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ABSTRACT

Modular vehicles are vehicles with interchangeable substantial components also known

as modules. Fleet modularity provides extra operational flexibility through on-field

actions, in terms of vehicle assembly, disassembly, and reconfiguration (ADR). The

ease of assembly and disassembly of modular vehicles enables them to achieve real-

time fleet reconfiguration, which is proven as beneficial in promoting fleet adaptability

and in saving ownership costs. The objective of military fleet operation is to satisfy

uncertain demands on time while providing vehicle maintenance. To quantify the

benefits and burdens from modularity in military operation, a decision support sys-

tem is required to yield autonomously operation strategies for comparing the (near)

optimal fleet performance for different vehicle architectures under diverse scenarios.

The problem is challenging because: 1) fleet operation strategies are numerous,

especially when modularity is considered; 2) operation actions are time-delayed and

time-varying; 3) vehicle damages and demands are highly uncertain; 4) available ca-

pacity for ADR actions and vehicle repair is constrained. Finally, to explore advanced

tactics enabled by fleet modularity, the competition between human-like and adver-

sarial forces is required, where each force is capable to autonomously perceive and

analyze field information, learn enemy’s behavior, forecast enemy’s actions, and pre-

pare an operation plan accordingly. Currently, methodologies developed specifically

for fleet competition are only valid for single type of resources and simple operation

rules, which are impossible to implement in modular fleet operation.

This dissertation focuses on a new general methodology to yield decisions in op-

xi



erating a fleet of autonomous military vehicles/robots in both conventional and mod-

ular architectures. First, a stochastic state space model is created to represent the

changes in fleet dynamics caused by operation actions. Then, a stochastic model

predictive control is customized to manage the system dynamics, which is capable

of real-time decision making. Including modularity increases the complexity of fleet

operation problem, a novel intelligent agent based model is proposed to ensure the

computational efficiency and also imitate the collaborative decisions making process

of human-like commanders. Operation decisions are distributed to several agents with

distinct responsibility. Agents are designed in a specific way to collaboratively make

and adjust decisions through selectively sharing information, reasoning the causality

between events, and learning the other’s behavior, which are achieved by real-time

optimization and artificial intelligence techniques.

To evaluate the impacts from fleet modularity, three operation problems are for-

mulated: (i) simplified logistic mission scenario: operate a fleet to guarantee the

readiness of vehicles at battlefields considering the stochasticity in inventory stocks

and mission requirements; (ii) tactical mission scenario: deliver resources to battle-

fields with stochastic requirements of vehicle repairs and maintenance; (iii) attacker-

defender game: satisfy the mission requirements with minimized losses caused by

uncertain assaults from an enemy.

The model is also implemented for a civilian application, namely the real-time

management of teams of reconfigurable manufacturing systems (RMSs). As the num-

ber of RMS configurations increases exponentially with the size of the line and demand

changes frequently, two challenges emerge: how to efficiently select the optimal config-

uration given limited resources, and how to allocate resources among lines. According

to the ideas in modular fleet operation, a new mathematical approach is presented for

distributing the stochastic demands and exchanging machines or modules among lines

(which are groups of machines) as a bidding process, and for adaptively configuring

xii



these lines and machines for the resulting shared demand under a limited inventory

of configurable components.

The main original contributions of this dissertation are: (i) proposed a new

stochastic MPC framework for managing the dynamics of operation/manufacturing

systems considering the uncertainty; (ii) created a novel agent based model to sim-

ulate the human-like decision making process; (iii) formulated an attacker-defender

game to highlight the tactical advantages brought by modularity; (iv) designed a ne-

gotiation algorithm among teams of vehicles/reconfigurable manufacturing machines

for real-time task allocation and resource sharing.
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CHAPTER I

Introduction

1.1 Problem Definition

Military vehicles operate in a large variety of environments and scenarios resulting

in a diverse set of requirements from fleet mix. The special functionalities of military

vehicles and incessantly updated technologies make them hardly to be reused after

military operation (Shinkman, 2014). In order to reduce the wastage, the US Army

requires that fleets of vehicles can be reutilized across a large array of military mission

scenarios. Modular vehicles are then introduced by constructing from special compo-

nents, which are named as modules (Dasch and Gorsich, 2016). Modules are assumed

to be a special type of components which can be easily coupled/decoupled through

simple plug-in/pull-out actions on battlefields. As an example, Fig. 1.1 compares the

vehicles structures of a tactical vehicle and a highly modularized tactical vehicle. For

a modularized vehicle, five types of modules are specified: a) cabin, b) chassis and

power train, c) tires and suspension, d) payload and e) armor.

Vehicle assembly and disassembly can be realized through module connection and

disconnection. Vehicle reconfiguration and repair can also be quickly realized by mod-

ule replacement. On-field assembly, disassembly and reconfiguration (ADR) actions

enable modular fleet to vary its configuration in real-time (as shown in Fig. 1.2), and

also distinguish the modular fleet operation from conventional fleet operation.

1



Figure 1.1: Comparison of a normal tactical vehicle (left) and a modularized tactical
vehicle (right).

(a)

(b)

(c)

Figure 1.2: Operation actions for modularized vehicles: a) assembly, b) disassembly,
c) reconfiguration.

1.1.1 Benefits from Fleet Modularity

In this study, several modular vehicle architectures are firstly generated according

to the previous research on modular vehicle design and suggestion from military ex-

2



perts. Assuming that the modular fleet can be designed and manufactured to enable

ADR actions achieved in hours, the first priority of this research is to investigate the

benefits from fleet modularity in terms of fleet operational cost, adaptability, resource

utility and tactical advantages. Compared to the existing operation problems, the

military operation has three special characteristics: (i) the highly uncertain and tran-

sient demands which require the decision maker’s rapid reaction (ii) the evolutionary

demands as commanders from both fleets keep updating their combat and operation

decisions based on the others behaviors (iii) high probability of damage during oper-

ation, which requires the timely repair and maintenance to balance resource utility

rate and demand fulfillment. These conditions make the operation of modular fleet

challenging.

The first existing challenge is the management of an inventory with high diversity.

We denote a vehicle with one or more damaged components as a damaged vehicle. For

example, a single vehicle with 5 different components has 25 types of vehicle damage,

each requiring a distinct recovery strategy. Next, numerous operation actions need

to be determined in real-time, i.e., vehicle reconfiguration, vehicle relocation, convoy

formation, vehicle maintenance/repair and etc. Taking vehicle repair as an example,

vehicles with different damaged components require different procedure to recover.

Given modularity, the damaged vehicles can also be disassembled into modules or

reconfigured to other type of vehicles by swapping the damaged modules by modules

of other type. Furthermore, all the operational actions require a certain amount

of time to be accomplished, and hence the scheduling must be schedule has to be

performed ahead of time to guarantee the desired actions can be achieved on time.

Given the limited working capacity and limited stocks with diverse conditions, how to

effectively and efficiently schedule the operations and distribute the limited capacity

in reacting to the stochastically arrived demands while maintaining reasonable healthy

stock levels represents another challenge.

3



Finally, in order to explore the advanced tactics which exploit fleet modularity, the

way a human commander makes decisions needs to be considered and modeled. With

some simplifications, the main procedure involved in human-like decision making

(Chen and Barnes , 2013) involves the following steps: 1) perceive field information

2) analyze enemy’s behavior based on the received information 3) optimally schedule

the on-field actions to beat enemy. Through these procedures, decision makers could

adaptively adjust their dispatch strategies and operation plans based on the learned

enemy’s behaviors, i.e., depending on the strategy the enemy might adopt in a specific

situation. Combining with fleet modularity, how to design a decision making model to

imitate the human-like thinking process with guaranteed decision optimality remains

to be addressed.

1.1.2 Real-time Management of Reconfiguration Manufacturing System

Fleet operation model is also extended into several civilian applications. Un-

predictable and frequent market changes including demand fluctuations and rapid

introduction of new products make the development of cost effective and responsive

manufacturing systems a necessity for companies to survive in the new competitive

environment. Reconfigurable manufacturing systems (RMS), which combine high

throughput from dedicated manufacturing lines and flexibility from flexible manufac-

turing systems, have been introduced to address this challenge (Koren et al., 1999).

With the similar capacity as modularized fleet, each reconfigurable machine can be

regarded as a modularized vehicle, thus, the management of RMS, which is a man-

ufacturing line with certain machine layout, can be also regarded as operation of a

highly modularized vehicle fleet.

Concretely, a firm that processes multiple types of parts by several autonomous

reconfigurable lines is considered. Each part contains diverse features and requires

sequential operations. Each line consists of a multi-stage RMS and the associated

4



configurable components, i.e., modules. Each machine can be reconfigured by swap-

ping its modules. The machines in different configurations are referred as variants.

To satisfy the demand, the number and variants of the machines for each stage need

to be determined, as well as the assigned operations. As the number of RMS config-

urations increases exponentially with the size of the line (Koren and Shpitalni , 2010)

and demand changes frequently, two challenges emerge: how to efficiently select the

optimal configuration given limited resources, and how to allocate resources among

lines.

Multiple lines are considered for increased throughput. Each line is a system (an

RMS), and hence the company is a system of systems. Because of the model com-

plexity, finding near-optimal resource and demand allocation plans for these lines by

a centralized management strategy is inefficient. In addition, the number of reloca-

tion decisions rapidly grows with increasing number of lines and types of resources.

Combined with the complexity in RMS planning, the resource and demand alloca-

tion becomes infeasible to be solved by known optimization tools and models; a new

method is needed.

1.2 Related Work

1.2.1 Design of Fleet Operation System

Because the number of operational actions is significant and the time delays are

considered to complete actions, state space models have been considered to clarify the

relationship between resources (vehicles and modules) levels (states) and operational

actions (inputs) for both fleets. The outputs of the system describe the performance

of vehicle convoys at different battlefields, which is measured by attributes. This

expression is shown in Fig. 1.3.

The stochastic damage during military operation results in the vehicles with di-
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Dynamical System

𝒙𝒄 𝑡 + 1 = 𝑨𝒄𝒙𝒄 𝑡 + 𝑩𝒄𝒐𝒄 𝑡

𝒚𝑐 𝑡 = 𝑪𝒄𝒙𝒄 𝑡 + 𝑫𝒄𝒐𝒄 𝑡

Dynamical System

𝒙𝑚 𝑡 + 1 = 𝑨𝒎𝒙𝒎 𝑡 + 𝑩𝒎𝒐𝒎 𝑡

𝒚𝑚 𝑡 = 𝑪𝒎𝒙𝒎 𝑡 + 𝑫𝒎𝒐𝒎 𝑡

𝒙𝒎 𝑡 : vehicles & modules at the base and battlefields

𝒚𝒎 𝑡 : convoy attributes at battlefields

𝒙𝒄 𝑡 : vehicles at base and battlefields

𝒚𝒄 𝑡 : convoy attributes at battlefields

Conventional Fleet

Modular Fleet

Figure 1.3: Model of fleet operation system through a state space model for both
conventional and modular fleets

verse conditions, which require distinct operational actions to recover. As the amount

of vehicle damage varies given newly occurred damage and vehicle recovery, the oper-

ation system requires to be updated in real-time to reflect the latest inventory status.

To ensures decisions are made according to the latest field information and inventory

status, the idea from model predictive control is implemented to manage the system

dynamics. At each time instant, the operational actions over the sshort prediction

horizon are planned. After each optimization, only the first element of the input

sequence (decision for the first day) is implemented. The decision making process for

military fleet operation is summarized in Fig. 1.4.

1.2.2 Intelligent Agent Competition

Military demands are time-varying and highly stochastic because commanders

keep reacting to enemy’s actions. To capture these characteristics, an intelligent

agent based model is formulated to imitate decision making process in operating a
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Figure 1.4: The operational decisions update at every time point according to the
latest demands information and inventory status

military fleet by applying real-time optimization and artificial intelligence techniques.

The agents are capable to infer enemy’s future move based on historical data and

optimize dispatch/operation decisions accordingly.

The model is implemented in an attacker-defender game between two adversarial

and intelligent players to provide a platform for evaluating the quality of decisions.

Given the same level of combat resources and intelligence, the tactical advantages

from fleet modularity are highlighted, in terms of win rate, unpredictability and

suffered damage. Fig. 1.5 provides the overview of agent based model, including the

information flow among agents and decision making models.

1.2.3 Teaming Among Multiple RMSs

Personalized production poses new challenges to reconfigurable manufacturing

systems due to a dramatic increase in the variety and stochasticity of the manufac-

turing demand. To better satisfy the demands and guarantee the resource utility rate,

autonomously reconfigurable manufacturing systems need to be connected with a de-

centralized management of individual autonomous lines that can be reconfigured for
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Figure 1.5: Information flow and decision making model used in competition between
two adversarial and intelligent fleets.

diverse manufacturing tasks via modular manufacturing modules. A mathematical

approach is presented to achieve the teaming of RMSs, i.e., distributing the demands

and exchanging machines or modules among lines, through a bidding process, and

for adaptively configuring these lines and machines for the resulting shared demand

under a limited inventory of configurable components. Fig. 1.6 provides an example

in which the operational decisions are improved through RMS reconfiguration, and
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through resource and demand sharing to eliminate the remaining demands.

Part A: 480 + 100 /hour
Part B: 300 + 80 /hour

Part A: 120 + 20 /hour 
Part B: 600 + 120 /hour

Part A: 720 /hour
Part B: 0 /hour

Part A: 600 /hour 
Part B: 240 /hour

RMS 1

RMS 2

Part A: 480 /hour
Part B: 300 /hour

Part A: 120 /hour 
Part B: 600 /hour

Part A: 720 /hour
Part B: 0 /hour

Part A: 600 /hour 
Part B: 240 /hour

RMS 1

RMS 2

Part A: 720 /hour
Part B: 0 /hour

Part A: 600 /hour 
Part B: 240 /hour

Part A: 5000
Part B: 7000

RMS 1

RMS 2

RMS Reconfiguration

Resource Sharing 
& Demand Allocation

Remaining 
demands

Part A: 10000
Part B: 8000

Part A: 2000
Part B: 0

Part A: 0
Part B: 0

Figure 1.6: Teaming between RMS to improve the demand fulfillment through de-
mand and resource sharing
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1.3 Dissertation Contributions

The research contributions of the dissertation are summarized as:

1. Modeled fleet operation as a time-delayed dynamical system, and implemented

model predictive control to manage system dynamics in real-time.

2. Analyzed the increased adaptability and robustness resulting from fleet modu-

larity in various mission scenarios.

3. Created an intelligent agent based model to simulate the human-like decision

making process in military fleet operation.

4. Investigated the tactical advantages from fleet modularity by performing an

attacker-defender game between two intelligent and adversarial players.

5. Designed a group of optimization models to enable each RMS to autonomously

reconfigure itself based on the received demands and available resources.

6. Created a negotiation algorithm to efficiently and effectively reallocate demands

and resources among the RMSs to obtain a better team performance.
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1.4 Dissertation Overview

An introduction to the problem is presented in Chapter 1. Chapter 2 contains a

review of the relevant literature. In Chapter 3, the modeling of operation system and

implementation of MPC/SMPC are described, as well as the corresponding results

from different case studies. In Chapter 4, the model is extended to an agent based

model for solving a realistic military logistic problem, i.e., joint tactical transporta-

tion system. Chapter 5 outlines the attacker-defender game created to model the

competition between two intelligent and adversarial forces to reveal the tactical ad-

vantages from fleet modularity. In Chapter 6, the model is implemented for a civilian

application to achieve the real-time teaming among different RMSs. Finally, Chapter

7 summarizes main conclusions and identifies both limitations of the current research

and recommendations for further research.
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CHAPTER II

Literature Review

2.1 Modular Vehicle

Modular architecture refers to using interchangeable components to create prod-

ucts in different variants (Ulrich, 1994). Architectures of modular military vehicle

have been developed for many years. In the 1980s, Family of Vehicles (FOVs) were

already designed exploiting the ideas of modular architectures. Later, two examples

of an entire FOV have been proposed, named as Armored Family of Vehicle (AFV)

in the 1980s and Future Combat Systems (FCS) in the 2000s (Dasch and Gorsich,

2016). In general, previous research in military vehicle modularity proposed a range

of modular vehicle architectures based on the manufacturing cost and commonality

of components. To evaluate the actual performance of modular fleet, it is important

to capture the dynamic perspective of fleet level performance, i.e., fleet readiness,

operation cost, etc.

Research on operation management strategies for modular fleet has been con-

ducted for many scenarios and methods. In 2017 for instance, D’Souza et al., (D’Souza

et al., 2016) built an integrated fleet operation model to evaluate the effectiveness

and cost for operating a modular fleet, in terms of functionality model, fleet oper-

ation model, manufacturing model and transportation model. In 2018, Bayrak et

al. (Bayrak et al., 2018) formulated a mathematical model to compare the fleet
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performance under equivalent operation strategies designed for conventional fleet and

modular fleet respectively. Their results show that fleet modularity is beneficial in life

cycle cost saving. The existing studies compare fleet performance with considerable

assumptions, i.e., no vehicle reconfiguration, heuristic and time-invariant operation

strategy. There is still lack of in-depth efforts in seeking an adaptive operation strat-

egy that could be real-timely updated according to the inventory fluctuation and

stochastically arrived demands.

2.2 Model Predictive Control

Decisions require timely update to reduce the negative effects from uncertainty,

research has been done in the areas of dynamic scheduling and predictive control.

Dynamic scheduling has been defined under three categories, which are completely

reactive scheduling, robust pro-active scheduling and predictive-reactive scheduling

(Herroelen and Leus , 2005). In completely reactive scheduling, the decisions are made

based on the short-term events, some heuristic dispatching rules are usually used with

it. This type of scheduling is known as myopic, and always applied in a case with high

difficulty in forecasting (Ouelhadj and Petrovic, 2009). On the contrary, robust pro-

active scheduling approach predict the demands based on received information in a

dynamic environment (Vieira et al., 2003). Predictive-reactive scheduling is the most

common approach in the manufacturing systems. Predictive scheduling is initialized

the first place, then it is revised by the rescheduling triggered in response to the

real-time events. Once rescheduling is triggered, two strategies are commonly used:

schedule repair and complete rescheduling (Sabuncuoglu and Bayız , 2000). Schedule

repair refers to some local adjustment of the current schedule for reducing the com-

putational load. In contrast, complete rescheduling regenerates a new schedule from

scratch, which is better in maintaining the optimality of the solutions.

There are connections between predictive-reactive scheduling with complete reschedul-
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ing strategy and model predictive control (MPC). For one, they both optimize the

decisions based on the current system status and future demand forecasts. In MPC,

the current control action is obtained by solving on-line an open-loop optimal control

problem for each sampling instant (Mayne et al., 2000; Scattolini , 2009), but usually

only one future step of the decisions is selected, which make the MPC have more

responsiveness than the dynamic scheduling methods in reacting to disturbances and

noise. However, it substantially increase the computational time in problem solving,

Several researchers have successfully implemented the MPC approach to control

networks and supply chains. In 2007, Negenborn et al. (Negenborn et al., 2008)

considered multi-agent control schemes in which each agent is designed in a MPC

approach. They applied the multi-agent MPC for the control of large-scale trans-

portation networks. Dunbar and Desa (Dunbar and Desa, 2007) also implemented

a distributed MPC for the dynamic management of supply chain networks. Their

results showed that MPC can improve system performance over other approaches.

Military fleet control problem involves systems which are inherently uncertain,

have non-linear dynamics and are subjected to some form of constraints. Uncertain-

ties to a system include random disturbances and noise, which results additive or

multiplicative stochastic variables in the dynamical system. A fundamental question

about MPC is its robustness to model uncertainty and noise, to prevent violation of

the inequality constraints, which presents additional complexity in terms of compu-

tation and analysis. As MPC is very sensitive to even the slightest of disturbance,

new model is required to handle the uncertainty.

Robust MPC and stochastic MPC are selected as two alternatives to taking ac-

count of model uncertainty. For robust MPC method, the optimal control problem at

each time step is typically described as a min-max optimization problem such that all

given constraints are satisfied for all possible uncertainties (Fukushima and Bitmead ,

2003). However, one of limitations of this control design is its conservativeness which
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easily leads to infeasibility. Another one is the heavy computation to find the optimal

solutions, especially for a large-dimension optimization problem.

The shortcomings of robust MPC motivated the development of stochastic MPC

(SMPC). Compared to robust MPC, SMPC takes uncertainty distribution (combi-

nation of mean and variance of the future states and outputs) in to consideration,

and ensure the outputs and states to be restricted to a specified confidence interval

Research on SMPC has been focused on the stochastic formulation of constraints and

objective function. Stability of SMPC are also of interest. Couchman et al. proposed

an SMPC algorithm with guaranteed closed loop stability without consideration of

constraints. The idea of SMPC has been widely used in solving diverse practical

problems, in terms of process control (Van Hessem and Bosgra, 2006; Camacho and

Bordons , 2012), power management (Kumar et al., 2018; Ripaccioli et al., 2010), ve-

hicle path planning (Bichi et al., 2010; Di Cairano et al., 2014; Qu et al., 2015), etc.

