation of TDP43, we can also assess the solubility and 

stability of each TDP43 variant in the presence of G4C2 repeats. If mutant C9orf72 RNA 

interacts with TDP43 variants, then we would expect a decrease in the solubility of 

TDP43, since the repeat RNA forms nuclear foci and cytoplasmic granules. To assess for 

protein stability of each TDP43 variant in the presence of C9orf72 mutations, we can co-
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express Dendra2-tagged TDP43 variants and EGFP-tagged G4C2 repeats in primary 

neurons, and measure protein half-life by optical pulse labeling and automated 

microscopy. If C9orf72 mutations disrupt TDP43 turnover, then the half-life for each 

TDP43 variant would increase, resulting in the accumulation of TDP43.  

 While our (G4C2)66-EGFP reporter is capable of producing RAN dipeptides (Fig. 

4.1C), it is still unclear whether the G4C2 RNA or RAN translation products are driving 

neuronal toxicity and mislocalization of TDP43. With the exception of synthetic (GA)3 

dipeptides upon overexpression of TDP43(WT), we did not detect significant differences 

of TDP43 localization (Fig. 4.2). Whether these synthetic dipeptides affect the 

localization of TDP43(R151A) or TDP43(D247A) are unknown. Expressing constructs 

that use alternative codons for expression of individual DPRs, resulting in the exclusion 

of G4C2 RNA, could offer insight as to whether G4C2 expanded RNA or the DPRs, 

contribute to neuronal toxicity and TDP43 mislocalization. Furthermore, overexpressing 

the G4C2 repeat expansion containing a stop codon in front of the repeat, thereby 

inhibiting RAN translation, could also shed light as to whether production of the DPRs 

contribute to TDP43-related toxicity. These additional studies are warranted to determine 

their respective contributions of TDP43-dependent toxicity. 

  Based on our preliminary observations, we are interested in pursuing a thorough 

investigation to determine whether C9orf72 mutant transcripts and TDP43 deposition 

converge upon similar molecular pathways that contribute to neurodegeneration. The 

studies described here have the potential to uncover and highlight critical mechanisms 

responsible for neurodegeneration in C9orf72-related ALS/FTD that may serve as targets 

for therapy development. 
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4.5 Materials and methods 

Plasmids 

 The plasmids pGW1-EGFP, pGW1-mApple, and pGW1-TDP43(WT)-mApple 

were generated as described previously28,29. Primers used for PCR amplification or site-

directed mutagenesis (SDM) were ordered from Integrated DNA Technologies (IDT).  

Mutant TDP43 was created from pGW1-TDP43(WT)-mApple by site-directed 

mutagenesis using the Pfu Ultra high-fidelity polymerase (Agilent Technologies) 

according to the manufacturer’s protocol. 

 To produce EGFP-2A-mApple, EGFP-2A was PCR amplified using PrimeStar 

GXL DNA polymerase (Takara) from pGW1-EGFP with the following primers: 5’ – 

ATA TAA GCT TGC CAC CAT GGT GAG CAA GGG CGA GGA GCT – 3’ and 5’– 

AAG CTT TAG GGC CGG GAT TCT CCT CCA CGT CAC CTG CTT GTT TGA 

GTA GTG AGA AGT TTG TTG CTC CAG ATC CC TTG TAC AGC TCG TCC ATG 

C – 3’. Note that the reverse primer contains the 2A peptide sequence (5’– GGA TCT 

GGA GCA ACA AAC TTC TCA CTA CTC AAA CAA GCA GGT GAC GTG GAG 

GAG AAT CCC GGC CCT. The 783 bp product was digested with HindIII and ligated 

into pGW1-mApple. To generate pGW1-EGFP-2A-TDP43(WT)-mApple, EGFP-2A was 

PCR amplified as described above; the PCR product was cut with HindIII and ligated into 

pGW1-TDP43(WT)-mApple. The following primers were used to generate pGW1-

EGFP-2A-TDP43(R151A)-mApple via SDM: 5’ – GGT TTG GCT TTG TTG CTT TTA 

CGG AAT ATG – 3’ and 5’ – CAT ATT CCG TAA AAG CAA CAA AGC CAA ACC 

– 3’. The following primers were used to generate pGW1-EGFP-2A-TDP43(D247A)-
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mApple by SDM: 5’ – CTC TTT GTG GAG AGG CCT TGA TCA TTA AAG G – 3’ 

and 5’ – CCT TTA ATG ATC AAG GCC TCT CCA CAA AGA G – 3’. 

