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ABSTRACT

In a society that is heavily reliant on personal transportation, autonomous vehicles

present an increasingly intriguing technology. They have the potential to save lives, pro-

mote efficiency, and enable mobility. However, before this vision becomes a reality, there are

a number of challenges that must be solved. One key challenge involves problems in dynamic

motion estimation, as it is critical for an autonomous vehicle to have an understanding of

the dynamics in its environment for it to operate safely on the road. Accordingly, this thesis

presents several algorithms for dynamic motion estimation for autonomous vehicles. We

focus on methods using light detection and ranging (LIDAR), a prevalent sensing modality

used by autonomous vehicle platforms, due to its advantages over other sensors, such as

cameras, including lighting invariance and fidelity of 3D geometric data.

First, we propose a dynamic object tracking algorithm. The proposed method takes as

input a stream of LIDAR data from a moving object collected by a multi-sensor platform.

It generates an estimate of its trajectory over time and a point cloud model of its shape.

We formulate the problem similarly to simultaneous localization and mapping (SLAM),

allowing us to leverage existing techniques. Unlike prior work, we properly handle a stream

of sensor measurements observed over time by deriving our algorithm using a continuous-

time estimation framework. We evaluate our proposed method on a real-world dataset that

we collect.

Second, we present a method for scene flow estimation from a stream of LIDAR data.

Inspired by optical flow and scene flow from the computer vision community, our framework

can estimate dynamic motion in the scene without relying on segmentation and data asso-

ciation while still rivaling the results of state-of-the-art object tracking methods. We design

our algorithms to exploit a graphics processing unit (GPU), enabling real-time performance.

Third, we leverage deep learning tools to build a feature learning framework that allows

us to train an encoding network to estimate features from a LIDAR occupancy grid. The

learned feature space describes the geometric and semantic structure of any location observed

by the LIDAR data. We formulate the training process so that distances in this learned

feature space are meaningful in comparing the similarity of different locations. Accordingly,

we demonstrate that using this feature space improves our estimate of the dynamic motion

xiii



in the environment over time.

In summary, this thesis presents three methods to aid in understanding a dynamic world

for autonomous vehicle applications with LIDAR. These methods include a novel object

tracking algorithm, a real-time scene flow estimation method, and a feature learning frame-

work to aid in dynamic motion estimation. Furthermore, we demonstrate the performance

of all our proposed methods on a collection of real-world datasets.

xiv



CHAPTER 1

Introduction

Our society today is heavily dependent on personal transportation. In the United States

alone, there are over four million miles of highways as of 2018 and an additional 4.1 million

miles of other roads as of 2016 (Beningo et al., 2018). Personal vehicles accounted for over

a trillion dollars of household transportation costs in 2016, which represented over 90%

of total household transportation expenditures in the United States (Firestine, Notis, and

Randrianarivelo, 2018).

Unfortunately, our extensive reliance on personal transportation is not without drawbacks.

Over the course of more than three trillion vehicle miles traveled in the United States, more

than six million crashes occurred in 2015 (National Highway Traffic Safety Administration,

2018). These crashes resulted in over 35,000 deaths and over two million injuries with an

estimated cost of about 242 billion dollars in property damage.

One potential way to help mitigate these issues is the application of robotic technologies.

Not only could a fully robotic self-driving vehicle help prevent fatalities, injuries, and property

damage, but it would also enable mobility for those who cannot drive, whether due to

disability, age, or other factors. There are over 100 million people in the United States who

are not licensed to operate a motor vehicle (National Highway Traffic Safety Administration,

2018).

Indeed, as robotic technology has progressed, this vision is slowly becoming a reality. In

recent years, many groups in academia and industry have launched significant self-driving

vehicle projects, including Ford Motor Company, Toyota Research Institute, Waymo, and

others. This rapidly growing industry is estimated to be as large as 7 trillion dollars (Lanctot,

2017).

A number of challenges must be solved in order to develop vehicles that can drive safely

and smartly on our roads alongside human drivers. These challenges include problems in

controls, planning, perception, and mapping. Among these problems, it is critical that an

autonomous vehicle be able to detect and understand the dynamics of the world around it.

1



Any autonomous vehicle will need to robustly understand the motion of dynamic objects in

its operating environment, such as other cars, cyclists, and pedestrians that are on the road.

Accordingly, this thesis focuses on advancing the state-of-the-art in the perception of

dynamic motion for autonomous vehicle applications. First, we propose a method to jointly

estimate the trajectory and appearance of a dynamic object from an array of light detection

and ranging (LIDAR) sensors. Next, we propose a method for estimating dynamic motion in

the surrounding environment directly from LIDAR scans, without relying on a segmentation

result or data association through time. Finally, we propose an encoding network to learn

features in a dynamic scene that can be used to improve the motion estimate within the

environment. We demonstrate the performance of these systems on real-world data collected

from autonomous vehicle platforms.

The rest of this chapter is organized as follows. First, we present an overview of sensors,

platforms, and datasets used in this area of work in Section 1.1, Section 1.2, and Section 1.3,

respectively. Next, we review literature in object tracking in Section 1.4, flow estimation

in Section 1.5, and object and scene understanding in Section 1.6. Finally, we present an

outline of contributions in Section 1.8 and a roadmap for the rest of this thesis in Section 1.9.

1.1 LIDAR Sensors

The work presented in this thesis focuses on LIDAR sensor data. A sample LIDAR sensor

can be seen in Fig. 1.1. The depicted LIDAR sensor operates by using a spinning platform

to shine an array of lasers onto the environment. While different LIDAR sensors use different

configurations, the underlying principle of these sensors is similar. A laser beam strikes an

object in the world and its reflection is detected by the sensor. By measuring time-of-flight,

the sensor determines the distance between it and the reflecting object. This distance then

results in a three-dimensional (3D) point observation by accounting for the orientation of

the laser. As the array of lasers spins, many data points are collected by the sensor. These

points are accumulated, resulting in a point cloud. Sample point clouds collected from various

platforms can be seen in Fig. 1.3 and Fig. 1.4.

Additionally, a LIDAR sensor can measure the intensity of the reflection of the laser beam.

While the measurement of intensity may be prone to errors due to calibration, incidence

angle, or lighting conditions, it can be of use in certain applications. For example, the map

of the road shown in Fig. 1.3 was generated using a map built from this intensity data.

Camera systems have also been used for applications and problems similar to those

investigated in this thesis, and indeed some of the presented work is inspired by techniques

in computer vision. However, each sensor modality has certain advantages and disadvantages.
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Figure 1.1: A LIDAR sensor. This is a Velodyne laser scanner with 64 laser beams.

A LIDAR sensor can directly observe 3D information whereas, in computer vision, 3D

information is not directly observed. If needed, it must be estimated through other means,

such as a binocular or stereocamera system, or with active depth sensing, such as the red,

green, blue, and depth (RGB-D) Kinect sensor, although the range of LIDAR sensors typically

is superior. Despite the advantage of LIDAR systems in 3D geometry, camera systems provide

superior appearance data. RGB color is much more descriptive and reliable than the intensity

or reflectivity observed by LIDAR, especially when not accumulated over time. However,

camera systems are dependent on a source of light, and indeed the observed appearance can

change dramatically with lighting changes. Because LIDAR is an active sensing modality, it

is almost entirely independent to changes in ambient lighting.
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Figure 1.2: The autonomous vehicle platform. The vehicle pictured here is known as B1.

1.2 NGV Platform

The Next Generation Vehicle (NGV) project was a collaboration between the University of

Michigan and the Ford Motor Company from 2012 to 2016. The goal of the project was

to develop technologies to help enable autonomous vehicles. The NGV project investigated

research problems in areas including planning (Cunningham et al., 2015; Galceran et al.,

2015), localization (Wolcott and Eustice, 2014, 2015), and perception (Ushani et al., 2015).

One platform used in this project, called B1, is shown in Fig. 1.2. The main sensors used

in the work presented in this thesis include four Velodyne HDL-32E 3D LIDAR scanners

spinning at roughly 10 Hz and an Applanix POS-LV 420 inertial navigation system (INS) with

a global positioning system (GPS) used for pose estimation. A compute cluster consisting of

four PCs was located in the trunk of the car and used during online operation of the platform.

A sample of data taken from B1 can be seen in Fig. 1.3. Data from the four LIDAR sensors

is accumulated over about 100 ms. This data is motion compensated for the movement of the

platform vehicle during that time. This accumulated point cloud is then shown in Fig. 1.3,

overlaid on a road map built from LIDAR intensity data. The displayed point cloud is shown

from data collected in Ann Arbor, Michigan, USA.
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Figure 1.3: Sample data from B1. The point cloud collected by the LIDAR sensors is shown
in blue from a bird’s eye perspective. The platform vehicle is in the center. The colormap
represents height above the ground. The rendering of the road and its associated lane
markings was generated from a large scale map using the intensity data from the LIDAR
sensors.

1.3 Datasets

In order to facilitate research, a number of datasets have been made publicly available by the

community. These datasets provide sensor data that can be used for a variety of applications.

1.3.1 KITTI

Geiger et al. (2013) presented the KITTI dataset, collected by an autonomous vehicle platform

driving in Karlsruhe, Germany. The sensor data that is used by our proposed algorithms is

LIDAR data collected by a Velodyne HDL-64E, and inertial and GPS data collected by a

OXTS RT3003. Additionally, the KITTI dataset provides hand labeled tracks for various

obstacles, including cars, pedestrians, and bicyclists, for a number of sequences of data. These

tracks provide ground truth position and orientation for obstacles over time, which can be

used for training and evaluation. The dataset also includes camera data collected by two
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Figure 1.4: Sample data from the KITTI dataset. The platform vehicle is shown as the gray
model in the center of the image. The point cloud collected by the LIDAR sensor is shown
in blue. The colormap represents height above the ground, where cyan is the lowest and dark
blue is the highest. The bounding box shows a labeled KITTI track.

PointGray Flea2 stereo-cameras, one color and one grayscale.

The KITTI dataset was chosen mainly for its availability of extensive manually labeled

ground truth data for dynamic objects in the LIDAR data. Furthermore, the KITTI dataset is

widely used as a benchmark for many tasks in the area of autonomous driving and perception.

Sample data from the KITTI dataset can be seen in Fig. 1.4. In the KITTI dataset, a

single frame from the LIDAR sensor is given per timestep, consisting of data from one full

revolution of the sensor. This is rendered in Fig. 1.4, colored by height above the ground

plane.
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1.3.2 Other Datasets

While we focus on the KITTI data for the work presented in this thesis, there are a number

of other datasets used by the community.

The New College Vision and Laser Dataset (Smith et al., 2009) provides stereo vision,

omnidirectional vision, and LIDAR from a single 2.2 km session. The Rawseeds project

(Ceriani et al., 2009) provides two datasets with omnidirectional and stereo vision, and

planar laser; both datasets have repeated sessions through the same environment. The CMU

Visual Localization Dataset (Badino, Huber, and Kanade, 2011) includes monocular vision

from 16 sessions covering the same trajectory over the course of a year. The Ford Campus

Vision and LIDAR Dataset (Pandey, McBride, and Eustice, 2011) provides three sessions

with omnidirectional vision and 3D LIDAR. The Alderley Day/Night Dataset (Milford and

Wyeth, 2012) contains two sessions on the same route, one collected during the day and one

at night. The Nordland Dataset (Norwegian Broadcasting Corporation, 2013), promoted

by Sunderhauf, Neubert, and Protzel (2013), contains monocular vision for four 3000 km

sessions collected in each of the four seasons—because the data was collected from a train,

each session follows exactly the same trajectory. The Malaga Urban Dataset (Blanco-Claraco,

Moreno-Duenas, and Gonzalez-Jimenez, 2014) contains a single trajectory with stereo vision

and planar LIDAR. The VPRiCE Challenge Dataset (Suenderhauf, 2015) provides two sets

of imagery aimed toward place recognition contests. The Cross Season Dataset (Masatoshi

et al., 2015) provides imagery on a university campus once per each of four seasons. The MIT

Stata Center Dataset (Fallon et al., 2013) provides multiple sessions with stereo vision over

the course of a year, with 38 hours and 42 km of repeated exploration. The North Campus

Long Term (NCLT) Dataset was collected by a Segway platform that was manually driven

around the University of Michigan’s North Campus over the course of 27 sessions spread over

15 months (Carlevaris-Bianco, Ushani, and Eustice, 2015). The sensors include a Velodyne

HDL-32E LIDAR scanner, a 3DM-GX3-45 IMU system, a GPS, and a Labybug3 camera.

Additionally, the dataset provides a high-rate ground truth pose estimate for the Segway

computed using simultaneous localization and mapping (SLAM).
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1.4 Object Tracking

Consider a robot operating in a dynamic environment. An object moving in that environment

can be detected by the robot’s sensors, such as a camera or LIDAR sensor. As the dynamic

object moves along a path, the robot records observations of that object at different times and

locations. From these observations, our goal is to estimate the position or full trajectory of

the dynamic object. A secondary objective, which can be used to help estimate the trajectory,

is to build some sort of model of what the object looks like. A cartoon example of this

problem is shown in Fig. 1.5.

More formally, there is a dynamic object that we are tracking with our sensors. We

wish to estimate the state of this object over time, x(t), and build a representation of its

appearance, M, from a set of observations from our sensors, Z = {z1:nz}. This can commonly

be represented as an maximum a posteriori (MAP) problem,

x(t)?,M? = argmax
x(t),M

p(x(t),M |Z). (1.1)

x(t) can be a discrete set of states at each timestep, x1, . . . ,xn, or a continuous function. M

can take a wide variety of forms, from simple models like bounding boxes, to more expressive

models such as point clouds or mesh models. Depending on the application, the object’s

model, M, may not be required to be estimated at all.

1.4.1 Early Tracking Methods

The object tracking problem has been studied extensively for many years. Various approaches

were developed for various applications including vehicle tracking, pedestrian monitoring,

and aerospace target tracking. Methods have been developed using various sensors such as

LIDAR, radar, or camera systems. Many of these early algorithms would use the same three

main steps.

First, sensor data is segmented and dynamic objects are identified. Many methods would

segment the scan into clusters or connected components (Kaestner et al., 2012; Leonard et al.,

2008; Streller, Furstenberg, and Dietmayer, 2002; Wender and Dietmayer, 2008). Some other

techniques would extract features to detect objects. For example, Zhao and Thorpe (1998)

would detect line segments and use these with the Hough Transform to detect vehicles.

Then, data association is performed between the new observations and the objects that

were previously tracked. Many methods rely on global nearest neighbor (GNN) or variants

of it for data association (Aycard et al., 2006; Vu, Aycard, and Appenrodt, 2007). Azim
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(a) Dynamic Object

(b) Sensor Observations

(c) Tracking Estimate

Figure 1.5: A cartoon depiction of the tracking problem. In this example, there is an object
moving in the environment over time, shown in Fig. 1.5(a). Over time, our sensors provide
us with a set of observations from the object, shown in Fig. 1.5(b). Our goal is to to estimate
the position of the object and a model of what it looks like, shown in Fig. 1.5(c).
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(a) t1 (b) t2 (c) t3

Figure 1.6: The perspective problem in tracking. In this cartoon example, a non-moving
object, depicted in gray at the top, is observed at three different locations by the sensor,
depicted at the bottom. Sensor readings are shown as blue dots. Changes in perspective can
introduce a bias in the estimate of the object’s location, shown in red.

and Aycard (2012) improve upon GNN by taking into account semantic class labels for

objects and discarding associations made between differing classes. Streller, Furstenberg, and

Dietmayer (2002) would predict where a previously observed object would be in the next

frame to construct a search area for the current timestep.

Finally, these observations are incorporated into a Bayesian filter. This is commonly done

via an extended Kalman filter (EKF), Unscented Kalman filter (UKF), or particle filter where

the observations are typically reduced to bounding boxes or centroids. Zhao and Thorpe

(1998) use three different motion models in an EKF to represent three different modes of

dynamics for a moving vehicle. Darms, Rybski, and Urmson (2008) use a model selection

algorithm to choose the best model for tracking from sensor data. Some approaches rely

on Multi-Hypothesis Tracking (MHT) for better robustness (Kaestner et al., 2012; Särkkä,

Vehtari, and Lampinen, 2007; Wang et al., 2007).

1.4.2 Model-Based Methods

While the methods described above have had much success, they are prone to errors in

certain scenarios. One problem arises from changes in viewpoint as our perspective of an

object changes, as depicted in Fig. 1.6. For example, if we observe a stationary object as

we drive by it, we will first observe the rear of the object, followed by its side, and finally

its front. Despite the object not moving, a bounding box or centroid approach will lead

to observations of the object at seemingly different locations. Additionally, occlusions can

be quite problematic, causing errors in segmentation, as depicted in Fig. 1.7. An occluding

object may cast a sensor shadow onto an object behind it such that a clustering algorithm

would split the object into two different segments. Perspective or occlusion problems can

result in reduced accuracy at best and complete tracking failure at worst.

10



(a) No Occlusion (b) With Occlusion

Figure 1.7: The occlusion problem in tracking. In this cartoon example, two similar objects
are observed by the sensor at the bottom left. In Fig. 1.7(a), the sensor observes the object
without any occlusion. In Fig. 1.7(b), the object is partially occluded by a smaller object.
Thus, it now appears as two distinct objects, one at the front and one at the back.

Several methods have been developed to solve these issues of perspective and occlusion.

These methods commonly sought to leverage the model of the object itself to make the

tracking algorithms more robust.

A simple geometric model of the object, such as a two-dimensional (2D) bounding box, can

be used to improve tracking performance. Petrovskaya and Thrun (2008, 2009) constructed a

2D “virtual scan” from a 3D LIDAR scan, leveraging free, occupied, and occluded space. A

ray-based measurement model is then used to check for consistency of the sensor data against

a bounding box model of the object.

A similar approach is presented by Vu and Aycard (2009). They propose a Markov chain

Monte Carlo (MCMC) method to find the optimum tracking solution. For aerospace tracking,

Baum and Hanebeck (2014) use a star-convex model to represent a target, allowing for a

more detailed shape to be found.

More recently, non-parametric methods have been explored as well. Several methods have

proposed using iterative closest point (ICP) for tracking or motion estimation (Feldman,

Hybinette, and Balch, 2012; Moosmann and Fraichard, 2010; Moosmann and Stiller, 2013).

Snapshots of a moving object can be aligned using a scan registration technique such as

ICP. The relative poses given by the registration can then be used in a filtering framework.

However, this approach can be slow and prone to the local minima issues that are common

with gradient-based methods such as ICP.

Held et al. (2014) improve upon these methods by using annealing histograms. This allows

for an efficient search of a 2D translation to find the best alignment of the current observation
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with the previous scan. Unlike a gradient-based ICP approach, this search is not prone to

local minima. The motion result can then be refined for rotation as well. Additionally, by

using a camera sensor, color appearance can be incorporated into this framework.

Wang (2004) sought to solve the related problems of SLAM and detection and tracking

of moving objects (DATMO) together. Wang, Thorpe, and Suppe (2003) integrate these two

problems, detecting and tracking dynamic objects without a priori knowledge of the objects

by relying on odometry and a SLAM map. Wolf and Sukhatme (2004) propose a system

where multiple occupancy grids are maintained, one representing static structures and one

capturing dynamic objects. Their results demonstrated how modeling both types of objects

help improve results for mapping both dynamic and static parts of the environment.

The model-based approaches discussed here typically make similar assumptions regarding

the sensor data that is used as input to these algorithms. Notably, they are reliant on

segmentation and data association in one way or another. While several techniques exist to

help account for errors in these steps, such as MHT, these systems can suffer from catastrophic

failure when there is an error in either of these steps.

1.4.3 Model-Free Methods

Several approaches in dynamic motion estimation from LIDAR data do not explicitly rely

on a model for the object being tracked. Instead, these approaches often rely on grid-based

representations, such as occupancy grids or a grid of moving particles, to estimate the dynamic

motion in the environment or predict future occupancy states of the world.

Vu, Aycard, and Appenrodt (2007) and Azim and Aycard (2012) both employ scan

differencing for detection. In this procedure, two occupancy grids at different times are

compared. Any space or voxels in the occupancy grid that are occupied at one time but not

the other are labeled as dynamic. These dynamic voxels are then tracked over time.

Danescu, Oniga, and Nedevschi (2011) present a grided particle filter approach. Particles

are distributed throughout a grid world, each with an estimate of its own location and velocity.

As these particles move throughout the grid, a resampling procedure creates or destroys them

according to sensor observations. As a result of this resampling, the surviving particles at

any location in the grid reflect an estimate of the occupancy of that location and any motion

associated with an object that might be present there.

Tanzmeister et al. (2014) similarly present a grid-based mapping and tracking approach

that models both dynamic and static objects. Data association, segmentation, and filtering

or classification of dynamic or static objects are not required. This representation can be

used to output both an occupancy state of the environment and a velocity map that describes
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the motion in the world.

Other methods turn to deep learning to estimate dynamic motion. Choi, Lee, and

Oh (2016) use a recurrent neural network (RNN) to predict the future occupancy state of

an environment by estimating velocities at each voxel. This RNN approach is shown to

outperform baseline optical flow techniques. Byravan and Fox (2017) introduce SE3-NETS, a

neural network that predicts rigid body motion from raw point clouds and actions on objects.

Their work focuses on applications for robotic manipulation tasks, such as with a Baxter

robot.

Ondruska and Posner (2016) extend the work of Choi, Lee, and Oh (2016) to explicitly

track objects through occlusions. A simulation with many dynamic objects is created. These

objects commonly occlude each other as they move about. A stream of synthetic sensor data

from this simulation is fed into the network. The network learns to predict the full state of

the environment, including the objects that are occluded for a short duration of time.

Dequaire et al. (2017) further extend the work of Ondruska and Posner (2016) in a

framework called deep tracking (DT). Using a similar approach, a network is trained using

real-world data to observe the world from a stream of sensor data and predict a future

occupancy grid. The goal of DT is to model the distribution P (xt|z1:t) with a RNN, where

xt is state of the world at time t and z1:t are the sensor observations through time t. The

distribution is modeled through use of an underlying latent state, ht. Thus,

P (xt|z1:t) = P (xt|ht) (1.2)

ht = f(ht−1, zt), (1.3)

where both P (xt|ht) and f(ht−1, zt) are modeled using the neural network. One key advantage

of DT is that it does not require hand-labeled training data. From a stream of occupancy

grid data, ground truth results for a future occupancy state can be directly observed. While

the full state of the world, xt, will never be observed due to occlusions, the network can be

trained on the observable ground truth.