In 2018, Tsao et al. presented a stochastic model predictive control algorithm for

solving autonomous mobility on demand problem (Tsao et al., 2018). They proposed

the model for short-term probabilistic forecasts on dispatching and rebalancing de-

mands and formulated stochastic optimization to real-timely distributes the vehicles

to satisfy the demands timely.

However, very limited research has been done regarding the implementation of

SMPC on the operation management of a fleet, especially for a highly-modularized

vehicle fleet. In such case, decisions need to be made concerning resupply, inventory

management, ADR actions scheduling and dispatch. In this dissertation, fleet oper-

ation model is formulated as well as probabilistic objective function and constraints.

A closed loop control architecture is created to yield the operational decisions in real-

time. The aim of this model is to analyze the system-level performance in terms of

the adaptability and responsiveness in demands disturbance and system uncertainty.
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2.3 Agent Based Modeling

ADR actions enabled by fleet modularity also introduces an additional layer in fleet

operation, which dramatically raise the complexity and difficulty in fleet operation,

especially when diverse range of vehicle types are involved. It is hard to formulate

the problem with all details by using a centralized management strategy. Even if

the model is established, it is often intractable to solve because of computation com-

plexity. In order to address this issue, increasing attention have been focused on the

multi-agent systems (MAS), where the decisions are made by multiple autonomous or

semi autonomous problem-solving agents (Adhau et al., 2013; Böhnlein et al., 2011).

Compared to other simulation modeling techniques, i.e., system dynamic (Linnéusson

et al., 2018) and discrete event (Sharda and Akiya, 2012), ABM is more active in re-

acting to the changes in the environment (Maidstone, 2012), which can truly reflect

the situation in military mission environment. Furthermore, the interaction between

agents can also represent the information flows among commanders. In this study, we

customize multiple types of agents for modular fleet to autonomously yield operation

decisions with consideration of main characters in military operations.

Although literature on managing a modular fleet operation through MAS is in-

significant, attention has been received in other areas such as manufacturing op-

erations (Reaidy et al., 2006; Anosike and Zhang , 2009; He et al., 2014) and sup-

ply chain management (Julka et al., 2002; Giannakis and Louis , 2011; Meng et al.,

2017). According to the relationship among agents, the frameworks of MAS can be

broadly classified into three categories: hierarchical master/slave relationships (Jones

and McLean, 1986), heterarchical cooperation (Duffie and Prabhu, 1994; Maione and

Naso, 2001) and hybrid framework (Ryu and Jung , 2003). In 2009, an agent-based

model (Anosike and Zhang , 2009) was applied to the dynamically integrated manu-

facturing systems (DIMS), which consists of a modeling and planning layer, a process

flow layer and a simulation layer, to make planning and machine control decisions to-
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gether with system reconfiguration and restructure. In 1998, Swaminathan (Swami-

nathan et al., 1998) presented a high fidelity model representing supply chain dynam-

ics with implementation of ABM. The agents are classified into structural elements

and control elements. Structural elements contain production agent to manage the

inventory; transportation agent to relocate the product from one agent to another.

The control elements are used to manage inventory stocks, forecast demands, control

material and information flow. Previous studies show the capacity of ABM in decision

making, especially in the complex and time-varying system.

However, most of previous research focused on a single decision maker who oper-

ates (play a game) against environment. However, unpredictability from the enemy’s

reaction is essential and non-negligible in every form of warfare, which leads to an

inability to forecast the outcome of actions or weakly perceived causal links between

the events (Lynch, 2015). Further more, smart system and artificial intelligence are

playing an ever-increasing role in our daily lives. This trend does not spare military

operations. Autonomous vehicles, especially Unmanned Aerial Vehicles, has been

widely used to assist military operation (Landa, 1991; Jose and Zhuang , 2013; Evers

et al., 2014). With no surprise, artificial intelligence will play a significant role in

management of a large-scale fleet of autonomous vehicles in the near future. Given

autonomous decision making system, the goal is to emphasize the synergy between

modularity and autonomy by performing an attacker-defender game between conven-

tional fleet and modular fleet.

The use of games in modeling the relationship between an attacker and a defender

has a long history starting with the work of Dresher (Dresher , 1961). The variety

of applications and research relate to issues in military OR and defense studies is

rich (Kardes and Hall , 2005; Hausken and Levitin, 2009; Zhuang et al., 2010; Paulson

et al., 2016). There are also several studies of attacker-defender game considering

resource dependent strategies. Power (Powell , 2007) used game theoretical approach
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for analyzing the defender’s allocation decisions against a strategic adversary, i.e.,

terrorist group, with stochastic target. Given the distribution of enemy’s behavior,

they derived a pure strategy for defender that leads to a Bayesian Nash equilibria.

Hausken and Zhuang (Hausken and Zhuang , 2011) considered a multi-period game

where the defender can allocate resources to defend its own resources or attack en-

emy’s resources. Similarly, the attacker can also determine the use of their resources

for attacking defender or protecting itself. They proved a strategy pair that leads

to a subgame perfect Nash equilibrium and revealed a correlation between adopted

strategy and enemy’s resources.

Game theory related techniques are popular in the existing literatures to seek the

equilibrium in resource dependent attacker-defender game. However, these applica-

tions mainly focus on single period games or repeated games where the significant

information from previous periods are ignored. Further more, strong assumptions on

previous approach, i.e., single resource type, sequential move, perfect information on

enemy, etc., also make the previous research cannot reflect the operation in real-world

military mission, where the demands and environment are unpredictable (Shinkman,

2014; Lynch, 2015; Xu et al., 2016). Furthermore, the recent study also prove that

the performance of modular fleet is heavily influenced by the optimality of operation

decisions (Li and Epureanu, 2018, 2017a). It is hard to summarize all the strategy

pairs according to the optimization results, which makes the proof of equilibrium in-

tractable. A new method is required to investigate the tactical advantages brought

from fleet modularity.

In this study, an intelligent agent based model (Adhitya et al., 2007; Yu et al.,

2009; Onggo and Karatas , 2016) is created to imitate the human-like decision mak-

ing process. Optimization techniques and artificial intelligence is combined to enable

each player (fleet) real-timely make decisions based on experience and optimize their

decisions accordingly. By selecting one player as modular fleet and another as con-
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ventional fleet, tactical advantages from fleet modularity are revealed by simulating

an attacker-defender game in diverse mission scenarios.

2.4 Reconfigurable Manufacturing System

Flexibility in the RMS structure not only enhances the RMS responsiveness through

upgradable capacity and modifiable functionality, but also provides the opportunity

to boost the utility of machines by using the exact functionality and capacity once

needed (Koren et al., 2017). To dynamically match RMS configurations to demands,

efficient and effective real-time management strategies are indispensable for RMS to

guide system reconfiguration.

There is a rich literature on RMS planning, including process (Bensmaine et al.,

2014; Azab and ElMaraghy , 2007), capacity (Asl and Ulsoy , 2003; Ceryan and Ko-

ren, 2009), and configuration planning (Makssoud et al., 2013; Spicer and Carlo,

2007). RMS configuration planning requires a detailed consideration of operational

actions. Wang and Koren (Wang and Koren, 2012) investigated capacity planning by

adjusting the RMS configuration to optimize the system throughput. Youssef et al.

(Youssef and ElMaraghy , 2007) proposed an optimal configuration selection strategy

to customize RMS configurations to different demand scenarios by optimizing the

similarity between the adjacent configurations to increase the system utilization.

Previous studies that consider the stochastic nature of market demands assume

that the distribution of demand over time is deterministic and given before investment

and planning. However, emerging demands in personalized manufacturing and reman-

ufacturing increase the difficulty of demand forecasting and the diversity of products,

which limit the application of existing RMS solutions. Such diverse and rapidly fluc-

tuating demands require new smart solutions in RMS with real-time decision-making

that is rarely discussed in literature. In the present study, an autonomous RMS is pro-

posed that synergistically integrates modularity and autonomy interpreting manufac-
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turing lines as groups of manufacturing machines which share resources and perform

self-reconfiguration. The autonomy of individual RMS enables the decentralization of

their management. Thus, in addition to the characteristics of existing RMS solutions

(Koren et al., 1999), the proposed approach possesses two additional characteristics,

namely autonomy and teaming (decentralization). Hence, a real-time decentralized

management framework is introduced, where reconfigurable machines are grouped to

form reconfigurable manufacturing lines. An agent-based decision framework is also

proposed to manage the teaming of lines that can share a limited number of machines

or modules, as well as performing autonomous reconfiguration as often as needed.
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CHAPTER III

Model Predictive Control

3.1 Problem Formation

Modular vehicles are vehicles with interchangeable substantial components also

known as modules. The objective of a military operation is to satisfy requirements

from each battlefield by forming vehicle convoys at designated places in a timely

fashion. Considering a main base and several spatially distributed battlefields, each

mission requires a group of vehicles of different types, i.e., convoys, to operate start-

ing at a certain time until finished. The requirements for each convoy depend on

the demand type and size. We quantify these requirements into material capacity,

personnel capacity and firepower. The decision maker needs to determine the con-

voys for each battlefield, and adjust their decisions in real-time in order to react to

the changes in field demands. The base provides the place and infrastructures for

modular vehicle assembly, disassembly and reconfiguration (ADR), as well as module

and vehicle storage. A layout of the fleet operation system is illustrated in Fig. 3.1.

For conventional fleet, assembled vehicles are the only resources to be supplied

and the only decisions made are the number of vehicles to be supplied and dispatched.

For modular fleet, the on-base ADR actions enable the transition between vehicles

and modules, which make the modules act as the only necessary resources that need

to be resupplied. Such characteristics also render the management of the fleet opera-
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Figure 3.1: Layout of fleet operation system

tions more complex because modules must be assembled into vehicles before fulfilling

the attribute demands from battlefields. Time delays from ADR actions, resource

resupply, and vehicle dispatches that are considered in this study also increase the

difficulty in operating the fleet between base and battlefields.

Researchers have proposed several ways to operate a modular fleet under deter-

ministic field demands (Bayrak et al., 2018; Li and Epureanu, 2018), but the manage-

ment of a modular fleet under a highly uncertain environment is still incomplete. To

perform an analysis of the robustness and adaptability to demands disturbances and

noise, we formulated the operation management as an MPC problem to determine

the real-time system responses through repeated system status forecasting.

3.1.0.1 Dynamics of Demand

The high uncertainty of the combat environment leads to disturbances and noise

in the demand attributes. Demand disturbances might come from sudden events, i.e.,

unexpected assault from enemy. In that case, these disturbances can be modeled as
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an impulse signal or ramp signal according to the strike type. In addition, we account

for additional demand attributes that can be triggered by delayed demand attributes.

The triggered demand attributes from field i rfit are calculated by

rfit (t+ 1) = Tefi(t), (3.1)

T =



T11 T21 . . . TQ1

T12 T22 . . . TQ2

. . . . . . . . . . . . . . . . . . .

T1Q T2Q . . . TQQ


, (3.2)

where, T is a demand trigger matrix. Because of the high unpredictability during fleet

operation, the demand trigger matrix T is assumed to be unknown to the decision

makers. Once the extra attributes are triggered, the optimizer only assumes that

these attributes will remain constant and last for a certain time. Thus, we can define

the overall future demands as

r−→t+1 =[rs(t+ 1), rs(t+ 2), rs(t+ 3), ..., rs(t+ tp)]
T

+ d(t+ 1) + n(t+ 1) + rt(t+ 1),

(3.3)

where d(t) is the demand disturbance received at time t, n(t) is the noise from the

prediction at time t, which originates from the stochasticity in operation actions. Note

that, given enough pairs of delayed attributes and triggered attributes, we can also

extract the trigger matrix through a Kalman observer. Machine learning techniques

can also be implemented when the trigger mechanism cannot be modeled as linear.

3.2 Model Predictive Control

In this section, we present the state space model that represents the modular fleet

operation system, and a closed loop to monitor and control the fleet performance.
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First, the discrete time state space model is introduced with consideration of time

delays from certain actions. Next, we present a method to forecast the system states

and a cost function to find the optimal future operation decisions that can minimize

the total operational costs. Finally, we present MPC method to manage the fleet

operation in real-time under an uncertain environment.

Assume there are L different battlefields, where each battlefield receives demand

attributes of Q types at each time. We consider M types of modular vehicles con-

structed by N types of modules. At time t, the status of the system is described

by the number of vehicle stocks Ibv(t) and module stocks Ibm(t) at the base, and the

number of vehicles at field i, Ifiv (t), namely

I
b/fi
v (t) = [I

b/fi
v1 (t), I

b/fi
v2 (t), I

b/fi
v3 (t), ..., I

b/fi
vM (t)]T , (3.4)

Ibm(t) = [Ibm1
(t), Ibm2

(t), Ibm3
(t), ..., IbmN (t)], (3.5)

I(t) = [Ibv(t), I
b
m(t), If1v (t), If2v (t), ..., IfLv (t)]. (3.6)

As time delays exist in the system, the decisions placed at the current time t

only take effect after a certain time delay τ . Thus, current decisions influence system

states in the future. In order to track all system information, the current states also

need to cover the future inventory status, in which all the current decisions will be

finalized. Thus,

s(t) = [It(t), It+1(t), It+2(t), It+3(t)...It+τmax(t)]
T , (3.7)

where, It+τ (t) represents the expected system status at time t+ τ that is received at

time t. During the fleet operation, the actions to be determined are: a) the number

of vehicles to be transported between battlefields and base, o
fifj
v (t); b) the number

of modules to be supplied from global manufacturer to base, obm(t); c) ADR action

orders to be placed, oba(t),o
b
d(t),o

b
r(t). We stack all the operation actions for a single
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time instant into a vector, o(t).

According to the dynamic model created for the centralized control of modular

fleet operations [8], we also create a dynamic model for this mission scenario and

implement this model for system forecasting.

For the number of vehicles of type k at the base

Ibvk(t+ 1) = Ibvk(t)− o
b
dvk

(t) + obavk(t− τavk)−
∑
k′ 6=k

obvkvk′ (t)

+
∑
k′ 6=k

obivk′vk(t− τvk′vk)−
∑
i

obfivk (t) +
∑
i

ofibvk (t− τfib).
(3.8)

For the number of modules of type p at the base

Ibmp(t+ 1) = Ibmp(t)−
∑
k

mvkmpo
b
avk

(t) +
∑
k

mvkmpo
b
dvk

(t− τdvk)

+ormp(t− τr)−
∑
k

∑
k′ 6=k

(mvkmp −mvk′mp
)+obvk′vk(t)

+
∑
k

∑
k′ 6=k

(mvkmp −mvk′mp
)+obvkvk′ (t− τvkvk′ ).

(3.9)

For the number of vehicles of type k at battlefield i

Ifivk(t+ 1) = Ifivk(t)−
∑
x 6=fi

ofixvk (t) +
∑
x 6=fi

oxfivk
(t− τxfi). (3.10)

According to the dynamic Eqns. (3.8), (3.9), and (3.10), the current states are only

influenced by previously-determined action. This indicates that the current actions

change future states. We create input matrices B(τ), which connect the current

actions at time t to states at a later time t + τ . The outputs of system are the

attributes at battlefield i, which are composed of the attributes afi(t) at battlefield

i, and the outputs of system as y(t), namely

afi(t) = [afi1 (t), afi2 (t), afi3 (t), ..., afiQ(t)]T , (3.11)
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y(t) = [af1(t),af2(t),af3(t), ...,afL(t)]T . (3.12)

We can then write the state space model as

s(t+ 1) = As(t) + Bo(t), (3.13)

y(t) = Cs(t) + Do(t), (3.14)

A =



0ns×ns Ins×ns 0ns×ns . . . 0ns×ns

0ns×ns 0ns×ns Ins×ns . . . 0ns×ns

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0ns×ns 0ns×ns 0ns×ns . . . Ins×ns

0ns×ns 0ns×ns 0ns×ns . . . Ins×ns


, B =



B(1)

B(2)

B(3)

...

B(τmax)


, (3.15)

C = [0LQ×(M+N),



Mva 0M×Q . . . 0M×Q

0M×Q Mva . . . 0M×Q

. . . . . . . . . . . . . . . . . . . . . . . . .

0M×Q 0M×Q . . . Mva


,0LQ×(τmax−1)ni ], (3.16)

D =

[
0LQ×ni

]
. (3.17)

In the decision making process, the predictions of future system states and de-

mands are always involved. For example, given the estimated future target demands,

one may want to know what are the consequences of dispatching 20 vehicles to a cer-

tain field. Compared to the classical control methodologies, e.g., PID control, MPC

makes better use of future target information and historical system states. Fig. 3.2

demonstrates the designed framework of the MPC approach to manage the fleet op-

eration.
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Figure 3.2: The framework of the model predictive control algorithm

3.2.1 Future State Prediction

In this study, we assume that the majority of the field demands are deterministic

except for the unpredictable disturbances and noise. The received demands specify

the number of attributes required at each battlefield. Thus, the goal is to control

the fleet operation to match the attributes of the vehicles at all fields to the received

demands. Because of time delays in the operation actions, the operation decisions

made at the current time have to guarantee the matching between the resulting future

system outputs and the corresponding attribute requirements. Inputs to the future

state prediction are the current system states s(t) and the operation actions in the

future o−→t. The future system states y−→t+1 are predictable by iterations, where

y−→t+1 = [y(t+ 1),y(t+ 2),y(t+ 3), ...,y(t+ tp)]
T , (3.18)

o−→t = [o(t),o(t+ 1),o(t+ 2), ...,o(t+ tp − 1)]T . (3.19)

By iteratively substituting Eqn. (3.13) into Eqn. (3.13), we can express the y−→t+1
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as a function of o−→t and s(t) as

y−→t+1 = Ps(t) + H o−→t, (3.20)

P =



CA

CA2

...

CAn


, H =



CB 0LQ×ni . . . 0LQ×ni

CAB CB . . . 0LQ×ni

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CAn−1B CAn−2B . . . CB


. (3.21)

with P being the matrix that connects the future system outputs with the current

system states, and Q being the matrix that connects the system outputs with the

future operation actions.

Operation actions are not always accomplished on time, which involves stochas-

ticity in the matrix B, and that increases the difficulty in forecasting. In this study,

we focus on comparing the performance between modular fleet and conventional fleet.

Thus, all operation actions are assumed to be accomplished exactly on time. In ad-

dition, the mapping between vehicles and modules remains fixed over time, which

makes P , Q be constant matrices. In the next section, we perform a study to inves-

tigate the model performance in reaction to the noise from system state prediction

and demand attributes.

3.2.2 Cost Function

We modeled this MPC problem as a trajectory tracking problem, where we min-

imize the difference between system outputs and attribute requirements. The dif-

ference between this problem and the traditional trajectory tracking problem is in

the different importance of matching errors. In our study, a negative matching error

corresponds to insufficient attributes at the fields and a positive matching error rep-

resents redundant attributes. In operation, insufficient attributes lead to much worse

outcomes than the redundant supplies, which requires a distinct weighting factor.
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Therefore, we design an optimizer to find the actions for the current time and future

time that will minimize the total operating costs during the horizon of prediction

tp. The costs of particular interest are from module supplies, vehicle transportation,

ADR actions and attribute insufficiency. The cost function is designed as

J = cb−→( r−→t+1 − y−→t+1) + co−→ o−→t, (3.22)

where cb−→ represents insufficiency cost, co−→ stores all the costs for actions, cavk , cdvk ,

cvkv′k , cmp . By substitute Eqn. (20) into Eqn. (22), we can formulate the fleet

operation problem as

minimize cb−→( r−→t+1 − Ps(t)) + (co−→− cb−→H) o−→t (3.23)

subject to s−→t+1 ≥ 0 (3.24)

o−→t ≥ 0 (3.25) IM×(M+1)

0

o(t) ≤ P̄ , ∀t (3.26)

y−→t+1 ≤ r−→k+1 (3.27)

Our model is designed to solve modular fleet operations management and design

problems, as well as various operation problems. In the following section, we will

apply our model to optimally schedule the actions in modular fleet operations for

randomly generated military mission scenarios. We then also apply Monte Carlo

analysis to solve the module design problem with constrained design costs.
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3.3 Case Study 1

We start from a simplified operation scenario with three pieces of infrastructures

on the field: one base and two camps. Each piece of infrastructure is connected. In

other words, the vehicles can be transported between any two of them. We will also

consider two types of demand attributes, e.g., firepower and material capacity. The

arrival demand for each camp is modeled as a discrete event, with the rate per hour

as µc1 = 1
6
, µc2 = 1

4
. The demands are randomly generated from two sources, e.g.,

combat and transportation. Combat demands only require the firepower attributes

from the dispatched convoy, acs1 ∼ N(10, 4). Meanwhile, transportation demands

require both personnel capacity and firepower (for scout), acs2 ∼ N(10, 4), acs1 = acs2/2.

