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Abstract 
 

 Hedgehog signaling is essential for embryonic and postnatal development, while 

perturbation of Hedgehog pathway function can lead to a variety of developmental diseases, birth 

defects, and cancers. Neuropilins, which have well-characterized roles in Semaphorin and VEGF 

signaling, have recently been implicated in the regulation of Hedgehog signaling. Neuropilins 

contain short, catalytically inactive cytoplasmic domains, requiring Plexin receptors to regulate 

small intracellular GTPases during Semaphorin signal transduction. However, the mechanism of 

Neuropilin function in Hedgehog signal transduction remains unclear, and a role for Plexins in 

Hedgehog signaling has not been explored. In this thesis, I present evidence suggesting that the 

Neuropilin-1 cytoplasmic and transmembrane domains are both necessary and sufficient to 

regulate Hedgehog pathway activity. Neuropilin-1 also enters the primary cilium, an important 

subcellular compartment for Hedgehog regulation; however, this cilia localization does not 

correlate with Hedgehog signal promotion. Instead, Neuropilin-1 selectively regulates GLI 

transcriptional activator function through a novel 12-amino acid cytoplasmic motif. Strikingly, I 

also find that multiple Plexin family members promote Hedgehog signaling. Point mutations in 

the GTPase activating (GAP) domain of Plexins prevent Hedgehog pathway promotion, 

suggesting that GAP function is required for Plexin-dependent Hedgehog regulation. 

Furthermore, deletion of the autoinhibitory Plexin A1 extracellular domain significantly 

increases Hedgehog pathway activity, providing additional evidence that Plexin GAP activity 

regulates Hedgehog signaling. Together, these data suggest that Neuropilins and Plexins regulate 

Hedgehog signaling downstream of ligand activation through distinct cytoplasmic mechanisms. 



xix 
 

Therapeutic approaches targeting these Semaphorin receptors may be useful to correct 

deregulated Hedgehog signaling in cancer and other diseases.  
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Chapter 1: Introduction 
 

 

1.1 Abstract 

Hedgehog signaling is a conserved cell-cell communication pathway that plays essential 

and diverse roles during embryonic development and adult tissue homeostasis. Many cell 

surface-associated molecules critically regulate the Hedgehog signaling pathway, coordinating 

the secretion and distribution of Hedgehog ligands as well as signal reception and downstream 

signal transduction. Recent evidence suggests that Neuropilins, single-pass transmembrane 

receptors for Semaphorin and Vascular endothelial growth factor ligands, positively regulate 

Hedgehog signaling. However, the mechanism of Neuropilin action in Hedgehog signal 

transduction remains unclear. Neuropilins require Plexin co-receptors to transduce Semaphorin 

signals, although a role for Plexins in HH signaling has not been explored. These questions are 

particularly interesting given overlapping expression of HH and Semaphorin components in both 

development and disease. Investigating how Semaphorin receptors function within the Hedgehog 

signaling cascade will provide important insight into the regulation of this key developmental 

pathway. Furthermore, therapeutic approaches targeting Semaphorin receptors may be useful to 

regulate deregulated Hedgehog signaling in cancer and other diseases. In this chapter, I review 

both the Hedgehog and Semaphorin signal transduction pathways, emphasizing areas of overlap 

between these two pathways which could be mediated by Neuropilin and Plexin receptors. 
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1.2 Introduction 

For many years, scientists thought that the complexity of human biology was a result of 

our expansive and sophisticated genetics. Accordingly, when the human genome was first being 

sequenced in the 1990s, most scientists estimated that the number of protein-coding genes would 

be greater than 100,000 (Pennisi, 2003). Many were shocked, therefore, when initial estimates 

from the sequencing of the human genome reduced that number to between 26,000 and 30,000 

genes (Lander et al., 2001; Venter et al., 2001), a number which was reduced even further by the 

time human genome sequencing was completed, to between 20,000 and 25,000 genes 

(International Human Genome Sequencing, 2004). To date, our best estimates suggest that the 

human genome actually only contains about 19,000 protein-coding genes (Ezkurdia et al., 2014), 

approximately the same number of genes as a C. elegans roundworm (Hillier et al., 2005).  

Similarly, the complex process of developing from a single cell to a fully-grown, 

functional human comprised of trillions of cells with highly specialized functions requires 

instructions from a surprisingly small number of proteins associated with a handful of signaling 

pathways. Among the most well-studied are Wingless-type mouse mammary tumor virus 

integration site (WNT), Notch, Transforming growth factor-b (TGFb), Janus kinase (JAK)-

signal transducer and activator of transcription (STAT) kinases, Retinoic acid (RA), Hedgehog 

(HH), and Receptor tyrosine kinase (RTK) pathways, which act in overlapping and distinct 

populations of cells at different times to elicit a multitude of cellular behaviors (Basson, 2012; 

Ingham et al., 2011; Sanz-Ezquerro et al., 2017). But how does this limited set of pathways 

regulate such a variety of cells and tissues? How is such a small genetic blueprint interpreted to 

achieve the incredible diversity of function required for human life, and indeed of life in general?  
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The complexity of biological life arises not from a large number of genes and proteins, 

but rather from countless combinations generated by interactions between a much smaller 

number of key players. These proteins are reused in different organisms and different tissues, and 

they are adapted for specific functions depending on molecular and temporal context. Each 

player has more than one role, and depending on how the players interact with one another, the 

same protein can achieve many different functions. We are currently transitioning from a time in 

developmental biology when our focus has been on identifying these key players and their 

associated pathways, into an exploration of how these molecular players function as part of vast 

networks of inputs and outputs that are decoded by cells in various ways to elicit behavior.  

 The focus of this dissertation is to explore one axis of this complex network by 

investigating how the cell surface receptors, Neuropilins (NRPs) and Plexins (PLXNs), which 

have been previously studied as axon guidance cues in the Semaphorin (SEMA) signaling 

pathway, also function to regulate HH signaling through distinct cytoplasmic mechanisms. NRPs 

have been previously identified as HH pathway regulators (Ge et al., 2015; Hillman et al., 2011), 

but their mechanism of action is not well understood, and a role for their PLXN co-receptors 

within the HH signaling cascade has not been described. In this chapter, I will review pertinent 

information about HH signal transduction, including what is known about the cell-surface 

regulation of the pathway, its intracellular signaling cascade, and its importance in both 

development and disease. I then summarize SEMA signal transduction and its importance, 

highlighting known roles and downstream effectors for NRP and PLXN co-receptors. In the final 

section of this chapter, I discuss the overlap between HH and SEMA signaling pathways, 

highlighting major gaps in our knowledge that will be further explored in Chapters 2, 3, and 4.  
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1.3 Overview of Hedgehog Signal Transduction 

1.3.1 Discovery and Conservation of Hedgehog Pathway Components 

 The HH signaling pathway was identified as a result of a genetic screen for patterning 

mutants in Drosophila melanogaster larvae (Nusslein-Volhard and Wieschaus, 1980). One of the 

mutants displayed an expansion of the dorsal denticle stripes into a broad swath, resembling 

hedgehog spines (Nusslein-Volhard and Wieschaus, 1980). The mutant was therefore called 

“Hedgehog,” although it would be over a decade until the gene encoding the HH ligand was 

cloned and characterized (Lee et al., 1992; Mohler and Vani, 1992; Tabata et al., 1992; Tashiro 

et al., 1993) 

 Since its initial discovery in Drosophila, conserved homologs of the Hh gene have been 

identified in a wide variety of vertebrate species, including zebrafish, chicken, mice, rats, and 

humans (Chang et al., 1994; Echelard et al., 1993; Krauss et al., 1993; Marigo et al., 1995; 

Riddle et al., 1993; Roelink et al., 1994). Duplication events gave rise to three Hh genes within 

the mammalian and avian lineages, Sonic Hedgehog (Shh), Indian Hedgehog (Ihh), and Desert 

Hedgehog (Dhh), with further duplication events resulting in additional Shh and Ihh homologs 

(Echelard et al., 1993; Ingham and McMahon, 2001). HH ligands are highly conserved, with 

vertebrate SHH and IHH most closely related to one another, and DHH most closely resembling 

the Drosophila HH ligand (Varjosalo and Taipale, 2008). Importantly, core components of the 

downstream HH signaling cascade, including Patched (PTCH) receptors and cubitus interruptus 

(CI)/glioma-associated oncogene (GLI) family transcription factors, are also highly conserved 

(Ingham et al., 2011; Platt et al., 1997), although several differences exist between vertebrate and 

invertebrate signal transduction (Hooper and Scott, 2005; Varjosalo et al., 2006). One major 

difference is that vertebrate HH regulation requires a microtubule-based structure called the 
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primary cilium, which protrudes from the apical surface of the cell (Goetz and Anderson, 2010; 

Huangfu et al., 2003). Many components of the vertebrate HH signal cascade localize to the 

primary cilium in a highly-regulated way, and mutations that disrupt ciliary structure impact the 

processing of GLI transcription factors, as discussed below (Corbit et al., 2005; Haycraft et al., 

2005; Huangfu et al., 2003; Hui and Angers, 2011; Liu et al., 2005; Rohatgi et al., 2007). For the 

purpose of this dissertation, I will focus on mammalian HH signal transduction, where HH 

signaling is a critical regulator of embryonic development as well as adult tissue homeostasis.   

 

1.3.2 Hedgehog Pathway Contribution to Development and Disease 

The HH signaling pathway elicits a multitude of cellular responses across nearly every 

mammalian tissue and organ to instruct embryonic development (McMahon et al., 2003). Proper 

levels of HH signaling are vital for embryonic growth and patterning, controlling processes 

ranging from digit specification (McGlinn and Tabin, 2006) to central nervous system formation 

(Dessaud et al., 2008) and craniofacial development (Xavier et al., 2016a; Xavier et al., 2016b). 

Defective HH signaling results in severe birth defects, including neural tube closure defects and 

holoprosencephaly (Hooper and Scott, 2005; Murdoch and Copp, 2010; Schachter and Krauss, 

2008), while overactive HH signaling can cause a variety of cancers, including basal cell 

carcinoma and medulloblastoma (Barakat et al., 2010; Teglund and Toftgard, 2010). Given the 

importance of HH signaling in development and disease, understanding the mechanisms that 

regulate this pathway is central to discovering novel treatments for a growing number of HH-

dependent pathologies. In particular, the characterization of new HH pathway regulators at the 

cell surface provides attractive targets for the development of novel therapeutic approaches to 

treat HH-driven diseases.  
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1.3.3  Hedgehog Pathway Regulation at the Cell Surface 

Current models of HH signaling invoke a defined set of cell surface proteins that regulate 

HH ligand secretion, bind to HH ligands, and transmit signals to intracellular pathway 

components (Figure 1-0-1). These intracellular proteins then relay information to the nucleus, 

leading to altered gene expression. HH signaling is regulated by a number of different proteins to 

achieve ligand secretion, ligand reception, and ultimately, signal transduction.  

In ligand-producing cells, immature HH proteins are translated in the form of 

approximately 45 kDa pro-proteins, which undergo signal sequence cleavage to enter the 

secretory pathway, followed by autocleavage catalyzed by the carboxyl-terminal (C-terminal) 

portion of the protein (Ingham et al., 2011; Lee et al., 1994). The C-terminal fragment is then 

thought to undergo rapid proteasomal degradation (Chen et al., 2011), while the N-terminal 

portion mediates most signaling activity (Briscoe and Therond, 2013). This N-terminal portion is 

conjugated to cholesterol at its C-terminal end during autocleavage and palmitoylated at its N-

terminal end by skinny hedgehog (SKI) before undergoing secretion and distribution (Amanai 

and Jiang, 2001; Chamoun et al., 2001; Chen et al., 2004; Feng et al., 2004; Mann and Beachy, 

2004; Pepinsky et al., 1998; Taylor et al., 2001).  

Several cell-surface proteins are required for secretion and long-range distribution of HH 

ligands. Dispatched (DISP) family proteins are 12-pass transmembrane proteins required for 

secretion of cholesterol-modified HH ligands (Burke et al., 1999; Caspary et al., 2002; 

Kawakami et al., 2002; Ma et al., 2002). Interestingly, HH ligand lacking cholesterol 

modification does not require DISP for secretion (Burke et al., 1999). At least two different DISP 

homologues are present in mice, DISP1 and DISP2, but deletion of DISP1 is sufficient to cause a 
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near-complete loss of HH signaling (Caspary et al., 2002; Kawakami et al., 2002; Ma et al., 

2002; Tian et al., 2005). DISP1 binds directly to the cholesterol moiety of HH ligands, but 

requires Signal sequence, CUB domain, EGF-related (SCUBE) family proteins to liberate HH 

ligands from the cell surface (Creanga et al., 2012; Hollway et al., 2006; Kawakami et al., 2005; 

Tukachinsky et al., 2012; Woods and Talbot, 2005). Secreted SCUBE proteins shield the 

cholesterol moiety of HH ligands in order to maintain HH solubility in the extracellular space 

(Creanga et al., 2012; Tukachinsky et al., 2012). Similar to DISP, deletion of the three zebrafish 

SCUBE proteins causes a complete loss of HH signaling, highlighting the importance of proper 

HH packaging and secretion (Johnson et al., 2012).   

To maintain their solubility while traveling through the extracellular space, HH ligands 

utilize several strategies, including assembly into multivalent ligand complexes. As a result, HH 

proteins are often observed as large punctate structures via immunofluorescent microscopy 

(Gallet et al., 2003; Gallet et al., 2006). While monomeric ligands are observed, multimeric 

complexes are more stable and exhibit significantly more potent signaling activity (Chen et al., 

2004; Feng et al., 2004; Zeng et al., 2001). Packaging of HH ligands into multimeric structures 

requires cholesterol modification, palmitoylation, and interactions with heparan sulfate 

proteoglycans (HSPGs) at the cell-surface (Chen et al., 2004; Gallet et al., 2003; Gallet et al., 

2006; Vyas et al., 2008). The exact nature of HH secretion remains controversial, and many 

studies suggest the involvement of exovesicles or lipoprotein particles to facilitate HH 

distribution (Eugster et al., 2007; Liegeois et al., 2006; Panakova et al., 2005; Tanaka et al., 

2005; Therond, 2012). Other studies propose a mechanism by which HH ligands are transported 

via long filopodial cellular extensions, thus circumventing the need for long-range diffusion 

(Bischoff et al., 2013; Kornberg and Roy, 2014; Ramirez-Weber and Kornberg, 1999; Rojas-
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Rios et al., 2012; Sanders et al., 2013). These various models of HH secretion and distribution 

are not mutually exclusive, but further work is needed to understand the complexities of HH 

ligand dispersal.  

On receiving cells, HH ligands interact with a variety of proteins, which act to restrict 

ligand distribution and mediate downstream signaling events (Figure 1-0-1). Patched 1 (PTCH1) 

is a twelve-pass transmembrane protein that is the canonical receptor for HH ligands (Marigo et 

al., 1996; Stone et al., 1996). Prior to the onset of HH signaling, PTCH1 inhibits the activity of a 

second cell surface protein, Smoothened (SMO), a seven-pass transmembrane protein with 

GPCR-like activity (Alcedo et al., 1996; van den Heuvel and Ingham, 1996). As a result, 

transcription factors from the GLI family are processed into repressors that inhibit target gene 

expression. HH ligand binding to PTCH1 results in de-repression and ciliary localization of 

SMO, which activates an intracellular signaling cascade that results in the activation of GLI 

transcription factors and the modulation of target gene expression (Hui and Angers, 2011).  

 Beyond PTCH1 and SMO, several additional classes of cell-surface proteins regulate HH 

signaling in a tissue- and time-specific manner (Figure 1-0-1). The HH co-receptors, which 

include growth arrest-specific 1 (GAS1), CAM-related/downregulated by oncogenes (CDON), 

and brother of CDON (BOC), promote HH signaling in a ligand-dependent manner (Allen et al., 

2011; Allen et al., 2007; Lee et al., 2001; Tenzen et al., 2006). CDON and BOC are single-pass 

transmembrane proteins containing extracellular Ig repeats and fibronectin type III (FN III) 

domains, while GAS1 contains a GPI-anchor which mediates membrane association (Cabrera et 

al., 2006; Kang et al., 1997; Kang et al., 2002; Stebel et al., 2000). Importantly, all three HH co-

receptors bind directly to HH ligands and can interact with PTCH1 to form different receptor 

complexes (Allen et al., 2011; Allen et al., 2007; Izzi et al., 2011; Lee et al., 2001; Martinelli and 
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Fan, 2007; Tenzen et al., 2006). The single-pass transmembrane protein Low-density lipoprotein 

receptor-related protein 2 (LRP2) also directly binds HH ligands, regulating uptake and 

intracellular trafficking of SHH to critically regulate HH in a variety of developmental tissues 

(Christ et al., 2015; Christ et al., 2012; Christ et al., 2016). In addition to their roles in HH ligand 

distribution, members of the HSPG family of glycoproteins also regulate HH signaling in ligand-

receiving cells (Bandari et al., 2015; Yan and Lin, 2008). Similar to the HH co-receptors, HSPGs 

can directly interact with HH ligands and other pathway components at the cell surface (Bumcrot 

et al., 1995; Capurro et al., 2008; Chang et al., 2011; Lee et al., 1994; Rubin et al., 2002; Whalen 

et al., 2013; Williams et al., 2010; Zhang et al., 2007). Examples include Glypican-3 (GPC3), 

which antagonizes HH signaling (Capurro et al., 2009; Capurro et al., 2008), and Glypican-5 

(GPC5), which can either promote or inhibit HH signaling depending on context (Li et al., 2011; 

Witt et al., 2013). Furthermore, an additional set of proteins antagonizes HH signaling at the cell 

surface. Patched 2 (PTCH2), a structural homolog of PTCH1, acts in a ligand-dependent manner 

to antagonize HH signaling (Carpenter et al., 1998; Holtz et al., 2013; Motoyama et al., 1998). 

Hedgehog interacting protein 1 (HHIP1) also binds HH ligand to antagonize HH signaling, 

although HHIP1 is unique in that it is a secreted antagonist that maintains membrane association 

through interactions with HSPGs (Chuang et al., 2003; Chuang and McMahon, 1999; Holtz et 

al., 2015; Holtz et al., 2013; Jeong and McMahon, 2005). Together, these diverse groups of cell-

surface proteins are essential to control HH pathway activity in a context-dependent manner.  

 

1.3.4 Intracellular Hedgehog Signaling Events 

 HH signal transduction ultimately culminates in the modulation of GLI transcriptional 

activity. In mammals, there are three GLI family members, GLI1, GLI2, and GLI3, each of 
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which contains five C2H2 zinc-finger DNA binding domains (Aza-Blanc et al., 1997; Barnfield 

et al., 2005; Briscoe and Therond, 2013; Chen et al., 1999; Hepker et al., 1997; Kinzler and 

Vogelstein, 1990; Wang and Holmgren, 1999). GLI2 and GLI3 are proteolytically processed into 

activator and repressor forms, with HH pathway activity regulating the balance between the two 

in order to modulate target gene expression (Briscoe and Therond, 2013; Dai et al., 1999). In 

mammals, GLI1 exclusively functions as a transcriptional activator, GLI2 mainly function as an 

activator, and GLI3 mainly functions as a repressor (Bai et al., 2004; Hui and Angers, 2011; 

Litingtung and Chiang, 2000; Matise et al., 1998). However, there is evidence that GLI2 

selectively functions as a transcriptional repressor (Chang et al., 2016; Pan et al., 2006), while 

GLI3 can operate as a transcriptional activator in certain tissues (Bai and Joyner, Cell, 2004). 

 Intracellular GLI2/3 regulation is complex, relying on the integration of a number of 

different biochemical processes. In the absence of HH pathway activation, GLI2 and GLI3 are 

phosphorylated by protein kinase A (PKA), casein kinase 1 (CK1), and glycogen synthase kinase 

3 (GSK3b), leading to near complete degradation of GLI2 and proteolytic cleavage of GLI3 into 

its repressor form (Pan et al., 2006; Pan and Wang, 2007; Pan et al., 2009; Tempe et al., 2006; 

Wang et al., 2000; Wang and Li, 2006). Interestingly, PKA phosphorylation at six highly 

conserved residues is required for processing and degradation of GLI2/3, while 

dephosphorylation at those sites combined with phosphorylation at additional partial consensus 

PKA sites is required for GLI2/3 to act as transcriptional activators (Niewiadomski et al., 2014). 

Thus, PKA phosphorylation regulates both GLI activator and GLI repressor states to modulate 

HH signaling (Hammerschmidt et al., 1996; Kaesler et al., 2000; Niewiadomski et al., 2014). 

GLI1, on the other hand, is regulated and degraded by proteins numb and itch (Di Marcotullio et 

al., 2006). In addition, DYRK family kinases control nuclear localization and transcriptional 
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activity of GLI1, while simultaneously promoting degradation of GLI2 and GLI3 (Mao et al., 

2002). When HH ligand is present, SMO activation results in a change in the balance of GLI 

processing, favoring activator forms. While the mechanisms by which SMO regulates GLI 

proteins are incompletely understood, negative regulators of GLI activity, including kinesin 

family protein 7 (KIF7) and suppressor of fused (SUFU), are inhibited when SMO is activated 

(Cheung et al., 2009; Endoh-Yamagami et al., 2009; Liem et al., 2009; Raisin et al., 2010; 

Robbins et al., 1997; Ruel et al., 2007; Sisson et al., 1997; Tay et al., 2005). 

 Interestingly, several core components of the HH signaling cascade localize to the 

primary cilium, including GLI proteins (Corbit et al., 2005; Haycraft et al., 2005; Rohatgi et al., 

2007). The primary cilium is a microtubule-based structure that protrudes from the apical surface 

of most mammalian cell types during growth arrest (Sorokin, 1968). While once thought to be a 

vestigial structure, we now understand that the cilium plays important roles in regulating 

developmental signaling, and HH signaling in particular (Goetz and Anderson, 2010). Within 

primary cilia, proteins are trafficked by two types of motor proteins, with kinesins carrying cargo 

in the anterograde direction and dyneins transporting cargo in the retrograde direction (Goetz and 

Anderson, 2010). Importantly, a specialized pore complex at the base of primary cilia tightly 

regulates movement of molecules into and out of this subcellular compartment which are too 

large to diffuse through this barrier (Gilula and Satir, 1972; Kee et al., 2012; Rosenbaum and 

Witman, 2002; Takao et al., 2014). Notably, GLI1, GLI2, and GLI3 all localize to primary cilia, 

although GLI3 is not detected after processing into its repressor form (Haycraft et al., 2005). 