Instead of relying on a discrete occupancy grid, Senanayake et al. (2016) use Hilbert

Maps (Ramos and Ott, 2016) for a continuous occupancy representation. Using what they

called “hinged features”, dynamic aspects of the environment can be captured, and a future

occupancy state can be predicted.
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1.5 Flow Estimation

Dynamic motion estimation from raw sensor data, without modeling distinct objects, has

been studied extensively in various communities. In the field of computer vision, estimating

raw motion from a stream of images, known as optical flow, is a well studied problem. In the

case of a stereocamera system, this is known as scene flow. Several techniques have also been

developed to estimate dynamic motion directly from LIDAR data.

1.5.1 Optical Flow

In the field of computer vision, optical flow has been a popular research area in which motion

is estimated in an image due to a moving platform or dynamic objects in the environment.

While motion estimation in camera data and LIDAR have many similarities, it is important to

note the unique advantages and challenges that each sensor modality provides. For example,

unlike LIDAR sensors that provide a relatively sparse set of observations, cameras provide a

rich view of the scene. In addition to denser measurements, cameras also provide a much more

accurate estimate of the pixel appearance (such as RGB color or grayscale intensity). While

some LIDAR sensors do report the intensity of the laser return, these intensity values are

usually not very discriminative in general and are unreliable, as they could vary significantly

due to the angle of incidence or between different laser beams in a sensor.

Optical flow is typically approached by solving for a 2D motion field in the image plane

that preserves some constancy metric (such as brightness constancy) and a regularization

term to promote spatially smooth flow (Horn and Schunck, 1981; Lucas and Kanade, 1981).

For example, we can express brightness constancy, where we assume that the appearance

of a point in the world stays constant, by writing:

I(x+ ∆x, y + ∆y, t+ ∆t) ≈ I(x, y, t), (1.4)

where I(x, y, t) is the brightness or intensity of the pixel (x, y) in the image I at time t,

and (∆x,∆y) is the motion in the image plane at (x, y) over the time interval ∆t. We can

approximate I using a first order Taylor series,

I(x+ δx, y + δy, t+ δt) ≈ I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
, (1.5)

where we omit higher order terms. Thus, we can express our brightness constancy constraint
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by stating that:

∂I

∂x

δx

δt
+
∂I

∂y

δy

δt
+
∂I

∂t

δt

δt
= 0. (1.6)

Note that δx
δt

and δy
δt

represent the 2D optical flow that we are interested in, which we will

denote with u and v. ∂I
∂x

, ∂I
∂y

, and ∂I
∂t

are the derivatives of I(x, y, t) in x, y, and t, which we

will denote with Ix, Iy, and It, respectively. Thus, we have

Ixu+ Iyv = −It. (1.7)

Note that our system is underconstrained, as (1.7) provides only a single constraint for the

two unknowns u and v. This is often referred to as the aperture problem. Several methods

exist to add additional constraints to solve for optical flow.

A seminal example is the Horn-Schunck method (Horn and Schunck, 1981). In this

approach, it is assumed that the flow field is smooth over the entire image I. This results in

an energy minimization problem, where the energy is given by:

E =

∫∫
Ixu(x, y) + Iyv(x, y) + It︸ ︷︷ ︸

Brightness Constancy (1.7)

+α2
(∥∥~Ou(x, y)

∥∥2
+
∥∥~Ov(x, y)

∥∥2︸ ︷︷ ︸
Smoothing Term

)
dx dy, (1.8)

where α is a manually chosen parameter that determines the smoothing weight.

Other methods have been proposed as well. Lucas and Kanade (1981) propose a local

smoothing approach rather than a global one. Liu et al. (2008) propose using scale-invariant

feature transform (SIFT) feature matching to help compute flow between two images. Barnes

et al. (2009) propose matching patches between different images to find correspondences

for image editing, called PatchMatch. PatchMatch can be adapted to help estimate optical

flow (Hu, Song, and Li, 2016).

1.5.2 Scene Flow

Scene flow, similarly to optical flow, seeks to estimate a motion field from camera imagery.

The key difference is that scene flow aims to estimate a 3D motion field, with the use of a

stereo camera or some depth sensor. Scene flow was originally introduced by Vedula et al.

(1999). Many approaches follow a generally similar framework to optical flow. Combining

a 2D motion estimate from optical flow with a depth estimation method (such as stereo

matching in a binocular camera setting) can lead to a 3D motion estimate. A survey of scene

flow methods is provided by Yan and Xiang (2016).
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Disparity-based methods estimate (u, v, δd), where (u, v) is the motion from an optical

flow-like approach and δd is the difference in disparity. Isard and MacCormick (2006)

simultaneously estimate motion and disparity. Huguet and Devernay (2007) use a variational

framework to jointly estimate the scene flow and the 3D reconstruction of the scene. Wedel

et al. (2008) decouple the problems of disparity estimation and motion estimation and can

achieve 5 Hz run-time performance.

Another branch of methods deal with point clouds or similar representations. Hadfield and

Bowden (2011) rely on a collection of particles moving in space to estimate flow. Additionally,

by using a Kinect sensor, they explicitly rely on this depth data rather than using a multi-view

approach. Basha, Moses, and Kiryati (2013) propose using a 3D point cloud parametrization

in a variational framework to jointly estimate scene flow and 3D structure. Ferstl et al.

(2014) frame a variational energy minimization problem that is solved using the primal-dual

algorithm.

Patch-based methods have found success as well. Hornacek, Fitzgibbon, and Rother (2014)

find patch correspondences to densely estimate flow in an optimization framework. Vogel,

Roth, and Schindler (2014) propose an energy minimization framework based on matching

piecewise-planar patches.

Recently, scene flow has emerged in autonomous vehicle applications. The KITTI scene

flow evaluation suite (Geiger et al., 2013) has provided a valuable benchmark for evaluating

algorithms in scene flow evaluation in an autonomous vehicle setting. Many methods have

been developed for this application domain (Behl et al., 2017; Jaimez et al., 2015; Menze and

Geiger, 2015; Vogel, Schindler, and Roth, 2013, 2015). However, these state-of-the-art scene

flow techniques from the computer vision community are generally not capable of real-time

performance. At the time of this writing, the top nine submissions to the KITTI scene flow

evaluation benchmark take five minutes or longer to process a single scene. In the current

leading approach on the KITTI benchmark, Behl et al. (2018) present an approach to learn

a end-to-end network to predict scene flow from 3D points generated from images. Their

network is trained on a dataset created by augmenting the KITTI dataset. In addition to

flow, the learned network is able to perform detection as well, producing bounding boxes.

However, the reported runtime of this method is 10 minutes per scene.

Unfortunately, due to the differences in sensing modalities, many of the methods developed

for scene flow estimation from a stereocamera system do not directly translate from computer

vision to LIDAR sensing.
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1.5.3 Flow from LIDAR

Recently, the general ideas of optical flow and scene flow have started to be applied to LIDAR

data as well. While similar in spirit, these techniques must take different approaches due to

the differences in sensing modality.

There is some overlap in this area with grid-based tracking methods. Both Danescu,

Oniga, and Nedevschi (2011) and Tanzmeister et al. (2014) propose frameworks that estimate

motion in an occupancy grid that can be interpreted as a scene flow estimate.

Dewan et al. (2016) estimate rigid scene flow between LIDAR scans. They formulate an

energy minimization problem based on matching signature of histograms (SHOT) feature

descriptors (Tombari, Salti, and Di Stefano, 2010) for a subset of keypoints. However, these

descriptors can be prone to errors with sensor noise or ambiguous inputs.

Liu, Qi, and Guibas (2018) develop a network called FlowNet3D. This end-to-end network

learns to predict scene flow from LIDAR point clouds. Trained from synthetic data only, it

demonstrates impressive results on the real-world KITTI dataset.

1.6 Object and Scene Understanding

While sensors such as LIDAR or camera systems can provide rich data that is useful for

dynamic motion estimation and other tasks, these sensors are not without limitations. Notably,

they are prone to occlusions. For example, an occluding object may block a LIDAR sensor

from scanning an area, leaving a gap in the data where it is unknown whether the occluded

space is free or occupied. These types of occlusions often present challenges in tracking and

motion estimation. However, these issues can be mitigated if a representation is built that is

robust to these issues. Additionally, representations can be learned that take advantage of

the semantics of the scene, something that cannot be accomplished by a purely geometric or

structural representation such as an occupancy grid.

Building an understanding or representation of an object or a scene is a task that has

applications in many areas. For example, in the tasks of reconstruction, inpainting, or scene

completion, a noisy or incomplete view of an object or scene, such as an image or a voxel

grid, is given. From this representation, the goal is to de-noise the representation and/or

infer the missing portions. In feature learning tasks, the goal is to learn a feature space

where a representation of an image or a point can be used downstream in other areas, such

as classification or segmentation. In recent years, there has been much work done in building

and leveraging these representations of objects and scenes from partial views and scans. Work

in this area commonly leverages deep learning methods.
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1.6.1 Reconstruction, Semantic Inpainting, and Scene Completion

The tasks of reconstruction, semantic inpainting, and scene completion have been extensively

studied. In recent years, deep learning approaches have found much success. Two of the most

widely used methods are the autoencoder and the Generative Adversarial Network (GAN).

1.6.1.1 Autoencoder Approaches

Autoencoders and their variants have two parts. An encoding network, or encoder, transforms

some high dimensional data, such as an image or a 3D volumetric grid, into a low dimensional

latent representation. A decoding network, or decoder, then takes this low dimensional latent

representation and recreates the input data. This full network is usually trained on a loss

function that seeks to minimize the reconstruction error between the input and output (for

example, pixel-wise L2 loss or cross entropy) (Hinton and Salakhutdinov, 2006; Vincent et al.,

2010).

Girdhar et al. (2016) train an autoencoder for 3D object reconstruction. In addition to

voxel-wise cross entropy loss, they also train a network to map from image data to the same

latent representation and use a Euclidean loss between the two. They show that their learned

latent representation, with some feature augmentation, is somewhat class-discriminative,

despite not explicitly being trained to be so.

Guizilini and Ramos (2017) consider 3D reconstruction using autoencoders in the context

of building large-scale maps from LIDAR. Their autoencoder learns to reconstruct shape

primitives in the world. However, they do not consider distinct objects, but rather segments

of the map that they cluster to estimate the occupancy state of unknown space.

Dai, Qi, and Nießner (2017) use an autoencoder to perform shape completion. The

latent representation is augmented by the output of a separate independently trained object

classification network (Qi et al., 2016). The output of the autoencoder is fine-tuned by finding

nearest neighbors in an object database to build the final reconstruction.

Choy et al. (2016) build a network that is an encoder followed by an long short-term

memory (LSTM) network followed by a decoder. This network takes images as input and

produces 3D volumetric grids. It is trained without relying on semantic object class labels.

Fan, Su, and Guibas (2017) use a similar approach to instead generate point clouds. They

explore how different loss functions capture shape properties differently. Lin, Kong, and

Lucey (2018) also use an image encoder and structure decoder to predict the 3D structure of

objects from one or more images to build a dense point cloud. They train their network with

both a single object class at a time and multiple classes at once.
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Pathak et al. (2016) use an autoencoder to recover missing portions of an image by

semantic inpainting. They use a combination of L2 pixel-wise reconstruction loss and an

adversarial loss over the whole reconstructed image to ensure it appears realistic after semantic

inpainting.

1.6.1.2 GAN Approaches

Originally introduced by Goodfellow et al. (2014), a GAN is often used to recreate the

distribution of some training dataset. To train a GAN, an adversarial game is played between

two networks, the generator and the discriminator. The generator takes as input a noise

vector (which can be thought of as a low dimensional latent representation of the sample) and

produces a sample that resembles the input data. The discriminator is given both synthetic

samples produced by the generator and real samples from the training dataset and must

discriminate between the two. When fully trained, the generator is capable of producing

samples that reflect the distribution of the training dataset.

Wu et al. (2016) leverage a GAN for object reconstruction, generation, and classification.

They report better results when they train a separate GAN for each semantic object class.

This method is improved upon by Smith and Meger (2017), but the results are still better

when separately trained.

Wang et al. (2017) consider semantic shape inpainting by using an autoencoder as the

generator in a GAN. The network is trained on a combination of voxel-wise reconstruction

loss and the GAN objective function.

Yeh et al. (2017) consider semantic inpainting of face images using a GAN. A latent

representation is found using the available image data. Then, this latent representation is

used with the generator from the GAN to recreate the full image. Qualitative results show

an improvement of this method as compared to autoencoder approaches.

In a similar application, Liu, Yu, and Funkhouser (2017) train a 3D GAN to aid users in

3D modeling. A loss function that combines realism (as measured by a discriminator) and

semantic dissimilarity (using intermediate activations from a classifier) is used.
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1.6.1.3 Other Approaches

For 3D objects, Wu et al. (2015) were one of the first to build 3D deep learning models that

can be leveraged for recognition, reconstruction, or classification of 3D objects. They design

a convolutional deep belief network (CDBN) that models the relationship and dependencies

of a 3D voxel grid and object labels, similar in spirit to the early work of Hinton, Osindero,

and Teh (2006).

The task of scene completion becomes more difficult when dealing with a complex

environment rather than a single distinct object. However, this can be achieved in applications

with repeated structure. Song et al. (2017) performance scene completion from a single depth

image of an indoor environment using an end-to-end 3D convolutional neural network (CNN).

Dai et al. (2018) use a similar approach for scene completion, but additionally predict semantic

labels as well.

1.6.2 Features for Scene Understanding from LIDAR

Recently, many features have been developed for use with point clouds specifically, such as

from LIDAR data. Often, these features are manually constructed for use with a specific

task. Rusu, Blodow, and Beetz (2009) propose Point Feature Histograms to describe the

local geometry about a location in the 3D point cloud. The effectiveness of this feature is

demonstrated in 3D registration. Bronstein and Kokkinos (2010) present a scale invariant

feature for shape recognition and retrieval. Aubry, Schlickewei, and Cremers (2011) introduce

the Wave Kernel Signature for shape analysis.

More recently, feature learning has been applied in this area. These types of approaches

have found success in many areas of robotics, such as face recognition (Wen et al., 2016) and

long-term image matching (Carlevaris-Bianco and Eustice, 2014). Generally, these methods

construct a network to transform the input data to the feature space and use a loss function

to promote the separability of the features for the desired task. For example, Wen et al.

(2016) proposed center loss, where features from the same class are pulled towards the same

center, and centers from different classes are forced to stay apart. Carlevaris-Bianco and

Eustice (2014) used a loss function that increases as the Euclidean distance between matching

feature pairs grows, and decreases as the Euclidean distance between non-matching feature

pairs grows.

Some deep learning methods do not explicitly learn a feature representation, instead

leveraging an end-to-end deep learning approach with LIDAR point clouds. For example,

Engelcke et al. (2017) develop a CNN for object detection in 3D point clouds.

More recently, PointNet and PointNet++ are two deep learning techniques for point cloud
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feature representation (Qi et al., 2017a,b). Given an input point cloud, these methods find a

feature representation that is invariant to the order of the points and invariant to a global

transformation, such as a rotation or translation. The performance of the learned feature

representation is demonstrated for tasks including segmentation and classification.

Zeng et al. (2017) present 3DMatch. Patches are extracted from RGB-D reconstructions.

Correspondences are collected from different views. A CNN is then trained to learn a

geometric descriptor that outperforms existing methods in determining correspondences from

these descriptors.

1.7 Autonomous Vehicle Applications

This thesis focuses on dynamic motion perception algorithms for autonomous vehicle applica-

tions. In this application domain, any such algorithm must work in conjunction with various

other systems on the autonomous vehicle, including controls, planning, and mapping. Ideally,

a dynamic motion estimation algorithm would allow for the autonomous vehicle to operate

safely (e.g., no collisions with moving objects) and smartly (e.g., be capable of navigating

around moving objects to reach the desired location) in any dynamic environment.

However, evaluating such an algorithm in this context can prove difficult. For example, if

a failure occurs, it can be hard to know if the failure was due to an error in the dynamic

motion estimation or a different system, such as the planner. Accordingly, in this thesis,

we focus the evaluation of our proposed methods on the error of the motion estimate that

is observed as compared to ground truth. While this evaluation allows us to describe the

performance of our dynamic motion estimation algorithms, such an approach is not perfect.

For example, an error in the velocity estimate of a car that is far away is not as important

as an error in the velocity estimate of a car directly in front of the autonomous vehicle.

Nevertheless, this approach allows for evaluating the performance of the dynamic motion

estimation specifically, without muddying the results with the performance of other systems.

1.8 Thesis Outline

This thesis aims to extend the state-of-the-art in dynamic motion estimation using LIDAR

for the application of autonomous vehicles. We consider two main problems.

• We are given a stream of sensor data from LIDAR sensors. From this data, we

explore how to estimate both the trajectory of dynamic objects in the environment

and build a model of their shape or appearance. It is critical to model the relationship
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between the shape or appearance of the object and its trajectory in our observations

(see Section 1.4.2). Additionally, the rolling shutter nature of the sensor, especially

when multiple sensors are used together, presents its own challenges.

• Since object tracking algorithms are often dependent on segmentation and data asso-

ciation, we explore dynamic motion estimation techniques that do not rely on these

methods and thus are more robust. In this problem, we seek to estimate the raw motion

in the environment from a stream of LIDAR data.

Toward these two problems, we have made the following contributions:

1. A framework where an object trajectory and a general model of the object shape is

estimated. Using continuous-time estimation tools, the proper rolling-shutter nature of

LIDAR sensors is modeled, and any number of unsynchronized sensors can be adequately

handled.

2. An algorithm for estimating raw motion, or temporal scene flow, between successive

LIDAR scans. By designing our methods to leverage a graphics processing unit (GPU),

this algorithm is capable of real-time performance.

3. A deep learning framework for feature learning to better understand and represent the

environment. An encoding network is trained so that distances in the learned feature

space are meaningful. This learned feature space allows for improved performance of

the estimate of dynamic motion in the environment.

The work in this thesis has appeared in the following publications:

A. K. Ushani, N. Carlevaris-Bianco, A. G. Cunningham, E. Galceran and R. M.

Eustice. Continuous-Time Estimation for Dynamic Obstacle Tracking. In Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg,

Germany, September 2015.

A. K. Ushani, R. W. Wolcott, J. M. Walls, and R. M. Eustice. A Learning Approach

for Real-Time Temporal Scene Flow Estimation from LIDAR Data. In Proceedings of

the IEEE/RSJ International Conference on Robotics and Automation, Singapore, May

2017.

A. K. Ushani and R. M. Eustice. Feature Learning for Scene Flow Estimation from

LIDAR. In Proceedings of the Conference on Robot Learning, Zurich, Switzerland,

October 2018.

22



1.9 Thesis Roadmap

These contributions are discussed in the following chapters:

Chapter 2 We present a system for dynamic object tracking for autonomous vehicles. In

this work, we seek to simultaneously estimate both the trajectory of the object and the

object’s shape. These two tasks are inherently coupled—given only noisy partial views,

one cannot accurately estimate the trajectory of an object if its shape is unknown,

nor can one estimate its shape without knowing its trajectory. Additionally, we use a

continuous time estimation framework to incorporate sensor data that is collected at a

fast rate (e.g., LIDAR). Using these methods, we are able to obtain smooth trajectories

and crisp point clouds for tracked dynamic objects. We test our proposed tracker on

real-world data collected by our autonomous vehicle platform and demonstrate that it

produces improved results when compared to a standard centroid-based EKF tracker.

Chapter 3 We present an approach for estimating temporal scene flow, i.e. a 2D motion

field, from successive LIDAR scans of the environment in real-time. Our approach does

not require any segmentation or data association result, but produces results that are

competitive with dynamic object tracking algorithms that have such a requirement.

We introduce occupancy constancy, which allows us to measure how locations at two

different timesteps are similar in terms of their geometric structure. We present

an energy minimization problem to estimate raw flow between scans, and then we

incorporate these measurements into a filtering framework to estimate temporal scene

flow. We evaluate our method on the KITTI dataset.

Chapter 4 We present a feature learning approach to improve upon the flow estimate.

Rather using a hand-designed feature or metric, such as occupancy constancy, we use

deep learning techniques that allow us to find a feature encoding that is optimized for

our task. We demonstrate the improved performance of the scene flow estimate using

our learned feature space, as evaluated on the KITTI dataset.

Chapter 5 We summarize the contributions of this thesis. Additionally, we explore a few

avenues for future work.

Appendix A We briefly review relevant details of GPU programming that are essential in

the implementation of our algorithms. The principles highlighted in this appendix are

leveraged in Chapter 3, Chapter 4, and Appendix B.
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Appendix B We discuss the efficient generation of occupancy grids using a GPU. The work

presented in this appendix is used in Chapter 3 and Chapter 4.
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CHAPTER 2

Continuous-Time Estimation for Dynamic

Object Tracking

In this chapter, we present a system for dynamic object tracking for autonomous vehicles.

We seek to simultaneously estimate both the trajectory of the object and the object’s shape.

These two tasks are inherently coupled—given only noisy partial views, one cannot accurately

estimate the trajectory of an object if its shape is unknown, nor can one estimate its

shape without knowing its trajectory. To address this challenge, we note that simultaneous

localization and mapping (SLAM), where a robot must build a map of the environment while

localizing itself within the map, presents similar challenges. By treating the object’s shape

as a “map” in the object’s moving reference frame, we can formulate the object tracking

and shape estimation problem similarly to SLAM. Additionally, we use a continuous time

estimation framework to incorporate sensor data that is collected at a fast rate (e.g., light

detection and ranging (LIDAR)). Using these methods, we can obtain smooth trajectories

and crisp point clouds for tracked objects. We test our proposed tracker on real-world data

collected by our autonomous vehicle platform and demonstrate that it produces improved

results when compared to a standard centroid-based extended Kalman filter (EKF) tracker.

This work was published in Ushani et al. (2015).

2.1 Introduction

As autonomous cars continue to develop, one important challenge is to be able to accurately

track dynamic objects in the environment, such as other vehicles, bicycles, or pedestrians.