Correspondingly, two types of modular vehicles are created, where type 1 is a

combat vehicle with high firepower, and type 2 is a truck with large material capacity.

There are four types of modules that are considered, where modules in types 1 and

2 have main attributes in power and mobility, type 3 is a weapon module, and a

type 4 is a payload module. The composition and attributes of modular vehicles

are shown in Tab. 3.1. We have also created two types of conventional vehicles with

same attributes on them, and compare their performance in a randomly generated

30-day mission scenario in terms of fleet readiness and operation costs. The system

parameter settings are shown in Tab. 3.2. We have supplied a certain amount of

resources to the bases before the mission begins. In particular, 10 vehicles of both

types are supplied for the conventional fleet.

3.3.1 Operation Management

As for the modular fleet, 20 modules of types 1, 2, 3, and 10 modules in type 4

are supplied. We use the lateness of demand attributes during the mission as the

metric to represent fleet readiness. All the decisions are computed by a MATLAB

linear programming solver, which takes less than 2 seconds. A fleet performance
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Table 3.1: Modular vehicle compositions

Modular Vehicle Fire Power Capacity Module Type

1 2 3 4

Type 1 4 1 1 1 1 0

Type 2 0 6 1 1 0 1

Table 3.2: System parameter settings

cav1 = 4, cav2 = 3 τav1 = 4, τav2 = 3

cdv1 = 2, cdv2 = 1 τdv1 = 2, τdv2 = 1

cv1v2 = 2, cv2v1 = 1 τv1v2 = 2, τv2v1 = 1

cb1c1 = cc1b1 = 2 τb1c1 = τc1b1 = 5

cb1c2 = cc2b1 = 2 τb1c2 = τc2b1 = 5

cc1c2 = cc2c1 = 2 τc1c2 = τc2c1 = 5

cb1h = 0.1 τm = 6

cc1h = cc2h = 5 tp = 24

cc1b = cc2b = 104 to = 24

pmax = 10 tmax = 5

comparison is presented in Tab. 3.3.

Table 3.3: Fleet readiness comparison

Fleet Camp 1 Camp 2

Fire Power Capacity Fire Power Capacity

Mod. 47.6 24.4 5.2 0

Conv. 113.2 0 96.2 0
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As the conventional vehicles have identical attributes as modular vehicles, we can

regard the conventional vehicles as a combination of conventional modules with the

same attributes as modules in modular vehicles. Based on the results, a modular fleet

only has 10 more initial weapon module supplies, but the total number of delayed

attributes is reduced by more than a half. In order to explain these results, we

compare the total fleet operational actions in Tab. 3.4. We also present the ADR

action history of the modular fleet in Fig. 3.3.

Table 3.4: Total actions comparison between fleets

Fleet b1 ↔ c1 b1 ↔ c2 c1 ↔ c2 oav odv orv

Mod. 366 539 95 63 49 93

Conv. 306 461 124 N/A N/A N/A

Figure 3.3: ADR actions history during modular fleet operation
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Compared with a conventional fleet, a modular fleet facilitates more transportation

between a base and one of the camps, but less between camps. In addition to the

concern of reducing inventory holding costs, more callback actions originate from the

requirements of fleet reconfiguration. According to the performance of conventional

fleet, the vehicles supplied are insufficient to satisfy all the field demands on time.

Therefore, the extra operation flexibility gained from fleet modularity enables the

modular fleet to process fleet reconfiguration to increase the utility rate of supplied

resources, and match vehicle composition to the demand attributes.

We also compare the total fleet operation costs in Tab. 3.5. The costs we are par-

ticularly interested in are inventory holding costs, ADR action costs, transportation

costs, and delay costs. The results show that for a modular fleet, transportation and

ADR action costs are higher. However, these actions lead to noteworthy reductions

in total holding and delayed demand attribute costs. These results provide a typi-

cal example of how the flexibility gained from modularity brings about a significant

readiness and utility rate boost in fleet operations.

Table 3.5: Operation cost comparison

Fleet Holding ADR Transportation Delay

Mod. 1064 313 5352 77254

Conv. 1900 0 4372 219820

Minimum ADR Action Capacity

All the ADR actions are assumed to be processed in a mixed-model production

line, which has proven to be beneficial in increasing the production efficiency and

reducing the product changeover time. We assume that production capacity is pro-

portional to the number of production lines. Thus, the optimal ADR action capacity
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is an important metric to determine the spaces of bases and the amount of produc-

tion facilities. We present a parametric study in ADR action capacity through 20

randomly generated mission scenarios, and show its influence on fleet readiness in

Fig. 3.4.

Figure 3.4: Fleet readiness varies with changing capacity

Unsurprisingly, an improvement in fleet readiness occurs with increasing ADR

action capacity. As shown in Fig. 3.4, pmax = 5 is the threshold of action capacity

that a modular fleet performance surpasses that of a conventional fleet. pmax = 10

is a saturation point, beyond which, further capacity enlargement only brings an

inconspicuous reduction in delayed attributes. The remaining delayed attributes come

from the stochasticity in demand trigger and time delays in the system, i.e. , with pure

module supplies. It is impossible to have vehicles ready in camps at the beginning of

the mission. Creating a preparation period before the mission or supplying completed

modular vehicles to bases can further reduce the delayed attributes.
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3.3.2 Modular Vehicle Design

We apply Monte Carlo analysis to find the optimal vehicle attribute allocations.

We assume the design costs are proportional to the allocated attributes. Taking

modular vehicles consisting of three modules as an example again, given that modules

in type 1 and type 2 are power and mobility modules, it will cost more to assign the

attributes of capacity and firepower to them. Similarly, it will also be expensive to

add firepower attributes on a capacity module (type 4) and vice versa. Based on

this fact, we assigned cm1afp = 6, cm2afp = 6, cm3afp = 5, cm4afp = 1 and cm1acp =

6, cm2acp = 6, cm3acp = 1, cm4acp = 5.

Given the limited design budget, 1500 groups of modular vehicles with diverse

attributes are randomly generated subject to the constraint

∑
n

∑
l

cmlalmmnal ≤ 15 (3.28)

In order to proceed with the Monte-Carlo analysis, we use these 1,500 groups of

modular vehicles to form a fleet of 1,500 modular vehicles. We operate them using

an identical mission scenario, and record their design costs and fleet performance. In

addition, a 3D surface is generated to fit the simulation results. Fig. 3.5 shows the

relationship between module design and fleet readiness.

Fig. 3.6 shows the projection of the fitted surface on an x-y plane (investment of

modules types 3 and 4) to intuitively show the optimal investment strategy. Based on

the plot, the optimal investment strategy for this mission scenario is 3.7 for designing

module in types 1 and 2, 5 for modules in type 3, and 6.3 for modules 4. It is worth

noting that the design cost per attribute is low when it comes to fire power and

capacity in type 3 and 4 modules respectively. Despite the costs, the budget is not

completely spent on these two types of modules. These results can be explained by

the module sharing effect where all the vehicles require modules in types 1 and 2.
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Figure 3.5: Fitted surface that captures the relationship between vehicle design and
fleet readiness

In other words, the attributes from these two types of modules are shared across all

types of vehicles used in this study. This benefit can be significant in an example

involving a small amount of material transportation. The firepower gained from the

modules in types 1 and 2 might be enough for scort, which reduces the number of

combat vehicles that satisfy transportation demands.

3.4 Case Study 2

3.4.1 System Robustness and Adaptability

In this study, we discuss five types of modular vehicles which will be compared

with five military vehicles. These military vehicles are M1008, HMMWV, M985,

FMTV, and JERRV. A comparison between these conventional vehicles and their
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Figure 3.6: Projection of the fitted surface

corresponding modular vehicles is shown in Fig. 3.7. We quantify the vehicle capaci-

ties in terms of several attributes such as material capacity, personnel capacity, and

firepower. We also assume that the modular vehicles possess identical attributes as

their conventional vehicle counterparts.

The structure of the modular vehicles are summarized in Tab. 3.6, and the map-

ping between vehicles and their attributes is shown in Tab. 3.7. It is worth noting

that the modules in the different types of modular vehicles may exhibit different types

of attributes. For example, the type 4 modules in an M1008 vehicle have personnel

capacity; however, this type of module also provides a significant material capacity

once both of them are assembled into an FMTV-like modular vehicle.

We implemented the model mentioned in the previous section to solve the modular

fleet management problem in another specified mission scenario. In the following

subsections, we first find the steady state of the dynamic system for given constant
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Figure 3.7: An analogy between conventional vehicles and modular vehicles

demands through MPC control. Next, we inject disturbance modeled by step function

to the system after the system reaches the steady state, and then compare the system

response between a conventional and modular fleet.
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Table 3.6: The mapping between the modular vehicles and its modules

Veh 1 Veh 2 Veh 3 Veh 4 Veh 5

Mod 1 1 1 0 0 1

Mod 2 0 0 1 1 0

Mod 3 1 1 2 2 2

Mod 4 1 0 0 2 0

Mod 5 0 1 0 0 2

Mod 6 0 0 1 0 0

Table 3.7: The mapping between the modular vehicles and its attributes

Veh 1 Veh 2 Veh 3 Veh 4 Veh 5

Personnel Capacity 2 6 0 1 2

Material Capacity 4 1 0 10 5

Firepower 1 3 8 0 6

3.4.1.1 System Steady State

We implement five types of modular and conventional vehicles in our model to

form modular and conventional convoys. We start from a simplified scenario, where

there are three types of attributes consistently required from two battlefields, e.g.,

rsi(t) = 600,∀i, t. These attribute demands are identical for both fleets, as well as

the zero initial resource stocks, e.g., s(0) = 0. The maximum ADR action capacity

is set to 5. We also assume the time to finish the assembly of one module is 1 hour,

and disassembly is 0.5 hours. The lead times for on-field transportation and resupply

are 5 hours and 12 hours respectively. Based on these settings, the changes in vehicle

attributes at the two fields are shown in Fig. 3.8, 3.9.

39



Figure 3.8: Reaction to disturbance during conventional fleet operation

Figure 3.9: Reaction to disturbance during modular fleet
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The resupply lead times for vehicles and modules are identical, which is the reason

using the modular fleet reaches the steady state later than the conventional fleet.

The conventional fleet only needs to wait for the newly-arrived vehicles, and dispatch

them to the battlefields. However for the modular fleet, extra time is needed for

ADR actions, and the constraint arising from ADR capacity makes this process even

longer.

Disturbance Response

After both the conventional and modular fleets enter a steady state, we create a

disturbance to the system, which is 10 unexpected fire power attribute requirement

for battlefield 1, namely, df1a3 = 10. The system responses are shown in Fig. 3.10, 3.11.

These results show that a modular fleet has a better responsiveness to the impulse dis-

turbance than conventional fleet, where the maximum attribute overshoot is around

100, which is only half of what is experienced in a conventional fleet. The resettling

time for the modular fleet is also dramatically less than the conventional fleet. In ad-

dition, because vehicles always have multiple types of attributes, the sudden change

in a single type of target demands induce also fluctuations of other types of demands.

For example, the demand attributes in personnel and material capacity also fluctu-

ate significantly once the disturbance in fire power is injected. Because conventional

vehicles can only be transported between bases and battlefields, this in turn provides

fewer choices for convoy formation.

Compared to conventional fleets, these influences are much quieter for the modular

fleet because the time to accomplish on-base ADR actions is significantly shorter

than the resupply lead times. Thus, modularity provides the fleet with the ability

to reconfigure itself to satisfy the mission requirements. Fig. 3.12 demonstrates the

records of assembly, disassembly and reconfiguration actions once the systems detect

disturbances.
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Figure 3.10: Reaction to disturbance during conventional fleet operation

Figure 3.11: Reaction to disturbance during modular fleet operation
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Figure 3.12: History of vehicle assembly, disassembly and reconfiguration actions

The results from Fig. 3.12 show that the modular fleet starts disassembly part of

vehicles of type 4 that do not have firepower. These actions release the spare power

modules and mobility modules. At the same time, the resupply orders for modules

of types 1, 3, 4, and 6 are placed, which are the necessary modules for vehicles with

strong fire power. These amounts of harvested modules become essential source for

the reconfiguration work. Reconfiguration work is initiated after the accomplishment

of disassembly jobs, which mainly covers the transition from type 2 to type 5 vehicles,

and from type 4 to 3. Based on Tab. 3.7, both of these reconfiguration actions will

lead to a boost in fleet fire power to react to the disturbance. On the contrary,

the conventional fleet can only wait for the vehicles from resupply to satisfy the

unexpected demand, and order more vehicles to compensate the triggered battlefield

demands.
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Noise Response

The uncertainty during the fleet operation creates errors in forecasting the behav-

ior of the system and demand attributes. For example, the increased transportation

time between the base and battlefields in bad weather conditions can lead to an ad-

ditional attribute, which leads to the demand underestimations. In this study, we

combine all the uncertainty factors as a noise signal which is modeled as uniformly

distributed random numbers, e.g., nfiaq ∼ U(0, 5),∀q, i. In Fig. 3.13, 3.14, the perfor-

mance of two fleets are compared for an environment with noise.

Figure 3.13: Reaction to disturbance during modular fleet and conventional fleet op-
eration

Based on the results shown in Fig. 3.13, 3.14, the modular fleet again has a

higher reaction speed than the conventional fleet, where the flexibility gained from

on-base ADR actions leads to more reduction in the backlogged demand attributes

than the conventional fleet. Once the noise is injected, we noticed that a lot of

modular vehicles with high material capacities are reconfigured to other types of
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Figure 3.14: Reaction to disturbance during modular fleet and conventional fleet op-
eration

vehicles. This reconfiguration work leads to a significant reduction in the backlogged

attributes in personnel capacity and firepower without a markedly loss in material

capacity attributes. After the first resupply arrives, the maximum delayed attributes

in the modular fleet is less than 20, which is half compared to the conventional fleet.

These observations show that ADR actions enable the modular fleet to achieve real-

time fleet reconfiguration to readily react to noise from the fields rather than waiting

for vehicles from returning convoys or resupplies as in the conventional fleet.

3.4.2 Stability Margin

Improper operation decisions lead to stacks of demand attributes. The system

becomes unstable once its capacity cannot satisfy the stacked demands as well as

its triggered demands. In this sense, the stability of the fleet operation depends on

the trigger matrix, the ADR action capacity and the magnitude of the disturbance.
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Figure 3.15: Peak values of convoy attribute changes with the various demand im-
pulses

Research on stability and optimality of constrained MPC with a quadratic cost func-

tion has been going for many years. For example, a direct method is commonly used

to analyze the stability of linear constrained systems (Mayne et al., 2000). In 2010,

Vesely et al. designed a robust MPC for a linear system with input constraints, and

also verified the quadratic stability by using linear matrix inequalities (Veselỳ et al.,

2010). However, the distinct meanings in the matching errors of this problem disable

the quadratic formulation, and also theoretical proof of system stability. In this sec-

tion, we present the implementation of our model to directly compute the stability

margin of the system.

The peak attributes of the total field demands increase with augmenting demand

impulses, because a higher amount of impulse requires more resupplies and a longer
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ADR action time, which also triggers additional demand attributes. We generated

diverse combinations of impulses in the range between 0 and 200 with an interval

of 20, and the computed stable and unstable regions are shown in Fig. 3.15. For

this specific mission scenario, it can be observed that the system is more sensitive

to the firepower disturbance than other disturbances. For example, the system is

stable once the magnitude of injected fire power disturbance is below 100, where the

stability limits for material capacity and personnel capacity are 20 and 80 respectively.

This observation can also verify the the results in noise response, where the material

capacity is the latest delayed attributes to be fulfilled. Slight convexity is also noticed

in the surface, which indicates that less effort is required to overcome a combination

of different types of disturbances than a single type. As for a single type demand

disturbance, it is more likely that the total attribute capacity is exceeded, which

incurs the resupplies and long waiting time. In contrast, for a combination of multiple

types of demands attributes, we can increase the proportion of multi-purpose vehicles

to satisfy the different types of disturbance simultaneously.

3.5 Stochastic Model Predictive Control

As commanders of fleet always need to react to enemy’s decisions, uncertainty

commonly exists in the military fleet operation, which may origin from

1. unexpected delays vehicle dispatch and return

2. damage during operation

3. enemy’s unexpected strike

In the previous section, all the uncertainties are treated as disturbance, which can

only be sensed a short time ahead of the mission. However, it is also possible to model

the distribution of uncertainties, i.e., trigger matrix, fluctuation of inventory stocks,
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vehicle damage and etc, as additive or multiplicative stochastic variables. There is

no doubt that these additional information can lead to more considerable decisions.

Thus, a stochastic dynamical system is firstly created to capture the estimable un-

certainty during fleet operation. Next, a suitable controller is required to manage

the dynamics of the stochastic system. A fundamental question about MPC is its

robustness in reacting to model uncertainty and noise (Bemporad and Morari , 1999).

To seek a less conservative solution with desired computational speed, we implement

ideas of SMPC and create a chance-constrained model to generate operation deci-

sions in real-time with considering uncertainty. Stability constraints are also created

to avoid system instability.

With consideration of fluctuations of vehicle stocks w and received demands v at

battlefields, we follow the previous work and create a stochastic dynamical system to

capture the uncertainty of the system (Ripaccioli et al., 2010; Tsao et al., 2018). The

states s of system include vehicle stocks at battlefields, vehicle stocks and module

stocks at the base. The outputs of system y is the remaining demands measured

by attributes of convoy at battlefields. The system dynamics are dominated by the

following equations.

For the number of vehicles of type k at the base

Ibvk(t+ 1) = Ibvk(t)− o
b
dvk

(t) + obavk(t− τavk)−
∑
k′ 6=k

obvkvk′ (t)

+
∑
k′ 6=k

obivk′vk(t− τvk′vk)−
∑
i

obfivk (t) +
∑
i

ofibvk (t− τfib).
(3.29)
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For the number of modules of type p at the base

Ibmp(t+ 1) = Ibmp(t) + ormp(t− τr) +
∑
k

mvkmpo
b
dvk

(t− τdvk)

−
∑
k

mvkmpo
b
avk

(t)−
∑
k

∑
k′ 6=k

(mvkmp −mvk′mp
)+obvk′vk(t)

+
∑
k

∑
k′ 6=k

(mvkmp −mvk′mp
)+obvkvk′ (t− τvkvk′ ).

(3.30)

For the number of vehicles of type k at field i

Ifivk(t+ 1) = Ifivk(t)−
∑
x 6=fi

ofixvk (t) +
∑
x 6=fi

oxfivk
(t− τxfi) + wfik (t). (3.31)

For the amount of remaining attributes of type q at field i

Ifiaq(t+ 1) =
∑
q′

Tq′q(t)I
fi+
aq′

(t)−
∑
k

mvkaqI
fi
vk

(t) + rfiaq(t) + vfiq (t), (3.32)

where, Ifi+aq (t) is the positive part of the remaining demands at time t. By denoting

the negative part as Ifi−aq (t), we have

Ifiaq(t) = Ifi+aq (t)− Ifi−aq (t) (3.33)

By denoting system inputs as u(t) = [o(t),y+(t − 1),y−(t − 1)], the state space

model can be expressed by

s(t+ 1) = As(t) + Bu(t) + Ew(t), (3.34)

y(t) = Cs(t) + Du(t) + F [v(t) + r(t)], (3.35)

As a first step, prediction of future state is conducted for making decisions in this

time-delayed system. Given the current system states s(t) and operation actions in
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the future u−→t, future system states y−→t+1 are predictable by iterations, where

y−→t = [y(t),y(t+ 1),y(t+ 2), ...,y(t+ tp)]
T , (3.36)

u−→t = [u(t),u(t+ 1),u(t+ 2), ...,u(t+ tp)]
T , (3.37)

w−→t = [w(t),w(t+ 1),w(t+ 2), ...,w(t+ tp − 1)]T , (3.38)

v−→t = [v(t),v(t+ 1),v(t+ 2), ...,v(t+ tp)]
T . (3.39)

By iteratively substituting Eqn. (3.34) into Eqn. (3.35), we can express the y−→t+1

as a function of u−→t and s(t), namely

y−→t = Ps(t) + Hu−→t + Gw−→t + L( v−→t + r−→t), (3.40)

P =



C

CA

CA2

...

CAtp



,H =



D 0 . . . 0 0

CB D . . . 0 0

CAB CB D . . . 0

. . . . . . . . . . . . . . .

CAtp−1B CAtp−2B . . . CB D



, (3.41)

G =



0 . . . 0 0

CE . . . 0 0

CAE CE . . . 0

. . . . . . . . . . . .

CAtp−1E CAtp−2E . . . CE



,L =



F 0 . . . 0

0 F . . . 0

. . . . . . . . . . . .

0 0 . . . F


. (3.42)
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with P being the matrix that connects the future system outputs with the current

states, and Q being the matrix that connects the system outputs with operation

actions. G,L are matrices connecting system outputs to uncertainties from stocks

and demands respectively.