When HH signaling is off, GLI2 and GLI3 cycle through the primary cilium at low levels, while 

pathway activation results in their rapid accumulation at the tips of cilia (Chen et al., 2009; Kim 

et al., 2009; Wen et al., 2010). PKA localizes to and is thought to modify GLI proteins at the 
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base of the primary cilium, and loss of PKA increases the amount of GLI at cilia tips (Barzi et 

al., 2010; Tukachinsky et al., 2010; Tuson et al., 2011; Zeng et al., 2010). Furthermore, many 

studies indicate that mutations disrupting ciliary structure and transport impact GLI processing 

and activity, causing defective HH signaling (Gorivodsky et al., 2009; Haycraft et al., 2005; 

Huangfu and Anderson, 2005; Huangfu et al., 2003; Hui and Angers, 2011; Keady et al., 2012; 

Liu et al., 2005; Ocbina et al., 2011; Qin et al., 2011; Takeda et al., 1999; Yang et al., 2015). 

Surprisingly, mutations in ciliary transport processes can result in HH loss-of-function and gain-

of-function phenotypes, depending on context (Haycraft et al., 2005; Huangfu and Anderson, 

2005; Huangfu et al., 2003; Liu et al., 2005; Wong et al., 2009). One model suggests that active 

HH signaling leads to SMO accumulation in primary cilia and localization of SUFU-GLI 

complexes to the tips of cilia, leading to their dissociation and subsequent processing into GLI 

activator forms (Tukachinsky et al., 2010). Together, these studies highlight the importance of 

primary cilia in GLI regulation, although many questions still remain in this area of research.  

 Ultimately, the complex regulation and processing of GLI proteins into activator and 

repressor forms, the cycling of GLI proteins through the primary cilium, and the accessibility of 

chromatin all influence HH target gene regulation within the nucleus. GLI proteins bind to both 

high- and low-affinity sites within tissue-specific promoter and enhancer elements of a wide 

variety of genes throughout the genome to regulate cell behaviors (Lorberbaum et al., 2016; 

Ramos and Barolo, 2013). HH transcriptional targets vary in a context- and developmental stage-

specific manner (Aberger and Ruiz, 2014; Oosterveen et al., 2012; Peterson et al., 2012; Vokes 

et al., 2007; Vokes et al., 2008). However, many HH targets promote cell survival and growth – 

processes essential for development and tissue maintenance, although potentially detrimental 

when activated in cancerous cells. Common examples of GLI target genes include the HH 
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pathway members Ptch1 (Agren et al., 2004), Gli1 (Dai et al., 1999), Ptch2 (Holtz et al., 2013; 

Vokes et al., 2007), Hhip1 (Vokes et al., 2007), and Boc (Lee et al., 2010). However, a multitude 

of additional HH target genes regulate cell fate specification, differentiation, proliferation, and 

survival in a stage- and tissue-specific manner.  

 A variety of proteins regulate HH signaling, both intracellularly and at the plasma 

membrane. However, our understanding of these regulatory mechanisms, including which 

proteins are active under specific conditions and how these inputs are simultaneously 

incorporated to inform cell behavior, is far from complete. Furthermore, how HH signaling 

overlaps with other signaling pathways within in the same cells, and how those various signals 

are integrated are questions that remain largely unexplored. Recent evidence suggests that 

receptors from the SEMA signaling pathway, which is important for axon guidance and other 

processes in the developing embryo, also regulate HH signaling (Ge et al., 2015; Hillman et al., 

2011). Understanding the process of SEMA signal transduction and how it might influence HH 

signaling will be the focus of the next two sections of this chapter.  

 

1.4 Overview of Vertebrate Semaphorin Signaling 

1.4.1 Discovery and Diversity of Semaphorin Ligands 

 SEMA ligands were originally described in the early 1990s for their role in axon 

guidance and growth (Kolodkin et al., 1992; Luo et al., 1993; Raper and Grunewald, 1990). 

While studying nervous system development in grasshopper embryos, Kolodkin et. al., cloned 

and characterized a novel transmembrane protein called fasciclin IV, which regulates axon 

guidance in the grasshopper limb bud and central nervous system (Kolodkin et al., 1992). 

Simultaneously, another group identified a biochemical extract from chicken brains that causes 
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growth cone collapse in cultured cells, naming the protein “collapsin” (Luo et al., 1993; Raper 

and Kapfhammer, 1990). Later, it was discovered that fasciclin and collapsin were two members 

of the same protein family, containing a unique, conserved SEMA domain that would come to 

define SEMA ligands as well as their PLXN receptors. 

 Since the original discovery of fasciclin (SEMA1A) and collapsin (SEMA3A), 30 

different SEMA ligands have been identified, separated into eight classes based on structural 

homology and species-specific expression (Alto and Terman, 2017). While most of the SEMA 

ligands have been described in vertebrates, class one and two SEMAs along with SEMA5C are 

expressed only in invertebrates, and class V SEMAs are found in viruses (Alto and Terman, 

2017). Interestingly, both vertebrate and non-vertebrate SEMAs can be transmembrane, 

glycosylphosphatidylinositol (GPI)-anchored, or secreted, and some contain Ig domains, basic 

domains, and thrombospondin repeats (Alto and Terman, 2017). Despite the diversity of SEMA 

ligand expression and structure, their defining feature is a cysteine-rich, 7-blade beta propeller 

fold motif known as the SEMA domain, and with the exception of some viral SEMAs, almost all 

have a cysteine-rich plexin-semaphorin-integrin PSI domain (Alto and Terman, 2017). PLXN 

family proteins as well as some receptor tyrosine kinases also contain a SEMA domain, and 

therefore are considered part of the SEMA superfamily (Siebold and Jones, 2013). The SEMA 

domain mediates dimerization between SEMA ligands, which is thought to be required for 

certain members to function, as well as receptor-ligand interactions (Klostermann et al., 1998; 

Koppel and Raper, 1998).  
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1.4.2 Semaphorin Regulation at the Cell Surface 

 While SEMA ligands can interact with several additional molecules (Hota and Buck, 

2012), they are thought to primarily signal through type I, single-pass transmembrane proteins 

from the PLXN family (Perala et al., 2012). Secreted SEMA ligands also require NRP co-

receptors, which form complexes with PLXNs to transduce signals downstream.  

 There are two NRP family members, NRP1 and NRP2, which have well-established roles 

in both axon guidance and angiogenesis (Kawasaki et al., 1999; Gu et al., 2003; Gelfand et al., 

2014; Takashima et al., 2002; Fujisawa, 2004). While sharing only 44% overall homology, 

NRP1 and NRP2 have a similar domain architecture, which includes two complement binding 

(CUB) domains, denoted a1 and a2; two coagulation factor V/VIII homology-like domains, 

denoted b1 and b2, and a membrane-proximal meprin A5 (MAM) domain, denoted c (Figure 

1-0-2) (Chen et al., 1997; Giger et al., 1998; He and Tessier-Lavigne, 1997; Neufeld and Kessler, 

2008). NRPs bind to secreted, class 3 SEMA ligands through their extracellular a1, a2, and b1 

domains, although they are unable to transduce downstream SEMA signals on their own, due to 

a lack of catalytic activity in their short cytoplasmic domain (Gu et al., 2002; He and Tessier-

Lavigne, 1997; Kolodkin et al., 1997; Neufeld and Kessler, 2008; Vander Kooi et al., 2007). In 

fact, studies suggest that the NRP1 cytoplasmic domain is dispensable for SEMA function, 

although it binds to the PDZ domain-containing protein GAIP C-terminus interacting protein 1 

(GIPC1) and plays a role in regulating the spatial separation of arteries and veins (Cai and Reed, 

1999; Fantin et al., 2011; Gao et al., 2000). Instead, NRPs require PLXN co-receptors to 

transduce signals from secreted SEMA ligands (Takahashi et al., 1999; Tamagnone et al., 1999).  

 While secreted SEMA ligands require NRP-PLXN complexes to signal, the majority of 

SEMA ligands interact directly with PLXN receptors (Neufeld and Kessler, 2008). The PLXN 
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family of receptors contains nine members, separated into four different subfamilies, including 

four type A PLXNs (PLXNA1, PLXNA2, PLXNA3, and PLXNA4), three type B PLXNs 

(PLXNB1, PXLNB2, and PLXNB3), and a single type C (PLXNC1) and type D (PLXND1) 

member (Figure 1-0-3) (Neufeld and Kessler, 2008). Common structural features across all 

PLXN subfamilies include the presence of an extracellular SEMA domain as well as PSI and 

glycine-proline (G-P) rich motifs, similar to those found in the Met receptor tyrosine kinase 

family (Comoglio et al., 2003; Tamagnone et al., 1999). Intracellularly, PLXNs are defined by 

their split GTPase-activating (GAP) domain, which is activated by SEMA ligand binding and 

regulated intracellularly by a series of binding and phosphorylation events, ultimately resulting 

in differential regulation of small intracellular G proteins and kinases to influence cell migration 

and morphology (Oinuma et al., 2004a). Notably, type B PLXNs are distinguished by both a C-

terminal binding site for PDZ domain-containing guanine nucleotide exchange factors (PDZ-

RHOGEF or ARHGEF11) and leukemia-associated RHOGEF (LARG or ARHGEF12) as well 

as a conserved cleavage site for furin-like pro-protein convertases (Aurandt et al., 2002; Perrot et 

al., 2002; Swiercz et al., 2002; Tamagnone et al., 1999). Distinctive classes of SEMA ligands 

exhibit specificity in their interactions with PLXN family members (Figure 1-0-3), with Class 3 

secreted SEMA ligands also requiring NRP co-receptors (Neufeld and Kessler, 2008).  

 

1.4.3  Intracellular Semaphorin Signaling Events 

 Downstream of PLXNs, an increasingly large number of cytosolic effectors mediate 

cytoskeletal dynamics and cell adhesion in various ways depending upon the SEMA ligand and 

PLXN subfamily member involved. Generally, PLXNs both regulate and are regulated by the 

collapse-response-mediator protein (CRMP) family of phosphoproteins, protein kinases, 
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molecule interacting with Cas ligand (MICAL) redox proteins, and small intracellular GTPases 

from the Rho and Ras superfamilies (Jongbloets and Pasterkamp, 2014; Puschel, 2007; Yang and 

Terman, 2013). Together, these effectors regulate diverse cellular processes, including axonal 

transport, cell death, microtubule dynamics, actin dynamics, and protein translation (Figure 

1-0-4). Here, I will briefly summarize what is known about intracellular signaling downstream of 

PLXNs: 

 

CRMP Family Phosphoproteins are Regulated by Semaphorin Signals 

 CRMP family phosphoproteins were some of the first downstream SEMA signaling 

components to be described, originally identified for their roles in neuronal differentiation 

downstream of SEMA3A ligands (Puschel, 2007). There are five different vertebrate CRMPs 

(CRMP1-5), which are highly expressed during vertebrate embryonic and adult neurogenesis 

(Doetsch and Hen, 2005; Veyrac et al., 2005; Wang and Strittmatter, 1996). While cytosolic in 

nature, a large pool of CRMP protein is enriched at the cell membrane, particularly at the leading 

edge of lamellipodia and filopodia, suggesting a role for CRMP proteins in axon guidance and 

growth (Minturn et al., 1995; Rosslenbroich et al., 2003). Indeed, CRMPs bind to the PLXNA1 

cytoplasmic domain and are required for SEMA3A-mediated cytoskeletal collapse (Deo et al., 

2004; Goshima et al., 1995). PLXNA1 binding to CRMP proteins mediates both conformational 

changes and C-terminal phosphorylation events that modulate CRMP activity (Brown et al., 

2004; Deo et al., 2004; Goshima et al., 1995; Mitsui et al., 2002; Uchida et al., 2005). While the 

requirement for CRMPs downstream of SEMA3A has been clearly established, the mechanisms 

by which CRMPs mediate cytoskeletal collapse remain unclear. One possibility is that CRMPs 

regulate microtubules and actin cytoskeletal elements directly, since CRMPs are known 
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regulators of microtubule dynamics and co-localize with actin in growth cones and neuronal cell 

lines (Fukata et al., 2002; Gu and Ihara, 2000; Hotta et al., 2005; Quinn et al., 2003; 

Rosslenbroich et al., 2005; Yoshimura et al., 2005; Yuasa-Kawada et al., 2003). Evidence also 

exists for CRMP regulation of small intracellular GTPases (discussed below) that bind to and 

regulate PLXN cytoplasmic activity (Arimura et al., 2000; Hall et al., 2001; Jin and Strittmatter, 

1997; Toyofuku et al., 2005; Turner et al., 2004; Zanata et al., 2002). In addition, CRMPs 

mediate receptor-mediated endocytosis (Lee et al., 2002; McDermott et al., 2004; Nishimura et 

al., 2003; Santolini et al., 2000; Shen et al., 2001), and bind to mammalian MICAL1 (Puschel, 

2007), which has also been associated with PLXN signaling (discussed below). Together, these 

studies suggest that CRMP family proteins downstream of SEMA3A likely regulate multiple 

important cellular processes that may contribute to cytoskeletal collapse.  

 

Plexins Regulate MICAL Redox Proteins 

 Another important regulatory axis downstream of SEMA-PLXN interactions involves 

PLXN binding to MICAL family proteins (Alto and Terman, 2017; Jongbloets and Pasterkamp, 

2014; Yang and Terman, 2013). MICALs are flavoprotein monooxygenase enzymes that directly 

regulate the post-translational oxidation of actin subunits (Terman et al., 2002; Zhou et al., 

2011). MICALs bind to PLXN cytoplasmic domains and induce F-actin disassembly directly by 

oxidating actin Met-44, which is critical for actin monomer contact (Hung et al., 2011; Hung and 

Terman, 2011; Hung et al., 2010). Interestingly, the methionine sulfoxide reductase SelR 

counteracts this process, providing a mechanism for actin regulation downstream of SEMA-

PLXN signaling (Hung et al., 2013; Lee et al., 2013). Because of their large, multi-domain 

structures, MICALs can also interact with CRMPs and small GTPases (see below), suggesting a 
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potentially more complicated role in PLXN intracellular signaling (Deo et al., 2004; Puschel, 

2007; Schmidt et al., 2008; Togashi et al., 2006). Thus, MICALs may play multiple roles in 

downstream SEMA signaling, regulating the actin cytoskeleton directly and/or modulating other 

signaling cascades involved in cell adhesion via integrins, vesicular trafficking, or other cellular 

processes (Puschel, 2007).  

 

Protein Kinases Regulate and are Regulated by Plexin Receptors 

 Multiple kinases act downstream of SEMA ligands to regulate cell responses including 

actin dynamics, microtubule dynamics, axonal transport, protein translation, and cell death 

(Puschel, 2007). Interestingly, however, exactly how SEMA receptor activation is coupled to 

many of these processes remains unclear. At the cell surface, PLXNB1 complexes with receptor 

tyrosine kinases Met and ERBB2 in response to SEMA4D signaling, triggering invasive growth 

of epithelial cells (Giordano et al., 2002). In addition, Off-track receptors, which contain receptor 

tyrosine kinase domains but lack associated kinase activity, bind to both PLXNA3 and PLXNB1, 

likely recruiting other kinases to mediate downstream signaling (Winberg et al., 2001). 

Intracellularly, many phosphorylation events also coordinate cell behaviors in response to SEMA 

signaling. ADF/cofilin proteins bind to actin to regulate filament severing, and dissociation of 

these proteins from actin leads actin redistribution (Bamburg and Wiggan, 2002). Strikingly, 

activity of Lin-11, Isl-1, and Mec-3 kinase (LIMK), which phosphorylates and inactivates 

ADF/cofilin, is necessary for SEMA3A-mediated growth cone collapse (Aizawa et al., 2001). 

Several upstream regulators of LIMK and cofilin, including Rac, PAK, RhoA, ROCK, R-Ras, 

PI3K, and PTEN have been associated with PLXN receptor signaling and may regulate actin 

dynamics downstream of SEMA3A. However, LIMK1 activation is not sufficient to induce 
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growth cone collapse, suggesting that multiple mechanisms likely regulate this complex cellular 

behavior (Aizawa et al., 2001). As discussed above, another mechanism required for SEMA-

mediated growth cone collapse is the alteration of microtubule dynamics downstream of CRMP 

and Tau (Kruger et al., 2005; Puschel, 2007). SEMA signaling regulates multiple kinases which 

modulate CRMP activity, including Cdk-5, GSK3b, Fyn tyrosine kinase, Fes/Fps, and Rho 

kinase (ROCK) (Arimura et al., 2000; Arimura et al., 2005; Brown et al., 2004; Cole et al., 2006; 

Mitsui et al., 2002; Sasaki et al., 2002; Uchida et al., 2005). Further investigation is necessary to 

determine how these inputs coordinate cytoskeletal collapse in a cell type-specific manner.  

 It is likely that SEMA-regulated kinases play multiple roles within the cell. For example, 

Cdk-5, GSK3b, and Fyn kinase regulate CRMP activity, but they also regulate axonal transport 

via dynein and kinesin motility (Morfini et al., 2004; Niethammer et al., 2000). SEMA3A ligand 

induction facilitates both anterograde and retrograde transport in DRG neurons, potentially 

through the involvement of these kinase complexes (Goshima et al., 1999; Goshima et al., 1997; 

Li et al., 2004). In addition, SEMA signaling increases localized protein synthesis in axons and 

growth cones, which is necessary for turning and collapse responses (Campbell and Holt, 2001; 

Willis and Twiss, 2006). This process is dependent upon MAPK phosphorylation (Guertin and 

Sabatini, 2005), which occurs in response to SEMA3A, SEMA3F, SEMA7A, and SEMA4D 

stimulation (Atwal et al., 2003; Aurandt et al., 2006; Bagnard et al., 2004; Campbell and Holt, 

2001; Pasterkamp et al., 2003). Furthermore, SEMA3A can induce apoptosis in a manner 

dependent on p38 MAPK activation and JNK/c-Jun signaling (Bagnard et al., 2004; Ben-Zvi et 

al., 2006). PLXNs also bind to and regulate 14-3-3e in a manner dependent upon PKA 

phosphorylation, which antagonizes SEMA-PLXNA signaling in Drosophila (Yang and Terman, 
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2013). A better understanding of how these complex and diverse processes are regulated by 

SEMA-dependent kinase activation will require additional study.  

 

Plexins Interact with and Regulate Small Intracellular GTPases from the Rho and Ras 

Superfamilies 

 Perhaps the most widespread regulators of SEMA signaling downstream of PLXNs are 

small intracellular GTPases. In general, GTPases act as molecular switches that can hydrolyze 

GTP to GDP (Wennerberg et al., 2005). GTPases are considered to be in an active state when 

bound to GTP and an inactive state when bound to GDP (Vetter and Wittinghofer, 2001). These 

two states are catalyzed by guanine nucleotide exchange factors (GEFs), which promote the 

GTP-bound state to activate GTPases, and GTPase activating proteins (GAPs), which promote 

GTP hydrolysis to inactivate small GTPases (Wennerberg et al., 2005). GTPases, in turn, 

regulate cell shape and movement by binding to various downstream targets and either recruiting 

them to specific subcellular localizations or inducing conformational changes. Targets of 

GTPases include Rho kinase (ROCK), p21-activated kinase (PAK), phosphatidylinositol-4-

phosphate-5-kinase (PI4P5K), neuronal Wiskott-Aldrich Syndrome protein (N-WASP), and 

formins (Goode and Eck, 2007; Hall, 2005; Hall and Lalli, 2010; Yang and Terman, 2013). Over 

150 GTPases have been characterized within the Ras superfamily, organized into five 

subfamilies including Ras, Ran, Rho, Rab, and Arf (Wennerberg et al., 2005). In addition to 

many other important roles within the cell, Rho subfamily GTPases have been well-characterized 

for regulating the cytoskeleton during axon guidance (Hall, 2005; Hall and Lalli, 2010). While a 

plethora of evidence associates PLXN receptors with GTPase regulation, the exact mechanisms 

by which PLXN-GTPase signaling modulates cell behavior are varied and complex.  
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 Interestingly, PLXNs both regulate and are regulated by small intracellular GTPases. 

Both sequence (Bos and Pannekoek, 2012; Hota and Buck, 2012; Negishi et al., 2005) and 

structural (He et al., 2009; Tong et al., 2009) homology within the PLXN cytoplasmic domain 

suggests that PLXNs act as GAPs for Rho and Ras subfamily GTPases. However, PLXNs are 

unique from other GAPs in two ways: 1) they are membrane-spanning proteins which interact 

with small GTPases, and 2) their GAP domain is split into two parts, with a Rho GTPase binding 

domain (RBD) between the two (Neufeld and Kessler, 2008; Yang and Terman, 2013). SEMA 

ligand binding promotes clustering of PLXN receptors while also releasing their extracellular 

auto-inhibition (Oinuma et al., 2004b; Takahashi and Strittmatter, 2001). To become fully active, 

however, some PLXNs require GTPase binding to the RBD to activate their intracellular 

domains (Yang and Terman, 2013). In particular, several studies suggest that PLXNs from both 

the A and B subfamilies require RND1 binding to the RBD to fully activate cytoplasmic GAP 

activity (Negishi et al., 2005). RND1 is a constitutively active Rho-family GTPase that generally 

antagonizes RHO signaling, and some studies suggest that RND1 might act as an on/off switch 

for PLXNA1, competing with RHOD, which decreases its activity (Yang and Terman, 2013). A 

similar switch might also exist for PLXNB1, although it may instead involve RND1 and RAC1, 

since their binding domains overlap within the PLXNB1 RBD (Negishi et al., 2005; Oinuma et 

al., 2003).  