Accurate estimates of object positions and velocities are essential to any planning framework

that seeks to create safe trajectories. Not only does a planner need to avoid objects in its

environment, but often planners must also predict the future actions of vehicles given an

accurate trajectory history (Galceran et al., 2015; Xu et al., 2014). Additionally, a history of
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(a) Original point cloud

(b) Proposed point cloud

Figure 2.1: A point cloud generated by our proposed dynamic object tracker. Points in the
point cloud are colored by the time when they were observed, from blue to yellow. The
crispness of the generated point cloud is reflective of the tracking accuracy. Best viewed in
color.

an object’s pose or its point cloud representation can be used to classify the object (Douillard

et al., 2010; Teichman and Thrun, 2012).

Dynamic object trackers can be prone to errors and biases if they do not adequately

model the shape of the object being tracked. For example, consider an autonomous vehicle

driving past a parked car while tracking it. At first, only the rear of the car is observed. As

the parked car is passed, only the side is observed. Afterward, only the front face is observed.

During this process, if we do not maintain an estimate for the object model, our tracker may

falsely believe that this parked car has moved due to the change in our perspective. Such

errors can have adverse effects on a planning system that relies on object tracking to produce

a safe plan for the autonomous vehicle. To account for biases such as this, we can use an

estimate of some model or representation of the object’s structure.

Another challenge is how to incorporate high-rate sensor data. Many current autonomous
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vehicles rely on one or more LIDAR laser sensors that are collecting data at high rates, for

example, collecting over 700,000 points per second. Many current trackers make an implicit

assumption that a set of data or a discrete “snapshot” (i.e., set of LIDAR observations in

succession collected from a single scan of the object) is collected at a single point in time.

While this snapshot assumption helps provide some known structure to the object and makes

the problem formulation more simple, it does not account for any movement of the object

while the snapshot is being collected, leaving these trackers prone to errors. These errors

can be exacerbated when there are multiple sensors or different sensor modalities that are

not synchronized. However, due to the fast rate of observations coming from these sensors,

it quickly becomes intractable to try to compute the pose at each time associated with an

observation. One method of handling sensors with fast data rates is to use continuous time

estimation, as proposed by Furgale, Barfoot, and Sibley (2012) and further developed by

Anderson and Barfoot (2013) and Anderson, Dellaert, and Barfoot (2014). This allows us

to represent the object’s path not as a discrete set of poses, but as a linear combination of

continuous basis functions, reducing the number of variables by several orders of magnitude.

In this chapter, we address the above issues of errors and biases by noting that the

challenges inherent to accurate object tracking as described above are similar to those in

a typical SLAM problem. There are a few differences between object tracking and SLAM,

however. For example, in object tracking the “map” is in the reference frame of the object.

Additionally, we are estimating the object’s motion, rather than our own. Nonetheless, we

will show that we can solve the object tracking problem using a formulation similar to that

of state-of-the-art SLAM formulations. Specifically, our contributions are:

1. Modeling and solving of object tracking using a formulation similar to SLAM.

2. Incorporating continuous-time estimation tools to handle fast rate sensors.

3. Evaluating the proposed method on a real-world dataset.

We show that our approach leads to more accurate tracks and object models compared to

a standard centroid-based EKF tracker. We evaluate the performance in terms of tracking

error and point cloud crispness on a real-world dataset we collected using an autonomous

vehicle platform.
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2.2 Related Work

Object tracking has been extensively studied. Many different methods and approaches

have been developed, with applications ranging from vehicle tracking to aeronautical target

tracking.

Many early approaches used three main steps. First, sensor data, such as from a LIDAR

scan, is segmented into distinct dynamic objects. Segmentation algorithms include standard

clustering or connected component methods (Kaestner et al., 2012; Leonard et al., 2008;

Streller, Furstenberg, and Dietmayer, 2002; Wender and Dietmayer, 2008), while some

approaches seek to extract features such as line segments to detect objects (Zhao and Thorpe,

1998).

Next, data association is performed to link the new observations with objects that were

previously seen. For example, global nearest neighbor (GNN) is commonly used (Aycard

et al., 2006; Vu, Aycard, and Appenrodt, 2007), sometimes augmented with semantic

information (Azim and Aycard, 2012) or a tracking prediction (Streller, Furstenberg, and

Dietmayer, 2002).

Lastly, a filtering framework is used. Many methods use a Bayesian filter, such as an EKF,

Unscented Kalman filter (UKF), or particle filter. The observation model used is typically

a bounding box or centroid model (Levinson et al., 2011), while the motion model can be

chosen based on a semantic class prediction (Darms, Rybski, and Urmson, 2008) or different

modes of dynamics (Zhao and Thorpe, 1998). For improved robustness, many methods use

Multi-Hypothesis Tracking (MHT) (Kaestner et al., 2012; Särkkä, Vehtari, and Lampinen,

2007; Wang et al., 2007).

More recently, several object trackers make use of some simple object model to improve

the tracking results. There are different ways of estimating this model. Petrovskaya and

Thrun (2009) use anchor points (such as the center or corner of the perceived object) to

estimate a geometric model, such as a box, in order to aid in tracking. Kaestner et al. (2012)

use a generative model to extract a bounding box from the object. Darms, Rybski, and

Urmson (2008) model objects as points or as boxes, depending on the situation. Vu and

Aycard (2009) fit a box model to the object. In the aerospace field, Baum and Hanebeck

(2014) approximate an extended object with a simple geometric shape such as an ellipse

and then estimate the parameters of this shape. While these simplistic methods are easy to

implement and are often fast, they make assumptions about the object model that can lead

to tracking errors, which we seek to avoid.

Techniques from scan registration have also been applied for object tracking. Feldman,

Hybinette, and Balch (2012) leverage iterative closest point (ICP). Snapshots of an object are
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aligned together and the relative poses are used as observations in a Kalman filter. However,

this has been shown to be slow and prone to local minima, especially when there are errors

in correctly segmenting and associating LIDAR observations with an object (Held, Levinson,

and Thrun, 2013).

Other techniques for registering snapshots have been explored. Held et al. (2014) propose

a method to search for a 2D translation to register the most recent snapshot with previously

observed snapshots of the object. This can then be refined for rotation and finally used in a

Kalman filter. However, this implicitly assumes that sensor data is available in snapshots,

each consisting of many points observed at the same time, and does not model the true

nature of the timing of the sensor, leaving it prone to errors due to the object’s movement

during the collection of the snapshot.

Some object trackers take a somewhat different approach and use an occupancy grid.

Tanzmeister et al. (2014) and Danescu, Oniga, and Nedevschi (2011) use a grid-based method

where every cell maintains a particle filter and is classified as being a static or dynamic

object based on the statistics of the particles in it. Recently, deep learning methods have

been leveraged to predict rigid body motion in the scene (Byravan and Fox, 2017) or a

future occupancy state of the environment (Choi, Lee, and Oh, 2016; Dequaire et al., 2017;

Ondruska and Posner, 2016).

Our proposed object tracker seeks to leverage a generalized object model, as opposed to a

simple geometric model such as a bounding box, that can be used to track any kind of object

(e.g., car, motorcycle, bicycle, or pedestrian). Additionally, we are interested in leveraging

continuous time estimation, as proposed by Furgale, Barfoot, and Sibley (2012), in order to

properly handle the fast rate sensors commonly used in this area, accounting for the object’s

motion during the collection of a snapshot. This technique has been shown to be a successful

approach to SLAM problems with high rate sensors (Anderson and Barfoot, 2013) as is the

case in our domain.

2.3 Problem Statement

Let x(t) be the state of the object at time t, and let z1:nz be our nz observations, with zi ∈ R3

and each associated with a time ti. Each observation is in the world frame, and we assume

that the vehicle has an accurate localization system such that uncertainty in the world frame

position of these observations is negligible over the time scale of tracking.

Let mo
1:nm

be a point cloud representation of the object, consisting of nm points expressed

in the object frame. We denote a point in the object frame as po. Points in the world frame

are denoted p. We explore the parameter nm in Section 2.6.
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Figure 2.2: A cartoon example of the problem setup. The object moves along some path
x(t), displayed in blue. The object is modeled by nm model points, each depicted as a black
dot. We have observations such as zi, each depicted as a red dot. Note that each snapshot
roughly captures the geometric shape of the object, but is prone to errors due to the object’s
motion during its collection. In this work, we do not make the assumption that the points zi
in a single snapshot correspond to the same object pose x(t).

We see an example in Fig. 2.2. A dynamic object is modeled by mo
1:nm

, depicted by the

black points. These points are represented in the frame of the object, depicted by the blue

cross, as it moves along some trajectory defined by the continuous time state x(t), depicted

by the blue curve. Over time, we observe a set of points from the object, depicted by the red

dots.

We seek to find the maximum of the joint posterior density:

x(t)?,mo
1:nm

? = argmax
x(t),mo

1:nm

p(x(t),mo
1:nm
| z1:nz), (2.1)

solving for the object pose over time x(t) and model mo. Note that we have framed the

problem as a maximum a posteriori (MAP) estimation problem, similar to the formulation

that is used in Furgale, Barfoot, and Sibley (2012).
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We define the object state x(t) at time t as:

x(t) =



x

y

z

φ

v

vz

φ̇


, (2.2)

where the 3D position of the object in the world frame is given by (x, y, z), φ and v are,

respectively, the current heading of the object and its forward speed, vz is the speed in the

vertical direction, and φ̇ is the rate of turning. We assume that the object’s roll and pitch

are negligible for performance reasons, as any typical object in our environment would be

constrained to a small roll and pitch. However, if desired, roll and pitch could be added to

the state vector.

2.4 Front End

The front end to our system is similar to that of Leonard et al. (2007) and Leonard et al.

(2008). We refer to this system as our baseline tracker.

We have four LIDAR sensors on our vehicle platform. These sensors continually stream

point cloud data. Using an odometry estimate from an inertial navigation system (INS),

this point cloud data can be motion-compensated for the movement of the ego-vehicle.

Furthermore, our vehicle runs a global localization system similar to that of Levinson and

Thrun (2010). Thus, we can transform the point cloud data we receive into a global reference

frame.

Once we have about 100 ms of data from the LIDAR sensors corresponding to roughly a

full revolution per sensor, we can process the accumulated point cloud. First, we identify

LIDAR observations that belong to a dynamic object. This is done by first discretizing the

environment into 2D grid cells. Each cell contains the observations from the LIDAR whose

(x, y) position fall within the cell. The variance of the z coordinate is measured. If this

variance is above a threshold, then all LIDAR observations in that cell are labeled as being

an object. Optionally, this module can be supplied with a map of the ground plane (built

offline) to significantly improve performance of the object detector.

The LIDAR observations are then segmented into what we call chunks. Each chunk is
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a small four-dimensional (4D) (in time as well as space) container that holds a number of

LIDAR observations. LIDAR observations are either added to previously existing chunks or

create new ones, depending on their distance to the closest chunk. These chunks are then

segmented using connected components.

Once we have segments of chunks, we perform data association for each segment. We

maintain an EKF filter that tracks the state of each object we are currently tracking. Using

the predicted location and uncertainty of each object, we run GNN for data association. If

there is no existing object EKF that is associated for a given segment, we initialize a new

EKF. Additionally, if an EKF for an object does not receive any new observations for a

given period of time, we delete the EKF and remove the object from the list of objects we

are currently tracking. Finally, once we have performed data association, initialized all new

objects, and removed all objects no longer observed, we update every EKF with the new

observation, the centroid of each segment, and then continue processing more LIDAR data.

We use this EKF estimate for each dynamic object to initialize our proposed tracking

method. Similar to other trackers such as Held et al. (2014), we assume that we have accurate

segmentation of the LIDAR observations and data association of the segments through time,

both for the baseline tracking system and our proposed method.

2.5 Method

Our method simultaneously optimizes for object state over time x(t) as well as the point

cloud model for the object mo
1:nm

through an iterative batch optimization process. The

following sections describe the formulation for the models used, followed by the optimization

procedure.

2.5.1 Formulation

Starting from (2.1) and applying Bayes’ rule, we have:

p
(
x(t),mo

1:nm
|z1:nz

)
= ηp

(
x(t),mo

1:nm

)
p
(
z1:nz |x(t),mo

1:nm

)
, (2.3)

where η is a normalization constant. We make the assumption that the object trajectory and

the object model are independent:

p
(
x(t),mo

1:nm

)
≈ p
(
x(t)

)
p
(
mo

1:nm

)
, (2.4)
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and thus we arrive at:

p
(
x(t),mo

1:nm
|z1:nz

)
≈ ηp

(
x(t)

)
p
(
mo

1:nm

)
p
(
z1:nz |x(t),mo

1:nm

)
. (2.5)

We now describe the three terms.

2.5.1.1 Process Model

p
(
x(t)

)
is the process model of the object. Our method is generic for any motion model. In

our application, we will use a constant velocity unicycle model ẋ(t) = f
(
x(t)

)
+ w(t) where:

f
(
x(t)

)
=



v cosφ

v sinφ

vz

φ̇

0

0

0


, (2.6)

and w(t) is zero-mean Gaussian noise with covariance Quδ(t− t′), where δ(t) is the Dirac

delta function. This yields (Jazwinski, 1970):

p
(
x(t)

)
∝ exp

{∫ tf

t0

eu(τ)>Q−1
u eu(τ)dτ

}
, (2.7)

where

eu(τ) = ẋ(τ)− f(x(τ)), (2.8)

and t0 to tf represents the timespan over which we wish to compute p
(
x(t)

)
.

2.5.1.2 Object Model

p(mo
1:nm

) is our prior on the object model. We use this prior to enforce that objects be of a

reasonable size, and do so by weakly constraining each model point to be near the origin:

p(mo
1:nm

) =
nm∏
i=1

N (mo
i ; 0,Rm), (2.9)
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Figure 2.3: An illustration of our measurement model. The observation, the red point, is
associated with the closest model point, the green point. The black points represent other
points that make up the object model.

where

Rm =

 σ2
x 0 0

0 σ2
y 0

0 0 σ2
z

 , (2.10)

modeling the largest expected length, width, and height of object we wish to track.

The object model we present here is fairly simplistic. Other model types, such as a

mesh model, could be considered. However, a more complex model would quickly add

computational cost to our approach. We find that a point cloud model with a weak prior on

size provides a compromise between computational complexity and model expressiveness (as

opposed to a bounding box, for example).
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2.5.1.3 Measurement Model

p(z1:nz |x(t),mo
1:nm

) is our measurement model. We treat our measurements z1:nz as being

conditionally independent given the state x(t) and the model mo
1:nm

. For each zi, we first

associate our observation with a point in the model mo. We do this by projecting zi from the

world frame into the object frame at time ti to find zoi . Then, we find the nearest neighbor of

zoi in mo
1:nm

to find mo
zi

. Thus, our measurement model becomes:

zoi = mo
zi

+ ni, (2.11)

ezi = zoi −mo
zi

, (2.12)

where ni ∼ N (0,Rz) and zoi is the measurement zi projected into the object frame according

to x(ti), as shown in Fig. 2.3.

2.5.2 Continuous-Time Estimation

In a discrete-time setting, we would instantiate discrete variables representing the object

state at x(t0), . . . ,x(tnz). However, we treat each observation from our LIDAR sensor to

be a separate measurement (as opposed to a snapshot of observations all assumed to have

been taken at the same time). Creating a state variable for each one of these observations

would require thousands of variables for every second an object is tracked, quickly becoming

intractable.

To address this issue, we use continuous time estimation. This technique was first

introduced by Furgale, Barfoot, and Sibley (2012). Rather than having to track a large

number of variables, one for each timestep being considered, a set of temporal basis functions

are used to parameterized a continuous time function. A maximum likelihood estimate (MLE)

problem can be expressed in continuous time to solve for the parameters. In this way, the

size of the variables needed is kept manageable, and thus the problem remains tractable.

We model the state of the object being tracked as a linear combination of temporal basis

functions:

x(t) = [φ1(t), φ2(t), . . . , φn(t)] c (2.13)

= Φ(t)c. (2.14)

As our basis functions, we select B-splines of degree 4 (de Boor, 1978). Each B-spline function

has limited support, which helps make the problem sparse.

Thus, instead of solving for a large number of state variables, the variables we are solving
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for are reduced to just the vector of weights c that operates on the basis functions. The

number of variables is reduced by several orders of magnitude, depending on the resolution

of B-splines desired.

We thus define the full set of variables that we are solving for as:

θ =

[
c

mo
1:nm

]
. (2.15)

2.5.2.1 B-Splines

A B-spline is a piecewise polynomial function. The different pieces of the polynomials meet

at points called “knots”. For a continuous function of time, these knots are simply points in

time t0, . . . , tm.

They can be efficiently computed using the Cox-de Boor recursion formula (de Boor,

1978). In the base case of p = 0, we have:

Bi,p=0(x) =

1 if ti ≤ x < ti+1

0 otherwise
. (2.16)

For the recursive case p > 0, we have:

Bi,p(x) =
x− ti
ti+p − ti

Bi,p−1(x) +
ti+p+1 − x
ti+p+1 − ti+1

Bi+1,p−1(x). (2.17)

Note that for tk ≤ x < tk+1, Bi,p(x) is only non-zero for k − p ≤ i ≤ k. This sparsity in the

basis functions can be exploited for improved runtime performance.

Finally, for a given set of weights c, the continuous function is given by:

f(x) =
k∑

i=k−p

ciBi,p(x). (2.18)

With de Boor’s algorithm, we can directly compute the function f(x) without having to

compute the intermediate B-spline basis functions, saving computation time (de Boor, 1978).
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This is given by the following recurrence relation:

di,0(x) =

ci if k − p ≤ i ≤ k

0 otherwise
(2.19)

di,r(x) =


(
1− αi,r(x)

)
di−1,r−1 + αi,r(x)di,r−1 k − p+ r ≤ i ≤ k

0 otherwise
(2.20)

αi,r(x) =
x− ti

ti+1+p−r − ti
. (2.21)

An example demonstrating how B-spline basis functions can represent continuous functions

is shown in Fig. 2.4. The continuous function shown in black is a weighted sum of eight

B-spline basis functions. In this way, the entire function is parameterized by eight values,

c0, . . . , c7.

2.5.3 Gauss-Newton

We formulate a cost function for optimization by taking the negative log-probability of (2.1),

yielding:

− log
(
p(x(t),mo

1:nm
|z1:nz)

)
= k + Jm + Ju + Jz, (2.22)

where

Jm =
nm∑
i=1

1

2
mo

i
>Rmmo

i , (2.23)

Ju =

∫ tf

t0

eu(τ)>Q−1
u eu(τ)dτ , (2.24)

Jz =
nz∑
i=1

e>ziRze
>
zi

, (2.25)

and k is a constant.

To solve for θ, we start with an initial guess θ̄, we linearize each of Jm, Ju, and Jz about

θ̄. For each, we find δJ
δθ

>
, which is of the form Aδθ + b. We take Am + Au + Az = A and

bm + bu + bz = b. Thus, we have the Gauss-Newton update step Aδθ = −b, by which we

iteratively update θ until convergence.

When solving, we compute a full batch update using all of the data for the object,

recomputing the data associations for the measurement model for each iteration. Note that

37



Figure 2.4: A sample function represented by B-spline basis functions. The function, shown
with the thick black line, can be represented as a function of B-spline basis functions (shown
in thin colored lines). In this particular example, eight B-spline basis functions are used to
create a continuous time representation of the function we are interested in.

the matrix A is sparse due to the limited support of the B-splines basis functions, which

allows the use of sparse linear solvers that scale to larger numbers of points.

To initialize θ, we use the baseline EKF tracker described in Section 2.4. Specifically, we

first fit a continuous function parameterized by B-splines to the pose estimate history given

by the EKF tracker to generate our initial guess for c. Then, we project the measurements

z1:nz into the object frame and subsample these points linearly in time to generate our initial

guess for mo
1:nm

.
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2.6 Experimental Results

In this section, we present our evaluation and experimental results. We first describe the

setup, evaluation, data, and parameter selection. Then, we present results on the accuracy

of the pose estimate and the crispness of the generated point cloud. Lastly, we discuss

convergence and runtime.

2.6.1 Setup

Our proposed method was evaluated using the NGV Ford Fusion autonomous platform, as

discussed in Section 1.2. A global localization system similar to that of Levinson and Thrun

(2010) allows us to leverage prior maps of the ground plane to improve the performance of

the baseline tracker described in Section 2.4. Experiments were run on a 2.80 GHz Intel Core

i7-3840QM CPU.

We replicate the experimental methodology used by Held et al. (2014) by looking at

tracking error and point cloud crispness. We evaluated our method on a dataset collected

around the University of Michigan, Ann Arbor North Campus.

We evaluate our method in two ways. First, to evaluate the quality of the positional

tracking, we identify parked cars in our dataset and evaluate the performance of our tracker

on these objects. The tracking system does not know that these objects are not moving, and

thus it tracks them over time. Because we know these objects are stationary, we essentially

have a ground truth we can use to evaluate our tracker. We call this the stationary set,

containing 52 objects each observed for an average of 6.05 s. Then, we look at the crispness

of the point cloud created by dynamic object tracks. If we are properly tracking the object,

then we would expect to see a clear, crisp point cloud view of it. We call this the dynamic

set, containing 52 objects each observed for an average of 6.28 s. In both cases, we have

manually discarded objects that are a result of errors in segmentation.

2.6.2 Parameter Selection

We find that a relatively sparse representation of the object’s point cloud model mo
1:nm

can

still produce good results while greatly improving the runtime performance, even when the

model consists of just a few hundred points. For these results, we set nm to 300 points. In fact,

often if we set nm too large, the model can tend to overfit any inaccuracies in the initialization

from the baseline system, leading to poorer results, as reflected in Table 2.1. Note that after

optimizing for x(t), we can then reproject all of our observations z1:nz according to x(t) into

the object’s reference frame. Thus, we can recreate the full, dense, point cloud.
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The number of measurements nz that we have grows quickly. Even if we only observe

an object for a few seconds, we quickly accumulate hundreds of thousands of observations.

We downsample our observations to 5000 observations per object track when computing

p(z1:nz |x(t),mo
1:nm

).

For the process model, we set Qu according to the maximum accelerations and turning

rates we expect a vehicle to undertake and by observing vehicle motion in training data.

