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ABSTRACT

A common observation among legged animals is that they move their limbs differ-

ently as they change their speed. The observed distinct patterns of limb movement

are usually referred to as different gaits. Experiments with humans and mammals

have shown that switching between different gaits as locomotion speed changes, en-

ables energetically more economical locomotion. However, it still remains unclear

why animals with very different morphologies use similar gaits, where these gaits

come from, and how they are related. This dissertation approaches these questions

by exploring the natural passive dynamic motions of a range of simplified mechanical

models of legged locomotion.

Recent research has shown that a simple bipedal model with compliant legs and

a single set of parameters can match ground reaction forces of both human walking

and running. As first contribution of this dissertation, this concept is extended to

quadrupeds. A unified model is developed to reproduce many quadrupedal gaits

by only varying the initial states of a motion. In addition, the model parameters

are optimized to match the experimental data of real horses, as measured by an

instrumented treadmill. It is shown that the proposed model is able to not only

create similar kinematic motion trajectories, but can also explain the ground reaction

forces of real horses moving with different gaits.

In order to reveal the mechanical contribution to gaits, the simplistic bipedal

and quadrupedal models are then augmented to have passive swing leg motions by

including torsional springs at the hip joints. Through a numerical continuation of

periodic motions, this work shows that a wide range of gaits emerges from a simple

xvi



bouncing-in-place motion starting with different footfall patterns. For both, bipedal

and quadrupedal models, these gaits arise along one-dimensional manifolds of solu-

tions with varying total energy. Through breaking temporal and spatial symmetries

of the periodic motions, these manifolds bifurcate into distinct branches with various

footfall sequences. That is, passive gaits are obtained as different oscillatory motions

of a single mechanical system with a single set of parameters. By reproducing a va-

riety of gaits as a manifestation of the passive dynamics of unified models, this work

provides insights into the underlying dynamics of legged locomotion and may help

design of more economical controllers for legged machines.

xvii



CHAPTER I

Introduction

1.1 Motivation

An animal’s ability to move from one place to another in the environment is one

of the most fundamental features that differs it from any other creatures on earth.

It enables animal species to harvest more resources, expand their colonies, and find

more suitable environments. In order to locomote to a specific destination, one has to

overcome the constraints enforced by the environment and utilize energy. Therefore

in nature, a large number of animals exhibit remarkable locomotion abilities while

maintaining low energy expenditure. As for terrestrial animals, the most important

constraint is the consistent pull of gravity. Some species develop different numbers of

limbs to move their bodies.

A very common observation of legged animals, including humans, is that at differ-

ent speeds, they move their limbs differently. The different patterns of limb movement

are usually called gaits. These gaits can also be characterized by a specific footfall se-

quence (Alexander , 1984; Hildebrand , 1989), a typical Ground Reaction Force (GRF)

profile (Alexander , 1980), or by how gravitational, potential, and kinetic energy are

exchanged over the course of a stride (Cavagna et al., 1976). Despite vast differences

in morphology, the gaits of many animals are strikingly similar (Alexander , 1982).

Bipeds, such as humans and birds, prefer to walk at low speeds and to run at higher

1
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Figure 1.1: The footfall patterns (upper row) and the GRF profiles (lower row) of
several bipedal gaits are shown in this figure. The filled bars in the
footfall pattern indicate the stance phase of each leg during one stride
cycle. And the curves represent the magnitude of the vertical component
of the GRFs during stance.

speeds (Fig. 1.1). Quadrupedal mammals, across many species, walk, trot, and gal-

lop. Some other gaits are less common: red kangaroos, for example, are known to hop

(Dawson and Taylor , 1973), and some primates such as lemurs tend to skip at a large

range of speeds (Franz et al., 2005; Demes et al., 1999). These less common gaits are

also observed in humans in special situations such as fast turning, descending stairs,

or in low gravity environments (Minetti , 1998; Fiers et al., 2012; Pavei et al., 2015).

Modeling and simulating the dynamics of locomotion in all its detail, however,

requires multi-body models with a large number of degrees of freedom, the correct

handling of intermittent ground contact with collisions, and the modeling of a sub-

stantial amount of soft-body motion. These models have to incorporate neural control

and they must account for the highly non-linear characteristics of muscle actuation.

For many purposes, such a detailed representation is not necessary. On the contrary,

while complex models could precisely represent all the details of locomotion in na-

ture, they would have difficulties revealing the underlying principles. Because of this,

locomotion research often relies on simplistic models (Cavagna and Kaneko, 1977;

McGeer , 1990; Holmes et al., 2006). These models are highly abstract approxima-

tions of reality, often reducing the entire system to a single point mass. Still, they

are able to capture the many essential features of the dynamics of locomotion.
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(a) (b) (c) (d)

Figure 1.2: Several efficient robots that are designed based on the principles of passive
dynamics: (a) a copy of the McGeer’s passive dynamic walker with knee
joints, (b) Cornell Ranger developed by Biorobotics and Locomotion Lab,
(c) MIT 3D Biped, and (d) ATRIAS built by the Oregon State University.

Among these simple models, people found some mechanical systems can exhibit

stable periodic motions under certain conditions without the help of external actua-

tors or controllers. This type of system is driven by its internal mechanism and the

interaction with the environment such as gravity, inertia, and collisions which is often

referred as passive dynamics. These passive models have been widely studied and

used to predict the relationships among speed, stride length, and stride frequency in

legged systems (Blickhan, 1989; Kuo, 2001). They also have been used as templates

for the design (Collins et al., 2005; Rezazadeh et al., 2015), motion generation (Mor-

datch et al., 2010), and control (Hereid et al., 2014) of legged robots. For example, the

passive dynamic walker designed by McGeer (McGeer , 1990) as shown in Fig. 1.2(a)

can exhibit stable walking motion pattern on an adjusted ramp. The damping and

collision losses during each step are compensated exactly by the changes in the gravi-

tational energy. The Cornell Ranger pictured in Fig. 1.2(b) can walk indoors for 65.2

km without recharging its battery.

All these passive models and walking machines, however, are designed to reproduce

only one specific gait. On the other hand, animals in nature are able, with a single

3



structure, to locomote with different gaits across a range of velocities. In order to

analyze these locomotion patterns and design similar motions for legged robots, it

is valuable to find a single unified model to explain the underlying mechanics of

all common gaits. An important step in this direction was to show that a single

compliant bipedal model could explain ground reaction forces of both, walking and

running with a single set of parameters (Geyer et al., 2006). They were able to show

that this model can explain the dynamics of both bipedal walking and running. Their

work suggests that these two gaits are different dynamical modes of the same system,

oscillating at different energy levels. However, there does not exist a passive model

that is able to reproduce all gaits observed in nature.

In the past few years, I have been wondering why there exist such a large number

of gaits in nature? Why do animals of different species, regardless of their morphology,

tend to switch to the same gait at similar Froude numbers (Vaughan and O’Malley ,

2005)? As for roboticists, can we design legged systems that could exhibit similar

motion patterns? How and when should we command legged robots to switch from

one gait to another?

1.2 State of the art

Legged animal locomotion is usually very complex, and sometimes it is difficult to

distinguish with human eyes. As a result, the study of legged locomotion was almost

impossible until the invention of the camera. In the 1880s, Muybridge used banks of

cameras to capture successive images of animals and humans in motion (Muybridge,

2012a,b). With these images, researchers could look at each frame of the whole stride

cycle and analyze the phases and footfall sequences of animal gaits. Starting in 1965,

M. Hildebrand developed a criteria to classify gaits by three numbers, the time lag of

footfall of forefeet or rearfeet, the time lag of footfall of ipsilateral feet, and the duty

factor (Hildebrand , 1965, 1989). He compared over 150 different species of animals
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Figure 1.3: These figures are adapted from the Hildebrand Gait Graph for (a)
quadrupedal symmetrical gaits and (b) quadrupedal asymmetrical gaits.

using this method. The gaits were categorized into two groups: symmetrical gaits

and asymmetrical gaits, and analyzed separately. In the symmetrical gaits, left legs

and right legs basically do the same thing just half stride out of phase. For example,

quadrupedal walking, trotting, or pacing. On the other hand, in asymmetrical gaits,

legs move differently during the whole stride. Such as bounding and galloping. This

method allowed for a graphical classification of gaits in a so-called gait graph (Fig. 1.3),

and Hildebrand’s results suggested that the range of possible gaits in this graph can

be represented as a continuum, rather than a set of isolated regions. For example, the

regions of symmetrical gaits of vertebrates in the graph form a four pronged figure as

shown in Fig. 1.3(a). While certain components of this shape, have been explained

in (Hildebrand , 1985), the reasons for its exact shape remain unclear.

Several simplistic models have been proposed to emulate the underlying dynamics

of walking and running. For example, Mochon and McMahon (1980b) demonstrated

that rather than constantly controlling values of each state in the model and forcing

all joints to follow predefined trajectories, the Inverted Pendulum (IP) can closely
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resemble bipedal walking. In this model, the whole body is represented as two stiff

pendulums. During stance phase, the system is vaulting over a stiff leg with fixed

length while the other leg is swinging forward as shown in Fig. 1.4(a). Under proper

initial conditions, this passive model can demonstrate stable periodic walking gait

patterns on a ramp without the help of additional actuators and controllers. In each

step, the collision losses are exactly compensated by the changes of gravitational

energy caused by the Center of Mass (COM) descent. This discovery in legged loco-

motion has lead to the creation of a number of highly efficient walking robotic devices

(Bhounsule et al., 2012; Collins et al., 2005). Similar models have been to extended to

quadrupeds to identify walking gaits, and to investigate their dynamics and stability

(Smith and Berkemeier , 1997; Remy et al., 2009). The main body and the legs in

these models were represented by rigid links. Since motion was based on inverted

pendulum walking that requires an instantaneous transfer of support, the range of

possible gaits was severely limited. Inverted pendulum walking by itself is not able to

capture the rich variety of gaits and locomotion patterns that can be found in nature.

In addition to the rigid leg models, a spring-mass model (Blickhan, 1989; Farley

et al., 1993) has been used to describe the dynamics of running. This model assumes

that the total mass of the legged system is located in a single point mass that is

connected via a massless linear spring to a massless foot. During stance, the point

mass pivots in a downward arch about the contact point as illustrated in Fig. 1.4(b).

Since the leg has no mass, no swing dynamics exist, and it is assumed that the leg

simply moves to a predefined Angle of Attack (AOA) α during swing. As opposed

to stiff legged systems, which require an instantaneous transfer of support, the two

legs can conduct touch down and lift off independently, such that a double stance

phase as well as an airborne phase is possible. This spring-mass model is utilized to

explain the basic mechanics of two legged runners and trotting quadrupeds (Farley

et al., 1993; Full and Koditschek , 1999).
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In recent research, a unified Spring Loaded Inverted Pendulum (SLIP) model was

proposed to explain the underlying dynamics of bipedal walking and running (Geyer

et al., 2006). It is based on the spring-mass model (Farley et al., 1993; Full and

Koditschek , 1999), but it has two legs. As opposed to stiff legged systems, which

require an instantaneous transfer of support, the two legs can conduct touch down

and lift off independently, such that a double stance phase is possible. As shown in

Fig. 1.4(c), the double stance phase takes place between the first two frames. By using

this model, they could reproduce more realistic GRFs as well as the COM trajectories

for both gaits. The GRFs that are predicted by this model closely resemble those of

human walking and running (Lee and Farley , 1998), and the model is able to explain

the characteristic double hump in the vertical GRFs of human walking (Pandy , 2003).

While this unified SLIP model has been instrumental in understanding the dynam-

ics of bipedal gaits, it has a key simplifying assumption inherited from the spring-mass

model: after lift off, each leg instantaneously goes to a predefined AOA and remains

there until the foot hits the ground again. This modeling choice is problematic for

two reasons: first, in gaits with flight phases such as running, two legs cannot be

fully distinguished when they have exactly the same landing angle which will lead to

incorrect footfall sequence without proper selection of the stance leg. Additionally,

due to lack of swing leg dynamics, this model has infinitely many periodic motions in-

cluding motions with infinitely short, nonphysical swing times (Rummel et al., 2009).

When the leg stiffness both legs are fixed, in order to identify the entire solution

manifold of this SLIP model, one has to continuously change the AOA and the to-

tally energy stored in the system. However, the structure of periodic solutions from

this model seems to be very complex. In addition to common walking and running,

there exists an continuous region of footfall sequences such as walking gait pattern

with one, two, three maxima in the GRF profiles, running gait without flight phases,
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Figure 1.4: Several simplistic models that are used to study the bipedal walking and
running. The IP model shown in (a) are used to emulate the ballistic
walking gait, whereas the spring-mass model plotted in (b) resembles
running or hopping gaits. (c) illustrates the Geyer bipedal SLIP model
walking with double stance phases. Parameters of the models in these
figures include AOA α, leg stiffness k, original leg length lo, and total
body mass m.
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and gaits with asymmetrical limb forces (Rummel et al., 2009, 2010). Moreover, to

find more complex bipedal gaits like skipping Minetti (1998), each leg needs to have

two different AOA. This will add another dimension to the solution manifold, which

makes it almost impossible to identify all solutions from this SLIP model.

1.3 Thesis outline

In this work, I seek to explain the relationships among gaits by using a model-based

approach and investigating the idea that all gaits are a manifestation of the underlying

natural passive dynamics of a legged system. Therefore, the proposed dissertation

will focus on modeling and exploring gaits of passive models with compliant legs.

Motivated by the Geyer bipedal SLIP model, in Chapter II, the concept of unified

model is extended to quadrupeds. This quadrupedal model includes a rigid torso and

four linear springs as legs. Gaits are identified in a gait creation framework (Remy

et al., 2011), such that the contact sequence is only influenced by the starting values

of the numerical integration. By varying these values, the unified quadrupedal model

is able to reproduce a large number of gaits observed in nature passively including

trotting, pacing, walking, tölting, bounding, and galloping. In order to validate to

what degree this model can explain the quadrupedal locomotion and ensure that the

model is not oversimplified, in Chapter III, optimization is conducted to match the

experimentally obtained vertical GRFs of the real horses at walking, trotting, and

tölting. It has been shown that despite the model simplicity, the model does not

only produce qualitatively similar motion patterns, but can quantitatively match the

underlying dynamics with high R-square values.

To include even more bipedal gaits other than just walking and running, in Chap-

ter IV, a new augmented bipedal SLIP model with swing leg motions is developed. In

this model, the AOA for each leg is no longer a free parameter but a function of the

initial conditions which leaves the total energy stored in the system as a single system
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parameter that can be altered. By using numerical continuation techniques (Allgo-

wer and Georg , 2003), it is shown that all bipedal gaits including bipedal hopping,

skipping, galloping can be originated through various bifurcations and continuations

from in-place bouncing of a single model.

In Chapter V, similar techniques have been implemented on a quadrupedal model.

With the same set of parameter values as adopted in the bipedal model, an exam-

ination of the dynamic similarity (Alexander and Jayes , 1983) between these two

models is presented. Additionally, it has been shown these passive quadrupedal gaits

are sensitive to the value of main body inertia. Some shifts in the gait branches are

observed when the main body inertia varies.

Finally, in Chapter VI, some preliminary results in quadrupedal symmetrical gaits

are shown. The identified passive gaits are further compared to the animal gaits ob-

served in nature. Potential implementations and embodiment of the passive solutions

from both bipedal and quadrupedal models developed in the thesis are also discussed.
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CHAPTER II

A Passive Dynamic Quadruped that

Moves in a Large Variety of Gaits

2.1 Introduction

1 Passive dynamic walkers and runners (Cavagna and Kaneko, 1977; McGeer ,

1990; Seyfarth et al., 2002) have been studied extensively with simplistic conceptual

models. These models have been used to identify the basic dynamics of locomotion,

predict energetic efficiency, and quantify first order stability of the resulting motion.

Researchers in this field have been focused primarily on passive dynamic quadrupeds

with stiff legs (Smith and Berkemeier , 1997; Remy et al., 2009, 2010) to investigate

the inverted-pendulum walking and stability of two and three dimensional systems.

However, stiff legged systems require an instantaneous transfer of support, which

means that for stiff-legged quadrupeds exactly two of the four legs are on the ground

at all times. Therefore the range of possible gaits was severely limited. This restricts

the models to symmetrical gaits with a duty factor of β = 0.5. Another drawback of

stiff legged models is the fact that such an inverted pendulum model fails to match the

motion of the center of mass in human bipedal walking (Lee and Farley , 1998), and

that it cannot explain the characteristic double hump in the vertical ground reaction

1This chapter has been previously published in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014) (Gan and Remy , 2014a).
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Figure 2.1: This conceptual quadrupedal model with an extended main body and
four massless elastic legs, can predict a wide variety of passive dynamics
gaits.

forces (Pandy , 2003).

Recent research has shown that a compliant bipedal model can explain ground

reaction forces of both, human walking and running with a single set of parameters

(Geyer et al., 2006). Their research suggests that not stiff, but compliant legs are

fundamental to the dynamics of walking. In this interpretation, walking and running

are just two separate dynamic modes of the same system that is driven by its natural

mechanical dynamics.

In this chapter, I extended such an elastic model to quadrupedal locomotion.

Elasticity plays an important role in quadrupedal locomotion in nature (McGuigan,

2003), and elastic leg designs have found their way into a number of quadrupedal

robotic prototypes (Remy et al., 2012; Poulakakis et al., 2005). I modeled this con-

ceptual quadruped with a single rigid body with three degrees of freedom. Four

massless elastic legs are mounted at the shoulder and hip, that –during swing– go to

a predefined Angle of Attack (AOA). With this simple structure, our model is able

to produce a wide range of gaits; –simply by setting appropriate initial states and
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system parameters. Such periodic motions were identified in a numerical framework

for gait creation (Remy et al., 2010). With this, I was able to identify trotting, pacing,

walking, toelting, bounding, and galloping within a single quadrupedal model. In the

present chapter, I modified the methodology of the gaits creation (Remy et al., 2010)

for compliant leg model. Details of the compliant quadrupedal model and framework

are shown in the following section. It has been also demonstrated that this model

could reproduce a wide range of gaits such like walking, trotting, and toelting. For

each gait, the footfall sequence and vertical Ground Reaction Forces (GRFs) and

compare the gaits identified by the simplistic model with the gaits of the horse in

nature.

2.2 Methods

While the simplistic model that I consider in this chapter is very similar in its

structure to the established Spring Loaded Inverted Pendulum (SLIP) models of

bipedal locomotion, the fact that it has an extended main body and that it is resting

on four legs requires a number of adjustments to the standard methodology of passive

dynamic gait identification. In particular, we introduce a swing time tswing, during

which a leg is not able to engage in ground contact. This creates a well defined

contact pattern.

2.2.1 Gait Creation

For gait creation, I introduce a vector X = [q̄o, q̇o, zo]
T and a vector p that

contain all initial states and all system parameters that are necessary to define a

gait. X includes a subset of the initial generalized coordinates q̄o and all generalized

speeds q̇o at the beginning of a stride. Similarly, zo defines the discrete states at the

beginning of a stride. Discrete states have a derivative of 0 and hence no velocity

is associated with them. The generalized coordinate vector q = [x, y, ϕ]T contains
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the horizontal and vertical position (x, y) of the Center of Mass (COM), and the

orientation of the main body ϕ. A stride is assumed to always start at an initial

horizontal position of x = 0. x is hence excluded from the variable vector X. The

continuous dynamics of the model are governed by a set of differential Equations of

Motion (EOM):

q̈ = f (q, q̇, z,p) . (2.1)

In addition to the continuous dynamics, discrete changes to the system state occur

every time a foot touches down or leaves the ground. We refer to such instances as

events. They are defined mathematically by the directional zero crossing of an event

function e:

e (q, q̇, z,p) = 0, with ė > 0. (2.2)

One event is defined as the terminal event e? and marks the end of a stride. Since our

models are collision-free, the continuous states q and q̇ do not change during events.

Only discrete states z change according to a event-handler function

z+ = g
(
q, q̇, z−,p

)
, (2.3)

where the indices − and + indicate the states right before and right after the event.

The discrete state vector z is given by z = [phase,posx]
T and contains two kinds of

discrete states: A first set of states is used to track the phase of each leg i (phasei ∈

[1, 2, 3]). These variables describe the current leg configuration. A second set of

discrete states posx,i is used to record the horizontal position at which a foot touched

the ground. From these positions I can calculate the spring forces that the stance

legs exhibit, and I can monitor whether foot placement is periodic over the course of

multiple strides.

To simulate the hybrid dynamics of a single stride, I start with the initial state

values qo, q̇o and zo at time t = 0. State derivatives are computed according to
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the EOM (2.1) and are being integrated while monitoring for events (2.2). Each

time an event is detected, it is processed by the appropriate event handler function

(2.3), before integration is continued with the new values of the discrete states z+.

This process is repeated until the terminal event e? is triggered which marks the

end of the stride at time tstride. With this, I can define a stride-to-stride mapping

Xk+1 = P
(
Xk, p

)
, which conducts the simulation of a single stride starting from the

values Xk at the beginning of a stride. It returns the values Xk+1 at the end of the

stride. This stride-to-stride mapping reduces the definition of a periodic gait to the

implicit equation:

P (X?,p?)−X? = 0. (2.4)

First order stability of such a periodic gait can be assessed via the eigenvalues

of the Monodromy Matrix J which is the partial derivative of P with respect to the

continuous and discrete states, evaluated at the periodic solution:

J =
∂ P

∂X

∣∣∣∣
X?,p?

. (2.5)

J describes how a disturbance ∆X = X−X? evolves from step to step:

∆Xk+1 = J ·∆Xk. (2.6)

If all eigenvalues are smaller than one, the disturbance in the initial states will decay

exponentially.