 Once the PLXN GAP domain is fully activated by SEMA and RND1 binding, it can 

interact with and regulate additional small GTPases from both the Rho and Ras subfamilies (Bos 

and Pannekoek, 2012; Hota and Buck, 2012; Negishi et al., 2005; Yang and Terman, 2013). Rho 

family GTPases, which include RHO, RAC, and CDC42, are known to regulate formation and 

collapse of stress fibers, lamellipodia, and filopodia in fibroblasts and neurons, and thus have 
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been of great interest in the study of SEMA signaling via PLXN activation (Katoh et al., 1998; 

Kozma et al., 1997; Kruger et al., 2005; Nobes and Hall, 1995). While D. melanogaster PLXN-B 

interacts directly with RHOA (Hu et al., 2001), mammalian PLXNB1 regulates RHO indirectly 

by interacting with leukemia-associated Rho GEF (LARG) and PDZ-Rho GEF (PRG) through its 

C-terminal PDZ motif (Aurandt et al., 2002; Perrot et al., 2002; Swiercz et al., 2002). LARG and 

PRG are GEFs that activate RHOA, which leads to repulsive growth (Kruger et al., 2005). 

Strikingly, RHO is not required for PLXNA1-mediated cytoskeletal collapse (Turner et al., 

2004), highlighting the specificity and complexity of GTPase regulation downstream of PLXN 

receptors. RAC1, on the other hand, directly interacts with both PLXNA1 and PLXNB1, likely 

within the RBD (Hu et al., 2001; Turner et al., 2004; Vikis et al., 2002). While research 

continues on how RAC1 regulates and is regulated by PLXNA1, PLXNB1 is thought to 

sequester RAC1, preventing it from interacting with PAK, and thus inhibiting actin 

polymerization (Hu et al., 2001; Vikis et al., 2000). Evidence also exists that RAC1 may function 

upstream of PLXNA1 and PLXNB2, potentially regulating their localization to the cell surface 

(Turner et al., 2004; Vikis et al., 2002).  

 While the PLXN cytoplasmic domain regulates many effectors, PLXN GAP activity 

seems to be directed specifically toward Ras subfamily GTPases including R-RAS and RAP1 

(Kruger et al., 2005; Yang and Terman, 2013). Both PLXNA1 and PLXNB1 regulate R-RAS, 

which binds to highly conserved arginine fingers within the PLXN GAP domains (Oinuma et al., 

2004a). While most RAS subfamily members act to regulate the extracellular signal-regulated 

kinase (ERK)/mitogen activated protein kinase (MAPK) pathway, R-RAS plays a minimal role 

in ERK/MAPK signaling, instead regulating integrin activity at the cell surface (Keely et al., 

1999; Kinbara et al., 2003; Serini et al., 2003). By deactivating R-RAS through GAP activity, 
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PLXNs therefore disrupt cell-cell or cell-substrate interactions through cadherins and integrins, 

leading to cytoskeletal collapse (Kinbara et al., 2003; Oinuma et al., 2004a; Serini et al., 2003; 

Vitriol and Zheng, 2012). PLXNs also bind to and regulate RAP1, another Ras subfamily 

GTPase, whose downstream effectors RIAM and RAPL enhance integrin activity through direct 

binding (Bos and Pannekoek, 2012; Kinbara et al., 2003; Wang et al., 2012; Yang and Terman, 

2013). 

 

1.4.4 Semaphorins and their Receptors: Importance in Development and Disease 

 Originally discovered for their role in axon guidance, SEMA signaling is now considered 

one of four canonical families of axon guidance molecules, along with ephrins, netrins, and slits 

(Alto and Terman, 2017; Tessier-Lavigne and Goodman, 1996). Through one or perhaps 

multiple of the mechanisms described above, SEMA signaling through NRP and PLXN 

receptors results in proper localization of axonal growth cones to their appropriate targets (Rohm 

et al., 2000). Interestingly, while generally thought to mediate axonal repulsion, SEMA signals 

can also act to attract growth cones, depending on cellular context (Masuda et al., 2004; Moreno-

Flores et al., 2003; Pasterkamp et al., 2003; Polleux et al., 2000). For example, in a process 

known as reverse signaling, transmembrane SEMAs can act as receptors instead of ligands to 

regulate cell migration through their cytoplasmic domains (Battistini and Tamagnone, 2016; 

Hernandez-Fleming et al., 2017; Sun et al., 2017; Toyofuku et al., 2004). Through these 

mechanisms, SEMAs direct the migration and segregation of neural crest cells (Ruhrberg and 

Schwarz, 2010), commissural axons (Zou et al., 2000), GABAergic interneurons (Marin and 

Rubenstein, 2003; Marin et al., 2001), cortical neurons (Chen et al., 2008), retinal neurons 

(Kuwajima et al., 2012), and cerebellar granule neurons (Kerjan et al., 2005; Renaud et al., 
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2008), while also preventing CNS neurons from migrating out of the spinal cord (Bron et al., 

2007; Mauti et al., 2007; Vermeren et al., 2003). SEMA signals additionally regulate the 

formation of neuroendocrine loops, influencing migration of GnRH neurons and periodic 

neuroglial remodeling in the hypothalamus (Cariboni et al., 2011; Cariboni et al., 2007; 

Giacobini et al., 2008; Messina et al., 2011; Parkash et al., 2015). Furthermore, SEMA signaling 

regulates synapse development, axonal branching, and dendritic pruning within the developing 

nervous system, potentially acting on the same neuron in multiple different ways over time (Alto 

and Terman, 2017; Oh and Gu, 2013; Pasterkamp and Giger, 2009; Tillo et al., 2012; 

Vanderhaeghen and Cheng, 2010; Yoshida, 2012).  

 In addition to their well-characterized roles in the nervous system, SEMA ligands and 

receptors regulate cell adhesion, shape, motility, survival, and differentiation in a growing list of 

non-neuronal tissues (Alto and Terman, 2017). For example, SEMA signaling plays many roles 

within the cardiovascular system, regulating vascular growth and patterning (Oh and Gu, 2013; 

van der Zwaag et al., 2002), heart formation and innervation (Behar et al., 1996; Feiner et al., 

2001; Gitler et al., 2004; Ieda and Fukuda, 2009; Ruhrberg and Schwarz, 2010; Toyofuku and 

Kikutani, 2007), lymphatic vessel development (Bouvree et al., 2012; Jurisic et al., 2012), and 

adult vascular permeability and repair (Azzi et al., 2013; Treps et al., 2013; Wannemacher et al., 

2011). Within the immune system, SEMA ligands from classes 3, 4, 6, and 7 as well as NRP and 

PLXN receptors play important roles, largely in immune cell migration and communication 

(Kumanogoh and Kikutani, 2013; Roney et al., 2013; Suzuki et al., 2008; Takamatsu and 

Kumanogoh, 2012). Interestingly, SEMA family proteins are expressed in both osteoblasts and 

osteoclasts, where they function in bone homeostasis for proper musculoskeletal function (Kang 

and Kumanogoh, 2013). Additionally, in the mouse reproductive system, SEMA4D is required 
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for proper ovarian follicle development and steroid hormone production (Dacquin et al., 2011; 

Regev et al., 2007). Due to their nearly ubiquitous expression (Yazdani and Terman, 2006), 

SEMA family proteins are being studied in a growing list of organs, including kidney, eye, 

muscle, and lung (Alto and Terman, 2017).  

 Beyond development and adult tissue homeostasis, SEMA signaling influences the 

balance between tumor-suppressive and tumor-promoting mechanisms in various types of cancer 

(Alto and Terman, 2017; Neufeld and Kessler, 2008). SEMA ligand and receptor expression is 

often altered in cancer, with functional impacts on tumor growth and metastasis (Gu and 

Giraudo, 2013; Neufeld et al., 2012; Tamagnone, 2012; Thirant et al., 2013). Notable examples 

include several SEMA ligands which act to restrict growth and motility in breast, prostate, and 

lung cancer cells (Bachelder et al., 2003; Herman and Meadows, 2007; Pan and Bachelder, 2010; 

Tomizawa et al., 2001; Xiang et al., 2002), while others promote growth in malignant 

mesothelioma (Catalano et al., 2009). Furthermore, due to their known roles in vascular 

regulation, SEMA family members play important roles in regulating tumor angiogenesis (Basile 

et al., 2004; Basile et al., 2006; Bielenberg et al., 2004; Cagnoni and Tamagnone, 2014; Maione 

et al., 2009; Neufeld et al., 2012; Sierra et al., 2008). SEMAs also modulate behavior of cells 

within the tumor microenvironment, including immune cells and fibroblasts (Cagnoni and 

Tamagnone, 2014; Gu and Giraudo, 2013; Squadrito and De Palma, 2011; Tamagnone, 2012). 

Importantly, the role that SEMAs play in cancer is highly dependent on cell type and context 

(Neufeld et al., 2012). Understanding how SEMA ligands and receptors function in various 

cellular contexts during development, homeostasis, and cancer will provide crucial insight into 

their activity and regulation. Moreover, characterizing how SEMA signals interact with other 
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signaling pathways, including HH, will provide a more global understanding of how signaling 

networks influence cell behavior.  

 

1.5 Potential Cross-Regulation Between Hedgehog and Semaphorin Signaling Pathways 

 Both HH and SEMA play important roles in embryonic development and adult tissue 

homeostasis, while their disruption leads to unfavorable pathological consequences. However, 

little is known about how the HH and SEMA pathways might overlap and influence one another 

in developmental and disease contexts (Figure 1-0-5). Here, I will review the evidence for cross-

regulation between HH and SEMA signaling pathways.  

 

1.5.1 Overlapping Expression of Hedgehog and Semaphorin Pathway Members 

 To influence one another in vivo, HH and SEMA pathway components are likely to be 

expressed in overlapping or adjacent cell populations. Interestingly, both HH and SEMA 

signaling components exhibit widespread expression throughout vertebrate embryos as well as 

within adult tissues (Mauti et al., 2006; Perala et al., 2012; Perala et al., 2005). Of the HH 

ligands, DHH has a more restricted expression domain, while IHH and SHH are expressed much 

more broadly (Bitgood and McMahon, 1995; Varjosalo and Taipale, 2008). IHH is expressed in 

the yolk sac, primitive endoderm, and developing bone, while DHH is expressed mostly in the 

gonads (Bitgood et al., 1996; Dyer et al., 2001; St-Jacques et al., 1999; van den Brink, 2007; 

Vortkamp et al., 1996; Wijgerde et al., 2005; Yao et al., 2002) In contrast, SHH can be found in 

most epithelial tissues during organogenesis, with important roles in midline structures and the 

distal limb bud during early embryogenesis (Chang et al., 1994; Johnson et al., 1994; Marti et al., 

1995; Meyer and Roelink, 2003; Pagan-Westphal and Tabin, 1998; Riddle et al., 1993; Sampath 
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et al., 1997; Schilling et al., 1999; Watanabe and Nakamura, 2000). Interestingly, SEMA ligands 

are also expressed in most embryonic tissues, although our understanding of their roles beyond 

the nervous system remains limited (Fiore and Puschel, 2003; Yazdani and Terman, 2006). 

Similarly, NRP and PLXN receptors can be found in tissues throughout the nervous, 

cardiovascular, endocrine, gastrointestinal, musculoskeletal, renal, reproductive, hepatic, 

immune, and respiratory systems, raising interesting questions about their functions, 

mechanisms, and potential involvement in HH signaling throughout those tissues (Chen et al., 

1997; Kawasaki et al., 1999; Mauti et al., 2006; Perala et al., 2012; Perala et al., 2005; Yazdani 

and Terman, 2006). 

 

1.5.2 Hedgehog Regulation of Semaphorin Signaling: Areas of Potential Interest 

 Together, several lines of evidence point to cross-regulation between SEMA and HH 

signaling components during embryonic development. One of the most well-studied areas of 

SHH-dependent embryonic patterning is the vertebrate neural tube, which is the developmental 

precursor to the spinal cord (Dessaud et al., 2008). SEMA ligands and receptors, including NRPs 

and PLXNs, are highly expressed in the neural tube during critical periods of HH-dependent 

development, where they play important roles in regulating axon guidance (Mauti et al., 2006). 

NRPs are particularly essential for the development of cranial nerves (Chen et al., 2000; Giger et 

al., 2000; Kitsukawa et al., 1997) and guidance of commissural axons, which must cross the 

midline of the embryo (Zou et al., 2000). Interestingly, commissural axons are sensitive to SHH 

signals emanating from the floorplate of the neural tube, and the HH receptor BOC plays 

important roles regulating commissural axon crossing along the midline (Charron et al., 2003; 

Peng et al., 2018). Furthermore, the C-terminal portion of HH ligand is targeted to axons and 
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growth cones in D. melanogaster, which could suggest additional roles in axon guidance and 

growth cone collapse within the cytoplasm (Chu et al., 2006). Recent evidence also suggests that 

HH signaling is positively regulated by small intracellular GTPase Rap1, providing a potential 

link between downstream HH and SEMA components (Marada et al., 2016). Together, these 

studies provide clues that HH signaling components may intersect with SEMA-regulated 

processes to coordinate cell behaviors, though significant additional research is necessary in this 

area.  

 

1.5.3  Semaphorin Regulation of Hedgehog Signaling: Growing Evidence and Remaining 

Questions 

 The first direct connection between SEMA pathway components and HH signaling was 

discovered by Hillman et. al. in 2011, who provided several lines of evidence that NRPs 

positively regulate HH signaling in vitro and in vivo (Hillman et al., 2011). RNA interference 

against Nrp1, Nrp2, or a combination of Nrp1 and Nrp2 significantly reduces SHH-dependent 

reporter activity in NIH-3T3 fibroblasts, as well as GLI1 and PTCH1 mRNA and protein 

(Hillman et al., 2011). Strikingly, this reduction was equivalent to RNAi against Smo, a key 

positive regulator of HH signaling at the cell surface. Importantly, expression of Nrp1 cDNA 

rescues HH target gene expression following Nrp1 RNAi, and overexpression of Nrp1 cDNA 

promotes HH signaling when the pathway is activated with SHH, SMO agonist (SAG), or co-

expression of a constitutively active form of SMO, SmoM2 (Hillman et al., 2011). Intriguingly, 

NRP1 (but not NRP2) mRNA and protein increased as a result of SHH stimulation, suggesting a 

potential positive feedback loop (Hillman et al., 2011). In vivo, morpholino knockdown of 
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NRP1a in zebrafish embryos disrupted HH-dependent patterning, phenocopying other HH loss-

of-function mutations (Hillman et al., 2011).  

 Several additional studies further support a role for NRP receptors in HH regulation. In 

2015, the same group found that deleting NRP1 and NRP2 in the developing mouse cerebellum 

reduced HH target gene expression and impaired HH-dependent granule neuron precursor (GNP) 

proliferation (Ge et al., 2015). Another study suggested that RNAi knockdown of NRP2 reduced 

HH target gene expression in medulloblastoma cell lines and reduced HH-driven tumorigenicity 

(Hayden Gephart et al., 2013). These studies support earlier findings, which suggest that 

overexpression NRP1 throughout embryos causes pre-axial digit duplication, similar to HH gain-

of-function phenotype in the limb bud (Hui and Joyner, 1993; Kitsukawa et al., 1995). Together, 

these studies strongly support a role for NRPs as positive regulators of HH signal transduction.  

 Despite previous work establishing a role for NRPs in the regulation of HH signaling (Ge 

et al., 2015; Hayden Gephart et al., 2013; Hillman et al., 2011), their mechanism of action in HH 

signal transduction remains elusive. Unlike most cell-surface HH regulators, NRPs are thought to 

act downstream of HH ligands through the NRP cytoplasmic domain (Ge et al., 2015). Published 

data are unclear, however, as to where within the HH intracellular cascade NRPs might exert 

their effects. An early report suggested that NRPs modulate HH signaling between SMO and 

SUFU, since RNAi knockdown of Nrp1 and Nrp2 decreases Gli1 expression in Ptch1-/- but not 

Sufu-/- mouse embryonic fibroblasts (MEFs), and since NRP1 overexpression fails to increase 

HH signaling in Sufu-/- MEFs (Hillman et al., 2011). More recent data, however, indicate that 

NRPs function downstream of SUFU, instead acting to inhibit GLI phosphorylation by PKA, 

which negatively regulates GLI activity (Ge et al., 2015). Contrasting evidence also exists 

regarding SEMA ligand involvement in HH pathway regulation. One study finds that treatment 



31 
 

with SEMA3A or SEMA3F has no effect on the HH response in NIH-3T3 cells (Hillman et al., 

2011), while another finds exactly the opposite, claiming that SEMA3A and SEMA3F binding to 

NRP1 enhances HH signal transduction in NIH-3T3 cells (Ge et al., 2015). Therefore, the precise 

mechanism or mechanisms of NRP-mediated HH regulation remain unclear. Importantly, a role 

for PLXN receptors in HH signaling remains completely unexplored.  

  

1.6 Conclusions 

 The widespread expression of SEMA ligands and their NRP and PLXN receptors, 

combined with the published data on NRP regulation of HH signaling, raise two important 

questions, which I sought to answer when beginning this dissertation: 1) What is the mechanism 

by which NRPs promote HH signaling? 2) Do PLXN co-receptors play a role in HH signal 

transduction? Chapter 2 will focus on the mechanisms of NRP-mediated promotion of HH 

signaling. Specifically, I will provide additional evidence that NRP promotes HH signaling 

through its cytoplasmic domain, characterizing a novel amino acid motif that mediates its 

function. Chapter 2 will also discuss NRP localization to the primary cilium, although we find 

this to be unrelated to its role in HH regulation. Instead, I will present evidence suggesting that 

NRP1 promotes HH signaling at the level of GLI regulation, independent of canonical PKA 

phosphorylation. Chapter 3 highlights a novel role for PLXN regulation of HH signal 

transduction. My data suggest that multiple PLXNs promote HH signaling through GAP activity 

within their cytoplasmic domains. Finally, in Chapter 4, I will discuss my overall interpretations 

of the data and describe future studies related to this work. Together, the data presented here 

provide strong evidence that NRPs and PLXNs modulate HH signaling, and provide preliminary 

clues as to their mechanisms of action. I propose that SEMA receptors, NRPs and PLXNs, are 
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novel HH pathway components that regulate HH signal transduction in both development and 

disease. These analyses will provide fundamental insight into the integration of HH and SEMA 

signaling inputs in a variety of cellular contexts.  
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1.7 Figures 

 

Figure 1-0-1. Overview of vertebrate Hedgehog pathway regulation. 
(Left) In ligand-producing cells, Hedgehog (HH) proteins are synthesized as 45-kDa precursors 
that undergo N-terminal palmitoylation by Skinny Hedgehog (SKN) as well as cholesterol 
modification and autocatalytic cleavage mediated by the HH C-terminus. Lipoprotein (LP)-
associated oligomers are then secreted and released from the cell surface in a process mediated 
by Dispatched (DISP) and Glypicans. Proteins from the SCUBE family shield the cholesterol 
moieties of HH ligand complexes traveling long distances. (Right) On the responding cell, a 
number of cell surface proteins bind to HH ligands to regulate pathway activity, including LRP2, 
CDON/BOC, PTCH1, HHIP1, PTCH2, GAS1, and Glypicans (see text for details). PTCH1 
binding to HH ligand results in the activation of Smoothened (SMO), which regulates an 
intracellular signaling cascade that regulates the balance between GLI transcriptional activators 
and repressors. A number of protein kinases and other molecules regulate GLI proteins within 
the cell, including PKA, DYRK, NUMB, ITCH, KIF7, GSK3b, and CK1. The primary cilium 
(not to scale) is also important for HH pathway regulation, and several HH pathway members 
move into or out of this specialized compartment during signaling. Together, these and other 
molecules coordinate HH pathway activity. Figure adapted from (Wang et al., 2007).   
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Figure 1-0-2. Neuropilins share structural homology within their extracellular domains.  
The Neuropilin (NRP) family of receptors includes two isoforms, NRP1 and NRP2, which share 
approximately 44% overall homology and conserved extracellular domains. The a1 and a2 NRP 
domains are complement binding (CUB) domains, which bind to secreted, class 3 Semaphorin 
ligands. Two coagulation factor V/VIII homology-like (FV/FVIII) domains, labeled b1 and b2, 
mediate interactions with VEGF ligands. The membrane-proximal region of NRP1 and NRP2 
encodes a meprin A5 (MAM) domain (c), which may play a role in NRP dimerization and 
binding to other receptors. A single-pass transmembrane (TM) domain anchors NRPs within the 
plasma membrane, also mediating dimerization through a GxxxG motif. NRPs also contain a 
short, approximately 40 amino-acid cytoplasmic domain (CD), which is dispensable for 
Semaphorin signaling, but binds to PDZ-domain containing proteins through a C-terminal SEA 
motif.  
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Figure 1-0-3. Plexins are organized into four subfamilies based on structural homology. 
The Plexin (PLXN) family of Semaphorin receptors contains nine members, organized into four 
subfamilies as shown. All PLXN family members contain an extracellular SEMA domain, which 
mediates interactions with specific Semaphorin ligands as indicated (S6D=SEMA6D, etc.), as 
well as an intracellular split GTPase activating (GAP) domain, which regulates a variety of 
signaling events. Type-B PLXNs are unique in that they contain a convertase cleavage site as 
well as a C-terminal PDZ-domain binding site. Type-A PLXNs as well as PLXND1 also bind to 
Neuropilin (NRP) receptors to mediate signaling from secreted type 3 Semaphorin ligands.  
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Figure 1-0-4. Semaphorin signaling regulates a wide variety of cellular processes. 
Semaphorin (SEMA) ligands interact with Neuropilin (NRP) – Plexin (PLXN) complexes, or 
bind directly to PLXNs to initiate signaling. While the NRP cytoplasmic domain is dispensable 
for SEMA signaling, the activated PLXN cytoplasmic domain is phosphorylated at several sites 
and exhibits GTPase activating (GAP) activity to regulate many intracellular processes, 
including cell death, axonal transport, actin dynamics, microtubule dynamics, and protein 
translation. The proteins listed are examples of downstream regulators within each category, and 
by no means represent a comprehensive list (see text for details).   
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Figure 1-0-5. Hedgehog and Semaphorin signaling regulate one another through unknown 
mechanisms.  
Shown are simplified representations of proteins from the Hedgehog (HH) signaling cascade 
(Left) and the Semaphorin (SEMA) signaling cascade (Right), including Patched (PTCH1), 
Smoothened (SMO), Gli (GLI), Neuropilin (NRP) and Plexin (PLXN). Members of these two 
pathways share overlapping areas of expression within the developing embryo as well as adult 
and diseased tissues. Published evidence suggests that HH signaling can influence cytoskeletal 
collapse mediated by SEMA signaling, and also that SEMA receptors influence HH target gene 
expression. However, the mechanisms that underlie these cross-regulatory processes remain 
unclear. The focus of this dissertation is to understand how SEMA receptors function within the 
HH signal cascade.  
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Chapter 2: 
 

Neuropilin-1 Promotes Hedgehog Signaling Through a Novel Cytoplasmic Motif 
 

 

2.1 Abstract  

 Hedgehog (HH) signaling critically regulates embryonic and postnatal development as 

well as adult tissue homeostasis, and its perturbation can lead to developmental disorders, birth 

defects, and cancers. Neuropilins (NRPs), which have well-defined roles in Semaphorin and 

VEGF signaling, positively regulate HH pathway function, although their mechanism of action 

in HH signaling remains unclear. Here, using luciferase-based reporter assays, we provide 

evidence that NRP1 regulates HH signaling specifically at the level of GLI transcriptional 

activator function. Moreover, we show that NRP1 localization to the primary cilium, a key 

platform for HH signal transduction, does not correlate with HH signal promotion. Rather, a 

structure–function analysis suggests that the NRP1 cytoplasmic and transmembrane domains are 

necessary and sufficient to regulate HH pathway activity. Furthermore, we identify a previously 

uncharacterized, 12-amino acid region within the NRP1 cytoplasmic domain that mediates HH 

signal promotion. Overall, our results provide mechanistic insight into NRP1 function within and 

potentially beyond the HH signaling pathway. These insights have implications for the 

development of novel modulators of HH-driven developmental disorders and diseases. 
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2.2 Introduction 

 Hedgehog (HH) signaling is essential for tissue patterning and organ formation during 

embryonic and postnatal development as well as tissue homeostasis, renewal, and repair in adult 

animals (Briscoe and Therond, 2013; McMahon et al., 2003; Petrova and Joyner, 2014). 