Accordingly, we set:

Qu =



0.01 m 0 0 0 0 0 0

0 0.01 m 0 0 0 0 0

0 0 0.01 m 0 0 0 0

0 0 0 0.001 rad 0 0 0

0 0 0 0 0.9 m/s 0 0

0 0 0 0 0 0.1 m/s 0

0 0 0 0 0 0 0.08165 rad/s



2

.

For the object model, we considered the largest size of the objects we wish to track, and

thus set σx = σy = σz = 10 m.

For the measurement model, we set Rz = σzI. When choosing σz, we must consider both

error due to the noise of the LIDAR sensors and error due to the relative sparsity of our

model points. We chose σz = 0.50 m. Setting the measurement uncertainty Rz in this way is

similar to the approach taken by Held et al. (2014).

For the B-splines, we have a choice of how many B-spline basis functions to use in

representing our state. Using more splines would allow us to more finely represent our state

over time; on the other hand, the more splines we use, the larger θ will be, taking longer to

solve. Thus, there is a tradeoff to consider between accurate representation of state versus

computation time. We use a basis function per dimension for every 0.5 s that the object is

tracked.
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Table 2.1: The tracking performance of our proposed tracker. In this table, we show results
for two values of nm as compared to the baseline EKF centroid tracker over the stationary
set.

Tracker Error Baseline EKF
Proposed
nm = 300

Proposed
nm = 3000

Pos. RMSE 0.388 m 0.162 m 0.183 m
Vel. RMSE 0.543 m/s 0.314 m/s 0.328 m/s
φ RMSE 0.527 rad 0.071 rad 0.090 rad

φ̇ RMSE 0.139 rad/s 0.026 rad/s 0.027 rad/s

2.6.3 Pose Results

We report on the tracking error of the stationary set. We compute the position error and

heading error by comparing the (x, y, z) and φ estimate over time to the mean position and

heading, respectively. We compute the velocity and rate of turning error by comparing the

velocity and heading estimate to an expected value of 0 m/s and 0 rad/s, respectively. These

results are shown in Table 2.1. We see a clear improvement in tracking performance over

the baseline EKF centroid tracker as described earlier, particularly in heading. Additionally,

note that the performance of the proposed tracker is better with nm = 300 than nm = 3000.

We attribute this degraded performance when nm is larger to overfitting inaccuracies in the

initialization.

2.6.4 Point Cloud Crispness

In the general case, with objects that are not known to be stationary, we evaluate the

performance of our proposed tracker with regards to the quality of the generated point could.

We want a crisp point cloud, or equivalently one with low entropy. A crisper point cloud is

indicative of better tracking performance. We evaluate our proposed tracker by using the

point cloud entropy as defined by Sheehan, Harrison, and Newman (2012):

H[zo1:nz
] = − log

(
1

n2
z

nz∑
i=1

nz∑
j=1

N (zoi − zoj ; 0, 2σ2I)

)
.

The parameter σ allows us to tune the resolution at which we evaluate crispness. We set

σ = 5 cm.

The results are shown in Table 2.2 for both the stationary set and the dynamic set. Note

the improvement in both cases of our proposed method over the baseline. To compute the

ground truth entropy of the stationary set, we project all of the LIDAR observations into the
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Table 2.2: Point cloud entropy of the models generated by our proposed tracker. In this
table, we show results for our method and the baseline EKF centroid tracker. Ground Truth
is available for the stationary set by taking the LIDAR observations in the world frame.

Tracker Entropy Ground Truth Baseline EKF
Proposed
nm = 300

Stationary Set 1.920 2.237 2.103
Dynamic Set — 2.860 2.756

world frame using the known trajectory of our platform. As the objects in the stationary

set are not moving in the world frame, this represents the best point cloud we can construct

and thus is the lowest entropy we should expect from an ideal tracker. In the stationary set,

we can see that our proposed method reduces the entropy of the point cloud by about 42%

relative to the ground truth entropy as compared to the baseline tracker.

The stationary set has less entropy (i.e., it is more crisp) in general when compared to the

dynamic set. This is due to the fact that in the stationary set, we commonly traveled close

to cars parked on the side of the road, creating a denser point cloud. This is opposed to the

dynamic set, where objects are often being tracked from a distance (for example, following a

car on the road) or in different lanes. Regardless, the improvement in point cloud crispness is

evident in both the stationary set and the dynamic set.

2.6.5 Convergence

We determine how well our method converges by considering the residual of the Gauss-Newton

step at each iteration. As can be seen in Fig. 2.5, the error converges consistently on the

tracking scenarios that we have evaluated. The decreasing residuals are indicative of better

agreement in the process model, measurement model, and object model. In our experiments,

the Gauss-Newton process is stopped when convergence is reached or after a maximum of 10

iterations.

2.6.6 Runtime

We find that our proposed method takes an average of 42.9 ms per iteration for our choice of

parameters. This was measured on an 2.80 GHz Intel Core i7-3840QM CPU. Note that the

matrix A in the Gauss-Newton step is sparse, as only about 2% of the elements are non-zero.
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Figure 2.5: The average residual after each iteration over the stationary and dynamic set.
Note the log scale. The decreasing residuals are indicative of better agreement in the process,
measurement, and object models. Note how our proposed method converges quickly.

2.7 Discussion

We find that our system generally works well under nominal conditions. The tracking error for

position, velocity, heading, and rate of heading are all improved with respect to the baseline

EKF tracker. Additionally, the resulting point cloud is crisper.

Unlike other dynamic object trackers that rely on certain models (such as a bounding

box), we are able to track any object. For example, see Fig. 2.6 for our tracker working on a

bicyclist.

We find that heading and lateral position (i.e., perpendicular to the direction of travel)

have particularly low error, even when initialized poorly. We show an example of our proposer

method tracking a bus. As can be seen in Fig. 2.7, our proposed tracker creates a smoother

velocity and heading estimate, which is much more realistic for a bus that cannot change

its velocity or heading as abruptly as the baseline tracker would suggest. Furthermore, in

Fig. 2.8, we see that our proposed tracker has managed to develop a crisp model of a bus

despite a significant amount of heading error in the baseline method.
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(a) Baseline (b) Proposed

Figure 2.6: Our proposed method tracking a person riding a bicycle. Points are colored by
the time when they were observed, from blue to yellow. Best viewed in color.

Certain situations are known to be troublesome. For example, sometimes we encounter

the situation shown in Fig. 2.9 where we might have multiple slightly translated views of the

car, which is indicative of tracking error. While this is still a significant improvement over the

EKF centroid tracker, our proposed tracker has some trouble resolving the discrepancy along

the direction of travel. This is likely due to bad initialization, leading the tracker to create

an object model that has two translated instances of the rear face of the car. Even though

this is incorrect, this object model is consistent with the measurements and the tracker will

believe that it has correctly tracked and modeled the object. We believe that these issues

can be addressed with a better prior on the object model, better initialization, or explicit ray

casting. Ray tracing to build a representation such as an occupancy grid would allow for

smarter reasoning regarding occupied, free, and unknown space. This type of reasoning is

missing in a point cloud based approach. Indeed, we investigate this representation in the

following chapters.

It is also important to note that our tracking system assumes the availability of accurate

segmentation and data association results. This is similar to assumptions made by many

works in the field. However, when these assumptions are violated, the resulting error in

the tracking pipeline is catastrophic, both in our method and others. While segmentation
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(a) Bus Trajectory Velocity (b) Bus Trajectory Heading

Figure 2.7: Sample velocity and heading profiles. We present a comparison of the estimated
velocity and heading profiles for the bus displayed in Fig. 2.8.

and data association can be improved, a robust dynamic tracking algorithm must be able

to handle errors in these areas. Indeed, in the following chapters, we investigate dynamic

motion estimation techniques that do not rely on these assumptions.

2.8 Conclusion

We have demonstrated how tools from SLAM and continuous-time estimation can be applied

to dynamic object tracking. We showed how this approach yields improved results when

compared to a baseline EKF centroid-based tracking system. Future work will consider

better priors and models., such as a mesh object model. Tradeoffs between improved error

functions and runtime warrant further investigation as well. Additionally, we will consider

better modeling the relationship between the object trajectory and the corresponding point

cloud model.
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(a) Baseline

(b) Proposed

Figure 2.8: Our proposed method tracking a bus, top-down view. Points are colored by the
time when they were observed, from blue to yellow. Best viewed in color.
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(a) Baseline

(b) Proposed

Figure 2.9: A fault case of our proposed tracker. While the tracking performance is improved,
there is still error in the direction of travel. Points are colored by the time when they were
observed, from blue to yellow. Best viewed in color.
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CHAPTER 3

Real-Time Temporal Scene Flow Estimation

Many autonomous systems, including autonomous vehicles, require the ability to perceive

and understand motion in a dynamic environment. In this chapter, we present a novel

algorithm that estimates this motion from raw LIDAR data in real-time without the need

for segmentation or model-based tracking. The sensor data is first used to construct an

occupancy grid. The foreground is then extracted via a learned background filter. Using the

filtered occupancy grid, raw scene flow between successive scans is computed. Finally, we

incorporate these measurements in a filtering framework to estimate temporal scene flow. We

evaluate our method on the KITTI dataset. This work was published in Ushani et al. (2017).

Source code for this work is available at https://github.com/aushani/tsf.

3.1 Introduction

Autonomous systems, such as self driving vehicles or other mobile robots, operate in dynamic

environments where it is critical that they be able to accurately perceive and understand the

motion of the surrounding environment. Increasingly often, these systems are equipped with

one or more light detection and ranging (LIDAR) sensors. These sensors provide a point

cloud representation of the world, often collecting millions of points per second.

Many algorithms that consider dynamic scene understanding work with the point cloud

directly. For example, obstacle tracking techniques for self-driving vehicles often rely on

detection and segmentation of objects directly from the LIDAR generated point cloud,

including our previous work (Ushani et al., 2015) and others (Baum and Hanebeck, 2014;

Darms, Rybski, and Urmson, 2008; Held et al., 2016; Kaestner et al., 2012; Petrovskaya and

Thrun, 2009; Vu and Aycard, 2009).

However, working with point clouds alone disregards a valuable characteristic of the

sensor: the notion of free space swept out between the point return and the LIDAR sensor.

Occupancy grids are a commonly used representation that can be readily manipulated to
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Figure 3.1: An overview of our temporal scene flow pipeline. As an input to our system,
we take raw LIDAR scans. We construct occupancy grids from these scans, which are then
filtered to remove the background. We then compute raw scene flow measurements using
our occupancy constancy metric. Finally, we incorporate this measurement in a filtering
framework to refine the estimate and reject false measurements, producing a estimate of
temporal scene flow.
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capture free and unknown space in addition to the occupancy of a LIDAR point return. This

can be achieved by ray-casting from the sensor emitter to the returned point, populating cells

of a grid with observations of “free space” (Thrun, Burgard, and Fox, 2005).

Applications of occupancy grids have been widely considered in the 2D domain. However,

extending the use of occupancy grids to three-dimensional (3D) sensors has been limited.

The exponential increase in processing required for handling the significant number of voxels

in a 3D occupancy grid presents a key challenge. In this work, our algorithms are designed so

that they can easily be offloaded to a graphics processing unit (GPU). Thus, we can better

formulate a real-time temporal scene flow framework from LIDAR scanners.

In this chapter, we present a pipeline that takes raw LIDAR data as input and produces

a scene flow estimate. Previously in Chapter 2, we considered the similar problem of obstacle

tracking (Ushani et al., 2015). Motivated by some of the shortcomings in this previous work,

a key goal of our proposed method here is to avoid relying on temporal data association,

segmentation, or use of an object model. Instead, we formulate the problem similarly to that

of optical flow over 3D occupancy grids. The novel contributions of this chapter include:

1. A learned framework for tracking LIDAR observations in occupancy grids, leveraging

background subtraction and temporal occupancy constancy.

2. An expectation-maximization (EM) algorithm for estimating raw, incremental scene

flow.

3. Real-time implementation on a GPU enabling 10 Hz scene flow estimation.

4. Extensive evaluation of our method against known ground truth from the KITTI dataset

(Geiger et al., 2013).

3.2 Related Work

Estimating dynamic motion from sensor data has been studied extensively in various commu-

nities, including computer vision, self driving vehicles, and mobile robotics.

In the field of computer vision, optical flow or scene flow has been a popular research area

in which motion in an image due to a moving platform or dynamic objects in the environment

is estimated. While motion estimation in camera data and LIDAR have many similarities, it

is important to note the unique advantages and challenges that each sensor modality provides.

For example, unlike LIDAR sensors which provide a relatively sparse set of observations,

cameras provide a rich view of the scene. In addition to denser measurements, cameras

also provide a much more accurate estimate of the pixel appearance (such as color or pixel
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intensity). While some LIDAR sensors do report the intensity of the laser return, these

intensity values are usually not very discriminative in general and unreliable, as they could

vary significantly due to incidence angle or between laser sensors.

Optical flow is typically approached by solving for a two-dimensional (2D) motion field in

the image plane that preserves some constancy metric (such as brightness constancy) and

a regularization term to promote spatially smooth flow (Horn and Schunck, 1981; Lucas

and Kanade, 1981). Feature based methods (Liu et al., 2008) or matching patches of

images (Barnes et al., 2009; Hu, Song, and Li, 2016) has been proposed as well.

In scene flow, the 3D motion is estimated with the use of a stereo camera or some depth

sensor (Jaimez et al., 2015; Menze and Geiger, 2015; Vogel, Schindler, and Roth, 2013,

2015). However, scene flow is generally not capable of real-time performance: at the time

of this writing, the top nine submissions to the KITTI scene flow evaluation benchmark

take five minutes or longer to process a single scene. In the current leading approach on

Recently, Jaimez et al. (2015) presented a method to estimate scene flow in real-time for

displacements up to 15 cm. However, due to the difference in sensing modalities described

above, these methods do not directly translate from computer vision to LIDAR sensing.

While there are some key differences, obstacle tracking considers a similar problem.

Whereas we are interested in sensing and detecting motion in general in a dynamic environment,

in obstacle tracking, discrete objects are extracted from sensor data and detected over time.

These observations of objects are associated temporally and used to compute trajectories or

build appearance models. Many obstacle tracking methods rely on simple geometric models

of obstacles, such as boxes or ellipses, which are fit to measurements over time (Baum and

Hanebeck, 2014; Darms, Rybski, and Urmson, 2008; Kaestner et al., 2012; Petrovskaya and

Thrun, 2009; Vu and Aycard, 2009). More recently, some methods do not make assumptions

about the obstacle’s appearance or structure. In our previous work, we framed obstacle

tracking as a problem similar to that of SLAM, in which an obstacle’s trajectory and “map”

(i.e., point cloud model) are computed (Ushani et al., 2015). Held, Levinson, and Thrun

(2013) provide a framework by which to efficiently register successive scans of an obstacle,

providing an estimate of relative motion between these two scans and incrementally building

up an obstacle model. Unlike our problem area, however, many approaches in obstacle

tracking assume that the sensor data has been segmented into discrete objects and associated

over time.

More recently, Dewan et al. (2016) consider a similar problem to ours, estimating rigid

scene flow between LIDAR scans. Similar to our work, they formulate an energy minimization

problem based on matching SHOT feature descriptors for a subset of keypoints. However,

unlike our work, they rely on point correspondences, where we do not rely on any data
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association. Additionally, they do not temporally filter this result over successive scans.

Our filtering framework has some similarities to that of Tanzmeister et al. (2014) and

Danescu, Oniga, and Nedevschi (2011), where particles with position and speed are spread

throughout a 2D grid and can move from cell to cell. They rely on stereovision to produce

positional observations that are used in the resampling step for the particle filter. Aside from

the difference in sensing modality, we attempt to directly exploit perceived motion in the

sensor data.

3.3 Problem Statement

Our goal is to compute scene flow from LIDAR scans in real-time. Our work has direct

application for autonomous vehicles, so we make the assumption that the world is locally

planar—as is common in many autonomous vehicle applications. Namely, we assume that

object motion is restricted to this horizontal plane and that all objects in a vertical column

tangent to this plane move together. It is important to note that we make this assumption

for our application domain to help run in real-time, though our proposed method could be

modified to compute non-horizontal motion if need be. Thus, our goal is to compute the

temporal scene flow si,j for every location (i, j) in the plane.

Many sensor observations in a LIDAR scan correspond to static background structure in

which scene flow estimation is trivial (e.g., the ground plane). As autonomous vehicles are

commonly instrumented to estimate odometry, scene flow of static structures can instead

be estimated via the relative motion of the platform vehicle. Thus, our work is primarily

interested in estimating the scene flow for dynamic objects or potentially dynamic objects in

the environment.

In the following sections, we describe the stages of our framework. Beginning with a

point cloud, zt,1:n =
{

[xi, yi, zi]
>}n

i=1
that we receive from the LIDAR sensor at time t, we

first construct a 3D occupancy grid Gt. We will consider both zt,1:n and Gt in the reference

frame of the vehicle platform at time t. We then use a learned background filter to extract

the foreground from Gt. Next, we estimate the scene flow between two successive occupancy

grids Gt−1 and Gt using a learned approach. We compute this flow in the reference frame of

the vehicle, although this could easily be converted to the world frame using the odometry

estimate of the ego-motion of the vehicle platform. Finally, we accumulate these raw scene

flow measurements into a filtering framework to provide an estimate of the temporal scene

flow.
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3.4 LIDAR Preprocessing

In this section, we describe the preprocessing performed on the LIDAR sensor data, zt,1:n, to

create an occupancy grid Gt.

3.4.1 Occupancy Grid

To process the LIDAR data, we first build an occupancy grid (Hornung et al., 2013; Moravec

and Elfes, 1985), composed of 3D voxels representing how likely it is that an object occupies

the given space. For each voxel, the probability it is occupied is computed by

p(v|zt,1:n) =

[
1 +

1− p(v|zt,n)

p(v|zt,n)

1− p(v|zt,1:n−1)

p(v|zt,1:n−1)
β

]−1

, (3.1)

where zt,1:n = {zt,1, . . . , zt,n} is the collection of laser returns from the LIDAR sensor,

β = p(v)
1−p(v)

, and p(v) is a prior on the state of v. If we assume that our prior is p(v) = 0.5 and

use log-odds (denoted L) (Hornung et al., 2013), we can represent the recursive formulation

of (3.1) as

L(v|zt,1:n) =
n∑
i=1

L(v|zt,i) (3.2)

L(v|zt,i) =


lfree the ray to zt,i passes through v

loccupied the ray to zt,i ends in v

0 otherwise

, (3.3)

where L(v|zt,i) is the log-odds update given by the observation zt,i and lfree and loccupied are

the log-odds updates given by an observation of free or occupied space, respectively. To

compute all the of log-odds updates for all of our LIDAR observations, we use Bresenham’s

ray tracing algorithm (Bresenham, 1965), which can be efficiently implemented on the GPU.

This is further discussed in Appendix B and yields a sparse mapping of voxel to occupancy

probability. Note that the occupancy grid is sparse because the majority of voxels remain

unknown.
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Figure 3.2: Background filter feature vectors.

3.4.2 Background Filter

In order to reduce the computational burden of computing flow for the entire scene, we first

apply background subtraction to identify static structure. This preprocessing step identifies

possible columns in the occupancy grid that could be dynamic and have some scene flow

associated with them. While this filter need not be perfect, we find that it helps with runtime

performance and errors due to perceptual aliasing.

Many techniques that use LIDAR sensors rely on various methods to eliminate static

background (e.g., ground plane or buildings). One set of approaches rely on prior maps of

the environment that are leveraged by localizing within these maps during runtime. These

maps contain information about the ground plane or other static structure in the scene. For

example, some obstacle trackers rely on these maps to identify only the sensor measurements

from objects that need to be tracked (Ushani et al., 2015). However, these approaches fail if

the map is not accurate (e.g., due to construction) or the localization system experiences any

errors.

Other approaches leverage the appearance and structure of the data to discriminate
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between foreground and background, such as Wang, Posner, and Newman (2012, 2015).

Features such as normal vectors and shape distributions are extracted from patches of points

to create a handcrafted feature vector which is fed into a classifier. Wang, Posner, and

Newman (2012) report a runtime of 5 s on 3D data, while Wang, Posner, and Newman (2015)

report a runtime of 336 ms on 2D data. As our use requires a filter that is part of a full

system that can run in under 100 ms, we propose a method that is simpler in nature but can

run much faster than these previous techniques while still operating on our 3D occupancy

grid.

We propose to solve this task via classification using a logistic classifier. Given a location

(i, j) in our occupancy grid, we seek to find a label y ∈ {Foreground,Background}. This

method requires no prior maps and allows us to learn from training data the structure of

columns that appear to be dynamic.

For the occupancy column (i, j), we build a binary feature vector as follows. We extract

5× 5 neighborhood patch of columns, Ni,j, from the occupancy grid around the location

(i, j). We build two binary feature vectors sfree and soccu, each encoding the state of the full

neighborhood patch. The binary elements of sfree and soccu are given by

snfree = p(vn) < (0.5− ε) (3.4)

snoccu = p(vn) > (0.5 + ε), (3.5)

for every voxel vn ∈ Ni,j, where ε is a parameter controlling the certainty of free or occupied

space. These vectors are concatenated to make one binary feature vector si,j =
[
snfree

>, snoccu
>]>,

which is then used in a logistic classifier,

xfilter(i, j) = w>filtersi,j + bfilter (3.6)

Pfilter(i, j) =
1

1 + exp
(
−xfilter(i, j)

) . (3.7)

Note that this feature vector implicitly captures the notion of unknown cell state where these

two decision variables both evaluate to false.

To train this classifier and learn wfilter and bfilter , we extract training data from the KITTI

dataset. For ten KITTI log sequences of data, we build feature vectors by sampling columns

in the occupancy grid and extract labels by determining whether or not these columns are

contained within the labeled KITTI tracklet data. We build a training set of 243,828 samples.

We use TensorFlow (Abadi et al., 2015) to train our logistic classifier. Finally, we choose our

decision threshold for this classifier to give us 95% accuracy on extracting the foreground;

this allows us to reject much of the static background without catastrophically removing
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dynamic columns.

Our background filter can then be used online by running the classifier for every column of

the occupancy grid. This step is embarrassingly parallel, and thus can be implemented very

efficiently on the GPU. For any columns that are identified to be part of the background, we

assign a raw scene flow measurement derived from the odometry estimate of the ego-motion

of the vehicle platform.