2.2.2 The Simplistic Model

The simplistic model that I use in this study consists of a rigid main body and four

massless elastic legs as shown in Fig. 2.1. It is a planar model and motion is restricted

to the sagittal plane. The main body measures l1 from hip to shoulder. It has a point-
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mass of mo and an inertia of jo. The COM can be displaced along the anteroposterior

axis to represent different weight distributions. A parameter dCOM(0 < dCOM < 1)

is used to continuously shift the COM from the shoulder (dCOM = 0) to the hip

(dCOM = 1). The distances from the COM to the shoulder and hip are given by:

lF = l1 · dCOM (2.7)

lH = l1 · (1− dCOM) (2.8)

So the shoulder and hip positions could be calculated as:

xF = x+ lF · cos(ϕ); xH = x− lH · cos(ϕ) (2.9)

yF = y + lF · sin(ϕ); yH = y − lH · sin(ϕ) (2.10)

The legs are modeled as massless springs with a uncompressed length of lo. They

are connected to the main body at the hip and shoulder via rotational joints. Front

legs and hind legs have different spring stiffnesses of kF and kH , respectively. There

is no damping in the springs and rotational joints. Since the legs have no mass, there

are also no collision losses. The model is energetically conservative. Feet are modeled

as points with no geometrical extension and I assume that ground friction is infinitely

large; that is, the feet never slip on the ground.

Parameter values of the quadruped model are given in units normalized relative to

total mass of the model mo, uncompressed leg length lo and gravity g (Hof , 1996). As

these three quantities are removed from the set of adjustable parameters, the results

of this research are irrelevant of the mass or size of a specific system.

2.2.3 System Dynamics

Each leg that is in stance creates a force Fi on the main body. This force acts along

the direction of the leg with a magnitude proportional to the leg compression. The
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Table 2.1: The proportions of the model roughly represent the dimensions and mass
properties of a Crossbred horse.

Param. Value Unit Description

mo 1 [·] Total mass
lo 1 [·] Uncompressed leg length
g 1 [·] Gravitational constant

la 1 [lo] Main body length
jo 0.18 [mol

2
o] Main body inertia

kF 21 [mog/lo] Front leg spring stiffness
kH 19 [mog/lo] Hind leg spring stiffness
αF 0.21 [rad] Front AOT
αH 0.25 [rad] Hind AOT
dCOM 0.5 [·] Offset of the COM

tswing 0.4 [
√

lo/g] swing time

current length and angle of the stance leg are continuously updated in the integration

of eq (2.1):

li =
√

(xF,H − posx,i)2 + y2F,H (2.11)

γi = arctan(
posx,i − xF,H

yF,H
) (2.12)

Once I get the current lengths and angles for the stance legs, the corresponding forces

and torques exerting on the main body could be calculated as following equations:

Fi = kF,H · (lo − li) (2.13)

Mi = Fi · lF,H · cos(ϕ− γi) (2.14)
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Because this is a single body system, the EOM is reduced to three fully decoupled

differential equations:

ẍ =
−1

m1

∑
i

Fi · sin(γi) (2.15)

ÿ =
1

m1

∑
i

Fi · cos(γi)− g (2.16)

φ̈ =
1

j1

∑
i

Mi (2.17)

Each leg is in one of three discrete phases phasei: ready to touch town (1), stance

(2), or swing (3). Because the ground is a unilateral constraint, a stance leg will lift

off the ground contact when the current length equals to its uncompressed leg length.

Since the legs have no mass, it is assumed that they go to a pre-defined AOA during

swing. In contrast to other implementations of the SLIP model, it is assumed that

after lift off, leg swing does not happen instantaneously and that the AOA is only

reached after a certain swing time tswing. Before this time has passed, a leg will not

engage in ground contact so that swing legs will not affect the main body dynamics.

The transition between these phases is detected via the following event detection

functions:

ei,1 = lo · cos(αF,H)− yi (2.18)

ei,2 = li − lo (2.19)

ei,3 = ti − tswing (2.20)

In the corresponding event handler functions, the phase of the involved leg is updated

to its new value. At touchdown, the contact position posx is updated according to
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gi,1, and at liftoff, the time measurement of the swing phase is reset.

gi,1 : phase+i = 2; pos+x,i = x+ lf,b · cos(αF,H); (2.21)

gi,2 : phase+i = 3; t+i = 0; (2.22)

gi,3 : phase+i = 1; (2.23)

When computing the first order stability of a gait with eqs. (2.5) and (2.6), I have

to consider that not all discrete states cause a disturbance. For example, the positions

of the contact points posx,i of feet that are not on the ground do not influence the

motion. For this reason, only the non-zero eigenvalues are reported throughout this

chapter. Their number varies from gait to gait, depending on how many feet are on

the ground during the terminal event e?.

2.3 Results

2 With the methodology described above, I was able to identify a large variety

of symmetrical and asymmetrical gaits by numerically solving equation (2.4) with

different initial guesses. Each gait is defined by a vector X that contains the full

information about the continuous and discrete states, as well as about all system pa-

rameters. The order of ground contact, which is the main characterization of a gait,

is an outcome of these initial states and parameters, and not enforced through addi-

tional constraints. The continuous generalized coordinates and velocities for all gaits

are shown in Table 2.2, the discrete states in Table 2.3, and the system parameters

in Table 2.4.

All gaits that were found within this chapter are dynamically unstable. For most

gaits, the spectral radius of the Monodromy Matrix is about 4. That means that an

unstable disturbance grows by a factor of 4 during a stride. While actual self-stability

2Videos of all gaits are available at https://youtu.be/3EMNoW1vrEg
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Figure 2.2: 10 consecutive frames of a full stride of a trotting gait.
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Figure 2.3: Footfall sequence and GRFs of a trotting gait.

would be very desirable, such a rate of disturbance growth can probably be tolerated

by a closed loop control system in a robotic application. The only exception to this

is the toelting gait, which is highly unstable with a spectral radius of 273.

2.3.1 Symmetrical gaits

In symmetrical gaits, the left and right side of a legged system are performing the

same motion, but with a phase difference of half a stride. This greatly facilitates gait

synthesis, since only a half stride must be simulated, after which the left and right

side of the model can simply be switched. The AOA is identical for left and right legs

such that only two parameters, αF and αH , were defined for the AOA.
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2.3.1.1 Trotting and Pacing

Since the employed model is planar, the labels of left and right legs can be assigned

arbitrarily to each leg. A two-beat gait with an air phase can thus be interpreted as

a trotting gait if diagonal pairs of legs move together (Fig. 2.2) or as a pacing gait if

two legs on the same side move together.

The vertical ground reaction forces (Fig. 2.3, shown for trotting) show a charac-

teristic single hump that corresponds to a single compression cycle of the leg spring.

This result is very similar to previous studies which employed more complex models

(Herr and McMahon, 2000). Furthermore, by a slight adjustment of the system pa-

rameters, I can identify ground reaction forces that perfectly match those recorded

from crossbreed horses (Weishaupt et al., 2004; Gan and Remy , 2014b). The aver-

age velocity for trotting and pacing is 0.66
√
log and the non-zero eigenvalues of the

Monodromy Matrix are (4.06, 1, 0.56± 0.27i).

2.3.1.2 Walking

Walking is a four-beat gait. In nature it only exists in a lateral sequence with the

following touch-down order: right hind leg, right front leg, left hind leg, left front leg.

We hence used this order when defining left and right legs. The resulting motion is

shown in Fig. 2.4. Walking is the slowest gait that I found. With an average velocity

of 0.25
√
log it is only half as fast as trotting and pacing. The non-zero eigenvalues of

the Monodromy Matrix of walking are (−2.70± 1.04i, 1, 0.54− 0.66± 1.37i).

In contrast to trotting and pacing, in walking, each leg spring will undergo two

compression cycles. This double-oscillation results in the characteristic double hump

in the vertical GRFs (Pandy , 2003) (Fig. 2.5).

21



Figure 2.4: 10 consecutive frames of a full stride of a walking gait.
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Figure 2.5: Footfall sequence and GRFs of a walking gait.

2.3.1.3 Toelting

Toelting is a gait that is unique to Icelandic horses. Like the walking gait, it is

a four beat gait. Yet it has the ground reaction force profile of a running gait in

which the leg springs undergo only a single compression cycle (Fig. 2.7). In this gait,

the main body shows only very small rotations and a very limited vertical movement

(Fig. 2.6). In nature, this makes this gait very comfortable for a rider, and one can see

that it might be equally beneficial in a robotic application in which a fast and efficient,

yet steady motion is desired. In terms of locomotion velocity, toelting (average speed

0.69
√
log) is comparable to trotting and pacing. As a downside, toelting is the most

unstable gait that I observed. The non-zero eigenvalues of the Monodromy Matrix

are (273.57, 1, 0.68, 0.14,−0.04,−0.10).
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Figure 2.6: 10 consecutive frames of a full stride of a toelting gait.

Figure 2.7: Footfall sequence and GRFs of a toelting gait.

2.3.2 Asymmetrical gaits

In contrast to symmetrical gaits, the stance phases of the left and right leg pairs

are unevenly spaced in time for asymmetrical gaits. This means that a different AOA

must be assigned to each individual leg and that a full stride must be simulated to

identify a gait. Instead of using two parameters αF and αH , for the AOA, four param-

eters αLH , αRH , αLF , and αRF are required. Asymmetrical gaits include bounding

and galloping gaits.

2.3.2.1 Bounding

In a bounding gait, the two front legs and the two hind legs move in unison

(Fig. 2.9). Such bounding gaits are not very frequent in nature, but a couple of

robots with elastic legs have implemented these gaits; including the MIT quadruped

(Raibert et al., 1986) and the Scout II robot (Poulakakis et al., 2005). The appeal
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Figure 2.8: 10 consecutive frames of a full stride of a bounding gait.
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Figure 2.9: Footfall sequence and GRFs of a bounding gait.

from this gait comes from the fact that by moving both legs together the control

problem is greatly simplified, and no rolling motion is created. However, a substantial

pitching motion is introduced (Fig. 2.8) and bounding is comparatively slow (average

speed 0.41
√
log). The non-zero eigenvalues of the Monodromy Matrix of bounding

are (5.66, 1.54, 1, 0.19).

2.3.2.2 Galloping

Galloping, is the fastest gait that I was able to identify. With a velocity of

1.49
√
log it is more than twice as fast as trotting, pacing, and toelting. For the

galloping gait that I identified, the non-zero eigenvalues of the Monodromy Matrix

are (3.40, 1, 0.32± 0.45i). Depending on the assignment of left and right legs, I can

produce both a rotary and a transverse gallop. The transverse gallop is more common

in horses and hence depicted in Fig. 2.10.
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Figure 2.10: 10 consecutive frames of a full stride of a galloping gait.
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Figure 2.11: Footfall sequence and GRFs of a galloping gait.

Table 2.2: Values of continuous states for each gait.

Gaits ẋ y ẏ ϕ ϕ̇

Trotting 0.6742 0.9805 0.1011 0.0013 0.0052
Pacing 0.6742 0.9805 0.1011 0.0013 0.0052
Walking 0.2551 0.9670 0.0102 -0.0284 0.0616
Toelting 0.6869 0.9667 0.0262 0.0024 0.0115
Bounding 0.4138 1.0237 0.1683 -0.0560 0.3325
Galloping 1.4920 0.9640 0.2727 -0.0511 0.1311
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Table 2.3: Values of discrete states for each gait.

Gaits phLH phRH phLF phRF posLH posRH posLF posRF

Trotting 3 1 1 3 -0.7088 -1.2472 -0.2318 0.3066
Pacing 1 3 1 3 -1.2472 -0.7088 -0.2318 0.3066

Walking 2 1 2 3 -0.5754 -1.0730 -0.6622 0.1646
Toelting 2 1 1 3 -0.5642 -1.1567 -0.4284 0.1810

Bounding 1 1 3 3 -0.9426 -0.9426 0.4068 0.4068
Galloping 3 3 2 3 -1.2093 -1.4859 0.3914 0.1292

Table 2.4: Values of model parameters for each gait.

Gaits la jo kf kb αLH αRH αLF αRF dCOM tswing

Trotting 1.00 0.60 20.00 21.00 0.20 0.20 0.20 0.20 0.50 0.51
Pacing 1.00 0.60 20.00 21.00 0.20 0.20 0.20 0.20 0.50 0.51

Walking 1.00 0.42 20.02 21.54 0.30 0.30 0.30 0.30 0.53 0.63
Toelting 1.04 0.61 21.13 24.29 0.27 0.27 0.25 0.25 0.58 0.40

Bounding 1.00 0.60 20.00 20.00 0.09 0.09 0.11 0.11 0.50 0.61
Galloping 1.00 0.49 12.02 12.54 0.34 0.22 0.42 0.35 0.53 0.81

2.4 Discussion and Conclusion

This chapter introduced the model of a conceptual quadruped with elastic legs,

and identified a large variety of passive dynamics gaits. In particular, I was able

to create all primary quadrupedal gaits that are found in nature; including walking,

trotting, pacing, toelting, bounding, and galloping. The different ground contact

sequences of these gaits emerged thereby solely from the initial model states and

model parameters. Our work shows that all these gaits can be created completely

passively with a single model, and allows us to extend the ideas of passive dynamic

locomotion to a large range of quadrupedal gaits. This insight provides an invaluable

vantage point for the design of energy efficient quadrupedal robots.

Even though the different gaits are based on the same model, they have different

properties, such as locomotion speed or stability. In an abstract sense, different gaits

can be interpreted as different modes of elastic oscillations that propel the legged
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Figure 2.12: The four symmetrical passive dynamic gaits that were identified in this
study are compared with the range of gaits found in horses. This range
is illustrated by the shaded region, which is adapted from Hildebrand.
Our results span the full range of possible symmetrical gaits that are
found in nature.

system forward. These modes can be observed most clearly in the transition from

walking to trotting, in which the leg springs go from a double compression stance

phase to a single compression stance phase. By using different modes of locomotion,

gait properties can thus be adjusted without compromising efficiency.

The results presented in this chapter are, however, only the tip of the iceberg.

We deliberately restricted ourselves to only identifying example motions for the most

important gaits that are found in nature. In the gait graph of Fig. 2.12, these results

are compared to symmetrical horse gaits. While our results span the whole range

of possible gaits, it is evident, that a much larger variety of motions is possible

and being used in nature. Furthermore, it is possible, that in technical applications

additional gaits might proof beneficial. Our research confirms the expectation that
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even more gaits exist. While I only report one exemplary gait for each footfall pattern,

I was able to create a continuous variety of gaits by changing the initial states q, q̇

and model parameters p. This result suggest that, in addition to finding a periodic

motion via eq. (2.4), it is possible to optimize a merit function in the process. With

this, one can try to mimic the ground contact patterns of gaits that are found in

nature (Gan and Remy , 2014b) or optimize first order stability of the legged system

(Mombaur et al., 2005). Knowledge about such optimal passive dynamic walkers will

be extremely useful in robotic applications, and might also teach us about gaits in

nature. For example, it might explain the range of gaits used by horses, as it is shown

in Fig. 2.12.
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CHAPTER III

Passive Dynamics Explain

Quadrupedal Walking, Trotting, and Tölting

3.1 Introduction

1 In the previous chapter, a unified model with compliant legs is developed which

is capable of reproducing a large number of quadrupedal motions that are similar to

animal gaits observed in nature. This is not surprising, given that the compliance of

the locomotor apparatus plays such an important role in quadrupedal locomotion in

nature. McGuigan (2003), for example, pointed out that the long flexor tendons of

the horse’s limbs can store and release elastic energy during the stance phase, similar

to a spring. Their experiments showed that during weight-bearing the limb changes

its length by flexion of limb joints, particularly the metacarpophalangeal joint, and

therefore can be modeled as a compression spring. Clayton et al. (2000) showed that

metacarpophalangeal joint angles changed proportionally with peak vertical Ground

Reaction Force (GRF).

The current chapter is based on this insight, and investigates to what extend this

passive model can explain the animal locomotion in nature. To obtain a well-defined

sequence of ground contact, three distinct phases for each leg are defined: stance,

1This chapter has been previously published in the Journal of computational and nonlinear
dynamics (Gan et al., 2015).
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swing, and ready for touch down. In the ready for touch down phase each leg goes to

a predefined angle of attack, similar to the Spring Loaded Inverted Pendulum (SLIP)

model. This phase is, however, preceded by an extended swing phase in which the

legs cannot make contact. Introducing this swing phase allowed us to prevent feet

from striking the ground prematurely. This variation of the original SLIP model was

necessary to enable a coordinated motion of the four legs. The model is implemented

in a numerical framework for gait creation (Gan and Remy , 2014a) using a single-

shooting approach. The contact sequence was thereby an outcome of the numerical

integration, and was not determined a priory. With this, a wide variety of gaits can

be found by simply changing the initial states and system parameters. Furthermore,

by numerically fitting the model-predicted GRFs to experimentally obtained data,

appropriate values for these states and parameters can be identified automatically.

These data was obtained on an instrumented high-speed treadmill.

With this approach, I am able to produce realistic walking, trotting, and tölting

with a single conceptual model. Furthermore, the model-predicted vertical GRFs

closely matched the recorded GRFs of walking and trotting Warmblood horses, and

of tölting Icelandic horses. These results suggest that the different quadrupedal gaits

that are found in nature are potentially just different oscillation modes of the same

dynamic system. The paper highlights the significance of natural dynamic motions

and of elastic energy storage in quadrupedal locomotion.

The mathematical details of the gait creation are similar to the previous chapter.

A quantitatively comparison between the identified motion and morphological pa-

rameters to those of horses is reported. A sensitivity study is conducted to examine

how well different parameters can be identified by the methodology and how much

influence they have on a particular gait. As a possible extension to the simplistic

model presented above, an extended model with an articulated head-neck segment is

evaluated. This model predicts the GRFs of walking more accurately.
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Figure 3.1: A simplistic model that essentially consists of a single distributed mass
on four mass-less springs is able to explain the dynamics of quadrupedal
walking, trotting, and tölting (shown in a). In addition, I studied an
extended version that includes a head-neck segment connected to the
body by a rotational joint with a torsional spring (shown in b).

3.2 Methods

In this section, I introduce the theoretical framework and the simplistic models

that are used to generate periodic motions that optimally predict experimentally

recorded GRFs. The methodology is based on the previous work on gait creation

(Gan and Remy , 2014a). The gait creation and the details of the model is presented

in section 2.2.

3.2.1 Models

The simplistic model is identical to the one shown in the previous chapter which

consists of a rigid main body and four massless elastic legs (Fig. 3.1a). It is planar

with all motion being restricted to the sagittal plane.

Head and neck motion play an important role in quadrupedal locomotion. To

make sure this model is not oversimplified, I additionally studied a headed model

(Fig. 3.1b) in which I use a second rigid body to represent head and neck. This body
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Table 3.1: List of model parameters for both headless and headed models. All values
are normalized with respect to total mass mo, uncompressed leg length lo,
and the gravitational constant g

Param. Unit Description

mo [·] Total mass
lo [·] Uncompressed leg length
g [·] Gravitational constant

l1 [lo] Main body length
j1 [mol

2
o] Main body inertia

kF [mog/lo] Forelimb spring stiffness
kH [mog/lo] Hind limb spring stiffness
αF [rad] fore angle of attack
αH [rad] Hind angle of attack
dCOM [lo] Offset of the COM of the main body

tswing [
√

lo/g] swing time

m1 [mo] Main body mass
m2 [mo] Head mass
l2 [lo] Head length
j2 [mol

2
o] Head inertia

khead [moglo/rad] Head-neck spring stiffness
θrest [rad] Head resting angle

is connected to the shoulder via a rotational joint with a torsional spring. Head and

neck have a mass of m2 and an inertia of j2. The stiffness of the head-neck spring is

khead. During locomotion, head and neck passively rotate about the shoulder joint.

There is no damping associated with this joint. The resting angle is θrest and the

spring creates a torque of Mhead = khead(θrest − θ). Since all masses are normalized

to total body mass mo, the main body mass is given by m1 = mo −m2 and is thus

not part of the free parameter vector.

3.2.2 System Dynamics

The Equations of Motion (EOM) are stated in the canonical form

M(q)q̈ + h(q, q̇) = τ , (3.1)
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where M(q) is the mass matrix, h(q, q̇) are the Coriolis, centrifugal, and gravitational

terms, and τ is the vector of generalized forces. The latter is created by the spring

forces of all legs i that are in stance. These forces act along the direction of the leg γi

with a magnitude Fi that is proportional to the leg compression lo − li. The stiffness

of this spring is given by ki. The vector of generalized forces τ is computed as a

projection of the spring forces τ =
∑
i

Ji
TFi with

Ji = [− sin (γi) , cos (γi) , di · cos (ϕ− γi)] (3.2)

for the headless model. As this model is a single body system, the mass matrix is

simply a diagonal matrix with entries M = diag (m1, m1, j1), and h only contains

the gravitational forces: h = [0, −mog, 0]T . The equations of motion for the headed

model are a bit more involved. They were derived using Euler-Lagrange equations,

and the components M, h, and Ji are reported in Appendix A.

3.2.3 Experimental Data

The experimental data were recorded on an equine high-speed treadmill (Mustang

2200, Kagra AG) instrumented with piezoelectric force transducers (Type Z17135,

Kistler Instruments) and able to measure vertical GRF of all four limbs simultaneously

(Weishaupt et al., 2002). Recordings were made with a clinically sound and treadmill-

adapted Warmblood riding horse (withers height: 1.74 m, mo: 660 kg) at walk (1.7 m/s)

and trot (3.4 m/s) and an Icelandic horse (withers height: 1.35 m, 355 kg) at the tölt

(3.3 m/s). Both horses showed representative breed-specific movement patterns. The

active leg length was set to be lo = 0.135 × m0.37
o , which equaled to about 85 %

of the horses’ withers height (Griffin, 2004). In contrast to real horses, the model

has the same leg length for all four limbs. Data collection lasted 20 seconds at

a sampling frequency of 480 Hz. Force-time histories were analyzed with in-house

33



developed software (HP2, Equine Performance Centre, University of Zurich) which

allowed automatic extraction of force, time and spatial parameters for each limb

separately. Twenty succeeding motion cycles per horse were analyzed and averaged.

Force parameters were normalized to the horse’s body weight.

3.2.4 Optimization

During the simulation of a stride, I also compute the simulated GRFs Fsim (t,X,p).