Deregulation of the HH pathway causes a wide range of developmental abnormalities (Murdoch 

and Copp, 2010; Schachter and Krauss, 2008), as well as a growing number of pediatric and 

adult cancers (Barakat et al., 2010; Teglund and Toftgard, 2010). However, despite the 

widespread importance of HH signaling, our understanding of the mechanisms that regulate HH 

signal transduction remains incomplete.  

 HH signaling is tightly regulated by a number of inputs that together control the function 

of glioma-associated oncogene homolog (GLI) proteins, the transcriptional effectors of the 

mammalian HH pathway (Hui and Angers, 2011). In the absence of HH ligands, the cell surface 

protein Patched 1 (PTCH1) inhibits the activity of Smoothened (SMO), a putative G protein– 

coupled receptor that mediates intracellular HH signal transduction (Byrne et al., 2016; Luchetti 

et al., 2016; Ogden et al., 2008; Riobo et al., 2006). In this “off” state, GLI2 and GLI3 are 

phosphorylated by PKA, GSK3β, and CK1 (Hui and Angers, 2011). As a consequence of this 

phosphorylation, GLI2 is largely degraded, whereas GLI3 is processed into a transcriptional 

repressor (Pan et al., 2006; Wang et al., 2000). HH ligand binding to PTCH1 results in de-

repression of SMO, which initiates a signal transduction cascade that culminates in GLI 

processing into transcriptional activators that modulate target gene expression in a context-

specific manner (Hui and Angers, 2011; Peterson et al., 2012; Vokes et al., 2007; Vokes et al., 

2008). 



69 
 

 Multiple cohorts of cell surface proteins regulate HH pathway activity by binding to HH 

ligand. Dispatched1 (DISP1)  and Signal sequence, CUB domain, EGF-related 2 (SCUBE2) 

tightly control ligand secretion (Creanga et al., 2012; D'Angelo et al., 2015; Tukachinsky et al., 

2012), whereas trafficking and turnover are regulated by low-density lipoprotein receptor-related 

2 (LRP2) and glypicans (GPCs) (Li et al., 2011; Ortmann et al., 2015; Willnow et al., 2012). The 

cell surface components growth arrest-specific 1 (GAS1), CAM-related/downregulated by 

oncogenes (CDON), and brother of CDON (BOC), function as essential co-receptors at the level 

of signal reception (Allen et al., 2011; Izzi et al., 2011). Additionally, ligand interactions with 

Patched 1 (PTCH1), Patched 2 (PTCH2), and Hedgehog Interacting Protein 1 (HHIP1) result in 

pathway antagonism (Holtz et al., 2015; Holtz et al., 2013; Jeong and McMahon, 2005). 

Together, these and other cell surface proteins regulate HH signaling in a multitude of tissues 

throughout embryonic and postnatal development. 

 The Neuropilins (NRPs), a small family comprised of NRP1 and NRP2, have well-

established roles in axon guidance and vascular patterning (Fujisawa, 2004; Gelfand et al., 2014; 

Giger et al., 2000; Gu et al., 2003; Kawasaki et al., 1999; Takashima et al., 2002) and act to 

positively regulate HH signaling at the cell surface (Ge et al., 2015; Hillman et al., 2011). NRPs 

are expressed in a variety of HH-responsive tissues during critical periods of HH-related 

developmental patterning (Gomez et al., 2005; Mauti et al., 2006). Importantly, loss-of-function 

experiments demonstrated that Nrp1a knockdown in zebrafish disrupts HH-dependent somite 

development (Hillman et al., 2011), whereas genetic deletion of Nrp1 and Nrp2 in the mouse 

suppresses HH-driven cerebellar granular neuron progenitor proliferation (Ge et al., 2015). 

Additionally, NRPs exacerbate HH-related cancers, suggesting that they impact both HH-

dependent development and HH-driven disease (Ge et al., 2015; Goel et al., 2013; Hayden 
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Gephart et al., 2013; Pan et al., 2007; Snuderl et al., 2013). Notably, NRPs are thought to act 

downstream of HH ligands (Ge et al., 2015), distinguishing their mode of action from most other 

cell surface regulators of the HH pathway. Previous reports suggest that NRP modulation of HH 

signaling occurs at the level of suppressor of fused (SUFU) (Hillman et al., 2011). More recent 

data, however, suggest that NRPs act downstream of SUFU, regulating GLI phosphorylation by 

interacting with phosphodiesterase 4D (PDE4D), which inhibits PKA (Ge et al., 2015). 

However, the precise mechanism of NRP function in HH signal transduction remains unclear. 

 Here we provide data defining a novel mechanism of NRP action in HH signaling. 

Specifically, we find that NRPs promote HH signaling selectively at the level of GLI activation, 

independent of PKA phosphorylation. We also demonstrate that NRP1, but not NRP2, traffics to 

the primary cilium, a highly regulated subcellular compartment required for vertebrate HH signal 

transduction. Strikingly, NRP1 ciliary localization does not correlate with the promotion of HH 

pathway activity. Instead, we find that membrane-anchored NRP1 cytoplasmic domain (CD) is 

both necessary and sufficient to promote HH pathway activation. Further, we map the region in 

the NRP1 CD that is critical for HH signal promotion to a 12-amino acid motif not previously 

implicated in NRP function. Overall, these data characterize NRPs as a novel class of cell 

surface HH pathway regulators that act downstream of ligand binding through cytoplasmic 

effectors to control HH pathway function. 
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2.3 Results 

2.3.1 Neuropilin-1 and Neuropilin-2 Promote Hedgehog Signaling by Modulating GLI 

Activator Function 

 A previous study showed that NRP1 overexpression increases ligand-stimulated HH 

pathway activity in HH-responsive fibroblasts (Hillman et al., 2011). To confirm and extend 

these findings, we first tested whether NRP1 and NRP2 promote HH signaling using a 

luciferase-based reporter assay system in NIH-3T3 fibroblasts (Nybakken et al., 2005). Although 

the addition of HH ligand is sufficient to induce a transcriptional response, we found that NRP1 

and NRP2 both significantly increase ligand-activated HH pathway activity, as detected by GLI-

dependent luciferase output (Figure 2-1A and Figure 2-9), consistent with a previous report 

(Hillman et al., 2011). Notably, co-expression of Nrp1 and Nrp2 does not significantly change 

the level of NRP-mediated HH pathway promotion (Figure 2-1A). Western blot analysis 

confirmed that HA-tagged NRP1 and NRP2 are expressed at similar levels in NIH-3T3 cells 

(Figure 2-1B). Although NRP1 significantly promoted HH signaling in 90% of assays (n = 8, 

average-fold change 2.04), NRP2 significantly promoted HH signaling in only 40% of assays (n 

= 8, average-fold change 1.36, Figure 2-9). Because of this variability, we decided to focus on 

NRP1 for further analysis. 

 To determine whether HH ligand is required for NRP1-mediated HH signal promotion, 

we activated HH signaling by adding exogenous smoothened agonist (SAG), co-transfecting a 

constitutively active form of Smoothened (SmoM2), or co-transfecting a constitutively active 

form of GLI (GLI2∆N; Figure 2-1, C –F) (Chen et al., 2002; Roessler et al., 2005; Xie et al., 

1998). Strikingly, NRP1 significantly increases the HH-dependent luciferase output, regardless 

of the means of pathway activation (Figure 2-1, D – F). In contrast, NRP1does not alter GLI3-
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mediated repression of Hedgehog signaling (Figure 2-1, G and H). Together, these data support a 

model in which NRP1 acts to selectively regulate GLI activator function downstream of HH 

ligand. 

 

2.3.2 The Membrane-Anchored Neuropilin-1 Cytoplasmic Domain is Necessary and Sufficient 

to Promote Hedgehog Signaling 

 To determine the domain requirements for NRP-mediated promotion of HH signaling, we 

generated a Nrp1 construct lacking the cytoplasmic domain, Nrp1∆CD (Figure 2-2A). Strikingly, 

NRP1∆CD does not promote HH signaling (Figure 2-2B). Western blot analyses in NIH-3T3 cells 

confirmed equal expression of NRP1 and NRP1∆CD (Figure 2-2C). These data are consistent with 

recent results suggesting that NRP1 utilizes its cytoplasmic domain to promote HH pathway 

activity (Ge et al., 2015). However, in contrast to previous work, a version of NRP1 that lacks all 

functional extracellular domains (NRP1∆ECD) is sufficient to promote HH signaling (Figure 2-2, 

A and B). Western blot analysis confirmed NRP1∆ECD expression (Figure 2-2C). 

Immunofluorescent analysis of NRP1, NRP1∆CD, and NRP1∆ECD under permeabilizing and non-

permeabilizing conditions using dual extracellular and intracellular antibody staining confirmed 

the cell surface localization of NRP1 and NRP1∆CD (Figure 2-2D and Figure 2-10). To further 

explore the requirement for the NRP1 CD in HH signaling, we generated a cytosolic version of 

the CD that is not membrane-tethered (NRP1CD). Notably, transfection of Nrp1CD is not 

sufficient to promote HH signaling in NIH-3T3 cells (Figure 2-11), suggesting a role for the 

NRP1 transmembrane (TM) domain in HH signal promotion. Together, these data suggest that 

the membrane-anchored NRP1 CD is both necessary and sufficient to promote HH signaling. 
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2.3.3 Neuropilin-1 Transmembrane Dimerization is not Required for Hedgehog Signal 

Promotion 

Neuropilin TM dimerization is mediated by a double GXXXG motif in the TM domain 

that stabilizes signaling complexes for both Semaphorin and VEGF ligands (Roth et al., 2008). 

Mutating the three glycine residues within the double GXXXG motif to valines completely 

disrupts dimerization and blocks NRP1 function in Semaphorin signaling (Roth et al., 2008). To 

determine whether NRP1 TM dimerization is required for HH signal promotion, we recreated 

these three glycine mutations in both NRP1 (Figure 2-3A) and NRP1∆ECD (Figure 2-3B). 

Strikingly, these mutations do not impair the ability of either construct to promote HH signaling 

(Figure 2-3), suggesting that NRP1 membrane attachment, but not TM dimerization, is required 

for its function in HH signaling. 

 

2.3.4 Neuorpilin1 Promotes Hedgehog Signaling Independently of GLI2 Phosphorylation by 

Protein Kinase A 

Previous work has suggested that NRPs regulate HH signaling by recruiting PDE4D to 

the cell membrane (Ge et al., 2015). PDE4D negatively regulates PKA activity by locally 

reducing levels of cAMP (Beavo and Brunton, 2002). PKA phosphorylates GLI transcription 

factors at a number of consensus and non-consensus sites to regulate their activity, including six 

consensus sites within the activation domain of GLI2 that are sufficient to repress GLI2 activity 

(Niewiadomski et al., 2014; Pan et al., 2006; Wang et al., 2000). To test whether the NRP1 CD 

modulates HH activity through PKA-dependent GLI phosphorylation, we generated serine-to-

alanine mutations at the six consensus PKA phosphorylation sites critical for GLI2 repression 

(Niewiadomski et al., 2014; Pan et al., 2006; Wang et al., 2000) (GLI2P1–6, Figure 2-4A). As 
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expected, GLI2P1–6 expression results in a significant increase in HH signaling compared with 

WT GLI2 (Figure 2-4B). Although GLI2 stimulates HH signaling less effectively than its 

constitutively active counterpart GLI2DN, we still observed a reliable increase in activity with 

Nrp1 co-expression Figure 2-4B). This increase was not observed when we co-expressed 

Nrp1DCD, consistent with previous results (Figure 2-4B, cf. Figure 2-2B). Surprisingly, Nrp1 still 

promotes HH signaling when co-ex pressed with GLI2P1–6, suggesting that NRP1 regulates GLI 

activity independently of PKA phosphorylation. Importantly, Nrp1∆CD does not promote 

signaling when co-expressed with GLI2P1–6, indicating that this PKA-independent promotion of 

HH signaling still requires the NRP1 CD (Figure 2-4B). 

 

2.3.5 Identification of a Novel Neuropilin-1 Cytoplasmic Motif that Mediates Hedgehog Signal 

Promotion 

To elucidate which region of the NRP1 CD promotes HH pathway activation, we initially 

targeted a highly conserved, C-terminal SEA motif described previously to bind PDZ-containing 

proteins, as this is the only region of the NRP1 CD with any previously ascribed function (Cai 

and Reed, 1999). Notably, adding a C-terminal HA tag to NRP1 itself could block PDZ binding 

at the SEA motif. However, NRP1 was able to promote HH signaling equally well, regardless of 

whether we placed the tag at its C terminus or N terminus (Figure 2-2; data not shown). 

Furthermore, deleting the NRP1 SEA (NRP1∆920–922, Figure 2-5A) did not impair NRP1-

mediated promotion of HH signaling in NIH-3T3 cells (Figure 2-5B). To narrow the region of 

the NRP1 CD that mediates HH signaling, we deleted the N-terminal 20 amino acids of the 

NRP1 CD (NRP1∆883–902, Figure 2-5A) and assessed function in NIH-3T3 HH signaling assays. 

Strikingly, NRP1∆883–902 failed to promote HH signaling (Figure 2-5C), suggesting that the 
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residues required for NRP regulation of HH activity are located in the membrane-proximal half 

of the NRP1 CD. Western blot analyses confirmed expression of NRP1∆883–902 (Figure 2-5F), and 

immunofluorescent staining under non-permeabilizing conditions confirmed that NRP1∆883–902 

properly localizes to the cell surface (Figure 2-5G). We then asked whether restoring part of this 

region would rescue NRP1 function in HH signaling; however, NRP1∆890–922 still failed to 

promote signaling (Figure 2-5D). Ultimately, adding back 12 additional residues from amino 

acid 890–902 (NRP1∆902–922) rescued NRP1-mediated promotion of HH signaling equivalently to 

full-length NRP1 (Figure 2-5E), confirming the importance of this region to NRP1 function in 

HH signaling. Although this 12-amino acid region has no previously described function, we 

noted the presence of two serine residues and a tyrosine residue in this motif. To investigate 

whether phosphorylation at these sites might regulate NRP function, we mutated these residues 

to alanine. Remarkably, alanine mutagenesis of these residues does not alter NRP1 promotion of 

HH signaling (Figure 2-12). Together, these data suggest that a conserved, 12-amino acid region 

of the NRP1 CD between amino acids 890 and 902 plays an essential role in HH signal 

promotion through selective regulation of GLI activator function. 

 

2.3.6 Neuoropilin-1, but not Neuropilin-2, Localizes to Primary Cilia in Hedgehog-Responsive 

Fibroblasts 

The primary cilium is a highly regulated subcellular compartment into which molecules 

over 40 kDa cannot freely diffuse (Kee et al., 2012), and an intact cilium is important for HH 

signaling to proceed normally (Goetz and Anderson, 2010). Given that NRP1 regulates HH 

signaling through the modulation of GLI activity, and that GLI proteins localize to cilia and 
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require intact cilia for their processing and function (Wong et al., 2009), we asked whether NRPs 

localize to the primary cilium. 

To assess primary cilia localization, we expressed Nrp1 and Nrp2 in WT and Dynein-

mutant (Dync2h1lln/lln) mouse embryonic fibroblasts (MEFs) (Figure 2-6). Dynein motors 

mediate retrograde transport of ciliary components; thus, cilia-localized proteins accumulate 

within the primary cilium of Dynein-mutant MEFs, allowing for more robust detection (Ocbina 

et al., 2011). We found that NRP1, but not NRP2, localizes to primary cilia (identified with anti-

acetylated tubulin, AcTub) in WT and Dynein-mutant MEFs (Figure 2-6). NRP1 was detected in 

51% of cilia in WT MEFs and further enriched in dynein-mutant MEFs, with 68% of cilia 

positive for NRP1 (Figure 2-6, A, E, I, and J). NRP2, on the other hand, was only detected in 

primary cilia in 9% of Dynein-mutant MEFs, with no ciliary localization observed in WT MEFs 

(Figure 2-6, B, F, I, and J). As a positive control, SMOM2 robustly localizes to the primary 

cilium in both WT and Dynein-mutant MEFs (98% of cilia in each group; Figure 2-6, C, G, I, 

and J), consistent with previous findings (Corbit et al., 2005). In contrast, BOC, a cell surface–

localized HH co-receptor (Kang et al., 2002; Tenzen et al., 2006), was detected broadly 

throughout the cell surface but was not observed in primary cilia (Figure 2-6, D and H–J). 

Importantly, no HA staining was observed in the cilia of vector-transfected cells (Figure 2-13). 

To further confirm these data, we stained WT and Dynein-mutant MEFs for endogenous NRP1 

and detected NRP1 localization to primary cilia (Figure 2-6K). These results suggest that NRP1, 

but not NRP2, localizes to the primary cilium of HH-responsive fibroblasts. 
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2.3.7 Neuropilin-1 Localization to Primary Cilia does not Correlate with Hedgehog Signal 

Promotion 

Although both NRP1 and NRP2 promote HH signaling, our data indicate that NRP1 

functions more consistently than NRP2 in our cell signaling assays (Figure 2-9). Given that 

NRP1 preferentially localizes to primary cilia, we assessed the requirement for NRP1 cilia 

localization in HH signal promotion, taking advantage of two of the deletion constructs described 

previously, Nrp1∆ECD and Nrp1∆902–922. Notably, both of these constructs robustly promoted HH 

signaling (Figure 2-2B, Figure 2-5E, and Figure 2-7E). We performed immunofluorescent 

staining to examine the ciliary localization of NRP1, NRP1∆ECD, or NRP∆1902–922 in NIH-3T3 

cells (Figure 2-6). Although NRP1 localizes to primary cilia in roughly 40% of transfected cells 

(Figure 2-7, A and D), both NRP1∆ECD and NRP1∆902–922 displayed significantly reduced 

localization to primary cilia (Figure 2-7, B–D). Taken together, these results suggest that cilia 

localization does not correlate with NRP1-mediated promotion of HH signal transduction. 

 

2.4 Discussion 

Cell surface regulation of the HH signaling pathway is essential for proper tissue 

patterning during embryonic and postnatal development as well as adult tissue homeostasis, 

repair, and regeneration (Allen et al., 2011; Han et al., 2008; Hooper and Scott, 2005; Hsu et al., 

2014; Izzi et al., 2011; Murdoch and Copp, 2010). Conversely, deregulation of HH cell surface 

components contributes to HH-driven birth defects and cancers (Lee et al., 2010; Mathew et al., 

2014; Milenkovic et al., 1999; Mille et al., 2014; Mo et al., 1997; Zhang et al., 2006). NRPs are 

also implicated in numerous human cancers (Prud'homme and Glinka, 2012; Snuderl et al., 

2013). Notably, Nrp2 knockdown increases survival in a HH-dependent mouse model of 
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medulloblastoma (Hayden Gephart et al., 2013). Here we present evidence that NRPs promote 

HH signaling intracellularly by regulating GLI activator function. Further, we report that NRP1 

localizes to the primary cilium; however, this localization does not correlate with NRP1-

mediated promotion of HH signaling. Instead, we determine that the NRP1 CD and TM domains 

are necessary and sufficient to promote HH signal transduction. Finally, we identify a novel 

region of the NRP1 CD as essential for this process, a region not previously implicated in NRP1 

function. Taken together, these findings identify the membrane-tethered NRP1 CD as a key 

positive regulator of HH signal transduction via selective regulation of GLI activator function. 

 

2.4.1 Neuropilins as a Novel Class of Ligand-Independent Hedgehog Cell Surface Regulators    

 Numerous cell surface proteins promote HH pathway activity through interactions with 

HH ligands (Allen et al., 2011; Christ et al., 2012; Holtz et al., 2015; Holtz et al., 2013; Izzi et 

al., 2011; Jeong and McMahon, 2005; Kwong et al., 2014; Li et al., 2011; Milenkovic et al., 

1999). Our data suggest that, unlike these proteins, cell surface–localized NRPs act downstream 

of ligand to regulate HH signaling. Indeed, NRP1 promotes HH pathway activity even when 

signaling is stimulated by GLI2∆N, a constitutive transcriptional activator, strongly suggesting 

that NRPs function at the level of GLI regulation. More specifically, our data suggest that NRPs 

regulate GLI activator function selectively, failing to impair GLI3 repressor activity. 