3.5 Raw Scene Flow Computation

In this section, we will describe the process by which we compute temporal scene flow between

two occupancy grids Gt−1 and Gt. We use the background filter described above to filter

Gt−1, but importantly we do not filter Gt at this time. This helps mitigate errors in the

background filter, as voxels that were not properly filtered in Gt−1 can still be matched to

the corresponding location in Gt.

3.5.1 Occupancy Constancy

To compute the scene flow between two occupancy grids, we need a method by which we can

measure the consistency of the occupancy state of columns in successive occupancy grids. To

do so, we will rely on occupation constancy: the occupation state of matching columns should

not change between two successive scans. Here, we assume rigid, non-deforming motion,

which is generally valid in our application. As we will demonstrate in the results, our method

can still achieve good performance even for objects that can deform, such as cyclists and

pedestrians.

We formulate occupation constancy as a learning problem, as we find that a learning

approach works significantly better than a purely hand-designed metric. We take two

candidate columns ct−1 ∈ Gt−1 at (it−1, jt−1) and ct ∈ Gt at (it, jt), each consisting of a

vertical array of voxels vi,j,k in the occupancy grid at their respective location. We wish to

determine whether or not they are consistent. We construct three binary feature vectors,

f free, foccu, and fdiff, encoding whether or not the two columns have similar occupation. Each
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Figure 3.3: Occupancy constancy feature vectors. In Fig. 3.3(a), we see two columns from
successive occupancy grids, ct−1 and ct. We wish to build a feature vector that describes the
consistency of the occupancy states between the two. We build three feature vectors, shown
in Fig. 3.3(b), to capture consistencies in free and occupied space and any inconsistencies.
Note that unknown regions (in gray) are effectively ignored. These three vectors are then
concatenated into the feature vector f ct−1,ct .

element k of these feature vectors are given by

f
(k)
free =

(
p(vct−1,k) < (0.5− ε)

)
∧
(
p(vct,k) < (0.5− ε)

)
(3.8)

f (k)
occu =

(
p(vct−1,k) > (0.5 + ε)

)
∧
(
p(vct,k) > (0.5 + ε)

)
(3.9)

f
(k)
diff =

((
p(vct−1,k) > 0.5 + ε

)
∧
(
p(vct,k) < 0.5− ε

))
∨
((
p(vct−1,k) < 0.5− ε

)
∧
(
p(vct,k) > 0.5 + ε

))
. (3.10)

We concatenate these three binary feature vectors into one binary feature vector f ct−1,ct . This

is then used in a logistic classifier,

xmatch(ct−1, ct) = w>matchf ct−1,ct + bmatch (3.11)

Pmatch(ct−1, ct) =
1

1 + exp
(
−xmatch(ct−1, ct)

) , (3.12)

which yields the probability that the two given columns are consistent with each other given

their occupation state.
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To train this classifier and learn wmatch and bmatch, we again rely on the KITTI dataset

to extract training data. We create a training dataset in the following manner. We sample a

column ct−1 ∈ Gt−1 at location (i, j). Using scan matching Segal, Haehnel, and Thrun (2009)

for a ground truth relative pose estimate and the labeled KITTI tracklet data, we compute

the true scene flow and find the true corresponding column ct ∈ Gt. Thus, ct−1 and ct are

used to construct a positive training sample. We then additionally sample from a ns×ns
neighborhood about location (i, j) in Gt (denoted by Nct−1), excluding the true corresponding

column, to construct negative training samples.

We use the same ten KITTI log sequences of data as we did before to build our training

dataset, comprising of 1,028,381 training samples. We train our logistic classifier for occupancy

constancy using TensorFlow.

For efficient computation, we preprocess Pmatch for all pairs of columns we will consider.

We take the log-probability and apply a window to promote spatial smoothness (e.g., ci,j and

ci+1,j+1 will likely experience similar scene flow). We store this result in a lookup table Tmatch,

Tmatch(ct−1, ct) =
∑

cw∈Wct−1

log
(
Pmatch(f cw,ct)

)
, (3.13)

where Wct−1 is nw×nw window of columns cw ∈ Gt−1 centered on ct−1.

3.5.2 Raw Scene Flow Computation

To solve for the scene flow, we formulate an energy minimization problem that leverages our

learned occupancy constancy metric. Our energy minimization problem is equivalent to a

Markov random field (MRF). Similar problems have been extensively studied in the field,

with various methods for minimizing the energy (Szeliski et al., 2006, 2008). Methods such

as graph cuts, loopy belief propagation (LBP), and tree-reweighted message passing have

been applied, with various tradeoffs in the quality of the solution and the runtime.

In this work, we use an iterative EM algorithm to solve the energy minimization problem

within our runtime constraints, which we run for a maximum of nem iterations. By doing so,

we estimate a locally rigid, non-deforming flow between successive occupancy grids. This

computation process is shown in Fig. 3.4.

At each step of the EM algorithm, for every ct−1 ∈ Gt−1 we maintain the current estimate

of scene flow s(ct−1) and matched column m(ct−1) ∈ Gt, both initially all flagged as invalid.

We will compute an energy, E(ct−1, ct), associated with a potential scene flow estimate that

leads from ct−1 ∈ Gt−1 to ct ∈ Gt. Additionally, for every ct ∈ Gt, we store the energy

associated with the currently computed scene flow estimate that leads to ct ∈ Gt, Ê(ct),
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Timestep 1 Timestep 2
(a) Search

(b) Expectation (c) Maximization (d) Expectation

Figure 3.4: An overview of the raw scene flow computation process. In Fig. 3.4(a), for a
given location at a timestep (shown in blue), we search a region in the next timestep (shown
in gray) to find the scene flow estimate that minimizes the energy (shown in red). In the
expectation step shown in Fig. 3.4(b), we perform this operation for all locations to find a
scene flow estimate for each one (shown by the blue arrows). In the maximization step shown
in Fig. 3.4(c), we enforce our assumption of rigid scene flow. In the following expectation
step in Fig. 3.4(d), we recompute energies to reestimate scene flow, which may be updated
due to the smoothing term or previous invalidation.
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which is initialized to ∞.

This algorithm must be run for every column in the occupancy grid. However, we can

process columns in parallel, and thus this can be efficiently implemented on the GPU.

3.5.2.1 Expectation

During the expectation step, we estimate the most likely scene flow for every column. For a

given column ct−1 ∈ Gt−1 at location (i, j), we search through a neighborhood Nct−1 , which

is a ns×ns neighborhood of columns ct ∈ Gt centered around location (i, j). We compute an

energy for each ct ∈ Nct−1 ,

E(ct−1, ct) = −Tmatch(ct−1, ct)︸ ︷︷ ︸
constancy metric

+ wp
∑

cp∈Pct−1

∥∥sct−1,ct − s(cp)
∥∥2

︸ ︷︷ ︸
regularization

, (3.14)

where wp is an L2 penalty weight to enforce spatial smoothness, Pct−1 contains all cp ∈ Gt−1

in a 5× 5 neighborhood around ct−1 for which we have a valid scene flow estimate s(cp), and

sct−1,ct is the candidate scene flow vector which associates ct−1 and ct.

For every ct−1 ∈ Gt−1, we find the corresponding c∗t ∈ Gt that minimizes E(ct−1, ct) such

that either E(ct−1, c
∗
t ) < Ê(c∗t ) or m(ct−1) = c∗t (i.e., the same scene flow was computed

previously during an earlier iteration and we simply need to update the energy that may

have changed due to the L2 penalty). We store the estimated scene flow at this iteration in

s(ct−1) = sct−1,c∗t
and m(ct−1) = c∗t .

3.5.2.2 Maximization

During the maximization we step, we enforce our assumption of locally rigid, non-deforming

flow. This means that only one column ct−1 ∈ Gt−1 can lead to any column ct ∈ Gt.

For each ct ∈ Gt, we consider all ct−1 ∈ Gt−1 such that m(ct−1) = ct. If there are any such

ct−1, we take the one with the lowest energy E(ct−1, ct), denoted c∗t−1, essentially picking the

most likely column in the previous scan that leads to ct. We set Êc(ct) = E(c∗t−1, ct), and we

flag all other m(ct−1) = ct and s(ct−1) where ct−1 6= c∗t−1 as being invalidated.
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3.5.3 GPU Implementation

In this section, we describe the details of the GPU implementation for the energy minimization

algorithm. While these details do not affect the result of the flow estimate, it is critical for

real-time performance to take advantage of GPU hardware optimizations. Chief among these

is making use of global memory coalescing and shared memory per block of Compute Unified

Device Architecture (CUDA) threads. Further details on GPU programming are provided

in Appendix A.

We preallocate several memory buffers in GPU global memory. These are reused for each

flow computation, and allows us to avoid the overhead of memory allocation. These buffers

include:

• A dense 3D copy of the occupancy grids Gt−1 and Gt

• Logistic classifier outputs Pmatch(ct−1, ct)

• Occupancy constancy scores Tmatch(ct−1, ct)

• Energies E(ct−1, ct) and Ê(ct)

• Scene flow s(ct−1)

Note that these memory buffers use 4 byte types (i.e., float or int32 t) even if they do

not require 4 bytes of storage. This is due to GPU memory operations and global memory

coalescing being optimized for data types of this size.

First, the sparse occupancy grids from Section 3.4.1 are used to populate dense occupancy

grids Gt−1 and Gt. Note that the background filter from Section 3.4.2 has been applied to

create Gt−1. To take advantage of coalescing memory operations on the GPU, the memory

for these dense grids is indexed so that the vertical dimension is the major dimension. The

dense population can be achieved with the use of a CUDA kernel where each GPU thread

handles one voxel in the grid.

Next, we compute occupancy constancy scores and populate Pmatch and Tmatch. We first

construct a CUDA kernel to compute Pmatch. This kernel is configured so that each CUDA

block handles a particular ct−1, and each thread within that block handles some ct ∈ Wct−1 .

This allows us to load ct−1 once per block and store it in shared memory, minimizing the

need for slow global memory accesses. Each thread then computes Pmatch for its pair of ct−1

and ct. A second CUDA kernel applies the windowing operation to compute Tmatch. To later

take advantage of memory coalescing, Tmatch is indexed such that ct is the major dimension.

Now, we are ready to perform the energy minimization. We have a CUDA kernel for each

of the expectation and maximization steps.
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For expectation, we configure the CUDA kernel such that each thread handles one ct−1.

Each block of threads handles a 2D array of nearby ct−1’s. We first load into shared memory

the current estimate of the scene flow for nearby locations (to help compute the L2 spatial

smoothness penalty) and Ê. By using shared memory, we minimize slow global GPU memory

operations. Each thread then performs the expectation step according to Section 3.5.2.1.

Note that if ct−1 has been identified as background by our filter, we can save on runtime by

skipping this location (although care must be taken to still use the thread to help load data

into shared memory).

For maximization, we use a similarly configured CUDA kernel. Each thread handles one

ct−1, with each block of threads handling a 2D neighborhood of ct−1’s. We load current

estimates of energies and scene flow into shared memory to again minimize the number of

slow global GPU memory operations that are necessary. Once this is done, each CUDA

kernel performs the maximization step according to Section 3.5.2.2.

Once we are finished, the scene flow estimate s(ct−1) is copied from GPU memory to host

memory. Note that this is only done once, at the end of the process, to minimize memory

bottlenecks.

3.6 Temporal Scene Flow

We further refine this raw scene flow measurement by incorporating it into a filtering

framework. We maintain a 2D array of flow tracklets, each maintaining a temporally filtered

estimate of the scene flow at the given position (i, j). This step in our procedure is somewhat

similar to the work presented in Danescu, Oniga, and Nedevschi (2011) and Tanzmeister

et al. (2014). This filtering process is depicted in Fig. 3.5.
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3.6.1 Flow Tracklets Filter

Each flow tracklet is essentially an extended Kalman filter (EKF) using a constant velocity

model. We incorporate the raw flow measurements by treating them as x, y observations,

with a covariance determined by the resolution of the occupancy grid. We use Mahalanobis

gating to reject any flow measurements that are outliers.

We represent the state as:

µk =


x

y

θ

v

θ̇

 , (3.15)

where (x, y) is the position of the flow tracklet, θ is its orientation, v is its forward speed,

and θ̇ is its turning rate. The nonlinear process model is given by:

f(µk−1) = µk−1 +


vk−1 cos θk−1

vk−1 sin θk−1

θ̇k−1

0

0

∆t. (3.16)

The observation model is given by:

Hk =

[
1 0 0 0 0

0 1 0 0 0

]
(3.17)

zk = Hkµk (3.18)

=

[
x

y

]
. (3.19)

Thus, the prediction step in our EKF filter becomes:

µ̄k = f(µk−1) (3.20)

Σ̄k = FkΣk−1F>k + Qk, (3.21)

where Fk is the linearized Jacobian of f( · ) with respect to µk−1, Σk and Σk−1 is the covariance

of our estimate for µk and µk−1, respectively, and Qk is our process model uncertainty.
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The update step in our EKF filter is:

Kk = Σ̄kH
>
k

(
HkΣ̄kH

>
k +Rk

)−1
(3.22)

µk = µ̄k + Kk

(
zk − Hkµ̄k

)
(3.23)

Σk =
(
I−KkHk

)
Σ̄k

(
I−KkHk

)>
+ KkRkK

>
k , (3.24)

where Rk is our observation uncertainty, Kk is the Kalman gain, and I is the identity matrix.

We use a fixed measurement uncertainty Rk determined based on the resolution of our

occupancy grid. However, this potentially could be computed using the computed energies

when determined raw scene flow.

To apply Mahalanobis gating, we compute the Mahalanobis distance,

dk =

√(
zk − Hkµ̄k

)>(
HkΣ̄kH>k +Rk

)−1(
zk − Hkµ̄k

)
, (3.25)

and compare this value to a chosen threshold. If the Mahalanobis distance exceeds our

threshold, then the observation is flagged as being an outlier.

3.6.2 Flow Tracklets Array

After we compute the raw scene flow between Gt−1 and Gt, we process this result with our

2D array of flow tracklets. First, we use the constant velocity process model to update all

of our flow tracklets to the current time. Then, each raw scene flow measurement for each

location (i, j) is assigned to a flow tracklet at that location and used for the EKF filter’s

observation update. If no such flow tracklet exists at the location (i, j), a new one is created.

Flow tracklets without a valid raw scene flow measurement (for example, due to Mahalanobis

gating or background filtering) are discarded. Finally, all flow tracklets are moved to their

new location (i, j) in the 2D array as given by the scene flow.

Not only does maintaining this filter better estimate the scene flow, but it helps eliminate

outliers, both due to the background filter missing static background and any erroneous raw

scene flow values. Additionally, for each flow tracklet, we maintain a count of how many

observations it has received, or its “age”. As flow tracklets increase in age and incorporate

more raw observations, their estimate of the scene flow becomes more reliable.

64



(a) Tracklets from Prevous Timestep (b) Update Tracklets to Current Timestep

(c) Raw Scene Flow Observation (d) Update Tracklets with Current Observation

Figure 3.5: An overview of the temporal scene flow filtering process. In Fig. 3.5(a), we see
the flow tracklets at the previous timestep. In Fig. 3.5(b), these are updated to the current
timestep according to their process model, and then they are move to their new locations.
Now, we wish to process a raw scene flow observation as shown in Fig. 3.5(c). In Fig. 3.5(d),
tracklets have been updated with the current observation, initialized from new observations,
or discarded due to Mahalanobis gating.
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3.7 Motion Compensation

Note that the estimates of scene flow and temporal scene flow are in the reference frame

of the ego-vehicle. If these motion vehicles are desired in the global frame, the appropriate

coordinate frame transform must be applied. This can easily be estimated from odometry

sensors that instrument the platform vehicle’s motion.

3.8 Results

We evaluated our proposed method using the KITTI dataset (Geiger et al., 2013), using

sequences of raw data from city driving. For computation, we ran all of our experiments on a

machine with an Intel i7-4790K CPU with 16 GB of memory and a NVIDIA GeForce GTX

1080 GPU.

3.8.1 Parameter Selection

For the occupancy grid, we construct a 50 m × 50 m grid centered on the vehicle at a

resolution of 30 cm.

To construct our binary feature vectors, we use ε = 0. Note that this does not make

our feature vectors complimentary. Any voxel v that represents unknown space will have

p(v) = 0.5, and thus will not factor into any of the binary features due to the strict inequality

in the decision variable. This is in fact what allows us to implicitly account for unknown

space.

We use a search space size of ns = 31, allowing for a relative motion estimation of up to

45 m/s. We use a window size of nw = 3. We run our EM algorithm for nem = 20 iterations.

For the L2 penalty weight, we use a value of wp = 1.

3.8.2 Background Filter

We first evaluate the performance of our background filter. We show the precision-recall

curve by sweeping out the decision threshold for our classifier, as shown in Fig. 3.6; here the

foreground is the positive class. As discussed in Section 3.4.2, we choose a decision threshold

for our classifier to achieve a 95% accuracy rate on foreground (as indicated by the red dot).

This results in a 74.5% accuracy on the background.

While our background filter may not achieve state-of-the-art performance, it still performs

quite well with respect to other methods Wang, Posner, and Newman (2012, 2015). However,
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Figure 3.6: Precision-recall curve of the background filter. The red dot on the curve
indicates the decision threshold chosen throughout our evaluation, where we detect 95% of
the foreground.

a core strength of our method is in its efficiency, where we are able to execute extremely fast,

taking only 1.2 ms to run.

3.8.3 Raw Scene Flow

Next, we evaluate our raw scene flow measurements. To generate the ground truth scene

flow values, we combine the KITTI labeled tracklet data with the relative pose between the

two successive LIDAR scans, as computed by scan matching Segal, Haehnel, and Thrun

(2009). We then compute the norm of the error between the ground truth flow vector and

our computed raw scene flow. Results are presented as error histograms by class in Fig. 3.7

and overall in Fig. 3.8. Computed error statistics are tabulated in Table 3.1.

We find that our raw scene flow measurements are generally quite accurate. While there

are a number of outliers that arise from the aliasing of occupancy constancy, the error is

frequently less than the resolution of the occupancy grid. Additionally, we find that we are

still able to compute scene flow for objects that violate our assumption of rigid, non-deforming

motion such as cyclists or pedestrians that move their arms and legs.
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(a) Car Histogram
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(b) Cyclist Histogram

0 0.2 0.4 0.6 0.8 1

Magnitude of Scene Flow Error (m)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F
ra

ct
io

n 
of

 O
bs

er
va

tio
ns

(c) Pedestrian Histogram
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(d) Background Histogram

Figure 3.7: Error histograms for raw scene flow measurements by class. The dashed vertical
line in all plots indicates the resolution of our occupancy grid. Note the different vertical
scale for Fig. 3.7(d).
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Figure 3.8: Error histogram for raw scene flow measurements for all foreground. The dashed
vertical line indicates the resolution of our occupancy grid.

3.8.4 Temporal Scene Flow

Finally, we evaluate the temporal scene flow as computed by our flow tracklets against the

same benchmark as discussed in Section 3.8.3. We evaluate this error as the tracklets age,

which allows for the filtered scene flow estimate to become more and more accurate. The age

of each tracklet as measured in these results is simply the number of scans that the tracklet

has been active for (i.e., each age step corresponds to 0.1 s of sensor data). We compute

the cumulative distribution function (CDF) of the norm of the velocity error vector for each

flow tracklet for various ages and also for all tracklets that have been seen for at least a full

second. We show these results in Fig. 3.9 and present error statistics in Table 3.2.

Unsurprisingly, the accuracy of the temporal scene flow steadily improves as tracklets get

older and receive more observations. By the time a flow tracklet has been observed for at

least a second, the median error is roughly 0.5 m/s, which corresponds to one sixth of the

resolution of our occupancy grid.

A few sample temporal scene flow results are depicted in Fig. 3.10, from when the platform

vehicle is stationary, and Fig. 3.11, from when the platform vehicle is moving. The flow
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Class Count
Median
Error

Mean
Error

Percent
Within 30 cm

Car 873,947 10.2 cm 19.3 cm 83.8%
Cyclist 9,890 13.2 cm 24.5 cm 78.8%
Pedestrian 7,527 15.5 cm 38.9 cm 74.3%
Background 19,899,708 2.6 cm 14.9 cm 88.9%
All Labeled
Tracklets

1,126,264 11.0 cm 22.1 cm 81.4%

Table 3.1: Error statistics for raw scene flow measurements. We perform this analysis by
class and overall labeled tracklets in the KITTI datasets. Note that the background can have
non-zero error due to inaccuracies in the background filter, noisy odometry, or discretization
effects.

Class Count
Median
Error

Mean
Error

Car 216,026 0.49 m/s 0.65 m/s
Cyclist 1,507 1.01 m/s 1.09 m/s
Pedestrian 537 0.86 m/s 0.93 m/s
All Labeled Tracklets 266,237 0.50 m/s 0.66 m/s

Table 3.2: Error statistics for temporal scene flow measurements. We compute the error for
all flow tracklets with an age of at least 10. We perform this analysis by class and over all
labeled tracklets in the KITTI datasets.

estimate is shown in red and overlaid on top of the point cloud in blue. In both figures, the

temporal scene flow is in the global world frame.

In Fig. 3.10(a), we see an vehicle turning in front of the platform vehicle. In Fig. 3.10(b),

we see two vehicle passing from left to right at an intersection. In Fig. 3.11(a), the platform

vehicle overtakes a car to its left while a bicycle travels towards the upcoming intersection

on the right. In Fig. 3.11(b), the platform vehicle passes several cars parked on the side of

the road. Two bicyclists are traveling on the sidewalk while a car slowly drives towards the

platform vehicle.
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(a) Car Tracklets
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(b) Cyclist Tracklets

0 1 2 3

Magnitude of Temporal Scene Flow Error (m/s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 O
bs

er
va

tio
ns

Age 2
Age 4
Age 6
Age 8
Age 10+

(c) Pedestrian Tracklets
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(d) Foreground Tracklets

Figure 3.9: The CDF of the error of our temporal scene flow estimates. We present these
results by class, and for all labeled KITTI tracklets. Note that these results are measured in
terms of velocity (m/s) as opposed to the results in Fig. 3.7 and Fig. 3.8 which are measured
in terms of position (m).
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(a) Sample flow

(b) Sample flow

Figure 3.10: Sample temporal scene flow results when the platform is stationary. The
temporal scene flow is depicted in red. Note that the platform vehicle is stationary in these
examples.
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(a) Sample flow

(b) Sample flow

Figure 3.11: Sample temporal scene flow results when the platform is moving. The temporal
scene flow is depicted in red. Note that the platform vehicle is dynamic in these examples
and flow is shown in the world frame.
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3.8.5 Motion Compensation

Our proposed system computes raw scene flow and temporal scene flow in the frame of the

platform vehicle. However, given an estimate for the movement of the ego-vehicle, for example

from an odometry sensor, this flow estimate can be motion compensated and transformed

into the global world frame. We present an example of this in Fig. 3.12, where the ego car is

moving from the right to the left of the image.