They are a function of time t and depend on the parameters p and on the states at the

beginning of the stride as defined by X. F̂ (t) denotes the experimentally obtained

GRFs that were recorded from actual horses. To quantify how well the simplistic

model predicts the experimentally obtained GRFs, I define the residual:

c (X,p) =

∫ 1

0

∥∥∥Fsim (s,X,p)− F̂ (ŝ)
∥∥∥2 dt. (3.3)

The integral uses a normalized time s = t
tstride

(ŝ = t
t̂stride

) which runs from 0 to 1

for both the simulated and the experimentally recorded stride. This normalization

allowed an easier comparison of simulated and experimental data. One should note,

that this means that the cost has no notion of absolute time. Since the primary goal

of this research is the prediction of the correct footfall sequence (i.e., of relative time)

as well as of the correct shapes of the vertical GRFs, I deemed this an acceptable

simplification. The value of the integrated residual is used as a cost function in a

constrained optimization problem:

min {c (X,p)} (3.4)

s.t. P (X,p)−X = 0

that finds states and parameters that optimally predict experimentally recorded

GRFs. The optimization problem is solved numerically with the MATLAB opti-
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mization toolbox using a Sequential Quadratic Programming (SQP) algorithm (Remy

et al., 2011).

3.2.5 Sensitivity Analysis

To be able to judge how well each parameter could be identified by the optimiza-

tion approach, I conducted a detailed sensitivity study for each gait. Looking at a

single initial condition Xj (or a single parameter pj) at a time, I varied its value

by some δX (δp) and then fixed it while optimizing all other states and parameters.

Assuming that x? and p? are solutions to the optimization problem (3.4) (with a final

cost value of c?), this is equivalent to stating a new optimization problem with an

additional constraint:

min {c (X,p)} (3.5)

s.t. P (X,p)−X = 0

Xj = X?
j + δXj

The cost value c at the solution of this optimization problem is a direct function of

δXj. The increase in cost from c? to c (δXj), indicates how sensitive the process is

with regard to Xj; or -in other words- how well a particular state can be identified. If

the variation of a certain state does create a large increase in cost, it means that the

state can be identified clearly in the original optimization. If, on the other hand, a

certain state does not create an increase in cost, it can be changed without reducing

the quality of the fit. Such a state cannot be identified by the proposed method. We

can draw similar conclusions about parameters pj.
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Table 3.2: Coefficients of determination (R2) of the model-predicted GRFs. Values
are listed for both, the model without a head and that with an articulated
head and neck.

Gaits le
ft

h
in

d

ri
gh

t
h
in

d

le
ft

fo
re

ri
gh

t
fo

re

Headless Walk 0.922 0.897 0.958 0.957
Headless Tölt 0.979 0.986 0.998 0.967
Headless Trot 0.999 0.998 0.999 0.999

Headed Walk 0.978 0.971 0.982 0.977
Headed Tölt 0.967 0.962 0.992 0.989
Headed Trot 0.999 0.998 0.999 0.999

3.3 Results

We applied the methods and models described in Section 3.2 to synthesize three

different gaits: Walk and trot of Warmblood horses, as well as tölt of Icelandic horses.

We were able to produce all three gaits with the same conceptual model, while accu-

rately predicting the experimentally recorded contact timing and SLIPs (Table 3.2).

Mathematically, the three gaits are defined by their initial continuous and discrete

states (as given by X, Table 3.3 & 3.4) as well as their system parameters (given by

p, Table 3.5 & 3.6). The complete motion evolves fully from these values.

In this section, I highlight some key-features of the algorithm, report on the prop-

erties of the three identified gaits, and discuss the sensitivity of the solutions with

respect to individual model parameters and initial states. Furthermore, I analyze the

results obtained by a model with an articulated head-neck segment, and quantify how

important this additional model component is in the prediction of the ground contact

forces.
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3.3.1 Identified Motions and Parameters

For the optimization problem of eq. (3.4) to converge, one must find a suitable

initial guess for X. This initial guess must show a footfall sequence that is similar

to the experimentally recorded data and must result in a motion that is fairly close

to being periodic. Particularly problematic are missed or redundant events; that is,

feet that either do not touch the ground at all or that make contact more than once.

The timing of the swing phase (defined by tswing) was tuned towards avoiding these

situations. Missed or redundant events otherwise cause discontinuities in the root

function P (X,p)−X = 0, which makes it impossible for the SQP solver to converge.

Since I was relying on a single shooting method for optimization, the regions of

possible initial model states are quite narrow. It thus took some directed trial and

error to find appropriate initial guesses for the model states.

Once a suitable initial guess has been determined, the optimization converged in

less than 1 minute on a standard Desktop PC. One should note that the optimization

problem of eq. (3.4) is non-convex. There is no guarantee that the SQP solution rep-

resents a global minimum. To avoid local minima as much as possible, I conducted

optimization starting from multiple initial guesses. In combination with the sensi-

tivity study of Section 3.2.5, this gave us some confidence that these solutions are

globally optimal. As an example of the periodic continuous state trajectories that

result from this process, the motion of the main body and the head-neck segment are

shown over a full stride of walking, tölting, and trotting in Figure 3.2.

The most characteristic property of a gait, the footfall sequence is given by the

discrete phase states (Fig. 3.3). The transition from ready for touch down (phasei =

1) to stance (phasei = 2) is detected kinematically. A touch-down event happens if

the contact foot height goes to zero. During this event, the horizontal position of the

contact point (posx,i, shown by the solid line) is updated to reflect the new contact

point. Lift-off is also detected kinematically. A leg leaves the ground, if it would be
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Figure 3.2: Head-neck angle (top), and main body angle (bottom) of a single stride at
walk, tölt, and trot for the headed model. Oscillation amplitudes change
with gait and are most pronounced in the walk. Generally, the head and
torso angles are 180 ◦ out of phase. That is, the head is low if the shoulders
are high. A similar behavior is observed in horses.

extending beyond its rest length lo. At this moment the timer that measures swing

time (illustrated by the red dotted lines) is reset to zero and a swing phase of duration

tswing is initiated (phasei = 3). A timer triggers the swing over event when its value

equals to tswing. From a dynamic point of view, there is no distinction between swing

and the ready for touch down phase. In both cases, the legs are assumed to be in the

air and are not creating any forces on the main body. The difference is that during

the swing phase the leg is not able to engage in ground contact. This prevents feet

from striking the ground prematurely and enables a coordinated motion of the four

legs.

In this framework, the end of a stride is marked by the lift-off of the right forelimb

(the terminal event e?). Since legged motion is periodic, one should note that any

event or relative time point in the cyclic movement might serve as a stride boundary.

Our particular choice implies that the right forelimb must always be started in swing,
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Figure 3.3: The discrete states of all four limbs are shown for a single stride of walking
of the headless model. The different phases of each leg are ready for
touch down (1), stance (2), and swing (3). At the beginning of swing, a
timer is started (dotted red line) that triggers the transition into ready
for touch down once it reaches tswing. All four limbs share the same tswing
value that is illustrated by red dash-dotted line. The associated waiting
period prevents feet from striking the ground too early and allows for a
coordinated motion of the model’s legs. The absolute horizontal position
of the foot on the ground (solid black line) is only updated at touchdown
and remains constant throughout the other phases. At the terminal event,
the forward motion is removed from this variable, making it periodic from
step to step.

right after lift-off. The initial phases of the other legs can be defined freely, and each

different combination results in a different footfall pattern. To achieve quadrupedal

walking, for example, I have to start the two left limbs in stance and the right hind

limb in swing (Table 3.4).

To better visualize the result, a sequence of animated frames of the walking gait

is shown in Figure 3.4 2. For purposes of visualization, the swing legs are shown as

being retracted and moving gradually towards the AOA; despite the fact that in the

mathematical model swing happens instantaneously. Once the limbs are ready for

2Videos of all gaits are available at https://youtu.be/Xd-Yw26YDnE
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Figure 3.4: 8 consecutive frames of a full stride of headless walking. The model is
moving left to right. Uncompressed legs with open circles indicate legs
that are ready for touch-down (phasei = 1), filled circles indicate legs that
are in stance (phasei = 2), and retracted legs are in swing (phasei = 3).

touch down, they are shown as being uncompressed and at the AOA. Finally, a leg

that is in stance is indicated by a filled circle at the foot. At this time, the spring is

engaged and creates force.

3.3.1.1 Walk

The walk is a symmetrical four-beat gait with the footfall sequence: right hind,

right fore, left hind, left fore. Phases of bipedal support alternate with tripedal sup-

port phases, and the vertical SLIP show the characteristic double hump that results

from a mid-stance relieve (Fig. 3.5a, b). During walking, the leg springs undergo

two compression-extension cycles that create this force profile. The mechanism is

similar to what can be observed in the bipedal SLIP model (Geyer et al., 2006).

The double-compression of each leg is accompanied by a pronounced pitching mo-

tion (−1.45◦ + 1.23◦) of the main body (ϕ in Fig. 3.2). The walk had a velocity of

0.255
√
log in simulation, compared to 0.457

√
log in the experimental data.
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The model accurately predicts the sequence and timing of the contact events.

Furthermore, the model-predicted SLIP for each individual foot roughly match the

experimental data (R2 > 0.89) (Table 3.2).

3.3.1.2 Tölt

The tölt is a symmetrical four-beat gait that is unique to Icelandic horses. It

has the same footfall sequence as a walking gait. In contrast to walking, however,

the legs spend less time on the ground and phases of double support alternate with

phases of single support. Furthermore, each limb only undergoes a single compression

cycle. The ground reaction forces have a single hump, similar to a bipedal running

gait (Fig. 3.5c, d). Apart from the lift-off of the hind limbs, the model correctly

predicts the footfall sequence, contact timing, and vertical GRFs. Individual GRFs

are predicted with R2 > 0.96.

Similar to walking, a clear but less pronounced pitching motion (−0.47◦ + 0.48◦)

of the main body can be observed. Even though the GRFs (and thus the spring

compression) peak at almost twice the maximum value as for walking, the main body

height y is fairly constant over the course of a stride. It only varies by 0.0058 lo. Intra-

stride horizontal velocity ẋ is also nearly constant in this gait, and therefore velocity

variability is the least among the gaits (0.0317
√
log). In reality, the steady vertical

and horizontal motion make this gait very comfortable for a rider. In simulation, the

tölt had a velocity of 0.681
√
log, compared to a velocity of 0.975

√
log recorded in the

experiments.

3.3.1.3 Trot

The trot is a symmetrical two-beat gait, in which diagonal limb pairs move to-

gether. Phases of double support alternate with suspension phases. The vertical

GRFs (Fig. 3.5e, f) show characteristic single humps that correspond to a single
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Figure 3.5: Experimentally recorded vertical GRFs (dotted lines ±1 std.) are com-
pared to forces predicted by the headless model (solid lines, shown on the
left) and to those predicted by the model with an articulated head and
neck (solid lines, shown on the right). Shown are the results for walk-
ing (top), tölting (center), and trotting (bottom). Both models correctly
predict the footfall pattern, timing, and the general shape of the force
curves for all gaits. Quantitatively, a better fit is produced by the headed
model, especially for the hind limbs at walk (see also Table 3.2). RH,
RF, LH and LF stand for right hind, right fore, left hind, and left fore
respectively.
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Table 3.3: Optimal initial continuous states for each gait. Please refer to Figure 2.1
for coordinate definitions

Gaits ẋ[
√

log] y[lo] ẏ[
√

log] ϕ[rad] ϕ̇[
√

g/lo] θ[rad] θ̇[
√

g/lo]

Headless Walk 0.2601 0.9670 0.0100 -0.0208 0.0566 · ·
Headless Tölt 0.6818 0.9685 0.0148 0.0082 0.0349 · ·
Headless Trot 0.5701 0.9862 0.0417 -0.0126 0.0065 · ·

Headed Walk 0.3236 0.9604 -0.0045 -0.0351 0.0731 0.4186 -0.2921
Headed Tölt 0.8737 0.9656 0.0182 0.0076 0.0334 0.7927 -0.1942
Headed Trot 0.6490 0.9866 0.0393 -0.0103 0.0064 0.3388 -0.0329

compression cycle of the leg spring. This result is similar to previous studies, which

employed models that are more complex (Herr and McMahon, 2000). Of the three

gaits, the trot is the gait that can be best approximated with this conceptual model.

The overall GRFs are predicted with an R2 value of more than 0.99. Similarly, the

model predicts the contact sequence and the timing of touchdown and lift-off events

with great accuracy. It is even able to account for the small differences in the con-

tact timing and GRF-profiles between the two diagonal leg pairs. There is no visible

pitching motion of the main body, yet a very pronounced vertical movement of about

0.04 leg lengths in y. Simulated trotting had a velocity of 0.559
√
log. Experimentally,

this velocity was 0.893
√
log.

3.3.2 Sensitivity of Initial States and Parameters

For the sensitivity analysis of walking and trotting, each initial state and parame-

ter value was varied by ±1 %. For tölting, which proved to be much more sensitive to

both, states and parameters, I only varied their values by ±0.05 %. We excluded both

the horizontal position x and the vertical position y from the analysis. The horizontal

position x has no influence on the GRFs, and changing the vertical position y violates

the lift-off condition at the terminal event e?. The results of the sensitivity study are

shown in Figures 3.6.
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Table 3.4: Initial discrete states for each gait. Listed are for each leg the phases
(‘ready for touch down’ (1),‘stance’ (2), or ‘swing’ (3)), and the horizontal
foot positions in absolute coordinates. RH, RF, LH and LF stand for right
hind, right fore, left hind, and left fore respectively. For legs that are in
the air, the foot position records where the foot was before lift-off. Note
that all gaits start with the right forelimb in swing

Gaits ph
a
se
L
H

[·]

ph
a
se
R
H

[·]

ph
a
se
L
F

[·]

ph
a
se
R
F

[·]

po
s L

H
[l
o
]

po
s R

H
[l
o
]

po
s L

F
[l
o
]

po
s R

F
[l
o
]

Headless Walk 2 1 2 3 -0.6708 -1.1352 0.6121 0.1477
Headless Tölt 2 1 1 3 -0.5441 -1.0850 -0.3414 0.1995
Headless Trot 3 1 1 3 -0.7688 -1.2293 -0.2419 0.2304

Headed Walk 2 1 2 3 -0.5519 -1.0877 0.6611 0.1253
Headed Tölt 2 1 1 3 -0.5364 -1.1057 -0.2537 0.3156
Headed Trot 3 1 1 3 -0.7914 -1.2533 -0.0792 0.3960

Table 3.5: Optimal main body parameter choices for each gait. Please note that dCOM
only reflects the main-body COM, not the overall value. It is smaller for
the headed model, since there is additional mass in the head-neck segment

Gaits m
1
[m

o
]

l 1
[l
o
]

j 1
[m

o
l2 o

]

k
H

[m
o
g /

l o
]

k
F

[m
o
g /

l o
]

α
H

[r
ad

]

α
F

[r
ad

]

d
C
O
M

[·]

t s
w
in
g
[√ l o

/g
]

Headless Walk 1.00 1.06 0.28 18.31 24.69 0.28 0.28 0.59 0.58
Headless Tölt 1.00 1.01 0.42 20.60 24.88 0.24 0.24 0.57 0.41
Headless Trot 1.00 0.96 0.80 21.46 19.83 0.16 0.20 0.56 0.50

Headed Walk 0.87 0.95 0.25 14.26 15.50 0.33 0.33 0.52 0.55
Headed Tölt 0.89 1.13 0.67 18.65 23.33 0.27 0.25 0.51 0.42
Headed Trot 0.86 1.15 1.15 25.18 21.87 0.16 0.20 0.49 0.43
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In terms of sensitivity, there is quite some variability between different states and

parameters. The forward velocity ẋ, for example, can be identified quite clearly,

whereas the final cost value (or degree of fitting) is much less sensitive to the vertical

velocity ẏ and the pitch states ϕ and ϕ̇. This holds for all three gaits. Related to

the forward velocity, the AOA (for both, forelimbs and hind limbs) shows a larger

sensitivity for all gaits and can thus be identified clearly.

Of the physical parameters, the quantity that can be identified best is the horizon-

tal position of the center of mass (dCOM). Its value has a direct impact on the fore-aft

distribution of the vertical GRFs and it is thus explicitly influencing the cost function.

For walking and tölting, one can additionally identify the length and inertia of the

main body, which are coupled to the vertical GRFs via the pitching dynamics of the

main body. For trotting (which has hardly any pitching motion) these parameters

cannot be identified accurately.

3.3.3 Headed Model

The same three gaits could be identified for the headed model. The initial con-

tinuous and discrete states for all gaits are listed in Tables 3.3 and 3.4, and the

parameters in Tables 3.5 and 3.6. The resulting SLIPs are shown in Figures 3.5. To

assess the ability of this model to match the experimentally recorded vertical SLIPs,

the R2 values are compared to those of the headless model in Table 3.2.

For the tölting and trotting gait, no clear improvement in the fitting to the ex-

perimental vertical SLIPs was observed. Head and neck dynamics only play a minor

role in these gaits, and the simplistic model without a head is good enough to explain

the underlying motion. For walking, on the other hand, the head and neck motion

does play an important role. Compared with the optimal solution of the headless

model, the model with head improves the correlations of the SLIPs of all four limbs

significantly. On average, the fit improved by 4.35 %. In particular, the asymmetry

45



Figure 3.6: Shown is the increase in cost (quantifying the difference between model-
predicted and experimentally measured vertical GRFs) as a function to
variations in states (shown on the left) and parameter choices (shown
on the right). Results are shown for walking (top), tölting (center), and
trotting (bottom). This analysis highlights which states and parameters
can be predicted well by matching of the vertical GRFs (indicated by a
high sensitivity) and which cannot be predicted well (indicated by a low
sensitivity).
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Table 3.6: Optimal choices for the head parameters for each gait.

Gaits m
2
[m

o
]

l 2
[l
o
]

j 2
[m

o
l2 o

]

k
h
ea
d
[m

o
g
l o
/r

a
d
]

θ r
es
t[

ra
d
]

Headed Walk 0.13 0.69 0.07 1.30 0.38
Headed Tölt 0.11 0.51 0.22 3.25 0.85
Headed Trot 0.14 0.74 0.11 2.37 0.39

in the midstance relieve between forelimbs and hind limbs can only be explained with

the additional head dynamics.

This observation also becomes clear when looking at the magnitude of the head

motion. At the trot and tölt, the neck joint only rotates by 1.7 and 5.4 degrees,

respectively. For walking, a rotation of over 15.1 degrees can be observed (Fig. 3.2)

. With respect to parameters, the most notable change in the obtained solution is

a decrease of dCOM (Table 3.5). Since the mass of the head would shift the overall

location of the center of mass forward, the displacement of the main body COM

(which is given by dCOM) is smaller as in the head-less case. This ensures that the

impulse distribution and overall COM is still matching the experimental data.

3.4 Discussion and Conclusion

In this paper, we presented a simplistic passive dynamic model that is able to

create realistic quadrupedal walking, tölting, and trotting motions. By choosing

appropriate system parameters and initial states through an optimization process, the

model is able to closely match the GRFs of walk and trot in Warmblood horses and

of tölt in Icelandic horses. We investigated the sensitivity of the obtained solutions

with respect to all states and parameters, and evaluated the improvement in fitting

GRFs when including an additional head and neck segment.
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3.4.1 Generating Multiple Gaits with a Single Model

Our proposed model generates this variety of different gaits primarily by alter-

ing the initial continuous and discrete states of the system. The resulting motions,

footfall patterns, and GRFs emerge from these initial conditions through a numerical

integration of the dynamics. Our finding suggests that quadrupedal gaits are merely

different dynamic modes of the same structural system and that we can interpret dif-

ferent gaits as different nonlinear elastic oscillations that propel an animal forward.

These different oscillation modes create a large variety of locomotion types and allow

for varying properties (such as different locomotion velocities) that can be exploited

by the animal.

The main determinant for a particular gait (or footfall pattern) are the initial

phase choices (Table 3.4). For walk, the model starts with both left limbs in stance;

for tölt, only the left hind limb is in stance; and for trot all legs are in the air. The

ready for touch down phase indicates additionally which feet are able to strike the

ground next. For walk this is the right hind limb, and for tölt and trot the right hind

limb and left forelimb. The exact timing of these footfalls, however, is determined by

the continuous states. Remember that all gaits are assumed to start at lift-off of the

right forelimb.

In addition to the starting conditions, the motion is influenced by the system

parameters. Some of these parameters, such as the angles of attack α or the rest

angle of the neck θrest would represent a conscious choice of the animal and are

expected to change from gait to gait. Other parameters are fixed physical properties

that would not vary in a real horse. Yet, in this study, we did allow all values to

change, in order to account for the fact that the experimental data was recorded from

different horses. Despite being unconstrained, the main parameters (such as the main

body length l1, leg stiffness k, or COM position dcom) had very similar values for the

three gaits (Tables 3.5 & 3.6).
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A detailed analysis of the stability of the obtained motions was not the focus of

this work. However, a quick check of the Floquet-multipliers revealed that all reported

motions are unstable in a linear approximation. Values varied from 3.2 for headless

walking to 247 for the headless tölt. That means, while the gaits that we identified

are periodic, continuous locomotion can only be maintained in the complete absence

of disturbances. Even a tiny deviation from the periodic orbit will eventually lead to a

fall. With this in mind, the presented motions can only be considered as nominal. For

continuous locomotion, they must be stabilized through appropriate active feedback

control.

The main methodological improvement that enabled us to find multiple gaits

within a single model was the introduction of a ‘swing phase’ in the simulation. In

this phase, the feet are unable to engage in ground contact. This facilitated the in-

trinsic coordination of complex motion patterns and allowed us to include all four

limbs in the simulation at the same time. This made it unnecessary to make addi-

tional assumptions (such as synergies and symmetries (Full and Koditschek , 1999)),

or to artificially reduce the complexity of the model (e.g., to a single spring mass

system (Farley et al., 1993) or to the lateral half of a quadruped (Chatzakos and

Papadopoulos , 2007)). In contrast to these examples in which the models could only

be used for the parametric analysis of specific gaits (such as a trotting or bound-

ing), the proposed model can produce a much larger number of gaits; including the

complex motions of four-beat walking and tölting. At the same time, the complexity

of the simulation and the number of necessary parameters remains at an absolute

minimum. Despite this simplicity, the model does not only produce qualitatively

different motion patterns, but can quantitatively match recorded vertical GRFs with

high accuracy. Particularly the GRFs of trotting and tölting can be predicted almost

perfectly. Larger residuals were only obtained when identifying walking, but could

be alleviated by adding a head-neck segment to the model.
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Table 3.7: Comparison of simulated and experimental stride time.