 Although the precise mechanism of NRP-mediated regulation of GLI function remains 

unclear, our data are consistent with NRPs acting downstream of SUFU at the level of GLI 

function, since GLI2∆N is not regulated by SUFU (Han et al., 2015). Importantly, we find that 

Nrp1 still promotes HH pathway activity when co-transfected with GLI2P1–6, a version of GLI2 

that cannot be phosphorylated by PKA at six critical repressive sites. Therefore, in contrast to 
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previous work (Ge et al., 2015), our data suggest that NRP1 promotion of HH signaling is 

independent of PKA-mediated phosphorylation of GLI2. It is possible that NRP binding to 

PDE4D could impact PKA-dependent phosphorylation at non-consensus sites (Niewiadomski et 

al., 2014) or affect GSK3β activity, which is also regulated by cAMP (Khaled et al., 2002); 

further experiments are required to investigate these possibilities. Also worth considering is that 

NRP knockdown does not change the amount of GLI in the primary cilium (Hillman et al., 

2011), suggesting that NRPs may regulate GLI proteins after they have been processed in the 

cilium, perhaps by regulating GSK3β, affecting degradation of GLI activators, or impacting 

endocytosis. Overall, our findings suggest that the NRP1 CD regulates GLI proteins 

intracellularly, independently of HH ligand binding and independently of PKA-mediated GLI 

phosphorylation. 

 Although NRPs promote signaling downstream of HH ligand, it remains unclear whether 

Semaphorin ligands can contribute to HH signal promotion. Class 3 Semaphorin ligands interact 

with the extracellular domains of NRP1 and NRP2 (Gu et al., 2002; Neufeld and Kessler, 2008). 

Although two previous studies present contrasting results regarding Semaphorin ligand 

involvement in HH signal regulation (Ge et al., 2015; Hillman et al., 2011), our data suggest that 

Semaphorin ligand binding is not required because the NRP1 extracellular domain is dispensable 

for HH signal promotion. We cannot exclude the possibility that Semaphorins or other NRP-

binding ligands might still modulate HH activity. In addition to Semaphorins and VEGFs, NRPs 

interact with a wide variety of other proteins, including PIGF-2, heparan sulfate, TFG-β1, HGF, 

PDGF, FGF, L1-CAM, Plexins, and integrins (Prud'homme and Glinka, 2012). It is possible that 

NRP interactions with these or other binding partners also contribute to the promotion of HH 

signaling. 
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2.4.2 Identification of a Cytoplasmic Motif in Neuropilin-1 that Mediates Hedgehog Signal 

Transduction 

 Our data indicate that the membrane-attached NRP1 CD is necessary and sufficient to 

promote HH signaling. Notably, this contrasts with the HH co-receptors CDON and BOC, whose 

cytoplasmic domains are dispensable for HH signal promotion (Song et al., 2015; Tenzen et al., 

2006). NRP1 and NRP2 share several areas of conservation, including a carboxyl-terminal SEA 

motif that binds the PDZ-containing protein GIPC1 (Cai and Reed, 1999; De Vries et al., 1998; 

Gao et al., 2000; Prahst et al., 2008). Strikingly, our data indicate that this motif is not required 

for HH signal promotion. Instead, we present evidence that a previously uncharacterized region 

of the NRP1 cytoplasmic domain between amino acids 890 and 902 is required for HH signal 

promotion (Figure 2-8). Notably, this motif is highly conserved across vertebrate species, 

including chicken, frog, zebrafish, mouse, rat, and human. This region is also only partially 

conserved between NRP1 and NRP2, suggesting potential differences in the way the two 

proteins function in HH signaling. Further analyses will be needed to narrow this region to the 

exact amino acids necessary for HH regulation and determine the degree of overlap between 

NRP1 and NRP2 function. Others have reported that genetic deletion of the NRP1 cytoplasmic 

domain in mice results in defective spatial separation between arteries and veins (Fantin et al., 

2011), although no HH-dependent phenotypes have been reported. It is likely that redundancy 

with NRP2 functionally compensates for NRP1 loss in the promotion of HH signaling, as has 

been reported in both zebrafish and mice (Ge et al., 2015; Hillman et al., 2011). 

 It remains unclear exactly how this 12-amino acid cytoplasmic region mediates NRP1 

function in HH signaling. We have mutated several conserved serine and tyrosine residues 
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located in this region, ruling out the possibility that phosphorylation of these residues affects 

downstream signaling. One possibility is that this region interacts directly or indirectly with 

PDE4D, which regulates PKA and could modify GLI proteins through non-consensus 

phosphorylation sites or through other kinases, as discussed previously. Alternatively, a recent 

publication identifies a suite of additional intracellular molecules that interact with the NRP 

cytoplasmic domain, including MYH9, MYH10, DYHC1, FLNA, EF1α1, and ENO1 (Seerapu et 

al., 2013). These molecules may also interact with amino acids 890–902 to mediate GLI 

regulation, although significant future studies will be required to analyze their potential roles in 

HH signal transduction. It is also possible that this motif could regulate the conformation or 

subcellular localization of NRP1 or perhaps play a role in regulating endocytosis of other 

proteins (see below). 

 Another aspect to consider in NRP1 function is its ability to homodimerize and 

heterodimerize with NRP2 (Roth et al., 2008; Sawma et al., 2014). Our data suggest that 

mutation of the dimerization motif in the NRP1 TM domain does not impact its ability to 

promote HH pathway function, in contrast to an important role for NRP TM dimerization in 

Semaphorin signaling (Roth et al., 2008). Similar to the involvement of Semaphorin ligands, the 

possibility remains that NRP TM dimerization is not required but may somehow modulate HH 

signaling. It is also possible that NRP interactions with other TM proteins, such as VEGF 

receptors, Plexins, FGF receptors, or PDGF receptors, may contribute to HH signal promotion 

(Muhl et al., 2017; Prud'homme and Glinka, 2012), although many of these receptors interact 

with NRP1 through its extracellular domain, which, as our data indicate, is dispensable for NRP1 

function in HH signaling. 
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2.4.3 Neuropilin-1 Ciliary Localization does not Correlate with Increased Hedgehog Signal 

Promotion 

Our data suggest that, although NRP1 can localize to primary cilia, mutant constructs with 

reduced cilia localization still promote HH signal transduction. Although actual entry into the 

highly regulated ciliary compartment does not correlate with NRP-mediated promotion of HH 

signaling, we cannot exclude the possibility that the low levels of cilia localization we observe 

may be sufficient to impact HH signal transduction. Alternatively, NRPs may play an important 

role elsewhere in the cell, perhaps even at the ciliary base. Accordingly, NRP1, NRP2, 

NRP1∆ECD, and NRP1∆902–922 were all detected broadly throughout the cell membrane, including 

at the base of the cilium. Although cytosolic splice variants of NRP1 do exist (Cackowski et al., 

2004; Gagnon et al., 2000; Rossignol et al., 2000), expression of a cytosolic version of the NRP1 

cytoplasmic domain fails to promote HH signaling, suggesting that NRP1 must reach the cell 

surface to impact HH signaling. NRPs are commonly internalized through endocytosis (Lanahan 

et al., 2013; Pang et al., 2014); thus, it is possible that endocytic vesicle-associated NRPs affect 

PKA or GLI function. 

 Together, these data raise the question of why NRP1 localizes to the primary cilium. One 

possibility is that NRP1 (compared with NRP2) preferentially binds to another protein that 

mediates its localization to primary cilia. Alternatively, some parallels have been drawn between 

cilia and dendritic spines, including the presence of a regulated diffusion barrier (Nechipurenko 

et al., 2013). It is possible that NRP localization to primary cilia is a byproduct of its role in 

dendritic spines or other similarly regulated structures. Perhaps the same sequences or 

mechanisms that allow NRP entry into dendrites and axons also allow their entry into the 

primary cilium, with or without functional consequence. NRP1 plays well-defined roles in many 
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different signaling pathways (Prud'homme and Glinka, 2012), any of which might rely on cilium 

localization of NRP1 for proper function. Interestingly, NRP1 has several roles that differ from 

NRP2, including axon guidance in response to specific class 3 Semaphorins and angiogenesis 

(Hatanaka et al., 2009). Furthermore, NRP1 and NRP2 are expressed in overlapping and distinct 

cell types during development, some of which rely on primary cilia for proper function. For 

example, NRP1 is expressed predominantly in arterial endothelial cells, which are thought to rely 

on mechanosensory cilia for homeostasis (Nauli et al., 2011), whereas NRP2 is expressed 

predominantly in venous and lymphatic endothelial cells (Prud'homme and Glinka, 2012). These 

or potentially other undiscovered functions may result from differential subcellular localization 

of NRP1 and NRP2 relative to the cilium. 

 

2.5 Materials and Methods 

Neuropilin and GLI constructs 

Nrp and GLI constructs were derived from full-length cDNAs using standard molecular 

biology techniques. All constructs were cloned into the pCIG vector, which contains a CMV 

enhancer, chicken β actin promoter, and an internal ribosome entry site with a nuclear enhanced 

GFP reporter (3XNLSEGFP) (Megason and McMahon, 2002). C-terminal or N-terminal HA 

tags (YPYDVPDYA) were added to the constructs as indicated. Subsequent deletion and 

mutation variants were generated using the QuikChange II XL site-directed mutagenesis kit 

(Agilent Technologies 200521). To mutagenize the dimerization motif within the NRP1 TM 

domain, primer sequences were as follows: 

gtacagcacaactacacatactgcaaccaggagtaccaccagggcactcat (forward) and 

atgagtgccctggtggtactcctggttgcagtatgtgtagttgtgctgtac (reverse). To mutagenize the serines and 
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tyrosine within the membrane-proximal half of the NRP1 CD, primer sequences were as follows: 

gttctccagggcagctaggttcgcttccgccatcccattgtgcc (forward), 

atccacaagttcaaagttagcgttctccagggcagctagg (forward), 

ggcacaatgggatggcggaagcgaacctagctgccctggagaac (reverse), and 

cctagctgccctggagaacgctaactttgaacttgtggat (reverse). The GLI2P1–6 construct was created by 

synthesizing a 1.4-kb portion of human GLI2 containing serine-to-alanine mutations at residues 

808, 824, 836, 867, 941, and 970 using Invitrogen GeneArt gene synthesis (Thermo Fisher 

Scientific) and cloning into full-length human GLI2 using endogenous AgeI and NheI sites. 

 

Cell Culture 

 Cell lines were maintained in DMEM (Life Technologies, 1965) supplemented with 10% 

bovine calf serum (ATCC, 30-2030) and 1 x penicillin – streptomycin-L-glutamine (Life 

Technologies, 10378016). Cultures were kept at 37 °C with 5% CO2 and 95% humidity. 

 

Cell Signaling Assays 

 Luciferase-based reporter assays to assess HH signaling in NIH-3T3 cells were 

performed as described previously using a ptc∆136-GL3 reporter construct (Nybakken et al., 

2005). Briefly, cells were seeded at 2.5 X 104 cells/well into gelatin-coated 24-well plates. The 

next day, cells were transfected with empty vector (pCIG) or experimental constructs along with 

a luciferase reporter construct and β-galactosidase transfection control (pSV-β-galactosidase, 

Promega, E1081). Transfections were performed using Lipofectamine 2000 (Invitrogen, 11668) 

and Opti-MEM reduced serum medium (Invitrogen, 31985). 48 h after transfection, the culture 

medium was replaced with low-serum medium (0.5% bovine calf serum, 1% penicillin—
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streptomycin—L-glutamine) containing either control or N-terminal SHH (NSHH)-conditioned 

medium. Alternatively, SAG (Sigma-Aldrich, SML1314) was added at a concentration of 300 

nM to activate HH signaling. Luciferase reporter activity and β-galactosidase activity were 

measured 48 h later on a Spectramax M5e plate reader (Molecular Devices) using the luciferase 

assay system (Promega, E1501) and the Betafluor β-galactosidase assay kit (EMD Millipore, 

70979), respectively. Luciferase values were divided by β-galactosidase activity to control for 

transfection, and data were reported as -fold induction relative to the vector-transfected control. 

All treatments were performed in triplicate and averaged, with error bars representing the 

standard deviation between triplicate wells. Student’s t tests were used to determine whether 

each treatment was significantly different from the control, with p values of 0.05 or less 

considered statistically significant. 

 

Immunofluorescent Analysis 

Dynein-mutant (Dyn2h1lln/lln) and wide-type littermate control MEFs (generously 

provided by Dr. Kathryn V. Anderson, Memorial Sloan Kettering (Ocbina et al., 2011)), were 

plated at 1.5 X 105 cells/well in a 6-well dish with a coverslip at the bottom of each well. Cells 

were transfected 24 h after plating using Lipofectamine 2000 (Invitrogen, 11668) and Opti-MEM 

reduced serum medium (Invitrogen, 31985). Approximately 6 h after transfection, cells were 

placed in low-serum medium (0.5% bovine calf serum, 1% penicillin—streptomycin–L-

glutamine) for 48 h. Cells were then fixed in 4% paraformaldehyde for 10 min at room 

temperature, washed with PBS, and permeabilized with 0.2% Triton X-100 in PBS for 5 min 

before antibodies were added. Primary antibodies included mouse IgG1 anti-HA.11 (1:1000, 

Biolegend, 901502), goat IgG anti-NRP1 (1:100, R&D Systems, AF566), and mouse IgG2b anti-
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acetylated tubulin (1:2500, Sigma-Aldrich, T7451). Coverslips were incubated with primary 

antibodies overnight, followed by a 10-min DAPI stain (1:30,000 at room temperature, 

Invitrogen, D1306) and 1 h incubation with secondary antibodies, including Alexa Fluor 546 

goat anti-mouse IgG1 (Υ1), Alexa Fluor 488 donkey anti-goat IgG, Alexa Fluor 488 goat anti-

mouse IgG2b, and Alexa Fluor 555 goat anti-mouse IgG2b (1:500, Invitrogen, A21123, A21202, 

A21141, and A21147, respectively). Coverslips were mounted to glass slides using Shandon 

ImmuMount mounting medium (Fisher, 9990412). Immunofluorescent analysis and imaging 

were performed on a Leica SP5X upright two-photon confocal microscope using LAS AF 

software (Leica) and a Leica X63 (type, HC Plan Apochromat CS2; NA1.2) water immersion 

objective. Cilium counts were performed in a single-blind fashion. Control constructs included 

Boc and SmoM2. 

 

Western Blot Analysis 

COS-7 or NIH-3T3 cells were transfected using Lipofectamine 2000 (Invitrogen, 11668) 

and Opti-MEM reduced serum medium (Invitrogen, 31985). Cells were lysed in radioimmune 

precipitation assay buffer (50 mM Tris-HCl (pH 7.2), 150 mM NaCl, 0.1% Triton X-100, 1% 

sodium deoxycholate, and 5 mM EDTA) 48 h after transfection, sonicated using a Fisher 

Scientific sonic dismembrator, model 500 (four pulses at 20%), and centrifuged at 14,000 X g for 

25 min at 4 °C to remove the insoluble fraction. Protein concentrations were determined using a 

BCA protein assay kit (Fisher, PI23225). After boiling for 10 min, 50 µg of protein from each 

sample was separated using SDS-PAGE with 7.5–12.5% gels and transferred onto Immun-Blot 

PVDF membranes (Bio-Rad, 162-0177). Membranes were washed in TBS with 0.5% OmniPur 

Tween 20 (TBST, EMD Millipore, 9480) and blocked in Western blocking buffer (30 g/liter 
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bovine serum albumin with 0.2% NaN3 in TBST) for 1 h to overnight. Blots were probed with 

the following antibodies: mouse IgG1 anti-HA.11 (1:1000, Covance, MMS-101P-200), goat IgG 

anti-Neuropilin-1 (1:100, R&D Systems, AF566), and mouse IgG1 anti-β-tubulin (1:10,000, 

generously provided by Dr. Kristen J. Verhey, University of Michigan). Secondary antibodies 

were diluted 1:10,000 and included peroxidase-conjugated AffiniPure goat anti-mouse IgG, light 

chain–specific (Jackson ImmunoResearch, 115-035-174), and peroxidase-conjugated AffiniPure 

donkey anti-goat IgG, light chain–specific (Jackson ImmunoResearch, 705-035-147). Immobilon 

Western Chemiluminescent HRP substrate (EMD Millipore, WBKLS0500) was added for 10 

min before membranes were exposed to HyBlot CL autoradiography film (Denville, E3018) and 

developed using a Konica Minolta SRX-101A medical film processor. 
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2.8 Figures 
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Figure 2-1. Neuropilin-1 promotes Hedgehog signaling at the level of GLI activation.   
 A. HH-dependent luciferase reporter activity measured in NIH-3T3 cells transfected with the 
indicated constructs and stimulated with NSHH-conditioned medium (NSHH). Data are reported 
as mean -fold induction ± S.D., with p values calculated using two-tailed Student’s t test. n.s., 
not significant. B. top, Western blot analysis of NIH-3T3 lysates collected from cells expressing 
the indicated HA-tagged proteins. Bottom, quantitation of NRP levels relative to β-tubulin. a-β-
Tub, anti-β-tubulin. C. schematic of various modes of HH pathway activation at the level of 
ligand (HH), small-molecule SMO agonist (SAG), oncogenic SMO mutations (SMOM2), and 
constitutive GLI activator (GLI2∆N). D–F. luciferase reporter activity similar to A in NIH-3T3 
cells stimulated with SAG (D) or co-transfected with SmoM2 (E) or GLI2∆N (F). G and H. 
luciferase reporter activity similar to A in NIH-3T3 cells transfected with the Gli3 repressor. 
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Figure 2-2. Neuropilin-1 cytoplasmic and transmembrane domains are necessary and 
sufficient to promote Hedgehog signaling.  
A. Schematic of full-length NRP1, NRP1∆CD, and NRP1∆ECD. Dotted lines indicate regions that 
were deleted in each construct. B. HH-dependent luciferase reporter activity measured in NIH-
3T3 cells transfected with the indicated constructs and stimulated with NSHH-conditioned 
medium (+NSHH). Data are reported as mean -fold induction ± S.D., with p values calculated 
using two-tailed Student’s t tests. n.s., not significant. C. Western blot analysis of HA-tagged 
protein expression in NIH-3T3 cells. Anti-β-tubulin (a-β-Tub) was used as loading control. 
Right, quantitation of NRP1 and NRP1∆CD levels relative to β-tubulin. D. antibody detection of 
an extracellular NRP1 epitope (α-NRP1, red) and an intracellular HA tag (α-HA, red) in 
permeabilized (left panels) and non-permeabilized (center and right panels) conditions to assess 
cell surface localization of NRP1, NRP1∆CD, and NRP1∆ECD. Nuclear GFP (green) indicates 
transfected cells, whereas DAPI (blue) marks all nuclei. Shown are diagrams of each construct, 
with brackets indicating antibody-binding sites. Scale bar = 10 µm. 
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Figure 2-3. Neuropilin-1 transmembrane dimerization is not required to promote 
Hedgehog signaling.  
A. Left, schematic of full-length NRP1 and NRP1G-V, in which three glycine residues are mutated 
to valines. Right, HH-dependent luciferase reporter activity measured in NIH-3T3 cells 
transfected with the indicated constructs and stimulated with NSHH-conditioned medium (+ 
NSHH). Data are reported as mean -fold induction ± S.D with p values calculated using two-
tailed Student’s t tests. n.s., not significant. B. left, schematic of NRP1∆ECD and 
NRP1ECD∆ECD_G-V. Right, HH-dependent luciferase reporter activity measured in NIH-3T3 cells 
transfected with the indicated constructs and stimulated with NSHH-conditioned medium. Data 
are reported as mean -fold induction ± S.D., with p values calculated using two-tailed Student’s t 
tests. 
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Figure 2-4. GLI2 phosphorylation by Protein Kinase A is not required for Neuropilin-1-
mediated Hedgehog promotion.  
A. Diagram of GLI2 indicating the repressor domain (rep), SUFU binding region (sb), zinc 
finger binding domain (zn), and activation domain (act). Asterisks mark consensus PKA 
phosphorylation sites, whereas dots mark non-consensus sites. Red bars indicate locations of 
serine-to-alanine mutations to disrupt PKA phosphorylation at six key repressive sites. B. 
luciferase reporter activity in NIH-3T3 cells transfected with Nrp and GLI2 constructs as 
indicated. Data are reported as mean -fold induction ± S.D., with p values calculated using two-
tailed Student’s t tests. 
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Figure 2-5. Identification of a 12-amino acid motif in the Neuropilin-1 cytoplasmic domain 
required for Hedgehog signal promotion.  
A. Diagram of the NRP cytoplasmic domain, with amino acid number indicated (top) and 
deletions indicated by dotted lines. B–E. luciferase reporter activity in NIH-3T3 cells transfected 
with NRP constructs as indicated and stimulated with NSHH-conditioned medium (+ NSHH). 
Data are reported as mean -fold induction ± S.D., with p values calculated using two-tailed 
Student’s t tests. F, top, Western blot analysis of HA-tagged protein levels in NIH-3T3 cell 
lysates with detection of β-tubulin (β-Tub) as a loading control. Bottom, quantitation of NRP 
levels relative to β-tubulin. G, antibody detection of an extracellular NRP1 epitope (α-NRP1, 
red) in non-permeabilized NIH-3T3 cells to assess cell surface localization of NRP1, NRP1∆ECD, 
NRP1∆883–902, and NRP1∆890–922. Nuclear GFP (green) indicates transfected cells, whereas DAPI 
(blue) marks all nuclei. Note that NRP1∆ECD lacks the NRP1 antibody epitope and served as a 
negative control. Scale bar = 10 µm. 
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Figure 2-6. Neuropilin-1, but not Neuropilin-2, localizes to primary cilia in Hedgehog-
responsive fibroblasts. 
A–H. Antibody detection of HA/YFP (green) and primary cilia (red, AcTub) in WT (top) and 
Dynein-mutant (Dync2h1lln/lln) MEFs (bottom). Dync2h1lln/lln MEFs exhibit impaired retrograde 
transport out of primary cilia. Arrows indicate the location of primary cilia. Insets show higher-
magnification views of primary cilia in individual (left and center) and merged (right) channels. 
DAPI indicates nuclei (blue). I and J. quantitation of data represented in images from WT (left) 
and Dync2h1lln/lln (right) MEFs, reported as mean ± S.D., with scatterplot values indicating 
averages of three independent experiments and the total number of cells analyzed listed below 
each bar. Data are reported from at least three independent experiments. K. Antibody detection 
of endogenous NRP1 in WT (left panel) and Dync2h1lln/lln (right panel) MEFs. Scale bar = 10 
µm, inset scale bar = 1 µm. 