Fig. 3.12(a) depicts temporal scene flow estimates in the ego frame. Note that the cars

immediately in front of and behind the platform vehicle appear to have little to no flow, as

they are traveling at approximately the same velocity. However, non-moving objects, such

as stationary cars or static background structure that has not been filtered, appear to have

motion opposite to the velocity of the platform vehicle.

Fig. 3.12(b) depicts temporal scene flow estimates in the global world frame. Note that

stationary objects now have little to no flow. The moving cars in front or behind the platform

vehicle now have estimated temporal scene flow vectors that are approximately equal to the

velocity of the platform vehicle.

3.8.6 Runtime Performance

A key goal is to enable real-time use of our proposed framework. We provide a thorough

runtime analysis of our algorithm and all the core steps. As the LIDAR data is received at

10 Hz, our algorithm must run in under 100 ms to achieve real-time performance. The mean

runtimes and standard deviations over the full set of KITTI city log sequences are provided

in Table 3.3.

We find that most of the steps of the pipeline are fairly consistent in runtime with the

exception of the iterative EM procedure. This can be attributed to scene variation, as we only

perform the EM procedure for columns that have not been pruned by the background filter.

If we were to perform the EM procedure for all columns in the scene, the runtime would

increase by approximately 35 ms, putting us just beyond our allotted 100 ms for real-time

performance without decreasing the number of iterations.

Nevertheless, we find that for over 99% of the input data, the total runtime is under

100 ms, achieving real-time performance.
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(a) Flow in the frame of the platform vehicle

(b) Flow in the global world frame

Figure 3.12: An example of motion compensation for temporal scene flow. The flow estimate
is rendered in red, overlaid on top of the point cloud in blue. These samples are from the
same sensor data at the same time.
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Step Runtime (ms)
Standard

Deviation (ms)
Occupancy Grid Generation 12.5 0.87
Background Filter 1.2 0.10
Occupancy Constancy 41.4 0.83
Iterative Expectation-Maximization 28.5 5.53
Filtered Temporal Flow 0.4 0.43
Total 85.7 6.38

Table 3.3: Runtime performance of our proposed temporal scene flow method. We present
both the total runtime and the runtime for each key step.

3.9 Discussion

We find that our estimate of scene flow performs quite well. Between 74.3% and 83.8% of the

KITTI tracklets, depending on the class, produce raw measurements of scene flow that are

within 30 cm of the ground truth flow, which is the resolution of our occupancy grid. For

static background structure, even though our background filter is conservative, we are able

to extract scene flow accurately.

It is interesting to compare our results for raw scene flow with Dewan et al. (2016).

Like our work, they evaluate their method on the KITTI dataset, though they only provide

results for translation error for sequences with no moving objects. Although our method has

some differences in formulation, most notably the use of an occupancy grid as opposed to

directly dealing with the points, the results are comparable. However, we do not rely on

point correspondences or any data association between scans.

Unsurprisingly, our results are even more impressive when filtered over time. Our temporal

model of scene flow allows us to quickly improve the accuracy of the estimate over time by

both rejecting outliers and filtering measurements. This quickly achieves accurate sub-voxel

level estimates of temporal scene flow.

While our algorithm is not an obstacle tracker, it is interesting to compare the accuracy of

our temporal scene flow estimate to the performance of full fledged obstacle tracking algorithms.

State of the art obstacle trackers such as Ushani et al. (2015) and Held et al. (2014) report

average velocity errors of between 0.314 m/s and 0.56 m/s, respectively. Despite the fact

that we do not make similar assumptions as these trackers, such as accurate segmentation,

our error metrics are close to these marks. Additionally, we are not prone to errors due to

not correctly modeling free space as shown in Ushani et al. (2015). However, these obstacle

trackers are able to provide refined trajectory estimates and crisp point cloud models of

tracked obstacles, something our proposed method does not aim to achieve.

76



It is important to note that the results we have presented for temporal scene flow are for

individual flow tracklets. A dynamic object in the scene, such as a car, nominally induces

several flow tracklets moving together. If we were to assume accurate segmentation, we could

take cluster groups of flow tracklets together and combine their temporal flow estimates to

produce an even more accurate result.

One key feature of our proposed method is the extendibility to other sensor modalities

or environments. Occupancy grids can easily handle measurements from sensors other than

LIDAR, such as radar or camera systems. Adapting to different environments or sensor

configurations can be handled by simply retraining the background filter and occupancy

constancy metric with new data. This is unlike many other approaches for autonomous

vehicle applications that have a heavy reliance on prior maps, such as Ushani et al. (2015).

Unlike many other methods which estimate scene flow, our timing results demonstrate

the real-time capability of our algorithm. Our method is capable of consuming LIDAR data

at 10 Hz, which is the nominal rate for such sensors, and thus is appropriate for online use

with autonomous systems.

3.10 Conclusion

We have presented an end-to-end pipeline for consuming LIDAR data and producing estimates

of temporal scene flow. We have demonstrated the performance of this algorithm on the

KITTI dataset, presenting results that are competitive with or better than the current state

of the art. We have shown that this algorithm can be run at 10 Hz, enabling real-time use

for mobile robotic applications.
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CHAPTER 4

Feature Learning for Scene Flow Estimation

To perform tasks in dynamic environments, many mobile robots must estimate the dynamic

motion in the surrounding world. Recently, techniques have been developed to estimate

scene flow directly from LIDAR scans, relying on hand-designed features. In this chapter, we

instead build an encoding network to learn features from an occupancy grid. The network is

trained so that these features are discriminative in finding matching or non-matching locations

between successive timesteps. This learned feature space is then leveraged to estimate scene

flow. We evaluate our method on the KITTI dataset and demonstrate performance that

improves upon the current state-of-the-art. This work was published in Ushani and Eustice

(2018). Source code for this work is available at https://github.com/aushani/flsf.

4.1 Introduction

Mobile robots often operate in environments that are inherently dynamic. To operate safely,

it is necessary for such systems to be aware of the motion in the world around them. For

example, self driving cars need to be aware of other cars on the road, and warehouse robots

must be able to move in an area with many other agents. Estimating dynamic motion is a

core competency for these autonomous systems.

Many approaches for detecting motion perform object tracking in a three step process (Feld-

man, Hybinette, and Balch, 2012; Held et al., 2014; Kaestner et al., 2012; Petrovskaya and

Thrun, 2009; Ushani et al., 2015; Vu and Aycard, 2009). First, sensor data, such as a camera

image or a light detection and ranging (LIDAR) point cloud, is segmented into distinct

objects. Then, data association is performed across timesteps. From the location of an object

at each timestep, its motion can be estimated. Finally, this estimate is used in a filtering or

smoothing framework.

Another approach for detecting dynamic motion from a stream of sensor data is to solve

for optical flow or scene flow (Behl et al., 2017; Horn and Schunck, 1981; Jaimez et al., 2015;
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Lucas and Kanade, 1981; Menze and Geiger, 2015; Taniai, Sinha, and Sato, 2017; Vogel,

Schindler, and Roth, 2013, 2015). Traditionally computed from camera data, optical flow and

scene flow approaches seek to find a motion field between two successive images by leveraging

some sort of consistency metric (such as brightness constancy) in an optimization problem.

More recently, similar ideas have been applied to point cloud data (Dewan et al., 2016;

Ushani et al., 2017). However, these typically are reliant on a hand-designed feature or metric,

such as SHOT features (Dewan et al., 2016) or occupancy constancy (Ushani et al., 2017). If

a more discriminative feature space can be learned, leveraging it could lead to an improved

estimate of the dynamic motion.

In this work, we propose an encoding network that learns features from an input occupancy

grid. The network is trained so that features from corresponding locations across different

timesteps will be similar, and features from different locations will be dissimilar. Thus, we

can leverage the learned feature space to estimate scene flow. By evaluating our proposed

method on the KITTI dataset (Geiger et al., 2013), we demonstrate that our approach yields

results that beat the current state-of-the-art in the accuracy of the estimated scene flow.

4.2 Related Work

The work presented here is at the intersection of research done in the areas of dynamic object

tracking, optical flow and scene flow, and feature learning. It is also related to work in object

reconstruction and scene completion.

4.2.1 Dynamic Object Tracking

Dynamic object tracking from LIDAR sensors is a well studied problem. Early approaches

would use a three-phased approached (Azim and Aycard, 2012; Kaestner et al., 2012; Leonard

et al., 2008; Streller, Furstenberg, and Dietmayer, 2002; Wender and Dietmayer, 2008; Zhao

and Thorpe, 1998), First, a LIDAR scan would be segmented into discrete objects using

some sort of clustering or detection algorithm. Then, these segments would be associated

through time, commonly using global nearest neighbor (GNN) or a variant thereof. Finally,

a Bayesian filtering framework, such as a extended Kalman filter (EKF), Unscented Kalman

filter (UKF), or particle would be used.

More recently, model-based methods were developed to improve the tracking result. The

models ranged from bounding boxes (Darms, Rybski, and Urmson, 2008; Kaestner et al.,

2012; Petrovskaya and Thrun, 2009; Vu and Aycard, 2009) to more expressive models such

as ellipses or star-convex shapes (Baum and Hanebeck, 2014).
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Later on, approaches would improve upon the motion estimate between successive

timesteps. Feldman, Hybinette, and Balch (2012) aligned segmented snapshots of objects

between scans using iterative closest point (ICP). Held et al. (2014) proposed annealing

histograms to perform a bounded search to find the best relative motion that optimizes a

measurement model. Ushani et al. (2015) used a continuous stream of the LIDAR observations

from an object in a smoothing framework to estimate its trajectory.

Despite the impressive results achieved by these works, they are prone to catastrophic

failure if there is an error in object segmentation or data association through time. Some

methods were developed that did not rely on explicit segmentation or data association.

Tanzmeister et al. (2014) and Danescu, Oniga, and Nedevschi (2011) propose grid based

tracking systems, where particles move among cells in a grid and are updated according to

the observations. Dequaire et al. (2017) propose a recurrent neural network that predicts a

future occupancy grid from LIDAR input.

4.2.2 Optical Flow and Scene Flow

In optical flow, 2D motion in the image plane is solved for using successive sensor observations,

such as images from a camera sensor (Horn and Schunck, 1981; Lucas and Kanade, 1981).

Typically, a constancy metric that enforces consistency between images (e.g., brightness

constancy) is leveraged. With three-dimensional (3D) information, such as from a depth sensor

or a stereocamera, 3D motion can be estimated, known as scene flow. Many methods exist

to estimate scene flow from camera data. Some methods leverage an initial oversegmentation

followed by a CRF (Menze and Geiger, 2015) or an energy minization framework (Vogel,

Schindler, and Roth, 2013, 2015). Jaimez et al. (2015) rely on a primal-dual algorithm.

Taniai, Sinha, and Sato (2017) identify regions that are inconsistent with the ego-motion

of the platform and then build an energy minimization problem consisting of appearance,

flow, prior, color, and smoothing terms. Behl et al. (2017) leverage object recognition in a

conditional random field (CRF) model.

However, estimating scene flow from camera images is typically very slow. In the KITTI

Scene Flow Challenge, the current top nine submissions take longer than 5 minutes to run,

with three reporting runtimes of nearly an hour (Geiger et al., 2013).

Recently, similar techniques have been applied to LIDAR point clouds. Dewan et al. (2016)

use an energy minimization problem to estimate rigid scene flow between LIDAR scans that

leverages SHOT feature descriptors. Ushani et al. (2017) also frame an energy minimization

problem, but instead leverage “occupancy constancy”, measuring the consistency of the

occupancy states between successive occupancy grids built from the LIDAR point clouds.
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While these methods are similar to ours, we seek to find a learned feature representation

rather than relying on a hand-designed feature.

4.2.3 Object and Scene Understanding

Many related tasks in object and scene understanding must similarly rely on building a

feature representation. These tasks include object reconstruction, inpainting, and scene

completion. These types of problems have been extensively researched in the literature in the

context of both two-dimensional (2D) images and 3D objects.

Many approaches, especially in recent years, have relied on the use of an autoen-

coder (Hinton and Salakhutdinov, 2006; Vincent et al., 2010), Generative Adversarial Net-

work (GAN) (Goodfellow et al., 2014), or similar methods. They all usually rely on building

a representation of the object or image that is being considered in some kind of embedded or

latent space, similar to our method. This representation is then leveraged for the desired

task.

For 3D objects, Wu et al. (2015) were one of the first to build 3D deep learning models that

can be leveraged for recognition, reconstruction, or classification of 3D objects. They design

a convolutional deep belief network (CDBN) that models the relationship and dependencies

in a 3D voxel grid and object labels, similar in spirit to the early work of Hinton, Osindero,

and Teh (2006).

Girdhar et al. (2016) train an autoencoder for 3D object reconstruction. In addition to

voxel-wise cross entropy loss, they also train a network to map from image data to the same

latent representation and use a Euclidean loss between the two. They show their learned

latent representation, with some feature augmentation, is somewhat class-discriminative,

despite not explicitly being trained to be so.

Guizilini and Ramos (2017) consider 3D reconstruction using autoencoders in the context

of building large scale maps from LIDAR. Their autoencoder learns to reconstruct shape

primitives found in the world. However, they do not consider distinct objects, but rather

segments of the map that they cluster to estimate the occupancy state of unknown space.

Wu et al. (2016) leverage a GAN for object reconstruction, generation, and classification.

They report better results when they train a separate GAN for each semantic object class.

This method is improved upon by Smith and Meger (2017), but the results are still better

when separately trained.

Pathak et al. (2016) use an autoencoder to recover missing portions of an image by semantic

inpainting. They use a combination of L2 pixel-wise reconstruction loss and an adversarial

loss over the whole reconstructed image to ensure it appears realistic after inpainting.
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Wang et al. (2017) consider shape inpainting by using an autoencoder as the generator in

a GAN. The network is trained on a combination of voxel-wise reconstruction loss and the

GAN objective function.

Yeh et al. (2017) consider semantic inpainting of face images using a GAN. A latent

representation is found using the available image data. Then, this latent representation is

used with the generator from the GAN to recreate the full image. Qualitative results show

an improvement of this method as compared to autoencoder approaches.

Dai, Qi, and Nießner (2017) use an autoencoder to perform shape completion. The

latent representation is augmented by the output of a separate independently trained object

classification network (Qi et al., 2016). The output of the autoencoder is fine-tuned by finding

nearest neighbors in an object database to build the final reconstruction.

Choy et al. (2016) build a network that is an encoder followed by a long short-term

memory (LSTM) followed by a decoder. This network takes images as input and produces

3D volumetric grids and is trained without relying on semantic object class labels. Fan, Su,

and Guibas (2017) use a similar approach to instead generate point clouds. They explore

how different loss functions capture shape properties differently. Lin, Kong, and Lucey (2018)

also use an image encoder and structure decoder to predict 3D structure of objects from one

or more images to build a dense point cloud. They train their network with both a single

object class at a time and multiple classes at once.

In a different application, Liu, Yu, and Funkhouser (2017) train a 3D GAN to aid users

in 3D modeling. A loss function that combines realism (as measured by a discriminator) and

semantic dissimilarity (using intermediate activations from a classifier) is used.

The task of scene completion becomes more difficult when dealing when a complex

environment rather than a single distinct object. However, in certain applications with

environments that exhibit repeated structure, a few methods have demonstrated success.

Song et al. (2017) perform scene completion from a single depth image of an indoor environment

using an end-to-end 3D convolutional neural network (CNN). Dai et al. (2018) use a similar

approach for scene completion, but additionally predict semantic labels as well.

While different deep learning tools are used, these methods are all similar in that they

leverage some kind of learned latent representation for the data to be considered. This

is similar to our proposed method in which a feature representation is learned and then

exploited.

82



4.2.4 Feature Learning

Feature learning approaches have found success in many areas of robotics. This includes face

recognition (Wen et al., 2016), long term image matching (Carlevaris-Bianco and Eustice,

2014), and point cloud segmentation and classification (Qi et al., 2017a,b). Generally, these

approaches construct a network from the input data to the feature space, and use a loss

function to promote the separability of the features for the desired task. For example, Wen

et al. (2016) proposed center loss, where features from the same class are pulled towards the

same center, and centers from different classes are forced to stay apart. Carlevaris-Bianco

and Eustice (2014) used a loss function that increases as the Euclidean distance between

matching feature pairs grows, and decreases as the Euclidean distance between non-matching

feature pairs grows.

More recently, PointNet and PointNet++ are two deep learning techniques for point

cloud feature representation (Qi et al., 2017a,b). Given an input point cloud, these methods

find a feature representation that is invariant to the order of the points and invariant to a

transformation, such as a rotation or translation, that is applied to all points. This feature

representation is demonstrated for tasks including segmentation and classification.

More similar to our method, Zeng et al. (2017) present 3DMatch. Patches are extracted

from red, green, blue, and depth (RGB-D) reconstructions. Correspondences are collected

from different views. A CNN is then trained to learn a geometric descriptor that outperforms

existing methods in determining correspondences. However, unlike our work, the dynamics

of the scene are not considered.

4.3 Motivation and Toy Example

There are several choices we must make to choose how to learn our feature representation.

For example, we can chose an autoencoder or GAN approach to find low-dimensional feature

representations that can adequately represent our high-dimensional input data, similar to

approaches for object or scene understanding. However, we choose to find a encoded feature

using more of a feature learning approach for two reasons. First, while autoencoder and

GAN approaches have found much success for object reconstruction, the applications of these

method for more complex scenes has proved to be more challenging, with a few methods

showing success in environments with much repeated structure (Dai et al., 2018; Song et al.,

2017). Secondly, we find that a feature learning approach that is specifically designed for

our task allows us to learn a more useful feature representation. This feature space is more

discriminative for determining whether or not two samples (such as locations in an occupancy
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Figure 4.1: The encoding and decoding networks used for the MNIST toy example.
In Fig. 4.1(a), we see the encoding network. An image is flattened to a 784-vector, which is
then passed through two fully connected layers with tanh activation. This is then passed
through a final fully connected layer to produce the encoded representation of the original
image. In Fig. 4.1(b), we see the decoding network. This is similar to the encoding network,
but in reverse. The encoding is passed through two fully connected layers with tanh activation.
This is finally passed through a fully connected layer with sigmoid activation and reshaped
to produce the reconstructed image.

grid) match.

We motivate this choice by applying a toy example problem using the MNIST dataset (Le-

Cun et al., 1998). This fairly simple dataset allows us to build some intuition for how to best

learn the feature space we are interested in.

4.3.1 Network

We build a simple encoding network for MNIST images. The network is shown in Fig. 4.1(a).

The encoder takes as input a flattened image as a 784 dimensional vector. To encode, this is

passed through two fully connected layers with tanh activation and then an additional fully

connected layer, yielding a 2D feature encoding.

We train this encoding network in two ways. First, we use the standard autoencoder

approach. We construct a decoding network, as shown in Fig. 4.1(b). This network takes this
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feature encoding and treats it as a latent representation, Through two fully connected layers

with tanh activation and a final fully connected layer with sigmoid activation, the original

image is reconstructed. The entire network is trained with the standard reconstruction loss

based on mean squared error:

Lr =
1

n
‖x̂− x‖2

2 , (4.1)

where x̂ is the input image and x is the reconstruction.

For our second approach, we use a loss function based directly on the learned feature

space. We promote features for images of the same number to be similar, and features for

images of different numbers to be dissimilar. Thus, we have:

Lfl
(
f1, f2

)
=



‖f1 − f2‖ x1 and x2 are images of the same number

dmax − ‖f1 − f2‖ x1 and x2 are images of different numbers,

‖f1 − f2‖ < dmax

0 otherwise

, (4.2)

where x1 and x2 are the input images, and f1 and f2 are their feature representations,

respectively. For this experiment, we use dmax = 5.

We train both networks using standard L2 regularization. Additionally, for each encoding

that we learn, we use the feature representation in a simple, one-layer classifier. When we

train this classifier, the encoding network is held constant.

We recognize that the dataset and these networks are fairly simple. However, they serve

to motivate our approach and illustrate the reasoning behind our choices.

4.3.2 Motivating Results

h First, we show the learned feature representations in Fig. 4.2 and Fig. 4.3. We see that

the feature learning approach produces a feature space that is much more discriminative.

The traditional autoencoder approach produces a latent representation that, while somewhat

separable, has much overlap between different classes.

Next, we further demonstrate this by evaluating the simple, one-layer classifier for each

learned feature space. Classification results are shown in Table 4.1. We find a improvement

in the classification of all classes and a significant improvement overall.
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Figure 4.2: Learned latent encoding for MNIST using the autoencoder approach. Points are
colored by class.

4.4 Method

In this section, we describe our proposed method. We will make similar assumptions as other

works in this area. Chiefly, as we target autonomous vehicle applications with the KITTI

dataset in this work, we will assume that all dynamic motion is in the horizontal plane and

that the motion field is consistent for everything at the same (x, y) location. We seek to

estimate the motion (u, v) for every 2D location x = (x, y) from one timestep to the next.

That is to say, for a location xt at time t, we seek to find the corresponding location at the

next timestep, xt+1 = xt + (u, v) such that whatever was at xt at time t is now at xt+1 at

time t+ 1. We term these xt and xt+1 to be matching locations (and non-matching locations

otherwise).

Furthermore, we assume that the motion corresponds to locally rigid, non-deforming flow.

Finally, since much of the environment is background structure that is static, we focus our

attention on the dynamic objects in the scene and assume that the flow of static objects can
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Figure 4.3: Learned feature representations for MNIST using the feature learning approach.
Points are colored by class.

be accurately estimated from odometry.

4.4.1 Input

Our system takes as input a point cloud Pt = {zt,1:n}. We seek to construct an occu-

pancy grid Gt that maps each (x, y, z) location to a probability that the given location is

occupied (Hornung et al., 2013; Moravec and Elfes, 1985).