Gaits Experiments [s] Simulation [s]

Headless Walk 1.129 1.402
Headless Tölt 0.523 0.548
Headless Trot 0.825 0.649

Headed Walk 1.129 1.281
Headed Tölt 0.523 0.536
Headed Trot 0.825 0.569

3.4.2 Stride Time

The cost function in eq. 3.3 uses a normalized time to speed up the optimization

process and to get better convergence. The goal of this research was to identify the

footfall sequence and shapes of vertical GRFs for different gaits of horses in nature

by using simple models. Stride time was thus not my primary concern. However,

for comparison, the absolute stride time (in seconds) is listed in Table 3.7 for both

the optimized simulated results and the experimental data. Larger discrepancies can

be observed in the trotting gait of both headless and headed models as well as in

headless walk.

3.4.3 Model Limitations and Comparison to Biology

Naturally, a simplistic model has to make some approximations and can never

fully explain all observed dynamics. In the following, I compare these results to the

locomotion of horses in nature and discuss the limitations that are inevitable when

using such strongly simplified models.

The passive nature of the models prevents an active contribution to the motion; for

example, during an active push-off. The lift-off of all limbs shows a pronounced break-

over phase in the experimentally recorded GRFs. In nature, this prolongation of the

stance phase is caused by the hoof tilting actively shortly before lift-off. Such an effect
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cannot be replicated in our models, where the point-feet predict abruptly vanishing

vertical GRFs. The break-over influence is visible in all gaits but most prominent at

tölt in the hind limbs (Fig. 3.5c, d). This may be caused by the comparatively larger

range of the limb angle in Icelandic horses compared to Warmblood horses; especially

while tölting (Weishaupt et al., 2014; Bogisch et al., 2014).

Since our models are planar, they are unable to replicate motions that happen

outside the sagittal plane. As the experimental GRFs are mostly symmetric with

respect to left and right, this did not cause any major problems. The only exemption

are the forelimb forces of the tölt, in which the experimentally measured peak force of

the right side was significantly higher than the peak force of the left side (Fig. 3.5c, d).

This is potentially caused by a lateral torso motion. Such an asymmetric loading can-

not be produced with the planar symmetrical model. This does not mean that we can

only generate symmetrical gaits. For example, there is an asymmetry regarding the

leg phasing of the diagonal legs at trot in the experimental data. For the left diago-

nal (LF, RH) the impact of the RH limb is slightly delayed with reference to the LF

impact, while the legs of the right diagonal (RF, LH) impacted nearly synchronously.

This behavior can be replicated in simulation and explained by a small difference in

the main body pitch between the two diagonal stances (Fig. 3.5e, f). Even a small

amount of such pitch influences the relative timing of fore and hind footfall. Further-

more, we have shown in related work that our planar model can produce the footfall

patterns associated with asymmetric gaits such as bounding or galloping (Gan and

Remy , 2014a).

In terms of methodology, I based the gait identification on the replication of

vertical GRFs. Our cost function was the difference between measured and model-

predicted GRFs. This is a reasonable choice, since the GRFs contain substantial

gait information; including contact sequences, footfall timing, and center of mass

dynamics. Yet, when comparing the model-predicted optimal parameter choices and
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resulting motion characteristics to values reported from biology, one should keep

in mind that not all parameters can be identified with the same accuracy by the

optimization method. We evaluated this effect in a sensitivity study that investigated

how well each state and parameter could be identified. The GRFs of the trot, for

example, are clearly dependent on the center of mass position dCOM , but they are not

very sensitive to the main body length l1 and inertia j1 (Fig. 3.6f). This means that

dCOM can be accurately identified, while this method does not allow clear conclusions

about the values of l1 and j1. This is not surprising. At trot, the main body is mostly

leveled and not undergoing a large amount of pitch. Since length and inertia are

parameter values that can only manifest themselves in the GRFs if the main body is

pitching, they are consequently not reflected in the analysis of a trot. At walk and

tölt, on the other hand, a pronounced pitching motion exists, and the analysis is very

sensitive to l1 and j1 (Fig. 3.6b, d).

An interesting result of the sensitivity study was the low predictability of the leg

stiffness values. Independent of the chosen gait, it was shown that the leg stiffness

could not be predicted through the analysis of the GRFs. This is surprising, since the

leg stiffness appears to be one of the most fundamental model properties and should

have a direct influence on the GRFs. However, a simultaneous adaptation of the

motion (most notably through the vertical velocity ẏ and the pitch states ϕ and ϕ̇)

can compensate for this effect, such that the combination of leg stiffness and vertical

motion cannot be resolved from the GRFs alone. Furthermore, this effect might also

be amplified by the normalization of stride duration in eq. (3.3). Having no absolute

time in the model potentially degrades the correct identification of frequencies.

In terms of identifying motions and parameters, some limitations might arise from

the fact that we were experimentally limited to vertical contact forces. Consequently,

we had only limited knowledge about the fore-aft motion. Characteristics that relate

to this motion could not be identified very well. For example, the model-predicted
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forward velocities differed substantially from the experimentally recorded values. At

walk, the model-predicted speed was about half of the experimentally measured. This

shortcoming is likely a consequence of the missing horizontal contact information.

Furthermore, redundancies in the model can make it difficult to identify values

reliably. This can be seen, for example, with respect to the head-neck parameters. In

order to match experimental GRFs, the optimizer had to synchronize the head-neck

motion with the pitching of the main body. The two motions must be exactly out of

phase at tölt and especially at walk (Fig. 3.2). That is, the natural frequency of the

neck oscillation must be matched to the overall stride frequency. Through this link

of morphology, motion, and contact forces, the optimizer can establish estimates of

parameter values through matching of the GRFs. Yet, since four morphologic param-

eters (head length l2, head and neck stiffness khead, head mass m2, and inertia j2) all

influence the natural frequency of the head motion, it becomes difficult to determine

all these parameters at the same time. This is reflected in the large variability that

some of these parameters have for the three different gaits (Table 3.6).

Even with these limitations, parameters were often close to values reported in

biology (using (Vorstenbosch et al., 1997) as my main reference). This holds, for

example, for the overall COM position at walk of 59 % of the main body (in the

headless case this is identical to dCOM , Table 3.5), compared to a value of 58.2 % in

Warmblooded horses (Waldern et al., 2009). For trotting the model predicts 56 %

compared to 57.0 %. Similarly, the model predicts a main body length l1 between

0.95 lo and 1.15 lo which compares to values of about 0.8 lo in horses. This list includes

even more detailed parameters, such as the relative amount of the head and neck mass.

The predicted value of 11 %-14 % (Tables 3.5 & 3.6) only slightly overestimates values

from the existing literature, where head-neck mass was determined as about 8 % of

body weight (Buchner et al., 1997). While the optimization outcomes are not exact

predictions, they show that the model parameters are in the right ballpark.
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CHAPTER IV

All Common Bipedal Gaits Emerge from

a Single Passive Model

4.1 Introduction

1 While the Geyer Spring Loaded Inverted Pendulum (SLIP) model has been

instrumental in understanding bipedal gaits, it has a key simplifying assumption

inherited from the simple SLIP: after a leg lifts off the ground, it instantaneously

goes to a predefined Angle of Attack (AOA) and remains there until the foot hits

the ground again. This modeling choice is problematic for several reasons: First, it

represents a control parameter rather than a passive dynamic motion. In addition,

the AOA likely needs to be actively adapted to enable different gaits. Moreover, one

can find infinitely many periodic motions by changing the AOA, including motions

with infinitely short, nonphysical swing times (Rummel et al., 2009). Furthermore,

since in the SLIP model leg swing happens instantaneously, the footfall timing of two

or more independent legs needs additional considerations, such as the introduction of

a phase timer for each leg (Gan and Remy , 2014a). Similar to the AOA, the choices of

timing parameters are arbitrary and represent control rather than dynamics. Finally,

as there is a single AOA for both legs, the model is unable to replicate some bipedal

1This chapter has been previously submitted to the Journal of the Royal Society Interface (Gan
et al., 2018b).
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Figure 4.1: This figure shows the passive bipedal model with swing leg dynamics used
in this study. By taking the limit of m → 0, collision losses at touch-
down are eliminated and therefore the resulting model is energetically
conservative. A continuation method is utilized to identify all possible
passive periodic motions of this model, as they emerge from bouncing
in place. Solutions lie, as a function of energy, along one dimensional
manifolds that bifurcate into different branches with distinctly different
motions. In doing so, almost all of the bipedal gaits found in nature and
robotics can be identified.

gaits, such as bipedal skipping or galloping (leaping), in which the two legs usually

need different angles of attack. In order to understand the passive dynamic motion

underlying the different gaits, it is thus necessary that leg swing is also a function of

the natural mechanical dynamics. The way this is done in this work is very similar

to the method proposed by (O’Connor , 2009) in which a torsional spring is added at

the hip joint. The legs are therefore subjected to passive oscillations during swing.

In the following sections, I introduce a fully passive model that fulfills the require-

ments stated above. I systematically identify all period-one periodic motions of this

model that emerge from simple bouncing in place with certain footfall patterns, and

which branch off via bifurcations detectable with the numerical continuation tech-

niques (Allgower and Georg , 2003; Rosa and Lynch, 2014). Periodic motions lie, as

a function of energy, along one dimensional manifolds that bifurcate into different

branches with distinctly different motions. It is demonstrated that the model is able
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to reproduce almost all of the bipedal gaits found in nature and robotics by gradu-

ally breaking symmetries in periodic solutions. In addition to walking and running,

these include several gaits not present in prior models, such as hopping, skipping, or

bipedal galloping. All these gaits originate through bifurcations and continuations

from in-place bouncing of a single model with a single set of parameter values.

4.2 Methods

4.2.1 Model Description

The bipedal model used in this work (Fig. 4.1), is an extension of the work by

(Geyer et al., 2006), and is similar to the model proposed by (O’Connor , 2009). It

consists of a main body with mass M and inertia J . The vertical and horizontal

positions of the Center of Mass (COM) of the main body, and the main body’s pitch

angle are given by the variables x, y, and ϕ, respectively. Each of the two legs

(with index i ∈ [l, r]) is modeled as a massless linear spring with length li, rest leg

length lo, spring stiffness kleg, no damping, and a point mass m at the foot. Each

leg is connected, through a frictionless hip joint (with joint angle αi), to the COM

of the main body. Torsional springs with stiffness kswing and no damping are added

to these joints. The springs are uncompressed when the respective leg is pointing

straight down. Rather than defining a value for kswing directly, I prescribe a leg swing

frequency ωswing, and derive:

kswing = ω2
swingml

2
o. (4.1)

While this model is energetically conservative during flight, it would lose energy

when a foot’s velocity is brought to zero in a touch-down collision. With such losses,

it would be impossible to identify passive periodic gaits. To resolve this issue, I take

the limit of m going towards zero (m → 0), similar to the method used in (Garcia,

1998; O’Connor , 2009). This implies that kswing → 0 as the swing frequency ωswing
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remains unchanged. Furthermore, the inertia of the main body becomes very large

compared to the inertia of the feet (J � ml2o), such that I can neglect any main body

pitch and assume ϕ ≡ 0. Finally, the legs exert forces onto the main body only when

they are compressed in stance; during swing, the main body motion is independent

of the leg motion (but not the other way around). Since the leg stiffness kleg is finite,

infinitely fast oscillations of the leg length (around lo) would occur while the leg is

in the air. For viability, I ignore these oscillations and assume that the leg length is

constant during swing (l ≡ lo).

4.2.2 Equations of Motion

Based on these assumptions, I develop the Equations of Motion (EOM) for the

model. For the main body, they are:

ẍ = Fx/M, (4.2a)

ÿ = Fy/M − g, (4.2b)

where Fx and Fy are the components of the combined leg force F.

During the swing phase of each leg, the leg angle acceleration is given by

α̈i =
1

l2om
(−ẍmlo cos (αi)− (g + ÿ)mlo sin (αi)− kswingαi) , (4.3)

which, in the limit m→ 0, and by substitution of (4.1) and (4.2), becomes:

α̈i =
−cos (αi)Fxlo − sin (αi)Fylo

Ml2o
− αiω2

swing. (4.4)

During stance of each leg, a kinematic constraint is introduced on the leg length,

leg angle, and the associated velocities. I assume that there is no sliding of the foot

during the stance phase and use the variable si to record the horizontal foot positions
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on the ground. With this, the leg angle and leg length during stance can be computed

as:

αi = arctan

(
si − x
y

)
, (4.5)

li =

√
(x− si)2 + y2. (4.6)

The forces exerted by the stance legs are:

Fi = kleg · (lo − li) , (4.7a)

Fx =
∑
i

−Fi sin (αi), (4.7b)

Fy =
∑
i

Fi cos (αi). (4.7c)

The transition between stance and swing of the individual legs is monitored via

zero crossings of two event functions, ei,1 and ei,2. A touch-down event happens when

the height of the COM is equal to the vertical projection of the leg length. A foot

leaves the ground (the lift-off event) when the leg reaches its rest length.

touch-down event: ei,1 = lo cos(ϕ+ αi)− y, (4.8a)

lift-off event: ei,2 =
√

(x− si)2 − y2 − lo. (4.8b)

At touch-down, I record the new foot position on the ground, which is given by

si = x+ lo sin (αi) . (4.9)

Also note that during touch-down, the leg velocities l̇i and α̇i are discontinuous.

During lift-off, α̇i remains unchanged, while l̇i is set to 0.

It is important to note this model has no way to change its leg length during swing
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(as humans and animals do by bending their knees). Instead, the leg length is fixed to

lo during the swing phase. To simulate swing when the COM is so low that the foot has

to go through the ground, I simply ignore some of the touch-down events. The choice

of whether to enforce a touch-down or allow the leg to swing through, is somewhat

arbitrary in that it does not follow from the model’s dynamics. As I demonstrate later

in this work, this choice plays an important role in the evolution of, and distinction

between different gaits. The contact events I consider are either specified explicitly

in Section 4.2.3, or follow uniquely from the continuation of existing solutions.

In order to keep the solutions general, I normalize all state and parameter val-

ues with respect to M , g, and lo (Hof , 1996). The only parameters that I had to

select for the proposed model were the leg stiffness kleg = 20Mg/lo and the swing fre-

quency ωswing =
√

5
√

g/lo. These dimensionless values are comparable to the existing

hardware (Smit-Anseeuw et al., 2017b).

4.2.3 Gait Creation

I define a gait as a periodic motion in which all states except for the horizontal

position x return to their original values after one full stride. I further assume that

the stride begins at the instance of a right leg touch-down er,1. This event provides the

Poincaré section for a limit cycle analysis. The state at the beginning of the stride (at

the Poincaré section) is Xo = [ẋo, yo, ẏo, αl,o, α̇l,o, αr,o, α̇r,o]
T . Starting at this initial

state (and setting the body horizontal position xo = 0), I obtain a trajectory over a

full stride through a numerical integration that is terminated when the subsequent

touch-down event of the right leg is registered. This process yields the Poincaré map

P that maps the initial states Xo to final states X′ at the end of the stride. A function

Φ : R7 → R7 enforces periodicity:

Φ := P (X?)−X? = 0. (4.10)
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Gaits are defined by states X? at the Poincaré section that are solutions to this

implicit equation. Since the system is energetically conservative, only six of the seven

periodicity constraints are independent. This means that solutions to (4.10) evolve

along one-dimensional manifolds on the Poincaré section.

Some bipedal gaits in nature, such as walking, running, and skipping, are classi-

fied as symmetrical gaits. That is, the legs on each side perform exactly the same

motion, just 180 ◦ out of phase (Alexander , 1984). To simplify computation of such

symmetrical gaits, I cut the simulation of these gaits in half and terminate the in-

tegration at left leg touch-down el,1. To obtain a full stride, I then repeat the first

half of the motion but with the left and right legs switched. For the asymmetrical

gaits (hopping and bipedal galloping) integration was continued to the next right leg

touch-down event, simulating a full stride.

Beyond the definition of the continuous states, I also have to define which leg is

initially in stance and which is in swing. Since the Poincaré section is defined as right

leg touch-down, the right leg is always initially in stance. This leads to two possible

cases: single stance, in which the left leg is initially in the air, and double stance in

which it is on the ground. Each case leads to a distinct dynamic behavior of the

system and also imposes a different number of constraints on the continuous states.

4.2.4 Continuation and Bifurcations

I find branches of periodic solutions by solving a 1D continuation problem (Dankow-

icz and Schilder , 2013). That is, given a known solution X?
n, I numerically search

for an adjacent solution X?
n+1 on the same branch, and, by iteratively repeating this

process, discover the entire branch. At each iteration, I constrain the next solution

X?
n+1 to be a fixed distance d away from X?

n in the direction that is similar to the
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previous step. That is, I find X?
n+1 by solving:

Φ
(
X?
n+1

)
= 0,∥∥X?

n+1 −X?
n

∥∥ = d,(
X?
n+1 −X?

n

)T (
X?
n −X?

n−1
)
> 0.

Solving (4.11) numerically is sensitive to having a good initial guess of X?
n+1. I

generate such a guess based on the Floquet analysis of the Poincaré map. Suppose

that for a given periodic trajectory X?
n, there exists another trajectory X?

n+1 nearby.

Then a small disturbance in the direction of X?
n+1 remains unchanged after one stride

(after such disturbance, the passive system stays on the new periodic trajectory).

Mathematically, this means that one of the Floquet multipliers2 λn,i of the system at

X?
n is equal to +1, and the corresponding eigenvector vn,i is approximately directed

towards X?
n+1. Therefore, I use Xo

n+1 = X?
n± d ·vn,i as the initial guess for numerically

solving the problem (4.11). The step size d was carefully tuned during the search in

order to identify periodic solutions, especially at turning points.

The continuation algorithm searches for adjacent periodic solutions associated

with a Floquet multiplier equal to +1 on the same branch. For every solution in this

branch, this is a stationary eigenvalue and the corresponding eigenvector is tangential

to the branch. However, at some points along the branch, there may be more than

one unit-multiplier. This happens when at least one of the other Floquet multipliers

crosses the unit circle with a real value of +1 (Dankowicz and Schilder , 2013). The

additional unit multipliers at such a bifurcation point usually have eigenvectors that

are not tangential to the original branch of solutions. Another distinct branch of

solutions is thus connected to the original branch at such bifurcation points. I run

2Floquet multipliers are eigenvalues of the Monodromy matrix J, which is the partial derivative
of the Poincaré map P with respect to the system states, evaluated at the periodic solution. J
provides linear approximations to the changes in small disturbances to the system state from stride
to stride which is described in the equation (2.5).
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Figure 4.2: This study considers three fundamentally different footfall patterns
(shown here together with the corresponding vertical ground reaction
forces) that originate from different contact considerations at the moment
of touch-down (a). By choosing different combinations of supporting legs,
the following three footfall sequences emerge: (b) single stance (running),
(c) double stance (hopping), and (d) the combination of the previous two
cases which includes both double stance and single stance in alternation.

a separate instance of the continuation algorithm to discover all periodic solutions

along each new branch.

New branches originate at bifurcation points and turning points which were de-

tected by a change in the null space dimension of the fréchet derivative of Φ (Hermann

and Saravi , 2016). Instead of determining the type of bifurcation points by applying

the Lyapunov-Schmidt reduction and evaluating the values of its coefficients, I cate-

gorized them by considering the changes in stability and the number of solutions in

the neighborhood of the bifurcation.
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4.2.5 Start of the Search

The search for gaits was initiated with the most trivial motion that fulfills the

requirements for a gait: bouncing in place with the lowest energy possible. The

initial state for this motion is Xo = [0, lo, 0, 0, 0, 0, 0], there is no forward speed, both

legs are pointing down and are motionless, and the vertical height is equal to lo with

no vertical velocity. When started in this state, the model undergoes a purely vertical

cycle of leg compression and decompression, followed by an infinitesimally short flight

phase before reaching the initial state again. This oscillation can happen either on

one leg or on both legs, depending on whether I assume the initial state Xo to be in

(right leg) single stance or in double stance. Based on this distinction, I define four

different footfall patterns which lead to different types of gaits:

• Symmetrical single stance. The right leg enters stance while the left leg does not.

In the simplified model this means that the left leg is allowed to go through the

ground at the initial instant. After one vertical oscillation and an infinitesimally

short flight phase, the roles of the left and right leg are switched (Fig. 4.2b).

• Asymmetrical double stance. Both legs are fully synchronized: they start in

stance phase and lift off the ground at the same time. This is shown as the first

half of the footfall pattern in Fig. 4.2c.

• Symmetrical double stance. Both legs are fully synchronized as in the previous

case, but after one oscillation (at the next touch-down) the legs are switched.

This gait is shown as the whole gait cycle in Fig. 4.2c. The switching of the

legs has no effect on this in-place motion, which is identical to the asymmetrical

double stance. But this formal distinction from the asymmetrical double stance

leads to different gaits when the legs become desynchonized.

• Symmetrical single/double stance. As shown in Fig. 4.2d, this gait combines

the first two cases, where a single stance phase alternates with a double stance

63



phase. The legs are switched when the left leg touch-down is triggered at the

beginning of the double stance phase.

4.3 Results

In the following, I present the periodic motions identified by the continuation

analysis for this model. Solutions are discussed according to the footfall sequences

from which they originate and are reported by stating the initial state Xo from which

the periodic motion evolves. These initial states are plotted in a three-dimensional

projection of the state space (showing the vertical velocity ẏ, horizontal velocity ẋ,

and the angle of the right leg αr at the Poincaré section) to visualize the evolution

and connection of individual solution branches and to highlight bifurcation points.

For some selected periodic motions, I also present a visualization of the motion and

show the vertical GRFs 3.

I numerically report the most important bifurcation points and explicitly state

their eigenvectors. Due to the contact constraints, not all of the seven initial states

can be chosen freely. Since the right leg is uncompressed at touch-down (which defines

the Poincaré section), the initial vertical position is fully determined by the right leg

angle, yo = lo cos(αr,o), and the right leg angle rate α̇r,o is fully determined by the

COM position (i.e. the angle αr,o) and velocity according to eq. (4.5). In addition,

in initial double stance, the left leg velocity α̇l,o is also no longer a free variable and,

similar to α̇r,o, is determined by the COM position and rate and the left leg angle. The

reported states and eigenvectors thus have five dimensions for initial single stance and

only four dimensions for initial double stance. At bifurcation points, I describe the

multidimensional eigenspace to the eigenvalue of +1 by reporting a set of independent

eigenvectors that are tangential to the resulting solution branches.