By involving auxiliary variables, we consider both positive part and negative part

of output, which are corresponding to the overused attributes and insufficient at-

tributes delivered by dispatched convoy. Again, we assume the attributes insufficiency

leads to a much worse outcome than attribute redundancy, thus the assigned cost for

insufficient attributes is much higher than that of overused attributes. Similar as

previous approach, the objective is to minimize unfulfilled demands with considering

the costs from resource supply, overuse and operation actions. The problem can be

formulated by a linear programming model.

min
y+/−(τ),o(t)

τ=t+tp∑
τ=t+1

[cTb y
+(τ) + cTo y

−(τ)] +

τ=t+tp∑
τ=t

cTo o(t) (3.43)

s.t. y(τ) = y+(τ)− y−(τ), ∀τ (3.44)

Ibvk(τ), Ibmp(τ), Ifivk(τ) ≥ 0, ∀τ (3.45)∑
k

[obavk(τ) + obdvk(τ) +
∑
k′ 6=k

obv′kvk(τ)] ≤ P̄ , ∀τ (3.46)

o−→t, y
+(τ), y−(τ) ≥ 0, ∀τ (3.47)

where cb/co represents attribute insufficiency/redundancy costs, co stores all the costs

for actions. Constraint (3.44) ensures the balance between auxiliary variables and

outputs; (3.45) ensures that all vehicle stocks and module stocks are non-negative;

(3.46) ensures that the on-base ADR actions are always scheduled according to the

limited capacity; (3.47) ensures that all the operation actions and auxiliary variables

are non-negative.

However, the model above only targets the minimization of total operational cost,
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where system instability is not included. As insufficient attributes may trigger addi-

tional attributes requirements, the system will never meet the demands if it cannot

even fulfill the triggered demands. In that case, the demands keep exploding and

make system unstable, i.e.

T (Ifi+a (τ) + dfia (τ)) ≥MvaI
fi
v (τ), ,∀τ ∈ [t, t+ tp] (3.48)

where dfia (τ) is the demands received at time τ . However, this condition is shown to

be too strict to determine the system stability. For example, a battlefield without

any stationed vehicle receives some unexpected demands with significant magnitude,

Eqn. (3.48) will be violated with no doubt at that time. As time delays commonly

exist in the operation system, the triggered demands cannot be satisfied before the

vehicle relocation is done. But the system may still remain stable because of the

sufficient stocks available at the base. Thus, this condition cannot be a sufficient

condition to evaluate the system stability. To consider that, we relax the constraint:

the triggered attributes need only to be bounded at the end of planning horizon,

namely

Tyfi(t+ tp) ≤MvaI
fi
v (t+ tp), (3.49)

To handle the stochasticity in dynamical system, stochastic MPC takes uncer-

tainty into consideration and in particular uses information on a combination of mean

and variance of the future output. By taking expectation of Eqn. (3.34) (3.35), the

mean of states and outputs can be described by

s̄(t+ 1) = As̄(t) + Bu(t) (3.50)

ȳ(t) = Cs̄(t) + Du(t) + Fr(t) (3.51)
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Next, the propagation of variance during planning horizon is also necessary for

implementing SMPC. According to Σx = E[(x − x̄)(x − x̄)T ]. The propagation of

variance can be expressed by

Σs(t+ 1) = AΣs(t)A
T + EΣwE

T (3.52)

Σy(t) = CΣs(t)C
T + FΣvF

T (3.53)

Based on Eqn. (3.32), variance from the positive part of outputs also propagate to

next time instant. In this study, we assume these amounts of variance are negligible,

because the delayed demands (positive part of outputs) are minimized during fleet

operation, and hence are insignificant compared to the uncertainty from demands

and on-field stocks. By substitution, the expectation and variance of states and

outputs over the planning horizon can be derived, which are important information

in constraint relaxation. Model expressed by (3.43) can be reformulated as

min
ȳ(τ),o(t)

τ=t+tp∑
τ=t+1

[cTb ȳ
+(τ) + cTo ȳ

−(τ)] +

τ=t+tp∑
τ=t

cTo o(t) (3.54)

s.t. p(
∑
q′

Tqq′yq′(t+ tp) ≤
∑
q

MvkaqIvk(t+ tp)) ≥ 1− α,

⇒
∑
q′

Tqq′ ȳq′(t+ tp) ≤
∑
q′

Mvkaq′
Īvk(t+ tp))− (3.55)

(2
∑
q′

Tqq′Σyq′
)
1
2 erf−1(1− 2α), ∀q

p(Ibvk(τ), Ibmp(τ), Ifivk(τ) ≥ 0) ≤ α

⇒ Īx(τ) ≥ (2ΣIx(τ))
1
2 erf−1(1− 2α), ∀τ (3.56)∑

k

[obavk(τ) + obdvk(τ) +
∑
k′ 6=k

obv′kvk(τ)] ≤ P̄ , ∀τ (3.57)

ȳq(τ) + (2Σyq)
1
2 erf−1(1− 2α) = ȳ+

q (τ)− ȳ−q (τ), ∀τ (3.58)

ot, ȳ
+(τ), ȳ−(τ) ≥ 0. ∀τ (3.59)
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All the state-related and output-related constraints are now chance constraints,

which allow them to be violated by a certain probability α. Constraint (3.44) which

specifies the balance between auxiliary variables and outputs is replaced by con-

straint SMPC-constraint-4. The idea is to reduce the insufficiency to a certain confi-

dence interval once fluctuation of attributes are considered. This modeling approach

further suppresses the variance propagated from the positive part of previous out-

puts to make the assumptions reliable. Moreover, slack variables are created at con-

straint (3.55), (3.56) to guarantee feasibility of the optimization. The corresponding

costs for auxiliary variable are also created at objective function to ensure the aux-

iliary variables are minimized. For simplicity, these terms are not expressed in the

optimization model.

3.6 Case Study 3

The model is implemented in a simplified mission scenario: only 1 base and 1 camp

are considered. Vehicles used in this case study are same as Fig. 3.7. In this case

study, robustness boost in fleet operation SMPC is emphasized through comparison

firstly. Then, modular fleet and conventional fleet performances are compared in

different conditions: resupplies are allowed and not allowed. Finally, we also vary the

available ADR action capacity to investigate its impact on modular fleet operation.

We assume the demands stochastically arrived to the fields in random amount

and will last over a period, which implies the length of operation required to satisfy

the demands. Each demand is modeled as a combination of two step functions, where

each of them generates the required attributes in a certain type. The magnitude of

the demand is created following Gaussian distribution, i.e.

rf ∼ N (200, 1502) (3.60)

rp ∼ N (250, 1252) (3.61)
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rm ∼ N (280, 1402) (3.62)

In previous scenario, demands will last until new demands arrive. It represents

the scenario that troops serve certain area. In contrast, demands in this study are

assigned with a significantly large variance and it will disappear once mission is end,

which can be regarded as a stochastic assault to the enemy. Fig. 3.6 provides an

example of generated 20-day demands.

Demands generated for 20-day mission
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Figure 3.16: Stochastically generated demands for 20-day operation

Trigger matrix can be estimated through fitting of historical data. In this study,

it is assumed to be

T =



0.02 0.01 0.03

0.02 0.02 0.02

0.01 0.005 0.03


.
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The fluctuation of vehicle levels at battle field w(t) and demands v(t) follows

wk ∼ N (0, 12), (3.63)

vq ∼ N (0, 102). (3.64)

The planning horizon tp is 24 hours and time required for ADR actions is the

summation of the time required on processing each part of vehicles.

τak =
∑

iMvkmpτami , (3.65)

τdk =
∑

iMvkmpτdmi , (3.66)

τkk′ =
∑

i[(Mvkmp −Mvk′mp
)+τdmp + (Mvk′mp

−Mvkmp)
+τamp ] (3.67)

where, time required for module assembly τam and disassembly τam are 1 hour and 0.5

hour respectively. Lead time for resupply is 12 hour and vehicle relocation between

battlefield and base is 1 hour. We assume the cost of action is proportional to the

time required to accomplish the action. Action costs are used as a reference for costs

in other types. In this study, cost for module resupply is assigned as 50 times of action

cost. Cost assigned for overused and insufficient attributes is 100 times and 10000

times of action cost respectively.

3.6.1 Fleet Performance with SMPC

In this section, modular fleet operation history is selected as an example to show

the improvement by using SMPC. Given sufficient resources, we first compare the

vehicle level at battle field in Fig. 3.17.

As can be seen from the plots, vehicles levels change quickly in reacting to the

demands. Once demands are perceived, vehicles are dispatched to field intensively

and sent back to base once mission is over. By using MPC approach, the uncertainty
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Figure 3.17: Comparison of fleet performance between MPC and SMPC

of vehicle stocks make the on-field vehicle level fluctuation around x-axis. Even MPC

refresh its decisions at each time, the stochasticity in vehicle levels still dramatically

incur stock insufficiency at battlefield, which cannot be compensated because of the

delays in operation actions. In such a case, the MPC may not find feasible solutions

because of the constraint violation, i.e., no negative stock level is allowed.

For the fleet managed by SMPC, all the vehicles stocks are mainly above zeros,

except for several negative values occurring around Hour 10 and Hour 370. Compared

to the length of mission, these insufficiencies are inconspicuous, which follows the idea

of SMPC that constraints are allowed to be violated but in a tolerable probability.
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Tightening constraints by SMPC in the fleet operation is equivalent to the safety level

in the inventory management, to avoid constraint violations (backorders) based on

the probability distributions of states (stock levels). The insufficiency of vehicles can

also be further reduced by decreasing the tolerance level.

3.6.2 Fleet Comparison with Supply

Initially, each fleet is provided with 12 of vehicles in all types to battlefield. Re-

supplies are allowed to avoid system instability and minimize the amount of delayed

attributes. After stability is almost guaranteed, SMPC outputs operational decisions

to minimize the amount of resupplies for minimizing acquisition cost.

No unstable case is observed in 100 simulations with randomly generated demands.

Because trigger matrix T is known, SMPC can approximate the amount of demands

to be triggered in the short future, thus, the amount of resources to be resupplied can

also be easily evaluated. With unlimited resupplies, conventional fleet will always stay

stable by acquiring required vehicles, the only reason of losing stability in modular

fleet operation dues to the lack of capacity.

Fig. 3.6.2 compares the delayed attributes for both fleets. Based on the plots,

both of fleets have a resource insufficiency period at the beginning of the operation,

which incurs augmented demands by trigger mechanism in the following period. Once

resupplies arrived, delayed demands of conventional fleet declined sharply to zeros,

however, modular fleet takes a longer time to return to zeros, which origins from the

time required in ADR actions to form a vehicle convoy from modules. After resupply

arrives, delayed demands for both fleet are negligible.

The amount of resupplies are also compared in Fig. 3.6.2. Although vehicles are

the only resources to be ordered by conventional fleet, we also regard conventional

vehicles as a combination of ’conventional modules’ to make comparison fair.

The results indicate a larger resource demanded by conventional fleet than by
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Figure 3.18: Comparison of delayed attributes between different fleets with unlimited
resupply

modular fleet to avoid system instability and attribute insufficiency. Higher standard

deviations are also observed in the resource requirements during conventional fleet

operation, as well as the outliers of resupply. After fleet modularity, ADR actions

facilitate resource sharing by swapping modules, thus promote the resource utility.

The fleet reconfiguration can increase the flexibility in reacting to the demands to

make the amount of supplies more predictable and stable.

3.6.3 Fleet Comparison without Supply

In this case, each fleet is provided by 30 of each type of vehicles to battlefield

initially. Without any following resupplies, the fleet performance are compared in 100

randomly generated scenarios. As one of important metrics, the amount of delayed

attributes is first compared in Fig. 3.6.3.

Based on the results, the mean value of delayed attributes of modular fleet is
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Figure 3.19: Comparison of resupplied resources between different fleets with resupply

less than that of conventional fleet in both type of attributes. The value of outliers

of conventional fleet is also higher than that of modular fleet, especially in material

capacity. The capability of fleet reconfiguration enable modular fleet to real-timely

morph itself to have a better convoy to fit the demands.

By gradually reducing the amount of initial stocks, the unstable margin can be

sketch by checking the magnitude of demands. As shown in Fig. 3.21, the delayed

demands increase with reducing initial supplies for both fleet. However, conventional

fleet reacts more sensitively to the reduction in stocks, i.e., significant value of delayed

material capacity at Hour 50. The triggered attributes of modular fleet are markedly

less than that in conventional fleet, as well as the increment of delayed demands

among adjacent vehicle stocks. Modular fleet can always morph itself to slow down

the trigger or satisfy the demands quicker. As a sequence, conventional fleet loses its

stability once the initially supplies reach to 27 vehicles, but modular fleet remains
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Figure 3.20: Comparison of suffered insufficiencies between different fleets without
resupplies

stable.

Pie charts in Fig. 3.22 compare the capacity share for ADR actions. The plots in-

dicate two different strategies in fleet operation: 1) once sufficient resources are given,

fleet prefers to use reconfiguration actions frequently to rapidly group up a desired

convoy; 2) once the resources are limited, SMPC decide to increase the proportion of

disassembly action. Once the required modules for reconfiguration actions may not be

available, as a solution, fleet has to disassemble existing vehicles to harvest necessary

modules. Although it may also provide qualified convoy, there is no doubt that re-

configuration can save much more time than disassembly-reconfiguration-reassembly.

The extended operation time incurs the slower responsiveness to demands and a

higher triggered demand.
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Figure 3.21: Comparison of attribute insufficiency and stability with changing initial
supplies

3.6.4 ADR Action Capacity

ADR actions capacity determines the maximum work flow during modular fleet

operation. It is one of the essential factors that dominates flexibility in modular

fleet operation. Given 30 vehicles on battle field, we also vary the available capac-
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Figure 3.22: Capacity allocation in different available working capacity

ity to investigate its influences in fleet performance. After 100 randomly generated

simulations, the averaged delayed attributes are plotted in Fig. 3.6.4.

A decreasing trend can be observed through the plots. A larger capacity always

provides system a higher flexibility in reconfiguration. It allows multiple vehicles to

be processed in the same time rather than queuing up. This result can also provide

the decision support for designing the size of workshop and specifying the minimum

assembly/disassembly speed that can be reach to a desired fleet performance.

3.7 Summary

In this section, a discrete dynamical system that represents the modular fleet

operation is presented. An MPC method is also implemented to make real-time op-

erational decisions according to the system status and upcoming field demands. Our
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Figure 3.23: Amount of delayed attributes changing with different capacity

results indicate a significant boost in adaptability due to the flexibility gained from

on-field ADR actions. Furthermore, we also consider the predictable uncertainty in

fleet operation. To find the operation decisions, we first build a stochastic dynamical

system to capture the dynamics in fleet operation with uncertainty, and then propose

an approach to manage the dynamics of stochastic system through SMPC. Compared

to MPC, SMPC boosts the robustness without sacrificing the computation efficiency

and significantly reducing violations of constraints.

By contrasting the fleet performance, conventional fleet shows a higher needs of

resources to avoid delayed attributes. If no supply is allowed, modular fleet performs a

lower delayed attributes given similar level of resources. ADR actions endow modular

fleet with additional flexibility in operation. Available ADR action capacity also

closely connects to the fleet performance. The modular fleet exhibits better resilience

and robustness when it comes to dealing with unexpected disruptions and noise.
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CHAPTER IV

Intelligent Operation System

4.1 Problem Formulation

The mission scenario is created based on the Joint Tactical Transport System

(JTTS) which is a vehicle demonstrator program in US Army Tank Automotive

Research, Development and Engineering Center (TARDEC). Vehicle fleet operations

is at a certain area, named as field. A field contains a main base and N camps. An

example of field layout is shown in Fig. 4.1. Main base provides the space to receive

and store the resources (vehicles and modules) supplied from global manufacturer. For

modular fleet operation, base also provides the equipment for ADR actions. Camps

are close to the battle field, which are the places to receive the demands.

In reacting to the demands, a convoy, which is a group of vehicles, is required to be

customized and dispatched to camps to satisfy the demands. Operation actions also

vary according to the type of fleets. For a conventional fleet, the operation actions to

be determined include

1. vehicle resupply

2. vehicle relocation between different locations

3. vehicle convoy composition.
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Figure 4.1: Mission scenario in JTTS

Once fleet modularity is considered, modules are the only resources required for

operating a modular fleet. The actions to be determined include

1. module resupply

2. vehicle relocation between different locations

3. ADR actions

4. vehicle convoy composition.

Compared to conventional fleet, modular fleet needs to achieve transition from

modules at supplier to vehicles at camps, which increases the difficulty in fleet opera-

tion. This process can be analogized as a completely dynamic supply chain, as shown

in Fig. 4.2.

Although the similarity between the modular fleet operation and civilian appli-

cations is significant, there are marked differences between operating a military fleet
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Figure 4.2: Analogy between the military fleet operation and supply chain

and a commercial fleet. For example, the enemy’s actions are the main source of

damage to the military fleet. The critical damage of modules/parts incur the loss

of the resources. The uncritical damage also leads to vehicle repair or maintenance,

which increases the uncertainty of vehicle usage. The stochasticity of damage creates

additional complexity in management of a military fleet. Taking the modular fleet

operation as an example, the operation process is summarized in Fig. 4.3.

To operate a highly modularized vehicle fleet in the complicated military mission

scenario, it is required to make real-time decisions on vehicle dispatch, ADR action

scheduling and module resupplies. A mathematical model is required to be formulated

to analyze field situations and provide suggestions on operation decisions based on

the current inventory status and camp demands. By realizing operation decisions

into a military mission simulation model, fleet performance can be captured by using

the indices including fleet readiness, operation cost, and total supplied resources.

4.2 Agent Based Model

To satisfy these requirements, an ABM is customized, which can be used for

demand forecasting and operation decisions making. With consideration of com-

putational efficiency and restriction of communication on the field, multiple types

of agents are created to represent decision makers with different functionalities, in

terms of camp agent, base agent, and supply agent. Each of them can communi-
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Figure 4.3: Process flow in modular fleet operation

cate with adjacent agents and make decisions in a centralized manner. According to

the priority in perceiving the combat information, a hierarchical framework is formu-

lated to connect a number of agents structured in a master-slave relationship. The

control decision is generated from agent and sent downward to their subordinates.

Correspondingly, status reports flow bottom-up to a higher level supervisory agents.

Fig. 4.4 demonstrates the information flow among agents.
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Figure 4.4: Diagram of the agent-based model for modular fleet operation

The agents make decisions in a predetermined direction. First, camp agent makes

decisions on the convoy compositions and dispatch dues. Then, given the convoy

dispatch schedule, base agent analyzes the inventory status and plans for the on-base
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ADR actions and vehicle dispatch schedule to guarantee the vehicle sufficiency on

camps. Finally, based on the usage of vehicles and modules, supply agent forecasts

the future resource demands and calculates the resupply orders. Several assumptions

are used to simplify this problem with reserving a reasonable level of model fidelity:

1. ABM only knows the demands one month ahead.

2. The records of actual resource consumption are accurate and accessible to all

agents.

3. Insufficient modules will be back ordered.

4. Assembly/disassembly time for the vehicles is the sum of the time required for

each module.

5. All the scheduled actions will be finished exactly on time.

6. Sequence of vehicle ADR actions is ignored.

4.2.1 Camp agent

As the upstream agent of the framework, camp agent needs to determine the

dispatch order in reacting to the received demands assuming that all the orders are

achievable by the downstream agents. Demands from military mission scenario are

classified into two aspects, which are convoy requirements ac and vehicle require-

ments av. Convoy requirements specify the requirement for overall convoy, which

are generally additive attributes carried by vehicles, e.g., personnel/material capac-

ity, firepower, etc. In contrast, vehicle requirements are mainly from environmental

constraints, e.g., vehicle weight, tire type, threat level, and terrain capacity.

Taking camp n as an example, the formed convoy to camp n is denoted as dcn(t),
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and the received convoy attribute requirements as a vector a, where

dcn(t) = [dcnv1 (t), dcnv2 (t), dcnv3 (t), ..., dcnvNv (t)]T (4.1)

a = [ac1 , ac2 , ..., aca , av1 , av2 , ..., avb ]
T (4.2)

To avoid the myopic decisions, the camp agent usually makes decisions not only

for the current time, but also for the short future. The objective of convoy formation

is to optimize fuel economy, demand fulfillment, acquisition cost, convoy weight, etc.

The convoy dispatch problem can be generalized as an optimization problem:

minimize
dcn (t)

∑
n

wT
cnd

cn(t),

subject to (a)f cα(dcnk (t)) ≥ acα , ∀α

(b)f vβ(dcn(t)) ≥ avβ , ∀β,

(4.3)

where, tp is the planning horizon. wcn is a vector represent interested costs for all

types of vehicles. f cα is a scalar function to evaluate the convoy attributes of type α.

f vβ is a scalar function to evaluate the vehicle attributes of type β. Constraints (a)(b)

ensure that both convoy and each vehicle of the convoy satisfy the requirements. In

this study, referring to the objective used in previous research (Bayrak et al., 2018),

objective is considered as fuel economy and constrained by order fulfillment and

terrain condition.