 To generate each construct containing the hexanucleotide repeat expansion of 

C9orf72 (G4C2) tagged with EGFP in pGW1, the (G4C2)n-EGFP fragment was subcloned 

from pcDNA3.1-(G4C2)n-EGFP (provided by Dr. Peter Todd). Both 71 and 66 repeats 

and its EGFP tag were cut with the restriction enzymes ApaI and NheI and inserted into 

the pGW1 vector. (G4C2)69-EGFP was digested with EcoRI and NheI and ligated into 

pGW1. Note that a single C to A mutation at repeat 13 (GGGCA) is present within the 

repeat sequence. 

Electrophoretic mobility shift assays 

 Purification of full-length recombinant TDP43(WT), TDP43(R151A), and 

TDP43(D247A) are described in Chapter 3. Binding assays were performed as described 

in Chapter 3. Briefly, binding reactions were carried out in binding buffer (12.5 mM 

HEPES, pH 7.8, 50 mM KCl, 2.5 mM MgCl2, 0.5 mM TCEP, 25 µg/mL BSA, 0.01% 

NP-40) with 50% glycerol, 1µg/µl poly-dIdC, recombinant TDP43 variants and ssDNA 

labeled probes tagged with a 5’ 700nm infrared (IR) moiety (purchased from IDT). 

Concentrations of protein and ssDNA are indicated in figure legends. Each reaction was 

incubated on ice for 5 min followed by 25 min at room temperature (RT). 6% acrylamide 

gels were performed at 100 V. The LI-COR Odyssey platform was used to image the 

gels. 

Primary neuron culture and transfection 

 Mixed primary cortical neurons were harvested from embryonic day 19-20 Long-

Evans rat pups and cultured at 0.6 x 106 cells/mL in 96 well cell culture plates (TPP), as 
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previously described28,30. On day in vitro 3 or 4, neurons were transfected with 0.2 µg 

DNA and 0.5 µL Lipofectamine 2000 (ThermoFisher) per well. Cells were rinsed with 

media containing Hoescht 33258 Dye (1:5000, Invitrogen) to label nuclei. For 

experiments that involved synthetic peptides, “fresh” peptides were added directly to 

cells immediately after dissolving in solution (0.1 M NaCl, 25 mM sodium phosphate pH 

7.4) while “aged” peptides were added following 6-8 days of agitation as previously 

described51. All peptides were purchased from GenScript and applied to cells at a final 

concentration of 1mM.  

Longitudinal fluorescence microscopy 

 Automated longitudinal fluorescence microscopy started 24 hours post-

transfection, as previously described29-31,52. Briefly, imaging was accomplished by an 

inverted Nikon Ti microscope with a 20x objective lens, a Lambda XL Xenon lamp 

(Sutter) with 5 mm liquid light guide (Sutter), a PerfectFocus system, and either an Andor 

iXon3 897 EMCCD camera or Andor Zyla4.2 (+) sCMOS camera. Custom code was 

written in publically available software (µManager, ImageJ) to control all stage, shutter, 

and filter wheel movements. 

 Post-imaging processing, analyses for survival, and fluorescent intensity 

measurements were achieved with custom scripts written in Python or ImageJ macro 

language. Morphology, size, and fluorescence intensity were used to label neurons. Loss 

of fluorescence, degenerating processes, and rounding of the soma were used as 

indicators to identify individual neurons as dead. 
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Immunocytochemistry 

 Forty-eight hours after transfection, primary neurons were rinsed twice in PBS 

(Life Technologies) and fixed in 4% paraformaldehyde for 10 min at RT. Following two 

rinses in PBS, neurons were permeabilized with 0.1% Triton-X-100 (Bio-Rad 

Laboratories) for 20 min at RT. Following equilibration with 10 mM glycine in PBS for 

10 min at RT, samples were blocked in 0.1% Triton-X-100, 3% BSA (Research Products 

International) and 0.2% goat serum in PBS for 1 hour at RT. Primary antibodies against 

poly-GA (1:100) and poly-GR (1:500), both previously described51, or poly-GP (1:5000, 

rabbit polyclonal, Millipore) were added to the samples in block and incubated overnight 

at 4°C. Antibodies against TDP43 (1:1000, rabbit polyclonal, Proteintech) were added to 

samples to detect endogenous TDP43. Samples were rinsed 3 times for 5 min with PBS. 