3Please see the multimedia file at https://youtu.be/3W30TnUGj9U for a video showing these
motions.
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4.3.1 Symmetrical Single Stance

Periodic motions emerging from the symmetrical single stance footfall pattern are

shown in Fig. 4.3. They originate from bouncing-in-place (point S, red circle) and

can be generally classified as running-in-place (branch RP) and different types of

running forward/backward (branches R1 -R6 ).

4.3.1.1 Running-in-Place (Branch RP):

At the starting point S –the initial bouncing-in-place motion– the eigenvector vs

corresponding to the eigenvalue of 1 is pointing in the ẏ direction (see Table 4.1),

corresponding to adjacent solutions with different vertical velocities ẏ at touch-down,

but otherwise unchanged behavior. Positive initial velocities ẏo> 0 are impossible,

since they correspond to lift-off, violating the touch-down condition at the Poincaré

section. The RP branch thus extends from ẏo = 0
√

glo towards negative vertical

velocities, corresponding to running-in-place with increasingly longer flight phases

with a higher apex height and stance phases with a greater spring compression (grey

line in Fig. 4.3). The branch is limited to ẏo>−
√

klegl
2
o/M − 2glo =−4.24

√
glo. At this

point, the leg spring fully compresses during stance (li = 0), leading to a singularity

in eq. (4.5). Note that Fig. 4.3 only shows part of this branch for ẏo>−2
√

glo. Along

the RP branch, I find 13 bifurcations points. The first five (points A-E in Fig. 4.3)

are reported in Table 4.1.

4.3.1.2 Running Forward and Backward (Branches R1-R6):

The additional eigenvectors with an eigenvalue of +1 at bifurcations A-E all have

components in the ẋ, αi, and α̇l directions. The new solutions that stem from them

thus incorporate horizontal velocity and leg swing, and correspond to running for-

ward/backward gaits. The resulting branches (labeled R2 -R6 ) extend symmetrically

for both negative and positive velocities ẋ (only the positive velocity range is shown
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Figure 4.3: Visualization of periodic motions that emerge from bouncing-in-place (red
circle, S) with a symmetrical single stance (as shown in Fig. 4.2b). So-
lutions can be classified into running-in-place gaits with different vertical
heights (grey line, RP), and running forward/backward gaits (R1 - R6 )
which differ primarily by the number of swing leg oscillations in the as-
sociated solutions. Black circles (A-G) denote bifurcations points that
connect the solution branches. The numbers on the grey isolines denote
the largest leg compression in a stride as a percentage of leg length. The
inserts show the ground reaction forces of a sample running motion along
R2 (c), as well as the transition to grounded running (when the flight
phase disappears) along R1 (a) & (b). Several successive frames of solu-
tion (c) are presented in Fig. 4.4.
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Table 4.1: Initial states and eigenvectors associated with a Floquet multiplier of +1 at
selected bifurcation points for motions emerging from Symmetrical Single
Stance.

States S A B C D E F G

ẋo 0 0.00 0.00 0.00 0.00 0.00 6.38 4.17
ẏo 0 -0.21 -0.77 -1.01 -1.45 -1.63 -0.27 -1.56
αl,o 0 0.00 0.00 0.00 0.00 0.00 -0.66 -0.96
α̇l 0 0.00 0.00 0.00 0.00 0.00 3.01 1.52
αr,o 0 0.00 0.00 0.00 0.00 0.00 1.50 1.18

eVec vS vA1 vA2 vB1 vB2 vC1 vC2 vD1 vD2 vE1 vE2 vF1 vF2 vG1 vG2

∆ẋ 0 0 0.75 0 0.80 0 0.78 0 0.85 0 0.86 0.98 0.01 0.08 0.05
∆ẏ 1 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 -0.03 0.12 -0.12 0.11
∆αl 0 0 -0.48 0 0.37 0 0.28 0 -0.31 0 -0.31 0.14 -0.70 0.36 -0.34
∆α̇l 0 0 0.28 0 0.36 0 -0.49 0 -0.32 0 0.30 0.14 -0.70 0.92 -0.94
∆αr 0 0 0.36 0 0.30 0 0.29 0 0.29 0 0.28 0.01 0.03 -0.06 0.03

Branch RP RP R2 RP R3 RP R4 RP R5 RP R6 R1 R2 R5 R6

in Fig. 4.3). Moving along these branches, maximal leg compression during stance

(shown as isolines in Fig. 4.3) increases until the branches terminate in the singularity

of a full leg compression.

Motions along the branch R2 , which extends from bifurcation point A, are most

reminiscent of bipedal running gaits in nature. A representative motion (solution

labeled (c)) on this branch is shown in Fig. 4.4. Trajectories of the leg angles αi

essentially follow a quasi-sinusoidal profile (shown for a forward speed of 0.5
√

glo in

Fig. 4.5, red lines). For motions along R2 , after lift-off, the swing leg first moves

backward, then swings forward to be in front of the main body, and retracts backward

before hitting the ground. Such ‘swing leg retraction’ is also observed in human

running (Seyfarth et al., 2003), and, has the beneficial property that the foot closely

matches the ground-speed at touchdown.

The periodic motions on the other running branches differ primarily in when the

swing leg hits the ground. Motions along the branches R3 and R4 represent running

gaits in which the swing leg performs two oscillations during swing (blue and green

lines in Fig. 4.5). The solutions differ in when the touch-down event is triggered:
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Figure 4.4: Key frames from an exemplary solution on the running branch R2 (so-
lution (c) in Fig. 4.3). Solutions on the other running branches have the
same footfall pattern, but differ in their number of swing leg oscillations.

on R3 , the swing leg touches down while moving forwards (hence the large jump in

velocity in Fig. 4.5b), while on R4 it hits the ground while moving backwards (as for

motions on R2 ). The solutions on the next branches (R5 and R6 ) are analogous

to those on R3 and R4 , but with the swing leg doing three oscillations during the

flight phase. Overall, bifurcations along the RP branch arise whenever the hopping

period is matched by the oscillation time of the swing leg or a multiple thereof. Many

combinations are possible as flight time scales linearly with ẏo, while the swing leg has

a constant frequency. Further solutions follow this pattern with even higher numbers

of swing leg oscillations (up to 7 oscillations in this model). These solutions are not

explicitly shown and discussed here.

In Fig. 4.3, one can see that the branches R5 and R6 join at another bifurcation

point (point G) at high leg compression values. At this point, the swing leg velocity

α̇ becomes zero at the moment of touchdown, thus essentially removing the difference

between the motions in R5 and R6 . Such a junction is not present for R3 and R4 ,

as these two branches reach full leg compression before joining together. However, I

can find a bifurcation (point F ) along R2 that corresponds to such a junction. It

connects to another branch of running gaits, R1 , in which the swing leg performs a

68



Table 4.2: Initial states and eigenvectors associated with a Floquet multiplier of +1 at
selected bifurcation points for motions emerging from Asymmetrical Double
Stance.

States S I J P Q L N

ẋo 0 0.00 0.00 0.00 0.00 1.43 9.79
ẏo 0 -0.70 -1.11 -1.19 -1.41 -1.13 -0.79
αl,o 0 0.00 0.00 0.00 0.00 0.32 1.42
αr,o 0 0.00 0.00 0.00 0.00 0.32 1.42

eVec vS vI1 vI2 vJ1 vJ2 vP1 vP2 vQ1 vQ2 vL1 vL2 vN1 vN2

∆ẋ 0 0 0.94 0 0.95 0 0.00 0 0.00 0.97 0.22 0.99 0.54
∆ẏ 1 1 0.00 1 0.00 1 -0.01 1 0.00 -0.02 -0.02 -0.05 -0.36
∆αl 0 0 0.25 0 0.23 0 -0.71 0 -0.71 0.18 -0.78 -0.03 -0.71
∆αr 0 0 0.25 0 0.23 0 0.71 0 0.71 0.18 0.59 -0.03 0.26

Branch HP HP H1 HP H2 HP GP1 HP GP2 H2 G1 H2 G1

single oscillation and the foot strikes the ground in a forward motion (purple lines in

Fig. 4.5). Solutions on the branch R1 have the same footfall pattern as running in

R2 , but shorter flight phases and lower COM profiles. At lower speeds on the R1

branch, the aerial phase becomes shorter (see solution labeled (b) in Fig. 4.3) until it

fully vanishes at a velocity of 0.25
√

glo. As speed further decreases, the touch-down

of the leading leg happens earlier than the lift-off of the trailing leg and the flight

phase is replaced by a double stance phase (see solution labeled (a) in Fig. 4.3). These

double-stance gaits are not running (there is no flight phase); but they retain a single-

hump vGRF profile, similar to that of running. Therefore, motions like this have

been referred to as grounded running gaits (GR) (Rummel et al., 2009; Martinez and

Carbajal , 2011). This type of solution only exists when the forward speed is larger

than 0.24
√

glo. For lower speeds, the GR branch would require negative vGRFs

during the double stance phase which is not physically realistic. This is the reason

why the R1/GR branch does not connect to the RP branch.
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Figure 4.5: In this figure, I compare the right leg angle trajectory αr(t) and right
leg angle velocity α̇r(t) of solutions on the running branches (R1 - R4 ).
For each solution, I show a full stride with an average forward velocity
of 0.5

√
glo. Stance phases are shown as dotted lines, while solid lines

indicate flight phases. The solutions start and end at right leg touch-
down. One can clearly see how the solutions differ in their number of
oscillations and whether the swing leg hits the ground in a forward or
backward motion. These differences are enabled by different durations of
the flight phase.
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4.3.2 Asymmetrical Double Stance

The periodic motions emerging from the asymmetrical double stance footfall pat-

tern are shown in Fig. 4.6. Again, they originate from bouncing-in-place (point S,

red circle) and can be generally classified as hopping-in-place (branch HP), hopping

forward/backward (branches H1 and H2 ), galloping-in-place (branches GP1 and

GP2 ), and galloping (branches G1 and G2 ).

4.3.2.1 Hopping-in-place (Branch HP):

Starting from bouncing-in-place on two legs, the eigenvector vS corresponding to

the eigenvalue of +1 is pointing in the ẏ direction (see Table 4.2). By varying the

vertical speed ẏ at touch-down, I find the hopping-in-place branch HP (grey line

in Fig. 4.6). In this gait, the two legs are fully synchronized and always vertical.

The HP branch extends to ẏo =
√

2klegl
2
o/M − 2glo =−6.16

√
glo, where the legs fully

compress during stance. This value is larger than for the symmetrical single stance,

as now both legs provide forces in the stance phase. (Note again that Fig. 4.6 only

shows part of this branch for ẏo>−2
√
glo). I find 16 bifurcations along the HP

branch. The first two bifurcations (points I and J) identified along the HP branch

are pointing to the forward/backward hopping branches. They are at the vertical

speeds −0.70
√

glo and −1.11
√

glo, respectively. The corresponding eigenvectors are

provided in Table 4.2. As with the running gaits, 6 additional hopping branches with

multiple periods of swing leg oscillations appear in pairs along HP (not shown in

the figure). The remaining bifurcations, including the next two bifurcations that are

found at the vertical speeds −1.19
√

glo and −1.41
√

glo (points P and Q), are the

starting points of galloping-in-place gaits.
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Figure 4.6: Visualization of periodic motions that emerge from bouncing-in-place (red
circle, S) with an asymmetrical double stance (as shown in Fig. 4.2c). So-
lutions can be classified into hopping-in-place gaits with different vertical
heights (grey line, HP), hopping forward/backward gaits (H1 & H2 ),
galloping-in-place gaits (GP1 & GP2 ), and galloping gaits (G1 & G2 ).
The black circles (I,J ,L,N ,P & Q) denote bifurcations that connect the
solution branches. The inserts show the ground reaction forces of a typi-
cal hopping gait along the H2 branch (d), as well as the transition from
galloping (e) to an asymmetrical running gait (f) as an additional flight
phase appears along G1 . Key motion frames from the solutions (d) and
(e) are shown in Fig. 4.7 and Fig. 4.8.
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Figure 4.7: Key frames from an exemplary solution on the hopping branch H2 (solu-
tion (d) in Fig. 4.6). In this hopping forward/backward gait, the two leg
are always fully synchronized and act essentially as a single (yet stiffer)
leg.

4.3.2.2 Forward/Backward Hopping (Branches H1 and H2):

The additional eigenvectors with an eigenvalue of +1, vI2 and vJ2 at the bifur-

cations I and J , have components in the ẋ and αi directions. Notably, the values

for αl and αr are identical, suggesting that these gaits emerge with the same initial

angle and angular velocity for both legs. The resulting branches (labeled H1 and

H2 ) extend symmetrically for both negative and positive velocities and correspond

to hopping gaits. Along the hopping forward/backward branches, the legs remain

together throughout the stride. The difference between the branches H1 and H2 is

similar to that between R1 and R2 . For solutions on H1 , touch-down is triggered

while the legs swing forward, while for solutions on H2 , the legs hit the ground while

swinging backward. The vGRFs of an exemplary solution along H2 gait at a speed

of 2.0
√

glo are shown in Fig. 4.6, solution labeled (d). Fig. 4.7 shows several key

frames from this solution. Both H1 and H2 terminate when the legs reach their full

compression during stance (and before the branches can merge together). Along the

branch H2 , two bifurcations (points L and N) are found when the forward speed

reaches 1.43
√

glo and 9.79
√

glo, respectively.
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4.3.2.3 Galloping-in-place (Branches GP1 and GP2):

At points P and Q two galloping-in-place gaits (GP1 and GP2 ) bifurcate from

the hopping-in-place branch HP . These two branches extend in almost the same

direction: both leg angles increase equally in magnitude, but in opposite directions

while the vertical speed ẏ and the horizontal speed ẋ remain the same (see vP2 and

vQ2 in Table 4.2) . Solutions on these branches are hopping-in-place motions with

leg swing. That is, at lift-off, the legs are split apart and perform a full oscillation

during swing to return to the original orientation at touch-down. The branches GP1

and GP2 have different swing leg motions in the air: in GP1 , the leg hits the

ground while extending outward, and in GP2 , the leg reaches its maximal extension

and retracts inward before touching the ground. Both GP1 and GP2 terminate

when they reach an unstable equilibrium point in the middle of the double-support

phase. When the branches are extended in the negative vP2 and vQ2 directions, the

roles of the left and right leg are simply switched. These gaits are equivalent to the

skipping-in-place gaits that are discussed in more detail later in this section. The

main difference is that in asymmetrical galloping, the legs perform a full oscillation

during flight, while in symmetrical bounding, they perform only half an oscillation.

A total of 6 galloping-in-place branches with multiple periods of swing leg oscillations

appear in pairs along HP . These additional branches are not shown here.

Along the two branches, solutions have the same vertical speeds and the COM

only moves in the vertical direction with ẋ= 0 during the whole stride cycle. I find

3 bifurcation points that emerge along the GP1 branch and two bifurcation points

along the GP2 branch. They are neither shown nor discussed here.

4.3.2.4 Galloping (Branches G1 and G2):

As provided in Table 4.2, at bifurcation L, in addition to moving along the hopping

branch H2 (direction vL1) where the legs are fully synchronized, there exist additional
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solutions in direction vL2, away from H2 . For these new solutions, the leg motions

become desynchronized: one leg slightly moves backward and becomes the trailing

leg, while the other leg moves forward acting as the leading leg. Either leg can be the

leading leg which corresponds to moving in either the positive or negative direction

of vL2 (right leg in front: branch G1 ; left leg in front: branch G2 ). The gaits along

G1 and G2 are referred to as bipedal galloping. An exemplary solution labeled (e)

of this gait is shown in Fig. 4.8. Compared to the running and hopping gaits, the two

legs have distinct angles at touch-down and follow different trajectories. Since each

leg swings forward to its original angle after each stride, the leading and the trailing

legs remain the same along the galloping branches. At high speeds, both G1 and

G2 revert back to the hopping branch H2 and merge with it at another bifurcation

(point N), where the legs become synchronized again.

Close to the point L, galloping is similar to hopping, with only a slight desyn-

chronization between the motion of the two legs. Moving away from H2 , the legs

become less synchronized, with an increasing difference in their angles of attack. The

double stance phase becomes shorter and eventually disappears. It is replaced by a

brief flight phase after the speed reaches 3.31
√

glo (see solution (f) in Fig. 4.6). Such

galloping with two distinct flight phases can be thought of as asymmetrical running :

it has the same footfall pattern as a running gait, but different touch-down angles

of the two legs and different step durations. This gait is shown as the dashed line

portion in the middle of G1 in Fig. 4.6. Closer to the point N , the additional flight

phase gets shorter again and is eventually replaced again by a double stance phase.

4.3.3 Symmetrical Double Stance

The periodic motions emerging from symmetrical double stance are shown in

Fig. 4.9. The solution branches include hopping-in-place HP and hopping for-

ward/backward H1 and H2 , identical to those presented in Section 4.3.2. In addi-
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Figure 4.8: Key frames from an exemplary solution on the hopping branch G1 (so-
lution (e) in Fig. 4.6). In such a galloping gait, the trailing leg always
touches down on the ground first. The ground contact of the leading leg
follows shortly after. In contrast to the skipping gait, the leading leg
and trailing leg never switch roles. Galloping is thus an asymmetrical
gait. However, both the left leg and right leg can serve as the leading leg,
corresponding to the left galloping G1 and right galloping G2 branches.

tion, I find skipping gaits along the new branches SP1 , SP2 , S1 , and S2 .

4.3.3.1 Hopping (Branches HP, H1, and H2):

As long as the motion of the two legs is synchronized, gaits emerging from sym-

metrical double stance remain the same after leg switching and are thus identical

to those emerging from asymmetrical double stance, as discussed in Section 4.3.2.

Therefore, starting from symmetrical bouncing at S, the hopping branches HP , H1 ,

and H2 are found again at the same locations. However, I find a new bifurcation

point H on the HP branch, when the vertical speed ẏo equals −0.58
√

glo. Also, at

the point I (ẏo =−0.70
√

glo) where the H1 branch connects to HP , two additional

Floquet multipliers cross the unit circle at +1 with the corresponding eigenvectors

vI3 and vI4 reported in Table 4.3. That is, two additional branches connect to HP

at point I.
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Figure 4.9: Visualization of periodic motions that emerge from bouncing-in-place (red
circle, S) with a symmetrical double stance (as shown in Fig. 4.2c). So-
lutions include the same hopping gaits observed in Fig. 4.6, as well as
a number of skipping gaits. The branches SP1 and SP2 correspond
to skipping-in-place with split legs. Branch S1 corresponds to a forward
skipping gait. The solid line represents this gait as started from the touch-
down event of the leading leg whereas the dashed line represents the same
gait as started from the touch-down of the trailing leg. Branch S2 is one
of many examples of a forward skipping gait that emerges from in-place
skipping. It eventually connects to solutions that can be classified as
walking. The black circles (H-K & M) denote bifurcations that connect
the solution branches. The inserts show the ground reaction forces of a
typical hopping gait along the H1 branch (g), as well as the transition
from skipping (h) to an asymmetrical running gait (i) as an additional
flight phase appears along S1 . Several key frames from the solution (h)
are shown in Fig. 4.11.
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Table 4.3: Initial states and eigenvectors associated with a Floquet multiplier of +1 at
selected bifurcation points for motions emerging from Symmetrical Double
Stance.

States S H I J K M O

ẋo 0 0.00 0.00 0.00 0.00 6.31 0.00
ẏo 0 -0.58 -0.70 -1.11 -0.59 -0.70 -0.05
αl,o 0 0.00 0.00 0.00 -0.44 1.45 0.00
αr,o 0 0.00 0.00 0.00 0.44 1.45 0.00

eVec vS vH1 vH2 vI1 vI2 vI3 vI4 vJ1 vJ2 vK1 vK2 vM1 vM2 vO1 vO2

∆ẋ 0 0 0.00 0 0.56 0.00 0.61 0 0.95 0.00 0.83 0.99 0.18 0 0.50
∆ẏ 1 1 0.00 1 0.00 0.00 0.00 1 0.00 -0.01 -0.29 -0.13 0.61 1 0.09
∆αl 0 0 -0.71 0 0.59 -0.71 -0.38 0 0.23 -0.71 0.26 -0.00 -0.39 0 -0.36
∆αr 0 0 0.71 0 0.59 0.71 0.70 0 0.23 0.71 0.40 -0.00 0.67 0 0.78

Branch HP HP SP1 HP H1 SP2 S1 HP H2 SP1 S2 H1 S1 4H 4W

4.3.3.2 Skipping-in-place (Branches SP1 and SP2):

At points H and I periodic solutions SP1 and SP2 bifurcate from the hopping-

in-place branch HP . Their corresponding eigenvectors vH2 and vI3 (see Table 4.3)

indicate that these two branches extend in the same direction: both leg angles increase

equally in magnitude but in opposite directions, while the vertical speed ẏ and the

horizontal speed ẋ remain the same. Solutions on these branches are bouncing-in-

place motions in which the two legs move symmetrically with opposite angles and

velocities. During swing, the front leg moves backward and hits the ground in the

back, and vice versa. If the roles of the left and right leg are switched (right leg is

initially behind and left leg in front), the branches extend in the negative vH2 and vI3

directions (not fully shown in the figure). Several frames of a typical motion on SP1

are illustrated in Fig. 4.10. As the leg angle αi at touch-down increases, the duration

of the flight phase also increases. Both SP1 and SP2 terminate when they reach the

unstable equilibrium point in the middle of the double-support phase, when the sum

of the leg forces is equal to the weight of the main body, Mg= 2kleg cos(αi)(lo− li).

Similar to the running gaits R1 and R2 , the branches SP1 and SP2 differ in

how the swing leg hits the ground: in SP1 the leg moves forward just before touch-
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Figure 4.10: Key frames from the first half of a typical solution (at bifurcation point
K in Fig. 4.9) on the skipping-in-place SP1 branch. In this gait, the
two legs always have the same angles and angular velocities but move in
opposite directions. Both legs touch down and leave the ground at the
same time. During the flight phase, the roles of trailing leg and leading
leg are switched. This is a symmetrical gait and it thus takes another
hop to finish a full stride cycle.

down and in SP2 backward. Also, just like for the running gaits, additional skipping

branches with multiple periods of swing leg oscillations appear in pairs along HP

which are neither shown nor discussed here.

