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Abstract 

This dissertation examines the resources that two-year college instructors use to aide their 

teaching.  In particular, this dissertation is an investigation into the resources used by two-year 

college calculus instructors in Michigan when they plan and teach the Fundamental Theorem of 

Calculus (FTC), how they use those resources and why they use them.  Resources are broadly 

defined as assets that instructors access that impact their planning and instruction.  While there 

are many resources available for teaching the FTC, they are often minimally used. The FTC 

connects the two major calculus concepts of differentiation and integration, yet it is difficult for 

students to understand the significance of the theorem. Traditionally, the FTC is presented as two 

theorems, in one section of one chapter of a textbook.  One theorem describes the inverse 

relationship between differentiation and integration, and the other theorem explains how to 

calculate a definite integral.  Theoretical underpinnings for this study come from 

documentational and instrumental genesis, as articulated by Gueudet and Trouche (2009).  This 

theory articulates the dual understanding of how instructors use resources and how resources 

affect instructors. The study uses a mixed method design with three levels of data collection: a 

survey of all community college calculus instructors at all the Michigan community colleges; 14 

interviews with instructors, selected to represent a variety of experience levels; and two 

classroom observations of instructors who identified the FTC as important and identified 

themselves as comfortable teaching it. Findings from this dissertation indicated that most 

instructors use the textbook for planning and homework, and use their personal background and 

student feedback when teaching a lesson on the FTC.  Despite the calculus reform movement in 
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the 1980s that encouraged teachers to incorporate technology into their classroom, and the 

availability of technologies that would help explain concepts vital to understanding the FTC, this 

study found that the theorem is often presented without technology.  An examination of 

instructor descriptions of the importance of the FTC revealed that instructors tended to consider 

the FTC as two disconnected theorems, similar to how it was presented in the textbooks.  

Instructors also allocated the same amount of time to the FTC as they did to other sections of the 

textbook.  One implication from these findings is that if instructors wished to emphasize the FTC 

in their calculus classes by spending more time on it, the resources that they use may be 

inadequate.  This dissertation contributes to research that focuses more broadly on higher 

education mathematics curriculum research.   
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Chapter 1: Introduction 

This dissertation investigates the resources that two-year college instructors
1
 use when 

they plan and teach the fundamental theorem of calculus (FTC).  The relationship between two-

year college mathematics instructors and the resources they use is complex and worthy of study. 

What I want to know is what resources faculty use that affect how they plan and teach the 

fundamental theorem of calculus.  How do they use these resources? Why do instructors use (or 

not use) those resources? My interest in understanding resources stems from experiences I had in 

my own teaching, and my interest in the FTC stems from my experience as a student. This study 

contributes to and extends body of research around calculus instruction.  The unique contribution 

of this study is its focus on the resources involved during the planning and teaching of one topic 

with one group of instructors, and has implications for researchers and instructors. 

My interest in the resources used by two-year college instructors stems from two 

particular experiences I had while teaching where resources changed my teaching.  A few years 

ago I was asked to teach a beginning algebra course that I had taught several times in the past. I 

had previously enjoyed teaching this course, and was excited to teach it again. There was a new 

textbook for the course, but I didn’t expect that it would make much difference in my teaching. 

When I asked other instructors about the new textbooks, I was told, “the problem sets are 

harder.” When I started teaching, I was surprised by my reliance on the textbook for my 

teaching. The new textbook treated some topics differently than the old textbook, and these 

                                                 
1
 Throughout this dissertation I refer to “teachers” of K-12 mathematics and “instructors” of college mathematics. I 

make this distinction because the requirements to teach K-12 include a teaching certification, while college 

instructors are not required to have any pedagogical training.  Instructors may also hold a teaching certification, but 

it is not required.  I refer to the activity of both teachers and instructors as “teaching.” 
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changes prompted me to change how I taught that topic. For example, the old textbook 

considered the use and manipulation of exponents as an entire chapter. The new textbook 

condensed exponents as one section at the end of chapter one. When I taught this with the new 

textbook, I shortened my discussion of this topic to a portion of one class period. I eliminated the 

introduction that I used to include for exponents, gave fewer examples during class, and assigned 

less homework. Where I used to break up simplifying exponential expressions and solving 

exponential equations over two class periods, I now taught everything in one period, because it 

was one section of the textbook. 

The second experience I had involved a student complaint.  I was teaching an algebra 

course and the college required students to purchase a graphing calculator for the course.  

However, I learned mathematics via paper and pencil.  Although I could use a graphing 

calculator, I did not see a great deal of added value for it in the classroom.  One student 

complained that he had been required to pay for this calculator, but we were not using it. As a 

result of that complaint, I paid careful attention to opportunities for calculator use beyond 

computation.  I asked other instructors what topics they taught where the graphing calculator was 

most helpful and I searched the internet for ideas about integrating calculator use in the 

classroom.  I incorporated instructions on how to use the graphing calculator in my teaching, and 

taught them how to use their calculator to do linear regression.  Without the capabilities of the 

graphing calculator, the computations involved in linear regression discouraged me from 

introducing it to students.  As I investigated appropriate ways to incorporate the graphing 

calculator into my teaching, I came to realize that the resource that influenced my initial teaching 

in this instance was my personal background. Although the graphing calculator impacted my 
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teaching later, the trigger for the change in my teaching and planning was not the graphing 

calculator, but the feedback I received from a student. 

These two experiences motivated a desire to understand resources and not only how they 

can influence teaching, but how they can be used.  I was surprised by how much the resource of 

the textbook impacted my teaching.  I reduced classroom time for one topic based on the layout 

of the textbook.  Based on student feedback, I changed how I used the graphing calculator in my 

teaching and planning.  Based on the capabilities of the graphing calculator, I was able to teach a 

new topic.  This experience led me to think about the resources I was given as an instructor, and 

how resources may be used by other instructors.   

Within mathematics education research there is a growing body of scholarship on 

resource use and the interaction between instruction and resources, raising questions about the 

interactive nature of resource use.  How does resource use impact instruction?  How does 

instruction impact resource use?  An underlying assumption for this work is that 

resources are essential for mathematics teachers, and teachers use different 

kinds of resources which shape the mathematical content presented to, and 

used by, pupils in their mathematics learning. Moreover, when 

appropriating resources, teachers adapt them to their needs and customs. 

(Pepin, Gueudet, & Trouche, 2013). 

In other words, what teachers and instructors do with resources influences their instruction as 

well as student learning.  Understanding how and why instructors use available resources is 

crucial for the development of new resources or the implementation of existing resources.  Some 

researchers have chosen to study a particular resource (such as the graphing calculator), and how 

instructors use that resource (e.g., Doerr & Zanger, 2000; Remillard, 2000).  Others focus on 

understanding and categorizing the resources instructors use (e.g, Adler, 2000; Remillard, 2005), 

and some researchers study a particular topic in combination with a particular resource or 

resources (e.g., Bowman, 2018), while others have worked on proposing and developing 
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frameworks for understanding resource use (Gueudet & Trouche, 2009; Rabardel & Yaern, 

2003).  In my experiences, the resources I was exposed to impacted a very specific aspect of my 

teaching.  The textbook impacted how I taught exponents, and the graphing calculator allowed 

me to introduce linear regression; the resources and the topic of instruction were tightly linked.  

Therefore, in studying resource use by other instructors, I focused on a specific topic that had the 

potential for resources to impact teaching.   

My interest in the FTC came gradually.  I initially took calculus in high school, and much 

of my memory of that course is vague.  In my undergraduate work, I learned about the 

fundamental theorem of algebra and the fundamental theorem of arithmetic.  In my graduate 

mathematics courses, years later, these two theorems stuck with me, but I did not remember the 

FTC until I took a course in complex analysis and was confronted with a use of Green’s theorem, 

and then an advanced calculus class where I spent a great deal of time trying to understand and 

reproduce a proof of Stokes Theorem.  These two theorems are generalizations of the FTC
2
, and 

the proof of Stokes theorem that I focused on required the use of the FTC.  As I studied where 

the FTC fit into this proof, I realized that even though it was called “fundamental”, I didn’t recall 

either the theorem or the proof.  Why could I recite and explain (although not prove) the 

fundamental theorem of integers and the fundamental theorem of algebra, but not the 

fundamental theorem of calculus?  In the course of reviewing the FTC, I discovered that the 

fundamental theorem of calculus occupied the unique position of being a fundamental theorem 

that could be introduced, applied, and proven within the same course of first semester calculus.  

This was not the case for the other two theorems.  Proof of the fundamental theorems of algebra 

and integers required upper level college mathematics.  So why was it that I had to relearn the 

                                                 
2
 There are four theorems of vector calculus that are considered fundamental:  1) Green’s Theorem, 2) Gradient 

Theorem for Line Integrals, 3) Divergence Theorem, and 4) Stokes’ Theorem.  Green’s theorem is sometimes called 

the two-dimensional version of Stokes’ theorem. 
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FTC?   It is a fundamental theorem, clearly used later in mathematics courses, and I had 

considered myself a better than adequate mathematics student.  I found myself frustrated with 

having to relearn a theorem that I felt I should already know.  As I gained a growing 

understanding of the importance of this theorem that I didn’t have in my undergraduate studies, I 

wondered why I hadn’t learned it well the first time around.  I learned calculus via paper, pencil, 

and a textbook, and students now had graphing calculators and computers.  Was it just me?  How 

did resources matter?  As an instructor, I understood that resources had influenced my teaching, 

but what about this particular topic?  Was teaching it now, with many more available resources, 

significantly different than when I had learned it many years ago?  This dissertation combines 

my interest in resources with my interest in the teaching of the FTC by examining what resources 

two-year college instructors use in teaching the FTC, how they use those resources, and why 

they use them. 

Resources used in Teaching 

Early research into resource use in mathematics classrooms focused on material 

resources; primarily the textbook.  Much of the motivation for the study of how curriculum 

materials such as textbooks are used dates back more than fifty years. Through two large-scale 

international studies in the 1960s and 1970s, the importance of textbooks became evident. In the 

early 1960s, the First International Mathematics Study (FIMS) was designed to consider how 

various “inputs” such as money, teacher competence, materials, teaching time and method of 

instruction related to the “outputs” of student achievement and attitudes (Husén, 1979).  FIMS 

was designed with the implicit assumption that better inputs should result in better outputs, and 

that different inputs results in a different student achievement.  Unfortunately, rather than a 

comparison of inputs to student achievement, the study was perceived as an international 
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mathematics contest, with winners and losers. An effort was made to point out that this was an 

invalid contest, because different countries had different curricula. For example, students 

surveyed from selective schools in Germany and England had been exposed to algebra at the 

time of the test, while students in general schools in Sweden and the United States did not have 

that exposure (Husén, 1979). Anticipating this reaction, researchers had asked teachers about the 

about whether their students had the “opportunity to learn” the material, which turned out to be 

an ambiguous question with answers that could not be reliably compared. For example, did a 

teacher who agreed that students had an ‘opportunity to learn’ some content mean that the 

material was a part of the intended curriculum or simply that the material was in the textbook?  

These questions led researchers in the 1970s to re-design the study as the Second 

International Mathematics Study (SIMS) and focus on the relationship between the inputs of 

FIMS, how those inputs were implemented, and then student achievement. This was articulated 

as the intended, implemented and attained curriculum (Brown, 1996; Pepin, 1999). SIMS 

targeted students around 8
th

 and 12
th

 grade, and was much more focused on curriculum.  A 

critical feature of the Second International Mathematics Study was that of obtaining reports from 

the teachers of the classes on whether the mathematics on the test had been taught, either during 

the year or in a prior year.  Rather than asking a vague question about whether students had the 

opportunity to learn the material, teachers were asked directly whether or not they had taught the 

mathematics on the test. The resulting data, called “opportunity-to-learn,” was found to have 

more impact on the attained curriculum than all other variables studied, including teaching 

methods (Brown, 1996). As a result of the answers to the survey provided by teachers as well as 

examinations of textbooks, researchers found that teachers in the US were more tied to the 

textbook than instruction in most other countries. In particular, items that were taught, as well as 
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strategies used for teaching, were primarily found in the textbook. However, “exclusion from the 

textbook made it virtually certain that the strategy or representation would not be used.” 

(McKnight, et al 1978 p. 75).  Results from SIMS indicate that what students learn is highly 

correlated with what is taught (opportunity to learn), and what is taught can be found in the 

textbook.  Based on these results, understanding how teachers and instructors use their textbooks, 

and what parts of the textbook they use can contribute to our understanding of how and why 

students learn what we intend for them to learn. 

Results from FIMS, SIMS, and later studies continue to show a strong link between what 

is in the textbook and what is taught in the classroom (Schmidt, Houang, & Cogan 2002). 

Several studies after SIMS have focused on how mathematics teachers use their textbook in the 

classroom, but most of these have focused on elementary and middle-school mathematics (e.g., 

Remillard & Bryans, 2004; Sherin & Drake 2009; Sosniak &Stodolsky, 1993). Few studies, 

however, have examined how teachers or instructors of more advanced mathematics use their 

curriculum materials. There is some research that implies that the textbook and curriculum 

materials are important, even in undergraduate mathematics education (Nichols, 2009; Weinberg 

et al, 2012), but little research on how they are used (Mesa & Griffiths, 2010; Mesa, Wladis & 

Watkins, 2014).   

 The idea that the textbook is the primary resource for mathematics teaching is still 

prevalent, but changing. Many mathematics classrooms are incorporating technology such as 

graphing calculators and computer algebra systems (CAS) into the curriculum (Crowe & Zand, 

2000; Buteau, Marshall, Jarvis & Lavicza, 2010). Some textbooks are written to accommodate 

these technologies. There is abundant research into the challenges and affordances offered by 

these technologies by teachers/instructors and students from elementary school through college 
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(e.g., Ball, Ladel, & Siller, 2018; Buteau, et al 2010; Crow & Zand, 2000; Kilicman, 2010), but 

very little that examines how college instructors—who may not have training with technology—

are using those technologies in the classroom. The definition of resources has slowly expanded 

from primarily tangible material resources to include human resources (such as students) as well 

as cultural resources (Adler, 2000). Remillard (2005) published an extensive literature review 

about research into the use of curriculum materials which found that many researchers included 

the intangible resource of instructor background and knowledge as a factor in how curriculum 

resources were used.     

For this work, I am interested in more than curriculum resources; I am interested in all 

the resources instructors use when they plan and teach the FTC, what those resources are, how 

they use those resources, and why they use the resources in particular ways. With that in mind, it 

is helpful to define what constitutes a resource.  The Oxford English dictionary (2018) defines 

resources as assets that can be drawn on by a person or organization in order to function 

effectively. For this study, I define resources as assets that instructors draw on that impact their 

planning and teaching of the FTC. I define teaching as time spent with students either in class or 

in office hours, and I define planning as time spent getting ready to teach, including choosing 

homework.  Similar to other researchers (Adler, 2000; Pepin, Gueudet, & Trouche, 2014), I 

consider resources and their uses together. I describe the conceptualization of resources in more 

detail in the literature review. 

Two-year college context 

I chose to look at two-year college instructors for two reasons. First, two-year colleges 

educate a significant number of students.  Of the 3,852,000 students taking mathematics in fall 

2015, 14% (556,000) of them were enrolled in a first semester calculus course at a two-year 
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college. Of all students taking first semester calculus, approximately 15% are enrolled at a two-

year college (Blair, Kirkman, & Maxwell, 2018).     

Second, I believe that the opportunity to learn about the greatest variety of instruction is 

at the two-year college level.  Calculus is offered in high schools, two-year colleges, four-year 

colleges, and universities.  Instructors at two-year colleges have important similarities with 

instructors at these other institutions.  Two-year colleges are also known as teaching institutions 

because teaching is their priority (Cohen & Brawer, 2003), so two-year college instructors may 

share a focus on teaching with K12 teachers.  However, they may not have had the pedagogical 

training that K12 teachers are required to have.  A master’s degree and/or doctorate degree in the 

field taught is sufficient to become a community college instructor: no teaching certification is 

required—making these instructors similar to post-secondary instructors at other institutions. As 

a result, these instructors often bring adequate disciplinary knowledge, and an interest in 

teaching, but may have little pedagogical training and experience (Grubb, 1999). 

There are reasons to believe that calculus may be a desirable course to teach at two-year 

colleges, because it is one of the most advanced math courses available and often taught by full-

time instructors.  Within a two-year college mathematics department, there are fewer sections of 

calculus than sections most other courses, sometimes only one section per year.  Because of this, 

instructors may have more autonomy over calculus instruction than a course that must be 

coordinated among multiple sections and multiple instructors.   There is some evidence that 

calculus instructors at two-year colleges are more interested in teaching calculus more than 

calculus instructors at other institutions (Bressoud, 2012).  Thus, the combination of caring about 

teaching with the potential autonomy of teaching a calculus level course offers motive and 

opportunity for instructors to use a variety of resources.  
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Much of the growing research into two-year college mathematics education involves 

developmental mathematics (Waycaster, 2001; Bahr, 2008; Melguizo, Kosiewicz, Prather & 

Bos, 2014). Some attention has been paid to calculus at the two year college, including the 

resources that instructors use, particularly as part of the extensive NSF study titled 

Characteristics of Successful Programs in College Calculus I (CSPCC). There are also smaller 

studies that explore college mathematics instructors’ use of resources, but these generally lack a 

focus on a specific mathematical topic (Gueudet & Pepin, 2018). 

Calculus and the FTC 

Two-year college instructors have things in common with both K12 teachers (a focus on 

teaching) and post-secondary instructors at other institutions (no required pedagogical training), 

and all of these instructors teach calculus. Calculus is the culmination of mathematics courses for 

some students and the beginning of more intensive math courses for others. Calculus 1 is often 

positioned as a gatekeeper course for students wishing to enter STEM fields (Treisman, 1992; 

Blair, Kirkman, & Maxwell, 2018), making the passing of calculus high stakes for these 

students.  Yet a recent national study of calculus students found that 38% of those enrolled in 

two-year college calculus either failed or withdrew from the course (Bressoud, 2015).   

The calculus reform movement from the 1980s and 1990s encouraged instructors and 

teachers to break away from traditional lecture and paper/pencil problem solving to teaching for 

understanding (Hughes-Hallett, n.d). Since then, resources and technologies have been 

developed to support these changes.  For example, graphing technologies have evolved from 

hand-held calculators to sophisticated online programs and three-dimensional (3D) printers.  

These resources have been tested with students and shown to offer the opportunity for increased 

conceptual understanding and procedural fluency (Artigue, 2002; Dunham & Dick, 1994).    
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Even with the motivation of the calculus reform movement, students are still struggling 

with calculus, and calculus is still functioning as a gatekeeper course (Bressoud, 2012; Suresh, 

2006).  A recent study involving more than 3,000 calculus students in the U.S. found that their 

confidence and enjoyment of mathematics dropped sharply from the beginning to the end of their 

first semester calculus course (Bressoud, 2015).  However, the drop in confidence level was 

mitigated by what was called ‘good teaching.’  Indicators of good teaching “largely reflect the 

rapport between student and instructor” (p. 184), and include such things as the instructor 

listening to student questions and making students feel comfortable in class.  The use of 

educational technologies was not associated with good teaching, but was considered neutral in 

most cases (Sonnert, et al., 2015). 

Increasing student confidence and enjoyment of mathematics (or at least, not decreasing 

it) is a desirable goal, but is not an indicator that students understand the mathematics being 

taught.  There is considerable evidence that even successful students in calculus do not have a 

good understanding of some of the concepts of calculus (e.g., Byerley, Hatfield, & Thompson, 

2012; Fisher, Samuels, & Wangberg, 2016; Grundmeier, Hanson, & Sousa, 2006; Park, 2013; 

Sealey, 2014, Serhan, 2015).  

Some of the primary concepts of calculus are limits, derivatives, and integrals (Burn & 

Mesa, 2015; Sofronas, et al., 2011).  Within a first semester calculus course, the fundamental 

theorem of calculus (FTC) links the primary concepts of integration and differentiation. 

Concepts involved in understanding the FTC are used in physics, engineering, and other related 

fields.  The FTC is the historical grand breakthrough of calculus and links the branches of 

differential and integral calculus (Bressoud, 2011).  This theorem prepares students to learn later 

mathematical theorems such as Green’s Theorem and Stokes’ theorem.  If students struggle with 
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the initial FTC, they may struggle with later mathematical theorems, and with mathematical 

concepts in other fields. 

Understanding the FTC is particularly challenging.  For example, a student may 

understand that a derivative can represent the velocity from a graph that displays a relationship 

between distance and time.  A student may also understand that taking the integral of a function 

means doing the opposite of taking the derivative.  Yet most students consider an integral to 

represent an area “under” a curve.  If the curve that is being integrated is a velocity function, then 

the integral would represent a distance.  However, connecting the idea of area with a distance can 

be difficult.   

There is some research into ways to teach the FTC for understanding (Byerley, et al., 

2012) that recommends introducing the ideas of rate of change (differentiation) and 

accumulation (integration) toward the beginning of a calculus class. This same study 

recommends graphing technologies as vital to teaching the understanding of the FTC.  Yet most 

instructors are teaching differentiation and integration separately and there is inconsistent use of 

graphing technologies in calculus classes.   

This dissertation uniquely connects scholarship on calculus, two-year colleges, 

instructors’ use of resources, and the FTC by investigating the resources used by two-year 

college instructors when they plan and teach this important theorem. I investigated what 

resources are used, how they are used, and why they are used in that way.  Examining the 

resources used by two-year college instructors to plan and teach the FTC affords an in-depth 

look at an important topic in a mathematics course that many students do not successfully 

complete. 
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Overview of the dissertation 

In the chapters that follow, I explore how Michigan two-year college instructors 

described their use of resources when planning and teaching the FTC.  In Chapter Two I begin 

by reviewing and synthesizing the literature available on mathematics teachers and instructors 

use of resources, including the use of technology as a resource in calculus classrooms.  This is 

followed by a historical description of the FTC as well as an explanation of the mathematics 

needed to fully understand the conceptual underpinnings of the FTC.  In this chapter I also 

outline my theoretical stance and the frameworks that I drew upon to analyze the data.  Chapter 3 

details the methods used to collect the data for this dissertation, including the rationale for why 

the mixed methods approach was appropriate for this study.  The methods for analysis of each 

type of data are explained as well.  This chapter concludes with a description of my own 

subjectivity and the limitations of this study.  Chapter 4 details the findings about what resources 

instructors are using, how they are using them, and why they are using them.  I begin by 

describing the ways that instructors talk about the FTC in their interviews and then outline the 

major resources, as well as how and why they are used by instructors.  Chapter 5 is a discussion 

of the findings and Chapter 6 includes the potential implications of these findings.   
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Chapter 2: Literature Review  

What resources do two-year college instructors use when planning and teaching the 

fundamental theorem of calculus (FTC)?  How do they use those resources?  Why do they use 

them in that way?  In this chapter I reviewed literature relevant to resources, technology and 

calculus teaching, and the FTC.  For this dissertation, I examine the resources that instructors are 

using when planning and teaching the FTC.  For the purposes of this work, I define teaching as 

direct interactions with students, including class time and office hours.  I define planning as 

getting ready to teach, including such things as planning a semester, planning lessons, and 

choosing and grading homework.   

In order to define what constitutes a resource for teaching, I adjusted Adler’s (2000) 

framework for conceptualizing resources.  For this study, I define resources as assets that 

instructors draw on that impact their planning and teaching of the FTC. In her work, Adler 

categorizes resources into two categories, which she calls basic resources and “other” resources.  

Basic resources are those resources that are needed for schooling.  These include material 

resources such as electricity and basic building infrastructure, and human resources such as class 

size and teacher qualifications.  Other resources can be human, material, and social-cultural. 

Other human resources include the teacher knowledge base, parents, and colleagues.  Other 

material resources include such material items as technologies and textbooks. A new type of 

resource in the “other” category is the cultural resource.  Cultural resources are primarily 

language and time.  Language includes as the language spoken, the mathematical language of 

instruction, and communication between students.  Time as a resource includes the organization 
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of the time periods and the length of periods.  In terms of how instructors use resources, Adler 

argues, “the functioning of a resource in and for school mathematics lies in its use in context, and 

not in the mere presence of the resource” (Adler, 2000, p. 221). In other words, for a resource to 

be used for learning, the focus will need to be removed from the resource itself, and onto the 

resource in combination with the mathematics.  In this way the resource becomes the means 

through which mathematics is learned.   

For the purposes of this chapter, I use Adler’s conceptualizations of “other” resources in 

the context of two-year college calculus (see Table 1).  For each of these categories, I review 

some of the literature available, in the context of two-year college calculus when possible. 

Table 1: Resource Categories (Adapted from Adler, 2000) 

Resource Examples 

Material: Technologies Computers, internet 

Material: School mathematics 

materials 

Graphing calculators, textbooks, associated 

computer software 

Human: Persons Teacher background and experience 

Social Cultural: Language Mathematical and everyday language, 

communication 

Social Cultural: Time Total class-time, length of class period 

 

The first category is material resources.  Material resources include technologies such as 

graphing calculators, computers, websites, and software.  Material resources also include 

curriculum materials such as the textbook and associated software.  The second category of 

resources to consider is human resources.  This includes the background and experience of 

instructors and how that affects their teaching and planning.  The third category of research are 

social-cultural resources.  These resources are largely intangible and include both every-day 

language and mathematical language.  Social-cultural resources also include time; both time 

spent in class in terms of the length of each lesson, and the total time spent in class over a 

semester.  Finally, all of these resources have a relevant context.  In this dissertation there is an 
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institutional context as well as a mathematical context.  The institutional context is two-year 

colleges in Michigan and the mathematical context is the FTC in a first semester calculus class.  

This chapter examines the literature on resources within each of these categories, while always 

keeping in mind, “resources are not self-explanatory objects with mathematics shining clearly 

through them. Mathematical meaning comes in their mediated use” (Adler 2000, p. 209).    

This chapter has two parts: In the first part, I present literature on the research into the 

context of two-year colleges and calculus instruction, followed by literature on calculus and the 

FTC. In the second part I present literature on material, human, and social-cultural resources, in 

terms of calculus and two-year colleges when relevant. 

Context: two year colleges in Michigan 

This dissertation examines calculus instructors at two-year colleges in Michigan. Like 

many two-year colleges throughout the country, two-year colleges in Michigan serve multiple 

needs. In general, two-year colleges are open access, offering anyone who wants it the 

opportunity to enroll in the college, regardless of former grades and educational background.   

They serve a dual purpose of technical or vocational training and general college education.  This 

dual-purpose two-year college institution is uniquely North American (Cohen & Brauer, 2003), 

and place two-year colleges in the position of being not quite like high schools and not quite like 

other colleges and universities.  Although I often refer to these institutions as “two-year 

colleges” in this document, many other sources call them “community colleges.”  These terms 

are used interchangeably, particularly in this section, because so much of the literature uses the 

term “community colleges.”  Community colleges in Michigan are defined in the Public Act 306 

of 2003 as follows: 

"Community college" means an educational institution providing 

collegiate and noncollegiate level education primarily to individuals above 
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the twelfth grade age level within commuting distance. The term includes 

an area vocational-technical education program that may result in the 

granting of an associate degree or other diploma or certificate. (MCL 

389.105(c)) 

Within two-year college mathematics departments in Michigan, calculus is offered as part of the 

collegiate level education and be taken by students intending to transfer to four-year colleges and 

universities.   

The two-year colleges (formerly known as junior colleges and now community colleges) 

began in the early twentieth century as primarily local institutions, set to serve local populations.  

The local control for community colleges that is so much a part of Michigan’s current system is 

not the case in most other states
3
, and can be seen as part of the history of two-year colleges in 

Michigan.   

Michigan initially adopted community colleges as outgrowths of local school districts, 

and that history can be seen in the decentralized nature of current two-year colleges in Michigan.  

As early as 1852, the president of the University of Michigan called for early college courses to 

be offered in secondary schools (Tappan, 1852).  The first junior college in Michigan was 

established as part of the Grand Rapids school district in 1914.  In 1917, Michigan passed its first 

junior college law (Public Act 146), authorizing large school districts to offer advanced courses 

to high school graduates that did not exceed two years of collegiate work.  In 1955, a Legislative 

Study Committee on Higher Education was formed to survey higher education in Michigan, with 

“a major section on the community college” (Martorana, 1957, p. ii).  This report found that by 

1956 there were over 16,000 student enrolled in Michigan’s 14 community colleges (Martorana, 

1957), and noted the extraordinary growth of enrollment in two-year colleges (154%) compared 

                                                 
3
 In a review by the Education Commission of the United States that examined state-level coordinating agencies for 

higher education, they write, “Michigan does not really have a state-level coordinating or governing agency for 

postsecondary education.”  The only other state that has no coordinating state level agency is Vermont.  See 

https://www.ecs.org/postsecondary-governance-structures/   
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with growth in all higher education (53%).  One of the recommendations of this report was that 

the law be adjusted to provide a mechanism to found community colleges that span two or more 

school districts.  Public acts in 1954 and 1955 had established the possibility to operate 

community colleges independently from the local school districts (Kolins, 1999), but did not 

require community colleges to operate separately. 

The operation and founding of community colleges was fully removed from local school 

districts with the adoption of the state constitution in 1963.  The 1963 constitution of the State of 

Michigan, removed the requirement that community colleges be tied to school districts, stating, 

“The legislature shall provide by law for the establishment and financial support of public 

community and junior colleges which shall be supervised and controlled by locally elected 

boards.” (State Constitution of Michigan, Article VIII, Section 7, 1963).  In other words, the 

founding of two-year colleges was to remain local and public, but should not be tied to a 

particular district of a particular size.  Community colleges continued to expand in Michigan, and 

by the early 1970s, Michigan was one of seven states to have a “mature” system of community 

colleges, with 90-95% of the state’s residence living within “reasonable” commuting distance 

(Cohen & Brawer, 2003, p. 17).  Currently, Michigan has 28 two-year colleges spread 

throughout the state, each with their own locally elected boards.  The reliance on local 

governance means that two-year college math departments in Michigan can generally set their 

own requirements in terms of resources that instructors’ are required or recommended to use and 

courses that are offered. 

Context: Mathematics 

This section of the literature review focuses on the Fundamental Theorem of Calculus 

(FTC). I begin with an explanation of why calculus, and the FTC specifically, is a good topic for 
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understanding instructors’ use of curriculum resources. I then offer a historical overview of the 

FTC, and I conclude with the mathematics involved. 

In general, calculus is a well-researched area of mathematics at both the secondary and 

post-secondary levels (e.g., Bressoud, Carlson, Mesa, & Rasmussen 2013; Sofronas et. al, 2011; 

Tall, 1996; White & Mitchelmore, 1996). The calculus reform that started in the late 1980s gave 

a major push to technology (Cole 1996; Hughes Hallet, n.d; Murphy, 2006). Calculus teachers 

were encouraged to incorporate technology into their teaching on a regular basis, and curriculum 

materials were designed that included technology (Ferrara, Pratt, & Robutti, 2006; Ferrini-

Mundy & Graham, 1991). Many calculus textbooks have included sections for using a graphing 

calculator or programming in Maple for years (e.g., Finney, Thomas, Demana, & Waits, 1994; 

Larson, Hostetler, & Edwards, 2007). Thus, calculus offers an opportunity to study how 

instructors use curriculum resources in a solidly researched course with an extended history of 

encouraging the use of curriculum resources beyond the textbook.  

History of the Fundamental Theorem of Calculus. In an article published in 2011, Bressoud 

described the history of the Fundamental Theorem of Calculus (FTC) as the historically “grand 

breakthrough” of calculus that relates differentiation and integration. Tradition attributes the 

discovery of the FTC to Newton and Leibniz around the same time, yet two earlier 

mathematicians, Isaac Barrow and James Gregory, applied the FTC to calculating a curve length 

without recognizing the importance of their discoveries. According to Bressoud (2011), Barrow 

and Gregory are not credited with the discovery of the FTC because they “never married 

[algorithmic] technique to the general application of this theorem […] it is precisely in the 

combination of algorithmic technique with a grasp of the full meaning of the [Fundamental 
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Theorem of Integral Calculus 
4
] FTIC that calculus becomes a useful tool” (p. 103). This “full 

meaning” of the FTIC includes the idea of relating a rate of change and the accumulation of area 

under a curve. It also includes “broad applications to variable phenomena” (Bressoud, 2011, p. 

106) and the use of calculus to analyze curves. 

Both Newton and Leibniz recognized the importance of relating a rate of change and 

accumulation. Newton was analyzing curves while Leibniz was focused on the integral as a sum 

of infinitesimals under a curve. Bressoud (2011) and Thompson (1994a) have suggested that 

students should have exposure to these early dynamic explanations of the FTC—relating rate of 

change and accumulation of area. However, textbooks today do not generally make the 

connection between the rate of change of a function and the accumulation of the area under the 

function, and thus do not reflect how the FTC was discovered (Bressoud, 2011; Tall, 1996). 