Goat anti-mouse Cy5 secondary antibody (1:250, Jackson ImmunoResearch) was then 

placed in block for 1 hr at RT. Samples were then washed 5 times for 5 min with PBS, 

then twice more containing Hoescht 33258 Dye (Invitrogen) at 1:5000. Cells were rinsed 

twice for 5 min with PBS before imaging. Samples were assessed for localization by 

automated custom-written algorithms. 

 For assessing localization of endogenous TDP43 in the presence of synthetic 

DPRs by immunocytochemistry, primary neurons were treated with fresh or aged 

dipeptides on day in vitro 4. Twenty-four hours after peptide application, cells were fixed 

and immunostained with an antibody against the pan-neuronal cytoplasmic marker, 

MAP2 (1:500, mouse monoclonal, Millipore) and an antibody against TDP43 (1:1000, 

rabbit polyclonal, Proteintech). Samples were imaged by fluorescence microscopy and 

assessed manually using ImageJ. 
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Statistical analysis 

 Statistical analyses were accomplished in either GraphPad Prism or R. For 

survival analyses, differences among cell populations were determined via Cox 

proportional hazards analysis in the publically available R survival package. Statistical 

differences among nuclear/cytoplasmic ratios were determined by one-way ANOVA with 

Tukey’s post hoc test in GraphPad Prism. 
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Figure 4.1 Overexpressing C9orf72 expanded repeats are toxic to neurons. (A) 
Diagram of EGFP-tagged expanded repeats. Constructs contained 71, 66, or 69 repeats. 
Repeats were placed in front of EGFP in separate reading frames relative to EGFP. (B) 
Overexpressing C9orf72 expanded repeats in the GP or GR reading frames significantly 
increased the cumulative risk of death compared to neurons expressing EGFP (HR 1.32, 
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1.16, respectively). n, number of neurons. ** p < 0.008, *** p < 2.45x10-7, Cox 
proportional hazards. Survival analyses were pooled from 3 independent experiments, 
with 8 wells per condition for each replicate. (C) Fluorescence microscopy of primary 
cortical neurons overexpressing mApple (RFP) and either EGFP or (G4C2)66-EGFP and 
stained for each dipeptide repeat protein (GA, GP, or GR). Both GA and GR are detected 
in (G4C2)66-EGFP expressing cells, but not in EGFP expressing cells. GP is detected in 
both cells expressing (G4C2)66-EGFP or EGFP alone. However, signal above background 
is observed in (G4C2)66-EGFP expressing cells. Nuclei were stained with Hoechst 33258. 
Scale bar: 20 µm.
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Figure 4.2 C9orf72 RAN translation products have little effect on TDP43(WT) 
localization. (A) Neither fresh nor aged (GA)3, (GP)3, or (GR)3 peptides51 altered 
endogenous TDP43 localization when applied to primary neurons, compared to buffer 
control. (B) Applying either fresh or aged (GA)3 peptides, but not (GP)3 or (GR)3, 
significantly reduced the nuclear-cytoplasmic ratio of TDP43(WT)-EGFP expressing 
neurons. n, number of neurons. ns, not significant. Data in A represents one experiment. 
Data in B represent 3 independent experiments, *p < 0.001, one-way ANOVA with 
Dunnett’s post-hoc. Plots in A and B show mean ± SEM; n, number of neurons.
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Figure 4.3 TDP43 binds to G4C2 oligonucleotide upon disruption of its R151-D247 
salt bridge.  (A-B) Electromobility shift assay (EMSA) of recombinant TDP43(WT) and 
salt bridge disrupting mutants, TDP43(R151A) or TDP43(D247A), at increasing 
concentrations (0.5 to 16 pmol) were mixed with either 5 nM of labeled (G4C2)1 
oligonucleotides in A or (G4C2)6 in B. Among the conditions tested, a clear shift was 
observed for mutant TDP43 variants in A, but not B. For A-B, arrowheads indicate 
protein-DNA complexes, while arrows point to unbound oligonucleotides. Data in A 
represents 3 replicates and 1 replicate in B.
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Figure 4.4 Co-expression of (G4C2)66 and TDP43 enhances neuronal toxicity and 
TDP43 mislocalization. (A-B) Primary cortical neurons were co-transfected with 
(G4C2)66-EGFP or mApple-tagged TDP43 variants, TDP43(R151A) or TDP43(D247A), 
constructs. Overexpressing mApple-tagged TDP43(WT) significantly increased the 
cumulative risk of death compared to neurons expressing mApple (HR 2.58, p < 2x10-16). 
Mutations that disrupt the salt bridge (R151A in A or D247A in B) significantly reduce 
the risk of death compared to neurons expressing TDP43(WT) (HR 0.35 and 0.66, 
respectively, p < 2x10-16, for both comparisons). A significant increase in the cumulative 
risk of death was observed in (G4C2)66-EGFP expressing cells compared to EGFP alone 
(HR 1.25, p= 0.0003). Co-expressing TDP43(WT) and the expanded repeats enhanced 
toxicity compared to mApple control (HR 4.2, p < 2x10-16). (A) In the presence of the 
expanded repeats, the cumulative risk of death increased from HR 0.96 (p < 2x10-16) to 
1.39 (p= 1.24x10-7) in cells expressing TDP43(R151A), compared to mApple and EGFP 
control. (B) The cumulative risk of death increased in neurons co-expressing 
TDP43(D247A) and (G4C2)66-EGFP from HR 1.74 to 2.68 (p < 2x10-16 for both 
comparisons) compared to mApple and EFFP control. (C) Co-expression of  mApple-
tagged TDP43(WT) or salt bridge disrupting mutants with (G4C2)66-EGFP enhance 
TDP43 cytoplasmic mislocalization in neurons. For A-B, data were pooled from 2 
independent experiments. For C, data were pooled from 2 replicates, **** p < 0.0001 
one-way ANOVA with Tukey’s test. For A-C, n, number of neurons.
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Chapter 5 