Along the two branches, solutions have roughly the same vertical speeds and the

COM only moves in the vertical direction with ẋ= 0 during the whole stride cycle.

I find 5 bifurcation points that emerge along the SP1 and SP2 branches. Most

of them lead to skipping gaits with unequal vGRFs and these branches eventually

become single-leg hopping gaits. They are neither shown nor discussed here. Only

one of them leads to a gait with the same maximal vGRFs in both legs and has a

continuation to a walking gait. This is shown in Fig. 4.9 at point K (Table 4.3). I

describe this gait S2 below.

4.3.3.3 Forward/Backward Skipping (Branch S1):

At point I, there is another eigenvalue of +1, associated with the eigenvector

vI4. Hence, another set of solutions S1 emerges from the hopping-in-place branch

HP . Along vI4 the leg angles change in opposite directions but, in contrast to vI3,
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Figure 4.11: Key frames from the first half of a typical skipping gait on the S1 branch
(solution (h) in Fig. 4.9). This gait starts in the double stance phase,
with the right leg acting as the leading leg. During the aerial phase, the
right leg moves back and becomes the trailing leg. It takes another step
for the right leg to move forward and finish the whole stride cycle. In
order to find this gait, the two legs need to have different angles at their
respective touch-down.

by different amounts. This difference in the initial angle magnitudes results in the

COM moving forward/backward. The footfall pattern of this gait is demonstrated in

Fig. 4.11 and it includes all possible combinations of leg phases (double stance, right

leg single stance, left leg single stance, and flight). This gait is known as skipping

(Minetti , 1998). In contrast to the hopping gaits where the legs move simultaneously,

in skipping one leg moves faster than the other, causing the legs to hit the ground

with different angles of attack. The two legs alternately act as the leading and trailing

leg. As a result, skipping gaits are represented by two lines in Fig. 4.9, the solid S1

line (right leg in front) and the dashed S1 line (left leg in front), and each particular

motion ‘jumps’ between them. At low speeds, skipping gaits from S1 are similar to

the skipping-in-place gait SP2 . As the speed increases, however, touch-down angles

of both legs increase to positive values, but the trailing leg angle is always smaller

than that of the leading leg (see Fig. 4.9, solution labeled (h)). When the forward

speed reaches 3.74
√

glo, the double stance phase is replaced by a short flight phase

as shown in Fig. 4.9, solution (i). As I further increase the forward speed, this brief

flight phase disappears and phases of the legs tend to synchronize again. Eventually,
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S1 connects back to the hopping branch H1 at point M , as shown in Fig. 4.9. It

should be noted that as the forward speed becomes negative, this branch extends

symmetrically to the opposite side on the Poincaré section. In these solutions, the

roles of left and right leg are simply switched and the model skips backwards.

4.3.3.4 Transition to Walking (Branch S2):

A similar skipping gait S2 bifurcates from the branch SP1 at point K, as shown

in Fig. 4.9. For solutions along S2 , both leg angles increase, but at different rates,

and both the horizontal and vertical speed magnitudes increase (see eigenvector vK2

in Table 4.3). In S2 gaits, the footfall sequence is exactly the same as in S1 . Swing

legs rotate away from the COM and retract back to the center before hitting the

ground. At low speeds, the legs are fully synchronized. As the forward speed grows,

the duration of the flight phase decreases and the phase delay between the legs gets

bigger. Shortly after reaching the fastest speed 0.462
√

glo along S2 , the flight phase

disappears. The branch thus vanishes at the solution labeled (o) (see Fig. 4.13) when

the two adjacent single stance phases of the same leg merge together. A single stance

phase with two maxima in the leg forces appears as a natural smooth continuation

of S2 skipping. The resulting double-humped vGRF motion is the most common

walking gait, which I discuss below along with other types of walking that I found.

4.3.4 Symmetrical Single/Double Stance

4.3.4.1 4-Beat Hopping (Branch 4H):

Following the footfall pattern shown in Fig. 4.2d at point S and varying the

vertical speed ẏ, a hopping-in-place gait including both a single stance phase and

a double stance phase is found. Fig. 4.13 shows that at point O, the same footfall

pattern can be used to locomote the COM forward/backward at low speeds (branch

4H ). An exemplary motion of the 4H gait (solution (j) in Fig. 4.13) is shown in
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Figure 4.12: Key frames from the first half of solution labeled (j) in Fig. 4.13. This is a
symmetrical gait that includes single stance phase, double stance phase,
and short flight phases. At higher energies, this gait 4H transitions into
the typical bipedal walking gait W .

Fig. 4.12. As the horizontal speed increases, the durations of the flight phases in this

gait get shorter. Eventually, the three adjacent stance phases of the same leg are

joined together as a prolonged stance phase, leading to the same footfall sequence as

in walking. This happens when the horizontal velocity reaches 0.04
√

glo (see solution

(k) in Fig. 4.13).

4.3.4.2 Triple-humped Walking:

This prolonged-stance walking gait is called triple-humped walking. As shown in

an exemplary solution (l) in Fig. 4.13, each leg undergoes three compressions in the

entire stance phase: one compression in each of the two double stance phases and

a third compression during the single stance in between. At higher speeds, as the

stance phase gets shorter, these oscillations become less pronounced and the peak

forces approach the body weight Mg. Eventually all oscillations along the stance leg

settle down to just one compression.

4.3.4.3 Level Walking:

The single compression during stance of such walking gait results in a prolonged,

single humped shape of the vGRFs (see solution (m) in Fig. 4.13). This gait is
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Figure 4.13: Visualization of periodic motions that emerge from bouncing-in-place
(red circle, S) with a symmetrical single/double stance (as shown in
Fig. 4.2d). A forward/backward speed is introduced at bifurcation point
O, and at solution (k) all air phases vanish, leading to walking with
triple-hump ground reaction forces. This gait undergoes a substantial
change in its ground reaction force profile and gradually transitions to
level walking, and eventually walking with double-hump ground reac-
tion forces. At solution labeled (o), an additional lift-off arises and the
walking gait smoothly changes to the previously identified skipping gait
on branch S2 . The inserts show how the ground reaction forces profiles
evolves along this branch. Several successive motion frames of 4-beat
hopping (j) and double-humped walking (n) are shown in Fig. 4.12 and
Fig. 4.14.
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sometimes referred to as level walking (Rummel et al., 2009). It has the smallest

vertical excursion of the COM trajectory, 0.93−0.95 lo, compared to all other walking

gaits.

4.3.4.4 Double-humped Walking:

Starting from the level walking, as the forward speed increases, I found the most

human-like walking gait (Pandy , 2003). This walking gait has two maxima in the leg

forces during stance (Fig. 4.13, solution labeled (n)) and a local minimum in the leg

forces appears at exactly the middle of the single stance phase. In contrast to all other

gaits in which the COM moves to the lowest position (maximum leg compression)

at mid-stance, in the double-humped walking gait, the COM vaults to the highest

point when the leg is vertical (see Fig. 4.14). As I increase the forward speed, the

leg force tends to decrease in single stance. When the speed gets to 0.52
√

glo, the

minimal leg compression becomes zero with no forces in the stance leg (see solution

(o) in Fig. 4.13). A flight phase appears as a natural continuation after passing this

solution, and the gait smoothly transitions to the symmetrical skipping S2 . Thus,

the double-humped walking spans only a small range of speeds 0.27−0.45
√

glo in this

passive model.

4.4 Discussion & Conclusion

In this chapter, I systematically investigated passive dynamic gaits that emerge

from the natural mechanical dynamics of a bipedal legged system. To this end, I

developed an energetically conservative, yet complete dynamical model of a biped.

I achieved this by extending the established SLIP model to include two legs and by

adding a foot mass and a hip spring to enable passive swing leg dynamics. By let-

ting the foot mass and hip stiffness go to zero while keeping their ratio (and thus

the leg swing frequency ωswing) constant, I prevented energy losses at touchdown.
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Figure 4.14: Key frames from the first half of a typical double-humped walking gait
W (solution (n) in Fig. 4.13). This is a symmetrical gait and it thus
takes another hop to finish a full stride cycle. All walking solutions along
this branch have the same footfall pattern, but differ in the number of
COM oscillations during the stance phase.

Through a targeted continuation of periodic motions, I showed that a range of dif-

ferent bipedal gaits emerged in this model from a simple bouncing-in-place motion

with different discrete footfall patterns. Among others, these passive dynamic gaits

included walking, running, hopping, skipping, and galloping. The different gaits arose

along one-dimensional manifolds of solutions. These manifolds bifurcated into differ-

ent branches with distinctly different types of motions (as shown in Figs. 4.3, 4.6,

4.9, and 4.13). That is, the gaits were obtained as different oscillatory motions (or

nonlinear modes) of a single mechanical system with a single set of parameters.

As this biped model has neither actuation nor control, it supports the hypothesis

that different gaits are primarily a manifestation of the underlying natural mechanical

dynamics of a legged system. The occurrence and prevalence of certain gaits in nature

are thus possibly the consequence of animals exploiting passivity based gaits in order

to move in an energetically economical fashion. The same argument should hold for

legged robots: the passive motions derived in this chapter establish a blueprint of how

to move economically. In the absence of losses, the passive dynamic gaits constitute

the only feasible way of locomoting without performing any actuator work. As losses

are introduced, such as losses due to friction and collision impacts, the motions will
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have to change and will, of course, require some actuation. However, staying close to

the original passive motions might reduce the need for motor torques and for negative

actuator work, and might hence reduce the energetic cost of locomotion.

On some level, I can consider all gaits found in this chapter to originate from a

bipedal model that is completely at rest, standing either on one or both legs with

the main body supported by a lightly compressed leg spring that balances gravity.

One can think of this equilibrium as a state of maximal symmetry. It is invariant

with regards to any time shift (temporal symmetry), to switching the forward and

backward directions (symmetrical to the frontal plane), and (for the case of double

support) to switching of the left and right legs (symmetrical to the sagittal plane).

Different gaits arise from this equilibrium through a sequence of breaks in symmetry

that occur at bifurcations (Stewart and Golubitsky , 1992). The first is the introduction

of a vertical oscillation that breaks the temporal symmetry and introduces a periodic

motion. This oscillation is linear for small amplitudes. However, beyond a certain

point, the legs will fully extend, and the model will enter a flight phase which renders

the dynamics nonlinear. This is the point where this study begins to track the motion

as either running (RP) or hopping (HP , H4 ) in place. The gaits that branch out

from these motions further reduce the symmetry. For example, hopping gaits (H1 ,

H2 ) break the frontal plane symmetry, while the left and right legs still can be

switched without changing the motion. This sagittal plane symmetry is then broken

in another bifurcation as the galloping gaits (G1 , G2 ) emerge. A similar process

leads to all the other gaits. Skipping-in-place (SP1 , SP2 ), for example, has a

mixed symmetry: solutions remain invariant to switching both forward/backward and

left/right at the same time. Again, this symmetry is broken as soon as forward motion

is introduced. This is shown, for example, in the S2 branch. A similar consideration

holds for the running gaits (R1 -R6 ) which introduce a forward/backward motion

into an already left/right asymmetric running-in-place RP . The breaks in symmetry
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happen whenever the vertical motion of the model is matched to the leg swing. Since

the swing legs are undergoing quasi-sinusoidal motions dictated by the torsional spring

at the hip, the same leg angles can be reached with a different number of oscillation

periods. This creates several branches of the same gait, such as the running branches

R2 , R4 , and R6 as illustrated in Fig. 4.5. Furthermore, contact can happen either

in a forward or backward motion of the swing leg. All gaits, including all of the

running gaits R1-R6 , hopping forward/backward H1-H2 , and skipping in place

SP1-SP2 , thus appear in pairs.

I have shown that this unified model can reproduce most of the common bipedal

gaits that are observed in nature. The motions obtained from the model seem qual-

itatively similar to gaits of animals. This similarity includes the footfall sequences

that are characteristic of each gait, the shape of the vertical ground contact forces, as

well as details such as swing leg retraction. For example, the proposed model can pro-

duce a double-humped ground reaction force profile along the W branch of solutions

that is characteristic of walking in nature (Pandy , 2003). Yet, while this approach

provides a reason why many bipeds in nature use similar gaits (and do not locomote

in arbitrarily different ways), it cannot explain why a certain biped walks at slow

speeds, runs at high speeds, and reverts to hopping, skipping, and galloping only in

very special situations. In order to explain these choices among the passivity-based

gaits, I might need to be able to explain which of the provided motions are more

efficient at a given speed in systems that have losses. This is obviously not possible in

a passive model, and would require further considerations about the energetic impact

of each motion.

As a further limitation, the gaits found in this study do not necessarily constitute

the complete set of all possible periodic motions of this model. While the continua-

tion/bifurcation approach finds all period-one gaits that originate from bouncing in

place with the given footfall patterns, there might be other gaits that do not connect
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to these starting motions, or that connect to them under conditions that are not

considered valid in this study. It is possible that other branches exist, but remain

undetected. Other examples that are omitted from this study include motions with

different footfall sequences, such as single leg hopping. Furthermore, in this study,

I limited myself to trace only simple bifurcation points. Other types of bifurcation

exist, and could lead to other types of gaits. For example, I found that asymmetrical

running gaits with different angles of attack at each step emerge as period-doubling

(PD) bifurcations from the period-one running gaits R1-R6 . On these branches of

period-two solutions, further running gaits with periods of four steps are found. As

the PD bifurcations keep emerging, they eventually lead to chaotic effects that are

similar to those found in passive dynamic walkers (Garcia, 1998). Including all these

solutions was simply out the scope of this work, yet could provide an interesting av-

enue for further explorations, For all results presented here, I used a fixed parameter

set for the model. In particular, I had to make a somewhat arbitrary choice about

how to select the leg stiffness and swing leg frequency. It remains an open question

how these results may or may not change for different parameter values. Hence,

another natural continuation of this work is a parameter study that systematically

tracks how locations of the bifurcation points and branches on the Poincaré section

change. This information would be particularly valuable from a design point of view.

In a preliminary parameter study, I have already found that changes in parameter

values can induce structural changes in the solution landscape. For example, when in-

creasing ωswing, the grounded running GR and walking W branches merge together

at about ωswing =
√

35
√

g/lo. For higher swing frequencies, grounded running and

level walking become the same gait and a smooth transition from walking to running

can be observed. This is similar to the result by (Rummel et al., 2009), who reported

that there was no speed gap between running and walking.
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CHAPTER V

On the Dynamic Similarity between

Bipeds and Quadrupeds

5.1 Introduction

1 Broadly speaking, animals gaits can be categorized into two classes: symmetrical

and asymmetrical gaits (Hildebrand , 1977; Alexander , 1984). In symmetrical gaits,

the left and right half of the animal performs the exact same motion, half a stride out

of phase. This includes, for example, walking and running for bipeds and trotting for

quadrupeds. In contrast, in asymmetrical gaits, the motions of the left and right legs

show a different phase shift. For bipeds, these asymmetrical gaits include hopping

and bipedal galloping or leaping (Franz et al., 2005). In hopping, both legs strike

and leave the ground simultaneously. When the synchronization is lost, one leg will

hit the ground earlier than the other which becomes leaping. In contrast to bipeds,

quadrupeds can utilize a much larger variety of asymmetrical gaits. Among other

gaits, quadrupeds can pronk, bound, and gallop. Within these broad definitions, sub-

classes of gait exist. Hildebrand (1977), for example, further classified the bound

into four categories according to the durations of the flight phases (suspensions)

between the front and back contact: 1) gaits with no suspension, 2) gaits with gathered

1This chapter has been previously published in 2018 IEEE Robotics and Automation Letters
(RA-L 2018) and presented at IROS (Gan et al., 2018a).
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suspension, 3) gaits with extended suspension, and 4) gaits with two suspensions.

Animals with varying body weights and agility use different categories of bounding:

heavier animals such as the bison and giraffe tend to locomote in gaits with gathered

suspension or no suspension. While some fast moving animals like the cheetah and

greyhound prefer to use the gait with two suspensions at their highest speeds (Hudson

et al., 2012).

It is notable, that despite the vast differences in morphology, the gaits of bipedal

and quadrupedal animals share some important similarities. Heglund et al. (1982)

investigated the dynamic similarity between walking in bipeds and quadrupeds and

hypothesized that they utilize the same mechanism similar to an inverted pendulum

in which kinetic energy is exchanged for potential (gravitational) energy and vice

versa. This implies that fluctuations in kinetic and potential energy happen out of

phase. These energy-based observations can be extended to other gaits: in bipedal

running or hopping and in quadrupedal trotting, fluctuations of potential and kinetic

energy happen in phase and both are exchanged for elastic energy (Farley et al.,

1993). However, this analysis breaks down for asymmetrical gaits of quadrupeds.

Due to the lack of the additional pair of legs, a biped cannot move in a fashion that

is dynamically similar to a galloping quadruped (Alexander and Jayes , 1983).

In this chapter, I explore the dynamic similarity between bipedal gaits and asym-

metrical quadrupedal gaits by using simplistic passive models as illustrated in Fig. 5.1.

These models are built on an extensive body of previous work that investigates the

passive dynamics of legged locomotion (Mochon and McMahon, 1980a; Blickhan,

1989). In the present work, I employ our two models to reveal potential dynamic

relationships between bipedal gaits on the one side and quadrupedal asymmetrical

gaits on the other. For our quadrupedal model, I only focus on bounding gaits and

neglect the phase difference within the fore/hind leg pairs which is characteristic of

different forms of quadrupedal galloping. By letting the inertia of the torso in the
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Figure 5.1: The well-known SLIP model is extended to include passive swing leg
dynamics with constant swing leg frequency ωswing and similar mechanism
is applied to a quadrupedal bounding model with main body mass M and
inertia J (a). Our results are contrasted against a similar bipedal model
with a point mass as the main body (b).

quadrupedal model vary from zero to infinitely large, I explicitly connect the two

models and link all bounding gaits of the quadrupedal model to the two-legged gaits

of the bipedal model.

I believe these results to be of importance to the robotics community, as roboticists

have already developed a large number of legged machines that rely on asymmetri-

cal gaits. Talebi et al. (2001), for example, designed the quadruped robot Scout II

and used a simple open-loop controller to reset contact angles to demonstrate stable

bounding at a range of speeds. Wildcat developed by Boston Dynamics can bound

and gallop at 28 mph. Similarly, MIT Cheetah 2 (Park et al., 2017) can bound at a

large range of speeds using impulse-based controller. Eckert et al. (2015) also found

that with different spine designs, Lynx-robot demonstrates bounding gaits with dif-

ferent footfall patterns and duty factors. Most closely related to the aims of this

chapter, De (2017) found different bounding and pronking gaits by tuning the main

body inertia of the Minitaur robot.
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5.2 Methods

5.2.1 Model Description

The quadrupedal model used in this study consists of an extended main body

with mass M and inertia J (Fig. 5.1a). The vertical and horizontal positions of the

COM of the main body, and the main body’s pitch angle were given by the variables

x, y, and φ, respectively. Each pair of legs (with index i ∈ [H,F ]) was modeled as a

massless linear spring with length li, rest leg length lo, total spring stiffness kleg, no

damping, and a point mass m at the foot. The leg pairs were connected to the main

body through frictionless rotational joints with joint angle αi. The hip joint (back

leg pair) was located at a distance of lb,H behind the Center of Mass (COM) of the

main body and the shoulder joint at a distance of lb,F in front of the COM. I defined

the value of lb,H to have a negative sign. Torsional springs with stiffness kswing and

no damping were added to these joints. The springs are uncompressed at zero leg

angles when the main body and the respective leg are perpendicular to each other.

Similar to the bipedal model defined in Chapter IV, rather than defining a value for

kswing directly, I prescribed a leg swing frequency ωswing =
√

kswing
ml2o

. While this model

is energetically conservative during flight, it would lose energy when a foot’s velocity

is brought to zero in a touch-down collision. With such losses, it would be impossible

to identify passive periodic gaits. To resolve this issue, I took the limit of m going

towards zero (m→ 0), similar to the method used in (Garcia, 1998; O’Connor , 2009).

This implies that kswing → 0 as the swing frequency ωswing remains unchanged. During

swing, dynamics along the legs are ignored and the leg length remains as a constant

value of their uncompressed length lo. To focus on the dynamics of the proposed

model, I assume the ground to be flat and rigid, and that there is no foot slipping

during the stance phase.

When the main body inertia of this quadrupedal model approaches infinity (J →
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∞), the torso would stop to perform any pitching motion. At this point, and when

started with a pitch of zero, the model can behave exactly as a bipedal model in which

the front and back legs of the bounding model move like the left and right legs of

the bipedal model. Such a bipedal model was examined in detail in the prior chapter

(Fig. 5.1b).

5.2.2 Equations of Motion

The Equations of Motion (EOM) are given for the main body as:

ẍ = Fx/M, ÿ = Fy/M − g, φ̈ = τ/J, (5.1)

where Fx, Fy, and τ are the net forces and torques created by the leg pairs (see

Appendix B). Depending on whether the leg pairs are in the air or in contact with

the ground, their dynamics differ. During the swing phase, the leg length is set to

li = lo and the leg angle accelerations are given by:

(5.2)
α̈i = −φ̈− 1/lo

(
cos (αi + φ) ẍ+ sin (αi + φ) (g + ÿ)

− lb sin (αi) φ̈+ lb cos (αi) φ̇
2 + 1/lokswingαi

)
.

During stance, the leg angle and leg length are computed from kinematic constraints,

as I assume no sliding of the foot. The leg length is given by li =
y+lb,i sin(φ)

cos(αi+φ)
, and the

leg angle follows from

x+ lb cos(φ) + tan(αi + φ) (y + lb sin(φ)) = xfoot,i, (5.3)

where xfoot,i is the horizontal position of the foot on the ground. I solved this equation

explicitly for leg velocities and accelerations, allowing us to express the leg angle in

both stance and swing phase as a second order differential equation (see Appendix B

for details).
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5.2.3 Footfall Sequence

In order to determine the footfall pattern of a stride, I introduced four timing

variables tj, (j ∈ [Htd,Hlo, F td, F lo]) for the touch-down and lift-off events. To

enable solutions with different footfall patterns, the order of these events can be

arbitrary, but their values are confined within the time interval of one stride [0, tstride).