The FTC is the “glue” of calculus. But how it is the “glue” is lost without considering the 

context of how it came about by studying the problems that Newton/Leibniz (and others) were 

trying to resolve (Bressoud, 2011; Thompson 1994a). The history of the FTC is important in this 

study because common college textbooks devote only one section of one chapter to the FTC. If 

instructors are primarily using their textbooks for this topic, the importance and relevance to the 

rest of calculus may be underrepresented. However, if instructors recognize the textbook as 

providing only limited information about the FTC, they might consider a wide variety of 

resources in addition to the textbook and course materials when teaching the FTC. Thus, the FTC 

offers a bounded area to research that is rich with mathematical and historical context and has the 

potential for a variety of resource use. 

                                                 
4
 Bressoud (2011) refers to the FTC by its historical designation of FTIC, Fundamental Theorem of Integral 

Calculus, which was in use until approximately 1970 (p. 109) 
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Mathematics of the FTC.  This section begins with a brief description of where the fundamental 

theorem of calculus fits within the calculus curriculum, then a brief description of the FTC 

followed by a description of some applications in other fields. 

The fundamental theorem of calculus is central to the study of calculus. Calculus has 

many applications to other fields, such as physics and engineering. In these fields, the 

fundamental theorem of calculus is used to describe the relationships between the rate of change 

of a quantity and the accumulation of that quantity. 

Although I refer to the fundamental theorem of calculus throughout this paper, the 

theorem is sometimes referred to as two theorems, or one theorem in two parts. These two parts 

provide the conceptual link between differentiation and integration. One part details the link 

between a function describing a rate of change and the accumulation of the area under the graph 

of that function, whereas the second part states that any continuous function is the derivative of 

some other function, independently of whether or not we can define that function in simple 

terms. The first part is useful for determining exact values in application problems. For example, 

if I have a container that can be described by an integrable function, I can determine the exact 

amount of a material needed to fill that container. The second part states that for a function f 

(e.g., 𝑒−𝑥2
 which describes the standard normal distribution), there is another function g that 

describes the area under the graph of f, and that we can approximate g (although we may not be 

able to describe it in simple terms). In the case of the standard normal distribution, the area 

represents the percentage of the sampled population between two points.  

Two small-scale research studies into applications of the fundamental theorem of 

calculus have found that students have difficulty applying the concepts that underlie the theorem. 

Bajracharya and J. Thompson (2014) asked students in physics and calculus to solve physics 
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problems that were best solved by applying the FTC. They found that these students “failed to 

use the FTC to determine physical quantities, e.g., the change in internal energy, when the 

question did not include an algebraic function explicitly” (p. 5). This was concerning because 

students in advanced physics are often expected to be able to find connections between the rate 

of change and the accumulation of a quantity based on a graphical representation. This research 

suggests that students may be learning how to use FTC only superficially, and without sufficient 

understanding that would allow them to transfer its use to new contexts.  

A second study (Jones, 2015) investigated eight physics and engineering students’ 

understanding of the integral. The student responses to integration questions were interpreted in 

terms of three possible conceptual understanding of the integral. One of these understandings, 

‘function matching’, interprets the integral as coming from the derivative of some original 

function, as in the FTC. Jones found that these students were able to make productive use of 

function matching for decontextualized problems, but did not use this notion productively when 

given problems in context. For example, students were asked to explain the meaning of the 

integral ∫ 𝑅𝑑𝑡
600

0
 where 𝑅 represented the varying revolutions-per-minute of a motor. Students 

who used function matching were able to correctly explain that the integral resulted in a measure 

of revolutions, but were not able to explain why the integral of a velocity function in 

meters/second, results in a length (just meters). Students could not explain why the units changed 

using the function matching conception. In contrast, students who visualized the problem as 

adding up pieces (taking infinitely many rectangles) were able to algebraically justify the change 

in units.  

These two studies suggest that students may superficially understand the connection 

between the derivative and the integral as illustrated in the FTC and have difficulties applying 
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this knowledge. One thing that could be relevant to interpret the findings from these studies is 

information about students’ experiences learning the FTC. I would like to know, what 

curriculum resources their instructors used when teaching the FTC? Did the instructors make 

appropriate use of technology?  The next portion of this literature review explains the 

mathematics needed to understand and apply the FTC, illustrates a problem a standard textbooks’ 

explanation of the FTC, and describes some research being done with alternative ways to 

understand the FTC. 

Mathematical concepts needed to understand the FTC. In this section I describe the 

fundamental theorem of calculus in more detail, including some of the relevant mathematical 

concepts and applications. I detail other research that has been done on the fundamental theorem 

of calculus, and I conclude with how my research questions fit into this research. 

The fundamental theorem of calculus may be considered as the link between 

differentiation and integration; evidence that integration and differentiation are inverse 

operations. It may be stated formally in two parts as follows:  

Fundamental Theorem of Calculus I: If a function 𝑓 is continuous on the closed 

interval [𝑎, 𝑏] and 𝐹 is an antiderivative of 𝑓 on the interval [𝑎, 𝑏] then  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎). (Larson, Hostetler, & Edwards 2007 p. 282) 

Fundamental Theorem of Calculus II: If 𝑓 is continuous on an open interval 𝐼 

containing 𝑎, then, for every 𝑥 in the interval, 
𝑑

𝑑𝑥
[∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
] = 𝑓(𝑥). (Larson, Hostetler, 

& Edwards 2007 p. 289) 

There are several mathematical concepts needed to understand the FTC; specifically 

functions, anti-differentiation, differentiation, rate of change, continuity, and limits. The two 

primary concepts that research attributes as challenging for understanding the FTC are the 
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concept of function and the concept of rate of change (Bajracharya & J. Thompson, 2014; 

Carlson, Smith, & Persson, 2003; P. Thompson, 1994).  

In Larson et al (2007), the proof of the first part of the theorem is paraphrased as follows: 

Consider a partition of [𝑎, 𝑏] as follows: 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏. Then 

rewrite 𝐹(𝑏) − 𝐹(𝑎) as 𝐹(𝑥𝑛) − 𝐹(𝑥𝑛−1) + 𝐹(𝑥𝑛−1) − ⋯ − 𝐹(𝑥1) + 𝐹(𝑥1) − 𝐹(𝑥0) 

= ∑[𝐹(𝑥𝑖) − 𝐹(𝑥𝑖−1)]

𝑛

𝑖=1

. 

By the Mean Value Theorem, there exists a number 𝑐𝑖 in each 𝑖th sub-interval such that  

𝐹′(𝑐𝑖) =
𝐹(𝑥𝑖) − 𝐹(𝑥𝑖−1)

𝑥𝑖 − 𝑥𝑖−1
. 

Choose ∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1, and because 𝐹′(𝑐𝑖) = 𝑓(𝑐𝑖),  

𝐹(𝑏) − 𝐹(𝑎) = ∑ 𝑓(𝑐𝑖)∆𝑥𝑖

𝑛

𝑖=1

. 

This says that by applying the Mean Value Theorem, the constant 𝐹(𝑏) − 𝐹(𝑎) is a 

Riemann sum of 𝑓 on [a,b] and taking the limit as ∆𝑥𝑖 → 0 yields ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎).  

(adapted from Larson, Hostetler, & Edwards, 2007, p. 283 ) 

Although this proof is accurate and understandable, it presents a conceptual challenge. 

Using the mean value theorem in this way involves considering the rate of change at a single 

point. This interpretation assumes a static situation, as if nothing is changing. Yet calculus is the 

study of how things change. Relying on a relatively simple proof that uses a static model in this 

way may inhibit the conceptual understanding of the FTC, its importance to calculus, as well as 

the link between differentiation and integration (P. Thompson, 1994a). A report by the 

Committee on the Undergraduate Program in Mathematics (CUPM, a part of the Mathematical 

Association of America, or MAA) recommends against defining the definite integral strictly as a 
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limit of Riemann sums, stating that the traditional approach is to define the definite integral as a 

limit of Riemann sums and then explain FTC as stating that integration and differentiation are 

inverse processes. Most students, however, never grasp the formal definition and understand 

integration as antidifferentiation, thus removing any meaning from FTC. A better approach is to 

explain FTC as stating the equivalence of two ways of understanding the definite integral: as the 

change in the value of an antiderivative or as the limit of a summation. (CUPM, 2004) 

Table 2:  Mental Actions of the Covariational Framework. Adapted from Carlson, Jacobs, 

Coe, Larsen, and Hsu (2001, p. 357). 

Mental Action 

(MA) 

Description of mental action Behaviors 

MA1:  

Coordination  

 

Coordinating the value of one 

variable with changes in the 

other  

Labeling the axes with verbal indications 

of coordinating the two variables (e.g., y 

changes with changes in x) 

MA2:  

Direction 

 

Coordinating the direction of 

change of one variable with 

changes in the other variable 

 Constructing an increasing straight line 

 Verbalizing an awareness of the 

direction of change of the output while 

considering changes in the input 

MA3:  

Quantitative 

Coordination) 

Coordinating the amount of 

change of one variable with 

changes in the other variable 

 Plotting points and constructing secant 

lines 

 Verbalizing an awareness of the amount 

of change of the output while 

considering changes in the input. 

MA4:  

Average Rate 

Coordinating the average rate-

of-change of the function with 

uniform increments of change in 

the input variable 

 Constructing contiguous secant lines for 

the domain 

 Verbalizing an awareness of the rate of 

change of the output (with respect to 

the input) while considering uniform 

increments of the input 

MA5:  

Instantaneous 

Rate 

Coordinating the instantaneous 

rate of change of the function 

with continuous changes in the 

independent variable for the 

entire domain of the function 

 Constructing a smooth curve with clear 

indications of concavity changes 

 Verbalizing an awareness of the 

instantaneous changes in the rate of 

change for the entire domain of the 

function (direction of concavities and 

inflection points are correct) 

 

An alternative way of understanding the FTC uses the concept of covariation, specifically 

stating that accumulation and rate of change are related. The concept of covariation refers to 
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coordinating “an image of two varying quantities, while attending to how they change in relation 

to each other” (Carlson, Persson, & Smith 2003). Covariation is described by Carlson, Jacobs, 

Coe, Larson, and Hsu (2002) as essential for understanding the concepts of calculus. The mental 

actions and behaviors that indicate covariational reasoning are described in Error! Reference 

source not found.. 

Students in this study were given a level classification if their behavior indicated a mental 

understanding at that level and all previous levels. For example, a student classified as having 

Level 3 (covariational reasoning) needs to display behavior at Mental Actions 1, 2, and 3. P. 

Thompson (1994b) implied that covariational reasoning is vital for students’ understanding of 

the Fundamental Theorem of Calculus: “The Fundamental Theorem of Calculus—the realization 

that the accumulation of a quantity and the rate of change of its accumulation are tightly related 

is one of the intellectual hallmarks in the development of the calculus” (p. 130). However, 

Carlson et al. (2002) found that students who had recently completed a second semester of 

college calculus with a grade of A had difficulty understanding that an instantaneous rate of 

change resulted from smaller and smaller refinements of the average rate of change. The idea 

that instantaneous rate of change can be described by smaller refinements of the average rate of 

change is what is used in the mean value theorem proof of the FTC. Yet even good students have 

demonstrated difficulty with this idea.  

P. Thompson and his colleagues developed an experimental course using technology to 

explore covarying relationships between accumulation and rate of change (P. Thompson, Byerly, 

& Hatfield, 2013). This course was shown to offer students a more robust understanding of FTC. 

Stated goals of this course included that students “formalize the relationship between 

accumulation and rate of change—that has been employed throughout—by stating it as the 
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Fundamental Theorem of Integral Calculus” and “understand the fact that every rate of change 

function has an accumulation function. Some accumulation functions can be expressed in closed 

form; most cannot” (p. 127). The course used technology that allowed students to explore 

visually and transform functions that model relationships between accumulation and rate of 

change. The problems model real-world situations and highlight the interaction between 

accumulation and rate of change. This course did not use a commercially available textbook; 

instead technology (Graphing Calculator 4.0, Avitzur, 2011) was extensively used.  These 

authors suggested that a traditional textbook should not be used, because the fundamental 

theorem of calculus is present from day one, and it is not limited to a small section of the course 

(Byerly, personal communication, March 6, 2015). The authors concluded that this course was 

successful in getting students to understand the fundamental theorem of calculus and covariation. 

I choose to consider the FTC to research how instructors use their resources for three 

main reasons. First, the FTC is “fundamental” to calculus, with a great deal of historical context. 

Second, the mathematical context for the FTC is extensive, including concepts of limits, 

derivatives, integration, functions, and covariation. Third, the treatment of the FTC in traditional 

textbooks is short, generally one section of one chapter. This means that instruction on the FTC 

may span only one or two class sessions, yet the mathematical and historical context offer a 

potential for a wide variety of resource use. 

In summary, the FTC is important and can be taught with a wide variety of resources. 

There is some evidence that college instructors may use resources differently than K-12 teachers, 

but research into what resources college instructors use and how they use them is scant. There is 

evidence that the resources instructors use can affect their teaching. However, in teaching and 

planning, the same resource may be used very differently by different instructors, and the same 
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instructor may use the same resource differently depending on the context. Thus it is important to 

focus on how instructors use their resources within one mathematical context.  

Material resources 

Scholarship on resources used in mathematics classrooms primarily focuses on tangible 

resources, such as curriculum materials and textbooks. Studies have shown that curriculum 

materials and their uses are correlated with student outcomes (McKnight, 1987; Schmidt, 

Huoang, & Cogan, 2002; Stein, Remillard, & Smith, 2007), and that mathematics instruction in 

the United States is driven by the textbook (Begle, 1973; McKnight, 1987; Schmidt, Huoang, & 

Cogan, 2002). The most common material resource for instructors and students in the 

mathematics classroom is a textbook (Nichols, 2009; Stark, 2000). Most of the scholarship that 

considers how teachers and instructors use material resources is at the elementary and middle 

school mathematics level, with some investigations into high schools and college.  

Within this scholarship, I focus on two types of literature: 1) studies that focus on 

curriculum materials and their intended use compared with their actual use; and 2) studies that 

focus on teacher/instructor interaction with curriculum materials and resources, and how 

teachers/instructors and curriculum resources changed with that interaction. I expand on these 

areas in the following sections.  

Intended and actual use of curriculum materials. Initial studies of curriculum were concerned 

with how curriculum materials (which were often new or “reformed”) were implemented by 

teachers. One of the first studies that used this approach was the International Association for the 

Evaluation of Education Achievement’s (IEA’s) Second International Mathematics Study 

(SIMS) (McKnight et al., 1987; Brown, 1996; Pepin 1999). SIMS was implemented between 

1977 and 1981, and targeted students in 20 countries at two levels; students at age 13 and 
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students studying mathematics who were in their final grade of secondary education. SIMS was 

developed in part as an attempt to understand some of the results of the First International 

Mathematics Study (FIMS). For example, FIMS included a broad set of potential questions for 

students, which none were expected to have completely covered. In order to mitigate that, 

teachers were asked to indicate which questions students had the opportunity to learn. However, 

the phrase “opportunity to learn” was open to so much interpretation that this measure for 

understanding curriculum was unreliable (Freudenthal, 1975, Brown 1996). SIMS addressed 

these criticisms by narrowing their focus to curriculum, specifically, “international variations in 

the mathematics curriculum, intended and implemented as well as attained” (Brown, 1996, 

p.205).  

A major contribution of the SIMS study to current mathematical education research is the 

distinction between the intended, the enacted or implemented, and the attained curriculum. This 

distinction is described by McKnight et. al, 1987 in defining the curriculum:  

The curriculum is not only what is intended to be taught, as reflected in 

syllabi and textbooks, it is also what is actually taught (implemented) in 

classrooms and what is attained by students as a result of that instruction. 

(p. 85) 

 The separation of the curriculum into intended, enacted, and attained is a framework that has 

persisted to the present day.   

A consideration of the intent of the curriculum materials has been an important area of 

research. For example, the intent of curriculum materials may encompass student mastery of 

knowledge, student skills, and/or increased interest in the subject. This type of research includes 

textbook analysis (such as Mesa, 2010; Mesa, Suh, Blake, & Whittemore, 2012) and research on 

the explicit or implicit purpose and potential effect of curriculum materials for both 
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teachers/instructors and students (Cohen & Ball, 1996; Remillard, 2014; Herbel-Eisenmann, 

2007). 

I include here studies that speculate on the unanticipated effects of curriculum materials, 

because they are not focused directly on how students learn from the materials, but rather on the 

potential effect of the materials themselves. For example, some curriculum studies have found 

that many mathematics textbooks tend to be “closed,” meaning that problems can be solved 

using a rule or formula (Boaler, 1998; Brown, 1996; Cooper, 1992). The closed nature of 

problems in these textbooks may encourage students to solve problems procedurally without 

necessarily understanding the concepts underlying the mathematics that they are using. Although 

procedural knowledge may not be the stated intent of the materials, this may be the effect. 

In addition to considering the intent of curriculum materials in terms of students, several 

studies have considered the intent and possible effect of curriculum materials on teachers. 

Research into reform curriculum materials have suggested that features of some curriculum 

materials are intended to influence teacher understanding and in turn support teachers’ 

innovative instruction (e.g., Ball & Cohen, 1996; Collopy, 2003; Davis & Krajcik, 2005; 

Remillard & Bryans, 2004).  In particular, Remillard and Bryans (2004) examined eight 

elementary teachers who were using the same reform mathematics curriculum.  They examined 

the teachers’ enactment of curriculum materials with a goal of “developing a detailed and 

nuanced understanding about the relationship among curriculum material, the enacted 

curriculum, and the possibilities for teacher learning” (p. 356).  They interviewed and observed 

instructors during the first two years of their adoption of a new curriculum.  They analyzed 

observations and interviews and found that the orientation of teachers toward the curriculum 

implementation included their ideas about mathematics and how it is learned, ideas about the 
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teachers’ role, ideas about the general role of curriculum materials in teaching, and views of that 

particular curriculum material.  They found that views of mathematics, teaching, and learning 

were not closely connected to how a teacher enacted the curriculum.  However, views of the 

general role of curriculum materials in teaching and views of the particular curriculum being 

used were connected to the use of the materials.  This was also connected to whether teachers 

were open to learning from the curriculum.    

What these studies have in common is that they assume curriculum materials can help 

both teachers and students learn, and that curriculum materials are primarily written for teachers. 

However, at the college level, the primary audience for curriculum materials is students. In spite 

of evidence showing that college mathematics instructors use the textbook for planning a course 

(Stark, 2000), and that they commonly require students to purchase curriculum materials (such as 

a textbook, Nichols, 2009), these instructors generally perceive the curriculum materials to be 

written for the students and not for them (Leckrone 2014; Lockwood, Johnson, & Larson, 2013; 

Mesa & Griffiths, 2012; Weinberg, et al, 2012).  

There is promising research that suggests that curriculum materials, if designed properly, 

can influence college instructors, but this research is very limited. Lockwood, Johnson, and 

Larson, (2013) developed a software tool for abstract algebra instructors that described 

anticipated student responses to abstract algebra questions, with varying levels of detail. 

Although the four pilot instructors in their study commented that they found the tool very 

helpful, they did not explain how the tool was helpful, nor how the instructors used the tool when 

planning and teaching. Lockwood, Johnson and Larson’s (2013) study is promising because it 

suggests that college instructors, at least in this study, are not averse to using well-designed 

resources to help them teach. By investigating the research question, “How do instructors use 
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their resources in teaching and planning the FTC?,” I seek to make explicit how these materials 

contribute (or do not contribute) to community college instructors’ planning and teaching. 

Interaction with curriculum resources. More recent studies have considered teachers as 

participants with the curriculum. These studies offer explanations and frameworks for 

understanding how teachers use curriculum resources as a tool for teaching (Brown 2009; 

Remillard 2005; Owens 2014). Studies that focus on the interaction between teachers and their 

curriculum resources tend to fall into two somewhat overlapping categories, which I call 1) 

teacher-focused and 2) tool-focused. The teacher-focused studies consider teachers and how their 

teaching may change as a result of curriculum materials. They also consider how teachers may 

change and learn due to curriculum materials. In this group of studies, the teacher is 

foregrounded and the curriculum materials are backgrounded. Curriculum materials in these 

studies are often seen as static and unchanging. The tool-focused group of studies attend 

primarily to the purpose of curriculum materials (or tools) and how the purpose (and thus, the 

nature of the tool) changes based on the tool-users. The tool-focused group of studies sees 

curriculum materials as dynamic and changing. Although these foci for research are not mutually 

exclusive, there are differences, primarily in the frameworks used for analysis. I expand on this 

distinction next. 

Teacher-focused. Studies in this sub-group have investigated the implementation of curriculum 

materials and how the implementation of reform materials may affect teachers and organizations, 

as well as how curriculum materials can support innovative teaching (Davis & Krajcik, 2005; 

Davis, Palincsar, Arias, Bismack, Marulis, & Iwashyna, 2014; Fullan & Pomfret, 1977; 

Schneider & Krajcik, 2002; Schneider, Krajcik, & Blumenfeld, 2005). The findings from this 

scholarship include two main ideas, that teachers can learn both mathematics and teaching 
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strategies from their textbook, and that textbook use by teachers may change over time (Drake & 

Sherrin, 2009; Silver, Ghousseini, Charalambous, & Mills, 2009). 

Although teachers may learn both mathematics and teaching strategies from their 

textbooks in grade school, post-secondary mathematics instructors usually have advanced 

degrees in their subject (Blair, Kirkman, & Maxwell, 2018). This makes it less likely that these 

instructors will admit to using their textbooks to understand the mathematics, so the finding that 

instructors may learn both mathematics and teaching strategies from their textbook may not 

apply at this level. It may also be that instructors do not recognize if and whether they are 

learning from the materials. 

Teacher-focused studies also suggest that new curriculum materials may more directly 

influence teaching early in their implementation. Teachers may first focus on understanding the 

materials and deciding what to add or omit from the curriculum resources available. However, as 

teachers become familiar with the curriculum materials, they seem to focus their attention on the 

mathematical content in a lesson that is relevant for upcoming lessons. These studies suggested 

that textbooks may matter more in the first year of teaching with the textbook, but less in 

subsequent years.  

There is some research on the use of textbook by college students, with implications for 

faculty textbook use (e.g., Berry, Cook, Hill, & Stevens, 2010; Durwin & Sherman, 2008; 

Weinberg, et al, 2012). These studies pointed to a link between the curriculum resource (often a 

textbook), how instructors chose that resource, and how students were asked (by instructors) to 

use that resource. A study with college finance students (Berry, Cook, Hill, & Stevens, 2010) 

indicated that over 50% of the students spent less than one hour per week reading their textbook. 

However, students felt they would increase their reading if instructors told them exactly what 
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was important. In general, the researchers found that students felt that the professor should be 

guiding their learning, not the textbook. “Our survey reveals that many students… feel that [the 

textbook] is a ‘substitute’ for the lecture material rather than an enhancement of the learning 

process.” Weinberg et al. (2012) surveyed over 1,000 first and second year college mathematics 

students on how they use their textbook and they found that students primarily looked at 

examples and answers, not expository text. Similar to the study of finance students, 

when [math] students thought their instructor asked them to read the 

chapter text frequently…, they were generally more likely to report using 

the text for various purposes than if they thought the instructor asked them 

to look at the chapter text infrequently. (p. 164)  

In other words, if a math instructor requests that students read their textbook, they may or may 

not read it as intended, but they will likely do more with the textbook than just look at examples 

and answers. These few studies of research on textbook use by students have implications for 

instructors. These studies indirectly link the curriculum resource (often a textbook) with advice 

for instructors to consider how students are likely to use (or not use) the resource when teaching. 

In other words, these studies imply that use of resources during class time by instructors should 

include a discussion with students on how they are expected to use that resource. 

There are very few studies that have directly examined textbook use by college 

mathematics instructors. I found only one study that considered post-secondary mathematics 

instructors and their use of textbooks. Mesa and Griffiths (2012) interviewed 15 full-time 

instructors at nine different post-secondary institutions, to find out how their textbook influenced 

their teaching. They found that although instructors used the textbook for designing the syllabus, 

preparing classes or assigning homework, these instructors perceived the textbook as written for 

students, not for them. The instructors also felt the need to work outside the textbook during 

class time, in order to provide students reasons for coming to class (p. 97). Mesa and Griffiths 
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also noted that instructors seemed to differentiate their instruction based on whether they were 

teaching “undergrad students” or “math students,” which included honors students. The “math 

students” were generally expected to read the expository text, whereas the “undergrad students” 

were expected to work the exercises (p. 96). In the two-year college setting, calculus is one of the 

highest mathematics courses offered; thus students are not easily classified as “undergraduate” or 

“math” students.  

Other studies linking mathematics instructors with curriculum resources have been less 

detailed, looking at whether or not the resource is used by instructors, without considering how 

the resource may be used. For example, an internal survey by the University of Michigan found 

that 98% of natural sciences faculty survey respondents reported that they 

“always/often/sometimes” use textbooks in teaching their courses (Nicholls, 2009). An 

investigation into the general use of textbooks in higher education (Stark, 2000) found, perhaps 

unsurprisingly, that the textbook is a strong influence on course planning in terms of the structure 

of the course. However, these studies did not provide details about how instructors actually used 

curriculum materials within a particular discipline, and therefore they cannot answer the question 

of how instructors use curriculum resources when planning and teaching students a particular 

topic, such as the fundamental theorem of calculus.  

Tool-focused.  Studies in this sub-area of teacher-curriculum interaction are theory-based, and 

have been influenced by Cultural Historical Activity Theory (CHAT), as well as by scholarship 

on human-computer (or artifact) interaction. CHAT draws on work from Vygotsky and Leont’ev, 

and considers both an activity and the cultural historical background of both humans and objects 

(Engeström, Miettinen, & Punamäki, 1999; Engeström, 2001). While examining teacher 

interaction with curriculum materials from this perspective, neither the teacher nor the tool is 
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given prominence; what matters is the activity, in this case, teaching.  

Rabardel (2003) described the idea that an artifact can be changed by humans into what 

he calls an “instrument.” He described an artifact as “an intermediary mediating position 

between the subject and the object” (p. 665) and an instrument as “a mixed functional unit made 

up of components born of the artifact and of others born of the subject” (p. 670). In other words, 

what may start out as a simple curriculum artifact, such as a textbook, is changed by its use (by 

an instructor) into something more functional that depends on both the original textbook and the 

instructor/user.  

The idea of an artifact being changed by its use was built upon by Gueudet and Trouche 

(2009) who described the “instrument” succinctly as “Instrument = Artifact + Scheme of 

Utilization” (p. 204), and then used this idea to develop a theoretical model for what happens 

with curriculum resources when they are used by the teacher. They defined the end product as a 

“document,” which is not a static object, but incorporates the resource, how it is used and how it 

is intended to be used (called “operational invariants,” p. 209). They described the change from 

resource to document as a process called documentational genesis. However, they cautioned that 

“a documentational genesis must not be considered as a transformation with a set of resources as 

input, and a document as output. It is an ongoing process” (Gueudet & Trouche, 2009, p. 206).  

This way of considering teachers’ use of curriculum resources does not ignore the 

teacher, but focuses more on the activity of teaching and the use of curriculum materials as the 

tool which mediates teaching. This theoretical approach considers both the curriculum materials 

and their purpose and it sees this purpose to be dynamic and changing.  This approach allows for 

the study of mathematics instructors interaction with resources beyond commercial curriculum 

materials. 
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The studies reviewed in this section fall into broad categories that consider how 

teachers/instructors use curriculum materials, what the intent of the curriculum materials is, and 

how teachers/instructors interact with resources. Most of the studies reviewed in this section 

focus either broadly on teachers’ use of resources or narrowly on one resource such as a new 

textbook, and they all have the underlying assumption that the resources used can affect 

teaching. What is missing is research that focuses on how instructors use a variety of resources 

within one mathematical topic.  

Technology as Resource 

In this section I examine literature on technology in the undergraduate mathematics 

classroom, with an emphasis on the technology used in the calculus classroom. A common 

technology used that is particular to mathematics is graphing technology. This technology has 

advanced from the handheld graphing calculators available 30 years ago to sophisticated 

software the can model 3D equations and manipulate algebraic symbols.   

During the calculus reform movement in the 1990s, graphing technologies were widely 

assumed to help students with the conceptual understanding of mathematics (Dunham & Dick, 

1994). The premise was that if students were not bogged down in calculations, they could spend 

more time understanding the concepts and applications of mathematics. There was some 

backlash to this view, with some educators and researchers expressing concern that graphing 

technologies were inhibiting procedural (computational) ability in mathematics (Doerr & Zanger, 

2000). Both claims—for an increase in conceptual understanding of mathematics and a decrease 

in procedural ability were widely researched. A number of studies concluded that students did 

not show a decrease in procedural ability when graphing technologies were used and that the 

influence of graphing technologies on students’ conceptual understanding of mathematics might 
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be positive (e.g. Palmiteer, 1991; O’Callaghan, 1998; Artigue, 2002). In part because of mixed 

reviews about whether or not graphing technologies can help students’ conceptual understanding 

of mathematics, more research was done.  Much of this research has focused on how teachers can 

integrate graphing technologies into their lessons in order to improve conceptual knowledge (e.g. 

Conners & Snook, 2001; Meagher, 2010).   

Forster (2004) examined how graphing calculators were used in a high school calculus 

class. Foster chose a particular class to study where students had traditionally high scores on the 

Western Australian University entrance exams. She wanted to understand how calculuators were 

used in that class, and looked for efficient use of calculators in 21 lessons. For this paper, 

efficiency was defined as quick and easy calculation.  She found that the teacher led class 

discussion about problems that can arise with calculators and often provoked discussion of 

technology by asking for methods to solve. There was some discussion about when the 

calculators may fail, and how students still needed to make judgments even with a calculator (in 

case a possible answer doesn’t fit the problem). This article showcased a way to use graphing 

technology in a way that does not detract from traditional mathematics. However, this study 

focused on a high school class, and interpreted part of the success of that class as teacher-led 

discussions about the technology.  In post-secondary mathematics courses, students often have 

less face-time with the instructor, meaning that time for meaningful discussions about 

technology may be limited.  

Buteau, Marshall, Jarvis, & Lavicza, (2010) examined 204 published papers that 

explicitly discuss computer algebra systems at the tertiary level. Although the sources for this 

literature review were limited, this paper provided an excellent overview of the issues around 

using computer algebra systems in post-secondary mathematics. Because 90% of the papers 
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reviewed were practitioner based (and not educational research based), the issues and themes 

listed in this review are primarily from the instructors’ perspective.  Calculus teachers have been 

encouraged to incorporate graphing technologies into their classrooms for years, yet we have 

very little information about how (or if) these technologies are being incorporated by post-

secondary calculus instructors.  This study gives insight into potential reasons that instructors 

may have for implementing or not implementing graphing technologies. 

This review found that the top three stated instructional purposes of CAS-based 

technology in the articles reviewed were (1) Experimentation and Exploration, (2) Visualization, 

and (3) Real and Complex Problems. The top three challenges for CAS were (1) Assessment, (2) 

Syntax, and (3) Unexpected Behavior of CAS. These purposes and challenges are answered, in 

part, by the following studies.   

Conners & Snook (2001) describe an experimental study that took place at the United 

States Military Academy at West Point. Notably, this is the only study that clearly distinguishes 

between a graphing calculator that will handle algebraic manipulation (TI-89) and calculators 

that will not. One hundred students were randomly assigned to use a TI-89 calculator during the 

last three (of four) mathematics classes. Another 100 students were randomly chosen as the 

control group, and had calculators without a qwerty keyboard. The research question examined 

was whether a calculator with algebraic manipulation capabilities would make a difference in 

student learning. For all students in all classes, technology had been a part of the curriculum for 

over a decade; students regularly used MathCAD outside of class. The authors demonstrate that 

the experimental and control group are both similar to each other and to the whole population of 

students by comparing first semester grades as well as SAT and ACT scores. All students took a 

common final exam, and the answers from the experimental and control group were evaluated 
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against each other and previous exams. Conners and Snook found statistically significant 

improvement for the experimental group on 8 out of 13 questions. The most significant 

improvement was on items classified as application problems.  

Lavicza (2010) conducted a mixed method study that began with a qualitative study of 22 

mathematicians in Hungary, the United Kingdom, and the United States in order to examine the 

use of graphing technologies. A survey was developed and sent to 4,500 mathematicians in 

participating countries, and 1,103 responded, an unexpectedly high response rate. Lavicza found 

that over half the mathematicians who responded used CAS in teaching, and over two thirds used 

CAS in their own research. During teaching, the CAS was primarily used to visualize 

conceptions during lecture. Another purpose given for CAS was to engage students in 

experimental activities and solving real-world problems, usually in computer lab settings. 