Discussion and future directions 

 

 The research described in this dissertation provides novel insight into the molecular 

mechanisms contributing to neurodegeneration in models of ALS and FTD. In Chapter 2, in 

collaboration with Dr. Ivanova, we synthesized short polymers corresponding to the three 

C9orf72 RAN products derived from the sense strand, analyzed their structures by electron 

microscopy and assessed their relative toxicity when applied to rodent primary cortical 

neurons. We observed unique structural features for each dipeptide that correlates with their 

cellular internalization and relative toxicity. In Chapter 3, we demonstrated that the RNA 

binding properties of TDP43, mediated by the formation of a salt bridge between TDP43’s 

RNA recognition motifs, are critical for maintaining TDP43’s RNA binding properties, 

stability, localization, and toxicity in primary neurons. In addition, we identified select 

transcripts encoding oxidative phosphorylation and ribosome components affected by the 

accumulation of functional TDP43. In Chapter 4, I shed light into a potential connection 

between C9orf72 mutations and TDP43 deposition that may uncover novel disease pathways 

eliciting neurodegeneration. Despite the significant contribution of the main findings of this 

thesis to the ALS and FTD field, many questions remain for future study. In this section I 

outline important steps to take moving forward from this work. 
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5.1 C9orf72: DPR vs. RNA-mediated toxicity 

 Work in this thesis has helped cement the toxic properties of different DPRs in a 

neuronal system. We systematically examined each of the sense-derived C9orf72 RAN 

products to determine whether these are sufficient for neuronal toxicity by applying 

synthetic dipeptides to primary neurons and tracking their survival. Here, we showed that 

short peptides composed of 3 or 6 repeat unit lengths are capable of inducing toxicity 

when applied externally to neurons, and were the first to show that RAN peptides adopt 

abnormal and toxic conformations even at such short lengths. In various model systems, 

prior studies have used AUG-initiated constructs to drive DPR expression from 

engineered cDNA, including some that are independent of repeat-containing RNA1-10. 

However, it is still unknown how many repeating units constitute DPR pathological 

aggregates in C9orf72-mutation carriers. The fact that we observed differences in the 

structure and toxicity of the peptides between two short repeating-units emphasizes the 

importance of future studies investigating different DPR lengths.  