These timing variables are used to determine whether a leg pair is in the air or on

the ground at a given time t. The timing vector eT = [tHtd, tHlo, tFtd, tFlo] thus

breaks the whole stride into 5 distinct intervals, each next interval with a different

contact configuration. Using the position and velocity vector qT := [x, y, φ, αF , αH ],

q̇T := [ẋ, ẏ, φ̇, α̇F , α̇H ] to describe the state of the system, I express the dynamics

as a time variant differential equation q̈ = f (q, q̇, t, e) which is parameterized by e.

In addition, at the moments of touch-down tk, (k ∈ [Htd, F td]), I need to reset the

leg velocities according to the derivative of equation (5.3) resulting in the additional

discrete dynamics q̇
(
t+k
)

= h
(
q
(
t−k
)
, q̇
(
t−k
))

.

5.2.4 Gait Creation

Similar to (Hermann and Saravi , 2016), I stated the gait creation as a Boundary

Value Problem (BVP). I defined a gait as a periodic motion in which all states

except for the horizontal position x return to their original values after one full stride.

Without loss of generality, the apex transition (ẏ = 0) was selected as the Poincaré

section for this limit cycle analysis. Finding a gait in this model was thus equivalent

to solving the following problem:

T(Z∗) :=


q̈ − f(q, q̇, t, e)

q̇
(
t+k
)
− h

(
q
(
t−k
)
, q̇
(
t−k
))

R1-14(q, q̇, e, tstride)

 = 0. (5.4)
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The solution vector of this equation, Z∗ := (q, q̇, e, tstride), combines the generalized

positions and velocities of the model (q and q̇) with the vector of footfall timings e

and the overall stride time tstride. The boundary and interior-point conditions in R1-14

were used to enforce (I) that all positions except x are periodic (R1−4), (II) that all

velocities are periodic (R5−9), (III) that the stride ends at the Poincaré section (R10),

and (IV) that the legs are fully extended at touchdown and liftoff (R11−14):

R1−4 = q̄ (tstride)− q̄ (t= 0) , (5.5)

R5−9 = q̇ (tstride)− q̇ (t= 0) ,

R10 = ẏ(tstride),

R11−14 = y(tj) + lb,i sin(φ(tj))

− lo cos(φ(tj) + αi(tj)).

5.2.5 Continuation and Bifurcations

I found all solutions of eq. (5.4) through numerical continuation and bifurca-

tion analysis. That is, starting from an initial solution Z1, I computed branches of

solutions iteratively. Assuming that Z∗n is the nth solution that I found, I numeri-

cally search for an adjacent solution Z∗n+1 in a two-step predictor-corrector process

(Fig. 5.2): first I determine an initial guess Zo
n+1 =Z∗n + d ·

(
Z∗n −Z∗n−1

)
, by con-

tinuing to move with a fixed step length of d tangentially along the existing solution

branch. I then identify the exact solution Z∗n+1 by numerically solving the following

constrained problem:

T
(
Z∗n+1

)
= 0, (5.6a)∥∥Z∗n+1 −Z∗n

∥∥ = d, (5.6b)(
Z∗n+1 −Z∗n

)T (
Z∗n −Z∗n−1

)
> 0. (5.6c)
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Figure 5.2: The continuation algorithm used in this work employs a prediction-
correction process. I first determine an initial guessZo

n+1 of a new solution
by moving tangentially along the branch with a step length of d. I then
numerically solve eq. (5.6) to find an exact new solution Z∗n+1.

Here, eq. (5.6a) ensures that the new solution fulfills (5.4), eq. (5.6b) ensures that

I move with a constant step length along the branch, and eq. (5.6c) ensures that I

are not stepping backwards. For computational efficiency, I used a backward finite

difference method to find the tangent direction vn. By iteratively repeating these two

steps, I can identify complete solution branches.

In some cases, eq. (5.6) has more then one solution. At such bifurcation points, new

solution branches emerge, which I track in a similar fashion. I explicitly detect these

instances by tracking a change in the null space dimension of the fréchet derivative

of T. I categorized bifurcations by simply considering the changes in stability and

the number of solutions in the neighborhood of the bifurcation. Please see (Merker

et al., 2015; Hermann and Saravi , 2016) for more details of this process.

Solutions obtained through this process can be characterized by the amount of

total energy Etot stored in the system. Since the model is energetically conservative,

this value is constant throughout a stride and a good metric to distinguish different

solutions.
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5.2.6 Parameter Study

In order to keep our solutions general, I normalized all state and parameter values

with respect to M , g, and lo (Hof , 1996). I set the leg pair stiffness to kleg = 20Mg/lo

and the swing frequency to ωswing =
√

5
√

g/lo. The front leg pair and the hind leg

pair were attached symmetrically to the center of the body with lb,F = 0.5 lo and

lb,H = −0.5 lo. These dimensionless values are comparable to our existing hardware

(Smit-Anseeuw et al., 2017a). The parameter of interest in this paper was the main

body inertia J . I started our investigation with the extremal case of an infinite

main body inertia J = ∞. While this case is highly contrived, it allows us to draw

the dynamic connections between the gaits of a biped and the asymmetrical gaits

of a quadruped, as the two models are dynamically equal for J = ∞. When then

gradually reduced the value of J and iteratively re-computed all primary solution

branches, ignoring motions with multiple leg-swing oscillations during swing in the

process.

5.3 Results

In this section, I visualize different solution branches by showing how selected

states Z∗ on the Poincaré section evolve as a function of energy Etot. Furthermore,

I visualize and numerically report bifurcation points (Table 5.1). I also illustrate

typical solutions along branches by showing a series of key-frames of an animation of

the motion .

In order to highlight the dynamic similarities between the bipedal model and

quadrupedal model and show how do they diverge from each other, I also conducted

an detailed parameter study on the body inertia. In the bipedal model (Fig. 5.1b) the

legs are massless and the COM motion and the swing leg rotations are fully decoupled.

That is, for any finite value of the body inertia J , the main body orientation will
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remain the same during the whole stride. In other words, the solution branches of

the bipedal gaits are invariant under different values of J . As shown in the following

sections, this will not hold for the quadrupedal model. I first report on the extremal

case of J =∞, then establish the correspondence between asymmetrical quadrupedal

gaits and the gaits of a biped, and finally report how these solutions change as a

function of J . For some selected periodic motions, I also present a visualization of

the motion2.

5.3.1 Infinite Main Body Inertia, J =∞

5.3.1.1 Pronking and Bounding in Place

The most basic periodic motions of this model and the starting point for our

exploration are simple pronking in place (PP) and bounding in place (BP) gaits. In

both gaits, the model moves purely vertically and the legs are pointing straight down

during the entire gait cycle. The primary difference between pronking and bounding

is the contact sequence. In pronking (Fig. 5.3a), the front and hind leg pairs strike

and leave the ground simultaneously with a single flight phase in between, whereas

in bounding (Fig. 5.3b), there exist two flight phases and the front and hind leg

pairs are in contact at separate times. Strictly speaking, there are two versions of

this bounding gait, one in which the front contact happens first and one in which it

happens second in the stride that I consider. Since I assume an infinite main body

inertia, the off-center loading during bounding does not induce any pitching motion

and the main body remains horizontal. Increasing Etot increases the apex height yo

during flight and leads to more compression of the legs during stance. The theoretical

limit for the maximal pronking height is 20 lo and for the maximal bounding height

it is 10 lo. For higher apex heights, the legs would become fully compressed during

2Please see the multimedia file at https://youtu.be/bKDJXu5RqNA for a video showing these
motions.
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Figure 5.3: Shown are the motions of pronking in place (PP , a), bounding in place
(BP , b), pronking with extended suspension (PE , c), and pronking with
gathered suspension (PG, d) of the quadrupedal model. The motions are
independent of the main body inertia J . Note that for BP , only the first
half of a full stride is shown.

stance. Apart from the contact sequence, the solution branches overlap. They are

illustrated for yo < 2 lo in Fig. 5.4.

5.3.1.2 Pronking in Place with Leg Swing (PE and PG)

Along the PP branch, a pitchfork (PF) bifurcation occurs at point A at an apex

height of yo = 1.71 lo. The two new branches break the front/hind symmetry of the

PP motions and correspond to two in-place gaits in which the leg pairs swing against

each other: in-place pronking with extended suspension (PE , Fig. 5.3c) and in-place

pronking with gathered suspension (PG, Fig. 5.3d). As the PE branch moves away

from the bifurcation point with increasing Etot, the leg pairs in the corresponding

solutions rotate outward, reach their maximal excursion at apex, and then move back

inward again before hitting the ground pointing towards each other. The opposite

happens on the PG branch, as the leg pairs gather towards the center during the

flight phase and are extended during stance. At the same apex height, the main
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Figure 5.4: This visualization of the solution branches shows the initial main body
height yo and front leg angle αF,o at the Poincaré section for the PP ,
BP , PE , and PG gaits. The PE and PG branches bifurcate from the
PP branch at point A. The solutions are independent of the main body
inertia J . The labels (a)-(d) refer to specific solutions that are shown in
Fig. 5.3.

body motions of these two branches are exactly the same. Yet, their leg motions are

inverted. That is, at any instant of motion, the angles and angle rates of the hind

legs on PE are identical to those of the front legs on PG, and vice versa. The two

branches terminate when the main body COM reaches an unstable equilibrium point

during stance, where the sum of the leg forces is equal to the weight of the main body,

Mg= 2kleg cos(αi + φ)(lo− li). Increasing the energy even further would result in the

COM ‘dropping’ all the way into the ground.

5.3.1.3 Pronking Forward (PF)

Breaking the frontal symmetry, I found a pronking forward (PF , Fig. 5.5e) gait

that branches off the in-place pronking PP solutions with a PF bifurcation at point

B (Fig. 5.7). This bifurcation happens at an apex height of yo = 1.61 lo. In this gait,

the two leg pairs simultaneously strike and leave the ground and exhibit the same

leg angles throughout the motion. Along this branch, an increase in Etot leads to

an increased forward speed with larger contact angles, until a turning point with

the maximal energy Etot = 61.43 Mglo (ẋo = 11.02
√

glo) is reached. Solutions further
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Table 5.1: Initial states Xo and event timings at the bifurcation points A - F .
BP unit A B C D E F
ẋo

√
glo 0 0 1.41 9.71 0 4.34

yo lo 1.71 1.61 1.58 0.45 1.02 1.09
ẏ

√
glo 0 0 0 0 0 0

φo [·] 0 0 0 0 0 0

φ̇o
√

g/lo 0 0 0 0 0 0.20
αH,o [·] 0 0 0 0 0 1.30

α̇H,o
√

g/lo 0 0 1.22 3.25 0 1.38
αF,o [·] 0 0 0 0 0 -1.30

α̇F,o
√

g/lo 0 0 1.22 3.25 0 1.38

thtd
√

lo/g 1.19 1.11 1.13 0.79 0.21 0.72

thlo
√

lo/g 1.73 1.65 1.60 1.01 1.28 1.04

tftd
√

lo/g 1.19 1.11 1.13 0.79 1.69 1.56

tflo
√

lo/g 1.73 1.65 1.60 1.01 2.76 1.88

tapx
√

lo/g 2.91 2.76 2.73 1.80 2.97 2.60

along the branch have lower energy and lower forward speeds. The gait vanishes when

the leg springs are fully compressed during stance, which happens at a forward speed

of ẋo = 6.43
√

glo. One should note that there also exists a corresponding pronking

backward gait that branches off in the opposite ẋo direction.

5.3.1.4 Bounding with Gathered/Extended Suspension (BG and BE)

Along the PF branch, I found a PF bifurcation at point C (Fig. 5.7. On the

new branches, the front/hind symmetry of the PF motions breaks, and the two leg

pairs loose their synchronization as they either gather inwards or extend outwards

during the flight phase. The corresponding gaits are called bounding with gathered

suspension (BG, Fig. 5.5f) and bounding with extended suspension (BE , Fig. 5.5g).

Moving along these branches, first with increasing energy Etot and after a turning

point with decreasing energy, I can observe that they eventually merge back to the

PF branch at another PF bifurcation at point D. These two bounding branches

thus form a closed loop, which is symmetrical with regard to the motion of the front

and hind leg pairs. That is, the motion of hind legs in BG resembles the motion of
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Figure 5.5: Shown are the motions of pronking forward (PF , e), bounding with gath-
ered suspension (BG, f), bounding with extended suspension (BE , g),
and bounding with two suspensions (B2 , h) of the quadrupedal model
with infinite inertia (J =∞).

front legs in BE and vice versa. Despite the differences in leg motions, the COM

moves along the same trajectories in both branches. One should note that along

these branches, the footfall sequence does change. In the central part of the branches

(dashed lines in Fig. 5.7), a second flight phases arises, as the order of touchdown

and lift-off of the leg pairs change in the middle of the stride.

5.3.1.5 Bounding with Two Suspensions B2

The BP branch has no front/hind symmetry due to the staggered contact se-

quence. It thus bifurcates directly into branches that include forward/backward mo-

tion (Fig. 5.7). Such a PF bifurcation was found at point E at an apex height of

yo = 1.02 lo. The resulting motion is bounding with two suspensions (B2 , Fig. 5.5h).

In this bounding gait, after lift-off, the swing leg pair first continues to extend back-

ward until it reaches zero speed and the hip spring starts pulling it forward.. Then

the leg pair swings forward, reaches its maximal forward extension, and strikes the
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Figure 5.6: This figure highlights the correspondence between bipedal gaits and
quadrupedal bounding with infinite inertia (as shown in Fig. 5.5). In par-
ticular, bipedal hopping (e) corresponds to quadrupedal pronking (PF ),
bipedal leaping (f, g) to bounding with gathered/extended suspension
(BE , BG), and bipedal running (h) to bounding with two suspensions
(B2 ). These solution branches of the bipedal gaits are invariant under
different values of J in the bipedal model.
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Figure 5.7: This visualization of the solution branches shows the initial main body
height yo, forward speed ẋo, and front leg angle αF,o at the Poincaré
section for all gaits of the quadrupedal model with infinite inertia. The
bipedal branches are invariant with the main body inertia J and are iden-
tical to the quadrupedal branches with infinite inertia. The PF branch
(green) bifurcates from the PP branch (grey) at point B. The BG and
BE branches (red) form a closed loop that bifurcates from the PF branch
a points C and D. Along the BG and BE branches, the contact sequence
changes and a second flight phase is introduced (dashed section). Finally,
the B2 branch (blue) bifurcates from the BP branch at point E. A
second version of this branch (dotted line) can be obtained by redefining
the Poincaré section to the second apex transit. The labels e-h refer to
specific solutions that are shown in Fig. 5.5 and Fig. 5.6.
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ground during the backward retraction. Because of the infinite body inertia, the

main body remains horizontal within the whole stride cycle, the two flight phases

have equal durations, and the motion of the front and hind leg pairs is exactly the

same, just half a stride apart. Because of the two air-phases, the B2 branch is rep-

resented by two curves in Fig. 5.7: the solid line corresponds to the apex transit

after the front leg stance (legs pointing inward at apex), and the dotted line to the

apex after the back leg stance (legs pointing outward). Similar to the PF branch,

increasing Etot along the B2 branch increases forward speed until a turning point is

reached at Etot = 55.58 Mglo (ẋo = 10.52
√

glo). The branch terminates when full leg

compression is reached at a speed of ẋo = 5.35
√

glo. Similar to pronking, there exist

corresponding backward gaits that branch off in the negative ẋo direction.

5.3.2 Correspondence to Bipedal Gaits

As the main body does not pitch in the case of the infinite body inertia, I

can identify direct correspondences between the asymmetrical bounding gaits of the

quadrupedal model and the gaits of the bipedal model (Fig. 5.6). To this end, I let

the front leg pair of the quadrupedal model correspond to the left leg of the bipedal

model, and the hind leg pair correspond to the right leg. In particular, pronking

corresponds to bipedal hopping (Fig. 5.6e). Bounding with gathered suspension cor-

responds to bipedal leaping with the left leg leading (Fig. 5.6f) and bounding with

extended suspension to bipedal leaping with the right leg leading (Fig. 5.6g). Finally,

bounding with two suspensions corresponds to bipedal running (Fig. 5.6h).

5.3.3 Finite Main Body Inertia, J <∞

Since in the pronking gaits (PG, PE , and PF ), all legs strike and leave the

ground simultaneously and the front and hind leg pairs have either the same or

opposite angles, the pitch torques on the main body are always balanced. In these

105



motions, the main body will remain horizontal, independent of the value of J . In

the following, I thus focus on the bounding branches (BG, BE , and B2 ) which are

indeed influenced by the choice of the main body inertia J .

5.3.3.1 Large Inertia, J ∈ [1.047 Ml2o,∞)

As the value of J gradually decreases from infinity, the structure of the bounding

gaits remains roughly the same until J = 1.047 Ml2o. The net torque on the torso

creates an angular acceleration and the main body pitches accordingly. This pitching

motion is superimposed with the bounding motion, yet the general motion and footfall

sequence remain the same (Fig. 5.8). What is lost, is the symmetry between the

BG and BE branches. That is, the motion of the hind legs in BG does not longer

resemble the motion of the front legs in BE and vice versa. This can also be observed

in the solution branches (Fig. 5.9), where the BG and BE are no longer symmetrical

with respect to the PF branch. Notably, a new turning point arises along the BG

branch near Point C, as the energy level along the branch now initially decreases.

Similarly, I can observe an asymmetry in the two different apex transits in bounding

with two suspensions (B2 ).

In the bounding with two suspensions gait, I can also observe that, as the inertia

value decreases, the gathered suspension becomes longer than the extended suspen-

sion. The main body motions along the B2 branch therefore become similar to the

solutions with two flight phases along the BG branch; in particular with regard to the

timing of these flight phases and in the sense that they both have a positive pitching

velocity at the start of each stride and a negative rotational velocity in the middle

of that stride (Figs. 5.8h & 5.8j). As a result, the BG and B2 branches approach

each other for decreasing values of J and eventually merge at a critical inertia value

of 1.047 Ml2o (Point F ).
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Figure 5.8: Shown are the motions of bounding with gathered suspension (BG, i),
bounding with extended suspension (BE , j), bounding with two suspen-
sions (B2 , k) of the quadrupedal model with a main body inertia of
J = 1.047 Ml2o.
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F . The labels i-k refer to specific solutions that are shown in Fig. 5.8.
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5.3.3.2 Intermediate Inertia, J ∈ [0.501 Ml2o, 1.047 Ml2o)

As the main body inertia is decreased below 1.047 Ml2o, the BG and B2 break

apart at the bifurcation point F (Fig. 5.10) but stay connected with each other.

As a result, I now get a seamless continuation from the B2 branches onto the BG

branches at two new turning points (F1 and F2, Fig. 5.10). These two turning points

move away from each other as the inertia J keeps decreasing. F1 moves towards lower

forward speeds and F2 towards higher forward speeds. As a result, bounding with

gathered suspension (BG) and bounding with two suspensions (B2 ) cease to exist

at the intermediate speed range and bounding with an extended suspension (BE

branch) becomes the only passive bounding gait for certain speeds. The pronking

branch PF and the bifurcation points (C and D) remain in the same locations on

the Poincaré section.

When the inertia value drops below 0.501 Ml2o, the turning points F1 and F2 dis-

appear (Fig. 5.11). They merge with the existing turning points on the BG and B2

branches. Energy now monotonically decreases when moving along BG starting from

point C, and only a single turning point remains on the BG branch starting from

point D. With this, it is not possible anymore to do a formal distinction between the

BG and B2 branches. In a sense, the original bounding gait with double suspension

(B2 ) ceases to exist. In contrast, the BE branch does not undergo any fundamental

changes and remains strikingly similar to bipedal leaping. The branch leaves pronk-

ing at point C and joins back to the pronking branch at point D after going through

a turning point.

5.3.3.3 Small Inertia, J ∈ (0, 0.501 Ml2o)

As the inertia value keeps decreasing from 0.501 Ml2o, the rotations of the main

body are getting smaller within one stride. In the meantime, the branches BG and

BE are approaching the pronking branch PF . When the main body in the model
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has zero inertia, any time lag in the touch-downs will cause infinite acceleration of

the main body. Therefore all bounding branches vanish, and the pronking branch

PF becomes the only gait with nonzero speeds.

5.4 Discussion & Conclusion

In this chapter, I have identified passive dynamic bounding gaits, and have inves-

tigated the dynamic similarity between bipedal and asymmetrical quadrupedal gaits.

I did so by studying the passive motions of a simplistic energetically-conservative

quadrupedal model. Since there is no control in this model, its motion is fully deter-

mined by its mechanical dynamics. Still, by using numerical continuation techniques,

I were able to identify the most prevalent bounding gaits found in nature: pronking,

bounding with extended support, bounding with gathered support, and bounding

with two flight phases. These motions emerge completely passively, and may serve

as a template to develop energetically economical motions for legged robotic systems.

While an actual robot would need to compensate for energetic losses due to friction,

damping, and contact collisions, staying close to these passive motions would ensure

that the robot avoids negative actuator work. This is because the energetic fluctu-

ations that happen during locomotion can be fully realized by the dynamics of the

mechanical system.

As a starting point of our analysis, I assumed an infinite inertia of the robot’s

main body. Since this prevents any main body pitch, I were able to draw direct

connections between the gaits of a biped and those of a quadruped. In fact, comparing

the results presented in this work with our prior work on bipeds in Chapter IV,,

showed that for the same set of parameters and the same choice of the Poincaré

section the two models behave exactly identical: quadrupedal pronking is equal to

bipedal hopping, quadrupedal bounding with a gathered/extended suspension is equal

to bipedal leaping, and bounding with two suspensions is equal to bipedal running.
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Such similarities between bipedal and quadrupedal gaits have been long postulated

and have been studied previously using the established SLIP model. However, due to

the large dimensions of solutions in the SLIP model, previous research only focused

on symmetrical gaits, such as the correspondence of running and trotting (Alexander ,

1984; Farley et al., 1993). Knowing about the connections between the bipedal and

quadrupedal model, and also about the connections between the different types of

quadrupedal bounding gaits may help the design of robots and controllers that can

switch between different gaits.