Lavicza interprets the high level of response to the survey as an indication that 

mathematicians are interested in teaching. Tertiary math instructors often have a reputation not 

caring about teaching (or at least not being good at it). This interpretation of the response rate 

opens up a space for more collaboration between mathematicians and math educators. Lavicza 

also suggests that the fact that more instructors use CAS in their research than their teaching 

could mean that “mathematicians accept that CAS is part of the literacy, but at the same time 

they are reluctant to accept that CAS shapes mathematical knowledge” (p. 111).   

Manouchehri (2004) observed the discourse in a math class for secondary teachers with 

16 pre-service math teachers. Beginning the second week, the instructor introduced NuCalc, a 

computer algebra system which has no special syntax. The class discussions were analyzed 

before and after the introduction of NuCalc. Manouchehri found that discourse before 

introducing NuCalc was dominated by two students and the instructor. She then found that using 
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NuCalc was associated with an increase in student reflection and challenging of unsupported 

statements.  

Based on her discourse analysis, there is a transfer of authority from the instructor to the 

software. Instead of looking to the instructor for answers and confirmation, the students turned to 

the software. In addition, the software became a tool for extending mathematical thinking and 

constructing more sophisticated mathematical explanations than were offered before NuCalc was 

used. The discourse analysis showed that after NuCalc was introduced, all students participated 

equally and the instructor spoke less. Because of this, Manouchehri suggests that the technology 

may be considered not just for presentation, but as a discourse participant in the analysis. 

Using technology changes things. Instructors in Lavicza’s study were reluctant to 

acknowledge that using technology may shape mathematical knowledge. The students in 

Manouchehri’s study used technology to augment their knowledge. Perhaps technology changes 

the discourse as well as shapes knowledge.  

Berger (2010) examined the use of a CAS with a particular mathematical task. The author 

gave 203 pairs of South African students four related tasks to solve using Mathematica. She 

examined the fourth task, which was to determine the interval needed on a second order 

polynomial in order for the accuracy of the Maclaurin polynomial to be within 0.1 of the actual 

function.
5
 Her research questions were,  

With regard to Task 4, to what extent and how are students in the 

Mathematics I Major class able to use CAS (together with pencil and 

paper, if required) as a tool with which to construct representations of 

pertinent mathematical objects, to experiment upon these representations 

and to observe and interpret the mathematical relationships or results 

required by the activities? In particular, what sort of a difference (if any) is 

there in the performance of pairs of CL students, pairs of NCL students 

                                                 
5
 The Maclaurin polynomial is a carefully designed polynomial that looks like the original function, in this case 

cos(x), near zero. The higher the degree, the more accurate the polynomial is to the original function. See 

http://mathworld.wolfram.com/TaylorSeries.html. This type of task may be done toward the end of calculus 1 or 2. 

http://mathworld.wolfram.com/TaylorSeries.html
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and pairs consisting of one CL student and one NCL student. (p. 324) (CL 

= Computer Literate. NCL = Not Computer Literate). 

Berger based her analysis of the mathematical activity on construction of a representation, 

transformation of that representation, and interpretation of the observed representations. Berger 

reports that in South Africa, a lack of computer literacy can be understood as a proxy for a 

disadvantaged educational background. She found that prior computer experience did not give an 

advantage to students during the construction phase, which “bodes well for equity concerns: a 

lack of prior exposure to technology did not diminish the ability of students to construct CAS-

based signs in the given task” (p. 331). In other words, the syntax of the software did not cause 

extra problems for less advantaged students, which was a concern raised in the literature review 

by Buteau, et al. (2010).   

 These studies of computer algebra systems in calculus classrooms indicate that, similar 

to other curriculum resources, technologies can help facilitate conceptual understanding and can 

have unexpected side effects. 

Human Resources 

Understanding what is necessary for future teachers to know has been an active area of 

research in mathematics education (Ball, Thames, & Phelps, 2008; Hill, Rowan, & Ball, 2005; 

Shulman, 1986). However, two-year college mathematics instructors are not required to have any 

pedagogical training.  There is limited evidence about how the background of mathematics 

instructors influences their teaching but there is evidence about the overall characteristics of two-

year college mathematics faculty, and calculus instructors in particular. In this portion of the 

chapter I summarize the information available about two-year college mathematics faculty and 

review two studies that examine how the background and training of post-secondary faculty 

influenced their teaching. 
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Two-year college mathematics faculty have strong educational and mathematics 

background, with 95% of full-time faculty having a master’s degree or higher, and 86% holding 

their highest degree in mathematics(73%) or mathematics education(13%).  Full-time instructors 

teach an average of 18 contact hours per week, and 85% of calculus courses are taught by full-

time instructors.  Although the majority of calculus courses are taught by full-time instructors, 

part-time instructors teach 15% of them, and 36% of all two-year college math courses.  For part-

time faculty, 83% have a master’s degree or higher, and 77% have their highest degree in 

mathematics(58%) or mathematics education(19%), and 64% of them teach 6 or more contact 

hours per week (Blair, Kirkman, & Maxwell, 2018).  A recent national study of calculus 

instruction found that 80% of two-year college instructors indicated a high interest in teaching 

calculus, compared with only 39% of research university calculus instructors.  Over 60% of two-

year calculus instructors are male (Bressoud, 2012), yet women make up 55% of full-time math 

instructors at two-year colleges (Blair, Kirkman, & Maxwell, 2018).   

Instructors at two-year colleges may not have formal pedagogical training, yet 82% of 

institutions require some kind of ongoing professional development or continuing education for 

full-time faculty.  Most of this requirement (94%) is met by activities either provided by the 

institution or other professional organizations (Blair, Kirkman, & Maxwell, 2018).  However, 

faculty development may not be effective in changing instruction and often does not have long-

term effects (Murray, 2002).  One interesting study by Hébert (2001) examined the learning 

outcomes of 1,833 Florida college students who had been dual-enrolled in a community college 

mathematics course during high school.  She examined whether their grade in their first college 

math course was different based on the status of their teacher in high school.  Of the students 

examined, 920 of them had been taught by a high school mathematics course and 913 of them 
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had been taught by a community college instructor.  She found that students who had been taught 

by high school teachers had better grades in college than those who had been taught by college 

faculty: 

Students in Group A (dual enrollment taught by high school teachers) 

earned significantly better grades in subsequent coursework in 

mathematics after high school graduation than students in Group B [dual 

enrollment taught by community college faculty] and received more high 

grades (A's and B's) in the subsequent coursework than expected. The 

trend held true regardless of the university attended or the gender or 

ethnicity of the students (p. 33). 

One way that this becomes even more significant is because these high school teachers must 

qualify to teach at community colleges in order to instruct students who are dual-enrolled.  

However, the reverse is not true.  Community college instructors need not be qualified to teach at 

the high school level.  Hébert states: 

High school teachers who teach dual enrollment classes may have an 

educational advantage over college faculty. While college faculty are 

considered experts in their field, possessing a minimum of a master’s 

degree in the discipline, often high school teachers have an additional 

credential. Most high school teachers, in addition to the master’s degree in 

the discipline, have a degree in education. Unlike many college faculty, 

most high school teachers have a background in such things as learning 

styles, teaching techniques, developmental stages, and assessment and 

evaluation (p. 34). 

This study suggests that pedagogical training may help prepare students, and that instructors may 

rely on their educational background when teaching.  Yet two-year college instructors are not 

required to have teaching certifications.   

 A study by Oleson and Hora (2013) interviewed 53science, technology, engineering, and 

mathematics (STEM) faculty at three research institutions in order to understand how their 

background affected their teaching.  After examining interview data, they found that the 

influences on how faculty taught was more complex than simply an “apprenticeship of 

observation” (Lortie, 1975).  In particular, “faculty reported four distinct types of influences: 
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experiences as a student, as a teacher, as a researcher, and from their personal lives” (p. 30-31).  

Experiences as a student influenced faculty teaching both in terms of how they were taught and 

how they learned.  Experiences as a teacher influenced instruction in terms of learning what 

worked or did not work in the classroom, both for students and for the instructors themselves.  

However, Oleson and Hora point out: 

the data do not uniformly reveal a willingness of faculty to continuously 

learn and revise their teaching behaviors based upon evidence of 

ineffectiveness. For some, years of experience in the classroom has 

resulted in a recipe for instruction that is satisfactory and does not require 

any adjustment (p. 42). 

Some faculty may use their prior teaching experiences only up to a certain point.  Experiences in 

as a researcher and in their personal lives also influenced instructors teaching and decision 

making.  Instructors rely on multiple resources to inform their teaching, including their own 

background. 

Social-cultural resources 

Social-cultural resources that instructors draw on include two main areas, language and time.  

The language resource includes the language of mathematics as well as communication in the 

classroom.  Time includes how often an instructor is in the classroom as well as the duration of 

time in front of students.  The language of mathematics and everyday language often overlap.  

For example, the word “integral” has a specific meaning in a calculus class, but it can also mean 

essential or necessary.  The word “leg” can refer to one-third of a triangle, or it can refer to a 

body part. The word “log” can be short for logarithm, or part of a tree that has been cut off, or 

refer to an official record of events. Multiple meanings of vocabulary words are present 

throughout mathematics, and vocabulary difficulties are documented to cause confusion for 

students, regardless of their native language (Barwell, 2005; Schleppegrell, 2007).  The standard 
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recommendation for teachers is to be precise in their language when teaching mathematics 

(Leung, 2005).  Within a mathematics classroom, students are expected to learn and use 

mathematical language, and instructors are expected to help them learn the language.  Research 

on the language of mathematics includes more than vocabulary.  Symbolism in mathematics is 

another form of language that must be understood and interpreted.  For example, (−𝑎)2 is not 

the same as −𝑎2, but they may both be described as “the opposite of a squared.”  The complexity 

of language in the mathematical classroom and how instructors should teach mathematical 

language has long been a study of research (Pimm, 1989; Simpson & Cole, 2015). Some of the 

recommendations for helping students learn mathematical language include having students 

communicate mathematically (NCTM, 2000; Leung, 2005), and studies have examined peer-

instruction in calculus classrooms as well as i-clickers (Bode et al, 2009; Miller, Vega, & Terrell, 

2006).   

Communicating mathematically is a form of student engagement that instructors may 

want to see.  However, learning mathematical communication takes time.  In Michigan, two-year 

college calculus courses are either four or five credit hours, are taught between two and five days 

per week, and range from 14 to 16 weeks per semester.  The means a total of 56 to 80 hours per 

week in the classroom.  Because many calculus instructors express concern about having enough 

time to cover all the topics needed, Johnson, Ellis, and Rasmussen (2014) investigated the 

relationship between coverage expectations, coverage concerns, and instructional practices in 

calculus classrooms.  They considered 47 instructors at five selected institutions (see Bressoud, 

Carlson, Mesa, & Rasmussen, 2013) where calculus term lengths ranged from 7 to 15 weeks, 

with similar content coverage requirements.  The pacing of the institutions was also examined, 

with instructors in the 7 week course expected to cover 4 sections per class, and instructors in the 
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15 week course expected to cover less than 2 sections per class. They found no statistical 

correlation between concerns about coverage and intended pacing, suggesting that the amount of 

material that instructors were expected to cover and the amount of time they had to cover that 

material did not affect how concerned instructors were about covering all the material.  They 

found small correlations between instructional practices and the level of concern that instructors 

felt about pacing.  For example, instructors who were more concerned about coverage were more 

likely to lecture, but they were also likely to continue student centered practices such as group-

work and having students explain their thinking.  They explain: 

Even when instructors include more lectures, they did not do so by 

eliminating other instructional practices. Instead, these findings suggest 

that instructors at selected institutions pair student-centered practices with 

lecture when they are pressured for time. This is an important distinction 

to make because, when paired with other activities that engage students, 

lecture can be a highly productive instructional practice (p. 500). 

They also examined similar data from non-selected institutions, and found that pressure to cover 

the material did not change instructional practices.  They conclude that feeling variable levels of 

pressure to cover material may not explain differences in instructional practices, and that other 

factors (such as class size) should be considered when examining reasons for instructional 

practices. 

 There is ongoing debate in secondary mathematics programs about block scheduling vs. 

traditional scheduling and the effect of scheduling on students and teachers (Zapeda & Mayers, 

2006; Zelkowski, 2010).  However, little has been examined in terms of scheduling in post-

secondary institutions. A study by Diette and Raghav (2016) compared the GPA of students in 

classes who met more frequently for shorter periods with students in classes who met less 

frequently for longer periods.  They found no difference in learning outcomes for classes that 
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met twice per week for longer periods of time compared with classes that met more frequently 

for shorter periods of time. 

Theoretical Stance  

The theoretical framework for examining resources in study is grounded in the literature 

and my own experiences while teaching. Similar to Rabardel (2003), Gueudet et al. (2014), 

Brown (2009), and Remillard (2004), I believe that there is a relationship between instructors 

and their resources that cannot be defined by looking just at instructors or just at their resources. 

I see the instructor as a co-constructor of the curriculum, with both the instructors and the 

resources having impact in the classroom. The critical elements of this framework include three 

main ideas: first, that one instructor may use the same resource in multiple ways (e.g., Brown, 

2009); second, that multiple instructors may teach the same topic with the same resources in 

multiple ways; and third, that a resource and how it is used should be understood together 

(Gueudet et al, 2014).  I am primarily interested in the instructors’ interaction with the content of 

calculus and resources and how those resources impact instruction, in the environment when they 

are teaching and planning to teach, as well as their justifications for resource use. 

In light of this literature review, I propose the following questions: 

1) What resources do two-year college calculus instructors use to assist in their planning and 

teaching lessons in FTC?  

2) How do two-year college calculus instructors use their resources to assist in their 

planning and teaching lessons in FTC? 

3) Why do two-year college calculus instructors use their resources in the ways that they do 

when planning and teaching lessons in the FTC? 
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Chapter 3: Methods 

In this chapter I detail the methods used for answering each research question, in five 

sections. The first section is a brief explanation of the context used for this dissertation and 

explains the overall data collection methods. The second section details the quantitative data 

collection and analysis done, including a rationale for each section of the survey. Likewise, the 

third section details the qualitative data collection and analysis done on that data. The fourth 

section describes the analysis done on both types of data and summarizes the methods used in 

this dissertation. The final section details my subjectivity as a researcher and the limitations of 

these methods. 

I used a two-phase mixed methods explanatory design for the study. In this type of study, 

the researcher collects quantitative data first and qualitative data second, “to help explain or 

elaborate on the quantitative results.” The quantitative data provided a general picture of the 

research problem, and the qualitative data were used “to refine, extend or explain the general 

picture” (Creswell, 2012, p. 542). I chose this design because mixed methods explanatory 

designs can provide a fuller answer to a research question; each type of data has strengths that 

build on the other. For example, the quantitative section provided some insight into what 

resources the instructors used while the qualitative section asked instructors how and why they 

used those resources. The mixed methods design allowed me to provide a much richer picture of 

how instructors describe their teaching of the FTC. 

Because I expected instructors to rely fairly heavily on their textbooks treatment of the 

FTC (they didn’t), I examined a variety of calculus textbooks in order to prepare for data 
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collection. I made copies of the Fundamental Theorem of Calculus section from eight different 

textbooks. These textbooks were among a list of textbooks indicated by the national calculus 

study to be used by college instructors. I considered how these textbooks treated the FTC, if 

there was a proof for the evaluation portion of the FTC, and how it was proved (see Table 3).  

Table 3: Calculus Textbooks and their treatment of the FTC 

Textbook Author (edition) Section for FTC Evaluation Portion  Proof Type 

Spivak (3
rd

) Chapter 14 FTC II Uses 1
st
 FTC 

Edwards/Penny (3
rd

 ) Section 5.5 FTC II Uses 1
st
 FTC 

Adams (5
th

) Section 5.5 FTC II Uses 1
st
 FTC 

Thomas (10
th

) Section 4.5 FTC II Uses 1
st
 FTC 

Stewart (5
th

) Section 5.3 FTC II Uses 1
st
 FTC 

Ostebee-Zorn (2
nd

) Section 5.3 FTC II Uses 1
st
 FTC 

Hughes-Hallet (4
th

) Sections 5.3 and 6.4 FTC I Proof in supplement 

uses MVT 

Larson/Edwards (10
th

) Section 4.4 FTC I Uses MVT  

Briggs/Cochran/Gillett Section 5.3 FTC II No proof, but 

discussion is close to 

MVT proof 

 

As discussed in the literature review, the FTC is often presented as two theorems. One of 

the theorems involves the relationship between integration and differentiation, and the other 

theorem is used to evaluate a definite integral (often called the “evaluation portion” of the FTC). 

I examined the textbooks to see in which order they presented the two theorems (if they were 

separated). From this examination, I noted that two common textbooks had very different ways 

of proving the evaluation portion of the FTC (see Appendix B). The proof from the Larson 

textbook partitioned an interval and invoked the mean value theorem (MVT). The proof from the 

Stewart textbook used what they called the first fundamental theorem of calculus (the idea that 

the derivative of an integral is the integrand) without referring to partitions or the MVT. Once I 

understood similarities and differences between textbooks treatment of the FTC, I began the 

process of data collection, which proceeded in three phases. 
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In the first phase, I administered a survey to all 136 Calculus I instructors in Michigan to 

obtain the trends in these instructors’ use of curriculum materials (See Appendix A). In the 

second phase, I used the survey responses to select 14 instructors for an interview study in order 

to better explain the trends identified from the survey. In the third phase, I selected two 

participants from the interview study, and observed those two instructors while they taught the 

Fundamental Theorem of Calculus. In the next sections I describe each phase in terms of the 

instrument, the participants, and the analysis done. 

Phase 1: Quantitative Phase 

The first phase of the data collection involved a 28-question online survey of two-year 

college calculus instructors. This survey was used to describe trends in the population and was 

used to answer the research question:  

What resources do two-year college calculus instructors use to assist in their planning and 

teaching lessons in FTC?  

The Survey Instrument.  

The survey (see Appendix A) was used to identify the most common textbooks and other 

curriculum resources used by community college calculus faculty. Findings from a previous 

study (Leckrone, 2014) suggest that community college calculus instructors use their textbook 

more than they recognize. Instructors in that study used their textbooks as a resource and 

reference for themselves and their students. They deferred to the textbook for things like notation 

and homework problems. One instructor, who stated that he did not use the textbook, was able to 

refer students to various sections of the textbook for help. Given this information about textbook 

use, presenting specific questions about textbook use, as identified in this earlier study, helped 

instructors identify the various ways in which textbooks can be used. To complement the 
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information about textbooks, the survey asked about technology use and other resources in 

general and when teaching the FTC. The survey was used to identify which curriculum resources 

were being used by instructor in various ways. This information adds to a growing body of 

research on undergraduate mathematics instructors’ use of curriculum resources and contributes 

to information about how those resources are used when teaching the FTC. 

The survey (see Appendix A) began by asking instructors to confirm that they were 

currently teaching Calculus I or had taught Calculus I in the previous semester. If the answer to 

both of those questions was no, the survey sent the participant forward to the end. The body of 

the survey had 26 questions and covered three areas: course information, FTC, and demographic 

information. The six demographic questions in the last section of the survey matched the 

Conference Board of Mathematical Sciences (CBMS) reports of this population (Blair, Kirkman, 

& Maxwell, 2013). These questions were used to determine the degree to which the sample of 

respondents is representative of the US community college population in terms of gender, 

educational background, and experience. I describe the questions in each section of the survey 

next.  

Course information section. The 10 questions in this section (questions 3-12) are a combination 

of semi-structured and open response questions that ask instructors about the materials they use 

in the classroom. Question 3 asks the participant how the textbook the instructor uses was 

chosen. This question was used to compare responses to later questions about how often they use 

their textbook and how much they like the way the textbook handles treatment of the FTC. 

Questions 4 and 5 asked the instructor to choose which textbook they use from a list taken from 

the Characteristics of Successful Programs in College Calculus (CSPCC) Instructor Start of 

Term Survey, and how many semesters they have taught with that book. These initial questions 
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served to orient the participant to the purpose of the survey.  

The next four questions (questions 6-9) asked participants to rate how they used the 

textbook on a scale from 1 (never) to 7 (always), in terms of assigning homework problems, 

following the symbols and formulas, using examples from the textbook during class, and if the 

participant is comfortable changing the order of topics in the textbook. The answers to these 

questions are on a 1-7 Likert scale, from Never (1) to Always (7), with a N/A option if the 

question does not apply. Structuring the answers in this way allowed for the variables in the 

analysis phase to be considered as continuous for statistical purposes (Groves, et. al, 2011). 

Question 9 asked participants if they used examples from the textbook during class time, and was 

intended to compare with existing research (Mesa & Griffiths, 2012; Leckrone, 2014). 

Question 10 was an open-ended question that asked about other resources (such as 

graphing calculators, other books, websites, etc.) that participants used when planning to teach 

first semester calculus. Questions 11 and 12 in this section asked about students, and what 

materials students were required to purchase for a first semester calculus class. 

Fundamental theorem of calculus.  This section consisted of eleven questions that probed the 

participant’s perception of the treatment of the FTC in their textbook, the technologies used 

when teaching the topic, which of two possible proofs of the FTC they preferred and why, and 

their opinion of the textbook and technologies used during teaching (See Appendix B ). 

The first five questions in this section (Q13-17) asked participants how often they use 

their textbook and about their perceptions of their textbooks treatment of the FTC. Similar to the 

questions about their use of textbook in the course materials question, the four questions about 

how they perceived their textbooks treatment of the FTC asked participants to answer on a 1-7 

Likert scale, from Positive (1) to Negative (7), in order to facilitate analysis of the survey later 
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(Groves, et. al, 2011). Following the textbook questions, participants were asked about 

technology, including what technology they permit and require students to use, and whether or 

not they feel that the FTC is easier for students to understand without added technologies. 

Because the idea of technology can range from mechanical pencils to computers and robots, 

instructors were given a list to choose from, including graphing calculators that do (or do not) 

perform symbolic algebra, a computer algebra system such as Maple, Mathematica, MATLAB, 

and “other.” If an instructor chose “other”, they were asked to describe the technology. 

Following questions on technology, instructors were shown two possible proofs of one 

portion of the FTC, each of which was adapted from common textbook proofs, but were very 

different from each other (see Appendix B). The first proof assumed that the evaluation portion 

of the FTC was the first fundamental theorem and used the Mean Value Theorem and Riemann 

sums to prove it. The second proof assumed that the evaluation portion of the FTC was the 

second fundamental theorem and used the first fundamental theorem to prove it. Question 22 

asked instructors which proof they preferred and question 23 asked them why they preferred that 

proof.  

The last question in this section (Q24) asked participants to explain anything else that 

they felt was relevant to teaching the FTC. Less than half of the instructors responded to this 

question, and although this question added to the picture of how instructors think of the FTC, it 

was not compared with responses to other questions. 

Demographic information. This section consisted of eight questions about instructors’ position, 

demographics, and professional background (see Figure 4). Research has shown that 

demographic information is more effectively gathered at the end of a survey than at the 

beginning, which may allow for a greater response rate (Groves, et al., 2011). 
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The first five questions of this section (Q25-29) were compared with demographic 

information reported by Blair, Kirkman, and Maxwell (2013) about two-year college instructors 

in the United States. Question 30 asked for a self-identification of expertise. This question 

allowed for comparison with questions asking about the number of sections of calculus taught 

using a particular textbook and the overall number of years of calculus taught.  

Participants. In order to find participants for the survey, I compiled a list of all two-year college 

calculus instructors by going through each website for all 27 Michigan two-year colleges and 

looking at their course schedules for Fall, 2015 and Winter, 2016. For each named calculus 

instructor, I looked on the website for their e-mail. One community college listed five calculus 

courses as being taught by “staff,” and I was unable to find out who taught those courses. If an e-

mail for a specific calculus instructor could not be found on the college website, I called the 

college to request it. In all cases, the e-mail was provided to me.  

Prior to administering the survey, I piloted the questions with five people, two former 

calculus tutors, one former calculus instructor, and two other math instructors in order to 

determine potential misunderstanding of questions and to estimate the completion time. The 

survey took between 10 and 30 minutes to complete; I refined language as well as the look and 

feel of the survey before administering it to participants. 

I choose to limit the sample to Michigan instructors for two reasons, although this survey 

could be easily expanded to other instructors in other states. First, community colleges in 

Michigan offer a diverse set of potential respondents. Unlike some other states (such as Ohio and 

California), community colleges in Michigan are decentralized, with informal communication 

between the colleges. Innovative uses of resources are neither dictated nor discouraged by a 
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central authority. The decentralization of community colleges means a potentially wider variety 

of resource use than might be found in a centralized system.  

Second, I expected that community college instructors in Michigan would be more likely 

to respond to a research request coming from a “local” university than a general survey request. 

A major problem for survey research is response rate. According to Shih and Fan (2009), surveys 

embedded in e-mail may have a response rate of from 10-50%, with an average of 30%. Other 

studies suggest that web-based surveys (such as the one given here) may have even lower 

response rates than surveys embedded in e-mail (Cook, Heath, & R. Thompson, 2000; Manzo & 

Burke, 2012). Of the 136 instructors who were e-mailed the link to the survey, 86 (63%) 

responded, and of those 86 responses, 50 (37% of the total) were useable.  

In order to secure the best participation rate possible, I e-mailed instructors an invitation 

to complete the survey, with a two-week deadline, and a reminder near the end of the two weeks. 

At that point, there were some instructors who had started, but not completed the survey. I 

contacted each those instructors with a direct link to their survey and a request to finish.  

After collecting instructor responses, an error in my IRB approval jeopardized a portion 

of data collection. After rectifying the error and meeting with the IRB board, it was determined 

that I would be able to use responses collected from instructors if they were able to provide me 

with an e-mail confirmation that they agreed that I use their data. I contacted every instructor 

again, and all but 5 gave me permission to use their data. This left me with approximately
6
 50 

responses to analyze. Responses came from all around the state, as shown in Figure 1. Out of 27 

two-year colleges contacted, instructors from 22 colleges responded. 

                                                 
6
 The number is approximate because not every instructor answered every question. For example, while most 

questions had 52 responses and some had 47. 
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Figure 1: Geographic distribution and proportions of survey responses. Developed at 

zeemaps.com and adapted. 

 

As shown in Figure 1, participants in the survey came from all over the state. Five two-

year colleges had a 100% response rate, and 12 colleges had a response rate of 50% or better. An 

additional four colleges had some instructors respond, and only five colleges had no instructors 

respond.  

Analysis. 

Before I could analyze responses, I needed to clean the data and validate the answers in 

the survey. This was done by removing all responses with no data in questions 3-25, because 

these participants indicated that they did not teach calculus I during the 2015-2016 school year. I 

also hid all identifying information and assigned each participant a number rather than a name. 



 

 58 

Some of the survey responses were edited (Groves, et al., 2009) as follows: Four records had a 

text answer to Question 30 (“Including this year, approximately how many semesters have you 

taught college calculus?”), so I changed that to a number (i.e., “3 semesters” was changed to 

“3”). For the same question, one instructor said “400”, which I changed to 40, because 400 

semesters implied more years than the average life-span. After editing the data for this question, 

there were 12 records with no answer to that question. However, those 12 records had a response 

to Question 5 (“Including this semester, approximately how many semesters of first semester 

calculus have you taught using that book?”). I input that number into question 30 as a proxy for 

how many semesters that a instructor had taught calculus. 

Once the data was cleaned and edited, I considered the short answers. I used open coding 

for responses to the short answer questions 23 and 24. For each question, I printed the answers 

and sorted them into piles with similar answers. Responses to Q23 (“Why do you prefer that 

proof?” were put into five categories: math, students, both math and students, self and other (see 

Error! Reference source not found.). Responses coded as math generally included some 

mathematical reason why the proof was preferred. Responses coded as student focused more 

student understanding as a reason for preferring one proof over the other. Responses coded as 

both math and students included both of these types of reasons. Responses coded as “self” did 

not include specific references to math or students but implied that it was a personal preference. 

There were five responses that were coded as “other” that did not fit into any of the previous 

categories. These categories were used to compare with other responses in the survey to look for 

patterns. 

Table 4: Categorization of participant responses to their FTC proof preference 

Category Examples 

Math 1) MVT is an important part of Calculus and is used elsewhere 

2) I appreciate that this gives us a chance to touch on families of functions as 
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Category Examples 

antiderivatives (listed as [6] in the proof). Also, it is common in proofs later in 

the undergraduate degree to begin by defining a function, and I mention this 

while proving the statement. 

Students 1) Students seem to understand the connection between the antiderivative and the 

definite integral when I draw graphs of simple functions and shade and compute 

areas between the graphs of simple functions and the x-axis than when I attempt 

to formally use the Mean Value Theorem method 

2) I like that it builds upon the idea of sums of areas which students are familiar 

with from the introduction to integration. 

Math and 

Students 

1) It (1) reviews the mean value theorem from earlier in the course, (2) it shows the 

power of adding zero in a clever way, (3) it leads directly to the common method 

of evaluating definite integrals that the students will use far more than 

derivatives of functions defined by integrals 

2) I think it is more clear as to the connection between derivative and integrals. It 

also more clearly shows to students how we evaluate definite integrals. 

Self 1) I learned it that way (50 years ago) 

2) elegance, ease of understanding 

Other 1) We do not teach a proof oriented course, so I really would answer "Not 

applicable." 

2) I don't have a preference either way. The majority of my students do not want to 

see a proof. They just want to know the theorem, know what it means "in 

layman's terms", and know how to use it. When I try to show them proofs in 

class, they just get more confused than they already were. 

 

Responses to Question 24 were also put into five categories (see Error! Reference source not 

found.). 

Table 5: Categorization of participant responses about other FTC importance 

Category Examples 

Importance 1) I still remember my calculus teacher … immediately after proving the 

FTC, asking "Did we just waste some time? Or did this change the 

world?" Then he declared "It changed the world!" 

2) History. 

Inverse 

Operations 

1) I focus on the relationship between the derivatives and anti-derivatives 

for definite integrals since they are "inverse" of eachother. 

2) Emphasizing the inverse relationship between integrals and derivatives. 

Other Math 1) The connection between the riemann sum of f and what it represents in 

terms of F. 

2) An intuitive understanding that we treat f(x) as a 'derivative' function 

and that the sum of many little changes in f(x) equals a big change in 

F(x). 

Students 1) The more that you can appeal to student knowledge of common 

geometric area formulas and other usual student knowledge, the better. 
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2) technology helps with understanding 

Other 1) Think before you do anything, like integrate and differentiate. 

2) I prefer the titles fundamental theorem of calculus and integral 

evaluation theorem. 

 

Responses coded as importance included some information about the FTC being important in 

and of itself, without reference to the mathematics involved. Reponses coded as inverse 

operations mentioned the relationship between integration and differentiation as opposites or 

inverses. Responses coded as “other math” indicated some portion of mathematics other than the 

idea of inverse operations. Responses coded as students indicated something about student 

learning. There were three responses coded as “other” that did not fit any of these categories. 

These categories of responses were compared with interview findings about the importance of 

the FTC. 

Trustworthiness.  Certain survey questions were designed to enhance survey reliability and 

trustworthiness. In particular, Questions 14-17 were expected to have a high internal consistency, 

and they did. A Cronbach’s alpha of .89 indicated that these four questions were answered 

similarly, although not completely in the same way. In order to reduce response error, some 

questions were worded positively (Q6-9). Question 21 asked about teaching the FTC without 

(considered negatively worded)) added technologies. This question was designed so its answers 

could be compared to those of questions 18-20, which asked about what technologies were used 

(positively worded). This type of design allows the researcher to compare answers and validate 

responses. If a participant answered that they did not use technology when teaching the FTC, but 

that they strongly disagreed that explaining the FTC was easier without added technologies, it 

could be an indication of a potential problem. Finally, based on the pilot, the survey was 

expected to take at least 10 minutes, and the time instructors spent on the survey was recorded in 
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order to examine how long it took instructors to respond. 

Phase 2: Interview Study 

I conducted 14 semi-structured interviews with instructors using a pre-written protocol. I 

designed the protocol to enrich the survey information by examining how and why instructors 

use resources when teaching and planning the FTC. In this section, I explain the design of the 

interview protocol, how participants were chosen for interviews, and how the analysis of the 

interviews was done.  

Interview Protocol. I began the interview process with questions about the instructor’s 

educational background and teaching experience. These questions were designed to establish 

rapport and give instructors a chance to elaborate on similar questions that were asked in the 

survey. After gathering background information, the interview protocol consisted of four 

sections: general teaching and planning of calculus I, teaching FTC, discussing a proof of the 

FTC, and hypothetical questions (see Appendix C for full list of interview questions). I will 

briefly outline each interview section and then describe the analysis done. 