 The extent to which DPRs might spread through the disease brain is an intriguing 

avenue of exploration. We observed a relationship between peptide structures, their 

ability to enter cells, and their toxicity to neurons. Specifically, we observed a strong 

correlation between β-sheet content and toxicity for GA dipeptides, and cells internalized 

these peptides most frequently. Our experiments imply that RAN peptides may enable the 

spread or progression of disease at the cellular level. Similar to our studies, a previous 

investigation found that (GA)15 synthetic peptides formed amyloid-like fibrils, displayed 

cell-to-cell transmission properties, and were toxic to cells11. These data suggest that 

therapies capable of blocking RAN peptide internalization may prevent or slow disease 
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progression. Therefore, an important first step towards investigating this avenue is to 

determine the mechanism by which the RAN peptides are internalized by neurons. One 

study suggests that most DPRs are capable of spreading from one cell to another via 

exosomes upon overexpression of codon-optimized DPR constructs in cell culture12. 

Another study demonstrated the spread of poly-GA aggregates in neurons and antibodies 

targeting poly-GA inhibited cell-to-cell transmission13. Given that GA dipeptides appear 

to be the most abundant in C9orf72-mutation carriers14, and one of the most toxic species 

in cells3,6,9,15, determining non-cell autonomous mechanisms could reveal important 

information. To further highlight its relevance to physiologic disease conditions, a 

previous study demonstrated that the spread of DPRs from one cell to another is present 

in iPSC-derived motor neurons from C9orf72-mutation carriers12. Cell-to-cell 

transmission of toxic proteins, such as α-synuclein, and β-amyloid, have been reported 

for other neurodegenerative diseases16,17. Taken together, determining the factors and 

precise pathways facilitating peptide release and cellular uptake could be useful in 

preventing disease progression for C9orf72-ALS/FTD. 

 While many different model systems have been generated to study C9orf72 

mutations, no model has been reported to clearly delineate the relative contribution of 

DPR versus RNA-mediated toxicity. A number of mouse models have been generated to 

investigate the effects of the G4C2 repeat expansion. Generally, these models display key 

features of C9orf72-related disease, including RNA foci and the accumulation of DPRs, 

but present variable neurodegenerative phenotypes18. Notably, a model using AAV to 

express (G4C2)66 was the only mouse model to show robust TDP43 pathology19. With this 

particular mouse model, it would be interesting to parse the relative contributions of 
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repeat-containing RNA and DPRs towards disease pathogenesis by either generating 

constructs that contain stop codons to interrupt the repeat expansion or by inserting a stop 

codon before the repeat in order to block RAN translation. It would also be of therapeutic 

interest to test antisense oligonucleotides (ASOs) targeting the repeat expansion in the 

mouse model expressing (G4C2)66 to see if the neurodegenerative phenotypes could be 

rescued. Whether it is the repeat-containing RNA, DPRs, or both driving toxicity, 

targeting the repeat expansion with ASOs should mitigate the effects of both toxic 

species. 

 

5.2 The role of RNA binding and stability in TDP43-dependent 

neurodegeneration 

 In Chapter 3, we thoroughly investigated the consequences of TDP43’s RRM1-

RRM2 salt bridge on TDP43 localization, stability, RNA processing, and toxicity. While 

prior studies have looked at TDP43’s RNA binding properties20-22, these did not 

systematically connect RNA binding to TDP43’s biophysical properties and downstream 

toxicity. We determined that both RNA binding and protein stability are important 

drivers of TDP43-dependent toxicity. We identified the precise RNAs recognized by 

TDP43 that are responsible for neurodegeneration upon TDP43 accumulation. By 

comparing the transcriptome and differentially spliced RNAs in human cell lines 

overexpressing TDP43(WT) or RNA binding-deficient mutants, we found that the RNAs 

preferentially affected by TDP43(WT) were concentrated within the ribosomal and 

oxidative phosphorylation pathways. These results are consistent with separate findings 

from our laboratory showing that TDP43 destabilizes transcripts encoding ribosomal 
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components and enzymes of the oxidative phosphorylation pathway in iPSCs from 

C9orf72-mutation carriers and in iPSCs overexpressing TDP4323. The splicing data we 

obtained from overexpressing TDP43(WT) suggests that the accumulation of functional 

TDP43 primarily affects splicing events for transcripts enriched for the spliceosome, 

proteasome, and RNA transport pathways. Together, these data highlight abnormalities in 

RNA metabolism, nucleocytoplasmic trafficking, and protein homeostasis in ALS and 

FTD pathogenesis. Future studies are warranted to investigate the precise mechanisms 

through which TDP43 accumulation leads to altered gene expression and alternative 

splicing of transcripts enriched in these pathways. Additional studies should aim to 

determine how TDP43 acts to destabilize ribosome protein-encoding and oxidative 

phosphorylation transcripts, and to investigate pathways that can prevent or counteract 

such destabilization. Whether disease-associated mutations in TARDBP enhance the 

altered gene expression and splicing events identified from cells overexpressing 

TDP43(WT) remains to be determined. 