Naturally, the similarities between bipeds and quadrupeds become less evident

as the main body inertia in the quadruped decreases and the solutions change. In

the bipedal model, because the legs are all connected to the COM, the main body

stays horizontal in all gaits and for all values of the main body inertia. On the other

hand, the two leg pairs in the quadrupedal model are mounted at two ends of the

torso, which results in a nonzero torque when the footfalls of these two leg pairs

are not simultaneous. Therefore, the quadrupedal gaits start to differ as the main

body begins to oscillate. Most notably are the changes in bounding with a gathered

suspension. For low values of the main body inertia, these solutions disappear almost

completely, leaving bounding with an extended suspension and bounding with two

suspensions as the only passive modes of locomotion for a wide range of speeds.

In this work, I limited ourselves to bounding; that is, to gaits in which leg pairs

move together. While this greatly reduced the complexity of the analysis, it should

be noted that bounding is not a particularly common or efficient gait. In fact, in

our prior work, I have shown that bounding is energetically inferior in quadrupedal

robotic locomotion (Xi et al., 2015). This holds both for quadrupeds with and with-

out an articulated spine (Yesilevskiy et al., 2018). A natural extension of this work is

thus to expand our approach to discover half-bound (3-beat) and galloping (4-beat)

gaits in which the footfalls of the front and hind legs are not necessarily synchronized
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Figure 5.12: This figure shows how the half-bound (HG and HE ) and gallop (GG
and GE ) branches evolve from the bounding gaits (BG and BE). Sev-
eral key frames of each exemplary gait are shown in Fig. 5.13.

(Hildebrand , 1977). As these gaits include bounding as a special case, our prelimi-

nary results suggest that half-bound and galloping gaits emerge through additional

bifurcations from the solution branches that have been presented in this paper. As

indicated by dash lines in Fig. 5.12, the branches of half-bound (HE with extended

suspension, and HG with gathered suspension) are bifurcated from the bounding

branches at G and H respectfully. The other side of HE and HG are all con-

nected to pronking branch PF at point C. In addition, 4-beat galloping gaits (GE

with extended suspension, and GG with gathered suspension) are identified on the

half-bound branches at point J and I. For each gait mentioned above, a exemplary

periodic solution is in Fig. 5.13. It is worth noting that the galloping gaits shown

in this figure have transverse footfall pattern (Hildebrand , 1989). Since this is a 2D

model, one can easily find the rotary galloping by switching the initial angles and

angular speed for only one pair of the legs (fore or hind pair). If switching both

legs pairs, another branch of transverse galloping gait with different leading legs will

be obtained. In this sense, there are four identical branches with different footfall
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sequences laying together for HG and HE in Fig. 5.12.

Our work shows that all asymmetrical gaits can be generated with a single passive

model and a single set of parameters. In a sense, the different gaits are just different

oscillation modes of a single mechanical framework. Our model therefore has the

potential to serve as a general template (Full and Koditschek , 1999) for the study of

quadrupedal locomotion. It might also explain, why our past optimization studies

(Xi and Remy , 2014) have converged to similar motions with varying flight phases.

Furthermore, the approach could be extended to be used in the gait design of legged

systems. In order to reproduce desired gaits efficiently, one can tune the parameter

values of their specific hardware, such as the body mass, leg length, or the body

inertia, to ensure the gaits are passively available.
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CHAPTER VI

General Conclusions and Future Directions

Throughout this dissertation, I have shown that it is possible to use a single

model to reproduce almost all bipedal and quadrupedal animal gaits observed in

nature. By restoring passive dynamics of swing leg motions to the SLIP models

with instantaneous leg reset, the solution manifold is simplified to one-dimensional

branches with varying total energy levels. These solution branches represent distinct

gaits with various footfall patterns; they are all originated from simple hopping in-

place motions and connected to each other through continuations and bifurcations.

Therefore, the proposed models may explain why animals in nature with different

morphology move in similar ways. They also have the potential to serve as the

locomotion planning tool for hardware design or as the gait selection tool to improve

energetic economy of the existing hardware.

6.1 Discussion and Contributions of Presented Work

In Chapter II & III, I extended the concept of the unified model from Geyer’s

bipedal SLIP model to quadrupeds. The proposed simplistic model generated a vari-

ety of different gaits primarily by altering the initial continuous and discrete states of

the system. The resulting motions, footfall patterns, and GRFs emerge from these ini-

tial conditions through a numerical integration of the dynamics. The result suggests
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that quadrupedal gaits are merely different dynamic modes of the same structural

system and that we can interpret different gaits as different nonlinear elastic oscil-

lations that propel an animal forward. These different oscillation modes create a

large number of locomotion types and allow for varying properties (such as different

locomotion velocities) that can be exploited by the animal. Despite its simplicity,

the model does not only produce qualitatively different motion patterns, but can

quantitatively reproduce the recorded vertical GRFs with high accuracy. Particu-

larly the GRFs of trotting and tölting can be predicted with high R-square values.

Larger residuals were only obtained in walking, but could be alleviated by adding a

head-neck segment to the model.

Despite the simplicity of the dynamics, the structure of all periodic gaits of the

SLIP models without swing leg motions are complex. This is mainly caused by the

control parameter AOA for each leg during swing. In order to reveal the fundamental

structure of gaits from bipedal systems, in Chapter IV, I extended the Geyer SLIP

model with passive swing leg dynamics and explored all periodic solutions using nu-

merical continuation method. This work consolidates a number of previous efforts to

explain different gaits through mechanical dynamic models (Mochon and McMahon,

1980a; Full and Koditschek , 1999; Blickhan, 1989; Farley et al., 1993; Geyer et al.,

2006; Rummel et al., 2009). To the best of my knowledge, this is the first time it

has been shown that a single model with fixed parameters can generate all common

bipedal gaits at once. Furthermore, my results provide a new point of view on the

relationships among different gaits, as we show that they are all connected to in-place

bouncing through breaks in symmetry. My model therefore has the potential to serve

as a general template (Full and Koditschek , 1999) for the study of bipedal locomo-

tion. Previous models were either only able to produce a single gait (such as passive

dynamic walking (McGeer , 1990)) or relied on a (control) parameter that had to be

adjusted to obtain different motions (such as the AOA in the traditional SLIP model
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(Geyer et al., 2006; Rummel et al., 2009)). In the case of the Geyer SLIP model,

for example, a series of similar solutions can be found for the same AOA by varying

the total energy of the model (Geyer et al., 2006; Rummel et al., 2009). Yet, the

value of the AOA has to change for the same gait at various speeds and it has to

take on different values to enable the two gaits, walking and running, that the Geyer

SLIP model can exhibit (Rummel et al., 2009). Moreover, since these models are

essentially controlled, infinitely many solutions can be produced by gradually chang-

ing the AOA, leading to a high-dimensional solution space with no clear boundaries

on individual gaits. In contrast, in the present work, the different gaits are found

along distinct one-dimensional manifolds that are only connected through a series of

discrete bifurcations. That is, while my results extend the range of gaits that can

be explained by the mechanical dynamics of a single model, they also define these

gaits in a more precise manner. For the individual running branches, for example,

the solutions found within my study form a well-defined subset of the solution range

of the SLIP model. In particular, they contain only solutions that can be achieved

with passive swing dynamics and thus exclude, for example, motions that require

unreasonably fast leg swing or are otherwise not physically achievable with an actual

legged system. This work thus has the potential to provide a new definition of a gait:

a distinct nonlinear dynamic mode of the underlying passive mechanical system.

In Chapter V, I extended the concept of passive swing leg motions to quadrupeds.

Various bounding gaits with distinct footfall patterns have been identified. Similar to

the bipedal model, since there is no control in this system, for a given initial state its

motion is fully determined by the mechanical dynamics. Using numerical continuation

techniques, I was to identify the most prevalent bounding gaits found in nature, such

as pronking, bounding with extended support, bounding with gathered support, and

bounding with two flight phases. These motions emerge completely passively, and

may serve as a template to develop energetically economical motions for legged robotic
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systems. While an actual robot would need to compensate for energetic losses due to

friction, damping, and contact collisions, staying close to these passive motions would

ensure that the robot avoids negative actuator work. This is because the energetic

fluctuations that happen during locomotion can be fully realized by the dynamics of

the mechanical system. In addition, the dynamic similarity between these bounding

gaits and the bipedal gaits found in Chapter IV has been investigated. It has been

shown that when the main body inertia in the models is infinite, the gaits of these

two models are identical. As the body inertia gradually decreases, the main body

from the quadrupedal model starts to oscillate and the resulting gaits become less

similar.

6.2 Future Research

6.2.1 Symmetrical Gaits of Quadrupeds

In the end of Chapter V, I showed the solution manifold of several asymmetri-

cal gaits of the quadrupedal model with passive swing leg motions. An immediate

extension of this work would be studying the symmetrical gaits according to the

Hildebrand’s classification (Hildebrand , 1967). Symmetrical gaits are often used by

animals at relatively low speeds, for example, walking, tölting, trotting, and pacing.

The proposed quadrupedal model in Chapter V can be utilized directly to identify

this type of gaits by simply enforcing additional constraints such that the phase de-

lay within each leg pair (fore or hind) is one half of the stride cycle. Using the same

methods, some preliminary results of symmetrical gaits are shown in Fig. 6.1 & 6.2.

As I have shown in Chapter II, trot is a 2-beat gait in which the diagonal leg pairs

move simultaneously. In this gait, the main body of the model barely rotates within

the whole stride. As a result, this type of gait resembles the running gait found in

the bipedal model as shown in Fig. 4.3. Similar to the bipedal running, multiple
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Figure 6.1: This figure demonstrates how the footfall patterns and the vertical GRFs
change along the branches of symmetrical gaits T1 and W2R.

trotting branches T1 and T2 with different swing leg motions are found. Similar to

the branches R1 and R2 , solutions from T1 have the same type of velocity reset at

the moment of touchdown, while continuous leg velocities are observed in solutions

from T2 .

Along the first trotting branch T1 , all solutions have the same footfall pattern in

which the two leg pairs always strike the ground at the same time. As the forward

speed increases, the magnitude of the largest vertical GRFs also increases, as shown

in Fig. 6.1c & g. However, starting at point A, the two leg pairs gradually loose their

synchronization along the branch T1 . This leads to two types of 4-beat gaits: walking

with diagonal sequence (hind leg footfall followed by the footfall of the diagonal front

leg) at low speeds as shown in Fig. 6.1a & b and running with lateral sequence

(hind leg footfall followed by the footfall of the ipsilateral front leg) at high speeds

e & f. At the other bifurcation point B on branch T2 , the 4-beat lateral walking

and diagonal running are discovered as illustrated in Fig. 6.2. Even though all these
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Figure 6.2: This figure demonstrates how the footfall pattern and the vertical GRFs
change along the symmetrical gait branches T2 and T2R.

gaits merge into trotting around the bifurcation points, the changes in the footfall

sequences are distinct. In the first case, at low speeds, the hind leg touch-down joins

the subsequent touch-down of the front leg (Fig. 6.1b & c). On the other hand, the

hind legs synchronize with the stance phase of the prior front leg (Fig. 6.2b & c).

It is also interesting to think about these branches if we switch the left and right

legs in one of the leg pairs (fore or hind). In this case, because this is just a 2D model,

the main body motion will remain the same. Therefore, the locations of the branches

shown in Fig. 6.1 & 6.2 will not change. However, along the branches T1 and T2 ,

legs on the same side of the body will move in the same fashion, which corresponds

to a pacing gait. In addition, the original 4-beat gaits with lateral footfall pattern

will change to diagonal sequence and visa versa.
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6.2.2 Compare All Passive Quadrupedal gaits with Animal Gaits in Na-

ture

So far, I have shown the proposed quadrupedal model is able to reproduce a large

number of symmetrical gaits (Section 6.2.1) and asymmetrical gaits (Section 5.4)

with a single set of parameter values. It could be interesting to compare these passive

gaits with the gait graph in Fig. 1.3 and see to what extent this model can explain

animal gaits in nature. For the symmetrical gaits with the selected values of model

parameters, the proposed model creates a continuum with four branches similar to

that in the gait graph as shown in Fig. 6.3a. However, due to the absence of realistic

constraints such as the maximal leg compression or the largest limb force, many more

solutions are identified in my model at high speeds as shown on the right of the figure.

Additionally, even though many 4-beat running gaits with diagonal footfall pattern

are found to connect the pacing gaits (dashed lines in the bottom of Fig. 6.3a) in the

passive model, animals in nature rarely use these gaits might because of the stability

concerns.

For the asymmetrical gaits, only those with small duty factors are identified in the

passive model (Fig. 6.3b). Animals in nature, however, are able to maintain the same

footfall pattern at slower speeds, especially large animals such as the bison or giraffe.

Therefore, the region of asymmetrical gaits of the passive model may be expanded

by exploring effects of different morphology, for example, different values of the main

body inertia or the ratio between the body length and uncompressed leg length.

Another potential reason for such small regions of asymmetrical gaits might be the

fixed swing leg oscillation frequency used in the model. As a result, the solutions with

varying forward speeds from the proposed model have roughly the same flight phase

duration but different apex heights. Nevertheless, it is very common to see that as

animals move faster, they also recirculate their limbs faster. Therefore, one can also

scan different values of the swing leg oscillation frequency to see if the gaits branches
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Figure 6.3: These two figures illustrate the symmetrical gaits (a) and asymmetrical
gaits (b) obtained from the proposed passive quadrupedal model overlaid
with animals gaits from the Gait Graph (Hildebrand , 1989). Dashed lines
in figure (a) indicate the pacing branches obtained by switching one of
the leg pairs in the trotting branches as shown in Fig. 6.1 & 6.2.

have smaller duty factors.

6.2.3 Including Damping or Other Sources of Losses into the Model

Another pertinent question of implementing the proposed conceptual models on

hardware is, how would some physical constraints such as damping of springs, me-

chanical friction in joints, or collision losses, change the identified gait structure? And

how to include these components into the gait analysis in a meaningful way? As for

the spring damping alone, one can adopt a similar approach as what I have done

for the swing leg torsional spring. That is, one can gradually decrease the value of

damping coefficient c at the same rate of the foot mass m. In the limit of zero foot

mass (m→ 0), the damping in the springs will not consume any energy (c→ 0) but

it will still affect the trajectory of the swing leg motion. Since c/m will be a constant

value in the EOM of the swing leg.
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Figure 6.4: Branches of bipedal running solutions with different values of damping
ratios are shown in this figure. Apex transition is selected as the Poincaré
section. As the value of damping ratio ζ in the torsional spring at the
hip increases, this two running branches merge together as a loop and
shrinks.

I have identified some of the damped solutions for the bipedal running branches

R1 and R2 discussed in Chapter IV. As shown in Fig. 6.4, by choosing different

values of the damping ratio for the torsional spring at the hip, these two branches

merge together as a loop. As the value of the damping ratio increases, this combined

loop shrinks. On the other hand, with negative damping, periodic solutions also exist.

In this case, these two branches will move away from each other as two independent

curves which is not shown in the figure. Therefore, the damping in the system will not

only dissipate the total energy of the system, but also affect the motion of the swing

leg and the locations of the limit cycles. Thus, in order to implement the identified

solutions of the undamped models on a hardware, it is important to compensate for

the effect of physical damping.
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(b)(a)

Figure 6.5: The robot RAMone (a) and RAMbi (b) developed at Robotics and Motion
Laboratory (RAMlab) of the University of Michigan are designed with
compliant legs.

6.2.4 Applications to Legged Systems

From the perspective of a roboticist, the most exciting aspect of the work in this

thesis lies in its potential as a design tool for legged systems. The proposed passive

models can be used directly to develop energetically economical motions that exploit

the natural dynamics of the system. It might also explain, why the past optimiza-

tion studies (Xi and Remy , 2014; Xi et al., 2015; Smit-Anseeuw et al., 2017a) have

converged to motions that closely resemble gaits found in nature. Furthermore, the

approach could be extended to be used in the development of new hardware that incor-

porates suitable dynamic elements, for example the planar bipedal and quadrupedal

robots, RAMone and RAMbi developed in our lab. In both robots, there are two

rotational joints (hip and knee) in each leg which are motorized by Series Elastic

Actuators (SEAs) through harmonic drives. In order to utilize the passive gaits gen-

erated by the proposed simplistic models, several physical constraints have to be taken

into considerations. First problem is the ground clearance enforced by the unilateral

constraint of the ground. Since the feet of a robot in reality cannot penetrate the
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ground, it is important to shorten the leg length during leg swing to avoid foot scuff-

ing or premature touchdown collisions. Therefore, articulated knee joints as shown

in Fig. 6.5 or prismatic sliders (see Fig. 1.2(c)) are usually adopted in hardware to

achieve this task. Another concern is the stability and the robustness of the identified

gaits. For example, what will happen if the actual values of the parameters in the

hardware can not be obtained accurately? Also, what should the controller do if the

legs strike the ground at a different time due to an external disturbance. To address

these problems, additional feedback controllers or online optimization algorithms are

required to ensure the desired periodic solution is attractive. With these problems

solved, the complicated multibody dynamics of the actual robots could be tuned on

the simplified model to yield beneficial natural dynamics that enable economical loco-

motion on a full robot. The results in this thesis also suggest that swing leg motions

in legged systems can be simplified to be a nearly passive spring oscillation which

has the same natural frequency for all gaits at different speeds. The fact that the

model relies on a single set of parameters for all motions, also provides some reasoning

that fixed stiffness actuators might be a sufficient choice for legged robots and that

variable stiffness actuation is not necessarily required to achieve energetic economy.

Additionally, the continuation method and the bifurcation study can be used as

a gait selection tool for a specific robot. As shown in Chapter V, quadrupeds with

different main body inertia also have passive gaits with distinct footfall patterns.

These results are supported by recent experiments on hardware. For example, De

(2017) has shown that the stable phase relationship of two leg pairs in the Minitaur

robot is highly dependent on the body inertia. In the results presented in this thesis,

when the body inertia is smaller than 1 Ml2o, the leg pairs are weakly coupled and

bounding is stable. As the body inertia increases, the two leg pairs are strongly

coupled and the robot exhibits a stable pronking gait. Similar results were also

observed on the MIT Cheetah 2, when the gait pattern stabilizer was not enforced,
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the phase difference in the resulting gait became smaller (Park et al., 2017). These

results suggest that different morphology and varying body inertia of robots may

affect the stability and availability of their gaits. One may test this hypothesis on a

specific robot such as RAMbi to see whether or not these passive gaits are energetically

optimal.

6.3 Concluding Remarks

In this thesis, several simplistic models with compliant legs and passive swing leg

motions have been proposed for both bipeds and quadrupeds. By using numerical

continuations, the structure of periodic solutions for these models have been sys-

tematically explored to reveal the fundamental relationships among different gaits.

Parameter studies of these models demonstrate that some passive gaits are strongly

affected by the morphology of the legged system. This work may provide some in-

sights into understanding of the underlying dynamics of legged locomotion and may

help design of more economical controllers for legged machines.
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APPENDIX A

EOM of the Headed Model

The equations of motion of the headed model were derived using the Euler-

Lagrange equations. The mass matrix is given as:

M =



m1 +m2 0 C1 −m2l2 sin(ϕ+ θ)

0 m1 +m2 C2 m2l2 cos(ϕ+ θ)

C1 C2 C3 C4

−m2l2 sin(ϕ+ θ) m2l2 cos(ϕ+ θ) C4 m2l
2
2 + j2


, (A.1)

with

C1 = −m2dF sin(ϕ)−m2l2 sin(ϕ+ θ),

C2 = m2dF cos(ϕ) +m2l2 cos(ϕ+ θ),

C3 = m2d
2
F +m2l

2
2 + 2m2dF l2 cos(θ) + j1 + j2,

C4 = m2l
2
2 +m2dF l2 cos(θ).
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The Coriolis, centrifugal, and gravitational terms are given as:

h = −



(ϕ̇+ θ̇)
2
l2m2 cos(ϕ+ θ) + ϕ̇2dFm2 cos(ϕ)

(ϕ̇+ θ̇)
2
l2m2 sin(ϕ+ θ) + ϕ̇2dFm2 sin(ϕ)− (m1 +m2)g

m2θ̇
2dF l2 sin(θ) + 2m2ϕ̇θ̇dF l2 sin(θ)−m2gdF cos(θ)−m2gl2 cos(ϕ+ θ)

−m2ϕ̇
2l2dF sin(θ)−m2gl2 cos(ϕ+ θ)


.

(A.2)

The generalized forces additionally include the torque Mhead that is produced by the

head and neck spring-damper. The leg forces and the neck torque are projected into

the generalized coordinates according to:

τ =
∑
i

JTi Fi + JTheadMhead (A.3)

Ji = [− sin (γi) , cos (γi) , di · cos (ϕ− γi) , 0] (A.4)

Jhead =

[
0 0 1 1

]
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APPENDIX B

EOM of the Quadrupedal Model

with Swing Leg Motion

Fx, Fy, and τ are the net forces and torques created by the leg pairs in the EOM

of the main body:

Fx = −
∑
i

sin(αi + φ)Fi, (B.1a)

Fy = +
∑
i

cos(αi + φ)Fi, (B.1b)

τ = +
∑
i

lb,i cos(αi)Fi, (B.1c)

Fi = kleg · (lo − li) ,

The equations used to solve for stance leg velocities and accelerations are listed

in (B.2) and (B.3).

α̇i = −
2φ̇ (lb,i cos (αi) sin (αi + φ) + y) + 2ẋ cos2 (αi + φ) + ẏ sin (2 (αi + φ))

2 (lb,i sin(φ) + y)
(B.2)
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(B.3)

α̈i =
1

2 (lb,i sin(φ) + y) 2

(
lb,iφ̇ cos(φ) + ẏ

)(
2φ̇ (lb,i cos (αi) sin (αi + φ) + y)

+ 2ẋ cos2 (αi + φ) + ẏ sin (2 (αi + φ))
)

− (lb,i sin(φ) + y) (2φ̇
(
lb,i(φ̇ cos (αi) cos (αi + φ) + α̇i cos (2αi + φ)) + ẏ)

+ 2φ̈ (lb,i cos (αi) sin (αi + φ) + y)

+ 2ẍ cos2 (αi + φ)− 2ẋ(α̇i + φ̇) sin (2 (αi + φ))

+ ÿ sin (2 (αi + φ)) + 2ẏ(α̇i + φ̇) cos (2 (αi + φ))
)
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