General Teaching and Planning. This section included three questions with several potential 

sub-questions. Before beginning this section of the interview, I read the paragraph at the front of 

the interview protocol to instructors in order to define teaching and planning. Questions 1-3 were 

designed to obtain information from instructors about how they plan for this course in general, 

what a typical class looked like, and what resources they used. There questions were asked in 

order to get a feel for how teaching the FTC was similar or different to what an instructor 

described as typical. 

General FTC. This section consisted of five questions that probed instructors’ understanding 

about the importance of the FTC and their resources when planning and teaching the FTC. 
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Question 4 asked instructors how important the FTC is to calculus, and question 7 asked them 

how they introduce the FTC to students.  

Teaching FTC. This section consisted of four questions designed obtain information about what 

instructors perceived as the importance of the FTC in terms of student understanding. As 

described in the literature review, the FTC requires understanding important mathematical ideas, 

and instructors may privilege one idea over another. Questions 9-12 were designed to give 

instructors the opportunity to share not only what they felt was important about the FTC, but 

what they felt students should take away from learning about the FTC. 

Also in this section, I gave instructors the two potential proofs of the evaluation portion 

of the FTC that they had seen on the survey, and asked them to select the one that they preferred. 

I asked them why they preferred that proof. This information was triangulated with their 

responses in the survey. I then asked instructors to explain one of the proofs to me. The 

explanation of the proof as well as questions 4, 7, and 11 were designed to give instructors the 

opportunity to display covariational reasoning (Carlson, Persson, & Smith 2003).  

Hypothetical questions. This section consisted of two questions about hypothetical situations. 

Question 14 asked instructors what resource, real or imagined, they would like to have when 

teaching FTC. This question was designed to obtain participants’ thinking about possible 

resources that they may not have mentioned yet. Question 15 asked instructors to give advice to 

a hypothetical new instructor (me) at their school. By asking instructors to respond to a 

hypothetical instructor, I am encouraging them to “teach” me how they teach. Responses to this 

question offered an opportunity for instructors to confirm the resources that they said they used 

as well as any they may have neglected to mention during the course of the interview. 
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Participants. Out of 50 survey responses, 24 instructors supplied their e-mail on the survey and 

indicated they were open to an interview. From these 24 possibilities, I chose 14 instructors from 

around the state to interview.  One of the selection criterion was experience with textbook used.  

This criterion was chosen because there is literature that notes a difference in perceived reliance 

on the textbook from the first to the second and third year of teaching (Behm & Lloyd, 2009; 

Drake & Sherin, 2009; Silver, Ghousseini, Charalambous, & Mills, 2009). These studies suggest 

that as instructors become more familiar with curriculum materials, their attitudes towards them 

and use of them changes. I chose instructors to interview (see Error! Reference source not 

found.) in order to maximize variation in terms of resource use (for example, one instructor did 

not use a textbook), semesters of experience, and educational background.  I also selected 

instructors so that the sample had both full-time and part-time instructors and included 

instructors from around the state.  
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Figure 2: Map of interview locations. Developed at zeemaps.com and adapted. 

 

All interviews were conducted in person; the instructors taught in locations across the 

state (see Figure 2).  

Interviews were audio-recorded and the bulk of the interview was transcribed. After 

interviewees signed a consent form, the interviews began with questions about instructor 

education and background. These questions repeated and expanded on some survey information 

and were designed to set instructors at ease.  Because it was not directly related to my research 

questions, I made notes and charts (see Error! Reference source not found.) rather than 

transcribe the information. 

Table 6: Interviewees 

Pseudonym Educational 

Background 

Semesters 

teaching 

Full-time/ 

Part-time 

Other 
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Calculus I 

Frederick BA in Math 8 semesters Full-time Teaches at a 

High School 

George Master’s in Math <1 semester Part-time  

Harold JD and Master’s in 

Math 

>12 semesters Full-time  

Ian Master’s in Math 5 semesters Full-time  

James PhD in Math 65 semesters Full-time Dept Chair 

Karl Master’s in Math 15 semesters Full-time Dept Chair 

Leopold Master’s in Math 

and Stats 

15-25 

semesters 

Part-time Has FT non-

teaching job 

Marcus Master’s in Math 10 semesters Full-time Applied Calc 

Nathan Master’s in Math 63 semesters Full-time Dept Chair 

Oliver Master’s in Math 5 semesters Part-time Business Calc 

Philip Master’s in Math 8 semesters Full-time  

Richard Master’s in Math 11 semesters Full-time  

Suppiluliumas PhD in Math 20 semesters Part-time Retired from 

non-teaching job 

Theresa Master’s in 

Engineering 

50 semesters Part-time  

 

Analysis. These four portions (not background) of the interview were transcribed and coded in 

Hyperresearch. I coded the transcripts in stages, using a combination of open coding and 

constant comparisons (Corbin & Strauss, 2008). First, I identified any mention of resources to 

discover just what these instructors were using. At the same time, when the resource was 

identified, an annotation was attached to each code with a note about how the resource was used. 

For example, a typical annotation is: “Resource: Textbook. In planning for a class, he reviews 

the textbook section and considers what problems to do.” (annotation for Harold, 94-98). This 

level of coding allowed me to quickly access what resources instructors were using and how they 

were using it. 

In the second phase of coding, I reviewed all the codes to determine why the instructor 

used the resources in the way that they do. In order to do this, I began by identifying areas of one 

instructor’s transcript where he gave reasons for using a resource in a certain way. For each 
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section of the interview text that I coded as a reason, I included a four part annotation with more 

detail, including the original resource (what) and how it was used, then a code for why, and a 

comment that explains why I chose that code. For example, Nathan explained that he sometimes 

took students to the computer lab when he didn’t want to do a lot of calculation by hand.  

R: When do you spend a class in the computer lab? 

Nathan: Generally, when it’s a—like numerical methods for integration. 

Where I want them to use the software to actually do the problem. Or I’m 

not gonna have them do a whole lot by hand. 

R: How do you decide which sections to do that? 

Nathan: Usually the ones that involve a lotta number-crunching that 

they’re never gonna do by hand, that I don’t wanna do by hand. 

(Nathan, 908-914) 

My annotation for that section of text was: 

What: computer lab 

How: spends a class in the computer lab for a number crunching heavy 

section 

Why: self 

Comment: if the section involves a lot of number crunching that he doesn't 

want to do by hand, that would be a time he might take students to the lab 

 

Initially, I based the “why” codes on Herbst and Chazan’s (2011) practical rationality and 

obligations of teaching. This framework describes consists of “four professional obligations can 

organize the justifications (or refutations) that participants might give to actions that depart from 

a situational (or contractual) norm.” (p. 450). However, I ran into two issues that led me to depart 

from this coding scheme. First, the individual obligation (attending to the needs of the individual 

student) and the interpersonal obligation (attending to the needs of the class and classroom as a 

whole) did not appear separately. This may be because the obligations framework based on 

“interpreting teacher (and students) actions in the classroom,” (p. 428). I was analyzing 

interviews instead of observations, and I was focusing on resource use rather than general 

actions. Second, because I was talking to instructors rather than observing them in the classroom, 
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many instructors explained reasons that had to do with their background, training, or personal 

preference. After my first attempt to classify the reasons instructors gave me for why they used 

resources in a particular way, I combined the classifications of individual and interpersonal 

obligations as “student,” and I considered explanations regarding background and personal 

preference as “self.” The final coding scheme is shown in Error! Reference source not found.. 

Table 7: Coding categories for "why" from interview transcripts 

The primary reason given for 

resource use was… 

Example 

Institution [the graphing calculator] does the integration exactly. 

That would be perfect so they could actually check 

their answers and make sure everything is good. And 

then they can get the numerical value that you’re 

looking for…But our [department] says, “No, no, 

no.” (Marcus 584-587) 

Math “I like [graphing calculators] because it forces kids 

understand domain and range of functions” 

(Frederick, 715-716) 

Self “I always try to pick one new question [from the 

textbook] a semester to talk about in class so it’s not 

completely boring for me.” (Philip, 87-89) 

Students “I start [planning a lesson] from the textbook as my 

base because this is obviously what the students are 

going to be using and referencing. So if there is 

notation, I am using consistent notation with the text  

book because I don’t want to confuse the students on 

that note” (Ian, 39-41) 

 

The code of “math” matches the idea of disciplinary obligation from Herbst and Chazan (2011) 

and “institution” matches the institutional obligation.  

My third phase of coding the interview data was done to capture nuances of how the 

instructors referred to the FTC and teaching it for students (see Error! Reference source not 

found.). For example, some instructors mentioned FTC and finding the area under a curve. This 

was coded as “area.” 
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Table 8: Instructors’ explanations of the FTC 

Code Meaning Example 

Area Mentioning area 

under a curve when 

talking about 

teaching FTC. 

I like area problems, ‘cause I wanted to be able to 

draw the pictures quickly on the board without having, 

‘okay, so now let’s graph this or that.’ And the other 

thing is that for finding areas there are very few shapes 

we can find areas of without calculus. So I was 

sticking to simple stuff. (Karl, 513-515) 

Accumulation  Mention of an 

accumulating 

function (that 

calculates area) 

So I start by defining accumulation function. So we 

start by having f be a continuous function on an 

[interval] and we define g of x as the definite integral 

… from a up to x. So we start by defining this thing 

which we call an accumulation function. And we look 

at GeoGebra and you can do some visualizations 

where this thing’s fixed and you can dynamically 

move this back and forth and [the accumulation 

function] calculates this area. (Ian, 412-416) 

Anti-

differentiation 

Mention of an anti-

derivative or using 

anti-differentiation 

when teaching FTC 

Yeah. I start with the idea of an anti-derivative. They 

tend to pick that up, but they don’t like it ‘cause they 

know it’s gonna be tough. ‘Cause they're like, “Oh, 

that’s gonna be hard.” (Harold, 872-874) 

Inverses The FTC shows the 

inverse relationship 

of derivatives and 

integrals (or anti-

derivatives) 

[I tell students] remember at the very beginning where 

the book said there was two main problems in 

calculus, like the slope of the tangent line and finding 

the area under the curve. Well, those two things are 

inverses of one another and this is what this theorem 

will show (George, 798-801) 

Other Context Putting the FTC in 

context, talking about 

the history, etc. 

I try to make it historically interesting. History of 

calculus sometimes. Not in a boring way, too much. 

Maybe ten minutes. I’ll say, “Greeks knew about this 

stuff. They knew this rate of accumulating rectangles 

and things. They didn’t quite put it together until much 

later.”(Harold, 656-658) 

 

Although the ideas of anti-differentiation and inverses are very similar, the way that instructors 

used these terms merit distinction. Anti-differentiation, when mentioned, was often more about 

process than concepts, and did not explicitly include the idea that the fundamental theorem of 

calculus linked derivatives and integrals. Inverse, on the other hand, was used when instructors 

specifically mentioned that processes of integration and differentiation undid each other. 



 

 69 

After coding all the transcripts, I considered the primary resources that were mentioned in 

the survey and looked for patterns in the interview data from those resources. In particular, I 

examined reasons for the use of graphing calculators, textbooks, and intangible resources. I 

examined patterns of what, how, and why instructors said they used each resource.  

Phase 3: Observations. Of those 14 instructors interviewed, I chose three to ask for 

observations based on availability, experience, and textbook use. I could not observe the first 

instructor (he was teaching Calculus I for the first time), because the IRB approval was not in 

place until after he taught the fundamental theorem of calculus. The second instructor (first 

observation) was the head of the department with over 15 semesters of experience teaching Calc 

I with a variety of textbooks. The third instructor (second observation) had experience teaching 

Calc I, but was teaching from a new (to him) textbook at the time of observation. 

Neither of the two observations were audio or video recorded, so I took field notes, 

composed classroom maps, and collected any handouts given to students. I observed instructors 

on the days that they were teaching the fundamental theorem of calculus. Observation data were 

used to triangulate with interview and survey data. The resources observed during the 

observation were compared to the codes that captured what instructors said they used during 

their interviews. Their treatments of the FTC and its proof in the lesson were compared to their 

interviews. 

Overall, the survey provided information about what resources instructors used when 

planning and teaching the FTC, and provided a hint of how they thought about the FTC. The 

interview data provided more detail about how and why those resources were used, and the 

observations were used to compare with survey and interview data. 

Subjectivity 
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My background includes working in business for eight years, first as technical support 

and later as a software trainer and trouble-shooter. I have a secondary teaching certification in 

the State of Michigan(2004-2009) for math and German, with an elementary rider for German. I 

have three years of experience teaching high-school German, and 10 years of experience 

teaching two-year college mathematics. When I returned to graduate school, I worked 

simultaneously on my doctorate in mathematics education and master’s in mathematics. I took 

calculus in high-school, and never in college. I view calculus as a subject that is difficult, but 

understandable. I have never taught first semester calculus. I view the understanding of 

mathematics as a combination of conceptual and procedural understanding. I believe that to have 

one without the other is incomplete. My experience with students in the two-year college setting 

has generally been positive. I view students in this setting as often having other commitments 

outside of school, and I do not expect college and homework to always be their first priority. I 

have been a participant in a research study, and enjoyed it. My colleagues at the two-year college 

where I taught have been congenial and helpful, in part because of our shared office location. All 

part-time faculty shared an office space and we often met each other and discussed our classes. 

As part-time faculty at only one location (many of my colleagues taught at multiple campuses), I 

felt that I had an advantage in the amount of time and energy that I could spend on my students. 

The primary disadvantage I experienced as a part-time instructor was compensation (pay) and a 

limited choice of what I could teach, as well as an uncertainty about scheduling. We did not get a 

teaching contract until we had been in the classroom for two weeks. My experiences as a part-

time mathematics instructor, as a mathematics graduate student, a research participant, and as a 

two-year college instructor may color what I am seeing and not seeing in the data. I am 
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comfortable with mathematics departments and with part-time faculty. I used my status as a 

former instructor to approach the interviewees as a colleague rather than a researcher.  
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Chapter 4: Findings 

This dissertation examines what, how, and why two-year college calculus instructors in 

Michigan use the resources that they do when planning and teaching the fundamental theorem of 

calculus (FTC), as well as how these instructors describe the FTC.  The most common resource 

used by instructors was the textbook, followed by graphing technologies, and intangible 

resources such as the instructor’s background and feedback from students.  The ways instructors 

used these resources and their reasons for doing so varied greatly.  In this chapter, I present the 

findings from each phase of data collection, followed by a summary of themes found from the 

overall analysis of these data. 

Survey Results 

The survey was used to investigate primarily what resources instructors used when 

planning and teaching the FTC.  Answers to questions on this survey gave insight into not only 

what instructors were using, but also began to explain how these resources were used and gave 

insight into how instructors considered the FTC.  The survey was organized into three sections.  

The first section collected information about resources used for general teaching and planning.  

The second section asked about resources used specifically when planning and teaching the FTC, 

and the third section asked about participant demographics.  Within the second section, 

instructors were asked to examine two different proofs of one part of the FTC, and report their 

preference and why.  This particular part of the survey was not directly tied to resources 

(although it was expected to confirm that instructors preferences matched the resource of the 

textbook that they used), and yielded some unanticipated findings.  I begin this section of 
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findings with a description of participants, which shows a wide variety of instructors.  I then 

report findings from the survey first by resource.  For each resource I describe the findings that 

apply to planning and teaching Calculus I, then planning and teaching the FTC.  I then report 

findings directly related to the FTC that are not tied to any specific resource, before moving on to 

the next section on interview results. 

Fifty instructors from 22 community colleges responded to the survey. Thirty-five 

indicated that they were teaching calculus in Winter 2016 while 15 were teaching the course in 

Fall 2015
7
.  The majority of the instructors who responded to this survey were full-time (37/50). 

These proportions are comparable those reported by the 2015 survey of two year college 

mainstream calculus programs, (79% of TYC calculus instructors were full time; see Blair, 

Kirkman, Maxwell, 2018, p. 17&19
 8

). The majority of the respondents were male (28/48) and 

had a master’s degree (38/49) in mathematics (33/49); the other respondents had master’s in 

mathematics education, statistics, engineering, or law. Seven respondents had a PhD in a STEM 

field (math, physics or engineering); one respondent’s PhD was in higher education, and another 

in law, and another had all the requirements for a PhD in mathematics education except for the 

dissertation. One respondent had an undergraduate degree in math. The majority of the 

participants (28) reported being in their 30s or 40s; 16 participants indicated being in their 50s or 

60s; a small number of participants were under 30 years old (2) or over 69 years old. The 

participants in the sample reported having taught between 1 and 65 semesters of college calculus 

(average = 6 terms, SD = 17 terms), with a median of four and a mode of three terms; it is then 

                                                 
7
 Respondents who indicated that they were teaching calculus in the winter term were not asked if they had taught in 

the fall term.  I was looking for instructors who taught calculus at least once during the 2015/2016 school year (not 

summer), so there was no need to ask about a prior semester once they said yes to teaching in the winter term. A 

question by question summary of responses to questions can be found in Appendix G 
8
 This percentage was not directly included in this report, but calculated from the reports of percentage of main-

stream and non-mainstream Calculus I faculty as well as total enrollment and average section size. 
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accurate to say that the majority of the respondents had about two years of experience teaching 

college calculus. Thus the sample included respondents with a wide range of ages and of college 

calculus teaching experience, which gives confidence that their responses may be useful in 

characterizing their practices.  For a complete list of participants’ demographic information, see 

Appendix F. I now present the overall synthesis of responses in the survey regarding its three 

major areas, their textbook use, their use of technology and other resources, and their use of the 

FTC proofs. 

 

Textbook use. 

Survey results about textbooks indicated which calculus textbook instructors were using 

and how they were chosen and gave some insight into how instructors used them. The majority 

of instructors used textbooks mandated by the department (41), although eight instructors chose 

their own textbook, and one wrote his own textbook. The majority of the calculus textbooks 

mentioned by 35 instructors were authored or or co-authored by three people: Edwards (2006, 

2007, 2013
9
), was a co-author on textbooks used by 14 instructors; Stewart (2009, 2010), was the 

author on textbooks used by 11 instructors; and Briggs (2012, 2014) was the co-author on 

textbooks used by 10 instructors. The instructors reported that they had been teaching with their 

current textbook for 6 semesters on average (SD=5). 

Four questions in the survey (Q6-9) asked for the respondents’ general use of their 

textbook, specifically, whether they used the same formulas and symbols as in the textbook, if 

they were comfortable changing the order of topics, their assignment of homework from 

textbook or software; and their use of examples from the textbook during class time.  The 

respondents used a 7-point Likert scale, from never to always, in responding to these statements. 

                                                 
9
 Instructors on the survey did not include the edition they were using.  These dates represent the most recent 

editions available prior to Fall, 2015.   
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In Table 9, the responses are presented as frequencies in 3 categories: 1-2 (Never or 

Infrequently); 3-4-5 (Occasionally); and 6-7 (Almost Always or Always).  All but one instructor 

assigned homework from the textbook, with 37 instructors indicating that they always assigned 

homework from the textbook.   

Table 9: Instructors use of their textbook; (N=49). 

Question 
Never  or 

Infrequently 
Occasionally 

Almost Always 

or Always 

6) It is important to me to use the same 

formulas and symbols as my textbook  
4 16 29 

7) I am comfortable changing the order of 

topics in the textbook.   
5 18 26 

8) I assign homework from the textbook or 

software associated with the textbook  
1 1 47 

9) I use examples from the textbook during 

class time  
16 18 15 

 

Instructors used their textbook for assigning homework and were generally comfortable 

changing the order of topics.  Instructors generally followed the notation and symbols that their 

textbooks used.  The responses to Question 7 suggest that most instructors feel some agency over 

the order of topics that they teach.  These responses suggested to me that some instructors might 

introduce the FTC in the first few weeks of the semester, rather than follow the order in the 

textbook and present it in the last few weeks. The responses to Question 8 suggest clear 

tendencies of instructors to use their textbooks or related software to assign homework problems 

for students.  However, these responses do not imply that the textbook is the only source of 

homework problems, even if it is always used for homework, some instructors may use 

additional materials. 

The last item is shows a more even distribution than the first three.  As discussed 

previously, there were problems in the wording for Question 9.  Instructors may have interpreted 

“example problems” to include the problem section of the textbook or they may have interpreted 
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“example problems” as only the sample problems in the exposition text.  Thus, the 16 instructors 

who indicated that they Never or Infrequently use example problems from their textbook during 

class time may actually use the problems from the problem set during class time.   

Textbooks were also used by some instructors when planning to teach the FTC.  As part 

of the questions about planning and teaching the FTC, instructors were asked how they used their 

textbooks, specifically how often they referred to their textbook when planning to teach the FTC. 

Six instructors indicated that they never refer to their textbook when planning to teach the FTC, 

29 indicated that they sometimes use their textbook, and 13 instructors said they always refer to 

their textbook when planning to teach the FTC (Survey Question 13, n = 48). On this survey, I 

did not ask how or why instructors use or do not use their textbook when planning to teach the 

FTC, and these results should be treated with caution.  That 42 out of 48 instructors sometimes 

or always refer to their textbook when planning to teach the FTC does not mean that most 

instructors are familiar with how their textbook treats the FTC.  An instructor who always uses 

the textbook to plan to teach the FTC may refer to the FTC section of their textbook for notation 

only, and not be familiar with the entire section.  This finding is another indication that the 

textbook is a resource that is frequently used by instructors, not just in overall planning and 

teaching Calculus I, but also in planning to teach the FTC. 

Each instructor was also asked to evaluate their textbook’s presentation of the FTC in 

terms of the explanation, proof, problem sets and overall treatment.  These four items were 

assessed on a 7-point Likert scale from positive (1) to negative (7) in terms of their impression of 

the textbook in those categories. In Table 10, the responses are presented as frequencies in 3 

categories: 1-3 (Positive); 4 (Neutral); and 5-7 (Negative).   
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As seen in Table 10, most instructors had a positive to neutral view of all aspects of their 

textbooks treatment of the FTC.  All four questions have a similar distribution of results, with 31 

instructors having a generally positive impression of their textbooks overall treatment of the 

FTC, and 31 also having a positive view of their textbook’s problem sets and explanation of the 

FTC.   

Table 10: Impression of the textbook's treatment of the FTC (n=48) 

Question Positive Neutral Negative 

(14) What is your general impression of your 

textbook's overall treatment of the Fundamental 

Theorem of Calculus? 

31 12 5 

(15) What is your general impression of this 

textbook's explanation of the Fundamental 

Theorem of Calculus?  

31 11 6 

(16) What is your general impression of this 

textbook's proof(s) of the Fundamental Theorem 

of Calculus? 

27 15 6 

(17) What is your general impression of this 

textbook’s problem sets relating to the 

Fundamental Theorem of Calculus?  

31 7 10 

 

To understand whether the same instructor felt positively (or negatively, or neutral) toward each 

aspect of the textbook’s treatment of the FTC, the results of these questions were compared with 

each other.  A Cronbach’s alpha of 0.89 indicated that these questions had a high internal 

consistency.  In other words, the attitudes of an instructor toward their textbook’s section of the 

FTC were fairly consistent across the explanation, proof, problem sets and overall treatment. 

Graphing technologies and other resources.  

Participants were asked about the resources they used when planning the semester 

(Question 10). Twenty-two reported using only curriculum materials (such as textbooks) and 

calculators.  One instructor indicated that he spoke with other instructors. Six respondents said 
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they used materials that they created themselves and 18 said they used Google and/or 

mathematics software such as Maple, Desmos, and Wolfram Alpha. 

The survey asked instructors what students were required to purchase for a first semester 

calculus course. Forty-one respondents indicated that students were required to purchase a 

textbook; 23 indicated that the department required a graphing calculator, with an additional 

three instructors indicating that a graphing calculator was highly recommended, but not required.  

The primary resources that instructors mentioned for planning and teaching a first semester 

calculus course were textbooks, the software associated with the textbook, and some kind of 

graphing technology (either calculators or software).  Participants did not mention blackboards, 

whiteboards, chalk, markers, or a document projector, perhaps because these resources are 

common enough to be overlooked.   

When teaching and planning to teach the FTC, instructors were asked specifically about 

resources other than the textbook. Questions 18-21 asked instructors about the technologies that 

they and students used when the instructor taught the FTC.  Eighteen instructors indicated that 

they used no technologies when teaching the FTC, and four of them did not permit students to 

use technology when learning the FTC.  One instructor who used Desmos to teach the FTC did 

not permit students to use technology when learning the FTC.  Although only five instructors did 

not permit students to use technology when learning the FTC, 29 did not require students to use 

any technology when learning.   

For instructors who did use technology when teaching the FTC, a graphing calculator was 

the only extra technology used by 21 instructors in the survey.  An additional six instructors used 

a computer algebra system and two instructors used other technologies such as Geogebra 

Applets.  Thirty-six instructors permitted students to use a graphing calculator when learning the 
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FTC, and 16 of these instructors required students to use a graphing calculator.  Of two 

instructors who indicated they used a computer algebra system to teach the FTC, one required 

students to also use a computer algebra system when learning the FTC. Overall, results to 

questions about technology use when teaching the FTC indicates that instructors teach the FTC 

in a variety of ways, and may not be consistent between their use of technology when teaching 

and what they permit students to use.   

Question 22 asked whether they agreed or disagreed with the statement “In my 

experience, explaining the Fundamental Theorem of Calculus to students is easier without added 

technologies.”  Based on a 7 point Likert scale (See Appendix F), 18 instructors agreed (5-7) and 

19 disagreed (1-3).  Ten instructors were neutral or had no opinion (4) on whether or not it was 

easier to teach the FTC without added technologies.  Of the 18 instructors who agreed that 

explaining the FTC was easier without added technologies, 11 did not use technology when 

teaching the FTC, five used a graphing calculator and 1 used Desmos.  Of the instructors who 

disagreed that it was easier to teach the FTC without added technologies, three of them did not 

use technology when teaching the FTC.  I did not ask why they used or did not use technology 

when teaching the FTC, and these inconsistent results about how they used technology compared 

with their stated preferences warrants further investigation.  Instructors may have institutional 

requirements requiring or forbidding a calculator, or instructors may have simply read some of 

the questions wrong.  Question 22 was posed in a negative fashion (“without added 

technologies”), and the first option was to disagree with this statement.  For questions 14-17, the 

first option was to agree with the statement.  In addition, one instructor (who chose “other” when 

asked about technology and the FTC) indicated that the technology use depended on the 

problem.  For some problems technology use was required, and for some it was not permitted.  



 

 80 

Instructors may have interpreted questions about students learning the FTC to apply only to 

classroom time or to include working on homework problems.  Classroom time and homework 

may have different expectations and requirements regarding technology use.  Therefore 

inconsistencies between instructor and student use of technologies when teaching and learning 

the FTC may not be as large as they seem based on responses to this survey. 

FTC Proof Preference.   

I presented survey participants with two different proofs of the evaluation portion of the 

FTC (Appendix B).  The first proof, called here the MVT proof, was adapted from Larson (2007) 

and used the mean value theorem. The second proof, called here the I-to-II proof was adapted 

from Stewart (2003) and used the first FTC in proving the second FTC. Because I anticipated 

that instructors’ preferences would match the proof in the textbook that they used, I examined the 

textbooks that instructors said they used, and considered the version of the proof of the 

evaluation portion of the FTC that was presented in that textbook.  With limited exceptions, 

those version of proof either matched the Larson version (proof 1, uses MVT, see Appendix B) 

or the Stewart Version (proof 2, uses FTC I, Appendix B). The exceptions were the Briggs 

textbooks and Tan’s applied calculus, which did not have a proof of the FTC.  However, the 

Briggs textbooks had a rationalization for the FTC that mirrored the Stewart version (I-to-II). 

After presenting both proofs to instructors, they were asked which proof they preferred, 

and why. Overall, 21 instructors preferred the MVT proof and 20 instructors preferred the I-to-II 

proof.  Four instructors chose “other” proof preferred, based on no proofs given in class or proof 

by other means. I compared those responses with the proof in their textbook.  I had anticipated 

that their preference would match what was in their book. However, this was not the case (see 

Table 11). The textbook seemed to have little influence in determining which proof of the FTC 



 

 81 

instructors preferred.  Table 11 lists how many instructors used each textbook, which proof type 

was in the text (if known), and which proof type the instructors who used that text preferred.  Not 

every instructor who chose a textbook indicated a preference of proof, so the numbers are not 

consistent.  For example, although nine instructors indicated that they used a Larson/Edwards 

text, only eight of those instructors chose which proof they preferred.   

Table 11: Textbooks, proof type, and instructor proof preference 

Textbook Author(s) Proof 

type in 

text 

Number of 

Instructors 

using text 

Number 

prefer 

proof 1 

(MVT) 

Number 

prefer 

proof 2 

(FTC) 

Larson/Edwards MVT 9 4 4 

Larson/Edwards ET MVT 4 3 0 

Edwards Penny ET MVT 1 1 0 

Anton/Bivens/Davis ET MVT 5 1 3 

Stewart ET I-to-II 7 4 3 

Stewart Concepts and Contexts I-to-II 4 1 1 

Briggs/Cochran ET I-to-II 4 1 3 

Briggs/Cochran/Gillett I-to-II 6 1 3 

Hass/Weir/Thomas ET I-to-II 3 1 1 

Thomas/Weir/Hass/Giordano ET I-to-II 1 1 0 

Thomas/Weir/Hass/Giordano I-to-II 1 1 1 

Hughes/Hallet I-to-II 1 1 0 

Munem I-to-II 1 0 1 

Own text (written by teacher) unknown 1 1 0 

Applied Calculus by Tan n/a 1 Prefer not to prove 

Total MVT MVT 19 9 7 

Total FTC I-to-II 28 11 13 

Total n/a 49 21 20 

 

It is apparent from participants’ responses to survey questions 14-17, that they generally 

approved of their textbook’s treatment of the FTC in terms of the explanation, proof and 

problems, however the book that they were using did not seem to influence which proof they 

said they preferred. Because this result was unexpected, I compared proof preference with 

number of semesters teaching calculus, employment status, gender, age range, and degree field.  

All categories had some instructors that preferred the MVT proof and some that preferred the I-
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to-II proof (see Table 12).  Based on the information gathered on the survey, there is no way to 

describe either a typical instructor who preferred one of the proofs or to predict which proof 

would be preferred by an instructor with particular characteristics. 

Table 12: Proof preference based on experience, status, gender, age, and degree field 

 Semesters 

Experience 

Employment 

Status 

Gender Age Range Degree Field Total 

 0-7 >7 Full-

Time 

Part-

Time 

Female Male <50 50+ Math Other  

MVT 

Proof 

12 8 17 3 5 15 14 6 15 5 20 

I-to-II 

Proof 

15 6 14 7 4 16 12 9 15 6 21 

 

The category with the most differences between proof preference was part-time employment 

status.  More part-time instructors preferred the I-to-II proof than preferred the MVT proof, by a 

ratio of 7:3.  However, because there were only 10 participants in this category, these preferences 

are not statistically significant.  

Instructors on the survey were asked why they preferred the proof that they chose, and I 

analyzed these responses (see Error! Reference source not found., methods chapter).  The two 

most common reasons instructors gave for preferring a proof  was because of the math in the 

proof (13 instructors) or because the proof was better for students (11 instructors).  This is shown 

in Table 13, below. 

Table 13: Proof preference by reason and type of proof 

Reason for preference 

Number of 

instructors who 

gave that reason 

Number of instructors 

with that reason who 

preferred MVT proof 

Number of instructors 

with that reason who 

preferred I-to-II proof 

Math 13 8 5 

Students 11 2 9 

Self 6 4 2 

Math and Students 5 3 2 

Other 5 2 0 

No preference 5 1 3 
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Of the 13 instructors whose reason was math, eight preferred the MVT proof and five 

preferred the I-to-II proof.  Of the 11 instructors whose reason was students, two preferred the 

MVT proof and nine preferred the I-to-II proof.  

Instructors were asked about their personal preference of proof, and why they preferred 

that proof.  They were not asked if they proved that portion of the FTC during class time, and if 

so, which proof they used.  These results indicate that personal proof preference is not shaped by 

the textbook used, but the results do not indicate whether or not instructors are teaching their 

preferred proof.   

 Overall, survey results indicated that the main resource instructors used was their 

textbooks, and that textbooks were used for assigning homework and to examine notation.  Most 

instructors had positive impressions of their textbooks treatment of the FTC, but that did not 

translate to their personal preference of an FTC proof.  The second most common resource that 

survey instructors used was graphing technologies, but the survey did not give information about 

how instructors used these resources.  The survey provided a starting point for interviewing 

instructors about how and why they used the resources that they did.  The next section describes 

the results from the interview data. 