 Although there are limited structural data for TDP4320,24,25, and given that we 

demonstrate the importance of the salt bridge for maintaining TDP43’s biophysical 

properties and downstream toxicity, it may be useful to determine the structure of TDP43 

upon disruption of the salt bridge. Disruption of the salt bridge impairs RNA binding and 

destabilizes the protein. Our data suggests that RNA binding may influence the folding of 

TDP43. Therefore, determining the specific structural differences of TDP43(R151A) and 

TDP43(D247A) compared to TDP43(WT) via NMR or crystallography could provide 

insight as to how disruption of the salt bridge leads to changes in RNA binding and 

protein stability. However, determining the structure of TDP43 poses a challenge. A 
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complete structure of TDP43 has not been solved, most likely due to its aggregation 

propensity. The only structural data of TDP43 in the literature comprises RRM1 and 

RRM2 in complex with UG-rich sequences20,24,25. Since the R151A and D247A 

mutations impair RNA binding, these mutations may add more difficulty to obtain 

structural information. 

 Our laboratory could further investigate the molecular interactions between 

TDP43’s RRMs using Förster resonance energy transfer (FRET) by fusing RRM1 and 

RRM2 to the fluorescent proteins mClover and mRuby2. These fluorescent proteins 

provide a measurable signal only when they are located within short distances (< 6 nm) 

from one another26. Therefore, this will allow us to measure intramolecular distances and 

TDP43’s binding partners in living cells. Using automated microscopy will also enable us 

to correlate FRET intensity with neuronal survival. However, a drawback to this 

approach is that the fluorescent proteins are considerably larger in size compared to the 

RRMs, which may alter the native folding of TDP43 and also possibly limit the spatial 

resolution of FRET. 

 A substantial amount of recent evidence reveals the importance of RBPs involved 

in familial ALS and FTD, including TDP43, FUS, hnRNPA1 and hnRNPA2B1, MATR3, 

and TIA127. The intrinsically disordered regions (IDRs) within these RBPs mediate the 

assembly of ribonucleoprotein granules and other membraneless organelles through a 

reversible process known as liquid-liquid phase separation (LLPS) in vitro and in cells. 

Disease-associated mutations are frequently located within the IDRs and enhance LLPS, 

which may be precursory to forming cytoplasmic aggregates that resemble pathological 

inclusions observed in ALS and FTD post-mortem brains28-33. A recent study provides 
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evidence suggesting that the amount of RNA regulates the phase transition of such 

RBPs34. Low amounts of RNA promotes LLPS, while high amounts of RNA inhibits the 

formation of liquid-like droplets34. Given that we observed differences in the subcellular 

localization and solubility of RNA binding-deficient TDP43 variants, it would be 

interesting to determine whether salt bridge-disrupting mutations of TDP43 impact its 

liquid-like properties in vitro and in cells. We hypothesize that salt bridge-disrupting 

mutations enhance LLPS by interfering with the ability of TDP43 to bind RNA. 

Additional studies should also determine exactly which RNAs regulate phase separation 

since we identified specific transcripts linked to the accumulation of TDP43(WT). Phase 

transitions also impact protein-protein interactions, and these effects have been observed 

for RNA binding deficient-MATR3 variants35. Future studies should investigate whether 

RNA binding-deficient TDP43 variants also affect protein-protein interactions. Another 

approach towards investigating the liquid-like properties of the RNA binding-deficient 

TDP43 variants is to perform fluorescence recovery after photobleaching (FRAP) upon 

overexpression in primary neurons. Together, these future studies provide an interesting 

avenue for investigating the exact properties mediating phase transitions. 