4.2.2 Base agent

Given convoy dispatch schedule, dcn(t) and the associated operation period tcn(t)

to satisfy the demands, the expected number of vehicles operating in the battle field
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can be denoted as Dcn(t), which is the demand, as shown in Eqn. 4.4.

Dcn(t) =
∑
t

dcn(t), ∀t ∈ tcn(t). (4.4)

Base agent aims to plan ADR actions to ensure all the dispatch decisions can be

achieved. However, vehicle damage and maintenance commonly exist during opera-

tion, which require additional time to reuse the damaged vehicles. In other words,

the time of vehicle recovery can be seen as an extension of field operation. And its

stochastic occurrence raises the difficulties in estimating vehicle demands. Based on

the fact that vehicle damage and maintenance only occur during convoy operation,

additional vehicle usage highly dependent on the vehicle dispatch schedule. In this

study, the demands are forecasted through Auto-regressive Exogenous (ARX) model

(Pandit and Wu, 1983). Take the vehicle in type k as an example, the expression of

ARX model is

ek(t) =a1ek(t− 1) + ...+ anaek(t− na)+

b0

∑
n

dcnk (t) + ...+ bnb
∑
n

dcnk (t− nb),
(4.5)

where, ek(t) is the extra vehicle usage from repair and maintenance at hour t. ai

and bj are the parameters to be determined by fitting the historical data. na and nb

specify the review horizon of historical data in additional usage and dispatch order.

With continuously training by using latest field information, agent can real-timely

adjust the model in reacting to the time-varying scenario and enemy’s actions. To

guarantee the robustness of production planning (Ouelhadj and Petrovic, 2009), the

predicted hourly demands are compiled into the daily demands. The goal is to manage

the inventory stocks to ensure the sufficiency of vehicles for the demand in the next

day.
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Thus, an effective management strategy is required to efficiently operate the fleet

and rapidly respond to the stochasticity. In this study, two methods are proposed

to achieve real-time inventory management. Two strategies are named as Empiricist

which is driven by heuristic rules and Optimizer which is based on the mathematical

optimization. Results are compared between different management strategies to show

their impacts on the overall fleet performance.

4.2.2.1 Empiricist

Empiricist represents a rule-based approach. No firm schedule is generated in

advance and all the decisions are made to the unfulfilled field demands and inventory

status. Specifically, at the beginning of each day, Empiricist creates a set of spare

vehicles s+ based on the vector v+ = (sv − dv)
+, and a remaining demand set s−

based on the vector v− = (dv−sv)
+. Additional two sets are also defined for decision

making: s−a for the demands to be satisfied by assembly, s−r for the demands to be

satisfied by reconfiguration.

According to the popular sequencing rules used by the industry (Nahmias and

Cheng , 1993), military operation (Bayrak et al., 2018) and suggestions from mili-

tary experts, a rule-based strategy is created as a mixture of First-come, first-served

(FCFS), Shortest processing time (SPT) and Earliest due date (EDD). The algorithm

is demonstrated in Fig. 4.5.

4.2.2.2 Optimizer

Optimizer represents an optimization-based approach. The objective is to max-

imize fleet readiness with minimized operation costs, in terms of inventory holding

cost, insufficiency cost, and ADR action cost. The actions to be determined are

1. Number of vehicles of type k to be assembled, oak

2. Number of vehicles of type k to be disassembled, odk
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Figure 4.5: Rule-based algorithm for ADR action planning

3. Number of vehicles of type k to be reconfigured into type k′, okk′

4. Number of vehicles of type k to be dispatched from main base to camp n, ocnk .

All the actions are assumed to require less than 24 hours to finish and can be

accomplished in one day. Thus, by selecting the module/vehicle stocks as states, e.g.,
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svk(t), system dynamics is dominated by Eqn. 4.6.

svk(t) = svk(t− 1) + oak(t)− odk(t)

−
∑
k 6=k′

okk′(t) +
∑
k 6=k′

ok′k(t).
(4.6)

Thus, the fleet operation problem can be formulated by a linear programming model

to optimize operation actions in the planning horizon tp.

min
o

∑
t∈tplan

[∑
k

[cakoak(t) + cdkodk(t)

+
∑
k′ 6=k

okk′(t)] +
∑
k

chk[svk(t)−
∑
n

ocnk (t)]

+
∑
k

∑
n

ccnk (Dcn
k − o

cn
k (t))

]
s.t. (a)

∑
k

[takoak(t) + tdkodk(t)

+
∑
k 6=k′

tkk′okk′(t)] ≤ pmax,∀k, t

(b)
∑
n

ocnk (t) ≤ sk(t),∀k, n, t

(c) ocnk (t) ≤ Dcn
k (t),∀k, n, t

(d) oak(t), odk(t), okk′(t), o
cn
k (t) ≥ 0, ∀k, t,

(4.7)

where, chk corresponds to the hold cost of vehicle of type k. ccnk is the sufficiency cost

of a vehicle of type k at camp n. Insufficiency cost may also vary among camps to

reflect different tactical importance. tak, tdk and tkk′ are the time required to finish

ADR actions, which is evaluated according to the complexity of actions. Constraint

(a) claims that ADR actions should be scheduled under capacity threshold; (b) ensures

the operation actions are strictly constrained by current stocks; (c) guarantees that

the number of dispatched vehicles cannot exceed the dispatch order; (d) ensures all

the decision variables are non-negative.
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4.2.3 Supply agent

Given the schedule of operation actions, resupplies in proper schedules are impor-

tant to ensure that fleets can operate smoothly without delays. Two inventory control

strategies are commonly used in practice, which are optimal (Q,R) policy (Nahmias

and Cheng , 1993) and order-up-to-level policy (Silver et al., 2009). In optimal (Q,R)

policy, the inventory status is assumed to be reviewed continuously, once stocks reach

to the reorder point s, an optimized resupply order Q is placed, which is calculated to

minimize the expected cost of holding, setup and shortages. In the order-up-to-level

policy, the inventory status is periodically reviewed which is closer to JTTS mission

scenario. Once stocks are below the reorder point s, the resupply order is calculated

as

o = S − IP, (4.8)

where, IP is the inventory position, which is the sum of on-hand stocks and on-order

stocks minus back-orders. S is the order-up-to-level, which is calculated by Eqn. 4.9

S = E(X) + kσX + (n− E(τ))µ, (4.9)

where, τ records the length of time that the inventory position drops below the reorder

point until the next review instant. µ is the demand rate during the review interval R.

X is the total demands over the lead time τ + L, with mean and standard deviation

as E(X) and σX respectively. n denotes the desired periods to reorder. k is the factor

that determines the safety level, which is evaluated according to the target fill rate.

Previous methods require the estimation of µ in resupply order calculation. How-

ever, in this study, module damage heavily depends on the vehicle dispatch schedule,

which leads to a dramatic change in µ among different review intervals. Given dis-

patch schedule and module usage history, the module demands Dmi(t+ 1, t+ n) can

be predicted in the next review interval and used as a substitution of µ in order-up-
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to-level calculation.

S(t) = E(X) + kσX +Dmi(t+ 1, t+ n− E(τ)). (4.10)

The module usage consists of two parts, ADR actions and repair/maintenance.

Modules for ADR actions usage DADR
m can be estimated according to the output from

base agent. Taking modules in type i as an example, its usage can be estimated by

dADRmi
(t) =

∑
k

Mvkmi(oak(t)− odk(t))+∑
k 6=k′

(Mv′kmi
−Mvkmi)(okk′ − ok′k).

(4.11)

where, Mvkmi indicates the number of module of type i carried by vehicle of type k.

The predictions on the modules usage for repair and maintenance is similar as the

approach for the extra vehicle unavailability. However, as a module might be used

in multiple types of vehicles, the damage probability also varies for different vehicles.

This fact is considered in module usage forecasting. Denote the set of vehicle types

that contains modules in type i as φi, and the total number of vehicle types that

contain module in type i as ni, the forecasting of module usage of type i can be

expressed as

dcmi(t) = p1d
c
mi

(t− 1) + ...+ pnpd
c
mi

(t− np)+∑
γ∈φi

[
q1γ

∑
n

dcnvγ (t) + ...+ qnqγ
∑
n

dcnvγ (t− nq)
]
,

(4.12)

where, pi and qj are the parameters to be evaluated based on the historical data.

np, nq are the corresponding review horizons. The total module usage can be calcu-
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lated.

Dmi(t+ 1, t+ n− E(τ)) =

max
t+1≤τ≤t+n−E(τ)

dADRmi
(τ) +

t+n−E(τ)∑
t+1

dcmi(t).
(4.13)

As the resupply lead-time is assumed to be significantly shorter than review

interval, thus, all resupply orders are received at reorder point. Combining with

Eqn. 4.8, 4.9, 4.13, the resupply order can be calculated as

omi(t) = Dmi(t+ 1, t+ n− E(τ)) + kσX − smi(t) + sbmi(t). (4.14)

ABMs are created for decision making of both fleets, where camp agent and sup-

ply agent perform in a similar way. The main difference locates at the bases agent.

Conventional fleet has no choice in executing ADR actions to achieve fleet reconfigu-

ration. In other word, conventional fleet can be regarded as a special type of modular

fleet which has 0 available working time. The model is built in MATLAB, which has

over 20 parameters and over 30 sub-functions, it owns a high flexibility to change the

scenarios and vehicle designs.

4.3 Case Study

In the application, mission is provided as transporting required supply materials

from a main base to several camps following the battlefield requirements. Based on the

supply requirements, 12 types of existing military trucks are selected to accomplish

transportation missions, where 16 type of modules are created by disintegrating the

conventional vehicles. According to the functionality and interface of modules, 18

types of modular vehicles are designed as substitutes of conventional vehicles.
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Table 4.1: Comparison of total operational costs between fleets

Cost Conv. Fleet
Mod. Fleet

(Empiricist)

Mod. Fleet

(Optimizer)

Holding 42289 26402 29695

Backorder 233 114110 1766

Assembly N/A 7633 13766

Disassembly N/A 2433 4670

Reconf. N/A 46 2370

Total 42522 150624 52267

4.3.1 JTTS scenario

Based on the suggestions from experts of Army, the virtual costs and time con-

stants are chk = 0.5, ccnbk = 100,∀n, k and cami = 1, cdmi = 0.5, tami = 1, tdmi = 0.5,∀i.

The settings of the operation system are p̄ = 60, k = 3 and n = 30. For ARX pa-

rameters, na = np = 3, nb = nq = 24 are assigned according to the time requirement

of operation actions. After 100 realizations, the mean value of total operation cost

between modular fleet and conventional fleet are firstly compared in Tab. 4.1.

Based on the comparison, the expenditure from inventory holding for conventional

fleet is markedly higher than that for modular fleet, because modular fleet can release

space by ADR actions. However, these additional operation actions incur a higher

cost in backorders, especially for empiricist. Compared to Empiricist, Optimizer can

yield a better schedule to significantly reduce backorders and total operational costs.

The total amount of supplies is also of interest, since there is no existing modular

military fleet that can be used as a reference for cost evaluation. The conventional

vehicles are also disintegrated into 18 types of ’conventional modules’ to make fair

comparison. Thus, the metric used is the sum of back-ordered modules and supplied
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modules. Fig. 4.6 compares the total supplies ordered from both fleets.
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Figure 4.6: Comparison of total resupplied resources

According to the plot, fleet modularity leads to around 40 percentage reduction

in resupplied resources of armor (type 16 - type 18), tire and suspension (type 8 -

type 10). One reason is the ease of repairing and maintaining modular vehicles, which

significantly reduces unavailability periods of vehicles. Furthermore, the savings can

also be interpreted as the pooling effect from the component sharing. It has been

proven that a higher commonality designed in the product family can lead to lower

supplies in satisfying the same service level (Gerchak et al., 1988). In this study, vehi-

cles share a large proportion of modules, which increase module utility rate through

ADR actions. With time-varying demands, modular fleet can reshape itself rapidly

to satisfy the demands without ordering all the necessary vehicles.

In addition, the pooling effect also explains the different strategy for power train
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resupply (type 6 - 8). Modular fleet prefer to order modules of type 6; conventional

fleet prefer to order modules of type 7. By checking the mapping between modular

vehicles and modules, the powertrain of type 6 owns a much higher commonality than

modules of type 7 among modular vehicles. This fact makes the agents prefer to use

and order powertrain of type 6 to promote module utility rate and the speed of fleet

reconfiguration.

Compared to conventional fleet, the standard deviations of supplies are higher

during modular fleet operation, which can be explained by the extra echelon level

brought by fleet modularization (Liao and Chang , 2010). According to the analogy

in Fig. 4.2, conventional fleet operates as a single-tier supply chain, where the supplier

offers all the required vehicles (products) to the base(retailer) directly. For modu-

lar fleet, workshop (manufacturer) is required to convert modules to vehicles, which

makes the system become more vulnerable to the stochastic damage and maintenance.

Based on the plot, modular fleet managed by different approaches exhibits total

distinct performances: the fleet controlled by heuristic rules even requires more resup-

plies than the conventional fleet; the fleet controlled by optimization shows a much

lower needs in resources. Similar results exist in fleet readiness comparison which is

shown in Fig. 4.7. Dramatically high backorders occur in the operation managed by

Empiricist, in term of both mean value and standard deviation. The results show

a considerable impact from operation strategy on modular fleet performance. With

improper operation strategies, modular fleet may acquire more resources and suffer a

much higher insufficiency.

To highlight the differences between Optimizer and Heuristics, the number of

actions on different types of vehicles for different strategies is shown in Fig. 4.8. The

total operation time on field is used to represent the vehicle usage. Firstly, it can be

observed that ADR actions are driven by the requirement of vehicles. Taking vehicles

of type 11 as an example, they are mainly reconfigured from other types of vehicles
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Figure 4.7: Readiness comparison between different fleets

rather than assembled from modules. By checking the composition of each vehicle,

vehicles of type 11 are found to be easily reconfigured from other modular vehicles,

but they are hard to be reconfigured to other modular vehicles.

Optimizer outputs an interesting operation strategy: the vehicle of type 11 is used

as a temporary state between a more complex vehicle and modules. These transient

periods are shown to be sufficient to accomplish the insignificant orders for this type

of vehicle. Optimizer can properly use the field and vehicle information, and yield

operation strategy which may not be easily perceived.

Compared to Empiricist, more disassembly and reconfiguration actions emerges

under the management of Optimizer. Reconfiguration actions can release spare mod-

ules to guarantee the responsiveness to the stochasticity from operation. Optimizer

can also timely sense the redundant vehicles, and convert them to other vheicles
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Figure 4.8: Comparison of ADR actions on different types of vehicles between Em-
piricist and Optimizer

that can be used in the future, which promotes resource utility rate and operation

effectiveness.

As a summary, the fleet managed by Empiricist performs a build-to-order man-

ner, i.e., provides custom-built vehicles in a minimal lead time (Holweg and Jones ,

2001). It is proven to be a way to restrict redundancy as the vehicles would only be
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assembled to the received demands (Holweg et al., 2005). However, in modular fleet

operation, the key of managing whole vehicle fleet to satisfy the long-term goal of the

operation, other than try the utmost to satisfy every received demands. Optimizer

can successfully balance the operation actions with consideration of future impacts

of current decisions, thus yield more considerate plans.

4.3.2 Sensitivity Analysis

It is known that sufficient production capacity gives the company the required

ability to meet demands in the marketplace (Krasnikov and Jayachandran, 2008).

Similarly, the ADR action capacity is essential for the modular fleet to perform in a

desired way. ADR action capacity impacts on the module supplies, base infrastructure

designs and personnel requirements, which is an important metric to evaluate fleet

performance and budget. Because of the sophistication in the fleet operation and

field demands, it is intractable to theoretically evaluate the minimal ADR actions

capacity requirements (?). Therefore, taking Optimizer as an example, a parametric

study is conducted on the influences from ADR actions. Based on the data from 100

realizations, Fig. 4.9 demonstrates the impacts from ADR capacity.

Increasing ADR capacity shrinks the mean backorders occurred during the fleet

operation, which indicates a better fleet responsiveness in reacting to the demands.

Once ADR capacity reaches 60 hours, the average number of backorders become

steady at 6 vehicle · hours. Compared to the total operation time during the year,

e.g., more than 50000 vehicle · hours, these amount of backorders become unobtrusive.

The remaining backorders are induced by the stochasticity in operation, which could

be eliminated by setting up vehicle safety stocks base on the demand fluctuation

(Nahmias and Cheng , 1993).

Two typical stages exist in the changing of average vehicle stocks, which is sep-

arated by a certain ADR action capacity (36 hours in this case). This capacity is
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Figure 4.9: Modular fleet performances under diverse ADR capacities

named as separation capacity. Before it, vehicle assembly is the mainstream of on-

field actions, because the agents spend most of the capacity in grouping up convoy

to satisfy the demands. Thus, vehicle stocks and total resupplied resources are all

at maximum once the ADR action capacity reaches the separation capacity. Once

vehicle sufficiency is guaranteed, the superfluous capacity is applied to reduce the

total operational cost, e.g., disassemble the vehicles to save inventory holding cost.

As a sequence, stock level keeps decreasing towards the steady level.

At the separation capacity, higher amplitude fluctuation in both backorders and

vehicle stocks is observed. As capacity allocation is sensitive to the stochasticity

from fleet operation once the capacity is just right, a subtle change in operation

may require long-term actions to recover, which leads to a different fleet behavior.

However, the highest amount of fluctuations in backorders exist in the lowest ADR
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action capacity, because the operation system does not even have the ability to satisfy

the deterministic demands, let alone resist to the operation stochasticity. Once the

capacity is enough, e.g., 120 hours, system always has spare capacity to deal with

stochasticity from operation, which leads to a small variation of fleet performance.

4.4 Model Implementation

In this study, ABMs are proposed to solve operation problem of military vehicle

fleets. The model can be used as a decision support tool to real-time yield operation

decisions, and the model also has the capability to allow the decision makers adjust

the system parameters based on different scenarios, e.g., changed terrain conditions,

and tactical importance of different areas. The model provides the platform to trade

off two of the major cost drivers, acquisition costs and operation costs. It also creates

operational data for design engineers to improve vehicle designs.

For example, this study shows a trade-off between major fleet performance metrics,

which can be used into modular vehicle design. For example, with a higher level of

vehicle modularity, the number of components are more likely to be shared by other

vehicles, which amplifies the pooling effect and lead to more reductions in required

resources. The burden from high fleet modularity is the reduction of responsiveness

in reacting to the changes of demand. A larger number of modules usually leads

to a longer time in assembly and disassembly. By using the model, designers can

quantify the impacts from modularity on practical mission scenarios and improve

vehicle designs accordingly.

For JTTS scenario as an example, it is found that low-demand vehicles, i.e., type

11, with high commonality are formed mainly through reconfigurations, as shown

in Fig. 4.8. However, high-demand vehicles, e.g., type 24, are mainly processed by

assembly and disassembly actions. Combining with research of common component

design problem (Thonemann and Brandeau, 2000), the resulted recommendations for
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the modular fleet design in JTTS scenario are:

1. For low-demand vehicles, high commonality is suggested to increase pooling

effect and reduce resource supply.

2. For high-demand vehicles, the design needs to focus on ADR action time reduc-

tion.

Although the model was inspired by and applied to a military mission scenario, it

is applicable to the scheduling of other types of scenarios, for which demand require-

ments are measurable. Field demands can be treated as a type of product-as-a-service

(Mathieu, 2001), where, the service is accomplished by operating a vehicle convoy on

field. Thus, the model can be easily generalized into the civilian applications, i.e.,

scheduling of reconfigurable machine system (?).

4.5 Summary

The major aim of the work is to provide an efficient approach that would enable

Army to gain competitive edge from fleet modularity, by integrating and coordinating

the operation actions for improved awareness and responsiveness to the stochasticity

in the fleet operation. To achieve this aim, a multi-layer hierarchical agent-based

model is formulated, and embedded it into a high fidelity simulation environment. The

model is capable to automatically output optimal dispatching, planning and resupply

decisions in reacting to the current system status and dynamic field demands.