Interview Results 

 I chose 14 instructors to interview from the 21 survey respondents who indicated they 

would like to be interviewed. The interviews ranged from 77 minutes to 160 minutes, with an 

average of 110 minutes.  The purpose of the interview was to understand how and why 

instructors used their resources for planning and teaching the FTC, as well as confirm what 

resources instructors were using, and find out if they used more resources than they mentioned 

on the survey.  The analysis of interview data revealed nuances about how instructors used their 
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textbooks and graphing technologies that was not present in the survey data, and revealed the 

intangible resources that instructors used.  Intangible resources such as and instructor’s personal 

background, feedback from students, and the affordances and limitations of their home 

institution were mentioned very rarely on the survey, but all interviewed instructors mentioned 

some of these intangible resources and how they affected their teaching.  The analysis of the 

interview data also revealed patterns about how instructors talked about the FTC. I present an 

overview of the findings here and expand on each of those in the subsequent sections.   

 All instructors mentioned using the textbook for planning the full semester or a single 

lesson and for designing homework by using the problem sets available in the textbook. When 

teaching, instructors said they primarily used the board and graphing technology to display 

functions and to perform calculations quickly and accurately.  Some instructors also reported 

using a graphing tool while teaching the FTC. The analysis suggests that the way instructors 

described their use of the graphing calculator was related to how they thought about the FTC. 

However, other resources were used regardless of how the instructors viewed the FTC. The 

reason that instructors gave for using these resources was primarily out of concern for students.  

Instructors also indicated that their teaching and use of recourses was sometimes driven by a 

concern for accurate mathematics as well as the influence of their own background and their 

home institution.  I expand on this throughout the interview section of this chapter. 

The findings in this section, similar to the findings in the survey section, are arranged by 

resource.  I describe the findings by three major resource categories: textbooks, intangible 

resources, and graphing technologies.  For each resource, I separate out ways that instructors said 

they used those resource.  For each resource and way of using that resource, I discuss why 

instructors use that resource.  When applicable, I link the resource, how it is used, and why it is 
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used to teaching the FTC. Then I describe the findings related to how instructors discussed the 

FTC. Finally, I give a summary of the reasons instructors gave for using all resources and an 

overall summary of the findings. 

Textbooks 

Textbook use was ubiquitous among instructors interviewed and surveyed. Even Richard, 

who wrote his own course pack, said he brought the textbook to class with him. Most instructors 

used their textbook in very similar ways.  Based on findings from survey data that indicated the 

textbook was used by all instructors, I examined interview text for mentions of how and why the 

textbook was used.  From this, I found four themes from the interviews about how and why 

instructors used their textbooks. Instructors use their textbooks for: 1) planning a semester, 2) 

preparing to teach a lesson, 3) to assign homework, and 4) for notation.  

Planning a semester. Of the 14 instructors interviewed, all instructors said they used the 

textbook in some way for planning. Overall, every instructor except Richard indicated that they 

used their textbook in some way when planning or outlining a semester. For example, George, 

Leopold, and Frederick received an outline of first semester calculus topics that they must cover 

by the college. These outlines included book sections. In order to plan what to teach on a certain 

day, they took that outline and used the textbook to build a schedule “I try and go on a pace 

where I’m breakin’, maybe, a section down—every two days, I’m goin’ through a section.” 

(Frederick, 10-11). George’s students get a syllabus from the college, with a list of sections in 

the book to be covered and a note saying that the instructor may adjust the schedule, but not the 

content (see Appendix D). Oliver based his semester schedule on the six chapters in his textbook, 

“I would do two chapters, a review class, a test class, two chapters, review. I just broke [the 

semester] into three bits” (Oliver, 1192-1193). Leopold, Harold, Philip, George, and Karl shared 
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their schedules with me and each of these schedules included sections of the textbook that 

needed to be covered on various days (see Appendices D and J for examples).  Nathan indicated 

that he based his lessons on sections of the textbook, implying that his semester planning was 

closely linked to the book: “I’ll do one [section] a day, generally. Sometimes I’ll do two sections 

a day. Sometimes, maybe one in two days. Or two in three days, but generally it’s one a day.” 

(Nathan, 862-863). 

Not every teacher indicated a reason for using the textbook to plan a semester.  However, 

two teachers were explicit that they used the textbook to plan a semester based on institutional 

requirements.  For example, Leopold is given a list of textbook sections that he needs to cover 

throughout the semester, and then is able to organize his sections.   

With only 32 days––16 weeks, two days a week. I’ve got 32 days to teach 

all these sections… Again, [I’m] trying to get creative in what I can 

possibly combine with what are the topics that are natural pairings based 

on how I can see where they would progress upward. It is not necessarily 

the order of the textbook.  (Leopold, 232-233, 303-305) 

Thus, he used his textbook to plan his semester in order to follow the sections that the institution 

said he has to cover, but he has some flexibility in how he arranges the sections to be covered.  

This passage also illustrates an important nuance in how instructors used their textbooks to plan 

the semester. Using the textbook to plan a semester did not mean that instructors followed the 

order of topics that was presented in the textbook.  Leopold organized the topics that he was 

required to teach by what makes mathematical sense, using the textbook the institution requires.   

Several instructors modified the order of textbook topics and explained to me why they 

did so.  Leopold (see Appendix K) described his reasons for adjusting the order of sections in the 

topics as “I needed to look at it from, if I’m going to have to combine sections, what topics are 

realistic that I can combine together. Then at the same time, what order of the topics makes the 
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most sense?” (Leopold, 234-236).  Theresa also shifted topics based on what she feels makes 

sense: 

when I look at a textbook, I go through what the chapters are, and I’m one 

of these that likes continuity when I teach. So if I find that, in chapter 1, 

there’s a piece of chapter 1 that I don’t feel is continuous with the other 

stuff, I may hold off on that until I find something that connects with that 

piece. (Theresa, 134-138) 

George also got a syllabus from the department (see Appendix D), and modified it slightly. “ 

[at this institution] there’s five pages of stuff that I have to have in [the syllabus] and I modify it 

a little bit …the schedule’s mostly set in stone, although I had to adjust it for twelve weeks 

instead of fifteen weeks” (George, 216-218).   

One of the consequences of using the textbook to plan the semester is that the FTC is in 

only one section of one chapter of all textbooks 
10

that these instructors were using
11

.  Instructors 

who used their textbook to plan their semester were unlikely to devote more than an average 

section’s worth of time to the FTC.  One of the interview questions asked instructors to advise 

me, as a potentially new instructor at their institution, on teaching the FTC.  The advice I 

received regarding how many class periods or hours I should devote to teaching it ranged from 

two to four hours.  For a four credit-hour 14-16 week course, this allocation corresponds to 

between 1/32
nd

 and 1/14
th

 of the time spent in front of students. 

Planning a lesson. In addition to planning a semester, nine out of 14 instructors mentioned 

reading or reviewing the textbook for lesson planning. I asked instructors toward the beginning 

of the interview how they typically planned a lesson.  Nine of the 14 instructors explained how 

they would read or review the textbook.  For example, Philip said, “I’ll read back through the 

                                                 
10

 Richard did not use a textbook; he used his own course pack. However, the time he devoted to teaching the FTC 

did not differ from instructors who used a textbook. 
11

 The only textbook that devoted two sections to the FTC was the Hughes-Hallet, which was not used by any of the 

instructors I interviewed. 
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section myself before I go teach it” (Philip, 72). Harold said, “I just look through [the textbook]. 

I circle some examples that I think are good. Some that I wanna avoid” (Harold, 83-84).  

Frederick, George, Ian, James, Nathan, Oliver, and Suppiluliumas also reviewed their textbook 

when planning a lesson.   

Of the five instructors who did not mention their textbook during lesson planning, 

Richard said that he used his course pack, Karl reviewed his notes, Leopold reviewed his course 

pack and notes that he created from the textbook before the semester started, Theresa did not say 

if she used her textbook in planning a lesson or not, and Marcus, who taught applied calculus, 

used activity sheets to plan a lesson. 

Although Marcus was very familiar with the textbook and often taught from it, he felt 

that applied calculus should be taught differently than regular calculus.  When planning lessons, 

he was often frustrated with the textbook: 

Here’s the problem I have with applied calculus. They give the stupid 

equation from nowhere. The students have no idea where this equation is 

coming from. So why don’t they make it, ‘here is the data we have. Why 

don’t you do a regression analysis and [find] what would fit.’ That’s the 

way I think the applied calculus should go… But there’s no book that’ll do 

that (Marcus, 491-497). I don’t think [students] get a very intuitive 

knowledge about what’s going on when they use the text. (Marcus 924-

925) 

When teaching the FTC, he used his own worksheets and avoided the book (see appendix E). In 

particular, although Marcus used the textbook to plan most lessons and assign most homework, 

he did not use the textbook for homework when teaching the FTC. 

 The reasons that instructors gave for using the textbook during lesson planning primarily 

had to do with students.  Ian was clear that he started with the textbooks because that was what 

students used, saying “I start from the textbook as my base because this is obviously what the 

students are going to be using and referencing” (Ian, 39-40). Harold chose his problems from the 
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textbook based on what he felt that students could understand.  Marcus avoided using the 

textbook for the FTC because he didn’t feel it was appropriate for what students needed to know 

in applied calculus. 

However, although the textbook was a common resource that instructors used to plan a 

lesson, it was not the only resource used.  Instructors also relied on their background knowledge, 

experience teaching, worksheets and notes from past years, etc.  Some instructors indicated that 

they avoided their textbook for certain topics. Thus, the influence of the textbook on an 

individual lesson may vary by content.  

Assigning homework. One of the ways that the interview was able to build on the survey results 

was by examining how instructors used their textbooks to assign homework. In the survey, all 

but one instructor indicated they used the textbook to assign homework. During the interviews, I 

confirmed that the most common way of using the textbook was to assign homework. All of the 

interviewed instructors used the textbook for this purpose.  Even Richard, who stated on the 

survey that he never assigned homework from the textbook, used textbooks in this way.  While 

Richard stated that he did not assign homework directly from one textbook, his course pack 

included homework with problem sets from multiple textbooks.  

In the survey (Question 8) I did not differentiate between on-line homework that is linked 

to the textbook such as MyMathLab or WebAssign and the one taken from a bounded copy of 

the textbook because each on-line homework question can be found in the textbook. However, 

on-line homework often excludes problems in the textbook that ask for a proof or an 

explanation.
12

 During the interviews, I asked whether the instructors used their textbook or the 

online software (or both) to assign homework. 

                                                 
12

 This is slowly changing, depending on the software and course.  The last time I set up online homework (in 2014) 

there was an option to include these types of questions as well as an option to write my own questions. The software 
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Of the 14 instructors interviewed, all of them used the problem sets in the textbook for 

some or all of the homework. When I asked about homework software, the participants were 

clear that there was a difference between problem sets in the physical textbook and the online 

homework both in terms of content, and in terms of advantages and disadvantages for students. 

Three instructors, Ian, Suppiluliumas, and Leopold, offered students a choice between online or 

textbook problems, because they were basically the same
13

, but noted that the feedback to 

students was different. “On the online homework you can hit ‘show me’ and then watch an 

example, try another. It tells you immediately if you did it right or not. Versus the written 

homework they have to come to me.” (Ian, 137-138). George avoided online homework because 

he had seen students get frustrated when an answer did not match exactly what the online system 

expected, and he felt that students should not pay extra for an online system when they were 

already paying a great deal for their textbook: 

I’ve seen students do WebAssign and they get really frustrated with that. It 

takes a really long time. “What? What’s wrong with this answer? It’s 

right?” And I would say, “Well, if a human looked at that they would 

grade that right. But there’s something that the computer doesn’t like 

about it, so it’s really frustrating.”… “I don’t want you to pay more money 

for the homework separately.” (George, 303-306, 315-316) 

 

Karl, Philip, and Ian appreciated how online homework gave immediate feedback to students and 

saved them time in grading (although Ian still did some grading for students who chose to do 

their homework from the book). In speaking about an anticipated change from online to book 

homework that was coming in the next year, Philip said, “Well, the bigger difference is going to 

be in the grading. Because here it’s graded and it’s done. Here if I had to collect homework for 

all hundred and twenty students every semester and grade it, they’d never get anything back” 

                                                                                                                                                             
did not grade these questions automatically and the instructor had to log in to look at the work of each student. Thus 

students did not receive immediate feedback and the set-up demanded more time on the part of the instructor. 
13

 The online homework systems and the problem sets in the book are tightly linked.  See Appendix I 
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(Philip, 334-336). James mentioned that some of the more conceptual problems he wished to 

assign were not available online, so he used both the physical textbook and the online homework 

system. “Not every problem in the textbook is available on the online homework systems and 

sometimes the better ones aren’t available so I assign those” (James, 72-74). Two other 

instructors, Nathan and Philip, also noted that the online system was not exactly like the book, 

but did not say that they assigned additional problems from the text. 

 The two most common reasons that instructors gave for assigning homework from the 

textbook or online system were because of themselves (the online homework saved them grading 

time) and for students.  Some instructors saw the online homework system as an advantage to 

students in that it gave them immediate feedback, and some instructors saw the online homework 

system as a detriment to students because it cost more and because not every problem was 

available to students.  Thus, the same concern for students resulted in different uses of the 

textbook and online homework system. 

 Although the textbook was often used as a bank of problems, and all instructors used it 

for homework in some way, one instructor avoided the textbook for FTC homework. As noted 

above, Marcus felt the textbook was inappropriate for applied calculus and used his own 

worksheets for homework in that particular section (see Appendix E).  Another instructor, 

Richard, pulled his homework from a variety of sources, including textbooks. 

 Using the textbook as a bank of problems for homework has implications for teaching the 

FTC because mathematics textbooks are commonly set up so that one topic depends on the 

previous topics.  In calculus books, the FTC section appears in the first chapter on integration, 

after differentiation is completed.  If an instructor wanted to teach the FTC before differentiation, 
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he or she may have difficulty finding homework problems that would not rely on prior textbook 

sections of derivatives.   

Notation. On the survey, most instructors indicated that it was important to match the notation in 

their textbook. I followed up on this during the interview and asked instructors about if and why 

they wanted to follow the notation in their textbook.  All instructors said they knew their 

textbook well enough to discuss its notation and tell students why they adopted it or strayed from 

it. Instructors who did not match notation were clear that they let students know which notation 

(such as 𝑓′ or 
𝑑𝑦

𝑑𝑥⁄ ) was in their book, and why they were deviating from that notation.  Most 

instructors indicated a concern for students when they talked about how concerned they were 

with matching the notation from their textbook. 

Ian, Karl, and Suppiluliumas were clear that they tried to match notation in order to avoid 

confusion for students. Karl said, “I definitely don’t want to give them anything that’s too 

different from the book, [because] I think at this level, I think of my own difficulties in 

understanding stuff at first.” He was concerned that students would not be able to follow along if 

his notation strayed too far from what the textbook used. Richard matched notation because there 

was a department final and he wanted students to be familiar with what would be on the final 

exam.  

Harold, James, Marcus, and Theresa did not match notation from the textbook, and this 

was also out of concern for students.  Harold, James, and Marcus wanted students to understand 

multiple notations. Harold said he used the notation he prefers, and expected students to be able 

to understand what he was teaching. “I just let them know that’s another thing. I tell them, there 

are different ways to write the same thing. Don’t get confused” (Harold, 440-441). James wanted 

students to be exposed to a variety of notations so that they would be less confused in the future:  
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I think it’s important for the students to see a variety of notations if a 

variety of notations is what they’re gonna see in the future. For example, 

in derivatives, the Stewart book used prime notation almost exclusively 

until they couldn’t anymore. The Hass book uses Leibnitz notation quite a 

bit. Hardly any of them use dot notation (James, 413-416) 

He goes on to say that he exposes students to dot notation because it is used in physics and he 

uses it in physics application problems. 

Theresa felt that her textbook used confusing notation, particularly in the section about 

the FTC.  She didn’t care for any prime notation (𝑓′), and wanted students to understand 

problems with letters other than 𝑥, which she felt the book used too often. I asked her what she 

felt was hard about teaching the FTC, and she answered, “Well, sometimes the way the book 

puts it. See, I find that a lot of students have trouble with formulas… and with notation” 

(Theresa, 842-845).  Because of this, Theresa created her own formula sheets for students, where 

she could use the notation she felt was easier for students to understand.   

The other instructors interviewed did not discuss notation in their textbooks in relation to 

the FTC, but only whether or not they followed the notation in the textbook.  In general, the 

reasons instructors gave for paying attention to the notation from the textbook had to do with 

concern for students. 

In summary, as noted by Stark (2000), most instructors in this study used their textbook 

for planning the overall semester as well as individual lessons. In addition, the textbook and 

online homework were used as a bank of problems, both for homework and for as a bank of 

problems to solve during class. Instructors spoke about matching the notation in the textbook, 

and pointing out differences to the class when their notation differed from that of the textbook.  

Human and Social-Cultural resources 

In this section, I describe the intangible resources that instructors described during their 

interview that influenced their teaching and planning. Intangible resources are defined as both 



 

 94 

human and socio-cultural resources (Adler, 2000). They include such things as noticing students 

during class, the length of a lesson, and the frequency of the lessons. The three primary 

intangible resources that instructors described were 1) background in learning and teaching, 2) 

cues from students during class time, and 3) affordances and limitations of the institution.  In this 

section I discuss each of these briefly, with a mention of how and why instructors used these 

resources.  When possible, I include how these intangible resources affected how instructors said 

that they taught the FTC. 

Background. Instructors indicated that their past experiences in teaching and learning influenced 

how and what they present to the class and what resources they use. Six instructors said they 

used their experiences as students or their business background to explain why they taught or 

planned in a certain way. For example, James said he reordered the book sections based on how 

he would have learned best as a student. Karl said he used the notation from the book because 

changing it would have confused him as a student. Philip and Richard avoided using examples 

from the book during class time because they had prior instructors who taught that way and 

found it to be a poor way for them to learn. Philip also avoided extra technology (such as CAS) 

because he had to relearn math after relying on the calculator in college. 

Oliver and Suppiluliumas had strong business backgrounds that influenced how they 

taught calculus. For example, Suppiluliumas said that he has students explain how they solved 

various problems to each other by asking them how they got an answer: 

How did you get that answer? “Oh, I typed some numbers into my 

calculator.” No, you don’t tell your boss that ever. How do you talk to an 

executive, or a senior engineer or something like that? They have to learn 

how to do that, and that gets into part of the classroom labors. … How did 

you do it? ‘I didn’t do it’ Okay, that’s a good reason. No problem then. 

The next time I say, ‘how’d you do it’, they’ll show me how they did it. 

Now that’s another technique you get in the business world. You do not 
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get to say I didn’t do it because if you say that, you don’t get to be in the 

next meeting (Suppiluliumas, 184-187, 1185-1188). 

His rationale for having students practice explanations was that students needed to learn how to 

explain what they were doing to potential bosses and coworkers.  Oliver taught business 

calculus, and had a background in business.  He viewed business calculus differently because of 

his background: “I’ve worked commercially around the world designing, so [I’m] very practical 

orientated, and so I view the business calc as not a pure calculus class” (1516-1518).  He was 

clear in his interview that he explained theorems, but did not require students to derive them. 

Two instructors explained how their teaching experience affected how they prepared for 

class. Harold said, “If I know they’re gonna ask about this problem, ‘cause every class does, I’ll 

have that prepared [on the projector]” (Harold, 297-299). Leopold chose which homework 

problems to emphasize to students based on his past experience teaching:  

Online it will say… all these are gonna be your homework problems for 

every section. The first time I taught it… I was like, you had to do all of 

these and you’re going to do them all for paper homework.…Then what I 

did... I’m going to pick five problems, maybe six, from the section that I 

would say are going to be, what I would call the most––not necessarily the 

most critical, but these are the ones where they had the fundamental 

concept in mind. That if you can do these, if you know how to do these 

five or six problems, you’re gonna be okay for the test and you’re going to 

have a basic understanding of what’s going on here. (Leopold, 114-126) 

Leopold was given a set of homework problems by his institution, and told to have students do 

those problems.  In his first semester teaching, he had students do all of those problems, but later 

he chose which of the problems he wanted to emphasize, based on his prior experiences 

teaching. 

Thus instructors’ learning and teaching experiences influenced how they planned and 

taught.  Experiences of struggle as students led them to avoid duplicating that experience for 
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their students; past professional experiences also led them to emphasize some problems over 

others.  

 Interviewed teachers said that their personal background impacted how they approached 

the FTC.  Oliver’s background in business affected what he felt was the purpose of a business 

calculus class, which in turn affected how he taught it. 

[The FTC is] really important because it proves the sum of a rectangle can 

be done [to find an area]. It’s actually the formal proof from the sum of 

those infinite number rectangles. I try to explain it, and we do a bit of it, 

but I can’t go into the full depth (Oliver, 1786-1788). 

Oliver was clear that he finds the theorem important, but that he explains it rather than proves it. 

Karl’s explained how his background meant that he did not test on the theory of FTC.  

So I’m not actually going to give them a quiz or test problem where I say 

‘state this’ or where I say, ‘differentiation and integration are connected in 

some way. Comment.’ ... I won’t do that at this level… Because I don’t 

think that for this level it’s appropriate. .. I know that I didn’t understand 

[the FTC] when I first took calculus… even though I did fine on the AP 

test, I know I didn’t have this theory down. I just know I didn’t. … And 

I’d made it through analysis and everything. So I’d even done proofs with 

this stuff. And I still didn’t get it. So I don’t think it’s fair to expect a 

student to understand it. (Karl, 404-416) 

Karl stated that he feels that it wasn’t fair to ask his students to do things he didn’t understand 

until he was teaching. George (who was teaching calculus I for the first time) remembered 

learning FTC where his instructor said, “we just changed the world” and he intended to present 

the FTC that way to his class.  

 Overall, the background and experiences that instructors had in teaching and learning 

influenced how they taught calculus in general, and the FTC in particular by influencing how 

they organized topics for the semester, how they prepared problems to present in class, what type 

of problems they gave on quizzes, and what types of homework problems they chose to 

emphasize.   
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Student feedback. One of the most common intangible resources that instructors said they used 

was feedback from students during class time. This feedback included facial expressions of 

confusion and nods of understanding, verbal feedback, and questions from students.  Instructors 

used this feedback during class time, and it impacted their teaching.   

Four instructors described a typical classroom day as dependent upon whether or not 

students ask questions. George talked about noticing when a student stops asking questions as a 

way for him to know when it was time for him to move on to a new topic: 

There’s one girl that asks a lot of questions, which is good for me because 

…if there’s a girl in the class that’s constantly asking questions, like, 

good. I can constantly answer questions. And then once she stops asking 

questions, okay, now I’m ready to move on. I kind of use that as a 

guideline for the whole class. (George, 545-550) 

He paid particular attention to feedback from one particular student and let that guide his 

instruction.  During my observations of Karl and Philip, I noticed that they paid attention to non-

verbal cues such as looks of confusion from students.  

A lotta what I do also… depends on what the students’ questions are. 

‘Cause I don’t wanna have an hour lecture prepared, where I just go 

through that stuff. Usually what I’ve done, is maybe ten minutes’ worth of 

stuff I wanna say. The rest of it is reacting to what they ask, what they 

need (Nathan, 94-97). 

Theresa did not post her homework until after teaching because it depended on how much she 

was able to teach during class. She was also specific that she did not stop students from asking 

homework questions, because if there were a lot of homework questions, it meant that she 

needed to explain things better. 

And I will never tell students, “Oop, no more homework questions,” 

because I figure, as soon as you do that, you have made it so that no 

students are gonna ask questions in class. And I figure, if there’s enough 

questions in class about the homework, then there’s something go, wrong. 

They didn’t understand it, or they didn’t catch on. And so then I have to 

go back and, and figure out another way to explain it. … if it turns out that 
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thirty minutes of class is used to go over homework questions, there was a 

reason for it. (Theresa, 401-410). 

 

Theresa was concerned for student understanding, and student questions were one way that she 

interpreted their understanding.  In general, two-year college instructors are understood to care 

about students, and this was evidenced by the way that the instructors used student feedback in 

their teaching.   

Institutional Requirements.  The instructors mentioned several institutional requirements or 

policies that impacted their teaching; of these the most prominently discussed was the course 

schedule; which was mentioned by nine instructors.  I define the course schedule as the number 

of times a week the course met and the length of each session. Instructors also mentioned 

policies regarding calculator use and homework, and the physical classroom space. Instructors 

with the same course schedule evaluated it both positively and negatively, and instructors were 

more critical of the other institutional requirements. 

The instructors said that the course schedule influenced their teaching in both positive 

and negative ways.  Nine instructors mentioned the course schedule as impacting how they 

taught and planned.  Six instructors went further and evaluated that impact as positive or 

negative. Among the six instructors who evaluated the impact of the course schedule, four of 

them mentioned the impact positively, even though they did not have the same schedule: Two 

instructors taught five days per week for approximately 50 minutes each day (Harold and Karl) 

and two taught two days per week for approximately 2 hours (Ian and James). These four 

instructors each said that their course schedule gave them more time to spend with students or on 

a certain topic. Harold said that the “extra” time means that he could give a quiz every week as 

well as review before an exam. “ … ‘cause again the luxury of having five classes a week… On 

Fridays, I can do a 20-minute quiz. Then still have time to go over things. I can have time to 



 

 99 

review before an exam (Harold, 361-364). Karl was able to teach concepts on one day and 

practice on the next day because of the institutional schedule: “Most lessons in this book take 

two days; first day theoretical, second day computational” (Karl, 49). Ian and James, who taught 

two days per week, saw an advantage to that schedule. Ian appreciated teaching for a longer 

period at a time, because he had at least an hour at a time to do an activity: 

We do an activity every week. We always have time to do a group activity 

every week, pretty much…. [Classes are] two hours. So usually we do the 

activity for at least an hour. Sometimes it’s more, depending on how big 

the activity is (Ian, 180-184).  

 

James appreciated the longer period of time that he was able to spend on one concept. In 

particular, he appreciates how the course schedule lets him spend time talking about the FTC:  “I 

try to do it in one [class]. We have a two-hour class period, and so there's time to linger” (James, 

760).  

Philip and Suppiluliumas said that the course schedule was a constraint on their teaching.  

Both taught two days per week for approximately two hours, but would prefer to teach one hour, 

four days per week: 

I’d rather have four one-hour periods than two two-hour periods by a long 

shot… People need to breathe. If you cover too many topics, somebody’s 

gonna miss something. They don’t have time to digest it. The recovery is 

not so good (Suppiluliumas, 1125-1131). 

Philip taught two days per week at the time of our interview, but had taught Calculus I four days 

per week in the past. He preferred a four-day schedule because,  

The students don’t have to synthesize so much at once. If I cover a lesson 

and a half in a day–which I have no choice but to do some days–they have 

no time to go home and practice before I say, “Okay, remember what we 

talked about an hour ago? Now you gotta use it.” And that wouldn’t 

happen if we were on a four day a week. Even though it’s only going 

home and having that evening, I don’t have to cover more than one lesson 

in a day. I can split some lessons over to two days and let them practice, 

maybe, fundamental theorem part one before we look at part two. It would 

be nice to have that opportunity (Philip, 1117-1127). 
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Both Philip and Suppiluliumas were clear that they felt a four-day schedule would be better for 

students because teaching fewer topics per day would help students understand the concepts 

better. 

Leopold, George and Oliver discussed how the schedule affected their planning, but did 

not express positive or negative thoughts about the schedule itself. For example, Leopold said,  

I’ve got 32 days to teach all these sections. I need to be able to cover it all 

and be able to have enough time towards the end to review the material for 

the final exam. … I needed to look at it from, if I’m going to have to 

combine sections, what topics are realistic that I can combine together. 

Then at the same time, what order of the topics makes the most sense? 

(Leopold, 232-236). 

In addition to Leopold, George, and Oliver, Frederick mentioned how the institutional setting 

(although not the schedule) impacted his teaching.  He taught in a high school setting, which 

meant that students were not allowed to leave class if the lesson finished early. 

Kids aren’t allowed to leave early. I think that’s a little bit different than 

the college setting cuz, once a professor’s done lecturing, kids typically 

get up and leave, but not here. … it’s not free time. It’s problem solving 

time. Get the homework out and get to work (Frederick, 108-111). 

Frederick needed to prepare enough material to cover the time he had with students or have work 

for them to do when they finished early.  Other instructors could let students who were finished 

leave early, and he could not.  He did not mention this requirement as a constraint of his 

teaching, but the institutional setting impacted his teaching and planning.  

Overall, the course schedule impacted instructors planning and teaching in ways that 

were sometimes perceived as positive and sometimes negative.  Teaching fewer days per week 

for longer times and teaching more days per week for shorter times could both have advantages 

and disadvantages, depending on the perspective of the instructor.  It was clear that course 

schedules made a difference in teaching, but not what an ideal schedule would be for instructors. 
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Graphing Technologies  

In this section, I describe how instructors use (or do not use) their graphing calculators 

and other graphing technologies. The use of graphing technologies in the classroom by 

instructors fell into three broad categories. First, graphing calculators (or a related computer 

program) can be used to show visual images of functions. Second, graphing technologies can be 

used for calculation, either to avoid doing complex calculations by hand, or to verify that 

answers you have calculated by hand are correct. Third, the use of graphing technologies in the 

classroom may be avoided by instructors.  

Six of the instructors interviewed mentioned that they used the graphing calculator in 

order to show visual images of functions (Harold, Karl, Theresa, Leopold, Philip, and Marcus). 

Harold and three more instructors (Ian, Nathan, and Richard) felt that the graphing calculator did 

not consistently show the visual function well enough and they used Maple or Desmos, but the 

purpose was the same, to display the visual image of a function: 

I prefer [Desmos]... It’s very dynamic.  … So what I did was I made a 

function and then I gave it an initial input which was variable, which was 

dynamic. You could change the initial input like you do for Newton’s 

method. You give it a guess, you know. And then I just reiterated 

Newton’s method process symbolic and so that if you changed your initial 

guess, I mean, you can change the function and then you can also change 

the initial guess. And you’d see the tangent lines moving around. And I 

think I reiterated it four times so you could see the four different tangent 

lines and the intercepts sort of bouncing around and then homing in on 

zero. And then you could copy, paste, and reiterate as many tangent lines 

as you want. And then moving the initial guess around you see it 

dynamically in front of you just moving around. (Ian, 82-98) 

 

In this passage, Ian is describing an example of how he used Desmos to dynamically explore 

Newton’s method of finding the zeros of a function.  In total, nine instructors indicated that an 
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important use for the graphing calculator or graphing software was to offer a visual display of 

functions.  

The second main use of the graphing calculator by instructors was to perform numerical 

calculations. Seven of the interviewed instructors mentioned managing problems with intensive 

calculations, such as left-hand or right-hand sums as a reason to use calculators in the classroom. 

Four of those instructors explained that the calculator always was generally faster than manual 

calculations, whether or not the calculations were intensive. Three more instructors mentioned 

using the calculator to check or verify calculations that were preformed manually. In total, 10 out 

of 14 instructors used graphing calculators as a calculating device. 

Three instructors actively discouraged the use of graphing calculators by students and 

themselves. They wanted for students to think about the magnitude of the numbers and be able to 

estimate answers with some degree of accuracy. In addition to wanting students to developing 

number sense, Harold and Suppiluliumas felt that not using a graphing calculator helped students 

organize their work and thinking, and they wanted to see students’ work (not just answers). 

Suppiluliumas was particularly adamant that students be able to explain how they got their 

answers without saying “I just typed some numbers in a calculator.”  Discouraging calculator use 

during class time meant that instructors had to be careful that they did not model problems with 

complex computations or give students those problems on exams.  However, these instructors 

did not say that they chose homework problems based on their ease of computation, and all of 

these instructors accepted and expected that students would use a calculator on their homework. 

Ways of talking about the FTC 

Although my initial research questions had to do with what, how, and why instructors 

used resources when talking about the FTC, in the course of analyzing those results, themes 
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emerged about how instructors talked about the FTC.  In this section I describe how instructors 

discussed the FTC with me, and then examine the resources they said they used to see if there is 

any difference in how resources are used based on how instructors talked about the FTC. 

Instructors talked about the FTC in different ways, which I grouped into three broad 

categories: evaluation, inverses, and combination. In order to understand these categories, it is 

important to recall that the FTC is often given as two theorems. One of those theorems describes 

how to evaluate a definite integral function by using the endpoints of the antiderivative.  This 

theorem basically says: if 𝐹(𝑥) is any antiderivative of 𝑓(𝑥), then ∫ 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)
𝑏

𝑎
. 