For each voxel v at location (x, y, z), the occupancy probability given the set of observations

Pt is given by:

p(v|zt,1:n) =

[
1 +

1− p(v|zt,n)

p(v|zt,n)

1− p(v|zt,1:n−1)

p(v|zt,1:n−1)

p(v)

1− p(v)

]−1

. (4.3)

We assume an uninformative prior p(v) = 0.5. Using log-odds notation, denoted by LO( · ),
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Table 4.1: MNIST classification results. We show results for each class for both approaches.

Autoencoder Approach Feature Learning Approach
0 87.7 % 98.2 %
1 97.7 % 98.6 %
2 80.8 % 95.8 %
3 74.1 % 97.0 %
4 39.3 % 96.5 %
5 1.9 % 94.8 %
6 52.8 % 96.7 %
7 58.3 % 95.1 %
8 47.3 % 95.3 %
9 40.7 % 94.9 %

Overall 59.3 % 96.3 %

we can rewrite (4.3) as

LO(v|Pt) =
n∑
i=1

L(v|zt,i), (4.4)

where

LO(v|zt,i) =


lfree the ray from the sensor to zt,i passes through v

loccupied the ray from the sensor to zt,i ends inside v

0 otherwise

. (4.5)

To compute Gt, this ray tracing is achieved using Bresenham’s ray tracing algorithm (Bre-

senham, 1965). Each observation zt,i results in a ray tracing operation to find its log-odds

updates for the corresponding voxels. After processing all observations, these updates are

summed for all voxels to produce Gt. This algorithm is implemented on the GPU for efficient

computation, as discussed in Appendix B. A sparse representation of the occupancy grid is

created, which is then used to build a dense 3D occupancy grid using a custom Compute

Unified Device Architecture (CUDA) kernel.
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4.4.2 Network

The probabilities of the constructed occupancy grid Gt are first rescaled between −0.5 and

0.5 to produce G̃t. Note that any unknown voxels (i.e., p(v) = 0.5) are scaled to 0 in G̃t.

G̃t is passed through a series of 2D convolution layers with leaky RELU activations, with

kernel sizes and output layers as depicted in Fig. 4.4. This network has two outputs. First,

we have an encoding output, Ft, that maps each (x, y) location to a Nf dimensional feature

vector f (x,y). Second, we have a classification output, Ct, that yields softmax scores for the

foreground/background classifier for each location (x, y). Notably, we intentionally use only

a single layer between the encoding output and the filter output to help promote learning a

discriminative feature space.

The loss function for the encoding output is as follows. For locations x1 and x2 with

feature vectors f1 and f2, respectively, the loss is given by

Lf1,f2 =



‖f1 − f2‖ x1 and x2 are matching locations

dmax − ‖f1 − f2‖ x1 and x2 are non-matching locations,

‖f1 − f2‖ < dmax

0 otherwise

, (4.6)

where ‖ · ‖ denotes the L2 norm. We choose dmax = 10. This loss function is visualized in

Fig. 4.5.

The loss function for the classification output, LC, is simply the mean weighted softmax

cross entropy loss. As the training data contains far more instances of background than

foreground, we weight the loss of each class by the inverse of their respective frequency. Thus,

we have:

LC =
1

nsamples

(
1

ffg

∑
x∈foreground

LS.C.E.(Ct,x) +
1

fbg

∑
x∈background

LS.C.E.(Ct,x)

)
(4.7)

where nsamples is the number of labeled foreground or background locations in the training

sample, ffg and fbg are the frequencies of foreground and background locations respectively

in the training set, and LS.C.E. is the softmax cross entropy loss.

These loss functions are combined to form the total loss function,

Ltotal = Lf1,f2 + LC, (4.8)

which is used to train the network.
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Figure 4.4: The encoder network architecture. The input occupancy grid is passed through a
series of convolution layers to produce a grid of feature vectors. This encoding is further passed
through a single convolutional layer to produce softmax scores for the foreground/background
classifier.
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Figure 4.5: The loss function Lf1,f2 for matching and non-matching locations.

4.4.3 Training

At each iteration, we train the network using one sample of locations x1 and x2 (which could

be matching or non-matching) and one sample of a classification map Ct, simultaneously.

4.4.3.1 Training Data

We construct a training data set using the first ten KITTI city sequences. We step through

each log and construct an occupancy grid from each velodyne point cloud, as described in

Section 4.4.1.

Using the labeled KITTI tracklet data, we construct a 2D classification map for ground

truth foreground/background classification. For any location x that is within the bounding

box of a object labeled in the KITTI tracklets, we mark the location as foreground. Otherwise,

we mark the location as background.

For the encoding output, we take successive occupancy grids G1 and G2. We first iterate

through all foreground locations x1 from G1 that are part of a labeled KITTI tracklet (i.e.,

the foreground). We then sample from a location x2 from G2, chosen from an ns×ns
neighborhood of locations centered on x1. Using the labeled KITTI tracklet data, we record
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whether x1 and x2 are matching or non-matching locations in the successive occupancy grids.

x1 and x2 are sampled such that we have approximately an equal number of matches and

non-matches. Additionally, we repeat this procedure for 1% of all background locations.

Note that the labeled KITTI tracklets are only valid in the field of view of the camera.

Accordingly, we take care as to only include such locations in our training data set. To help

mitigate this, we augment our data with random rotations and reflections of the occupancy

grids.

4.4.3.2 Training Procedure

We use TensorFlow’s AdamOptimizer with a learning rate of 10−6 (Abadi et al., 2015) to train

the network using the loss function described in (4.8). During training, we use dropout at

each layer in the encoding network with a dropout probability of 20%. Note that at the input,

due to the rescaling of the occupancy grid, dropout essentially amounts to setting voxels

from free or occupied (i.e., p(v) < 0 or p(v) > 0, respectively) to unknown (i.e., p(v) = 0).

These parameters were empirically tuned.

We trained the network for approximately two days using a NVIDIA GeForce GTX

TITAN X GPU.

4.4.4 Flow Computation

We take two successive point clouds, P1 and P2. From these, we construct occupancy grids,

G1 and G2. Each is rescaled and passed through the network described in Section 4.4.2 using

NVIDIA’s cudNN library to produce encoding ouptuts F1 and F2 and classification outputs

C1 and C2. Note that as we deal with a stream of data, we can cache P2, G2, F2, and C2 for

use at the next timestep for faster runtime performance.

For each location x1 from G1, we consider the feature vector f1. We then consider a

ns×ns window of locations x2 from G2 around x1. For each x2 and f2, we compute the L2

norm between the two feature vectors and store this result in a lookup table,

Tdistance(x1,x2) = ‖f1 − f2‖ . (4.9)

Note that Tdistance is similar to Tmatch from Chapter 3. The key difference is that Tmatch is

rooted in a hand-designed notion of occupancy constancy, whereas Tdistance takes a fully

learned approach to measure distances between feature vectors in our learned feature space.

From this point, we compute scene flow by using an iterative expectation-maximization

(EM) algorithm similar to the one proposed in Chapter 3, which we briefly summarize here.
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We construct an energy minimization problem to compute the flow (u, v) for every location

x1 from G1. If, according to the classification output C1, the given location is more likely to

be static background structure, we flag x as such and assume that the flow can be estimated

from odometry sensors that are measuring the relative motion of the platform. Thus, we

focus our attention on foreground locations x that are dynamic (or could be dynamic).

We construct an iterative EM algorithm to estimate the flow. We use x1 to denote a

location in G1 and x2 for locations in G2. s(x1) = (u, v) denotes the current estimate of the

scene flow at location x1. m(x1) = x1 + s(x1) denotes the estimated matching location x2 in

G2 for x1. At the start of the algorithm, all s(x1) and m(x1) are marked as being invalid.

E(x1,x2) denotes the energy of the flow from x1 to x2. Ê(x2) denotes the energy of the

current flow estimate that leads to x2, initialized with ∞.

4.4.4.1 Expectation

During the expectation step, we seek the most likely flow (u, v) for every x1. We search

through a ns×ns window of locations centered on x1, Nx1 , in G2. For each x1, x2, we

compute an energy,

E(x1,x2) = Tdistance + wp
∑
x∈Px1

‖(x2 − x1)− s(x)‖2, (4.10)

where wp is a smoothness penalty weight and Px1 is a 5× 5 window around x1 of locations

for which we currently have a valid estimate for scene flow.

We seek:

x?2 = argmin
x2

E(x1,x2), (4.11)

subject to the conditions:

E(x1,x2) < Ê(x2) (4.12)

or

m(x1) = x2. (4.13)

We then update s(x1) and m(x1) with x?2 − x1 and x?2, respectively. If no such x?2 is found,

the estimated flow is marked as being invalid.
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4.4.4.2 Maximization

For each x2, we consider all x1 with m(x1) = x2. If there is at least one, we find

x?1 = argmin
x1

E(x1,x2), (4.14)

in essence selecting the x1 that best matches x2. We update E(x1) = E(x?1,x2). We also

invalidate all s(x1) and m(x1) for x1 6= x?1.

4.5 Results

We evaluate our proposed method in a number of experiments using the KITTI dataset (Geiger

et al., 2013). For all results presented here, we build a training set from the first ten KITTI

city sequences and a test set from the remaining sequences.

We used ns = 31, 20 EM iterations, and an occupancy grid with a resolution of 30 cm that

extends over a 50 m by 50 m area. We set our smoothing parameter wp = 0.07 by inspecting

a validation set constructed from the first ten KITTI city log sequences.

4.5.1 Visualizing the Learned Feature Space

We first present a qualitative evaluation of our learned feature space. In Fig. 4.6, we have

a scene where a car is moving from behind some traffic poles towards the bottom of the

image. We inspect the feature vector at three locations from P1, indicated by the colored

dots in Fig. 4.6(a) at various places on the cars. For each, we evaluate the distance in feature

space, Tdistance, to locations in the following scan P2, shown in Fig. 4.6(b), Fig. 4.6(c), and

Fig. 4.6(d).

We can see that our learned features are discriminative. Each chosen location show

in Fig. 4.6(a) is closest in feature space to its matching location in the following timestep.

Unsurprisingly, we see that similar locations sometimes yield similar feature vectors, such

as different corners of the car in Fig. 4.6(c). However, even in this example, we see that the

most similar feature vectors (i.e., the locations that are most green) are clustered around

the matching location. Additionally, we find that feature vectors from the car, which are

foreground locations, are a large distance from the background locations (shown in red,

beyond range of the colormap).

We present a similar analysis of a different scene in Fig. 4.7. We focus on two pedestrians

walking along the sidewalk. They can be seen in the camera image shown in Fig. 4.7(b).

In Fig. 4.7(c) and Fig. 4.7(d), we see distances in feature space to locations at the following
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(a) P1, top-down view

(b) Red (c) Green (d) Blue

Figure 4.6: A visual look at the distances in the feature space for a turning car. For the three
locations from P1 in Fig. 4.6(a), we evaluate the distance in feature space, Tdistance, to locations
in the successive scan P2. These are shown in Fig. 4.6(b) for the red point, Fig. 4.6(c) for
the green point, and Fig. 4.6(d) for the blue point. Green indicates small distances and red
indicates large distances. The colormap ranges from a distance of 0 to 2 in the feature space.
Best viewed in color.
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timestep for each pedestrian. Using a colormap with a large range, we see that the pedestrians’

feature vectors are similar to their new position, but they are also somewhat similar to some

of the background structure, such as a traffic sign. However, when we look at the distances

using a tighter colormap in Fig. 4.7(f) and Fig. 4.7(e), we find that the closest locations in

feature space are indeed those from the appropriate matching locations.

4.5.2 Learned Feature Space vs. Occupancy Constancy

In additional to the qualitative results in Section 4.5.1, we also perform a quantitative

analysis to demonstrate the performance of our learned feature space. We compare our

learned feature space with the occupancy constancy metric proposed in Chapter 3 in terms

of how discriminative they are in determining matching or non-matching locations.

We build a simple binary classifier for each method that determines if two locations, x1

from Gt and x2 from Gt+1, are matching or non-matching. For our learned feature space,

we take the distance in feature space, Tdistance, and compare this against a threshold τ . If

the distance is small, then our classifier predicts that x1 and x2 are matching. Otherwise,

it predicts that they are non-matching. For occupancy constancy, we perform a similar

procedure with the occupancy constancy metric Tmatch from Chapter 3.

We sample 5000 locations x1 from the foreground of some occupancy grid Gt from the

test set. For each x1, we sample another location x2 from the following occupancy grid Gt+1.

We evenly sample x2 such that it is equally likely to match or not match x1.

We present precision recall curves for each described classifier in Fig. 4.8. As we can see,

our learned feature space is significantly better at distinguishing between matching and non-

matching locations than occupancy constancy, demonstrating that it is more discriminative

for the task at hand.

4.5.3 Scene Flow Results

Finally, we evaluate the performance of the scene flow estimate. We perform this evaluation

for cars, cyclists, and pedestrians, and also over all of the foreground classes. Results can be

found in Table 4.2. We find a significant improvement in the error statistics of the scene flow

estimate across all classes for our proposed feature learning approach over the occupancy

constancy approach proposed in Chapter 3.

One downside of our method however is increased runtime. While the work presented

in Chapter 3 had real-time performance (i.e., runtime of under 100 ms for 10 Hz data), our

method takes about 188 ms on average using a machine with an Intel i7 CPU and an NVIDIA
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(a) P1, top-down view

(b) Camera Image of the Scene
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(c) Red, Scaled 0 to 10 (d) Blue, Scaled 0 to 10

(e) Red, Scaled 0 to 3 (f) Blue, Scaled 0 to 3

Figure 4.7: A visual look at the distances in the feature space for two pedestrians. For the
three locations from P1 in Fig. 4.7(a), we evaluate the distance in feature space, Tdistance, to
locations in the successive scan P2. A image of the scene is shown in Fig. 4.7(b), where the
pedestrians can be seen on the right. Distances to the red point are shown in Fig. 4.7(c)
and Fig. 4.7(f), and distances to the blue point are shown in Fig. 4.7(d) and Fig. 4.7(e).
Green indicates small distances and red indicates large distances. The colormap ranges from
a feature space distance of 0 to 10 for Fig. 4.7(c) and Fig. 4.7(d) and 0 to 3 for Fig. 4.7(f)
and Fig. 4.7(e). Best viewed in color.
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Figure 4.8: Performance of classifiers based on occupancy constancy and feature learning.
We compare precision-recall curves for each classifier. We find that feature learning results in
a more discriminative classifier.

Occupancy Constancy Feature Learning

Car
Mean Error 19.3 cm 15.6 cm

Within 30 cm 83.8% 89.2 %

Cyclist
Mean Error 24.5 cm 15.9 cm

Within 30 cm 78.8% 93.1 %

Pedestrian
Mean Error 38.9 cm 22.9 cm

Within 30 cm 74.3% 89.0 %
All Dynamic Mean Error 22.1 cm 16.4 cm
Objects Within 30 cm 81.4% 88.2 %

Table 4.2: Error statistics for the scene flow estimate. We present results by class and over
the entire foreground.

GeForce GTX 1080 GPU. We attribute this added runtime mainly to the time it takes to

pass the input data through the network and evaluate pairwise distances in feature space.
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4.6 Conclusion

In this work, we have presented a feature learning method for scene flow estimation from

LIDAR data. We train an encoding network to extract features from an occupancy grid.

This learned feature space is then leveraged in an energy minimization problem to solve for

scene flow between successive scans. This approach yields improved results, both directly

in the feature space itself and in the improved scene flow estimate, that beats the current

state-of-the-art.
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CHAPTER 5

Conclusion

To safely and smartly operate in their environment, autonomous vehicles must be able to

understand the dynamic world around them. To do so involves problems in dynamic motion

estimation. Accordingly, in this thesis, we have presented three novel methods for dynamic

motion estimation that improve upon the performance of current methods. We focus on the

application of autonomous vehicles using light detection and ranging (LIDAR) sensors, a

prevalent sensing modality used by such platforms.

5.1 Contributions

The contributions of this thesis include:

• In Chapter 2, we proposed a framework for simultaneously estimating the trajectory

and shape of a dynamic object in the environment that is being tracked. Unlike other

work in this area, we used continuous-time estimation tools to properly model the

rolling-shutter nature of multiple unsynchronized LIDAR sensors. We evaluated this

method on a real-world dataset and demonstrated improved performance over a baseline

tracker. We present results that show lower tracking error and higher fidelity dynamic

object models.

• In Chapter 3, we proposed a framework for estimating temporal scene flow from

a stream of LIDAR data. Inspired by brightness constancy from optical flow, we

proposed occupancy constancy to measure the consistency in geometric structure

between locations in occupancy grids from successive timestamps. Notably, this pipeline

does not rely on any segmentation or data association result. By designing our algorithms

to exploit a graphics processing unit (GPU), this method is able to run in real time.

We evaluated our proposed method using the KITTI dataset and presented results that

rival state-of-the-art obstacle trackers in the accuracy of the motion estimate, despite

the fact that our method is independent of accurate segmentation or data association.
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• In Chapter 4, we proposed a feature learning algorithm for LIDAR point clouds using

deep learning. The network was trained so that distances in the learned feature space

can be used to compare the similarity of different locations in the environment. These

distances were used to replaced the occupancy constancy metric from Chapter 3. We

demonstrated how feature learning can significantly improve the flow estimate. We

presented results that show reduced error in the dynamic motion estimate for all classes

of objects.

5.2 Future Work

While this thesis has made several contributions in the area of dynamic motion estimation,

there is much room for improvement of these methods. In this section, we briefly discuss

some avenues for future work.

5.2.1 Improved Object Modeling

While the point cloud model in Chapter 2 is general and expressive, it has several limitations.

For example, there is no representation of free, occluded, and unknown space, which can lead

to tracking errors. Also, dependencies between the points in the point cloud are not modeled.

We might, for example expect the point cloud of an object to have certain smoothness or

planar properties.

As seen in the history of object tracking, improved object models often to lead to improved

tracking results. For instance, a mesh model or a signed distance function could be used

rather than a point cloud model. This would allow for explicitly modeling the surface of

the object, which is what the sensor is really observing. These types of representations have

found great success in related areas. In Newcombe, Fox, and Seitz (2015), a signed distance

function representation is used to reconstruct and track non-rigid objects such as a person

standing in front of a camera, in real-time. Furthermore, these object models can then be

used to improve upon the segmentation or data association techniques that are currently

used. The application of such representations to object tracking methods warrants further

investigation.
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5.2.2 Reasoning about Occlusions and Temporal Features

One key challenge of any tracking or motion estimation framework is dealing with appearance

changes over time, such as occlusions. While the work presented in this thesis can handle

short occlusions, some information, such as the flow tracklet filters in Chapter 3 or feature

representations in Chapter 4, may be lost. Indeed, several systems in this area attempt to

explicitly handle occlusions (Galceran, Olson, and Eustice, 2015). Dramatic appearance

changes could hinder any motion estimation framework as well.

The techniques presented in this thesis could be adapted to better handle these situations,

especially with the gridded filtering framework used to compute flow. As a first step, the

filtering framework could easily be adapted to allow motion estimates to persist while

propagating the uncertainty accordingly. More interestingly however, the features themselves

could be better modeled over time and through occlusions as well. The feature learning

framework from Chapter 4 could be extended to predict a feature uncertainty, either by

directly outputting a feature covariance or through indirect methods (Gal, 2016). Such an

approach would then naturally lead to incorporating the feature representation in the state

filter. By doing so, it could allow for better reasoning in occlusions and better modeling of

object appearance changes (for example, a cyclist leaving behind a bicycle and becoming a

pedestrian). Additionally, a better representation of the dynamic environment using these

improvements could not only answer questions such as “what will be at this location from

the sensor data I see?”, but also “what could emerge from this occluded region?”. This depth

of understanding would be instrumental in properly navigating through environments with

difficult occlusions, such as tight turns or heavy traffic.

5.2.3 Incorporating Semantics

While this thesis focuses on autonomous driving, we have not explored the semantics present

in typical urban driving environments. The information that could be leveraged includes

not only the semantic labels of the environment, such as what areas belong to a road or a

sidewalk, but also cues such as lane markings, traffic lights, and traffic signs. These semantics

heavily influence how dynamic objects move and thus are critical in estimating their motion.

For example, imagine a curved road where two vehicles are driving towards each other in

opposite lanes. The bend of the road could cause the velocity vectors of the vehicles to be

pointing directly at each other. Normally, this situation would be a very dangerous scenario.

However, the semantics present, such as the lane markings, allow us to be reasonably certain

that there is no pending collision. In situations like this one, knowledge of the semantics is

essential to fully understanding the dynamics of the environment.
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While incorporating the semantic information of the environment can be critical, it can

also be quite challenging. Some approaches consider semantics only after performing dynamic

motion estimation. For example, Galceran et al. (2017) predicts high-level behaviors for other

agents on the road, such as staying in a lane or performing a lane change maneuver, from

tracking estimates. The predicted behaviors are then used to aid in planning a safe route for

the autonomous vehicle. Incorporating the semantic information at an earlier stage would

allow for more accurate dynamic motion estimates. Additionally, it could be used to aid in

related tasks such as segmentation or data association.
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APPENDIX A

GPU Programming

A graphics processing unit (GPU) is a specialized processor that can dramatically improve the

run-time performance of parallelizeable algorithms. It is capable of running many threads of

execution in parallel with a single instruction multiple data (SIMD) architecture. Originally

developed for computer graphics, especially for video games, they are now used in many

applications, including computer vision and deep learning. With significant speed-up in

run-time, they have enabled real-time performance of many tasks that otherwise would be

intractable.

While several different manufacturers develop GPUs, in our work we focus on NVIDIA

GPUs that support Compute Unified Device Architecture (CUDA) (NVIDIA, 2018a). Addi-

tionally, NVIDIA provides a library that provides many commonly used parallel algorithms

(such as reductions or parallel sorting), known as thrust (NVIDIA, 2018b). There are nu-

merous features and capabilities available for an NVIDIA GPU. In this appendix, we briefly

review functionality and features that are required for the run-time performance presented

in Chapter 3 and Chapter 4. An overview is shown in Fig. A.1.