 Finally, future studies should determine whether TDP43’s native salt bridge could 

be disrupted in vitro as a therapeutic approach. Small molecule drug screens could be 

developed to identify compounds that interrupt the salt bridge. Our data suggest that 

compounds that accomplish this should eliminate TDP43-dependent toxicity in ALS and 

FTD. The identification of candidate compounds could further be extended to 

successfully developed disease models in our laboratory involving human neurons 

derived from iPSCs, donated by individuals with ALS and FTD.  
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5.3 Defining a link between C9orf72 mutations and TDP43-related 

toxicity 

 To date, it is unknown whether the most common genetic mutation causing ALS 

and FTD, C9orf72, and the pathological hallmark of ALS and FTD, TDP43, are directly 

linked. Some studies suggest that DPR accumulation precedes TDP43 pathology36,37, and 

TDP43 accumulation more closely predicts neuron loss14,37,38. Some studies failed to 

observe an effect on TDP43 localization upon expression of individual DPRs in cell 

lines3,6, while others suggest that poly-GA aggregates induce partial mislocalization of 

TDP4339 or trigger the formation of TDP43 aggregates15. Nevertheless, strong evidence 

defining a link between C9orf72 mutations and TDP43 is still lacking. 

 In Chapter 4, we present preliminary evidence of a possible direct connection 

between G4C2 repeats and TDP43. In vitro, TDP43(R151A) and TDP43(D247A), but not 

TDP43(WT), are capable of recognizing at least one unit of G4C2 oligonucleotides. As a 

first step, future experiments are warranted to confirm whether TDP43(R151A) and 

TDP43(D247A) are capable of recognizing longer G4C2 repeats in vitro. Gel shift assays 

should be optimized for determining whether TDP43 variants can recognize longer G4C2 

repeats. Because the secondary structure of the repeat expansion poses a great challenge 

to successfully demonstrate an interaction with the TDP43 variants, an in vivo approach 

is another important step to pursue in the future. Determining an interaction can be 

accomplished by pull-down assays from cells co-expressing TDP43 variants and long 

G4C2 repeats.  

 We observed a synergistic effect on neuronal toxicity upon co-expression of 

C9orf72 mutations and TDP43(WT) or TDP43(D247A), but not TDP43(R151A). The 
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enhanced toxicity may imply that G4C2 repeats and TDP43 are inducing toxicity through 

a conserved mechanism. We also noted an increase of TDP43 mislocalization in neurons 

co-expressing G4C2 repeats and TDP43 variants. Given that prior studies suggest C9orf72 

disrupts nucleocytoplasmic transport1,2,40,41, future studies seeking to establish a 

mechanism by which C9orf72 mutations disrupt TDP43 localization are warranted. 

Specifically determining whether the repeat-expanded RNA or DPRs are responsible for 

the enhanced TDP43 mislocalization would add additional value to these studies. If the 

repeat-containing RNA plays a more direct role on toxicity and TDP43 mislocalization, 

future studies should test co-expression of the RNA binding-deficient TDP43 double 

mutant (F147L/F149L) and the repeat expansion. If the G4C2 RNA is primarily 

responsible, then no change in neuronal toxicity or TDP43 localization would be 

expected. Using constructs containing interrupted codons or inserting of a stop codon in 

front of the repeat could also discriminate between the role of C9orf72 RNA and DPRs in 

driving toxicity. 

 TDP43 pathology is correlated with neurodegeneration in C9orf72-mutation 

carriers, and C9orf72 RAN translation products exhibit toxicity in model systems, but it 

is unclear whether C9orf72 RAN induces neurodegeneration through a TDP43-dependent 

mechanism. To answer this question, one could evaluate the toxicity of each RAN 

peptide in primary neurons deficient in TDP43 by transfecting cells with (a) shRNA 

against TDP43, and (b) plasmids containing G4C2 repeats, presumably producing RAN 

translation products. Alternatively, one could express in vitro transcribed G4C2 repeat 

RNA in TDP43-deficient cells to determine whether toxicity depends on the G4C2 RNA 

or RAN products. If TDP43 is necessary for neurodegeneration due to C9orf72 
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mutations, then elimination of endogenous TDP43 should mitigate toxicity when mutant 

C9orf72 is expressed in neurons, provided that TDP43 knock-down is not substantially 

toxic itself. 