14
 

The description of this theorem often involves finding the area under a curve of a function by 

evaluating the endpoints of its antiderivative.  The other theorem says that (under certain 

circumstances) the derivative of an integral function is the integrand of that function (inverses).  

In other words, given certain conditions, 
𝑑

𝑑𝑥
[∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
] is 𝑓(𝑥).

15
 The third category, which I 

call combination, links the first and second fundamental theorems together by using the idea of 

an accumulation function to describe the area under the curve of a derivative function. 

During their interview, instructors mentioned both theorems of the FTC, with all 

describing area (evaluation) as part of the FTC and all, except Oliver, describing the relationship 

between integration and differentiation as included in the FTC. In order to understand what 

instructors emphasize in their teaching of the FTC, I asked instructors what was the main point 

of the FTC that they wanted students to understand. Overall, thirteen out of 14 interviewed 
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 If a function 𝑓 is continuous on the closed interval [𝑎, 𝑏] and 𝐹 is an antiderivative of 𝑓 on the interval [𝑎, 𝑏] then 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎).  (Larson, Hostetler, & Edwards, 2007, p.282) 

15
 If 𝑓 is continuous on an open interval 𝐼 containing 𝑎, then, for every 𝑥 in the interval, 

𝑑

𝑑𝑥
[∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
] = 𝑓(𝑥). 

(Larson, Hostetler, & Edwards 2007 p. 289) 
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instructors described the main purpose of the FTC for students in terms of inverses or 

evaluations, but did not combine the ideas: 

I would want them to say that it is a description of the relationship 

between the derivative and the integral. I think that’s imperative. I would 

want them to say something to the – if we’re talking the whole 

fundamental theorem – I would want them to say something about 

evaluation of definite integrals. I think that’s kind of the biggest takeaway 

in terms of practical use. I think those two things are really kind of the key 

components that I would hope that they would get out of it (Philip, 753-

759) 

Philip was clear that there were two parts to the FTC, and both were important, but he described 

them as separate ideas and theorems. 

Two instructors linked the inverse and evaluation properties of the FTC by discussing 

functions, but only one (Ian) described this link as the main purpose for students to understand. 

I think the main thing I want them to walk away with is just that there is a 

fundamental relationship between the instantaneous rate of change of a 

quantity and the area under a curve. Not of that quantity, but of its 

derivative. They might forget that. They might forget that little detail two 

years from now or whatever, that it’s not the area under the curve and the 

rate of change of the same curve. They’ll probably forget that. But I want 

them to remember that there is a fundamental relationship between 

instantaneous rate of change and accumulation. (Ian, 682-687) 

 

Ian was very clear that the FTC was more than the area under a curve, more than evaluating a 

definite integral, and more than the inverse relationship between integration and differentiation.  

He links the instantaneous rate of change (differentiation) with the area under a curve, thus 

linking the two fundamental theorems of calculus in a way that other instructors did not 

articulate. 

Six of the 14 instructors interviewed focused on the inverse relationship between the 

integral and derivative as the main purpose of the FTC for students. Frederick, George, James, 

and Nathan described integration and differentiation as “inverse operations” that were linked by 

the FTC. When asked, “What do you think is important for students to know about the 
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fundamental theorem?” Nathan responded, “How to differentiate an integral” (Nathan, 799-801). 

Philip and Suppiluliumas had a related main idea for students: they described the FTC as 

explaining the relationship between the derivative and the integral. They did not use the words 

“inverse operations,” but were clear that FTC connected the two operations of differentiation and 

integration. Philip said he wanted students to walk away with the idea that “[the FTC] is a 

description of the relationship between the derivative and the integral” (Philip, 753-754). In 

addition to these six instructors, another five (Harold, Ian, Karl, Leopold, and Marcus) 

mentioned the idea of inverse operations when talking about FTC. The main idea of the FTC that 

they wanted students to understand was either evaluation or combination. 

Seven participants said that the most important purpose of the FTC for students was to 

evaluate the definite integral, especially in terms of area under the curve of a function. When 

examining all FTC related codes in their transcript, Harold, Karl, Leopold, Marcus and Oliver 

had this as the most common way of considering FTC. Richard and Theresa also considered area 

as one of the main purposes of FTC, but they were very careful to point out that using FTC to 

evaluate a definite integral can get you a negative value, and area cannot be negative. 

I’m very, very careful in explaining to them that value of the definite 

integral is not always the area, because they always have an issue with 

that. Where we’ll do an integral, and the value of the integral is not the 

value of the area. Because they talk about this, oh, negative area. I’m like, 

“No, negative area is not negative. You’re getting the value of the integral. 

The area is not negative.” (Richard 1133-1137) 

 

In other words, area is a useful concept for understanding the evaluation portion of the FTC, but 

not enough to fully understand it. 

In addition to these seven instructors, four more (George, Ian, James, and Philip) also 

mentioned area when talking about FTC. “My intention is to get to that evaluation part, and run 

with it. Start doing integrals, applications of integrals, and then we can go to areas between 
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[curves]” (James, 834-835). On the survey, two instructors mentioned area as an additional idea 

of importance for the FTC. 

One instructor, Ian, did not describe the main purpose of the FTC as either evaluation or 

inverse operations. His explanation of how he taught the FTC had to do the combination of both 

theorems.  He talked about an accumulation function and the process of differentiation, and how 

they relate to each other:  

So we start by defining this thing which we call an accumulation function. 

And we look at GeoGebra and you can do some visualizations where this 

thing’s fixed and you can dynamically move this back and forth and it 

calculates this area… So then we say it’s a function like any other function 

so can we differentiate it? … We’re talking about differentiation. What is 

the rate of change in the value of this function? So what is the rate of 

change in this total area? And so we go back to the definition of the 

derivative.” (Ian, 414-432) 

Ian described teaching the FTC by first defining an accumulating function, and displaying it to 

students. Students were then to notice that the accumulating function was continuous and well-

defined. He then challenged students to come up with a way to differentiate the accumulating 

function. In this way, he emphasized both area and the relationship between the accumulating 

function (integral) and the derivative. His explanation of the main purpose of FTC was different 

from other instructors in that it combined both the inverse and evaluation portions of the FTC. 

Harold also mentioned accumulating functions, and Philip mentioned the importance for students 

of understanding that the integral is a function–and that it is one that we can differentiate, but the 

main purpose of the FTC for both Harold and Philip was not about functions. Ian’s explanation 

(above) of accumulating functions and the FTC matches closest to what Carlson et al. (2002) 

find important in understanding the FTC.  

Overall, Instructors’ descriptions of how they taught the FTC, and what they wanted 

students to remember about the FTC, generally aligned with the two theorems that were 
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presented in their textbooks. These two FTC theorems can be broadly described as an evaluation 

(area) portion and an inverse portion. Ian was the only instructor who attempted to combine 

those two theorems by considering the rate of change of an accumulation function. Next I 

examine the way instructors talked about the FTC and the way that they used their resources. 

For each resource that instructors said they used, I examined the way that instructors 

described the importance of FTC for students to see if it related to how they said they used their 

resource.  The only resource that had any relationship to the way instructors talked about the 

FTC was graphing technologies.  The relationship between how instructors describe the 

importance of FTC for students and how they use the graphing calculator is summarized in Table 

14.  In this table, the columns represent the how instructors interpreted the main purpose of the 

FTC, either as the inverse relationship between differentiation and integration, as the idea of area 

or evaluation of a definite integral, or as a combination of the two (functions). The rows 

represent the main ways that graphing technology were used or not used. Instructors are listed 

within each cell by initial.  

Table 14: Graphing and Calculator Use by FTC interpretation 

How instructors 

used graphing or 

computer software 

Instructors ways of talking about the FTC 

Area or Evaluation: 

H, K, L, M, O, R, T 

Relationship or 

Inverses: 

F, G, J, N, P, S 

Combination: 

I (H, P, but this was 

not primary for them) 

Visualization H, K, L, M, O, R, T P, N I 

Calculation M, L, R, O F, G, J, N, P  

Calculator use 

discouraged 

H N, S  

Each instructor who interpreted the main purpose of the FTC for students as 

understanding the area under a curve or evaluating a definite integral found it important to 

visualize functions during class with a graphing calculator or graphing software. Of the six 

instructors who found the most important part of the FTC to be the relationship between 

integration and differentiation, only two used the graphing calculator to display functions when 
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teaching FTC. Of the three instructors who did not allow students to use their calculator on 

quizzes or tests, two of them expected students to use a graphing calculator either to calculate or 

visualize graphs. Only one, Suppiluliumas, did not express this expectation of his students. In 

general, what instructors found to be the purpose of the FTC for students seemed to relate only to 

whether or not they used graphing calculators to visualize functions when teaching the FTC. 

Why do instructors use those resources 

Instructors in this dissertation study used a variety of resources when planning and 

teaching the FTC.  My analysis of the interview transcripts sought to identify statements that 

reflected a reason why they use those resources. I coded 428 passages
16

 across the 14 interviews 

and identified five different reasons, Students, Self, Math, Institution, and Background. In talking 

about students as a reason, instructors demonstrated a concern for student well-being and 

understanding. For example, Nathan gave students an extra day to do their homework, “so if they 

don’t know the first day, they can just ask me in class, and then do it the next day” (Nathan, 167-

168).  In talking about mathematics as a reason, instructors indicated a concern for upcoming 

mathematics or the profession of mathematics.  For example, James wanted students to learn 

from wrong answers because,  

If you don’t get it immediately, fine. Giving up is not okay…  Going back 

to it, looking for similar things, filling holes in the background. I mean, 

this is how mathematics is done in the research level. It’s how it should be 

done in the classroom. (James, 231-234) 

In talking about institution, instructors indicated that the reason they used or did not use a 

certain resource in a particular way was due to the requirements or expectations of the institution.  

For example, Harold appreciates that the institution sets up Calculus 1 to be taught five days per 

week, so he can give a quiz “Every Friday, ‘cause again the luxury of having five classes a 
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 Some passages were double coded.  The total number of codes was 479. 
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week” (Harold, 361).  When the reason for a passage was coded as self, instructors mentioned 

that they taught a certain way because it was easier for them or because they liked it better.  For 

example, when I asked Ian why he taught the FTC differently than how his book does, he said, “I 

think that it makes more sense to me to approach it in a different order.” (Ian, 296)  Passages 

coded as self occasionally overlapped with background codes, which I defined as an instructor’s 

experience teaching and learning. In Table 15, I present the frequency with which these reasons 

were discussed organized alphabetically by instructor.  

Table 15: Frequency of reason code by instructor 

 Reasons 

Instructor Students Math Institution Self Background 

Frederick 30 10 10 12 0 

George 9 5 7 10 2 

Harold 18 13 6 7 1 

Ian 6 7 2 10 0 

James 10 5 3 7 0 

Karl 7 2 4 9 3 

Leopold 11 8 8 2 2 

Marcus 4 3 7 2 0 

Nathan 10 8 1 4 1 

Oliver 13 5 8 5 2 

Philip 16 6 5 7 3 

Richard 26 9 8 12 0 

Suppilulumas 17 0 7 12 5 

Theresa 17 4 0 6 0 

Total 194 85 76 105 19 

 

The most common reason instructors gave for using resources in the way they did had to do with 

concern for students (41%), followed by concerns for self (22%), followed by concerns for math 

(18%) and institution (16%). About 4% had to do with “background.” With two exceptions (Ian 

and Marcus), instructors mentioned students as reasons more often than any other reason for 

using a resource.  Overall, this confirms other sources (Grubb, 2002) that indicate that two-year 

instructors care about their students. 
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Observation Results 

I observed two teachers, Philip and Karl. Philip taught calculus two days a week, in 

lessons of 110 minutes long.  I observed him during week 12. Our interview was in August, prior 

to the term I observed.  Karl’s section was offered five days per week, in lessons that were 52 

minutes long. I observed him on Thursday and Friday of week 13, and our interview was 

between the two observations.  Philip and Karl were both observed two weeks before the end of 

their term.  I had different purposes for observing these instructors. For Philip, my purposes were 

first to observe an instructor who was teaching from a new (to him) textbook, and second to 

triangulate what he did in the classroom with what he said that he did in the survey and 

interview.  For Karl, my purpose was first to observe an instructor with extensive experience 

with the textbook.  Because I was able to interview him immediately following my first 

observation, my secondary purpose was to use some of the observation to guide portions of the 

interview. In what follows I describe (1) what transpired in the observations, (2) how they used 

resources; and (3) how I used the observation data for corroborating findings from the surveys 

and interviews.  

A primary finding, which can be surprising given the literature on the mismatch between 

reported and observed practice documented in K-12 studies of teaching, is that that what 

instructors did during class aligned very well with what they described in their survey responses 

and in their interviews. Newfield (2003) and Koziol and Burns (1986) have documented that the 

accuracy of teachers self-reporting is high under certain conditions.   

Philip. Philip’s calculus class was a four credit class, taught two days per week in the morning, 

for 110 minutes.  My observation was more than three months after our August interview, and by 

that time, he had changed textbooks from Hass, Weir, & Thomas (2012) to Stewart (2015). 

Observation. I arrived in Philip’s office a few minutes before the beginning of class, and we 
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walked to the classroom. He brought donuts to class that day in part (he said) because my 

coming to visit was an excuse for him to bring snacks, and in part because students had just 

finished an exam in the testing center.  His course was in a larger lecture hall that looked like an 

auditorium.  Students sat in the first three rows, I sat one row behind them with at least three 

empty rows behind me. Before the official beginning of class Philip offered students donuts and 

mentioned that it was his mom’s birthday.  Students asked about Philip’s wife, who was 

pregnant. One student mentioned that his parent was making a quilt for the new baby.   

Class officially started at 8am, and after reminding students that their test should have 

been taken by the day before, Philip asked students to leave their books closed because he was 

going to prove things that day a bit differently than their text.  He indicated that a different 

version of the proof would be extra credit, and that students would have to do one of those proofs 

on the final exam.  His motivation for the FTC was the connection between derivative and 

integral, and that it was more convenient than taking the limit of a Riemann sum.  He then asked 

students to remember the intermediate value theorem (IVT), and suggested they open their books 

for that to pages 122-123. I noticed he said the page number without looking it up, even though 

he was teaching from that text for the first time; this suggested that he had memorized the page 

for the theorem.  He reminded students that they needed to make sure that the function was 

continuous in order to apply the IVT.  He then reviewed the MVT, told students to look at page 

291 for the MVT, and told them to consider what the MVT might say about anti-derivatives.  

From 8:10 to 8:24 he continued reviewing the MVT, the idea of continuous functions, and 

leading students toward the proof of what he called FTC I.  Within those 14 minutes he included 

some meta-language about proving in general.  He said that in order to prove things it was 

sometimes easier to prove a slightly related result and use that to prove the theorem, and that a 
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popular technique for proving is called bounding.  He also asked how many students were 

planning to take second semester calculus (about half raised their hands).   

At 8:24 he wrote 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
 and drew a picture on the board (see Figure 3) to 

represent F(x).  He asked students to think about why he used “t” and if “capital F” was a 

function.  His verbal information was extensive, but he did not write down all of this on the 

board. 

  

Figure 3: Philip's first picture to motivate FTC I 

 

At 8:29 he wrote out the complete FTC I on the board (see Figure 4). 

 

Figure 4: FTC I from Philip's observation 

 

He then asked students to think about inverse functions and inverse processes.  He discussed this 

for two minutes. At that point (8:31), he mentioned that the final exam was in 2.5 weeks and that 

they should make notes about what was coming on the final, such as the proof of the FTC.  He 

discussed study techniques and recommended that students draw a picture of what is going on.  
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Philip then asked students how much  of the homework  on section 5.2 they have done (which  

dealt with evaluating definite integrals), and drew Figure 5 on the board. 

 

Figure 5: Philip's picture of FTC I 

 

He asked students to combine their knowledge of “section 5.2” with the idea of taking a 

limit, and wrote the intermediate and mean value theorems on the left side the board.  While 

proving the FTC, he said that if he was appealing to a concept in the left column (the IVT and 

MVT), he would use a red marker.  The rest of the explanation and proof was done in black 

marker. He then worked through the proof of the FTC I by using the limit definition of a 

derivative (and Figure 5) to calculate the derivative of 𝐹(𝑥).  He said, “What does it mean [for a 

function] to be differentiable?  It has a derivative.  And differentiable implies continuous.”  His 

explanation and proof of FTC I took 19 minutes, until 8:50am, when he began showing sample 

problems.  At that point he wrote, “Suppose 𝑔(𝑥) = ∫ √𝑡 + 𝑡3𝑑𝑡
𝑥

0
” on the board.  Then he 

wrote: 𝑔′(𝑥) = √𝑥 + 𝑥3 and called this the “punchline” of the theorem.  He introduced a second 

problem, ℎ(𝑥) = ∫ 𝑠𝑖𝑛2𝑡𝑐𝑜𝑠𝑡𝑑𝑡
𝑥

3
.  He asked students if the 3 matters (it doesn’t, but he did not 

write down why not), and wrote: ℎ′(𝑥) = 𝑠𝑖𝑛2𝑥𝑐𝑜𝑠𝑥.  He said, “Isn’t that nice?  Seems simple 

enough.  Let’s throw a little bit of a monkey wrench.” 
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For the next example he wrote 𝑔(𝑥) = ∫ ln (𝑡 + 𝑡2)𝑑𝑡
1

𝑥
.  He referred students to section 

5.2 in the book, and asked, “what’s the problem?”  He then wrote, = − ∫ ln (𝑡 + 𝑡2)𝑑𝑡
𝑥

1
.  

Immediately following that, he wrote  𝑔′(𝑥) = − ln (𝑥 + 𝑥2).  He then introduced “one more 

kink” and said he would choose a problem from the book. After looking at his book, he put 

Figure 6 on the board: 

  

Figure 6: Philip's first FTC problem from the textbook. 

 

At this point students had been in class for 60 minutes, and he told students to take a quick break 

and think about that problem, “don’t just randomly square things.”  The break lasted five 

minutes, during which some students got up and some stayed at their desks.  One student asked 

him if the problem involved u substitution.  At 9:05 he began solving the problem on the board 

using u substitution (see Figure 7). 

 

Figure 7: Philip's solution to first textbook problem, with comments. 
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After working through the fourth example, he looked in his textbook for an example to give 

students to try on their own.  He put a problem on the board and gave students one minute to 

think about it before putting additional information on the board (see Figure 8).   

 

Figure 8: Philip's first problem for students to try on their own, with comments and times 

 

After one minute, Philip rewrote the problem to reverse the limits of integration, and then waited 

another two minutes before writing more on the board.   

 At 9:15, while students were finishing that problem, he wrote the second FTC on the 

board (see Figure 9). 

 

Figure 9: FTC II from Philip’s observation 

 

He asked students to cover up their books, and told them that the proof for this one is “pretty 

easy” and that he would walk them through it.  He then walked through the I-to-II version of the 

proof, with comments along the way to point out things that students should notice. 
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Figure 10: Phillip's FTC II proof, with comments. 

 

Similar to his proof of FTC I, he discussed a general way of proving before beginning the proof. 

For the FTC I proof he mentioned proving a simpler theorem first and using that.  For the FTC II 

proof he said that the key was to define a new function and use it.  The proof of the FTC II took 

eight minutes, from 9:15 to 9:23.  After finishing the proof, he asked students to go back to their 

notes and give him an example of a definite integral that they solved previously.  A student gave 

him an example, and he reminded them that the problem had originally taken up the whole 

board.  He solved the definite integral using FTC II, and pointed out how much faster it was than 

Riemann sums.  He then returned to the textbook and asked students to pick a question.  They 

picked #42, which he then put on the board.  He solved the problem on the board, while making 

references to the linear properties of the definite integral (by pulling out a constant) and the unit 

circle.  At that point, a student asked him about when it would be appropriate to use the 

calculator, which could compute an answer for definite integrals.  He stated that a calculator 

answer only on the next exam would not be worth any points, and gave general calculator advice.  
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At 9:40, a student asked about problem #30 in the textbook, and Philip spent six minutes solving 

that problem.  While solving that problem, he used his calculator to check his arithmetic.  After 

solving that problem, Philip discussed the upcoming test with students.  He told them the types 

of problems that would be on the test and put a sample True/False test problem on the board (see 

Figure 11) 

 

Figure 11: Philip's sample test problem 

 

He said that in order to to prove that the statement was false they should use a counterexample; 

he had a mistake in notation that a student pointed out. Philip thanked her and fixed the mistake, 

and finished class by telling students that they could get extra credit by coming to see him during 

office hours between then and the next test, and describing another proof of the FTC.  He told 

students that they would have to know the other proof well enough to discuss it with him.  At 

9:55 the class ended and a student reminded Philip to call his mom to wish her a happy birthday. 

Resources. There were three main resources that I observed Philip using during class. First, he 

used the textbook as both a bank of problems and as a resource for students.  Not only did four of 

his example problems during class came from the FTC section of the textbook (bank of 

problems), he also mentioned sections and page numbers for previous theorems and previous 

work that students had done.  Second, he used the graphing calculator to verify computations that 

he had done by hand, but not to display graphs of functions. He also discussed appropriate uses 

of the graphing calculator. Third, Philip used student feedback during class time by paying 

attention to students.  When students asked him questions, he responded.  When a student caught 
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one of his mistakes, he fixed it and thanked her for noticing.  Other resources that Philip used 

include colored markers, a whiteboard, and a document projector. 

Corroboration.  On the survey, Philip had indicated that he always used the textbook for 

example problems during class and that he used a graphing calculator during teaching and 

planning. Thus, Philip’s survey responses matched what I observed in class, including the 

colored pens, which Philip described during our interview: 

I do use different colored pens. Particularly since I don’t go heavy on the 

proofs a lot of times I’ll do proof by picture. And so a lot of my proof by 

picture I’ll use multiple colors to kind of illustrate the point. (Philip, 560-

562). 

Also during our interview, Philip discussed the importance of the proof of the FTC in showing 

that something is differentiable by proving it has a derivative.  He was clear that he wanted 

students to understand that idea:   

The fundamental theorem is one of the explicit times where you are 

explicitly showing that something is differentiable by proving it has a 

derivative. And I don’t think that students see that a whole lot, so that’s 

kind of a neat portion of how this book handles it. Anyways, I like that 

they are proving that something is differentiable, and I point that out to 

them (Philip, 799-804). 

Because the idea that proving differentiability can be shown by proving that a function has a 

derivative was so important to Philip, he said he was explicit about that during his instruction.  

This is what happened. He introduced the idea of the theorem by appealing to differentiability, 

exactly as he had described in the interview. Overall, Philip’s enactment of his FTC lesson was 

consistent with what was anticipated by the responses he gave in the survey and the interview. 

Karl. 

Karl’s calculus class was a five credit class, taught five days per week in the morning, for 

52 minutes.  Karl’s observation and interview were much closer together than Philip’s.  I 

observed Karl over the course of two days, and I interviewed him between these observations.   
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Observation day 1. I arrived in Karl’s office a few minutes before the beginning of class, and we 

walked into the classroom arriving four minutes before the official start of class.  At the official 

start time, Karl opened the door and students came in.  He closed the door one minute later.  The 

classroom was set up with long desks, and there was a chalkboard on three sides.  Windows 

looking onto the courtyard were on the fourth side.  Students spaced themselves out, with the 

four female students sitting in the front right corner.  I sat in the back left corner. 

At the start of class, the textbook was on the overhead, displaying the problem set.  He 

shut the projector off and referred to a piece of paper with his notes (see Appendix I). Karl began 

by writing the “Section 5.3 Fundamental Theorem of Calculus (p. 354)” on the board (see Figure 

12).  He drew a linear function on the board, and labeled it 𝑓(𝑥) = 𝑥 + 3.   

 

Figure 12: Karl’s first picture to motivate the FTC 

 

He then drew the graph and asked students to find the area under the graph from zero to x.  He 

then deliberately replaced the x in the initial function and rewrote it as 𝑓(𝑡) = 𝑡 + 3, pointing out 

to students that they shouldn’t write things down until he made it right. 

Next, he wrote the 𝐹(𝑥) = ∫ (𝑡 + 3
𝑥

0
)𝑑𝑡 on the board and defined that function as the area 

between the line defined by 𝑓(𝑡) = 𝑡 + 3 and the t-axis.  He calculated that area using the area 
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of a square and a rectangle, both formulas which were known to students.  He then pointed out to 

students the derivative of that area function. 

After calculating the area manually, Karl changed the limits of integration, called the 

initial function 𝐹1(𝑥) and wrote  𝐹2(𝑥) = ∫ (𝑡 + 3)𝑑𝑡
𝑥

−1
.  He had students calculate the area 

indicated by that function manually (sum of two triangles), and then find the derivative of that 

area function.  He then asked, “If I change the limits of integration, does the derivative change?”  

And pointed out to students that the area function was, “in some sense,” an anti-derivative of 

𝑥 + 3.  At that point, he had students to consider the relationship between the derivative of an 

integral function and the integrand.  He was careful not to state the relationship was only 

assumed, and not necessarily true (see Figure 13). 

 

Figure 13:Karl's connection between derivative and integral 

 

Following that introduction, he draws a generic continuous function on the board, and considers 

the area between that function and the x-axis (see Figure 14). 

 

Figure 14: Karl's introduction to FTC I proof 
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He says, “could we agree that, if ℎ is small enough, then 𝐴(𝑥 + ℎ) − 𝐴(𝑥) = ℎ𝑓(𝑥)? Because I 

would like to divide by ℎ.”  He then paused and asked if there were any questions.  A female 

student asked why he wanted to divide by ℎ, and Karl explained that if he could divide by h, he 

would have 
𝐴(𝑥+ℎ)−𝐴(𝑥)

ℎ
≈ 𝑓(𝑥).  He wrote this on the board, and had students consider the limit 

of both sides as h goes to zero, to “get rid of the wavy equals.”  After writing that, he asked 

students, “What does it take to be a derivative?”  and helped them recall the limit definition of a 

derivative.  Karl then put Figure 15 on the board, with a box around it, saying that he did not 

want to use prime notation. 

 

Figure 15: Not using “prime” notation 

 

He pointed at his original picture of 𝑓(𝑡) = 𝑡 + 3 (Figure 12) and then his second picture 

(Figure 14) and explained out that both functions were continuous, connecting that idea to what 

students had done earlier with the mean value theorem and needing functions to be continuous.  

This process of introducing the area function, calculating areas, and leading up to the FTC took 

26 minutes.  At 9:34 he wrote FTC (part I) on the board (see Figure 16). 

 

Figure 16: Karl's board for FTC I 
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Then he told students, “it’s the thing in the little box over there [Figure 13] that’s used the most.  

He then gave students three problems to try (see Figure 17).   

 

Figure 17: Karl's first three FTC I problems 

 

He wrote the answers to the first two problems on the board, and tied the third one back 

to a prior student question about opposites.  This took five minutes.  At 9:39, he wrote another 

function on the board, 𝑦(𝑥) = ∫ 𝑡
𝑥3

0
𝑑𝑡 on the board and drew a picture of the triangle formed by 

that function (see Figure 18). 

 

Figure 18: Karl's introduction to chain rule for FTC I 

 

He asked students to find the derivative of 𝑦(𝑥) by finding the area of the triangle in 

terms of x and then taking the derivative of the area function.  He cautioned students not to just 

“plop” in an integrand for the derivative.  He had students consider 
𝑑

𝑑𝑥
∫ 𝑡

𝑥3

0
𝑑𝑡, and solved this 



 

 123 

using the chain rule, pointing out that they were looking for the derivative with regard to 𝑥, not 

𝑥3. One student commented “that’s easier,” to which Karl responded, “yes, if I use the chain 

rule.”  

At 9:45, he began instruction on the second FTC.  He wrote “Find ∫ 𝑥
𝑏

𝑎
𝑑𝑥 on the board, 

and drew a picture (see Figure 19) to motivate the second FTC.   

 

Figure 19: Karl's beginning of FTC II 

 He then solved the problem using the area of a trapezoid, as shows in Figure 19) and 

then asked students to give him the “easiest” anti-derivative for x, while reminding students that 

there were a lot of anti-derivatives for x. Students offered
1

2
𝑥2.  He then said “you might wonder 

if I cooked this up so that it works” and drew a more generic function, 𝑓(𝑡) on the board. 

 
Figure 20: Karl's beginning of FTC II explanation 

 

He then defined an area function for 𝑓(𝑡) using the definite integral, pointing out that the 

previous theorem meant that the derivative of the area function was easy to identify as 𝑓(𝑥). He 

reminded students that the area function was an anti-derivative of 𝑓 on the interval [𝑎, 𝑏] and that 

they could get another anti-derivative by adding a constant, 𝐹(𝑥) = 𝐴(𝑥) + 𝐶.  He then wrote a 
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very basic argument for the second FTC on the board, as Figure 21. 

 

Figure 21: Karl's justification for FTC II 

  

While writing on the board, Karl verbally pointed out that 𝐴(𝑎) equaled zero.  The process of 

finding the area of the trapezoid and leading up to FTC II took 13 minutes.  At 9:58, he 

acknowledged that he was running out of time, wrote the second fundamental theorem of 

calculus on the board (see Figure 22), and released students from the class. 

 

Figure 22: Karl's FTC II 

 

After students left the classroom, he took pictures of the board and left.  

Observation day 2.  Similar to the first day, Karl displayed the textbook book or problems on the 

overhead as students were walking in.  To begin this class, he wrote “5.3, continued” on the 

board.  He solved two area problems on the board. A student asked a question about the second 

one (see Figure 23), and he drew a picture to demonstrate the area. 
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Figure 23: Second area problem from Karl, day 2 

  

After calculating the area from the picture, he pointed out that he hadn’t used the FTC at all in 

that problem, and solved it a second way using the FTC.  Students were more vocal on this day 

than the previous day, and asked questions about computations as Karl worked through these 

problems.  In this lesson, Karl demonstrated a total of 12 problems, all of which were from the 

textbook that was being projected on the overhead.  As he went through the problems, Karl 

pointed out prior mathematical topics that students should recall (e.g., properties of logs, 

integrals, and trig functions). For most of definite integral problems 3 to 12, Karl set up the anti-

derivative but did not compute a final answer.  For the 7
th

 problem, a student asked a question 

about inverse sine that prompted Karl to get out his graphing calculator and use the overhead to 

show the graph of the function to the class. 

 On the next problem, Karl solved the problem on the board, and his solution had a 

common mistake (that he seemed to notice).  He asked students “Am I OK here?” and waited for 

them to notice that a minus sign should be a plus sign.  For problem 10, Karl drew a graph of 

𝑦 = 6 cos 𝑥 on the board and spoke about net area compared to actual area (see Figure 24).   
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Figure 24: Karl's example to demonstrate net area 

 

Karl spent time with problem 10, discussing why the definite integral and the area were not quite 

the same thing, and defining net area compared with actual area.  He also used this problem to 

give an example of different ways to set up the definite integral.  He set up four more problems, 

leaving the last problem set up for students as a “suggested problem.” 

Resources. 

There were four main resources that I observed Karl using during class: his notes, the textbook, a 

graphing calculator, and student feedback. During the first day, he did not use his textbook or a 

graphing calculator, but relied on his notes and student feedback.  Karl watched his students 

while he was teaching, often pausing to look at them before moving on, and sometimes waiting 

for a verbal response.  On the second day, Karl used textbook as a bank of problems, and the 

graphing calculator for displaying a function and for computing.  He also used student feedback, 

similar to the first day. Other resources that Karl used were chalk, the chalkboard, and a 

document projector.   

Corroboration. 

On the survey, I asked participants if there was anything else that they felt was relevant to 

teaching the FTC.  Karl wrote, “The more that you can appeal to student knowledge of common 

geometric area formulas and other usual student knowledge, the better.”  I saw this in how Karl 
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approached both parts of the FTC.  He drew linear functions that allowed for quick calculations 

of the area between the line and the x-axis, based on triangles, squares, and trapezoids.  I also 

asked participants on the survey to write anything else about their background that they felt was 

relevant to their teaching of the FTC (Question 33).  Karl wrote about how he tries to support 

students in his class:  

I taught high school for 6 years and watched students struggle with algebra.  I see 

some of those same struggles among my calculus students.  While some of them 

should never have had a respectable grade in an algebra class recorded on any 

transcript for them, the fact remains that they are now in my class, and I try to 

support them as much as is practical.  When I _know_ that something is going to 

cause trouble for students weak in algebra, I point that out explicitly and try to 

address common errors. (Karl, survey) 

I saw this attention to students during my observations of him when he answered every student 

question, and waited for students to find a common error that he made in a calculation.  He 

addressed an area that he knew was going to cause trouble in the beginning of the first day, 

although I didn’t realize it until I interviewed him. 