A.1 CUDA

CUDA is a platform provided by NVIDIA that extends C/C++ (NVIDIA, 2018a). It provides

the capability to design and create applications that can take advantage of a GPU’s high

performance. The application programming interface (API) provides the capability to write

custom routines that are compiled to run on GPU hardware. These routines are referred to

as CUDA kernels.

A CUDA kernel can be run in parallel on a GPU. The number and layout of GPU threads

that run the kernel are determined when the kernel is called, referred to as configuring the

kernel. A block of threads can share certain resources, such as shared memory or registers,

and also be synchronized if necessary. A kernel can be configured to run using many blocks of
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Figure A.1: An overview of GPU functionality and features. Each block, depicted in green,
has many threads associated with it, depicted in blue. In each block, certain resources are
shared amongst threads, including shared memory and registers, shown in red for every block.
The GPU can be configured to run a number of blocks for a given CUDA kernel call. These
blocks must share certain global resources, such as global memory, shown in red. In practice,
the number of blocks and threads per block is often much higher. Threads and blocks are
shown here as both indexed in two dimensions, but one, two, or three dimensions may be
used, and may be different for blocks and threads.

threads, but different blocks are not necessarily synchronous and may run at slightly different

times. Depending on the configuration, each block or thread may be indexed in one, two, or

three dimensions.

A CUDA kernel is typically called using the following syntax:

<<<block_dim, thread_dim>>>MyCUDAKernel(data);

block dim is the size (in one, two, or three dimensions) of the block of threads that are run.

thread dim is the size (in one, two, or three dimensions) of the threads that each block runs.

Typically, the number of threads used is a multiple of 32 for optimal performance.
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A.2 Memory Management

GPU global memory, also referred to as device memory, is managed separately from host

memory (i.e., memory that is used on the central processing unit (CPU)). Thus, a CUDA

kernel cannot directly access any memory that is not stored on the GPU. Typically, data

that is needed by a CUDA kernel is first copied from host memory to device memory. Any

resulting data must also first be copied from device memory to host memory before it can

be accessed from the CPU. For optimal run-time performance. the number of memory

allocations and transfers is kept at a minimum.

While global memory can be accessed at any time from inside a CUDA kernel, the access

time can quite high. Access time is particularly slow if each thread must access a seemingly

random index of memory. Indeed, many CUDA kernels are limited by the global memory

bandwidth.

However, in two special cases, global memory access can be made more efficient. In the

first, all threads access the same location in global memory. In the second case, known as

memory coalescing, each thread accesses a sequential index in memory, according to a given

stride (i.e., thread 1 accesses memory location 16004, thread 2 accesses memory location

16008, thread 3 accesses memory location 16012, and so on). While the specifics may vary

between different models of GPUs, designing a CUDA kernel and memory layout to take

advantage of memory coalescing can significantly improve the performance of kernels that

are bottlenecked by global memory operations.

Another strategy for dealing with limitations on global memory bandwidth is the use

of shared memory. In each block of threads, a small amount of memory, typically about

tens of kilobytes, can be used to share data between the threads of the block. To make

use of the shared memory, each thread in the CUDA kernel loads some data from global

memory and stores it in shared memory. Then, each thread can use the cached data stored

in shared memory rather than having to access the much slower global memory. Thus,

each index in global memory will only be accessed once. Shared memory is especially for

useful for algorithms where similarly located threads will need to access data from a similar

neighborhood (e.g., convolution in a two-dimensional (2D) image).

A CUDA kernel that uses shared memory is typically called using the following syntax:

<<<block_dim, thread_dim, shared_memory_size>>>MyCUDAKernelSM(data);

shared memory size is the number of bytes of shared memory required by the kernel.
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NVIDIA GeForce NVIDIA GeForce
GTX 1080 GTX TITAN X

CUDA Capability Version 6.1 6.1

Total Global Memory 8114 MB 12196 MB
Memory Clock Rate 5005 MHz 5005 MHz

Maximum Threads per Block 1024 1024
Shared Memory Per Block 49152 bytes 49152 bytes
Maximum Threads per Multiprocessor 2048 2048
Multiprocessors 20 28
CUDA Cores per Multiprocessor 128 128
CUDA Cores 2560 3594
Maximum Clock Rate 1734 MHz 1531 MHz

Table A.1: Key GPU specifications. We show specifications for the NVIDIA GeForce GTX
1080 and the NVIDIA GeForce GTX TITAN X.

A.3 Thrust

Thrust is a library provided by NVIDIA that implements many commonly used parallel

algorithms (NVIDIA, 2018b), similar to how Standard Template Library (STL) provides

library C++ functionality. These algorithms are efficiently implement to run on the GPU and

include reduction operations (such as summing an array of numbers), sorting operations, and

many more. Conveniently, thrust routines can be called directly without use of a CUDA

kernel. The number of blocks, threads, and any shared memory is automatically managed.

However, data must be properly stored in GPU global memory.

A.4 GPU Specifications

NVIDIA has provided a wide array of GPU products over the years. While their functionality

is similar, their exact specifications and set of available features vary. In the work presented

in Chapter 3 and Chapter 4, the NVIDIA GTX 1080 and the NVIDIA GTX TITAN X were

used. Some key specifications from these two devices are shown in Table A.1.
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APPENDIX B

Efficient Construction of Occupancy Grids

using a GPU

In Chapter 3 and Chapter 4, we compute a probabilistic occupancy grid constructed from

a point cloud collected by a light detection and ranging (LIDAR) sensor. As runtime

performance is important for these systems, we must take care to efficiently implement this

occupancy grid construction. We do so by writing custom CUDA code (Nickolls et al., 2008)

to run on an NVIDIA GPU, such as a TITAN X or a GTX 1080. In this appendix, we

describe our GPU occupancy construction method. A brief overview of GPU programming

methods used here is provided in Appendix A.

B.1 Occupancy Grids

In constructing an occupancy grid, our goal is to represent the observed LIDAR point-cloud

with an occupancy grid (Hornung et al., 2013; Moravec and Elfes, 1985) composed of 3D

voxels. Each voxel represents the probability of being occupied given a LIDAR scan composed

of n points z1:n = {z1, . . . , zn} in the vehicle reference frame. The position of the LIDAR

sensor when each point was observed is given by s1:n. Depending on the application and

setup, these can all be the same (for example, in the case of a stationary sensor), all different

(in the case of a moving platform), or one of a few discrete values (such as with a sensor

array consisting of multiple LIDAR sensors).

For each voxel v, the probability of it being occupied can be expressed by

p(v|z1:n) =

[
1 +

1− p(v|zn)

p(v|zn)

1− p(v|z1:n−1)

p(v|z1:n−1)

p(v)

1− p(v)

]−1

, (B.1)

where p(v) is a prior on v. We assume a non-informative prior p(v) = 0.5.
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(a) LIDAR scan (b) Occupancy Grid

Figure B.1: Sample point cloud and occupancy grid from the KITTI dataset. Note the
occupied space (shown in green boxes).

We replace probabilities with log-odds notation (L) (Hornung et al., 2013), where:

L(x) = log
p(x)

p(¬x)
(B.2)

= log
p(x)

1− p(x)
. (B.3)

Using log-odds notation, we can rewrite (B.1) as:

L(v|z1:n) =
n∑
i=1

L(v|zi) (B.4)

L(v|zi) =


lfree the ray from si to zi passes through v

loccupied the ray from si to zi ends in v

0 otherwise

, (B.5)

where each beam is treated as independent and L(v|zi) represents the update due to the ith

beam.

Optionally, we can avoid over-confidence by clipping the log-odds once the probability

is sufficiently confident one way or another so that they are always in the range [lmin, lmax].

Clipping is a common technique when dealing with log-odds.

We can see an example of a point cloud and its corresponding occupancy grid in Fig. B.1,

taken from the KITTI dataset.
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B.2 GPU Algorithm

To efficiently compute the occupancy grid, we use the following GPU algorithm.

Let mr be the maximum range of the sensor. Let nmax be the maximum number of

LIDAR observations n we ever expect to receive. Let r be the resolution of the occupancy

grid we wish to construct.

B.2.1 Preallocation

In preprocessing, we preallocate several buffers in GPU memory. These buffers include a list

of voxel locations and log-odds updates. The size of each is given by nmaxdmr

r
e. These buffers

are reused each time we construct an occupancy grid. By preallocating them, we avoid the

latency of GPU memory allocation operations at runtime.

B.2.2 Computing a List of Updates

We are given a point cloud z1:n, from which we wish to construct an occupancy grid. First,

we compute a list of log-odds updates. To do so, we build a custom CUDA kernel. The

CUDA kernel is configured so that each CUDA thread processes a single observation.

Consider an observation zi. The position of the sensor is given by si. These two locations

must first be transformed into the reference frame of interest, which could be a global

coordinate frame, a reference frame with an origin on the vehicle body, or in the reference

frame of the LIDAR sensor itself. For our work in Chapter 3 and Chapter 4, we processed

the data in the sensor frame. Once the appropriate transformations have been applied, let

p0 and p1 be the sensor origin and the LIDAR observation point, respectively. p0 may be

constant for the point cloud, but in the general case it may vary for each observation.

We compute the starting and terminating voxels, vs and vm, for the observation according

to p0, p1, and r.

Now, we employ Bresenham’s algorithm (Bresenham, 1965) to trace out a path from vs

to vm. For each voxel v in this path, we add both v and the log-odds update, lfree, to the

location and log-odds update buffer we have preallocated. When we reach vm, we write the

log-odds update loccupied to the buffer. Any unused portion of the buffer is set to log-odds

updates of 0. A 2D analog of Bresenham’s algorithm is illustrated in Fig. B.2.

For optimal performance, we take care to index these buffers in order to take advantage

of memory coalescing on the GPU. By having each CUDA thread access a sequential address

in memory, the memory access times are greatly reduced due to GPU hardware optimization.
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Figure B.2: Cartoon example of ray tracing. Starting from the blue voxel containing the beam
origin p0, we trace a path to the red voxel, containing p1, using Bresenham’s algorithm. Each
voxel that is intersected by the ray is added to the list with an lfree update. The terminating
voxel, vm, is marked with an loccupied update.

Once the CUDA kernel call is complete, we have filled our preallocated buffers with a list

of log-odds updates and the corresponding voxel locations.

B.2.3 Reductions

To finish building the occupancy grid, we must finish processing our list of log-odds updates.

We can do so with a set of operation that are efficiently implemented in NVIDIA’s thrust

library (NVIDIA, 2018b).

First, we use a remove if operation to remove all log-odds updates that are set to zero

(i.e., there is no update to process). Then, we sort the updates by the voxel location so that

updates for the same voxel location are always contiguous. We do so by using a sort by key

operation. Lastly, we use a reduce by key reduction to sum the log-odds updates for every

voxel location together.

Once these thrust operations have been completed, we have constructed a mapping from

each voxel v to L(v|z1:n). Note that this mapping is inherently sparse due to the nature of

the algorithm; voxels that are not updated by an observation are not included in the map.

This mapping can be used to compute a dense occupancy grid if desired.
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Paramter Description Value
mr Maximum sensor range 100 m
r Occupancy grid resolution 30 cm
nmax Maximum number of observations 150000
lfree Log-odds for free space -0.1
loccupied Log-odds for occupied space 1.0
lmin Minimum log-odds -3.0
lmax Maximum log-odds 3.0

Table B.1: Parameter values for occupancy grid construction.

B.3 Parameter Selection

See Table B.1 for a list of parameters and the values we used in our work.

B.4 Runtime

Using a NVIDIA GTX 1080 GPU, creating an occupancy grid from a point cloud from the

KITTI dataset takes about 12.5 ms on average. The runtime can vary with the size of the

point cloud, distribution of the observations, and the choice of GPU.
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J. Dequaire, P. Ondrúška, D. Rao, D. Wang, and I. Posner. Deep tracking in the wild:
End-to-end tracking using recurrent neural networks. International Journal of Robotics
Research, 37(4-5):492–512, 2017.

A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard. Rigid scene flow for 3d lidar scans. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1765–1770, Daejeon, South Korea, October 2016.

B. Douillard, D. Fox, F. Ramos, and H. Durrant-Whyte. Classification and semantic mapping
of urban environments. International Journal of Robotics Research, 30(1):5–32, 2010.

M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner. Vote3deep: Fast object detection
in 3d point clouds using efficient convolutional neural networks. In Proceedings of the
IEEE International Conference on Robotics and Automation, pages 1355–1361, Singapore,
May/June 2017.

M. Fallon, H. Johannsson, M. Kaess, and J. J. Leonard. The MIT Stata Center dataset.
International Journal of Robotics Research, 32(14):1695–1699, 2013.

H. Fan, H. Su, and L. Guibas. A point set generation network for 3d object reconstruction
from a single image. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 605–613, Honolulu, HI, USA, July 2017.

118



A. Feldman, M. Hybinette, and T. Balch. The multi-iterative closest point tracker: An
online algorithm for tracking multiple interacting targets. Journal of Field Robotics, 29(2):
258–276, 2012.

D. Ferstl, G. Riegler, M. Ruether, and H. Bischof. Cp-census: A novel model for dense
variational scene flow from rgb-d data. In Proceedings of the British Machine Vision
Conference, Nottingham, UK, September 2014.

T. N. Firestine, K. Notis, and S. Randrianarivelo. Transportation economic trends 2017.
2018.

P. Furgale, T. D. Barfoot, and G. Sibley. Continuous-time batch estimation using temporal
basis functions. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 2088–2095, St. Paul, MN, USA, May 2012.

Y. Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.

E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson. Multipolicy decision-making
for autonomous driving via changepoint-based behavior prediction. In Proceedings of the
Robotics: Science & Systems Conference, Rome, Italy, July 2015.

E. Galceran, E. Olson, and R. M. Eustice. Augmented vehicle tracking under occlusions for
decision-making in autonomous driving. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3559–3565, Hamburg, Germany,
September 2015.

E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson. Multipolicy decision-making
for autonomous driving via changepoint-based behavior prediction: Theory and experiment.
Autonomous Robots, 41(6):1367–1382, 2017.

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The KITTI dataset.
International Journal of Robotics Research, 2013.

R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta. Learning a predictable and generative
vector representation for objects. In Proceedings of the European Conference on Computer
Vision, pages 484–499, Amsterdam, Netherlands, October 2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. In Proceedings of the Advances in Neural
Information Processing Systems Conference, pages 2672–2680, Montreal, Canada, 2014.

V. Guizilini and F. Ramos. Learning to reconstruct 3d structures for occupancy mapping. In
Proceedings of the Robotics: Science & Systems Conference, Cambridge, MA, USA, July
2017.

S. Hadfield and R. Bowden. Kinecting the dots: Particle based scene flow from depth sensors.
In Proceedings of the IEEE International Conference on Computer Vision, pages 2290–2295,
Barcelona, Spain, November 2011.

119



D. Held, J. Levinson, and S. Thrun. Precision tracking with sparse 3d and dense color 2d
data. In Proceedings of the IEEE International Conference on Robotics and Automation,
pages 1138–1145, Karlsruhe, Germany, May 2013.

D. Held, J. Levinson, S. Thrun, and S. Savarese. Combining 3d shape, color, and motion for
robust anytime tracking. In Proceedings of the Robotics: Science & Systems Conference,
Berkeley, CA, USA, July 2014.

D. Held, J. Levinson, S. Thrun, and S. Savarese. Robust real-time tracking combining 3d
shape, color, and motion. International Journal of Robotics Research, 35(1-3):30–49, 2016.

G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, 2006.

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets.
Neural Computation, 18(7):1527–1554, 2006.

B. K. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence, 17(1):
185–203, 1981.

M. Hornacek, A. Fitzgibbon, and C. Rother. Sphereflow: 6 dof scene flow from rgb-d pairs. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3526–3533, Columbus, OH, USA, 2014.

A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. OctoMap: an efficient
probabilistic 3D mapping framework based on octrees. Autonomous Robots, 34(3):189–206,
2013.

Y. Hu, R. Song, and Y. Li. Efficient coarse-to-fine patchmatch for large displacement optical
flow. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5704–5712, Las Vegas, NV, USA, June/July 2016.

F. Huguet and F. Devernay. A variational method for scene flow estimation from stereo
sequences. In Proceedings of the IEEE International Conference on Computer Vision,
pages 1–7, Rio de Janeiro, Brazil, October 2007.

M. Isard and J. MacCormick. Dense motion and disparity estimation via loopy belief
propagation. In Proceedings of the Asian Conference on Computer Vision, pages 32–41,
Hyderabad, India, 2006.

M. Jaimez, M. Souiai, J. Gonzalez-Jimenez, and D. Cremers. A primal-dual framework for
real-time dense rgb-d scene flow. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 98–104, Chicago, IL, USA, May 2015.

A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, Inc., 1970.

R. Kaestner, J. Maye, Y. Pilat, and R. Siegwart. Generative object detection and tracking
in 3d range data. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 3075–3081, St. Paul, MN, USA, May 2012.

120



R. Lanctot. Accelerating the future: The economic impact of the emerging passenger economy.
2017.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher, E. Frazzoli,
A. Huang, S. Karaman, et al. A perception-driven autonomous urban vehicle. Journal of
Field Robotics, 25(10):727–774, 2008.

J. Leonard et al. Team MIT Urban Challenge technical report. Technical Report MIT-CSAIL-
TR-2007-058, Massachusetts Institute of Technology Computer Science and Artificial
Intelligence Laboratory, Cambridge, MA, USA, December 2007.

J. Levinson and S. Thrun. Robust vehicle localization in urban environments using prob-
abilistic maps. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 4372–4378, Anchorage, AK, USA, May 2010.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer,
O. Pink, V. Pratt, et al. Towards fully autonomous driving: Systems and algorithms. In
Proceedings of the IEEE Intelligent Vehicles Symposium, pages 163–168, Baden-Baden,
Germany, June 2011.

C.-H. Lin, C. Kong, and S. Lucey. Learning efficient point cloud generation for dense 3d object
reconstruction. In Proceedings of the AAAI National Conference on Artificial Intelligence,
New Orleans, LA, USA, February 2018.

C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman. SIFT flow: Dense correspondence
across different scenes. In Proceedings of the European Conference on Computer Vision,
pages 28–42, Marseille, France, October 2008.

J. Liu, F. Yu, and T. Funkhouser. Interactive 3d modeling with a generative adversarial
network. In Proceedings of the International Conference on 3D Vision, pages 2278–2324,
Quingdao, China, October 2017.

X. Liu, C. R. Qi, and L. J. Guibas. Learning scene flow in 3d point clouds. arXiv preprint
arXiv:1806.01411, 2018.

B. D. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial Intelligence,
pages 674–679, Vancouver, Canada, August 1981.

A. Masatoshi, C. Yuuto, T. Kanji, and Y. Kentaro. Leveraging image-based prior in cross-
season place recognition. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 5455–5461, Seattle, WA, USA, May 2015.

M. Menze and A. Geiger. Object scene flow for autonomous vehicles. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 3061–3070, Boston,
MA, USA, June 2015.

121



M. Milford and G. Wyeth. SeqSLAM: Visual route-based navigation for sunny summer days
and stormy winter nights. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 1643–1649, Saint Paul, MN, USA, May 2012.

F. Moosmann and T. Fraichard. Motion estimation from range images in dynamic outdoor
scenes. In Proceedings of the IEEE International Conference on Robotics and Automation,
pages 142–147, Anchorage, AK, USA, May 2010.

F. Moosmann and C. Stiller. Joint self-localization and tracking of generic objects in 3d range
data. In Proceedings of the IEEE International Conference on Robotics and Automation,
pages 1146–1152, Karlsruhe, Germany, May 2013.

H. P. Moravec and A. Elfes. High resolution maps from wide angle sonar. In Proceedings of
the IEEE International Conference on Robotics and Automation, pages 116–121, St. Louis,
MO, USA, March 1985.

National Highway Traffic Safety Administration. Traffic safety facts 2016: Motor vehicle
crash data from the fatality analysis reporting system (FARS) and the general estimates
system (GES). United States Department of Transportation, 2018.

R. A. Newcombe, D. Fox, and S. M. Seitz. Dynamicfusion: Reconstruction and tracking of
non-rigid scenes in real-time. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 343–352, Boston, MA, USA, June 2015.

J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming with CUDA.
In ACM SIGGRAPH, page 16, 2008.

Norwegian Broadcasting Corporation. Nordlandsbanen: Minute by
minute, season by season, 2013. URL https://nrkbeta.no/2013/01/15/

nordlandsbanen-minute-by-minute-season-by-season/.

NVIDIA. CUDA Toolkit — NVIDIA Developer. https://developer.nvidia.com/

cuda-toolkit, 2018a. Accessed: 2018-07-29.

NVIDIA. Thrust quick start guide, 2018b.

P. Ondruska and I. Posner. Deep tracking: Seeing beyond seeing using recurrent neural
networks. In Proceedings of the AAAI National Conference on Artificial Intelligence,
Phoenix, Arizona USA, February 2016.

G. Pandey, J. R. McBride, and R. M. Eustice. Ford campus vision and lidar data set.
International Journal of Robotics Research, 30(13):1543–1552, November 2011.

D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. Efros. Context encoders: Feature
learning by inpainting. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2536–2544, Las Vegas, NV, USA, June/July 2016.

A. Petrovskaya and S. Thrun. Model based vehicle tracking for autonomous driving in urban
environments. In Proceedings of the Robotics: Science & Systems Conference, Zurich,
Switzerland, June 2008.

122

https://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute-season-by-season/
https://nrkbeta.no/2013/01/15/nordlandsbanen-minute-by-minute-season-by-season/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit


A. Petrovskaya and S. Thrun. Model based vehicle detection and tracking for autonomous
urban driving. Autonomous Robots, 26(2-3):123–139, 2009.

C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas. Volumetric and multi-
view cnns for object classification on 3d data. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5648–5656, Las Vegas, NV, USA,
June/July 2016.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 652–660, Honolulu, HI, USA, July 2017a.

C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In Proceedings of the Advances in Neural Information
Processing Systems Conference, pages 5105–5114, Long Beach, CA, USA, December 2017b.

F. Ramos and L. Ott. Hilbert maps: scalable continuous occupancy mapping with stochastic
gradient descent. International Journal of Robotics Research, 35(14):1717–1730, 2016.

R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (FPFH) for 3d registra-
tion. In Proceedings of the IEEE International Conference on Robotics and Automation,
pages 3212–3217, Kobe, Japan, 2009.
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