The model is implemented in the JTTS transportation mission scenario. Results

show that the total resupplied resources for operating a modularized vehicle sys-

tem can be reduced by more than 40 percent. The comparison between Empiricist

and Optimizer reveals the importance of operation strategy on fleet performance. A

sensitivity analysis is also performed to show a close correlation between the fleet

performance and available ADR action capacity.
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A number of interesting branches of future research remain. In this study, field

demands are highly certain, especially when the time is close to the deadline. The

stochasticity mainly exists in the fleet operation, i.e., repair, maintenance, which can

reflect the operation for a logistical mission scenario. However, unpredictability is

one of the typical features of the field demands once competing against an intelligent

enemy is considered. The commander always needs to make and adjust their deci-

sions in reacting to enemys actions under time-varying combat environment (Army ,

2007). To fully exploit potentialities of modular fleet, one would have to formulate

the competition model between the modular fleet and conventional fleet to explore

the additional advantages from fleet modularity.
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CHAPTER V

Attack-Defender Game

5.1 Game Formation

During the armed conflicts with Iraq and Afghanistan, the U.S. faced supply

shortages due to exogenous supply chain disruptions (Xu et al., 2016). This example

is modeled as a competition between two military forces. In this game, each force is

composed of a fleet of vehicles, i.e., fleet red and fleet blue. The goal of fleet operation

is to satisfy the supply demands which randomly appear at battle fields. Each demand

contains the due time, required materials, personnel, and target fleet to accomplish

the supply. In order to satisfy the demand, each dispatched convoy, which are vehicles

selected from fleet, needs to own enough capacities and firepower to guarantee the

safety of transportation. For convenience, all demands are automatically converted

into the attribute requirements for the convoy, i.e., fire power, water capacity, etc.

The demands received at time t are denoted as r(t). According to the due time of

demand, attributes required to be satisfied at a future time t + τ can be obtained

as dx(t + τ) = [dx1(t + τ), dx2(t + τ), ..., dxNa(t + τ)]T , where dxe(t + τ) represents the

attributes of type e to be satisfied before time t+τ . Matrix Dx(t) can also be created

and updated to record the demands to be satisfied in the planning horizon Tp, i.e.,

Dx(t) = [dx(t + 1),dx(t + 2), ...,dx(t + Tp)]. Correspondingly, attributes carried by

on-field convoy at time t are vx(t) = [vx1 (t), vx2 (t), ..., vxNa(t)]
T .
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The fleet targeted by demand becomes defender, with the goal of delivering a

qualified convoy to field on time. The other becomes attacker automatically, which

aims to disrupt the delivery of defender by dispatching an attacker convoy. In other

words, each demand initializes a supply task for one fleet and attack task for another.

Based on the demand, the role of the player dynamically changes correspondingly.

Common rules of the game are assumed to be known to the players: delivery of

a qualified convoy to the assigned battlefield makes the defender win and attacker

lose. Because the damage from the attacker can reduce the attributes of the convoy,

defender may lose the game even if a qualified convoy is dispatched.

The resulted conflict between convoys is denoted as an event and assume the

dispatch decision made from attacker and defender are simultaneous, which specifies

the game as simultaneous-move. To simplify the problem, both fleets are assumed to

be able to simultaneously sense the demands regardless of its target. Thus, given the

same probability to be selected as target fleet, each fleet will play equivalent times

of defender or attacker to guarantee the fairness of the game. Fig. 5.1 illustrates the

convoy competition in a multiple battle fields scenario.

Following the assumptions from previous research (Azaiez and Bier , 2007; Wang

and Bier , 2011), both attacker and defender are modeled as rational and strategic.

Based on the simulation results, 10 types of dispatch strategies are summarized for

attacker and defender respectively, as shown in Tab.5.1. For an attacker, firepower

is the only attribute needed to win. Thus, the strategy are represented by ka times

of required firepower for enemy. For defender, they need to guarantee the delivered

convoy to satisfy the demands with consideration of attribute losses from the enemy’s

attack. The strategy is a mixture of decisions in selecting of safety coefficients of fire

power ka and capacity kc. All the dispatch orders that are less than the requirements

are clustered as strategy 1, which means the defender gives up the game to save force

once a strong enemy convoy is predicted.
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Figure 5.1: Mission scenario created for attacker-defender game

Table 5.1: Dispatch strategies for attacker and defender

Attack Strategy 1 2 3 4 5

Range of ka [0, 0.5) [0.5, 1) [1, 1.5) [1.5, 2) [2, 2.5)

Attack Strategy 6 7 8 9 10

Range of ka [2.5, 3) [3, 3.5) [3.5, 4) [4, 4.5) [4.5,∞)

Defense Strategy 1 2 3 4 5

Range of ka [0, 1) [1, 1.5) [1, 1.5) [1, 1.5) [1.5, 2)

Range of kc [0, 1) [1, 1.5) [1.5, 2) [2,∞) [1, 1.5)

Defense Strategy 6 7 8 9 10

Range of ka [1.5, 2) [1.5, 2) [2,∞) [2,∞) [2,∞)

Range of kc [1.5, 2) [2,∞) [1, 1.5) [1.5, 2) [2,∞)
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In this study, the amount of damage is based on the comparison of the fire power

carried by different convoys. The probability of damage of type i component for team

red prdi and team blue pbdi are,

prdi = tanh(kdi
vbf
vrf

) (5.1)

pbdi = tanh(kdi
vrf
vbf

), (5.2)

where vxf is the amount of firepower carried by convoy x. kdi represents the dam-

age factor for a component in type i. Each component in the convoy gets damage

stochastically based on the calculated probability.

In order to create a fair game, the amount of supplies are constrained and all

damaged resources are assumed to be recoverable. Thus, the amount of resources for

both fleets are constant, but the conditions of resources are dynamic. Vehicle damage

is penalized by a long waiting time to recover. Recovery strategy for damaged vehicles

is to replace all the damaged components by healthy ones. Once fleet modularity is

considered, disassembly becomes another option in dealing with a badly damaged

vehicle.

Several assumptions are also used to simplify this problem by reserving a reason-

able level of fidelity:

1. Each fleet can accurately observe and record the damage occurred in its convoy.

2. Each fleet can accurately observe the composition of enemy’s convoy in every

event, i.e., number and types of vehicles.

3. Convoy will return to base immediately after task.

4. Mission success will be reported to both fleets once it is completed.

5. No other type of vehicle damage is considered besides attack.
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6. All components are recoverable.

7. Damage independently occurs based on the probability of damage.

8. Inventory status is updated every hour and accessible to all the agents.

9. The sequence of vehicle assembly, disassembly, and recovery is ignored.

5.2 Attacker-Defender Model

With consideration of computational load and battlefield decision making pro-

cess, an agent-based model is presented to automatically yield adaptive tactics and

real-timely plan for operational actions accordingly. To simplify the notation, the

approach is described from the standpoint of fleet blue, and proposed an approach

to beat the enemy, i.e., fleet red. Three types of agents models are created to per-

form different functionalities. The decisions making process is then achieved by the

cooporation of three types of agents. The interconnections are shown in Fig. 5.2.

1. Inference Agent: analyze enemy’s historical behaviors, forecast enemy’s fu-

ture actions.

2. Dispatch Agent: optimize dispatch order based on inference.

3. Base Agent: optimally plan for the operation actions to satisfy the dispatch

order.

5.2.1 Inference Agent

As simultaneous-move is considered, it is critical to forecast the enemy’s actions

to counter. As combat resources and workshop capacity are limited, it is possible

to possible to get cues from the enemy’s historical dispatch actions in inference. For

example, if enemy dispatched a significant size of convoy in the short past, it is
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Figure 5.2: Agent based model and its information flow in attacker-defender game

possible to conclude that the enemy is not capable of grouping up a strong force

in the short future. Meanwhile, existing damage in enemy’s resources can also be

analyzed by comparing the fire power of dispatched convoys in historical events. The

amount of damage is also useful for decision maker to infer enemy’s available forces.

The information that can be used for inference is very limited, including demand

records D(t), our previous dispatch, vb(τ), and enemy’s previous dispatches vr(τ).

Dispatch decisions depend on optimization algorithm, inference and personality of

commander, which leads to a remarkable nonlinearity in modeling the decision making

process. Meanwhile, as commander needs to adjust its strategy after learning from

the enemy. It requires the prediction model capable of exchanging information from

outsides, and make corrections once needed. Techniques from artificial intelligence

are adopted to solve this problem.
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Recurrent neural network is a well known machine learning model that could

capture the dependencies of time-series data (Mikolov et al., 2010). Compared to

the neural network, it can memorize a certain period of historical data and analyze

its influence on the future. Long short-term memory model networks is one of the

popular RNN, which is capable of learning long-term dependencies which is widely

implemented in the neural language without gradient vanishing problem in RNN. In

this study, a variant model of RNN - long short term memory (LSTM) is implemented

as the predictive model to capture the correlations in enemy’s sequential decisions.

The model is widely used in forecasting based on sequential data, including, stock

market price (Chen et al., 2015; Di Persio and Honchar , 2016; Fischer and Krauss ,

2017), traffic (Ma et al., 2015; Zhao et al., 2017), etc. In this study, the inference of

enemy’s strategy is modeled as a classification problem, where each class corresponds

to a strategy. The inputs x(m) of training data is the record for each event, including

enemy’s dispatched convoy, our dispatched convoy and received demand, which is a

time-series data recording all the information during review horizon Tb. The outputs

y(m) of the training example is the actual dispatch strategy adopted by the enemy.

The architecture of LSTM used in this study is shown in Fig. 5.3.

The status of LSTM at time t are described by input gate it, forget gate ft, output

gate ot, cell state ct and activation at ith hidden layer ait. The forward propagation

can be described by

it = σ(Wi[at−1, x
(m)
t ] + bi), (5.3)

ft = σ(Wf [at−1, x
(m)
t ] + bf ), (5.4)

ot = σ(Wo[at−1, x
(m)
t ] + bo), (5.5)

ct = it ∗ tanh(Wc[at−1, x
(m)
t ] + bc) + ft ∗ tanh(Wc[at−2, x

(m)
t−1] + bc), (5.6)

a0
t = ot ∗ tanh(ct), (5.7)

a1
t = W1a

0
t + b1, (5.8)

95



×

+×

෧𝑐𝑡−𝑇𝑝

𝑜𝑡−𝑇𝑝

×

𝑡𝑎𝑛ℎ

𝑓𝑡−𝑇𝑝

𝑖𝑡−𝑇𝑝

×

+×

෥𝑐𝑡

𝑜𝑡

×

𝑡𝑎𝑛ℎ

𝑓𝑡

𝑖𝑡

𝑐𝑡−𝑇𝑝

𝑎𝑡−𝑇𝑝

𝑐𝑡−1

𝑎𝑡−1

…

…

…

𝒙𝑡−𝑇𝑝
(𝑚)

𝒙𝑡
(𝑚)

…

…

… …

𝑦(𝑚)

Classification Layer

Softmax Layer

LSTM layer

Sequential Input Layer

Hidden layers

𝑐𝑡−𝑇𝑝−1

𝑎𝑡−𝑇𝑝−1

𝑐𝑡

𝑎𝑡

Figure 5.3: LSTM architecture used for analyze enemy’s historical behaviors and fore-
cast enemy’s future actions

a2
t = W2a

1
t + b2, (5.9)

...

aNht = WNha
Nh−1
t + bNh , (5.10)

p(m) = σm(aNht ), (5.11)

where, W , b are weights and biases to be obtained through training. σ is the sigmoid

function. Nb is the number of hidden layer. σm is the softmax function. p(m) records

the estimated probability of each class based on inputs from training sample m and

weights of the model, i.e., p(m) = [p
(m)
1 , p

(m)
2 , ..., p

(m)
Nc

]T . The loss function is represented

by a cross entropy equation:

Em = −
Nc∑
i=1

γi log(p
(m)
i ), (5.12)
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where, γi is a binary indicator (0 or 1), with value 1 if class label i is the correct

classification and 0 otherwise. Thus, the training of the model is to minimize the sum

of entropy of the training set to find the best model parameters through backward

propagation (Hecht-Nielsen, 1992), i.e.,

min
W ,b

∑
m

Em, (5.13)

thus, enemy’s behavior can be forecasted through Eq.5.14.

ȳr = {i | 1 ≤ i ≤ Nc,∀1 ≤ j ≤ Nc : p
(m)
i ≥ p

(m)
j }. (5.14)

Based on the predicted enemy’s strategy ȳr, the possible enemy’s dispatch order

v̄r can be calculated by using the upper bound of strategy of Tab. 5.1.

5.2.2 Dispatch Agent

The goal of convoy dispatch is to determine the desired attributes that need to

be carried by our convoy to maximize the win rate. Based on game formation, a

convoy with higher attributes, especially in fire power, indicates a higher chance to

win. However, as resources are limited, the less vehicles are ordered, the higher chance

that the order can be achieved by the inventory planner. The convoy dispatch should

be carefully planned to guarantee the win rate of current mission without overdrawing

resources.

To avoid the overuse or underutilization of available attributes, it is important to

have an accurate evaluation of our current forces before making dispatch decisions.

Available attributes in the future depend on inventory status and on-base action

scheduling. As time delays exist in operations and future demands are only partially

observable. It is hard to infer the actual planning that will be made in the short

future, which may change the available attributes at dispatching time totally. This
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difficulty becomes one of the challenges in placing the dispatch order. Even our

convoy order can be achieved by base, it is still uncertain for them to determine the

probability that this convoy can win. Because all the players do not know how the

vehicle gets damaged, it requires players to speculate the damage mechanism based

on the experience.

To resolve this problem, the estimation of event success is disintegrated in two

parts, which are feasibility of order pbf and conditional success rate if order is feasible

pbs. The probability of wining an event for convoy blue pbw can be calculated.

p(win) = p(win|order is feasible)p(order is feasible)

pw = pbsp
b
f .

(5.15)

5.2.2.1 Feasibility

Based on the historical records, the feasibility of order can be flagged by 0(infeasible)

and 1 feasible based on the comparison between dispatch order dob(t) and actually

dispatched convoy obv(t). The order is denoted as feasible if dob(t) ≤ Mvao
b
v(t), is

infeasible otherwise. As optimizations are implemented in operation planning, the re-

lationship between factors and feasibility is complex and nonlinear. A neural network

model (Hagan et al., 1996; Atsalakis et al., 2018; Rezaee et al., 2018) is implemented

to capture these nonlinear inter-connections, as shown in Fig. 5.4. The outputs of

training set is the feasibility of the order (1 for feasible, 0 for infeasible).

With enough training, the model is capable of evaluating the feasibility of dis-

patch order across diverse operation situations. To capture the changing of inventory

operation strategy, the model is periodically retrained based on the latest operation

information. The relationship between model inputs and feasibility rate can be de-
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scribed by Eq. 5.16,

pf = ff (do
b(t), sb(t), δsb(t+ 1), ..., δsb(t+ Tp),D

b(t)), (5.16)

where, sb(t) records the number of vehicles and component stocks on base at time t.

δs(t+ τ) is the changes in inventory stocks at time t+ τ from unfinished actions.

5.2.2.2 Conditional Success Rate

Vehicle damage plays an important role in determining the success of a mission.

However, it is driven by a stochastic process and will vary according to the changes

in terrain, operational preparations and soldiers’ reactions. It requires the model to

be able to capture the complexity in the damage mechanism. Combining with the

nonlinearity in predicating the success, another neural network model is adopted for

success rate forecasting, as shown in Fig. 5.5.

Similarly, the outputs of training set are success reports of previous events (1 for

success, 0 for fail). Given forecasted enemy’s convoy attributes v̄r(t), the trained

model will yield conditional win rate for a certain dispatch order and mission re-

quirements. The model is capable of capturing the changes in damage mechanism by

99



Input
Layer

Output 
Layer

… …

Success

Hidden Layer

Figure 5.5: Neural network model for success rate training

continuously feeding in the latest combat information and results. By denoting the

trained neural network model for success as f bs , the probability of success can be also

calculated.

pbs = f bs (do
b(t), v̄r(t),D(t)). (5.17)

5.2.2.3 Optimization

For each dispatch order dob(t) , the above approach provides the way to estimate

the probability of success and feasibility based on predicted enemy’s behavior, demand

information and inventory status. An optimization model can be used to seek the

optimal dispatch order to maximize win rate or minimize failure rate, i.e., J = 1−pwb .

Combining with Eqn. 5.16,5.17, a nonlinear programming model can be formulated

to seek the optimal dispatch order.

min
dob(t)

1− [ff (do
b(t), sb(t), δsb(t+ 1), ..., δsb(t+ Tp),D(t))][f bs (do

b(t), v̄r(t),D(t))]

s.t. (a) dob(t) ≥ 0,

(5.18)
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where, dob(t) is the decision variable that specifies the desired attributes to be carried

by the convoy. Thus, the number of decision variables is the number of attribute types

(3 ∼ 10). However, because of the non-convexity in objective function, it is intractable

to get global optimum by the gradient-based approach. In this study, a pattern search

technique is implemented to yield optimal dispatch decisions.

As the minimized failure rate can be any value in the range of [0, 1], dispatch agent

should be capable capable of giving up the mission once a very high failure rate is

calculated. There is also a stream of literature studying risk preferences in repeated

and evolutionary games (Roos and Nau, 2010; Lam and Leung , 2006; Zhang et al.,

2018). The εf is defined as a customizable parameter to represent the minimal failure

rate that can be tolerated, which filters the dispatch order dob(t) as

dob(t) =


= 0, for (1− pw) > εf ,

= dob(t) for (1− pw) ≤ εf .

(5.19)

Thus, a convoy can be dispatched only when commander is confident enough.

In this study, risk aversion behavior is purely related to ε which is constant during

operation. As a future work, it is also interesting to vary ε to seek an advanced fleet

operation strategy, i.e., combination of risk-prone and risk-averse (Roos and Nau,

2010).

5.2.3 Base Agent

Based on the behavior analysis from inference agent and dispatch order suggestion

from dispatch agent, base agent is the one to plan operational actions to accomplish

the orders. Li et al. proposed a model predictive control based approach to real-

timely schedule the operation actions in reacting to the received demands. However,

they did not consider the possible damage that occurs during the fleet operation

(Li and Epureanu, 2018). In this section, I further their research by considering
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the possible damage during fleet operation and manage the inventory based on the

resulting diverse conditions. For convenience, the notation of operation actions for

fleet x is simplified from ox to o in this section as no enemy is considered.

As resources for each player are limited and repairable, it is important to schedule

the operation actions properly to recover damaged resources and increase utility rate.

It is also essential to allocate the capacity properly to balance between order satis-

faction and damage recovery. In this section, military fleet operation is first modeled

as a time-varying dynamical system. Then, a model predictive control is proposed to

manage system dynamics thus achieving operation management.

5.2.3.1 Dynamical System

The dynamics in fleet operation is mainly located at the changes of inventory

stocks and remaining demands, in terms of

1. Vehicle stocks, Iv = [Iv1 , Iv2 , ..., INv ]

2. Module/component stocks, Im = [Im1 , Im2 , ..., INm ]

3. Damaged vehicles, Idv = [Idv1 , Idv2 , ..., INdv ]

4. Damaged components, Idc = [Idc1 , Idc2 , ..., INc ]

5. Unsatisfied demands, Ia = [Ia1 , Ia2 , ..., INa ].

Although healthy vehicles and damaged vehicles are recorded in the similar struc-

tures, their meanings are totally different. For healthy stocks and damaged compo-

nents, the subscript of variable is the type of vehicle/component; the value of variable

indicates the number. For damaged stocks, the subscript is the index of damaged ve-

hicles, which is created based on the vehicle receive date. Binary values are used

to represent the status of the vehicle, where, 1 represents that the damaged stocks

remain to be repaired; 0 indicates the damaged stock is recovered or not received yet.
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Vehicle type vlt(t), number of damaged components vldc(t) and healthy components

vlc(t) in the damaged vehicle of type l are also recorded as a reference for the re-

pair. These data are time variant as the number and type of damaged vehicles keep

changing with newly occurred damage and vehicle recovery. These data structure

can bypass the numerous states incurred from diverse vehicle damage patterns, as

the vehicles with different damage are distinguished as different damaged vehicles. A

state will be created for each newly arrived damaged vehicle and removed once the

damaged vehicle is recovered, i.e., state value changes from 1 to 0.