During each interview, I asked instructors how they chose the examples they used during 

the lesson.  For Karl, I was able to ask about specific examples.  I asked him about his first 

example, when he changed 𝑓(𝑥) = 𝑥 + 3 to 𝑓(𝑡) = 𝑡 + 3.  He said the change from x to t was 

deliberate: “I know I wanted to hit the idea of why we use the t versus the x.  For the limit of 

integration it has to be x.  It’s going to be x, so we need some other variable” (Karl, 190-191).  In 

other words, he deliberately introduced the function with x, and then erased it and changed it to t 

as an indication to students that the limit of integration is not the same as the variable in the 

integrand.   

I asked Karl about the first three examples that he put on the board (Figure 17) and he 

explained why he chose them in that order: “That’s actually why I started with zero [in the first 

example] and then I backed up to negative one. Because I want them to see that the initial point 
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doesn’t matter” (Karl, 123-124).  He was able to tell me that those three examples were chosen 

in order to help students become aware that the initial point of integration doesn’t matter for 

finding a derivative.   

I also asked Karl about an interaction with a student that said something about 

“opposites.” He explained:  

Yeah. And she didn’t mean opposites. And I was trying to correct her. She 

meant inverses there. But it’s a theoretical idea. She does get it, if you are 

careful with the language. ‘Okay, no. Three is the opposite of negative 

three. There’s where we use opposites. But differentiation and integration 

are not… we don’t want to say they’re opposites as much as they’re 

inverses’. So I was trying to correct her there and she’ll be okay with that. 

(Karl, 261-265) 

During my observation of this interaction, Karl did not directly correct the student, and never 

told her that she was wrong or that her language was inaccurate.  However, during class he 

referred to this interaction when talking about his third example, and pointed out that switching 

the limits of integration yielded the opposite (he emphasized this) value. This exchange indicated 

that Karl paid attention to students during class and that he knew his students. He cared for what 

they were learning and understood common errors.  He used non-verbal cues from students 

during his teaching as well, which I observed and he expanded on, saying:  “They’re at a point 

now where nobody who’s left is sitting there smiling and nodding and not understanding” (Karl, 

525-526).  Karl watched his students during his teaching, often pausing to look at them before 

moving on, and sometimes waiting for a verbal response.   

Given that the interview and one of the observations happened on the same day, the fact 

that what Karl said he did and what he actually did were closely aligned may not be surprising.  

The advantage to interviewing Karl immediately after an observation was not corroboration of 

what he said and what he did, but rather that the timing of the interview allowed me to ask him 

details about what I saw during class.  Karl’s observation offered insight into why he used 
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particular resources and why he chose particular examples to highlight.  Overall, the two 

observations confirmed the resources that instructors used and confirmed their care for their 

students. 

Summary 

All instructors used their textbooks to some degree and were familiar with its notation. 

Other resources that instructors used included graphing technologies such as calculators, Maple, 

Wolfram Alpha, and Desmos. They used these technologies to display functions and to perform 

complicated calculations. The ways that instructors described the FTC related only to whether or 

not they used their calculator to display functions when teaching the FTC. The intangible 

resources that instructors used included their background, requirements of their institution, and 

cues from their students. Instructors described the way in which those resources impacted their 

teaching. The reasons that instructors gave for using the resources in the way that they did was 

primarily out of concern for students. I offer some interpretations of these findings in the next 

chapter. 
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Chapter 5: Discussion 

This mixed methods study examined first semester calculus instructors at Michigan Two-

Year colleges. I investigated what resources instructors use, how they use them, and why they 

use them. In particular, I focused on the fundamental theorem of calculus (FTC) and the 

resources that are used or not used when teaching and planning this important theorem. In order 

to answer these questions, I sent a survey to all 136 Michigan two-year college instructors who 

taught calculus in the 2015-2016 school year. Of the 50 instructors who participated in the 

survey, I interviewed 14 of them in depth. Of those 14, I observed two instructors while they 

were teaching the FTC. I begin this chapter with a review of my research questions and a 

summary of the findings from all three data sources that answer those questions. I then explore 

interpretations for those findings. 

Research Questions 

1) What resources do two-year college calculus instructors use to assist in their planning and 

teaching lessons in FTC?  

When teaching FTC, instructors primarily used the blackboard or whiteboard and 

graphing technology. A slight majority of instructors surveyed preferred to teach FTC without 

added technologies. Instructors said they primarily used their textbook to assign homework 

(planning), although two interviewed instructors created their own homework specifically for the 

FTC. Instructors said they also relied on their background and experience when planning how to 

present the FTC to their students.  Interactions with students guided some of the teaching of the 

FTC. 
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2) How do two-year college calculus instructors use their resources to assist in their 

planning and teaching lessons in FTC? 

The textbook was used primarily during planning the overall course and in order to assign 

homework. Instructors paid attention to the notation in their textbook, and noted when their 

notation differed. Instructors’ background and experience did not seem to influence the types of 

resources they used, but did influence how they used them. The FTC was primarily presented 

with no more sophisticated technology than a graphing calculator and PowerPoint slides.  

3) Why do two-year college calculus instructors use their resources in the ways that they do 

when planning and teaching lessons in the FTC? 

The most common reason (41%) instructors gave for using (or not using) their resources 

in a variety of ways had to do with concern for students. The second most common reason (24%) 

instructors gave for using or not using resources was because of personal preferences. The third 

and fourth most common reasons for resource use were a concern for accurate mathematics 

(18%) followed by requirements of the institution (16%). 

This information about what, how, and why, while important, fell short in describing and 

explaining how instructors used of resources when teaching the FTC. While investigating the 

first three research questions, a pattern emerged about how instructors discussed their 

conceptions of the FTC which led to a fourth research question: 

4) How do these teachers discuss the FTC?  What are their conceptions of this theorem? 

Most instructors in this study discussed the FTC in ways that matched the two parts of the 

theorem, each being considered a theorem on its own.  To these instructors, the FTC is either a 

theorem about the inverse relationship between integration and differentiation, or it is a theorem 

that allows the calculation of a definite integral by taking an anti-derivative, or it is both of those 
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things, but not at the same time.  Rarely did instructors connect these two theorems in any 

conceptual way.  

The findings from this dissertation connect and expand on scholarship on calculus, two-

year colleges, instructors’ use of resources, and the FTC by investigating the resources used by 

two-year college instructors when they plan and teach this important theorem. I investigated 

what resources are used, how they are used, and why they are used in that way.  Examining the 

resources used by two-year college instructors to plan and teach the FTC gave me an in-depth 

look at an important topic in a mathematics course that many students do not successfully 

complete.  In this chapter I examine the findings through the lens of instrumental genesis.   

Instrumental Genesis  

In this study, I did not look at resources in isolation.  I considered how resources were 

used and why instructors used their resources in the way that they did, in particular when they 

taught the FTC.  In the course of answering questions about how and why they used various 

resources, instructors indicated various ways that resources shaped their teaching.  This dual 

understanding of how instructors use resources and how resources affect instructors is articulated 

by the conceptual framework of instrumental genesis (Gueudet & Trouche 2009; Rabardel & 

Bourmaud, 2003). In the instrumental genesis framework, what I call a resource is called an 

artifact, and the combination of the resource (artifact) and its scheme of utilization is considered 

a document: 

Instrumental geneses have a dual nature. On one hand, the subject guides 

the way the artifact is used and, in a sense, shapes the artifact: this process 

is called instrumentalization. On the other hand, the affordances and 

constraints of the artifact influence the subject’s activity: this process is 

called instrumentation. (Gueudet & Trouche, 2009, p. 204) 
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In other words, the process of instructors using their resources is instrumentalization, and the 

process by which the resources influence the instructor is called instrumentation.  One important 

component in this framework is time.  The use of resources and their effect on planning and 

instruction is not static.  Resource use may moderate instruction, instruction in turn may 

influence resource use, which may change the instruction yet again.  For example, the 

background and experience of an instructor may influence how a lesson is taught, which in turn 

contributes to that instructor’s background, which then may influence the instruction of lessons 

differently. Instructors in this study used their resources in a variety of ways, and the use of those 

resources impacted their teaching.    

Instrumental genesis has its roots in cultural historical activity theory (CHAT). CHAT 

draws on work from Vygotsky and Leont’ev, and considers both an activity and the cultural 

historical background of both humans and objects (Engeström, Miettinen, & Punamäki,1999; 

Engeström, 2001) over time. In the case of this dissertation, the activities being investigated are 

the planning and teaching of the FTC.  

Using the lens of instrumental genesis requires that resources and their use be considered 

together, over time. In the next section, I discuss seven combinations of resources and their uses 

that came from the findings of this dissertation; 1) textbook and planning the semester, 

2)textbook and planning a lesson, 3) textbook and notation, 4) textbook and assigning 

homework, 5) background and planning, 6) student feedback and teaching, and 7) graphing 

technologies and teaching.  Each of these combinations reflects the instrumentalization of these 

resources; how they were used by instructors.  For each combination I point out the possible 

instrumentation process that may occur from using the resource in that particular way, 

particularly with regard to the planning and teaching the FTC. 
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Textbook and planning the semester  

Instructors indicated that the textbook and the semester schedule were closely entwined.  

All interviewed instructors said that they spend no more than two class hours (one or two days) 

on teaching the FTC, and all but one indicated that they use their textbook in some way to plan 

the semester.  I examined the table of contents for every textbook that participants said they used 

to teach the FTC and noticed that almost all of them have one section of one chapter devoted to 

the FTC.
17

 In addition, all the textbooks used by the participants presented the FTC after 

differentiation was completed and within the first chapter of integration.   

Prior research indicates that students have difficulty understanding the FTC (Bajracharya, 

& J. Thompson, 2014; Schnepp & Nemirovsky, 2001; P. Thompson, 1994), and that one way to 

improve student understanding of the FTC is to introduce the topic early in the course (P. 

Thompson, Byerley, & Hatfield, 2013), with the ideas of rate of change (differentiation) and 

accumulation (integration) introduced together.  All instructors in this study indicated some level 

of comfort with changing the order of topics in the textbook, yet none of them indicated that they 

introduced integration and differentiation together. If all the textbooks available to instructors 

devote only a small portion of their text to the FTC, and none of them introduce the concepts of 

accumulation and rate of change together, this may influence how instructors introduce these 

topics.  Thus, the textbook may be a resource that inhibits a richer teaching of the FTC.   

Textbook and planning a lesson 

Nine of the 14 instructors interviewed explained that they read the textbook before 

planning a lesson.  The textbooks that these instructors used generally presented the FTC in two 

distinct parts, which matches how instructors talked about the FTC.  When instructors discussed 

                                                 
17

 One instructor used a textbook by Hughes and Hallett (2012), which was the only textbook to have the FTC in 

two sections.   
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the FTC with me, they considered the two theorems to be about the inverse roles of integration 

and differentiation, or a way to evaluate a definite integral, or both, but only Ian linked the ideas 

present in both theorems when discussing what he wanted students to understand 

I think the main thing I want them to walk away with is just that there is a 

fundamental relationship between the instantaneous rate of change of a 

quantity and the area under a curve. Not of that quantity, but of its 

derivative. They might forget that. They might forget that little detail two 

years from now or whatever, that it’s not the area under the curve and the 

rate of change of the same curve. They’ll probably forget that. But I want 

them to remember that there is a fundamental relationship between 

instantaneous rate of change and accumulation. (Ian, 682-687) 

 

In other words, Ian was very clear that the FTC was more than the area under a curve, more than 

evaluating a definite integral, and more than the inverse relationship between integration and 

differentiation.   

 Instructors did not say that they linked their conceptions of the FTC with the way that the 

theorems were presented in the textbook; it is more likely that the textbook authors present the 

theorems that way because the FTC is commonly understood to be two theorems.  However, 

textbooks and instructors are both presenting the FTC as two separate theorems that may not be 

conceptually linked.  In my two observations, the link between the first and second FTC was in 

one small portion of the proof of the second FTC.  The conceptual link between the theorems 

was not developed, and it was not in the textbooks that the instructors used, either.   

The textbook was a common resource that instructors used to plan a lesson, and this is 

part of the instrumentalization of the textbook.  However, the instrumentation process, in this 

case, is unclear.  The textbook was not the only resource used for planning a lesson, and not even 

the primary resource in some cases. Instructors also relied on their background knowledge, 

experience teaching, worksheets and notes from past years, etc.  Marcus in particular avoided his 
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textbook when teaching the FTC.  Thus, the influence of the textbook for planning an individual 

lesson is unclear and may vary by content.  

Textbook and assigning homework 

All instructors used their textbooks in some way as a bank of homework problems.  Some 

instructors used the on-line homework that is linked to their textbook, some required paper and 

pencil homework from the textbook, and some did both.  Although instructors indicated that they 

chose homework problems carefully, using the textbook as a bank of problems may impact the 

timing of when the FTC is taught, due to the structure of mathematics textbooks.   

There is a perception that mathematics builds on prior knowledge and that it is organized 

hierarchically.  Thus, materials in later chapters may draw on material from earlier chapters. All 

the textbooks that instructors used introduced rates of change and derivatives before introducing 

accumulation and integration. There may not be a good way to choose homework from textbooks 

that reflect both rate of change and accumulation, at a level that students can understand without 

significant prior calculus background. In other words, if derivatives are covered in chapters two 

and three, and the FTC is introduced in chapter four, instructors may have difficulty finding 

appropriate homework problems within the textbook for a concept from chapter four that don’t 

rely on the concepts of chapters two and three.   

However, finding appropriate homework did not discourage instructors from rearranging 

other textbook sections when they chose.  Most of the survey participants and all of the 

interviewed instructors felt comfortable changing the order of topics in the textbook.  Yet despite 

this comfort, changes to the textbook order generally involved putting one section later or (less 

often) pulling one section forward (see Appendix J for an example of how Leopold rearranged 

some of his textbook sections).  However, none of the instructors who rearranged their textbook 
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sections introduced the idea of integration and differentiation together, and none of them 

introduced the FTC toward the beginning of class, as Bressoud (2011) and P. Thompson (1994a) 

suggest. 

An instructor choosing to select homework from textbooks is another instrumentalization 

process embedded in using the textbook for planning a semester and using the textbook to plan a 

lesson. However, the instrumentation process involved in using the textbook to select homework 

is not as clear.  It is possible that using the textbook as a bank of problems affects the timing of 

when the FTC is taught, but there was no evidence for or against such possibility in the findings.  

None of the instructors in this study indicated that they taught the FTC in the first few weeks of 

the semester, rather than in the last few weeks when it is usually taught.  It is possible that a view 

of the textbook as a source for homework discouraged instructors from such a change because 

problems in the homework sections typically build on previous sections; but it also possible that 

instructors simply did not consider the possibility of teaching the FTC towards the beginning of 

the semester. 

Textbook and notation 

 Instructors in this study indicated that following the symbolic notation in the textbooks 

was important to them. Mathematical notation can pose particular challenges for students 

(MacGregor & Stacey, 1997, Rubenstein & D. Thompson, 2001), and the level of complexity of 

notation in calculus is high. For example, one of the FTC theorems refers to the derivative of an 

integral function, which is expressed with two different notations:  

𝑑

𝑑𝑥
(∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎
)        (1)  

𝐹′(𝑥) when 𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎
       (2) 
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These two notations offer different advantages, although their meaning is the same.  Expression 

(1) can be used to emphasize that the derivative is to be taken with respect to x (rather than t, for 

example).  Expression (2) can be used to emphasize that a definite integral is a function, which 

can be conceptually difficult for students. The textbooks that instructors use may use either (or 

both) of these notations.  Instructors in this study found it important to know what the textbook 

notation was, independently from what they used during instruction.  When instructors diverged 

from the textbooks notation, they signaled the change to students, alerting them of the difference 

and asking them to be cautious (e.g., Harold).  Instructors wanted to be familiar enough with the 

notation in order to explain to students when and if their notation was different.  This is one way 

that the instrumentation of the textbook could be seen.  Instructors indicated that they paid 

attention to what the textbook was doing for the sake of their students, and because of this 

attention, the notation within the textbook had an impact on their planning and teaching.  

Background and planning 

In this dissertation I examined the resource of instructor background in terms of their 

experiences teaching and learning.  The intangible resource of instructor background is very 

different from a tangible resource such as the textbook.  The textbook mediates instruction, and 

instruction mediates the use of the textbook, but the textbook itself remains unchanged.  While 

the use of a textbook may change from day to day, the textbook itself does not change. However, 

the background of instructors is dynamic.  Any attempt at understanding an instructors’ 

background as a resource must necessarily come with the understanding that background is not a 

static resource and only represents a snapshot in the background of instructors. 

Instructors’ past experiences teaching and learning mathematics contributed to how they 

planned a lesson. On one hand, an instructor’s past negative experiences could be offered as a 
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reason for not doing something, (e.g., Karl does not require students to learn the FTC proofs), 

whereas on the other hand a past experience might have suggested a negative impact of a 

practice (e.g., Philip’s past experience led him to avoid technologies when possible). Experiences 

as a student are, for these instructors, in the past; it is the memories of these experiences that 

shape planning.   

In this study instructors’ teaching experiences were more dynamic resources than their 

experiences as students.  Based on prior semesters teaching, instructors planned things like how 

and which examples to present during class, from the problems that are selected to be solved to 

the notation that is used.  In this way, the instrumentation is visible in the way that experience 

shapes teaching.  The instrumentalization is clear here as well.  Without prior experience, 

instructors can’t learn that a certain sequence or a specific notation (e.g., f(t) instead of f(x) will 

work .  The act of teaching contributes to the resource of experience.  The resource of instructor 

background shows the cyclical nature of the instrumentation and instrumentalization process.  

Experience contributes to planning and teaching, which in turn contributes to experience.   

Student feedback and teaching a lesson 

Students impacted teaching and were, presumably, impacted by teaching.  While student 

feedback as a resource may be incorporated into an instructor’s background experiences, I chose 

to classify it as a separate resource, because it is not solely dependent on the instructor.  

Instructors respond to questions from students as well as looks of confusion, and adapt their 

teaching accordingly.  The instrumentation of student feedback is immediately apparent when 

observing classes.  Instructors paid attention to students, noticed if they looked confused, and 

called them by name.  Instructors answered all questions from students, and gave them 
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opportunities to ask questions. Instructors changed the course of their plans based on a student’s 

confusion in the first half of the lesson.  

Student feedback clearly impacts instruction, yet the instrumentalization of student 

feedback is more subtle. Although student feedback is a resource that depends on students, the 

activity of teaching influences student feedback.  Students are more likely to ask questions when 

an instructor gives them time and space to ask questions.  Instructors can elicit student feedback 

by calling on them by name as the instructors in this study did.  They can also suppress student 

feedback by ignoring student questions or not giving appropriate “wait time” for responses to 

questions directed toward students (Larson & Lovelace, 2013; Wagner & Herbel-Eisenmann, 

2008).  Similar to instructor background, student feedback is a cyclical resource.  Student 

feedback can immediately impact instruction (instrumentation), and the instructors response to 

feedback can, in turn, influence student feedback (instrumentalization). Student feedback is an 

example of a dynamic resource that illustrates the dual nature of resource use. 

Graphing technologies and teaching the FTC 

Unlike textbooks, not all instructors used graphing technologies in order to teach first 

semester calculus.  Within this data set, about half of the instructors used graphing technologies, 

and the way that they used them varied.  As a material resource, graphing technologies are 

significantly newer than textbooks, and there can be a learning curve where the focus is more on 

the resource than the mathematics available with the resource.  Instructors who finished their 

education before 1985 were not likely to have access to these technologies in their own 

schooling, which can make the learning curve for teaching even steeper.  Yet teaching the FTC 

may seem like an ideal place to introduce graphing technologies.  Technologies can quickly and 

accurately display a great variety of functions, as well as visually compare an accumulation 
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function and a rate of change.  In addition to visually displaying mathematics functions, 

technologies can remove the burden of onerous computations for many types of calculus 

problems.  This allows instructors and students to focus on conceptual understanding of 

important theorems such as the FTC.  However, over-reliance on graphing technologies can 

hinder an instinctive understanding of some of the most common parent functions as well as 

procedural fluency.  The tension between conceptual understanding and procedural fluency was 

mentioned by instructors in this study, and this may be one explanation why the technologies are 

inconsistently used.  

These seven combinations of resources and their uses illustrate the instrumentation and 

instrumentalization of resources for planning and teaching. In the next section I discuss the 

reasons that instructors gave for why they used resources and how the context of two-year 

colleges may contribute to those reasons. 

Two-Year College Context 

All instructors in this study taught at Michigan two-year colleges.  There are two aspects 

of this context that may be relevant to the findings from this study. First, the status of calculus at 

two-year colleges allowed instructors some autonomy over the structure of their calculus 

courses, and second, the primary mission of two-year colleges is teaching, often leading to high 

teaching loads by instructors.   

Status of calculus.  Calculus at two-year colleges is often the pinnacle of the sequence of math 

courses offered at the college (other courses include differential equations or linear algebra), and, 

therefore, desirable to teach. Instructors may prefer to teach calculus over other courses, and 

there may be a certain status to being a calculus instructor. There is evidence that two-year 

college instructors are much more interested in teaching calculus than instructors at other post-
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secondary institutions (Bressoud, 2012).  At two-year colleges, calculus is an upper level course, 

and there are usually fewer sections of calculus offered than sections of lower level mathematics.  

The prestige of teaching an upper level course with fewer sections may offer instructors some 

autonomy over how they use their resources to teach the FTC.  In this study, instructors felt 

comfortable changing the order of topics in their textbooks (such as in Appendix J).  The most 

common reasons instructors gave for using (or not using) their resources in a variety of ways had 

to do with concern for students (41%). Similar to other research on community college 

instructors (Grubb, 2002), the instructors in this study demonstrated a concern for student well-

being and understanding.  Because instructors have some autonomy over the resources that they 

use, it makes sense that the reasons they gave for choosing resources are primarily out of regard 

for students. Teaching calculus at the two-year college context means that instructors who are 

concerned for their students are able to make resource choices based on those concerns.  Class 

sizes are limited, and instructors may know many students personally. 

Their choice of resources was often based on how they felt it would help their students.  

This didn’t always lead to the same use of resources, particularly in the case of technologies.  

Some instructors felt that graphing technologies were critical to enhance student understanding 

of calculus concepts, and incorporated this into their classroom.  Other instructors felt that 

technologies inhibited students’ ability to think mathematically, and restricted their use.  

Regardless of how they used the resource, instructors indicated much of their reasoning as a 

concern for students.   

The status of calculus at two-year colleges may also explain why the third most common 

reason instructors gave for using resources was math (18%). Calculus is an upper-level 

mathematics course at a two-year college, and may be the last time that instructors have a chance 
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to impart mathematical wisdom to students.  This may explain why some of instructors’ choices 

of resource use were based on their concern for mathematics.   

The second most common reason instructors gave for using resources was personal 

preference (24%).  In order to indulge personal preference, some autonomy in resource use is 

required, but the figure of 24% may not be explained simply by autonomy.  

Focus on Teaching.  One of the primary missions of two-year colleges is teaching (Cohen & 

Brawer, 2003).  This is reflected in the teaching loads of full-time instructors, who typically 

teach fifteen credit hours each semester.  Part-time two-year college instructors have limited 

teaching loads at an institution, but they may be teaching at multiple institutions.  Some 

instructors in this study indicated that they chose ways of assigning homework (e.g., online or 

paper and pencil) based on their available time for grading.  Instructors with high teaching loads 

may have less time to plan instruction and less inclination to experiment with a variety of 

resources. High teaching loads may make it more enticing for instructors to rely on outside 

resources to ease the work of planning instruction. Because course (re)design is time consuming 

and complex, it is understandable that instructors may prefer to accept the order provided in their 

textbooks: differentiation first followed by integration with one section of one chapter focused 

on the FTC. It makes sense that in a context of a heavy teaching load, personal preference may 

drive some of the instructors’ choice of resources.  

Limitations  

There are four main limitations in the study.  First, the survey was e-mailed to all 

instructors who had taught first semester calculus in the 2015-2016 school year. However, many 

two-year college instructors are part time, and may only teach one semester, so some instructors 

may not have had access to their college e-mail at the time the survey was mailed. Question 9 on 
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the survey had ambiguous wording, and “examples from the textbook” could be interpreted as 

either the examples that the textbook used before the exercise problems, or examples that were 

used in class that were pulled from the exercise problems. 

Second, my background as a two-year college mathematics instructor may have 

influenced the way that instructors talked to me. They may have assumed that I understood much 

of the mathematics we discussed without careful explanation, so they may have displayed less 

knowledge about the FTC than they possess. In order to mitigate this, I asked for explanations 

often. Instructors may have assumed that our experiences in teaching mathematics at a two-year 

college were similar in terms of resources available. I asked instructors detailed questions about 

all resources, including ones such as the overhead projector and chalk. Some instructors were 

surprised that I had to mention those types of resources at all, but I did not list any resources that 

they did not mention. In this sense, my experience teaching may have had the advantage of 

allowing me to question instructors on resources that are common in mathematics classrooms. I 

also e-mailed each instructor in the interview with a summary of resources and how I understood 

them to explain the FTC (member checking). This e-mail allowed them an opportunity to correct 

and remove or add resources that we missed discussing in the interview and explain their 

thinking about the FTC further if needed. 

A third limitation is that I have never taught first semester calculus. This meant that 

writing the survey and interview questions were not based on experience. In order help ensure 

that I asked the right questions, I had my survey and interview questions reviewed by calculus 

instructors that I know in person. However, I still had a problem with the wording on Question 9 

in the survey. My lack of experience teaching first semester calculus worked to my advantage in 

having instructors explain how they taught the FTC. I had no frame of reference from having 
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taught it before for how it could be taught, or common student errors to watch for. Because of 

this, instructors may have explained their teaching techniques in more detail than they might 

have to someone with more experience. 

A final limitation is in terms of the data.  For my definition of resources, I used Adler’s 

(2000) framework for instructor resources.  I considered resources to be assets that impacted how 

an instructor planned and taught the FTC.  Tangible resources were fairly easy to identify, but 

intangible presented more of a challenge.  Because much of my data included instructors’ 

discussion of resources, some obvious resources were likely overlooked.  The resources 

mentioned in the findings section of this document include only those resources that were 

obvious enough to be observed, or resources that instructors were aware enough of to mention.  

Thus, some self-awareness on the part of instructors was expected, yet ubiquitous resources 

(such as electricity) tend to be assumed and not mentioned.  In addition , as Adler (2000) states, 

“Resources in school mathematics practice need to be seen to be used (visible) and seen through 

to illuminate mathematics (invisible)” (p. 214).  Resources that are invisible enough may not 

have been mentioned by instructors.  One common example was the use of instructor 

background.  For example, instructors would mention, in passing, that they taught a certain way 

because it was how they learned it.  But when asked how they go about planning and teaching 

the FTC, they would not mention thinking about their own background.  In order to limit this 

type of oversight in the data, I structured interview questions to include questions to trigger ideas 

of intangible resources.  At the beginning of the interview I deliberately mentioned “intangible” 

resources, and gave examples such as “conversations with colleagues” in order to trigger a 

thought of non-material resources on the part of the instructor.  When I asked, “How do you go 

about planning a lesson for this course?” I listened closely for any mention of intangible 
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resources.  As interviews progressed, I periodically summed up what the instructor was telling 

me, including as “resource” those items that instructors may not have mentioned explicitly.  This 

often included their background and student feedback.  Instructors would confirm that yes, these 

were resources.   
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Chapter 6: Conclusion and Implications 

 This mixed methods study investigated the resources that Michigan two-year college 

instructors use when they plan and teach the fundamental theorem of calculus.  The resources 

were considered in combination with their uses by instructors and the effect that they had on 

instructor teaching and planning.  In this dissertation I define resources as assets that instructors 

were able to draw on to help them plan and teach the FTC.  Resources were both tangible and 

intangible, and were identified as resources if they impacted planning or instruction.  This impact 

was described by instructors on their surveys and during their interviews, and seen by me during 

the observations.  An examination of all three data sets (surveys, interviews, and observations) 

yielded the identification of five common resources: textbooks, graphing technologies, instructor 

background, institutional requirements, and student feedback.  Textbooks were used by 

instructors to plan a semester and as a bank of problems.  Graphing technologies were used to 

illustrate functions and do calculations.  The instructors’ background impacted their planning, as 

did the requirements by the institution, and feedback from students impacted teaching.  This 

chapter explores each of these findings in terms of affordances and limitations for instruction, 

and implications for instructors, administrators, and researchers.  I conclude with directions for 

future research. 

Affordances and Limitations of Resources  

Each resource offered some affordances and limitations with its instrumentation and 

instrumentalization.  In the instrumentalization process, textbooks were often used as a source 

for problems to do during class and to give students for homework.  The trust placed in textbooks 
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to include problems that are appropriate for a first semester calculus class was not questioned by 

any of the instructors in this study.  Textbooks with appropriate problems made the work of 

teaching easier; instructors did not have to create problems appropriate to what was being taught.  

However, using the textbook as a bank of problems can also have limitations.  Mathematics 

textbook sections and chapters tend to build on each other. With all of the textbooks used by 

instructors in this study, the FTC was taught in one or two sections of one chapter, and only after 

a study of differentiation was concluded.  This meant that instructors who used the textbooks as a 

bank of problems might have difficulty choosing problems if they wished to introduce the FTC 

significantly earlier than it appears in the textbook.  As part of the instrumentation process, the 

textbook was often used to plan out the semester. None of the instructors from this study 

indicated that they introduced the FTC towards the beginning of a semester, and none of the 

instructors indicated that they spent more time on the FTC than they would normally spend on 

one section of the textbook.  While the textbook definitely offers advantages in terms of the 

potential organization of a course and a bank of problems to be drawn on, the instrumentation of 

the textbook may also limit how calculus is taught.  It may not occur to instructors to introduce 

the FTC before finishing differentiation; yet some research suggests doing just that in order to 

facilitate a better understanding of the FTC and calculus over all (P. Thompson, Byerly, and 

Hatfield, 2013).  Because almost all calculus textbooks
18

 follow a similar formatting of 

derivatives before integration, it may not occur to instructors that they can change the order.   

The implication is that in the absence of knowledge of the research cited above or a significant 

change in the way textbooks are written, instructors are unlikely to offer any significant change 

                                                 
18

 I examined the table of contents for all the calculus textbooks listed by instructors on the survey, as well as 10 

different online calculus textbooks and 3 more calculus textbooks that were not used by any instructors in this data 

set.  Of those, only one textbook, Saxon Calculus (not used by any instructors in this study and marketed to 

homeschoolers), did not follow the typical calculus formatting.   
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in the way the FTC is handled.  In addition, choosing to use the textbook to plan a semester may 

mean having only one day to teach the FTC.   

Future research may consider the impact of the instrumentalization of the textbook on 

other aspects of teaching beyond scheduling a semester.  What is the level of impact of the 

textbook on the instruction of college level classes.  Instructors generally used problems from the 

textbook, but what about the exposition text?  Does a significant difference in the textbooks 

presentation of a topic (such as different proofs of the FTC) affect how instructors present that 

topic to classes?  

The second resource common to all data sets was graphing technologies.  Instructors 

approached graphing technologies in one of three ways: 1) avoiding them, 2) using them 

primarily for computation, or 3) using them for computation and the visual display of functions. 

A significant portion of the instructors who were surveyed or interviewed avoided graphing 

technologies and calculators.  The consequence of avoiding these technologies meant that 

instructors had to choose problems to demonstrate that could be displayed by hand and that were 

relatively quick to compute.  When students are primarily exposed to problems that have easy 

computations and simple fraction or integer answers, they may be reluctant to work on problems 

or accept answers that don’t conform to what they have seen in class.   One of the advantages to 

using graphing technologies is that it offers the students the opportunity for increased efficiency 

and conceptual exploration (Artigue, 2002; Dunham & Dick, 1994).  However, graphing 

technologies can also become a crutch to students, enabling them to get answers without 

understanding the underlying mathematical process (E. Brown, et al., 2007). 

Instructors who used graphing technologies to teach the FTC either used them primarily 

for computation (e.g., Philip who used the calculator to check his arithmetic) or for both 
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computation and to display functions. According to P. Thompson, Byerly, and Hatfield (2013), 

graphing technology (specifically Grapher 4.0, Avitzur, 2011) was necessary in order to have 

students understand the relationship between the accumulation function and the rate of change, 

and understanding that relationship was foundational to an understanding of the FTC.  Without 

this connection and with little technology used for teaching the FTC, students’ conceptual 

understanding of the FTC may be lacking.   

Some of the implications from these findings are that administrators, researchers, and 

textbook authors cannot assume that instructors are using the graphing technologies 

recommended or required by the institution or curriculum materials.  Even if a college requires 

the use of graphing technologies, instructors may struggle to implement them coherently into the 

classroom.  Future research could focus in on how technologies are used when teaching the FTC 

and the impact of those technologies on student learning, both conceptual and procedural. 