98 
 

 
 
Figure 2-7. Ciliary localization of Neuropilin-1 does not correlate with Hedgehog signal 
promotion.  
 A–C. antibody detection of NRP1 (A), NRP1∆ECD (B), and NRP1∆902–922 (C) in NIH-3T3 cells 
(HA, green; AcTub, red; DAPI, blue). D. chart summarizing the structure (top) and cilium 
localization (bottom) of each construct imaged on the left. n = 165, 166, and 162 cells for Nrp1, 
Nrp1∆ECD, and Nrp1∆902–922, respectively. Scatterplot values indicate averages of three 
independent experiments, with column height indicating the overall average ± S.D. E. luciferase 
reporter activity in NIH-3T3 cells transfected with constructs as indicated and stimulated with 
NSHH-conditioned medium (+ NSHH). Data are reported as mean –fold induction ± S.D., with p 
values calculated using two-tailed Student’s t tests. n.s., not significant. Scale bar = 10 µm, inset 
scale bar = 1 µm. 
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Figure 2-8. Summary and model of Neuropilin function in Hedgehog signal transduction.  
Top left panel, chart summarizing requirements for the NRP1 extracellular domain, dimerization 
domain, cytoplasmic domain, and cilia localization in HH and Semaphorin signaling. Bottom 
panel, schematic of NRP expression throughout the cell surface, including in primary cilia. Top 
right panel, cell surface–localized NRP1 mediates HH signaling through its cytoplasmic domain, 
specifically requiring amino acids 890 – 902. This contrasts with the extracellular domain, which 
is required for Semaphorin signaling, and a conserved SEA motif that is required for VEGF 
signaling. The NRP1 cytoplasmic domain regulates HH signaling at the level of GLI activity, 
increasing GLI transcriptional activation through an unknown mechanism. 
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Figure 2-9. Optimization of NIH-3T3 transfection conditions. 
NIH-3T3 cells were transfected with 50, 100, and 200ng of Nrp1 (A) or Nrp2 (B), respectively. 
HH-dependent luciferase reporter activity was measured in ligand stimulated (+NSHH) and 
unstimulated (-NSHH) cells. Data reported as mean fold induction ± SD, with p-values 
calculated using a two-tailed Student’s t test. 100 ng transfection amount was chosen for 
subsequent assays. (C) Summary of luciferase assay data in which Nrp1 and Nrp2 were directly 
compared in eight independent assays. Fold change reported between ligand-stimulated vector 
only (pCIG) triplicate wells and ligand-stimulated Nrp1- or Nrp2-transfected triplicate wells. 
Yellow highlight denotes significance (p<0.05). 
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Figure 2-10. Neuropilin-1 antibody detects endogenous as well as overexpressed 
Neuropilin-1 protein. 
Antibody detection of endogenous NRP1 (red) in NIH-3T3 cells transfected with NRP1, 
NRP1ΔCD, and NRP1ΔECD as indicated. Exposure adjusted for endogenous rather than 
overexpressed protein (cf. Figure 2-2). DAPI staining indicates nuclei (blue). GFP expression 
identifies transfected cells (green). Diagrams of each construct to right indicate antibody-binding 
sites. Scale bar = 10µm. 
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Figure 2-11. Cytosolic Neuropilin-1 cytoplasmic domain does not promote Hedgehog 
signaling. 
A. Diagram of full-length NRP1, a cytosolic version lacking the extracellular and transmembrane 
domains (NRP1CD), and a version lacking the cytoplasmic domain (NRP1ΔCD). B. HH-dependent 
luciferase reporter activity measured in NIH-3T3 cells. Data reported as mean fold induction ± 
SD, with p-values calculated using a two-tailed Student’s t test. 
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Figure 2-12. Phosphorylation of key residues is dispensable for Neuropilin-1 promotion of 
Hedgehog signaling.  
(A) Diagram of NRP1 cytoplasmic domain and NRP1SRSY-AAAA indicating mutations of key 
residues to Alanine (B) HH-dependent luciferase reporter activity measured in NIH-3T3 cells. 
Data reported as mean ± SD, with p-values calculated using a two-tailed Student’s t test. 
  
 



104 
 

 
 
 
Figure 2-13. HA antibody staining in vector-transfected cells.  
Antibody detection of primary cilia (red, AcTub) and HA (green) in pCIG-transfected WT (left) 
and Dynein mutant (Dync2h1lln/lln, right) MEFs. DAPI indicates nuclei (blue). Exposure adjusted 
to match Figure 5 to demonstrate the background level of HA staining. Scale bar = 10µm. Inset 
scale bar = 1µm. 
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Chapter 3: 
 

Identification of Plexins as Novel Regulators of Hedgehog Signaling 
 

 

3.1 Abstract 

 Hedgehog signaling directs the formation of a wide variety of tissues, and plays 

important roles in embryonic and postnatal development as well as adult tissue homeostasis. 

Characterizing the cell-surface proteins that control Hedgehog pathway activity is critical to 

understanding Hedgehog function in both development and disease. Neuropilins, established 

receptors for class 3 Semaphorins, have recently been identified as positive regulators of the 

Hedgehog pathway. Neuropilins function as co-receptors for Plexin-mediated Semaphorin 

signaling, but a role for Plexins in Hedgehog signaling has not been explored. Here, I provide 

evidence that multiple Plexin family members promote Hedgehog signaling in NIH-3T3 

fibroblasts. I show that the Plexin cytoplasmic domain is required for this promotion. Plexins 

regulate small intracellular GTPases through a split GAP domain within their cytoplasmic 

portion. Strikingly, I find that GAP function is required for Plexin-mediated Hedgehog 

promotion. Furthermore, I show that constitutive activation of the Plexin GAP domain amplifies 

promotion of Hedgehog signal transduction. Together, these data identify Plexin receptors as 

novel components of the Hedgehog pathway, providing new insight into the regulation of 

Hedgehog signal transduction. 
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3.2 Introduction 

 The Hedgehog (HH) signaling pathway critically coordinates many cellular processes to 

inform embryonic development and tissue homeostasis, while deregulation of this pathway can 

drive a number of diseases, including cancer (Barakat et al., 2010; Briscoe and Therond, 2013; 

Hooper and Scott, 2005; McMahon et al., 2003; Petrova and Joyner, 2014; Teglund and 

Toftgard, 2010) (Ng and Curran, 2011; Sharpe et al., 2015). Current models of HH signal 

transduction invoke a set of core components, including the twelve-pass transmembrane protein 

Patched 1 (PTCH1), which inhibits pathway activity in the absence of HH ligand by repressing a 

second cell-surface protein Smoothened (SMO) (Marigo and Tabin, 1996; Stone et al., 1996). 

SMO is a seven-pass transmembrane protein exhibiting GPCR-like activity (Alcedo et al., 1996; 

van den Heuvel and Ingham, 1996), which orchestrates the processing of intracellular GLI 

transcription factors (GLIs) into transcriptional repressors. HH ligand binding to PTCH1 leads to 

de-repression of SMO, which causes a shift in GLI processing to transcriptional activators, thus 

altering the balance of HH target gene expression (Hui and Angers, 2011).  

 Beyond these core pathway components, many additional proteins regulate HH signaling 

at the cell surface in a tissue- and stage-specific manner (Allen et al., 2011; Allen et al., 2007; 

Briscoe and Therond, 2013; Holtz et al., 2015; Holtz et al., 2013). In vertebrates, many of these 

components are essential for HH transduction, but act redundantly to achieve HH regulation. For 

example, the HH co-receptors growth arrest-specific 1 (GAS1), CAM-related/downregulated by 

oncogenes (CDON), and brother of CDON (BOC), cooperate to regulate HH signaling, but 

deleting any one of these receptors yields relatively mild embryonic phenotypes (Allen et al., 

2011; Allen et al., 2007). When all three co-receptors are deleted, however, HH signaling is 

significantly disrupted, and severe phenotypes result that resemble the loss of multiple HH 
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ligands or of SMO (Allen et al., 2011; Zhang et al., 2001). Similarly, the PTCH1 homolog 

Patched 2 (PTCH2) and Hedgehog interacting protein 1 (HHIP1) act semi-redundantly with 

PTCH1 to antagonize HH signaling in vertebrates (Holtz et al., 2013; Jeong and McMahon, 

2005). A plethora of additional proteins regulate HH ligand distribution and reception, including 

Dispatched (DISP), Signal sequence, CUB domain, EGF-related (SCUBE), glypicans (GPCs) 

and low-density lipoprotein receptor-related 2 (LRP2) (Bandari et al., 2015; Burke et al., 1999; 

Caspary et al., 2002; Christ et al., 2015; Christ et al., 2012; Creanga et al., 2012; Hollway et al., 

2006; Kawakami et al., 2005; Kawakami et al., 2002; Ma et al., 2002; Tukachinsky et al., 2012; 

Vyas et al., 2008; Woods and Talbot, 2005; Yan and Lin, 2008). The mechanisms by which 

many of these HH regulators function have been difficult to elucidate due to their redundant 

nature. Furthermore, additional HH regulators may have been missed by previous genetic screens 

due to their collective requirements. In addition, gene duplication events and increased 

complexity within vertebrate HH signaling, including a requirement for the primary cilium, make 

it even more difficult to study HH regulators which lack invertebrate homology, such as SCUBE, 

GAS1, Neuropilin1 (NRP1), and Neuropilin 2 (NRP2). As a result, our overall understanding of 

HH regulation remains incomplete.  

 Recently, Neuropilins (NRPs) were identified as positive regulators of HH signaling, 

acting through their cytoplasmic domains to promote HH signal transduction (Ge et al., 2015; 

Hillman et al., 2011; Pinskey et al., 2017). NRPs were originally characterized as receptors for 

secreted Semaphorin (SEMA) ligands, which regulate cell migration and growth cone collapse 

during axon guidance (Chen et al., 1997; He and Tessier-Lavigne, 1997; Kolodkin et al., 1997). 

NRPs directly interact with class 3 SEMA ligands, but require PLXN co-receptors to transduce 
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SEMA signals intracellularly (Takahashi et al., 1999). Despite functioning together with NRPs in 

SEMA signaling, a role for PLXNs in HH signaling has not been explored.  

 PLXNs are a family of conserved, single-pass transmembrane proteins. There are nine 

different PLXN family members, which fall into four subfamilies based on homology (A, B, C, 

and D) (Tamagnone et al., 1999). Secreted SEMA ligands bind to Neuropilins, which form 

receptor complexes with PLXNs from the A and D subfamilies (Neufeld and Kessler, 2008; 

Takahashi et al., 1999). Many other SEMA ligands, however, interact directly with PLXN 

extracellular domains to activate downstream signaling events (Neufeld and Kessler, 2008). In 

the absence of SEMA ligands, the PLXN extracellular domain acquires an auto-inhibitory state 

(Takahashi and Strittmatter, 2001). Ligand binding to NRP co-receptors or directly to the SEMA 

domain of PLXNs releases this autoinhibition, resulting in receptor dimerization, rotation of the 

PLXN cytoplasmic domain, and activation of an intracellular GTPase activating protein (GAP) 

domain (Neufeld and Kessler, 2008; Takahashi and Strittmatter, 2001). While our understanding 

of signaling downstream of the PLXN GAP domain remains incomplete, GTPases from the Rac, 

Ras, Rho, and Rap subfamilies are inactivated by PLXN GAP activity, which results in the 

disassembly of focal adhesions and reduced clustering of integrins, thereby disrupting 

interactions between the cell and the extracellular matrix (Barberis et al., 2004; Jongbloets and 

Pasterkamp, 2014; Puschel, 2007; Rohm et al., 2000b; Yang and Terman, 2013). As a result, 

PLXN activation by SEMA ligands causes cytoskeletal collapse and defects in cellular migration 

(Barberis et al., 2004; Jongbloets and Pasterkamp, 2014).  

 Here, we investigated a role for PLXNs in HH pathway regulation. Our data suggest that 

multiple PLXNs, including representatives from the A and B subfamilies, positively regulate HH 

signaling. Similar to NRPs, we find that the PLXN cytoplasmic domain (CD) is necessary for 
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HH regulation. Interestingly, while the mechanism of NRP action in HH signaling may diverge 

from its mechanism in SEMA signaling (Andreyeva et al., 2011; Ge et al., 2015; Pinskey et al., 

2017), we find that PLXNs function very similarly in SEMA and HH cascades. Mutating key 

residues within the cytoplasmic PLXN GAP domain or FYN kinase phosphorylation sites 

prevents PLXN from promoting HH signaling. Furthermore, deleting the PLXN extracellular 

domain to create a constitutively active receptor augments HH promotion, suggesting that 

PLXNs positively regulate HH signaling through their intracellular activity. Taken together, 

these data identify PLXNs as novel components of the HH pathway and contribute to our 

mechanistic understanding of HH regulation at the cell surface. 

 

3.3 Results 

3.3.1 Multiple Plexins Promote Hedgehog Signaling in NIH-3T3 Fibroblasts 

 While multiple studies have demonstrated a role for NRPs in HH signal promotion (Ge et 

al., 2015; Hillman et al., 2011; Pinskey et al., 2017), a role for PLXNs in HH signaling remains 

unexplored. PLXNs consist of nine members that can be classified into four different subfamilies 

based on homology (PLXNA1-4, PLXNB1-3, PLXNC1, and PLXND1) (Neufeld and Kessler, 

2008; Tamagnone et al., 1999). Because PLXNs from the A subfamily interact with NRPs 

(Takahashi et al., 1999), we initially investigated whether PLXNA1 expression in NIH-3T3 

fibroblasts could promote HH-responsive luciferase reporter activity compared with vector-

transfected control cells. Strikingly, PLXNA1 expression drives significantly increased levels of 

HH reporter activity in NIH-3T3 cells (Figure 3-1 A), similar to NRP1 (Pinskey et al., 2017). Of 

note, PLXNA1 does not promote HH signaling in the absence of pathway activation with HH 

ligand (Figure 3-1 A). To address whether HH promotion was specific to PLXNA1, we also 
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examined PLXNA2, PLXNA3, and PLXNA4 in similar assays. Our data suggest that all 

members of the PLXN A subfamily promote HH signaling following pathway activation with 

HH ligand (Figure 3-1, B-D). Overall, PLXN-transfected cells exhibit approximately double the 

level of HH signaling as compared to the vector control within each experiment (Figure 3-1 B-

D). Surprisingly, PLXNB2, which is not known to interact with NRPs, also promotes HH 

signaling to a similar extent as A-subfamily PLXNs, suggesting that PLXN-mediated HH 

promotion may be independent of NRP interaction (Figure 3-1, E-F) (Neufeld and Kessler, 

2008). Importantly, GFRa1, an unrelated cell-surface protein within the glial cell line-derived 

neurotrophic factor receptor (GFR) family, does not promote HH signaling (Figure 3-1 F). Taken 

together, these data suggest that multiple PLXN family members promote HH signaling in NIH-

3T3 cells.  

 

3.3.2 The PlexinA1 Transmembrane and Cytoplasmic Domains are Necessary for the 

Promotion of Hedgehog Signal Transduction 

  PLXNs are single-pass transmembrane proteins containing an extracellular domain 

(ECD) that can interact with NRPs and SEMA ligands, a transmembrane (TM) domain that 

mediates dimerization, and a cytoplasmic domain (CD) through which PLXNs signal 

intracellularly (Neufeld and Kessler, 2008). While many HH regulators at the cell surface bind to 

HH ligands through their ECD (Capurro et al., 2008; Chang et al., 2011; Christ et al., 2012; Izzi 

et al., 2011; Lee et al., 2001; Tenzen et al., 2006; Whalen et al., 2013), NRP1 acts through its CD 

to regulate HH signaling (Ge et al., 2015; Pinskey et al., 2017). To investigate the mechanism of 

PLXN action in HH signaling, we first asked whether the PLXN CD is required for HH 

promotion. Interestingly, deleting the PLXNA1 TM and CD (PLXNA1DTMCD) or the CD alone 
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(PLXNA1DCD) prevent PXLNA1 from promoting HH signaling in NIH-3T3 cells (Figure 3-2 A-

B). Western blot analyses confirmed PLXNA1, PLXNA1DTMCD, and PLXNA1DCD expression and 

PLXNA1DTMCD secretion (Figure 3-2 C). Further, immunofluorescence staining for an 

extracellular MYC epitope under permeabilizing and non-permeabilizing conditions confirmed 

the cell surface localization of PLXNA1 and PLXNA1DCD as well as the secretion of 

PLXNA1DTMCD, as compared to a control BOC construct with a C-terminal MYC tag (Figure 3-2 

D). These results suggest that the PLXNA1 CD is required for promotion of HH signaling.  

 

3.3.3 GAP Activity Within the Plexin Cytoplasmic Domain is Required for the Promotion of 

Hedgehog Pathway Activity 

 The PLXN CD is essential for intracellular SEMA signal transduction, acting through a 

split GAP domain to induce cytoskeletal collapse (Neufeld and Kessler, 2008; Puschel, 2007). 

To investigate the contribution of cytoplasmic GAP activity to PLXN promotion of HH 

signaling, we made arginine to alanine mutations in residues 1429 and 1430 of mouse PLXNA1 

that disrupt GAP activity, rendering PLXNA1 a nonfunctional SEMA receptor in the Cos7 cell 

collapse assay (Rohm et al., 2000a). Strikingly, mutating these key conserved arginine residues 

within the PLXNA1 GAP domain (PLXNA1R1) also resulted in an inability of PLXNA1 to 

promote HH signaling (Figure 3-3 A-B). Similarly, mutating the GAP domain in PLXNB2 

(PLXNB2R1) also prevented promotion of HH signaling (Figure 3-3 C-D). Importantly, western 

blot analyses confirmed expression of PLXNA1R1 and PLXNB2R1 at similar levels to their 

wild type counterparts (Figure 3-4). In addition, immunofluorescence staining for an 

extracellular MYC epitope in permeabilized and non-permeabilized conditions confirmed the 

cell surface localization of PLXNA1R1 and PLXNB2R1 compared to a C-terminally tagged 
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BOC control (Figure 3-3 E).  Together, these results suggest that GAP activity is necessary for 

PLXN-mediated promotion of HH signaling.  

 Upon binding to the PLXN extracellular SEMA domain, SEMA ligand triggers a 

conformational change, releasing PLXN autoinhibition and allowing for the full activation of the 

intracellular GAP (Takahashi and Strittmatter, 2001). As a result, deleting the autoinhibitory 

PLXN ECD results in a constitutively active GAP motif and induces robust cytoskeletal collapse 

through downstream signaling events (Takahashi and Strittmatter, 2001). To further test whether 

PLXN GAP function regulates HH signaling, we deleted the PLXNA1 ECD (PLXNA1DECD) and 

measured HH-dependent luciferase reporter activity in NIH-3T3 cells. Not only is PLXNA1DECD 

still able to promote HH signaling, this promotion is significantly augmented in the presence of 

the constitutively active PLXN GAP domain (Figure 3-5 A-B). While full length PLXN roughly 

doubles the level of HH signaling on average, PLXNA1DECD consistently increases the level of 

HH signaling by 5-7 fold (Figure 3-17). Importantly, mutating the same two arginines to alanines 

within the GAP domain (1429 and 1430 in full length PLXNA1, 323 and 324 in PLXNA1DECD) 

in the context of the ECD deletion significantly reduces the level of HH promotion, but does not 

completely abrogate PLXN-mediated HH pathway induction when compared with PLXN 

lacking the entire CD (Figure 3-5 C-D). Immunofluorescence analyses indicated appropriate 

localization of these constructs to the cell surface as well as cytoskeletal collapse in 

PLXNA1DECD and to some extent PLXNA1, or lack thereof in PLXNA1R1DECD and PLXNA1DCD 

(Figure 3-5 E). Notably, deletion of the PLXNA2 ECD similarly drives high levels of HH 

pathway activity (Figure 3-6). These data further support the notion that PLXN intracellular GAP 

activity regulates HH signal promotion.  
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3.3.4 Tyrosine Phosphorylation by Fyn Kinases is Required for Hedgehog Promotion 

 A recent publication identified two highly conserved Fyn non-receptor tyrosine kinase 

phosphorylation sites within the PLXN cytoplasmic domain that are essential for SEMA 

signaling in the zebrafish eye (St Clair et al., 2018). To ask whether Fyn-dependent 

phosphorylation is necessary for PLXN-mediated HH promotion, we mutated PLXNA1 

tyrosines 1605 and 1677 to alanines and measured HH-dependent luciferase activity in NIH-3T3 

cells (Figure 3-7). Strikingly, mutating these tyrosines prevented PLXN promotion of HH 

signaling, suggesting that Fyn-dependent phosphorylation is required for PLXN-mediated HH 

promotion. 

 

3.3.5 Plexins are not Enriched in the Primary Cilium 

 The primary cilium is an important platform for HH signaling molecules, and many HH 

pathway components, including NRP1 (Pinskey et al., 2017), are enriched in this subcellular 

compartment. To test whether PLXNs localize to the primary cilium, I overexpressed MYC-

tagged PLXNs in NIH-3T3 cells and performed immunofluorescent staining for MYC and 

Acetylated Tubulin (AcTub), which marks the primary cilium. Interestingly, PLXNs were 

broadly localized throughout the cell, but largely excluded from the nucleus (Figure 3-8). Unlike 

NRP1, PLXN staining was not enriched within the primary cilium for any of the constructs 

tested (Figure 3-8). These data suggest that PLXN regulation of HH signaling does not require 

cilia localization.   
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3.3.6 Plexin-A1 Promotes Hedgehog Signaling at the Level of GLI Regulation 

HH signaling culminates in the differential processing and activation of the GLI family of 

transcription factors, which shuttle in and out of the primary cilium and are phosphorylated by 

several kinases to regulate their activity (Hui and Angers, 2011). Deleting the N terminal portion 

of GLI2 (Gli2DN), the main HH pathway activator, circumvents GLI processing and results in 

constitutive activation of GLI2 (Hui and Angers, 2011). As a result, transfecting Gli2DN into our 

luciferase reporter assay in NIH-3T3 cells results in hundreds or even thousands of fold 

activation of HH reporter activity (Pinskey et al., 2017). Incredibly, co-transfecting Gli2DN with 

Plxna1DECD still results in an elevated HH response (Figure 3-9). Interestingly, Plxna1 does not 

promote HH signaling with Gli2DN pathway activation, similar to its GAP mutant form 

(Plxna1r1) (Figure 3-9). These data suggest that PLXNs may function downstream of HH ligand 

at the level of GLI regulation, although strong PLXN GAP activation may be necessary for HH 

promotion with Gli2DN. 