 Prior studies have looked at changes in the transcriptome caused by C9orf72 

mutations either from brain tissue or motor neurons derived from C9orf72-ALS/FTD  

patients42,43. These studies observed an enrichment of transcripts involved in RNA 

processing and oxidative phosphorylation. Additionally, more aberrant splicing events 

were observed in C9orf72-ALS cases compared to sporadic ALS, suggesting dysfunction 

of RBPs. Zhang et al. analyzed the transcriptome of mice expressing poly-GR, and 

transcripts encoding ribosomal components were significantly altered44. With the 

transcriptome analyses we conducted upon TDP43 overexpression, these studies together 

suggest dysregulation of ribosomal and oxidative phosphorylation pathways by C9orf72 

and TDP43 are convergent downstream events in ALS and FTD. Therefore, future 

studies seeking to establish a precise connection between C9orf72 and TDP43, with 

special focus on ribosomal and oxidative phosphorylation components, will be 

instrumental to understanding the disease and developing novel therapies. The next step 

towards this end is to understand specifically how either the hexanucleotide repeat-

containing RNA or the DPRs and TDP43 leads to gene expression changes and abnormal 

splicing events. Future studies using the C9orf72 mouse model generated by Chew et al. 

could be a valuable tool to investigate the transcriptomic changes that could lead to 

TDP43 dysfunction in the context of C9orf72, given that these mice exhibit abundant 

TDP43 pathology. 
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 Given that TDP43 and other related RBPs undergo LLPS in vitro and in cells with 

implications of RNA mediating phase transitions, it would be interesting to investigate 

whether C9orf72 mutations affect the biophysical behavior of TDP43. Recent reports 

suggest that both the hexanucleotide repeat expansion45,46 and arginine-rich dipeptides47-

49 play a role in LLPS in vitro and in cells. Phase separation driven by expanded G4C2 

RNA is length and structure-dependent45, while arginine-rich dipeptides interact directly 

with low-complexity sequences in proteins, undergo LLPS, and disrupt the dynamics of 

membraneless organelles such as stress granules47-49. Although these reports observe 

phase transitions in the presence of the G4C2 expanded RNA or DPRs, it is unknown 

whether the DPRs or repeat-containing RNA interact with TDP43 directly in such phase 

transitions. Future studies investigating the molecular mechanisms mediating LLPS in the 

context of the C9orf72 and TDP43 could provide insight on a potential connection.  

 

5.4 Concluding remarks 

 ALS and FTD are debilitating neurodegenerative conditions resulting in the 

progressive loss of motor and cognitive function for thousands of people each year. 

Despite the truly remarkable progress made in the genetics and biology underlying ALS 

and FTD, effective therapies remain extremely limited. The studies described here have 

underscored important mechanisms responsible for neurodegeneration in ALS and FTD 

that may serve as targets for therapy development. This dissertation investigated C9orf72 

mutations, abnormal TDP43 deposition, and their respective contributions to neuronal 

toxicity.  



	

190 
	

 Despite the significant advancements that have been made since the identification 

of the C9orf72 mutation as the most common genetic cause of ALS and FTD, it remains 

crucial, yet challenging, to understand exactly how the G4C2 repeats cause 

neurodegeneration. Although three mechanisms have been proposed by which C9orf72 

mutations may cause disease, it remains to be determined which mechanism is the 

primary driver of pathogenicity and if there is a cascade of events leading to cell death. 

Determining the relative contributions of each of these potential mechanisms will 

certainly influence therapeutic strategies.  

 Despite our incomplete understanding of the key mechanisms underlying TDP43-

dependent neurodegeneration, this dissertation highlights critical features of TDP43’s 

RNA binding properties and the neurodegeneration that arises from its accumulation in 

ALS and FTD. The fact that we detected a significant portion of transcripts encoding 

components of the ribosomal and oxidative phosphorylation pathways affected by the 

accumulation of TDP43, and transcripts involved in these pathways were also 

destabilized in a separate study using patient-derived neurons underscores the importance 

of RNA homeostasis in ALS and FTD. Determining the precise mechanisms leading to 

RNA dysregulation will absolutely aid in the development of therapeutic strategies to 

delay or prevent neurodegeneration in ALS and FTD.  

 The direct connection, if any, between C9orf72 mutations and TDP43 is yet to be 

determined. While there are events such as nucleocytoplasmic transport and RNA 

misprocessing that are affected by C9orf72 mutations and TDP43, determining a direct 

interaction will be instrumental for subsequent studies. Efforts towards defining a link 

will certainly contribute to our understanding of the molecular pathways responsible for 
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neurodegeneration. Together, the proposed experiments outlined in this thesis will drive 

further investigation and promise an interesting study that will be useful for identifying 

critical targets for effective therapies. 
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