The third resource common to all data sets was instructors’ background.  The 

professional and educational background of instructors impacted how they planned and taught 

the FTC. An instructor’s personal and professional background, used in order to facilitate 

planning and teaching, can help instructors reflect on their teaching; what works and what 

doesn’t.  An instructor who has a strong background in business may have valuable insights to 

offer students.  However, by relying on their own background, instructors may misinterpret 

where students struggle, especially in their early teaching careers.  For example, an instructor 

who had no trouble understanding the FTC may not expect students to struggle with this 

theorem. The implications for instructors relying solely on their personal and professional 

background are that they may limit their effectiveness in teaching topics such as the FTC.   The 

instructors in this study did not always consider their personal backgrounds as a resource, and 
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only with careful questioning and reading of the data did this resource become visible.  Future 

research could consider numerous instructors’ backgrounds and examine whether similarities in 

backgrounds lead to similarities in teaching.   

The fourth resource found across all data sets that impacted instruction was the 

requirements of the institution where the instructor taught.  There were two primary requirements 

of institutions that impacted instruction.  The first was the course schedule.  The instructors in 

this sample, whether or not they were the head of the department, were required to abide by the 

contact hours set for the class as well as the times for the class to be held.  Most instructors did 

not get to choose whether a class was four or five credits, and how many days per week it was 

offered.  Some instructors who had two-hour blocks felt that this was ideal because it gave them 

time for an activity every day. Some instructors with two-hour blocks would have preferred to 

see students more often for less time, because they felt that students needed time to digest the 

information between classes.  In other words, there are advantages and disadvantages to various 

types of schedules.   

The second institutional requirement that impacted instruction was the requirement of 

curriculum materials for calculus classes.  Many institutions had a required textbook, and some 

had requirements for graphing calculators, online software, and common exams.  Instructors in 

this study used the material requirements of the institution, but often adapted them in ways that 

the institution may not have anticipated.  Although institutional requirements may mean that 

instructors have fewer decisions to make, those same requirements may also mean that 

instructors may miss some opportunities to have students explore new ways to view the FTC.   

Future research could include a comparison of institutional requirements among two-year 

colleges, and whether (and how) those requirements impact instruction.  Research into how 
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adopt or subvert the requirements of an institution should include the impact of those 

requirements (and how they are implemented) on students.  For scheduling, future research 

should compare advantages and disadvantages to various types of schedules for students, 

instructors, and institutions.  The implication for institutions is that instructors may have strong 

opinions about what is best for students, and it could be helpful to be transparent about the 

advantages and reasons for various types of schedules.  Michigan two-year colleges have a great 

deal of autonomy, and can choose what type of calculus schedule is offered as well as how many 

credit hours a calculus course requires.  Smaller institutions with one or two full-time instructors 

could involve them in the scheduling process.  Larger institutions may offer calculus with 

different types of schedules.  Researchers should consider that the schedule may impact how a 

topic is taught.  A topic that is taught for two hours on one day may not be taught the same way 

if it is taught for two days, one hour each.  Future research could explore the differences in these 

types of schedules, particularly around important topics such as the FTC.   

The last resource mentioned by instructors in all data sets was student feedback.  This 

resource is primarily used during instruction.  For example, a confused look from students may 

lead an instructor to re-explain a concept.  However, student feedback can also affect planning. A 

poor showing on an exam may lead an instructor to re-teach a topic.  In this study the FTC was 

taught near the end of a semester, which implies that instructors may not see much written 

feedback (in the form of quizzes or exams) from students about this topic.   If students are 

struggling with a topic in differentiation, instructors have multiple opportunities to address it, 

whether or not a student looks confused when the topic is introduced.  Yet instructors do not 

have as much opportunity to re-teach topics that come toward the end of a course.  This means 

that student feedback during class is especially important at this time.  Instructors may offer 
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more in-class activities as a way to explore student understanding.  Student feedback regarding 

the FTC can be invaluable in guiding instruction, particularly because it is taught at the end of a 

semester.  Future research could examine the impact of both verbal and non-verbal student 

feedback on instruction, and consider whether (or how) the timing of that feedback within a 

course may change how instructors take-up student feedback.  For example, do instructors pay 

more attention to student expressions of confusion at the beginning or end of a course?  How 

does the timing of when a topic is taught impact how instructors respond to student feedback?  

Overall, the findings from this study expand a body of research around calculus 

instruction.  The unique contribution of this study is its focus on the resources involved during 

the planning and teaching of one topic with one group of instructors.  Beyond the implications 

for instructors and researchers suggested by the resource use above, I offer some other 

implications for researchers, instructors, and the institution. 

Other implications 

It was not the intention of this study to focus on instructor understanding of the FTC, but 

rather the resources that were used by instructors to plan and teach the FTC.  Within the context 

of this study, I offered some findings about the ways instructors discussed the FTC, but this was 

not the focus of the study.  Instructors in this study generally discussed the FTC as either the 

inverse relationship between integration and differentiation, or the evaluation of a definite 

integral.  Only rarely did they connect these two ideas when talking with me.  This does not 

mean they do not make these connections, but does imply questions about their understanding 

and what they convey to students.  Future research should probe instructors’ understanding and 

how that understanding impacts instruction. 
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Findings from this study included the impacts that instructors’ use of resources had on 

their planning and teaching of the FTC.  However, I did not examine the impact of the use of 

these resources on student learning.  Future research should consider if and how the 

combinations of resources and their use affect student learning.   

Findings from this also study indicated a possible relationship between the way that 

instructors used graphing technologies and what they felt was the main purpose of the FTC for 

students.  Instructors who focused on the inverse relationship between differentiation and 

integration tended primarily use graphing technologies for computation.  Instructors who focused 

on the evaluation portion of the FTC tended to use the graphing capabilities as well as 

computational abilities of the technologies.  The conceptual idea of an inverse relationship is not 

easily demonstrated visually, yet P. Thompson, Byerly, and Hatfield (2013) imply that a visual 

understanding of this relationship is key to understanding the FTC, and demonstrate how it can 

be done.  Instructors may benefit from professional development around the idea of using 

graphing technologies to demonstrate this inverse relationship.  As more textbooks are developed 

on-line with interactive tools, this type of exploration could be built in to the textbook software. 

Some of the instructors in this study were given a course outline that included sections 

from the textbook that needed to be taught.  Institutions should consider that presenting a course 

outline with textbook sections may imply a recommendation for how long each topic should be 

taught.  If this is not a desired recommendation, institutions may consider presenting course 

outlines based on topics rather than textbook sections.  Institutions should also consider the 

resources that they require instructors to use may have unexpected impacts on their planning and 

instruction.   
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Finally, this study illustrates certain advantages to researching instruction at two-year 

colleges. The focus on teaching at two-year colleges also meant that instructors in this study 

were able to articulate to me what they were doing and why they were doing it. They were also 

interested in talking to me about their teaching. Over 1/3 of all two-year college instructors in 

Michigan who were contacted in the initial survey e-mail responded, and almost half of the 

survey respondents expressed an interest in being interviewed.  Mathematics instruction at two-

year colleges is under-researched (Mesa, Wladis & Watkins, 2014), which may be one of the 

reasons instructors were so willing to talk to me.  If researchers have a choice of institutional 

settings for their research, two-year colleges should be considered. 

Concluding implications 

By the time students reach calculus, they have probably been exposed to two other 

fundamental theorems.  The fundamental theorem of arithmetic can be explained in elementary 

school, but not proved until number theory.  The fundamental theorem of algebra can be 

understood in pre-calculus, but not proved without an understanding of complex analysis.  The 

fundamental theorem of calculus is first fundamental theorem that can be proved during the 

semester when it is taught.  Yet this theorem is more conceptually difficult to understand than the 

previous two “fundamental” theorems that students may have been exposed to.  Unfortunately, 

instructors in this study did not spend very much time ensuring conceptual understanding.  Many 

students already struggle with math, and if mathematicians call something fundamental but don’t 

treat it as fundamental, students may miss the key concepts embodied there. It may be wise to 

consider dramatically changing the way that the FTC is taught, and considering how the 

resources that instructors use can contribute to a possible perception that a “fundamental” 

theorem is not important.  Language matters, and the message being sent to students when they 
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are told something is fundamental, but it isn’t treated that way, does not cast a flattering light on 

the mathematics profession.   

This dissertation examined the resources that instructors used when planning and 

teaching the fundamental theorem of calculus.  I explained how instructors navigate (and 

sometimes subvert) an occasionally flawed set of resources, and why they use those resources in 

the way that they do.  Instructors are doing the best that they can, under often challenging 

circumstances.  They used their resources in different ways, and the resources they chose to use 

(and the way that they used them) impacted instruction.  Future research must consider both the 

instrumentation and the instrumentalization of resources.  This dissertation offers an example of 

how that can be done, around one important mathematical topic. 
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Appendices 

Appendix A: Survey 

 

Q1) Are you teaching Calculus I in the Winter, 2016? 

Yes  

No  

 

Q2) Did you teach Calculus I in Fall, 2015? 

Yes  

No  

 

COURSE INFORMATION 

 

Q3) The Calculus textbook I use is: 

a. A common textbook selected by the department  

b. A textbook I chose from an appointed list  

c. A textbook of my own choosing  

d.  Other (please specify) ______________________________________________ 

 

Q4) What textbook is used for your Calculus I course? Select from the list below or specify a 

different text if your book is not on the list. 

 

 Note the distinction between "Early Transcendentals" and standard editions. No distinction 

is made between single-variable and combined single- and multivariable volumes.  

1. Anton/Bivens/Davis – Calculus  

2. Anton/Bivens/Davis - Calculus: Early Transcendentals  

3. Blank/Krantz – Calculus  

4. Edwards/Penney - Calculus: Early Transcendentals  

5. Hass/Weir/Thomas - University Calculus  

6. Hass/Weir/Thomas - University Calculus: Alternate Edition  

7. Hass/Weir/Thomas - University Calculus: Elements with Early Transcendentals  

8. Hughes Hallett et al. - Calculus  

9. Larson/Edwards - Calculus  

10. Larson/Hostetler/Edwards - Calculus: Early Transcendentals  

11. Larson/Hostetler/Edwards - Essential Calculus  

12. Rogawski - Calculus  

13. Rogawski - Calculus: Early Transcendentals  

14. Salas/Hille/Etgen - Calculus  

15. Smith/Minton - Calculus  
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16. Smith/Minton - Calculus: Concepts and Connections  

17. Smith/Minton - Calculus: Early Transcendentals  

18. Stewart - Calculus  

19. Stewart - Calculus: Concepts and Contexts  

20. Stewart - Calculus: Early Transcendentals  

21. Stewart - Essential Calculus  

22. Stewart - Essential Calculus: Early Transcendentals  

23. Swokowski - Calculus  

24. Thomas/Weir/Hass/Giordano - Thomas' Calculus  

25. Thomas/Weir/Hass/Giordano - Thomas' Calculus: Early Transcendentals  

26. Varberg/Purcell/Rigdon - Calculus  

27. Varberg/Purcell/Rigdon - Calculus: Early Transcendentals  

28. Other (Please specify Title and Author(s))_______________________________ 

 

Q5) Including this semester, approximately how many semesters of first semester calculus have 

you taught using that book? 

 

 

 

 

Q6-9) The next four questions ask about your general use of your textbook 

 
1  

(Never)  
2 3  4  5  6 

7 

(Always) 
N/A  

(6) It is important to me to 

use the same formulas 

and symbols as my 

textbook (N/A means 

you do not use a 

textbook)  

        

(7) I am comfortable 

changing the order of 

topics in the textbook. 

(N/A means you do not 

use a textbook)  

        

(8) I assign homework 

from the textbook or 

software associated 

with the textbook (N/A 

means you do not 

assign homework)  

        

(9) I use examples from the 

textbook during class 

time (N/A means you 

do not use a textbook)  
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Q10) In addition to the textbook, what other resources (such as graphing calculators, computer 

software, other books, websites, etc) do you use when planning to teach a first semester 

calculus class? Please be specific. 

 

 

 

Q11) Does your department require students to purchase a common textbook for Calculus I? 

Yes  

No  

Unknown  

 

Q12) What are students required to purchase (textbook, software, graphing calculators, etc.) for 

your first semester calculus course? Please be specific. 

 

 

 

FUNDAMENTAL THEOREM OF CALCULUS 

Q13) When planning to teach the Fundamental Theorem of Calculus, how often do you refer to 

your textbook? 

Never  

Sometimes  

Always  

 

Q14-17) Please describe your general impressions of your textbook's treatment of the 

fundamental theorem of calculus. 

 
Positive 

(1) 
2 3 4 5 6 

Negative 

(7) 

(14) What is your general 

impression of your 

textbook's overall 

treatment of the 

Fundamental Theorem 

of Calculus? 

       

(15) What is your general 

impression of this 

textbook's explanation 

of the Fundamental 

Theorem of Calculus?  

       

(16) What is your general 

impression of this 

textbook's proof(s) of 

the Fundamental 

Theorem of Calculus? 

       

(17) What is your general        
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impression of this 

textbook’s problem sets 

relating to the 

Fundamental Theorem 

of Calculus?  

 

Q18) What technology do you use when teaching the Fundamental Theorem of Calculus? 

a. I do not use technology  

b. Graphing calculators that do not perform symbolic algebra  

c. Graphing calculators that perform symbolic algebra  

d.  Computer algebra system (Maple, Mathematica, MATLAB, etc)  

e.  Other (please describe) ____________________________________________ 

 

Q19) What technology are your students permitted to use when learning the Fundamental 

Theorem of Calculus? 

a. Technology not permitted.  

b. Graphing calculators that do not perform symbolic algebra  

c. Graphing calculators that perform symbolic algebra  

d. Computer algebra system (Maple, Mathematica, MATLAB, etc)  

e.  Other (please describe) ____________________________________________ 

 

Q20) What technology are your students required to use when learning the Fundamental 

Theorem of Calculus? 

a. Technology not required.  

b. Graphing calculators that do not perform symbolic algebra  

c. Graphing calculators that perform symbolic algebra  

d. Computer algebra system (Maple, Mathematica, MATLAB, etc)  

e. Other (please describe) ___________________________________________ 

 

Q21) In my experience, explaining the Fundamental Theorem of Calculus to students is easier 

without added technologies.  

(Strongly Disagree) 1  2 3 4 5  6  7 (Strongly Agree) 

 

 

 

The fundamental theorem of calculus is often given in two parts, but the order of those parts may 

vary. Two proofs of a portion of the fundamental theorem of calculus are given below. Please 

consider both of these and then answer the following questions. Note that option 1 uses the mean 

value theorem in the proof and option 2 uses the other ("first") fundamental theorem of calculus 

in the proof. (See Appendix B) 

 

Q22) Which proof do you prefer? 

Option 1 (uses the mean value theorem)  

Option 2 (uses the "first" fundamental theorem of calculus)  

Other (please describe) _______________________________________________ 
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Q23) Why do you prefer that proof? Specifically, what elements of that proof do you like? 

 

 

 

 

 

 

Q24) Please explain anything else you feel is relevant to teaching the Fundamental Theorem of 

Calculus 

 

 

 

DEMOGRAPHICS 

Q25) Your current position is best described as  

Full-time  

Part-time  

Other (describe) ________________________________________________ 

 

Q26) Gender 

Male  

Female  

 

Q27) Age 

20-29  

30-39  

40-49  

50-59  

60-69  

over 69  

 

Q28) What is your highest degree attained? 

PhD  

EdD  

Master's Degree  

Bachelor's Degree  

other (please describe) ________________________________________________ 

 

Q29) In what field is your highest degree? (check all that apply) 

Mathematics  

Mathematics Education  

Statistics  

Physics  

Engineering  

Other Field (please describe)_______________________________________________ 

 

Q30) Including this year, approximately how many semesters have you taught college calculus? 
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Q31) I consider myself a(n) __________________ teacher of calculus I: 

Beginner  

Novice  

Advanced  

Expert  

 

Q32) Why did you choose that category? 

 

 

 

 

Q33) Is there anything else about your background that you feel is relevant to your teaching of 

calculus?  

 

 

 

 

Q34) As part of this research, I will be interviewing community college teachers about their 

experiences teaching calculus and teaching the Fundamental Theorem of Calculus. Would 

you like to be considered for an interview? 

Yes (provide e-mail address) _______________________________________________ 

No  
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Appendix B: Proofs given to instructors for comparison

 

Figure 25: MVT Proof 
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Figure 26: I to II Proof 
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Appendix C: Interview Protocol 

Give consent form and describe the study in brief: “I am researching how you use 

various resources like textbooks and software when you plan and teach the Fundamental 

Theorem of Calculus. For the purposes of this interview, I define teaching as being in front of 

students, either during class time or during office hours. Planning refers to preparation for 

teaching, to get ready to be in front of students and lead class sessions as well as choosing 

homework. If you have any questions about the words I am using, please ask. Also, I would like 

to remind you that all questions are optional and that you can stop the interview at any time for 

any reason or for no reason at all. Do you have any questions?” 

 

Background questions 

1) What is your educational background? 

a. Degree? Institution? Year? 

2) How many years have you been teaching? 

a. At this location? 

b. Elsewhere? 

c. Any other subjects? 

3) Age, Gender, Race (optional) 

4) What sorts of training in teaching did you have prior to teaching? 

a. Teaching certification? 

5) Is there anything else about your background that you feel is relevant to your teaching? 

 

Interview questions (general teaching/planning): 

1) How do you go about planning a lesson for this course?  

a. What materials or resources (textbook, software, internet, other) do you use when 

planning lessons? 

b. What do you want a typical lesson of yours to look like? 

i. Describe the structure of a lesson 

c. How do you decide what examples to use during a lesson? 

d. How and when do you decide what to give as homework? 

 

2) <Textbook> is the textbook assigned to the class. On the survey you said that you 

<do/do not> use this textbook during your teaching? Please explain why. 

a. When do you bring the book to class (if at all)?  

b. When do you refer to the book for notation (depending on survey response)? 

c. Are there some times or topics when you use the book more or less?  

i. If so, Why? When? What topics? If not, why not? 

 

3) Per the survey, you said you use (do not use) <technology>. Please explain more about 

this.  

a. Why do you use/not use <technology>? 

b. How do you use <technology>?  

c. Give an example? 
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Interview questions (general FTC) 

4) How important is the FTC to calculus?  

a. Why? 

 

5) What are the advantages and disadvantages with <textbook from survey> for teaching 

FTC? 

 

6) What are the advantages and disadvantages with <technology from above> for teaching 

FTC? 

 

7) How do you introduce the FTC to your students? 

a. Approximately how many class periods do you spend on the FTC? 

b. Do you use <technology from above> when introducing the FTC? 

ii. How? 

 

8) How do you choose homework problems for FTC? 

 

Interview questions (Teaching FTC) 

 

9) After you first lesson on FTC, what is the main point that you want students to walk 

away with? 

a. What if anything do you do to make sure that students understand _____ 

(response to previous question) 

 

10) What do you think is important for students to know about the FTC? 

a. Why? 

 

11) What else is important about the FTC?  

a. If you asked a student about the FTC, what would you (ideally) want them to say? 

 

12) In which ways does <textbook> help students gain this understanding of the FTC?  

a. In what ways does <technology from above> help students gain this 

understanding of the FTC? 

b. What kinds of things do you do in class that the <textbook and technology> lacks 

to help students understand the FTC? 

 

13) How do you know that a student understands the FTC? 

 

Interview questions (Summary and hypothetical) 

 

14) If you money was no object, and you could have any resource, real or imagined, you 

wanted for teaching the FTC, what would you like?  

 

15) I have never taught first semester calculus, but I would like to. Imagine that I am a new 

calculus teacher in your institution and come to you for advice on teaching the FTC. 

What would you tell me? 
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a. What do I need to make sure students understand? 

b. How much time should I spend? 

c. How should I choose examples to present? 

d. How should I assign homework? 
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Appendix D: Institutional Schedule from George 

 

  

Figure 27: Sample Institutional Schedule 
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Appendix E: Sample worksheets from Marcus 

Marcus gives these worksheets to students when teaching the FTC 
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Figure 28: In class activity for FTC 



 

 171 
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Figure 29: Homework for FTC 
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Appendix F: Survey Participants  

Table 16: List of Survey Participants 

Participant Gender Status Age 

Highest 

Degree Subject 

Semester 

Calculus 

Teaching 

Experience 

Proof 

Preference Textbook 

1 F FT 60-69 Master's Mathematics 18 MVT 2 

2* F PT 60-69 Master's Engineering 50 FTC I 2 

3 
 

FT 60-69 Master's Mathematics 40 FTC I 2 

4* M PT 30-39 Master's Mathematics 1 FTC I 2 

5 
     

3 
 

2 

6 M FT 40-49 Master's Mathematics 24 MVT 4 

7* M FT 50-59 PhD Mathematics 65 MVT 7 

8* M FT 50-59 Master's Mathematics 63 FTC I 7 

9 M FT 40-49 Master's Mathematics 18 MVT 8 

10 M FT 40-49 Master's Mathematics 12 MVT 9 

11 M PT over 69 Master's Mathematics 3 MVT 9 

12* M FT 30-39 JD Law 12 MVT 9 

13 M FT 40-49 Master's Mathematics 32 MVT 9 

14 F PT 30-39 Master's Mathematics 1 FTC I 9 

15 M PT 30-39 Master's Mathematics 3 FTC I 9 

16* M FT 40-49 Bachelor's Mathematics 14 FTC I 9 

17 M FT 50-59 PhD Physics 36 FTC I 9 

18 F FT 30-39 Master's Mathematics 5 other 9 

19 M FT 40-49 PhD 
Higher 
Education 30 MVT 10 

20 M PT over 69 Master's Law 10 MVT 10 

21 M FT 40-49 Master's 
Math 
Education 12 MVT 10 

22 
     

25 
 

10 

23* M PT 40-49 Master's 
Math and 
Statistics 3 MVT 19 

24* M FT 29-30 Master's Mathematics 5 FTC I 19 

25 M FT 60-69 ABD 
Math 
Education 60 other 19 

26 
     

4 other 19 

27 F FT 30-39 Master's Mathematics 14 MVT 20 

28 F FT 40-49 Master's Mathematics 18 MVT 20 

29 M FT 60-69 Master's Mathematics 3 MVT 20 

30 F FT 30-39 Master's Mathematics 7 MVT 20 

31 M FT 40-49 Master's Mathematics 12 FTC I 20 

32 M PT 60-69 PhD Mathematics 2 FTC I 20 

33* M FT 50-59 Master's Mathematics 55 FTC I 20 

34 F FT 40-49 Master's Mathematics 10 FTC I 24 
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35 M FT 40-49 Master's Mathematics 40 MVT 25 

36** M FT 29-30 Master's Mathematics 8 FTC I 25 

37 M FT 40-49 Master's Mathematics 3 MVT 28 

38 F FT 60-69 Master's Mathematics 20 MVT 28 

39 M FT 30-39 Master's Mathematics 2 MVT 28 

40 M PT over 69 PhD Engineering 10 FTC I 28 

41* M FT 30-39 Master's Statistics 11 FTC I 28 

42 F FT 40-49 PhD Mathematics 12 FTC I 28 

43 M FT 40-49 Master's 
Math 
Education 24 FTC I 28 

44 M FT 50-59 Master's Mathematics 12 FTC I 28 

45** M FT 40-49 Master's Mathematics 25 FTC I 28 

46 M PT 50-59 Master's Engineering 1 FTC I 28 

47* M FT 60-69 Master's Mathematics 10 other 28 

48 
     

4 
 

28 

49 M PT 60-69 PhD Mathematics 3 
 

28 

50 
     

8 
 

28 

51 M FT 30-39 Master's Mathematics 0 
  52* M FT 50-59 Master's Mathematics 5 
  53 M FT 30-39 PhD Mathematics 

   54 M PT 40-49 Master's Mathematics 
   * indicates that the participant was interviewed 

** indicates that the participant was interviewed and observed 
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Appendix G: Survey Results  

Survey of Michigan Two-Year College Calculus I Teachers  

 

Q1) Are you teaching Calculus I in the Winter, 2016? 

Yes  35 

No   

 

Q2) Did you teach Calculus I in Fall, 2015? 

Yes 15 

No  

 

COURSE INFORMATION   

Q3) The Calculus textbook I use is: 

a. A common textbook selected by the department  41 

b. A textbook I chose from an appointed list  0 

c. A textbook of my own choosing  8 

d.  Other (please specify) __1 (self-written text)_______________________________ 

 

Q4) What textbook is used for your Calculus I course? Select from the list below or specify a 

different text if your book is not on the list. 

 

  Note the distinction between "Early Transcendentals" and standard editions. No distinction is 

made between single-variable and combined single- and multivariable volumes.   

2. Anton/Bivens/Davis - Calculus: Early Transcendentals  5 

4. Edwards/Penney - Calculus: Early Transcendentals 1  

7. Hass/Weir/Thomas - University Calculus: Elements with Early Transcendentals  3 

8. Hughes Hallett et al. - Calculus  1 

9. Larson/Edwards - Calculus  9 

10. Larson/Hostetler/Edwards - Calculus: Early Transcendentals  4 

19. Stewart - Calculus: Concepts and Contexts  4 

20. Stewart - Calculus: Early Transcendentals  7 

24. Thomas/Weir/Hass/Giordano - Thomas' Calculus  1 

25. Thomas/Weir/Hass/Giordano - Thomas' Calculus: Early Transcendentals  2 

28. Other (Please specify Title and Author(s))___13____________________________ 

 

Other:  Briggs – Calculus Early Transcendentals 1 

 Briggs/Cochran – Calculus Early Transcendentals 3 

 Briggs/Cochran/Gillett – Calculus for Scientists and Engineers 6 

 Munem – Calculus with Analytic Geometry 1 

 Self written - 1 

 Tan – Applied Calculus 1 
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Q5) Including this semester, approximately how many semesters of first semester calculus have 

you taught using that book? 

 

Average: 6.12, standard deviation (sample) 5.4, Standard deviation (population) 5.34.  

Range:  1-25, median is 4, mode is 3. 

 

 

Q6-9) The next four questions ask about your general use of your textbook 

 
1 

(Never)  
2 3  4  5  6 

7 
(Always

) 
N/A  

(6) It is important to me to use 
the same formulas and symbols 
as my textbook (N/A means you 

do not use a textbook)   

0 4 4 2 10 21 8  

(7) I am comfortable changing 
the order of topics in the 

textbook.  (N/A means you do 
not use a textbook)  

2 3 2 2 14 14 12  

(8) I assign homework from the 
textbook or software associated 
with the textbook (N/A means 
you do not assign homework)  

1 0 0 0 1 10 37  

(9) I use examples from the 
textbook during class time (N/A 

means you do not use a 
textbook)  

4 12 6 6 6 5 10  

         

Q10) In addition to the textbook, what other resources (such as graphing calculators, computer 

software, other books, websites, etc) do you use when planning to teach a first semester 

calculus class?  Please be specific. 

 

 

 

Q11) Does your department require students to purchase a common textbook for Calculus I? 

Yes  41 

No 5 

Unknown 3 

 

Q12) What are students required to purchase (textbook, software, graphing calculators, etc.) 

for your first semester calculus course?  Please be specific. 

 

Also graphing calculator:  23 

Graphing Calculator highly recommended but not required: 3 
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Q13) When planning to teach the Fundamental Theorem of Calculus, how often do you refer to 

your textbook? 

Never 6 

Sometimes 29 

Always 13 

 

Q14-17) Please describe your general impressions of your textbook's treatment of the 

fundamental theorem of calculus.  

 
Positive 

(1) 
2 3 4 5 6 

Negative 
(7) 

(14) What is your general 
impression of your textbook's 

overall treatment of the 
Fundamental Theorem of 

Calculus? 

7 13 11 12 5 0 0 

(15) What is your general 
impression of this textbook's 

explanation of the Fundamental 
Theorem of Calculus?  

6 16 9 11 6 0 0 

(16) What is your general 
impression of this textbook's 
proof(s) of the Fundamental 

Theorem of Calculus? 

4 14 9 15 3 3 0 

(17) What is your general 
impression of this textbook’s 
problem sets relating to the 
Fundamental Theorem of 

Calculus?  

7 13 11 7 6 4 0 

 

Q18) What technology do you use when teaching the Fundamental Theorem of Calculus? 

a. I do not use technology 18 

b. Graphing calculators that do not perform symbolic algebra 18 

c. Graphing calculators that perform symbolic algebra 3 

d.  Computer algebra system (Maple, Mathematica, MATLAB, etc)  2 

e.  Other (please describe) 4: MyMathLab, Handouts, GeoGebra, don’t like the 

question 

 

Q19) What technology are your students permitted to use when learning the Fundamental 

Theorem of Calculus? 

a. Technology not permitted. 5 

b. Graphing calculators that do not perform symbolic algebra 27 

c. Graphing calculators that perform symbolic algebra 9 

d. Computer algebra system (Maple, Mathematica, MATLAB, etc) 3 
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e.  Other (please describe)  3:  WolframAlpha and YouTube, both a and b, question 

is too vague  

 

Q20) What technology are your students required to use when learning the Fundamental 

Theorem of Calculus? 

a. Technology not required. 29 

b. Graphing calculators that do not perform symbolic algebra 13 

c. Graphing calculators that perform symbolic algebra 3 

d. Computer algebra system (Maple, Mathematica, MATLAB, etc)  1 

e. Other (please describe) 1: both a and b, depending on the question 

 

Q21) In my experience, explaining the Fundamental Theorem of Calculus to students is easier 

without added technologies.   

1 Strongly 

Disagree 
2 3 4 5 6 

7 Strongly 

Agree 

4 6 9 10 4 10 4 

 

The fundamental theorem of calculus is often given in two parts, but the order of those parts 

may vary.  Two proofs of a portion of the fundamental theorem of calculus are given 

below.  Please consider both of these and then answer the following questions.  Note that 

option 1 uses the mean value theorem in the proof and option 2 uses the other ("first") 

fundamental theorem of calculus in the proof.  (See Appendix B) 

 

Q22) Which proof do you prefer? 

Option 1 (uses the mean value theorem) 20 

Option 2 (uses the "first" fundamental theorem of calculus) 21 

Other (please describe)  4 (3: no proof given, 1: proof by other means) 

 

Q23) Why do you prefer that proof?  Specifically, what elements of that proof do you like? 

 

Reasons for proof:  5 “other”, 11 “students”, 6 “self”, 5 “both”, 13 “math” and 9 no 

answer. (n=49, but 45 answered the which proof do you prefer, which means 5 gave a 

preference but no reason) 

 

Q24)  Please explain anything else you feel is relevant to teaching the Fundamental Theorem of 

Calculus 

 

Q25) Your current position is best described as  

Full-time  37 

Part-time  12 

Other (describe) 0  

 

 

Q26) Gender 
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Male  38 

Female  10  

 

Q27) Age 

20-29 2 

30-39 11 

40-49 17 

50-59 7 

60-69 9 

over 69  3  

 

Q28) What is your highest degree attained? 

PhD  8 

EdD  0 

Master's Degree  38 

Bachelor's Degree  1 

other (please describe)  2 (1: ABD, 1: JD)  

 

Q29) In what field is your highest degree? (check all that apply) 

Mathematics  39 

Mathematics Education 3 

Statistics  2 

Physics 1 

Engineering 2 

Other Field (please describe) 3 (1: Higher Ed, 2: JD Law)  

(Note: one person had a double degree in Math and Stats)  

 

Q30) Including this year, approximately how many semesters have you taught college calculus? 

 

Average: 16.6, standard deviation (sample) 17, Standard deviation (population) 16.9.  

Range:  1-65, median is 11.5, mode is 3.  

 

Q31) I consider myself a(n) __________________  teacher of calculus I: 

Beginner 1 

Novice  7 

Advanced  29 

Expert 12 

 

Q32) Why did you choose that category? 

 

Content 

Knowledge 

6 

Deficit 7 

Experience 24 
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Teaching 

Other 1 

Students 8 

 

 

 

Q34) As part of this research, I will be interviewing community college teachers about their 

experiences teaching calculus and teaching the Fundamental Theorem of Calculus.  Would you 

like to be considered for an interview? 

Yes 21 

No  27 
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Appendix H: Philip’s Schedule 

 

Figure 30: Schedule from Philip 
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Appendix I: Karl’s notes for teaching FTC 
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Figure 31: Teaching notes from Karl for FTC 
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Appendix J:  Sample WebAssign Problem  

The only differences between this problem and the problem in the textbook are the numbers in 

red.   

 

Figure 32: Sample problem from WebAssign 

 

Note:  Clicking on “Try Again” changes the 1.39 ft measurement. 
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Appendix K: Leopold’s schedule 

 

Figure 33: Schedule from Leopold 
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