 

3.3.7 Using a CRISPR Approach to Delete Plexin-A1 and Plexin-B2 from Hedgehog-

Responsive NIH-3T3 Cells 

 Previous studies have shown that reducing the levels of NRP1, NRP2, or a combination 

of NRP1 and NRP2 significantly reduces HH signaling (Ge et al., 2015; Hillman et al., 2011). 

Therefore, it is important to examine the effects that PLXN loss-of-function has on HH signaling 

in cells and tissues. Unfortunately, there are nine members within the PLXN family of receptors, 

making loss-of-function studies quite challenging. Further, it is likely that functional redundancy 
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will complicate these experiments, given that multiple PLXNs from different subfamilies 

promote HH signaling (Figure 3-1).  

 One approach to address PLXN loss-of-function is to use CRISPR-Cas9 to delete Plxns 

in HH-responsive immortalized cell lines. The advantage of this approach is both speed and 

feasibility of complex, multiple-gene knockouts. Within the NIH-3T3 line, Plxn family members 

are expressed to varying degrees (Figure 3-10). Plxna1 and Plxnb2 are most strongly expressed, 

followed by Plxnd1, Plxna3, and Plxna2, while Plxnb3, Plxnc1, Plxna4, and Plxnb1 are 

expressed at very low levels if detectable at all (Figure 3-10). I have designed CRISPR guide 

RNAs and begun experiments targeting exons 3 and 4 of Plxna1 (Figure 3-11) and exons 19-24 

of Plxnb2 (Figure 3-14) in NIH-3T3 cells. While these experiments are ongoing, initial results 

look promising. In over a hundred cell lines isolated from single cell-derived colonies within the 

first round of CRISPR, several lines look promising for Plxna1 deletion via genotyping, 

including lines 5, 87, 91, 112, and 126 (Figure 3-11). Furthermore, these same cell lines exhibit 

reduced PLXNA1 protein, as detected by western blot (Figure 3-12) and immunofluorescent 

staining (Figure 3-13) with an endogenous a-PLXNA1 antibody. Additional work is needed to 

further validate these lines as well as functionally examine how loss of Plxna1 in NIH-3T3 cells 

impacts HH responsiveness. Moreover, ongoing experiments also seek to delete the GAP 

domains of Plxnb2 alone and in combination with the Plxna1 deletion to more comprehensively 

reduce PLXN levels within these cells. RNA-seq data from the ENCODE project suggests that 

Plxna3 and Plxnd1 may also need to be targeted to observe a functional outcome (Figure 3-10). 

Overall, a significant amount of work remains to complete these analyses.  
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3.3.8 Analyzing Plexin-A1 and Plexin-A2 Loss-of-Function in the Developing Mouse Embryo 

 Genetic studies in mice may also prove useful for understanding how PLXN loss-of-

function impacts in vivo embryonic development. Interestingly, while Plxna1-/- and Plxna2-/- 

mice are viable and fertile, Plxna1-/-;Plxna2-/- animals die during embryogenesis, although 

precisely when and why these embryos perish remains unclear. To analyze potential effects of 

Plxna1 and Plxna2 deletion on HH-dependent tissues, I first collected embryos at E10.5, 

collected sections at the forelimb level, and examined neural tube patterning using 

immunofluorescent staining for FoxA2, Nkx2.2, Olig2, Nkx6.1, Dbx1, and Pax3. In a single 

Plxna1-/-;Plxna2-/- embryo that has been collected, HH-dependent patterning of the neural tube is 

unaffected compared to littermate controls (Figure 3-15). Because a significant number of PLXN 

family members are highly expressed in the developing nervous system (Perala et al., 2005), I 

decided to change my approach to examine later-stage embryos with an additional Gli1lacZ allele, 

using X-gal staining to readout HH pathway activity in a wide variety of tissues simultaneously. 

While these experiments are in progress, initial analysis of a Plxna1-/-;Plxna2-/-  embryo at E14.5 

revealed several intriguing phenotypes (Figure 3-16). Compared to a Plxna1+/-;Plxna2+/- 

littermate control, the overall body size of the Plxna1-/-;Plxna2-/- embryo was reduced, with a 

crown-rump length approximately 91% of the control (Figure 3-16). While slightly damaged 

during dissection, lungs from the Plxna1-/-;Plxna2-/- embryo were also reduced in size, 

approximately 73% of the length of the Plxna1+/-;Plxna2+/- control (Figure 3-16). The Plxna1-/-

;Plxna2-/- embryo also displayed a slight tail defect, perhaps indicating a mild deficiency in 

somitogenesis (Figure 3-16). Importantly, X-gal staining revealed an overall reduction in Gli1 

expression in a number of areas, including the midbrain-hindbrain junction and in hair follicles 

on the head and face, particularly around the eye (Figure 3-16). These data suggest that loss of 
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Plxna1-/- and Plxna2-/- may reduce HH signaling in vivo, although more embryos will need to be 

collected and analyzed to make any conclusions.  

3.4 Discussion 

 HH signaling plays important roles in tissue homeostasis and embryonic development, 

coordinating a number of cellular processes including proliferation, fate specification, and 

survival (Briscoe and Therond, 2013). Receptors for SEMA ligands, the NRPs and PLXNs, are 

expressed in a wide variety of tissues during active HH regulation (Kawasaki et al., 1999; Mauti 

et al., 2006; Perala et al., 2012; Perala et al., 2005). Here, we present evidence that PLXNs 

positively regulate HH signaling. Unlike many previously described cell surface HH regulators, 

PLXNs promote HH signaling through their cytoplasmic domains at the level of GLI regulation. 

More specifically, we find that GAP activity within the PLXN cytoplasmic domain is required 

for HH promotion. Furthermore, increasing GAP activity strongly upregulates the HH response, 

suggesting that SEMA ligand activation of PLXNs may also impact HH regulation. Taken 

together, these findings identify a novel role for the PLXN family of receptors in HH pathway 

regulation.  

 

3.4.1 Semaphorin Receptors Act Promiscuously in Multiple Signaling Pathways 

 While NRPs and PLXNs were first discovered as receptors for SEMA ligands (He and 

Tessier-Lavigne, 1997; Kolodkin et al., 1997; Takahashi et al., 1999), their broader function in 

other signaling pathways have also been described. NRPs play known roles in VEGF signaling 

to regulate angiogenesis, and they interact with a wide variety of proteins, including PIGF-2, 

heparan sulfate, TGF-β1, HGF, PDGF, FGF, L1-CAM, and integrins (Muhl et al., 2017; 



126 
 

Prud'homme and Glinka, 2012; Roth et al., 2008). PLXNs form complexes with off-track, MET, 

Ron, scatter factor, and VEGFR2 in various cellular contexts (Conrotto et al., 2004; Giordano et 

al., 2002; Toyofuku et al., 2004; Winberg et al., 2001). This raises many questions, however, 

about the nature of these receptors’ activities within individual and overlapping signaling 

contexts. For example, what factors determine whether a NRP receptor binds to a PLXN co-

receptor and transduces a SEMA signal or acts through its CD to regulate HH signaling? Can 

these processes happen simultaneously, and if so, how do they influence one another?  

 An important outstanding question is how SEMA ligand impacts HH signaling. SEMA 

ligand’s role in HH promotion remains unclear, and several conflicting pieces of evidence exist 

in the literature. In one study, addition of SEMA ligands (SEMA3A, 3B, 3C, 3E, and 3F) in 

combination with HH ligand or SAG increase HH signaling in NIH-3T3 cells (Ge et al., 2015). 

Conversely, blocking NRP interaction with SEMA ligands using an antibody reduces GLI 

expression (Ge et al., 2015). It has therefore been suggested that SEMA ligand increases 

recruitment of PDE4D to the cell membrane, which interacts with the NRP CD and inhibits 

PKA, a negative regulator of GLI proteins (Ge et al., 2015). However, NIH-3T3 cells, in which 

these studies were performed, express endogenous PLXNs, particularly PLXNA1 and PLXNB2 

[ENCODE; GEO:GSM970853) (Consortium, 2012)]. Given the results presented here, an 

alternate explanation of SEMA-mediated HH promotion may be that SEMA ligands act through 

endogenous PLXNs to increase HH reporter activity. This may explain why other studies have 

shown that addition of SEMA ligand has no effect on HH signaling (Hillman et al., 2011), and 

that NRPs still promote HH signaling when co-transfected with a version of GLI2 that cannot be 

phosphorylated by PKA at seven important sites (Pinskey et al., 2017). Another discrepancy in 

the literature is whether the NRP ECD is required for HH promotion (Ge et al., 2015; Pinskey et 
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al., 2017). Again, given that PLXNs promote HH signaling and that the NRP ECD mediates 

interactions with PLXN co-receptors, the variable effects that have been reported could be 

explained by the presence of endogenous PLXNs, the level of NRP overexpression, and the 

sensitivity of the assay.  

 

3.4.2 Neuropilin and Plexin Cooperation in Hedgehog Signaling 

 We previously reported that NRPs promote HH signaling through a novel cytoplasmic 

motif—a region of the protein that is dispensable for SEMA signaling (Fantin et al., 2011; 

Pinskey et al., 2017). This suggests that NRPs may act very differently within SEMA and HH 

signaling contexts. PLXNs on the other hand, seem to function very similarly in HH and SEMA 

signaling, through Fyn-dependent tyrosine phosphorylation and cytoplasmic GAP activity. 

Together, these data raise the question: do NRPs and PLXNs function together or separately in 

HH signaling? The answer may be both. Several pieces of evidence suggest that NRPs function 

independently of PLXNs in HH signaling. First, deleting the NRP ECD, which mediates 

interaction between NRPs, PLXNs, and SEMA ligands, does not disrupt HH promotion (Pinskey 

et al., 2017). Furthermore, we report here that PLXNB2 can promote HH signaling, despite its 

lack of reported interactions with NRPs (Neufeld and Kessler, 2008). However, we also find that 

PLXN A subfamily members that do interact with NRPs also promote HH signaling, and we 

cannot exclude the possibility that these PLXNs complex with endogenous NRPs to mediate HH 

promotion. Therefore, the ideas that NRPs and PLXNs function independently and together in 

HH signaling are not mutually exclusive, and additional studies in Plxn and Nrp mutant cell lines 

will be key to elucidate each proteins’ role.   
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3.4.3 Potential Hedgehog Connections Downstream of GAP Activity in the Plexin Cytoplasmic 

Domain 

 We find that HH pathway activity is regulated by the PLXN cytoplasmic GAP domain. 

However, it remains unclear how signaling downstream of the GAP intersects with the HH 

signal cascade. The PLXN cytoplasmic domain interacts with a plethora of intracellular proteins, 

including collapse-response-mediator protein (CRMP) family phosphoproteins, protein kinases, 

MICAL redox proteins, and small intracellular GTPases from the Rho, Ras, and Rap 

superfamilies (Jongbloets and Pasterkamp, 2014; Puschel, 2007; Yang and Terman, 2013). This 

makes it somewhat difficult to narrow possible candidates that might mediate HH signaling. 

Furthermore, our understanding of the cellular mechanisms downstream of the PLXN GAP 

domain, including which GTPases are regulated, remains incomplete, and it is possible that the 

protein connecting PLXNs to HH has not been discovered. However, we find that PLXNs from 

both the A and B subfamilies can promote HH signaling, which may be an important clue in 

answering this difficult question. While we cannot exclude the possibility that each PLXN or 

PLXN subfamily regulates HH differently, it is likely that they converge upon a common protein 

or set of proteins that mediate HH promotion. Therefore, primary candidates for future study 

should have demonstrated roles downstream of both A and B subfamily PLXNs. 

 Another point to consider is that mutating key tyrosines phosphorylated by Fyn kinase (St 

Clair et al., 2018) also prevents PLXN promotion of HH signaling. While one of these sites lies 

within the PLXN GAP domain, it is unclear if these mutations generally impact GAP function or 

interactions with other proteins outside the realm of GAP regulation. Therefore, it is possible that 

PLXNs regulate HH signaling through a protein regulated by GAP domains (i.e. small GTPases), 

through a protein regulated by Fyn-phosphorylated tyrosines, through a protein regulated by both 
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of these cytoplasmic region, or through multiple proteins that interact with both of these regions. 

Further studies are necessary to investigate these broad possibilities.  

 More globally, it is important to keep in mind that PLXN GAP activation induces 

cytoskeletal collapse through the disassembly of focal adhesions and integrins (Bos and 

Pannekoek, 2012; Kinbara et al., 2003; Oinuma et al., 2004; Serini et al., 2003; Wang et al., 

2012). Therefore, another possibility is that cytoskeletal changes mediate PLXN-dependent HH 

promotion. GLI proteins downstream of the HH signaling cascade localize to a microtubule-

based structure called the primary cilium for processing and activation (Hui and Angers, 2011). 

While we do not observe PLXN localization to the primary cilium, it is likely that PLXN-

induced cytoskeletal collapse disrupts the integrity of the primary cilium. Interestingly, while 

primary cilia are required for SMO-mediated activation of HH signaling, loss of the primary 

cilium can result in higher levels of HH signaling due to the inability of GLI3 to be processed 

into its repressor form (Wong et al., 2009). This is consistent with our finding that PLXNA1DECD 

promotes HH signaling even when the pathway is activated by GLI2DN. Additional experiments 

are needed to explore these possibilities.  

   

3.4.4 Plexin Redundancy and Loss of Function 

 As previously discussed, the PLXN family of proteins is comprised of nine members with 

distinct and overlapping functions (Neufeld and Kessler, 2008). One shared feature between all 

PLXN proteins is the conserved cytoplasmic GAP domain  (Neufeld and Kessler, 2008), which 

we find mediates HH signal promotion. This raises an important challenge in studying PLXN 

function in HH signaling in that our findings are complicated by the presence of endogenous 
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PLXN proteins, particularly given that PLXNs from multiple subfamilies promote HH signaling. 

The PLXN TM mediates dimerization of PLXN receptors, so it is possible and likely that PLXN 

constructs in this study containing a TM domain interact with endogenous PLXNs. One solution, 

therefore, would be to replace the PLXN TM with an artificial TM which does not dimerize. To 

truly study the function of a single PLXN family member in HH signaling, however, a PLXN 

null background would be necessary. Furthermore, several studies suggest that PLXNs exhibit 

largely overlapping expression patterns in vivo, complicating loss of function studies (Mauti et 

al., 2006; Perala et al., 2005). Additional and more extensive characterization of PLXN 

expression at different developmental stages within the mouse embryo will be necessary to 

identify suitable tissues for in vivo study. Alternatively, CRISPR/Cas9 technology could be used 

to delete multiple PLXNs in cell lines to create a cleaner background for study.  

 

3.5 Materials and Methods 

Plexin Constructs 

Plexin constructs were derived from full length cDNAs using standard molecular biology 

techniques. All constructs were cloned into the pCIG vector, which contains a CMV enhancer, a 

chicken beta actin promoter, and an internal ribosome entry site (IRES) with a nuclear enhanced 

green fluorescent protein reporter (3XNLS-EGFP) (Megason and McMahon, 2002). C-terminal 

or N-terminal MYC tags (EQKLISEEDL) were added to constructs as indicated. Deletion and 

mutation variants were generated using standard cloning techniques and the QuickChange II XL 

Site-Directed Mutagenesis Kit (Agilent Technologies, 200521).  
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Cell Culture 

 Cell lines were maintained in Dulbecco’s Modified Eagle Medium (DMEM; 

ThermoFisher Scientific, 11965-118) supplemented with 10% bovine calf serum (ATCC, 30-

2030) and 1X Penicillin-Streptomycin-Glutamine (Life Technologies, 10378016). Cultures were 

kept at 37 °C with 5% CO2 and 95% humidity.  

 

Cell Signaling Assays 

 Luciferase-based reporter assays for HH pathway activity in NIH-3T3 cells were 

performed as previously described using a ptcΔ136-GL3 reporter construct (Nybakken et al., 

2005). Briefly, cells were seeded at 2.5 X 104 cells/well into 0.5% gelatin-coated 24-well plates. 

The next day, cells were transfected with empty vector (pCIG) or experimental constructs along 

with the ptcΔ136-GL3 luciferase reporter construct and beta-galactosidase transfection control 

(pSV-b-galactosidase; Promega, E1081). Transfections were performed using Lipofectamine 

2000 (Invitrogen, 11668) and Opti-MEM reduced serum media (Invitrogen, 31985). 48h after 

transfection, culture media was replaced with low-serum media (0.5% bovine calf serum, 1% 

Penicillin Streptomycin L-Glutamine) containing either control or N-terminal SHH (NSHH)- 

conditioned media. Luciferase reporter activity and Beta Galactosidase activity were measured 

48h later on a Spectramax M5e Plate reader (Molecular Devices) using the Luciferase Assay 

System (Promega, E1501) and the Betafluor Beta Galactosidase Assay Kit (EMD Millipore, 

70979), respectively. Luciferase values were divided by beta galactosidase activity to control for 

transfection, and data were reported as fold induction relative to the vector-transfected control. 

All treatments were performed in triplicate (data points) and averaged (bar height), with error 

bars representing the standard deviation between triplicate wells. Student’s t-tests were used to 
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determine whether each treatment was significantly different from the control, with P-values of 

0.05 or less considered statistically significant. 

 

Immunofluorescent Analysis 

 NIH-3T3 fibroblasts were plated at 1.5 X 105 cells/well onto glass coverslips in a 6-well 

dish. Cells were transfected 24h after plating using Lipofectamine 2000 (Invitrogen, 11668) and 

Opti-MEM reduced serum media (Invitrogen, 31985). To assess expression and collapse, cells 

were incubated for 24-48h at 37 °C as indicated. To image cilia, cells were placed in low serum 

media approximately 6h after transfection (0.5% bovine calf serum, 1% Penicillin Streptomycin 

L-Glutamine) for 48h. All cells were fixed in 4% paraformaldehyde for 10min at room 

temperature and washed with PBS. A 5min permeabilization step with 0.2% Triton X-100 in 

PBS was performed as indicated, prior to staining. Primary antibodies included: mouse IgG2a 

anti-MYC (1:1000, Cell Signaling, 2276), goat IgG anti-PLXNA1 (1:250, R&D Systems, 

AF4309), and mouse IgG2b anti-acetylated tubulin (1:2500, Sigma Aldrich, T7451). Coverslips 

were incubated with primary antibodies overnight, followed by a 10min DAPI stain (1:30,000 at 

room temperature, Invitrogen, D1306) and 1h incubation with secondary antibodies including: 

AlexaFluor 555 goat anti-mouse IgG2a, AlexaFluor 488 donkey anti-goat IgG, AlexaFluor 488 

goat anti-mouse IgG2b, and AlexaFluor 555 goat anti-mouse IgG2b (1:500, Invitrogen, A21137, 

A11055, A21141, and A21147, respectively). Coverslips were mounted to glass slides using 

Shandon Immu-Mount Mounting Medium (Fisher, 9990412). Immunofluorescent analysis and 

imaging were performed on a Leica SP5X Upright 2-Photon Confocal microscope using LAS 

AF software (Leica) and a Leica 63X (type: HC Plan Apochromat CS2; NA1.2) water immersion 

objective.  
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Western Blot Analysis 

 NIH-3T3 cells were transfected using Lipofectamine 2000 (Invitrogen, 11668) and Opti-

MEM reduced serum media (Invitrogen, 31985). Cells were lysed in radioimmunoprecipitation 

assay (RIPA) buffer (50 mM Tris-HCl, pH 7.2, 150mM NaCl, 0.1% Triton X-100, 1% sodium 

deoxycholate, and 5mM EDTA) 48h after transfection, sonicated using a Fisher Scientific Sonic 

Dismembrator, Model 500 (4 pulses at 20%), and centrifuged at 14,000 x g for 25min at 4 °C to 

remove the insoluble fraction. Protein concentrations were determined using the BCA Protein 

Assay Kit (Fisher, PI23225). After boiling for 10min, 50µg of protein from each sample were 

separated using SDS-PAGE with 7.5-12.5% gels and transferred onto Immun-Blot PVDF 

membranes (Bio-Rad, 162-0177). Membranes were washed in tris-buffered saline (TBS) with 

0.5% OmniPur Tween-20 (TBST; EMD Millipore, 9480) and blocked in western blocking buffer 

(30 g/L Bovine Serum Albumin with 0.2% NaN3 in TBST) for 1h to overnight. Blots were 

probed with the following antibodies: rabbit IgG anti-MYC (1:10,000, Bethyl Labs, A190-

105A), goat IgG anti-PlexinA1 (1:200, R&D Systems, AF4309), and Mouse IgG1 anti-Beta 

Tubulin (1:10,000, generously provided by Dr. Kristen J. Verhey, University of Michigan). 

Secondary antibodies from Jackson ImmunoResearch were diluted 1:10,000, and included: 

peroxidase-conjugated AffiniPure goat anti-mouse IgG, light chain specific (115-035-174), 

peroxidase-conjugated AffiniPure F(ab)2 Fragment donkey anti-rabbit IgG (711-036-152), and 

peroxidase-conjugated AffiniPure donkey anti-goat IgG, light chain specific (705-035-147). 