Vehicle conditions are reported to base agent as one of the inputs, all inputs to

the system are summarized as

1. Returning healthy vehicles, ar = [ar1 , ar2 , ..., arNv ],

2. Returning damaged vehicles, ad = [ad1 , ad2 , ..., adNdv ],

3. Dispatch order from dispatch agent, do = [do1, do2, ..., doNa ].

Based on the characteristics of fleet operation, the operational actions to be de-

termined are also distinct. For conventional fleet, the operation actions include

1. Convoy dispatch, ov = [ov1 , ov2 , ..., ovNv ]

2. Recovery of damaged vehicle, odr = [odr1 , odr2 , ..., odrNdv ]

3. Recovery of damaged component, oc = [oc1 , oc2 , ..., oNc ].

The dynamics of vehicle stocks of type k, component stocks of type i, damaged vehicle

of index l, damaged components of type i, and remaining attributes of type h are

shown by Eq. 5.20, 5.21, 5.22, 5.23, 5.24 respectively

Ivk(t+ 1) = Ivk(t)− ovk(t) + ark(t) +
∑
l

vlkt(t)odrl(t− τvl), (5.20)
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Ici(t+ 1) = Ici(t) + oci(t− τci)−
∑
l

vlci(t)odrl(t), (5.21)

Idvl(t+ 1) = Idvl(t)− odrl(t) + adl(t), (5.22)

Idci(t+ 1) = Idci(t)− oci(t) +
∑
l

vldci(t)odrl(t− τdrl), (5.23)

Iah(t) = doh(t)−
∑
k

Mvkahovk(t). (5.24)

By introducing fleet modularity, several additional operation actions are available,

in terms of

1. Vehicle assembly, oa = [oa1 , oa2 , ..., oaNv ]

2. Vehicle disassembly, od = [od1 , od2 , ..., odNv ]

3. Vehicle reconfiguration, or = [o12, o13, ..., oNvNv−1]

4. Damaged vehicle disassembly, odd = [odd1 , ..., oddNdv ].

With consideration of these actions, dynamic equations become

Ivk(t+ 1) =Ivk(t)− ovk(t) + ark(t) +
∑
k′ 6=k

ok′k(t− τk′k)−
∑
k′ 6=k

okk′(t)

+
∑
l

vlkt(t)odrl(t− τdrl) + oak(t− τak)− odk(t),
(5.25)

Ici(t+ 1) = Ici(t) + oci(t− τci)−
∑
k

Mvkci [oak(t)− odk(t− τdk)

+
∑
k′ 6=k

ok′k(t)−
∑
k′ 6=k

okk′(t− τkk′)] +
∑
l

vlci(t)oddl(t− τddl),
(5.26)

Idvl(t+ 1) = Idvl(t)− odrl(t)− oddl(t) + adl(t), (5.27)

Idci(t+ 1) = Idci(t)− oci(t)+
∑
l

vldci(t)odrl(t− τdrl) +
∑
l

vldci(t)oddl(t− τddl)

(5.28)

Iah(t) = doh(t)−
∑
k

Mvkahovk(t). (5.29)

104



Because of the delays in operation actions, current inventory stocks might be

influenced by previously-determined actions. In other words, the current actions may

impact the stock level in the future. Thus, the states of the system are defined by all

inventory statuses that might be influenced by current actions, s(t), i.e.,

s(t) = [It(t), It+1(t), It+2(t), It+3(t)...It+τmax(t)]
T . (5.30)

Input matrices Bτ are used to connect the current actions at time t to inventory

level at a later time t+ τ . Furthermore, damage on stocks keep changing along with

time. The matrices that connect to previous states A, actions Bτ and inputs C are

also time-varying matrices. Thus, the system dynamics for both fleets can be written

as

I(t+ 1) = I(t) +
∑
τ

[
Bc
τ (t)o

c(t− τ)
]

+ Cc(t)a(t− τ), (5.31)

I(t+ 1) = I(t) +
∑
τ

[
Bm
τ (t)om(t− τ)

]
+ Cm(t)a(t− τ), (5.32)

where

oc(t) = [ov(t),odr(t),oc(t)], (5.33)

om(t) = [ov(t),odr(t),oc(t),oa(t),od(t),or(t),odd(t)]. (5.34)

Thus, a state space model can be created to record the influence from the actions at

a single time point to the states in the short future, as shown in Eq. 5.35

s(t+ 1) = A(t)s(t) + B(t)u(t) + C(t)a(t), (5.35)
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A(t) =



0ns(t)×ns(t) Ins(t)×ns(t) 0ns(t)×ns(t) . . . 0ns(t)×ns(t)

0ns(t)×ns(t) 0ns(t)×ns(t) Ins(t)×ns(t) . . . 0ns(t)×ns(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0ns(t)×ns(t) 0ns(t)×ns(t) 0ns(t)×ns(t) . . . Ins(t)×ns(t)

0ns(t)×ns(t) 0ns(t)×ns(t) 0ns(t)×ns(t) . . . Ins(t)×ns(t)



, (5.36)

B(t) = [B0(t),B1(t),B2(t), ...,Bτmax(t)]
T , (5.37)

C(t) = [C0(t),C1(t),C2(t), ...,Cτmax(t)]. (5.38)

5.2.3.2 System Control

The goal of system control is to meet the received dispatch orders on time. In

the decision making process, the predictions of future system are always involved.

For example, given several dispatch orders, one may want to know what are the

influences from satisfying one order on others. Compared to the classical control

methodologies, e.g., PID control, MPC makes better use of future information and

adapts to the system changes (Li and Epureanu, 2017b). This section is separated

into two parts, future state prediction and optimization of operation decisions.

Future State Prediction

Because of time delays in the operation actions, the operation decisions made at

the current time have to guarantee the match between the attributes of the dispatched

convoy and ordered attributes. Given

1. current system states s(t) = [s(t+ 1), s(t+ 2), s(t+ 3), ..., s(t+ tp)]
T

2. operation actions in the future o−→t = [o(t),o(t+ 1),o(t+ 2), ...,o(t+ tp − 1)]T
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3. system input, a−→t = [a(t), a(t+ 1), a(t+ 2), ..., a(t+ tp − 1)]T ,

The future system states s−→t+1 are predictable by iteratively substituting Eq. 5.35.

Thus, the s−→t+1 can be expressed as a function of o−→t

s−→t+1 = P (t)s(t) + H(t) o−→t + G(t) a−→t (5.39)

P (t) = [A(t),A2(t),A3(t), ...,An(t)], (5.40)

H(t) =



B(t) 0 . . . 0

A(t)B(t) B(t) . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A(t)n−1B An−2(t)B(t) . . . B(t)


, (5.41)

G(t) =



C(t) 0 . . . 0

A(t)C(t) C(t) . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A(t)n−1B An−2(t)C(t) . . . C(t)


, (5.42)

with P (t) being the matrix that connects the future system outputs with current

system states, and H(t),G(t) being the matrix that connects the system outputs

with the future operation actions and inputs respectively. Although the dynamical

system is changing along with time, it is assumed as constant at each decision making

time. The system keeps updating to ensure the optimization is based on accurate

system status.
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Cost Function

The optimization of fleet operation originates from two facts: 1. convoy with

insufficient attributes suffer a remarkable risk in losing the mission; 2. convoy with

redundant attributes can also deteriorate the overall fleet performance from utility

reduction. Furthermore, several operational costs that may be significant in the real-

world fleet operation are also considered. As a summary, the costs of interest are,

1. Attribute redundancy cost, coh

2. Attribute insufficiency cost, cuh

3. ADR action cost, cak , cdk , ckk′

4. Recovery cost, cci , cdrl , cddl

5. Inventory holding cost, chci , chvk , chdci , chdvl

Therefore, the cost function is shown as

J =

τ=t+Tp−1∑
τ=t

[∑
h

cohI
+
ah

(τ) +
∑
h

cuhI
−
ah

(τ) +
∑
l

(cdrlodrl(τ) + cddloddl(τ))

+
∑
k

[cakoak(τ) + cdkodk(τ)) +
∑
k′ 6=k

ckk′okk′(τ)] +
∑
i

ccioci(τ)
]

+

τ=t+Tp∑
τ=t+1

[
∑
i

chciIci(τ) +
∑
k

chvkIvk(τ) +
∑
i

chdciIdci(τ) +
∑
l

chdvlodvl(τ)],

(5.43)

where I+
ah

(τ), I−ah(τ) are non-negative variables created to remove the nonlinearity,

which satisfies that

Iah(τ) = I+
ah

(τ)− I−ah(τ). (5.44)

The insufficient and redundant attributes during the planning horizon are recorded

as I+
a−→

and I−a−→
respectively. The holding costs and actions related costs are also
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aggregated as ch−→ and ca−→. By substituting in Eq.5.39, a mixed-integer programming

model is created to optimize operational decisions

min
I+
a−→
,I−a−→

, o−→t

coIa−→
+ + cuIa−→

− + ch−→Xs[P (t)s(t) + H(t) o−→t]

s.t. (a) o−→t ≥ 0 and integer

(b) Xs s−→t+1 ≥ 0

(c)
∑

o(t) ≤ P̄ , ∀t

(d) I+
a−→
− I−a−→

= Xa[P (t)s(t) + H(t) o−→t + G(t) a−→t]

(e) oddl(t) + odrl(t) ≤ 1, ∀t,

(5.45)

where, Xs,Xa are index of inventory stocks and remaining dispatch orders in states

respectively. Constraint (a) ensures that all operational decisions are non-negative

and integer; (b) indicates that the amount of inventory stocks are non-negative; (c)

ensures that the on-base ADR actions are always constrained by the maximum action

capacity P̄ ; (d) preserves the balance between auxiliary variables and remaining orders

to be satisfied; (e) specifies that each damaged vehicle can only be recovered by one

recovery strategy. As cost function and constraints are linear and the number of

decision variables is huge, a cutting-plan is implemented first to reduce the decision

space and then use the integer programming solver to get the solution. Time required

for decision making of each time point is less than 1 second for operating 5 types of

modular vehicles with planning horizon as 12 hours.

5.3 Numerical Illustrations

In this section, numerical illustrations are provided in a generalized mission sce-

nario to study the different impacts of modularity on fleet performance. In general, it

may be difficult to estimate the parameters accurately. However, it may be possible
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to get reasonable estimates for these parameters by using expert judgments and data

from the existing literature. In this study, the resources provided to fleet operation

is constant and equal, which can be imagined as a competition of two fleets at an

isolated island. One of them is conventional fleet; the other is modular fleet. Initially,

ten of each type of vehicle and component are provided to both fleets. Demands

randomly occur at battle field based on Poisson distribution with time interval as 10

hours. Demands include personnel capacity dp, material capacity dm and fire power

df , which are generated based on Gaussian distribution as shown in Eq. 5.46, 5.47,

5.48. Because of the lack of diversity in the existing designs of modular vehicles, five

types of modular vehicles as well as six resulted modules are borrowed from (Li and

Epureanu, 2017b). The attributes carried by each vehicle are summarized in Tab.

5.2.

dp ∼ N (40, 15) (5.46)

dm ∼ N (50, 20) (5.47)

df ∼ N (30, 10) (5.48)

Table 5.2: Mapping between vehicles and attributes

Vehicle Type 1 2 3 4 5

Fire power 1 3 8 0 6

Material capacity 2 6 2 2 8

Personnel capacity 4 1 0 10 5

The costs of insufficiency and redundancy are created based on the heuristic rules.

For example, convoy usually suffers a high risk of failure once attributes of dispatched
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convoy are less than ordered. Thus, the cost for attribute insufficiency is assigned

much higher than attribute redundancy, i.e., coh � cuh , ∀h. The costs for operation

actions are created based on the difficulties and time required.

The time required for module assembly and disassembly are assigned as constant

vectors τma, τmd. Vehicle assembly/disassembly time τva, τvd is calculated by summing

up all the time required for its components. Similarly, for repair and reconfiguration,

all the actions required to process each individual components in the vehicle are firstly

summed. It is also assumed that the interface between components are well-designed

to achieve quick vehicle reconfiguration, where assembly and disassembly time for all

types of components are 1 hour and 0.5 hour respectively. On-base ADR actions are

assumed to be proceeded in a generalized work station, thus, the number of stations

determines the amount of available capacity. In this study, the number of available

work stations for both fleets is assigned as 10.

A discrete event model is used to simulate fleet competition for three years. The

mission is separated into two parts, which are stochastic stage (1st year)and learning

stage (2nd and 3rd year). In stochastic stage, dispatch agent randomly picks up a

dispatch strategy based on Tab.5.1 and passes this decisions to base agent. First-year

operations generate time-series data, including combat history, feasibility records,

etc., which are important inputs for the learning model. Training of learning model

starts at the beginning of learning stage, where inference agent and dispatch agent

make decisions based on the historical enemy’s behavior. Learning models are also

updated monthly to ensure they reflect the enemy’s latest behavior.

5.4 Fleet Comparison

In this section, the fleet performance is compared between modular fleet and

conventional fleet in different stages. As one of the important metrics in measuring the

fleet performance, the probability of win is firstly compared based on the results from
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multiple simulation, which is shown in Fig.5.6. According to the plot, conventional

fleet outperforms modular fleet at the stochastic stage. However, once the intelligence

of agent is introduced, i.e., both fleets entered learning stage, modular fleet gradually

receives more wins of the game. A well separation can also be noticed along with

the learning stage, which indicates a solid leading position of modular fleet during

the learning stage. To explain these results, the attributes carried by the actual

dispatched convoy between fleets are compared, as well as the estimation accuracy in

inferring enemy, order success and feasibility.
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Figure 5.6: Comparison of win rate between modular fleet and conventional fleet

During the stochastic stage, dispatch agents from both teams place dispatch or-

ders based on randomly selected strategy. The way of strategy selection and order

achievement are also equivalent for both fleets. In order to explain the better perfor-

mance of conventional fleet, it is necessary to explore the accuracy of both fleets in

satisfying dispatch order. Mismatched attributes dramatically change the fleet per-
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formance: convoy with insufficient attributes may significantly raise the failure rate

and damage; convoy with redundant attributes may increase the win rate slightly, but

it can also contribute to the insufficiency in the short future because of the limitation

of resources. Thus, the amount of overused and insufficient convoy attributes during

every month is calculated to compare the dispatch accuracy in Fig. 5.7.
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Figure 5.7: Comparison of mismatched convoy attributes

Compared to the modular fleet, conventional fleet suffers remarkable redundancy.

The higher redundancy comes from the rigidity of conventional fleet operation. As

we know, modular fleet can real timely reconfigure itself to fit the dispatch order,

however, conventional fleet can only wait for vehicles returned from field or recovery.

This limitation is proven to hamper the ability of conventional fleet in satisfying
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the dispatch order. Once proper vehicles are scarce, conventional fleet has to use

improper vehicles with little desired attributes to avoid the insufficiency. This rigidity

in fleet operation is beneficial in improving the success rate during the stochastic

stage, because its opponent cannot be aware of the unexpected additional attributes.

However, once the opponent start to study the behavior, this advantage no longer

exists. From the failures at stochastic stage, modular fleet realize that conventional

fleet intents to dispatch convoy with superfluous attributes. As a solution, they

increase the attributes of dispatch order correspondingly. These redundant attributes

are powerless in reacting to a well-armed enemy’s convoy to make the conventional

fleet stay the lead.

Besides the better understanding of enemy’s behavior, intelligent agents also im-

prove their understandings of the game along with time. To address the changes, the

ability of convoy is denoted as maximum attributes can be achieved at each month,

and compare the ability between both fleets in Fig.5.8. After entering the learning

stage, both fleets raise the ability of convoy in all types of attributes, especially in

firepower. Once modular fleet realize the importance of fire power to win the event

by model f bs , the combat vehicles are rapidly formed from reconfiguration to boost

the available fire power.

The swift reconfiguration of modular fleet lead to a dramatic increase of damage

to the enemy in the first few months of learning stage, as shown in Fig.5.9. Although

conventional fleet intend to increase the fire power to fight back, the limitation in

vehicle structure results in a lower upper limit in the convoy ability. Thus, the

difference in ability makes conventional fleet suffer higher damage from more dispatch,

which forces the conventional fleet to operate in sub-healthy conditions for a long time.

The strategies used in learning stage are also distinct between two fleets. Fig.5.10

compares the proportion of strategies adopted by different fleets. After learning of

game, both fleets prefer to select the defense strategy with large amount of firepower
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Figure 5.8: Maximum value of attributes carried by the convoy in different months

and fair amount of capacity, i.e., strategy 8,9. Because of the flexibility of fleet

structure, modular fleet can be easily adapted to the vehicle damage and enemy’s

behavior, which leads to a better balance between different types of vehicles to perform

a stronger strategy. The defense strategy selection also impacts the attack strategy.

Compared to modular fleet, conventional fleet is much more likely to give up mission

because of resources insufficiency. This weakness makes the modular fleet confident
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Figure 5.9: Modules damage occurs at each month

in dispatching little or even no combat vehicles to win the game. As an evidence,

the proportion of strategy 1 used by modular fleet is much higher than that by

conventional fleet. Meanwhile, modular fleet is more capable of performing aggressive

strategies, i.e., strategy 8,9,10, more often than conventional fleet once a strong enemy

is sensed.

To further investigate the improved performance of modularized fleet, the inference

accuracy are also compared between different fleets. The mean square error (MSE)

between forecasted and actual convoy attributes is denoted as the metric to quantify

the inference accuracy. As can be seen from the comparison in Fig.5.11. Inference

errors are significantly high at the beginning of the learning stage, because agents are

trained by the data from stochastic dispatch, which contributes little to forecasting

the behavior of a rational competent. Along with the learning process, more combat

and operation records, which are based on trained ABM, are generated, in which
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Figure 5.10: Proportion of defense strategy at different stages

enemy’s behaviors are more explainable. As a result, inference errors are significantly

reduced in the following four months. However, the inference error keep fluctuating

during the rest of the learning stage, because both fleets keep checking and countering

the other’s behavior.

The results also show that it is easier to infer the strategy of conventional fleet

than modular fleet, especially in the attribute of firepower. It originates from the

higher freedom in decision making after fleet modularity. As a defender, fleet usually

needs to prepare a convoy with all types of attributes to satisfy the demands. With

limited vehicle stocks, decision maker of conventional fleet has constrained choice of

strategy. However, for the modular fleet, they could vary the dispatch strategy by

real-time vehicle reconfiguration, i.e., reconfigure cargos to combat vehicles to achieve
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the switch from Strategy 4 to Strategy 8.

However, the burden of modularity is also significant, which is the high acquisi-

tion of capacity. According to Fig.5.12, modular fleet always requires more machines

than conventional fleet because of additional ADR actions. It can also be observed

that machine requirements are increased significantly once entering the learning stage,

which comes from damage from smarter strikes by enemy. The higher losses in con-

ventional fleet also shrink the difference in machine usage at learning stage. In this

study, the fleet performance is only tested at a certain capacity, studies investigating

on the influence of capacity can be found in the following literature (Li and Epureanu,

2017b, 2018).
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Figure 5.12: Comparison of machine requirements between modular fleet and conven-
tional fleet

119



5.5 Summary

In this section, the benefits and burdens from fleet modularization are investigated

by simulating a attacker-defender game between modular fleet and conventional fleet.

The fleet competition is simulated for three years which are divided into stochastic

stage and learning stage. By contrasting the simulation results from two fleets, it

is found that conventional fleet stay the leads when both fleets selecting strategies

stochastically; modular fleet outperforms conventional fleet once intelligence of deci-

sion maker is considered. With additional operational flexibility from on-base ADR

actions, modular fleet exhibits a better adaptability in reacting to enemy’s actions,

higher upper limit in convoy formation and a more significant unpredictability from

the additional flexibility in operation.
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CHAPTER VI

Real-time management of RMS

6.1 Model Description

In this section, a negotiation algorithm is formulated to reallocate demands and

resources among multiple lines. Then, a planning model for individual autonomous

RMS is formulated to yield real-time decisions under highly stochastic demands. The

model structure and associated approach is shown in Fig. 6.1.

6.1.1 Negotiation Among Lines

Given limited module stocks in a company, task and resource allocations are im-

portant to guarantee effective processing and resource utility rate. However, the

Mining of Potential 
Configurations

(Nonlinear Programming)

Operation Action Assignment
(Mixed-integer Programming)

Capacity Planning
(Mixed-integer Programming)

Candidate Conf.
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Demands Processing Time Planning
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Reconfiguration Action Planning
(Integer Programming)

Planned Capacity

Configuration Path Planning
(Integer Programming)

Configuration Path

Remaining 
Demands

Remaining 
Resources

Reconfig.
Time

Proc. Rate

Configuration

Figure 6.1: Structure of optimization models designed for RMS operation
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complexity from RMS operation makes the simultaneous optimization of allocations

intractable. To address this issue, each individual RMS (i.e., each line) is modeled

as an intelligent agent, which negotiates with others if the line cannot fulfill the re-

ceived demand alone. Denote by fu the unfulfilled orders (details in Section 3.7). A

multi-step bidding process is created for negotiation, summarized as

Initialize: Distribute new received demands by heuristic rules. Tenderee Selection:

Each agent predicts its unfulfilled demands by using fu. The one with the highest

value becomes the tenderee, and the others bidders. Bidding Document: The ten-

deree is responsible to provide possible options to reduce delayed demands, namely

Offer all unachievable demands and available modules. Request new modules to boost

capacity. Bidding: Each bidder evaluates every option provided in the bidding doc-

ument. The option with lowest unfulfilled demands becomes the bid to tenderee.

Evaluation: The bidder with lowest unfulfilled demands wins. Demands and stocks

are relocated based on bidding document. The process stops if one of these conditions

are satisfied: Total unfulfilled demands are unchanged. Total unfulfilled demands is

zero. Otherwise, the process returns to step 2 above.

The algorithm converges in finite iterations since the delayed demand is finite.

The computational cost of the algorithm is in the bidding part, where each line

accesses the options through fu. However, since bidders are independent, parallel

computations can be used to improve the scalability of the proposed method. Next,

based on the negotiated demands and resources, the real-time management of each

RMS and formation of fu are obtained.

1. Initialize: Distribute new received demands by heuristic rules.

2. Tenderee Selection: Each agent predicts its unfulfilled demands by using fu.

The one with the highest value becomes the tenderee, and the others bidders.

3. Bidding Document: The tenderee is responsible to provide possible options to
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reduce delayed demands, namely Offer all unachievable demands and available

modules. Request new modules to boost capacity.

4. Bidding: Each bidder evaluates every option provided in the bidding document.

The option with lowest unfulfilled demands becomes the bid to tenderee.

5. Evaluation: The bidder with lowest unfulfilled demands wins. Demands and

stocks are relocated based on bidding document. The process stops if one of

these conditions are satisfied: Total unfulfilled demands are unchanged. Total

unfulfilled demands is zero. Otherwise, the process returns to step 2 above.

6.1.2 Operation Action Assignment

To customize an RMS as to provide almost the exact capacity and functionality

that satisfies the demand [2], the marginal capacity of each potential configuration

is calculated. At each stage ts, only one machine variant vts is allowed to be used.

Given the processing operation opk,ts and the number of machines nts , the processing

rate of part k at stage ts is sprk,ts = fc(k, vts , nts)opk,ts , where fc is a vector function

to calculate the stage capacity for all operations, opk,ts contains an array of binary

variables opk,ts,i, which indicates whether the operation i is selected (1) or not (0).

The stage with the minimum rate determines the rate of the line,prk = mints sprk,ts .

The processing rates of the line for all parts pr(t) is denoted as a measure of capacity

at time t. By using sk,ts as an auxiliary variable representing the superfluous capacity,

an optimization model is created to find the marginal capacity as
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Figure 6.2: Negotiation among lines base on bidding process
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min
sk,op

− prk

s.t. (a) mpTk,iopk,ts ≤
τs=ts−1∑
τs=1

mpTk,iopk,τs , ∀ts

(b)
∑
ts

Mckopk,ts = 1

(c) prk = sprk,ts − sk,ts = sprk,t′s − sk,t′s , ∀t
′
s

(d)
∑
i

opk,ts,i ≤ 1, opk,ts,i ∈ {0, 1}, sk,ts ≥ 0, ∀ts, i.

(6.1)

where, mpk,i,mck,i are vectors that specify the precedence and type of operations

for action i. 1 is a column vector with all entries as 1. Constraint (a) ensures the

operation actions occur in the required sequence; (b) ensures the completeness of the

processing job; (c) ensures that sprk,1 − sk,1 is equal to the capacity of the line; (d)

bounds the feasible ranges of decision variable. Each RMS configuration is uniquely

defined by the vectors v and n that record machine variants and numbers. This

programming model in Eq. (1) allows us to link an RMS configuration to a maximum

capacity, i.e., prk = fpr(k,v,n). Only the operation that gives the maximal RMS

capacity is used to increase resource utility rate. Thus, a configuration of the RMS

is representd by a machine layout.

6.1.3 Mining of Potential Configurations

Given a set of available resources, potential RMS configurations are explored to

find the configurations with high capacity using the following nonlinear integer pro-

gramming model
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max
v,n

∑
k

wkfpr(v,n)

s.t. (a) fmp(v,n) ≤ smp

(b) 1 ≤ vts ≤ Nv , 0 ≤ nts ≤ Nn and integer, ∀ts,
(6.2)

where, wk is the weight factor for part k, which can be dynamically tuned to shift

the priority of mining when reacting to demands. fmp is a nonlinear function that

calculates the required modules of type p for a configuration. smp(t) is the available

resources in type p on the shop floor at time t. Constraint (a) ensures that the

required modules are less than the stocks, and (b) bounds the feasible ranges of the

decision variables. Nv is the number of machine variants. Nn is the maximum number

of machines allowed per stage.

The optimization model in Eqn. (1) which defines fpr makes the cost function in

Eqn. 6.2 nonlinear and nonconvex. Combined with the nonlinearity from constraint

(a), it is intractable to find the global optimal solutions efficiently. Note that the

goal of RMS configuration mining is to seek a group of near-optimal potential config-

urations with high similarity to facilitate reconfiguration. Thus, a genetic algorithm

(GA) is used to generate first and then to select a population of near-optimal config-

urations with high similarity. However, increasing the number of machines enlarges

the size of possible layouts, and GAs cannot efficiently output all solutions. Also,

module requirements for the GA-generated solutions are not strictly equal to the ex-

isting stocks. Hence, some configurations are just candidate solutions for lower stock

cases.

To boost computational efficiency, a configuration library which stores all explored

configurations is created, which includes a configuration index, machine layout, re-

quired modules and capacity. With continuous updates during planning, the library
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provides the knowledge-base for real-time decision making.

6.1.4 Capacity Planning

Capacity planning assigns capacity at each time step during of the planning hori-

zon to minimize unsatisfied demands. The first priority is to select candidate ca-

pacities, which are the capacities in the library that satisfy module requirements.

Although candidate capacities provide the design space, the daily processing time

pt(t) according to the reconfiguration time rt(t) spent each day to determine the

amount of delayed jobs is still needed. However, the nonlinearity of the problem and

the high dimensionality of the decisions make it intractable to optimize for all vari-

ables at the same time. This problem is decoupled by approximating the processing

time and reconfiguration time as p̄t(t) and r̄t(t) by heuristics. Thus, a binary integer

programming is formulated to minimize the expected total delayed demand during a

planning horizon tp as

min
δpr,

so/b,nd

∑
nd

[cTo so,nd + cTbsb,nd ] +

t+tp∑
t+1

cδpr
T δpr(τ)

s.t. (a)

td,nd∑
τ=t+1

[pr(τ) ◦ p̄t(τ)− d(τ)] = so,nd − sb,nd ,∀nd

(b)
∑

pr(τ) = 1, ∀τ

(c) pr(τ + 1) = pr(τ) + Mδprδpr(τ), ∀τ

(d) so,nd,j, sb,nd,j ≥ 0, ∀nd,∀j

(e) δcα(τ), cα(τ) ∈ {0, 1}, ∀τ, ∀α,

(6.3)

where δpr(τ) is a binary vector indicating the switch of capacity with cost cδpr.

Mδpr records the changes of capacity under reconfiguration actions. nd is the index of

demand in the planning horizon. td,nd is the due time of the ndth demand. d(τ) records

all the received demands with due time as time index τ . so,nd , sb,nd are variables that
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represent overused and insufficient capacity of the ndth demand, with costs co and cb.

Constraint (a) states the balance between remaining demands and auxiliary variables.

(b) comes from our assumption that RMS reconfiguration occurs only once for each

time index τ . (c) states the balance of capacity at different times. (d) and (e) specify

the type of decision variables. The proposed optimization model reveals a trade-off

between the utility rate of capacity and the reconfiguration costs. The model is able

to adjust the reconfiguration frequency based on the cost.

6.1.5 Reconfiguration Action Planning

There are multiple configurations that achieve the same RMS capacity. Before

deciding the RMS configuration path, it is necessary to calculate the minimum time

required to switch configurations. The minimal reconfiguration time is calculated by

using Li et al.s methodology (Li and Epureanu, 2017b), and formulate the optimiza-

tion problem as

min
oa,od,
oc,ol

∑
ts

tTa oats + tTdodts + tTc octs + tTl olts

s.t. (a) tc′ts = tcts + oats − odts + Mcocts + Mlolts , ∀ts

(b)
∑
ts

mp(oats − odts + Mcocts) ≤ samp(t), ∀p

(c) oats ,odts ,octs ,olts ≥ 0 and integer, ∀ts,

(6.4)

where tcts , tc
′
ts record machine layouts before and after reconfiguration. oats ,odts ,

octs ,olts are decision variables for assembly, disassembly, reconfiguration and reloca-

tion. Mc,Ml are matrices representing changes of machines due to reconfiguration

and relocation actions. mp records modules of type p required by each machine.

samp(t) is the number of free modules of type p at time index t. Constraint (a) en-

sures that the reconfiguration is complete. (b) guarantees that the reconfiguration is

achieved by the given free modules. (c) ensures all decisions are non-negative inte-
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gers. Times required rt for reconfiguration actions are obtained by enumerating all

combinations of qualified candidates.

6.1.6 Configuration Path Planning

In configuration path planning, the goal is to select candidate configurations that

effectively provide the target capacity pr(t). First, the changes of capacity is repre-

sented as a dynamical system

c(t+ 1) = c(t) + Mδcδc(t),

cpr(t) = Mprc(t) + Mδprδc(t),

(6.5)

where c(t) is a binary vector that indicates the selected candidate configuration

with capacity cpr(t). Mδc records how the configurations change under reconfigura-

tion actions. Mpr stores the capacity of all candidate configurations. Mδpr records

the expected capacity loss from reconfiguration actions. Given all δc(t) over the plan-

ning horizon, the corresponding capacity is calculated by iteratively substituting Eqn.

(5). An integer programming is formulated to minimize the total reconfiguration time

min
δc

t+tp∑
τ=t+1

rtT δc(τ)

s.t. (a) cpr(τ) = pr(τ), ∀τ

(b)
∑

c(τ) = 1, ∀τ

(c) δcα(τ), cα(τ) ∈ {0, 1}, ∀τ, ∀α.

(6.6)

Once the configuration path is found, the exact reconfiguration time rt(t) spent

during each time index is determined also. That may differ from the estimated

r̄t(t) used in section 3.4. It is possible to train a neural network to improve estima-

tions based on records. The training set includes inventory status, received demands,
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current configuration and calculated processing time.

6.1.7 Processing Time Planning

Because of inevitable errors in estimating the reconfiguration time and unexpected

changes on the shop floor, i.e., fluctuations in the processing speed of each machine,

the actual processing time should be adjusted at each time index τ given the deter-

mined path, to minimize unsatisfied demands as

min
ptk

t+tp∑
τ=t+1

∑
k

−γtptk(τ)prk(τ)

s.t. (a)

td,nd∑
τ=t+1

ptk(τ)prk(τ) ≤
td,nd∑
τ=t+1

dk(τ), ∀nd, ∀k

(b)
[∑

k

ptk(τ) + rt(τ)
]
≤ t̄, ∀τ

(c) ptk(τ) ≥ 0, ∀τ,

(6.7)

where the decision variable ptk(τ) represents the production time for part k at

time index τ . γ is a discount factor that encourages the system to process jobs.

Constraint (a) limits the amount of processed parts to be less than the demand. (b)

bounds the total working time by a threshold t̄. (c) ensures that decisions are non-

negative. Thus, fu used in section 3.1 is formed as a function of the module stock

sm(t) and demands in the planning horizon D(t), which contains models described

in 3.2-3.7, namely

fu(sm(t),D(t)) =
∑
nd

[ td,nd∑
τ=t+1

(d(τ)− pt(τ) ◦ pr(τ))

]
. (6.8)
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Table 6.1: Machines’ composition and their average processing rate

Machine Variant

Module Type 1 2 3 4 5 6 7 8 9

1 3 3 3 3 4 0 0 0 0

2 1 2 3 4 1 0 0 0 0

3 0 0 0 0 0 1 2 3 4

4 1 1 1 1 1 0 0 0 0

5 0 0 0 0 0 1 1 1 1

ōr1 11 22 33 44 12 2 4 5 7

ōr2 7 15 23 30 11 8 17 26 35

6.2 Sample Results

In this section, the proposed model is implemented to simulate the real-time op-

eration of a processing company to demonstrate how the capacity of RMS matches

the demands in real-time, and how the teaming between lines results in a better per-

formance. The example from Youssef et al. (Youssef and ElMaraghy , 2007) is used in

this study, where two types of parts with multiple features require operation actions

to process. There are 9 types of machines with different operation speeds, which are

formed by 5 types of modules as shown in Table 1.

where, ōrk represents the averaged processing rate for part k by each machine

6.2.1 Real-time Capacity Management

In this example, the manufacturing firm initially invests in a single processing line

by using 50 modules of Type 1 and 20 modules of Types 2, 3, 4 and 5. The time

interval between stochastically arriving demands is approximately 10 days, and the

average completion time is one week. The magnitude of demands is generated based

131



Figure 6.3: Matching between capacity of RMS for part 1 and its demand

on Gaussian distributions, i.e.,

dk ∼ N (5000, 5000). (6.9)

After simulating over one year, the averaged computation time required for daily

decision is 0.42 seconds. Figure 2 shows the incomplete orders and their impact on

capacity.

No delayed demand was found in the simulation. Additionally, the capacity for

Part B always followed the trend of the demand, as shown in Figure 2. However, there

are situations where the capacity for Part A is significant even without receiving a

demand, e.g., between Day 200 and Day 220. During such periods, most of the ca-

pacity is allocated to process Part B, but the system decides to keep some superfluous

capacity for Part A so that it can respond to changes in demand. Considering the

high cost of customizing a configuration, the model outputs a compromised strategy

to balance the reconfiguration cost and overused capacity.
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Figure 6.4: Matching between capacity of RMS for part 2 and its demand

6.2.2 Teamming Among Lines (i.e., among distinct RMS)

As an example, consider the case where the demand settings are the same, and the

firm allocates resources initially to the two processing lines as follows for Types 1-5:

(a) line 1: 30, 10, 10, 10, 10, and (b) line 2: 20, 10, 10, 10, 10. Initially, the received

demands are allocated evenly to each line. Because of the limited resources, one RMS

may not accomplish the assigned task alone. Negotiation is required to minimize the

remaining demands, which increase the time required for decision making to 2.79

seconds.

Figure 3, 4 shows an example of task and resource relocations respectively, which

are triggered by the sudden occurrence of intensive demands. The results shown

in Figure 4 demonstrate the performance boosts through negotiation between lines.

In the figure, the total capacity in the case without demand and module sharing is

limited to 360 parts/hour. However, once the negotiation is considered, the maximum

capacity can reach up to 420 parts/hour. This improvement in capacity eliminates

most of the delayed demands that occur otherwise.
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Figure 6.5: Matching between capacity of RMS for part 1 and its demand

Figure 6.6: Matching between capacity of RMS for part 2 and its demand

6.3 Summary

In this section, the potential of autonomous reconfigurable manufacturing systems

for highly stochastic and rapidly changing demands is discovered. An integrated

model is formulated for the decentralized management of such teams of autonomous

RMS in real-time under a limited inventory. A negotiation algorithm is proposed for

resource and demand relocation between multiple lines to increase the readiness and
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Figure 6.7: Module level of both lines without negotiation

Figure 6.8: Module level of both lines with negotiation

utility rate of the overall system.
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CHAPTER VII

Conclusions

7.1 Summary

This dissertation has demonstrated the intelligent fleet operation systems created

for evaluating the benefits and burdens of modularity in military fleet operation.

Three mission scenarios are created to compare the fleet performance with different

emphasizes. The fleet operation system is presented as a discrete dynamical system.

Because of the ADR actions, the number of system inputs of modular fleet is larger

than that of conventional fleet. Thus, the problem is converted to evaluate the benefits

of these additional freedom in control inputs to the system performance.

First, the fleet performance are compared in a simplified scenario - commander

needs to operate the fleet to guarantee the vehicle readiness at battlefields. An MPC

method have been implemented to make real-time operational decisions according

to the system status and upcoming field demands. The results indicate a significant

boost in adaptability due to the flexibility gained from modularity. Then, uncertainty

in demands and damage are considered, which are modeled as Gaussian random

variables with known distribution. SMPC is implemented by stochastic formulation

of constrains and objective function. Simulation results reveals that conventional

fleet demands more resources to avoid delayed attributes. Once resources are limited,

modular fleet performs a higher robustness in reacting to the demand uncertainty.
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The operation model is also implemented in a realistic logistic military mission

scenario, where vehicle usage and damage are considered to be dependent on the

demands, and the quality of vehicle dispatch is evaluated in a more complicated

manner. To ensure the computational efficiency, the decisions are distributed to three

types of agents: resupply agent, base agent and dispatch agent. Operational decisions

are calculated through agent collaboration and real-time optimization. Results show

that the total resupplied resources for operating a modularized vehicle system can be

reduced by more than 40 percent due to pooling effect. And modular fleet performs

distinct operational strategies under changing ADR capacity.

To further improve the model fidelity, an attacker-defender game between two

intelligent and adversarial forces is simulated, which can evolve their combat strate-

gies based on the enemy’s behaviors. To achieve that, inference agent are added

by implementing a deep learning model - LSTM. Dispatch agent is updated by a

multi-objective optimization model which maximize the win rate with consideration

of order feasibility. By contrasting the simulation results from two fleets, it is found

that conventional fleet stays the leader when both fleets selecting strategies stochasti-

cally; modular fleet outperforms conventional fleet once intelligence of decision maker

is considered. The freedom of operation enables the modular fleet to perform an

improved adaptability to the changes of enemy and an augmented complication to be

inferred.

Finally, the operation model is extended to civilian application - management

of reconfigurable manufacturing systems. A negotiation algorithm among lines is

created for distributing the stochastic demands and exchanging machines or modules.

A group of optimization models are designed for adaptively configuring these lines and

machines to minimize the missing demands under a limited inventory of configurable

components.
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7.2 Summary of Contributions

This dissertation offers an innovative analytical and methodological approach in

operation management of a fleet of autonomous vehicles/robots. To achieve the

real-time decision making in reacting to the stochastically arrived demands, a new

stochastic MPC framework is created for managing the dynamics of systems, where

each of them representing impacts of operational actions on the configuration of fleet.

Through analyzing the results from diverse logistic mission scenarios, boosts in adapt-

ability and robustness are observed once fleet modularity is introduced.

Concerning the evolutionary decision making process during military operation,

a novel intelligent agent based model is created to simulate the human-like decision

making process by combining the real-time optimization and artificial intelligence

techniques. The model is capable to guide the action of autonomous vehicles through

analyzing field information, forecasting enemy’s decisions and planning for operational

actions. The model offers the capability of performing a competition between two

intelligent and adversarial military commanders. By formulating a warfare between

conventional fleet and modular fleet, several pristine advantages brought from fleet

modularity are disclosed: increased capability in satisfying the orders and augmented

difficulty of being inferred by enemy.

The model also has significant implications in solving civilian operation problems,

i.e., real-time management of RMSs. To resolve the computational complexity in

real-time management of multiple RMSs, new optimization models are created to

collaboratively configure the systems and machines in reacting to the demands under

a limited inventory of configurable components. A bidding process is also customized

to efficiently and effectively reallocate demands and resources among multiple RMSs

for seeking a better team performance.
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7.3 Limitation of the Study

Although this research was carefully prepared, I am still aware of its limitations

and shortcomings.

First of all, the type of vehicles and attributes used in Chapter 5 is limited, which

incurs the incomplete operational strategies.

Second, the way of modeling vehicle damage is simplified to convoy firepower

comparison. However, many other factors are also critical to affect the damage prob-

ability, i.e., convoy layout, vehicle teaming strategy, which can be additional decisions

to be made by operation model.

Third, the learning model is based on the assumption that all forces operate based

on limited resources. Once resupplies are allowed, more training samples are needed

for fleets to infer the other’s strategy with consideration of possible reinforce ordered

by enemy. Scout vehicles can be introduced for information acquisition.

In addition, introducing new/obsoleting old modules in both modular fleet and

RMS are not in consideration. One of the advantage from modularity is its rapid

response to the technology update, which is not emphasized here.

7.4 Future Work

Many different analyses, theoretical proofs and parametric studies have been left

for the future due to lack of time (i.e. for Chapter 4, the experiments with real

data are usually very time consuming, requiring even days to finish a single run).

Future work concerns deeper analysis of fleet operation strategy, new proposals to

try different methods or modeling approach. The following ideas could be achieved

in the future:

1. In Chapter 3, the stability constraint, Eqn. 3.55, is created to avoid system

instability. Based on the results from multiple realizations, this condition is
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shown to be the sufficient and necessary condition for stability in a deterministic

system. Once uncertainty is considered, the condition becomes the sufficient

condition. Proofs for these statements can be done in the future.

2. In Chapter 4, a lot of parametric studies can be conducted. For example, the

number of available working stations is fixed at 10. It is interesting to vary the

number of stations and observe the changes of fleet performance. The modular

fleet may lose the tactical advantages under insufficient capacity. Similar studies

can also be performed by varying planning horizon, assembly time, repair time,

frequency of demand, initial resource level and etc.

3. In Chapter 4, if a equilibrium can be proven from the competition of two fleets,

the benefits from modularity become intuitive. However, as the decision mak-

ing process is dominated by machine learning techniques and optimizations,

and the resulted operational actions are numerous, operation strategies are ob-

scure and hard to be summarized. Simplifications are needed before finding the

equilibrium.

4. In Chapter 5, new actions can be added to increase the universality of the

model, in terms of new component design, machine maintenance and repair.

5. Finally, a model that simulates the detailed vehicle operation actions, i.e., move-

ment control, teaming and etc, are necessary for a better estimation of vehicle

damage and mission success. Moreover. teaming among vehicles (movable) and

modules (mainly static) could offer additional and flexible combat strategies for

a highly modularized vehicle fleet.
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