Immobilon Western Chemiluminescent HRP Substrate (EMD Millipore, WBKLS0500) was 

added for 10min before membranes were exposed to HyBlot CL Audoradiography Film 

(Denville, E3018) and developed using a Konica Minolta SRX-101A Medical Film Processor.  
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CRISPR 

 Guide RNAs were designed to delete exons 3-4 of PlexinA1 and exons 19-24 of Plexin 

B2 using the GRCm38/mm10 mouse genome on the UCSC genome browser 

(https://genome.ucsc.edu). Off-target effects were predicted using http://crispr.mit.edu/ and 

http://crispor.tefor.net. Selected guides were cloned into espCas9(1.1) using BbsI (Bauer et. al., 

2014). Guides used in this manuscript include: Plxna1 5’ sense: 

caccGGGTCTAGGATAGTGTGTCG; Plxna1 5’ antisense: 

aaacCGACACACTATCCTAGACCC; Plxna1 3’ sense: caccgACATTTGGCCTAGTGGCCCC; 

Plxna1 3’ antisense: aaacGGGGCCACTAGGCCAAATGTc; Plxnb2 5’ sense: 

caccGGGACCCCATGCCAGCCGTA; Plxnb2 5’ antisense: 

aaacTACGGCTGGCATGGGGTCCC;  Plxnb2 3’ sense: caccGCGCACATGTGCATTGCCGT; 

and Plxnb2 3’ antisense: aaacACGGCAATGCACATGTGCGC. Guides were transfected into 

NIH-3T3 cells at approximately 50% confluency, using 2-5 µg of each guide and 0.5-1 µg of 

PGK-Puromycin selection plasmid (generously provided by Dr. Kristen J. Verhey, University of 

Michigan). After 48hrs, cells were split 1:5 into selection media containing 10-50 µg/mL 

puromycin (Sigma, P8833). Cells were maintained in selection media for 48 hours or until all 

cells on untransfected control plates had died. Cells were then plated into 96-well plates at 0.5 

cells/well to isolate single cell-derived colonies. Colonies were genotyped (Plxna1 primers: 

GCAGCTTGATGGTAGGCACTGGAGC, GAGGCAAAACGCTGGGGCTCTTCTG; Plxnb2 

primers: CGAAGCCGGAGTCTTTGAGT, ATCGCAGAAACCCTTCCCAG) and Plxn deletion 

was confirmed using Western blot, Immunofluorescent microscopy, and qRT-PCR analyses.  
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Mouse Models  

 Plxna1 (Yoshida et al., 2006) and Plxna2 (Duan et al., 2014; Suto et al., 2007) mice, both 

on mixed genetic backgrounds, were generously provided by Dr. Alex Kolodkin and Dr. Roman 

Giger. Gli1lacZ animals were on a mixed CD1 and C57BL/6J background (Bai et al., 2002). All 

mice were housed and cared for according to NIH guidelines, and all animal research was 

approved by the University of Michigan Medical School Institutional Animal Care and Use 

Committee. Plxn genotyping was performed using the following primers: Plxna1 WT_F: 

CCTGCAGATTGATGACGACTTCTG; Plxna1 WT_R: TCATGAGACCCAGTCTCCCTGTC; 

Plxna1 MT_F: GCATGCCTGTGACACTTGGCTCACT; Plxna1 MT_R: 

CCATTGCTCAGCGGTGCTGTCCATC; Plxna2 WT_F: 

GCTGGAACCATGTGAGAGCTGATC; Plxna2 WT_R; 

GGTCATCTAGTCGCAGGAGCTTGC; Plxna2 MT_F: 

GGTCATCTAGTCGCAGGAGCTTGC; Plxna2 MT_R: 

TACCCGTGATATTGCTGAAGAGCTTGG.  

For timing of embryonic stages, 12:00 PM on the day a vaginal plug was detected was 

considered E0.5. X-gal staining was performed as previously described (Holtz et al., 2015).  

 

3.6 Acknowledgements 

 We are grateful to Dr. A. L. Kolodkin (Johns Hopkins University, MD, USA) for 

providing Plexin constructs. Members of the Allen and Giger labs contributed technical 

assistance, insightful comments, and helpful suggestions. We are also thankful to Drs. K. Sue 

O’Shea, K. J. Verhey, and J. D. Engel for sharing equipment and reagents. Confocal imaging 

was performed in the Microscopy and Image Analysis Laboratory at the University of Michigan. 



136 
 

We acknowledge the ENCODE consortium, and particularly the lab of Dr. John 

Stamatoyannopoulous at the University of Washington for sharing their RNA-seq dataset on 

NIH-3T3 cells (GEO: GSM970853). J.M.P. was supported by a Rackham Merit Fellowship, 

Benard Maas Fellowship, Bradley Merrill Patten Fellowship, Organogenesis Training Grant 

(T32 HD007505), and Ruth L. Kirschstein National Research Service Award (F31 NS096734). 

R.J.G. is supported by the Adelson Medical Foundation, Craig H. Neilsen Foundation, and 

funding from the National Institutes of Health (R01 NS081281). B.L.A. is supported by funding 

from the National Institutes of Health (R01 DC014428, R01 CA198074 and R01 GM118751). 

B.L.A. and R.J.G. are supported by an MCubed Research Grant from The University of 

Michigan. 

 

 

 



137 
 

3.7 Figures 

 

Figure 3-1. Multiple Plexins promote Hedgehog signaling 
HH-dependent luciferase reporter activity was measured in NIH-3T3 cells transfected with 150 
ng of the indicated constructs and stimulated with control (-NSHH) or NSHH-conditioned media 
(+NSHH). Data are reported as mean fold induction ± S.D., with p-values calculated using two-
tailed Student’s t tests. n.s. = not significant. 
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Figure 3-2 The Plexin-A1 cytoplasmic and transmembrane domains are required for the 
promotion of Hedgehog pathway activity.  
A. HH-dependent luciferase reporter activity was measured in NIH-3T3 cells transfected with 
150 ng of the indicated constructs and stimulated with control (-NSHH) or NSHH-conditioned 
media (+NSHH). Data are reported as mean fold induction ± S.D. with p-values calculated using 
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two-tailed Student’s t tests. n.s. = not significant. B. Schematics of full-length and truncated 
versions of PLXNA1. C. Western blot confirming expression of MYC-tagged PLXNA1 
constructs in NIH-3T3 cells. Anti-Beta-tubulin (a-b-Tub) was used as a loading control. 
Normalized relative expression for both the supernatants and lysates are shown below the blot. 
D. Antibody detection of MYC tagged constructs (red) in permeabilized (left panels) and non-
permeabilized (right panels) NIH-3T3 cells to assess cell surface localization of the indicated 
constructs. Nuclear GFP (green) indicates transfected cells, whereas DAPI (blue) stains all 
nuclei. Diagrams (right) describe each construct, with brackets indicating antibody binding sites. 
Scale bar = 10 µm. 
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Figure 3-3. Mutation of the Plexin GAP domains abrogates promotion of Hedgehog 
signaling.  
A and C. HH-dependent luciferase reporter activity was measured in NIH-3T3 cells transfected 
with 150 ng of the indicated constructs and stimulated with control (-NSHH) or NSHH-
conditioned media (+NSHH). Data are reported as mean fold induction ± S.D. with p-values 
calculated using two-tailed Student’s t tests. n.s. = not significant. B and D. Schematics of full 
length and mutated versions of PLXNA1 and PLXNB2. E. Antibody detection of MYC tagged 
constructs (red) in permeabilized (left panels) and non-permeabilized (right panels) NIH-3T3 
cells to assess cell surface localization of the indicated constructs. Nuclear GFP (green) indicates 
transfected cells, whereas DAPI (blue) stains all nuclei. Diagrams (right) describe each construct, 
with brackets indicating antibody binding sites. Scale bar = 10 µm. 

 

 

 

 

 

 

Figure 3-4. Plexin GAP domain mutants are expressed at equal levels in NIH-3T3 cells.  
Western blot confirming expression of MYC-tagged PLXNA1 and PLXNB2 constructs in NIH-
3T3 cells. Anti-Beta-tubulin (a-b-Tub) was used as a loading control.  
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Figure 3-5 Deletion of the Plexin-A1 extracellular domain drives high level, ligand-
dependent Hedgehog pathway activation.  
A and C. HH-dependent luciferase reporter activity was measured in NIH-3T3 cells transfected 
with 150 ng of the indicated constructs and stimulated with control (-NSHH) or NSHH-
conditioned media (+NSHH). Data are reported as mean fold induction ± S.D. with p-values 
calculated using two-tailed Student’s t tests. n.s. = not significant. B and D. Schematics of full 
length and truncated or mutated versions of PLXNA1. E. Antibody detection of MYC tagged 
constructs (red) in permeabilized (top panels) and non-permeabilized (bottom panels) NIH-3T3 
cells to assess cell surface localization of the indicated constructs. Nuclear GFP (green) indicates 
transfected cells, whereas DAPI (blue) stains all nuclei. Scale bar = 10 µm. 

 

 

 

 

 

Figure 3-6. Deletion of the Plexin-A2 extracellular domain drives high level, ligand-
dependent Hedgehog pathway activation.  
HH-dependent luciferase reporter activity was measured in NIH-3T3 cells transfected with 150 
ng of the indicated constructs and stimulated with control (-NSHH) or NSHH-conditioned media 
(+NSHH). Data are reported as mean fold induction ± S.D. with p-values calculated using two-
tailed Student’s t tests. n.s. = not significant. Shown are two experiments using the same 
constructs and conditions to highlight the variable result with PLXNA2R1DECD.  
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Figure 3-7. Mutation of Fyn kinase phosphorylation sites abrogates Plexin-A1-mediated 
Hedgehog pathway activation.  
A. HH-dependent luciferase reporter activity was measured in NIH-3T3 cells transfected with 
150 ng of the indicated constructs and stimulated with control (-NSHH) or NSHH-conditioned 
media (+NSHH). Data are reported as mean fold induction ± S.D. with p-values calculated using 
two-tailed Student’s t tests. n.s. = not significant. B. Schematics of full length, mutated 
(FynDM), and truncated (∆CD) versions of PLXNA1.  



145 
 

 

Figure 3-8. Plexins are not enriched in primary cilia of NIH-3T3 cells. 
Antibody detection of MYC tagged constructs (red) and cilia marker Acetylated tubulin (AcTub) 
in NIH-3T3 cells. DAPI (blue) stains nuclei. Scale bar = 10 µm. Inset scale bar = 1 µm. *Note: 
PLXNA2 construct may be incorrect and should be repeated to validate result. 
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Figure 3-9. Plexin-A1 lacking its extracellular domain, but not full-length Plexin-A1, 
promotes Hedgehog signaling with GLI2DN pathway activation.  
A. HH-dependent luciferase reporter activity was measured in NIH-3T3 cells transfected with 
150 ng of the indicated constructs and stimulated with vector (-Gli2DN) or Gli2DN (+Gli2DN) 
co-transfection. Data are reported as mean fold induction ± S.D. with p-values calculated using 
two-tailed Student’s t tests. n.s. = not significant. B. Schematics of full length and truncated or 
mutated versions of PLXNA1. 

 



147 
 

 
Figure 3-10. A subset of Plexins are expressed in NIH-3T3 cells.  
RNA-seq data from the ENCODE project indicating expression of Plxn family members as 
indicated in NIH-3T3 cells. Data were aligned to the mouse GRCm38/mm10 assembly using the 
UCSC Genome Browser (https://genome.ucsc.edu).  
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Figure 3-11. Plexin-A1 CRISPR approach and preliminary results.  
A. Diagram indicating CRISPR approach to delete exons 3 and 4 of Plxna1 in NIH-3T3 cells. 
Arrows indicate binding locations of the forward (fwd.) and reverse (rev) genotyping primers. 
Arrowheads denote binding regions for 5’ and 3’ guide RNAs (gRNA), with black boxes 
indicating exon positions within the locus. Lines below indicate sizes of wild type (WT) and 
CRISPR cleaved PCR products. B. Preliminary genotyping results from CRISPR lines isolated 
from single cells. Ladder sizes (M) indicated to left of image in base pairs (bp). A water control 
(H2O) and positive cell line control (7) are also included. C. Genotyping results using a set of 
control primers targeting exon 4 of Plxnb2. 
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Figure 3-12. Plexin-A1 levels are reduced following CRISPR in NIH-3T3 cells.  
Western blot confirming reduction of endogenous PLXNA1 in NIH-3T3 cells following CRISPR 
deletion and selection. Lysates from Plxna1+/-;Plxna2+/- (22) and Plxna1-/-;Plxna2-/- (21) E14.5 
mouse brains were used as controls, in addition to untransfected NIH-3T3 cell lysate (wt). The 
top two blots were blocked in BSA, while the bottom two were blocked in 0.5% milk. Anti-Beta-
tubulin (a-b-Tub) was used as a loading control.  
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Figure 3-13. Immunofluorescent staining for Plexin-A1 in CRISPR NIH-3T3 cell lines.   
Antibody detection of Endogenous PLXNA1 (green) and DAPI (blue) antibody staining in 
indicated cell lines. Note: Imaging settings, including gain, were kept consistent from image to 
image with the exception of the DAPI channel in Plxna1-/- MEFs, which was increased to detect 
faint signal. Scale bar = 10 µm.  

 

 

 
 

 

Figure 3-14. Plexin-B2 CRISPR approach.  
Diagram indicating CRISPR approach to delete exons 19-24 of Plxnb2 in NIH-3T3 cells. Arrows 
indicate binding locations of the forward (fwd.) and reverse (rev) genotyping primers. 
Arrowheads denote binding regions for 5’ and 3’ guide RNAs (gRNA), with black boxes 
indicating exon positions within the locus.  

 

 

 

 

 

 

 

 

 

 



152 
 

 

 
 

Figure 3-15. Stage 10.5 embryos lacking Plexin-A1 and Plexin-A2 display overtly normal 
neural patterning. 
Cross-sectional images of E10.5 Plxna1-/-;Plxna2+/+ (top row), Plxna1-/-;Plxna2+/- (middle row), 
and Plxna1-/-;Plxna2-/- (bottom row) mouse embryos. Antibody staining for neural progenitor 
populations is indicated by column headings.  
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Figure 3-16. Stage 14.5 embryos lacking Plexin-A1 and Plexin-A2 exhibit reduced Gli1lacZ 

reporter expression and several morphological defects.  
Images of X-Gal stained Plxna1+/-;Plxna2+/-;Gli1lacZ/+ (left) and Plxna1-/-;Plxna2-/-;Gli1lacZ/+  
(right) E14.5 mouse embryos. Various views of different tissues, including the whole embryo, 
tail, posterior and right side of head, right eye, and lung are included as indicated, with white 
dotted lines highlighting regions of interest. Images highlight reduced crown-rump length (91% 
of control) and reduced lung size (73% of control) within the Plxna1-/-;Plxna2-/-;Gli1lacZ/+ 
embryo, as well as a possible tail somite defect and several areas of reduced X-Gal staining. 

  

 

 

 

 
 
 
Figure 3-17. Deletion of the Plexin extracellular domain reproducibly increases Plexin-A1-
mediated Hedgehog pathway activity. 
Summary of luciferase assay data in which Plxna1 and Plxna1DECD were directly compared in 
five independent assays. Fold change reported between ligand-stimulated vector only (pCIG) 
triplicate wells and ligand-stimulated Plxna1- or Plxna1DECD - transfected triplicate wells. 
Yellow highlight denotes significance (p<0.05). 
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Chapter 4: 
Discussion and Future Directions 

 

4.1 Neuropilins and Hedgehog Signaling: Summary of Key Findings 

 A host of cell surface-associated and secreted proteins bind HH ligands to either 

antagonize or enhance HH pathway activity. For example, the transmembrane proteins PTCH1 

and PTCH2 as well as the secreted antagonist HHIP1 each sequester HH ligand through binding 

to specific extracellular domains (Chuang et al., 2003; Chuang and McMahon, 1999; Holtz et al., 

2015; Holtz et al., 2013; Jeong and McMahon, 2005). Conversely, the HH co-receptors GAS1, 

CDON, and BOC also interact with HH ligands through extracellular domains, and are required 

for HH signal transduction during early embryogenesis (Allen et al., 2011; Allen et al., 2007; Del 

Sal et al., 1992; Kang et al., 1997; Kang et al., 2002; Kavran et al., 2010; Lee et al., 2001; Song 

et al., 2015; Tenzen et al., 2006). In contrast to these ligand-binding cell surface HH regulators, 

data presented in Chapter 2 suggest that cell surface-associated NRP receptors, in particular 

NRP1, promote HH signaling intracellularly through the cytoplasmic domain. Unlike PTCH1, 

PTCH2, and HHIP1 (Holtz et al., 2013), NRP1 modulates HH signaling even when the pathway 

is activated downstream of ligand by SMO activation or co-transfection of GLI activator, 

suggesting that NRP1 functions at the level of GLI transcriptional regulation. This unique 

mechanism of action distinguishes NRPs from other HH cell-surface regulators and raises 

important questions about their roles in HH regulation in vivo.  

 One of the most surprising and unexpected results from my analyses is that NRP1 

localizes to the primary cilium, a subcellular compartment necessary for HH signal transduction 
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(Goetz and Anderson, 2010). Many molecules within the HH signaling cascade move into or out 

of the primary cilium during HH signaling, including SMO, PTCH1, PTCH2, and GLI proteins 

(Corbit et al., 2005; Haycraft et al., 2005; Holtz et al., 2013; Huangfu et al., 2003; Liu et al., 

2005; Rohatgi et al., 2007). This is a highly-regulated process, as the base of the cilium forms a 

size-exclusion barrier, requiring active transport of large cytosolic proteins and import of 

membrane proteins through unclear mechanisms (Kee et al., 2012; Takao et al., 2014). 

Strikingly, I observed both overexpressed and endogenous NRP1 enriched in the primary cilium 

of NIH-3T3 and dynein mutant (Dync2h1lln/lln) cells. Interestingly, however, NRP2 is not 

enriched in the primary cilium, nor is NRP1DECD, although both proteins robustly promote HH 

signaling. Together, these data suggest that NRP1 cilia localization does not correlate with its 

ability to regulate HH, and leads to questions about other potential roles that NRP1 might play 

within the primary cilium.  

 Instead of cilia localization, my structure-function analyses suggest that the NRP1 

cytoplasmic and transmembrane domains are both necessary and sufficient to regulate HH 

signaling. This finding both supports and contrasts with published literature. One previous study 

suggests that the NRP1 CD is required, but claims that the extracellular domains are also 

required for HH promotion (Ge et al., 2015). In addition, this study suggests that SEMA ligand 

binding enhances NRP-mediated HH promotion, in contrast to previous work (Hillman et al., 

2011). My findings support the idea that the NRP1 CD is required for HH promotion, but suggest 

that SEMA ligand interaction is dispensable, since the extracellular domains which mediate 

NRP-SEMA interactions can be deleted with no effect on HH promotion. Furthermore, I find 

that NRP dimerization, which is required for SEMA signal transduction, can be disrupted with 

no effect on its ability to promote HH signaling. Interestingly, I identified a previously 
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undescribed 12-amino acid motif within the NRP1 cytoplasmic domain that mediates HH 

promotion. Future experiments outlined below will help elucidate a role for SEMA ligand 

binding in NRP and PLXN promotion of HH signaling and improve our understanding of how 

NRP activity downstream of its novel cytoplasmic motif impacts the HH signaling cascade.  

 Taken together, the data presented in Chapter 2 provide compelling evidence that NRPs 

regulate HH signaling and offer mechanistic insight into how NRP1 functions in HH signal 

transduction. It is clear that NRPs play important roles within and beyond HH signaling, and our 

understanding of how these molecules behave within different cellular contexts is only beginning 

to unfold. 

 

4.2 Neuropilins and Hedgehog Signaling: Future Directions 

4.2.1 How do Neuropilins Regulate GLI Proteins? 

 While the data presented in Chapter 2 provide important information about how NRPs 

function in the HH signaling cascade, the precise mechanism of NRP-mediated regulation of GLI 

activator function remains unclear. I have narrowed down the HH promoting motif to a region 

between amino acids 890 and 902 in the cytoplasmic domain of rat NRP1. Notably, this region is 

highly conserved between vertebrate species and is partially conserved between NRP1 and 

NRP2. I have ruled out the possibility that phosphorylation of residues within this motif affects 

downstream signaling by mutating conserved serine and tyrosine residues within this region. 

However, one could invoke several possible alternative mechanisms: 

 One possibility is that NRP interacts with an intracellular binding partner to regulate GLI 

activity. While I cannot exclude the possibility that NRPs interact directly with GLI proteins, 

NRPs may also act through some known or unknown intermediate to indirectly regulate GLI 
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activation. Recent evidence suggests that the NRP CD can bind to a number of intracellular 

molecules, including MYH9, MYH10, DYHC1, FLNA, EF1α1, and ENO1 (Seerapu et al., 

2013). One could imagine taking a candidate approach using immunoprecipitation assay to test 

whether these interactions are maintained in the absence of the 12-amino acid HH promoting 

motif. Further experiments are required to determine whether these molecules interact with the 

NRP1 amino acids 890-902, and also whether they intersect with HH signal transduction in some 

way.  

 One study has been published proposing that phosphodiesterase 4D (PDE4D) mediates a 

connection between NRPs and GLI proteins (Ge et al., 2015). PDE4D interacts with the NRP CD 

and antagonizes PKA, a negative regulator of GLI activity (Ge et al., 2015). However, I present 

data in Chapter 2 which suggests that NRP can still promote HH signaling when the pathway is 

activated using a version of GLI2 with the seven main PKA phosphorylation sites mutated to 

alanine, suggesting that additional mechanisms may be involved. It remains possible that NRP 

binding to PDE4D could impact PKA-dependent GLI phosphorylation at non-consensus sites 

found throughout the length of the GLI sequence (Niewiadomski et al., 2014). Alternatively, 

NRP may affect GSK3b activity, which is also regulated by cAMP downstream of PDE4D 

(Khaled et al., 2002). Additional mutagenesis experiments are necessary to explore these 

possibilities. 

 Perhaps a better strategy to identify HH mediators downstream of NRPs would be to 

perform an unbiased screen for proteins which interact with the HH promoting motif within the 

NRP cytoplasmic domain. One way to do this might be to use BioID tagged NRP constructs to 

distinguish proteins which interact with the full-length version and the version lacking amino 

acids 890-902 (Roux et al., 2013). Mass spectrometry could then be used to identify possible 
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candidates, which could be further validated with immunoprecipitation assays and then tested as 

HH regulators. If binding to a downstream partner indeed mediates HH regulation downstream 

of NRPs, one might predict that adding the twelve-amino-acid HH promoting motif to a 

heterologous sequence would be sufficient to confer HH promotion. It is likely that membrane 

attachment will be required for HH promotion, since a cytosolic version of the NRP1 CD fails to 

promote HH signaling in NIH-3T3 cells. Therefore, possible candidates for this type of 

experiment might be proteins which contain a single-pass transmembrane motif but do not 

regulate HH signaling on their own. This line of investigation could also provide information 

about whether other regions of the NRP transmembrane domain or CD are important for HH 

promotion, a possibility we cannot formally exclude with my current results.  

 Although my data suggest that the NRP1 ECD is not required for HH promotion, the fact 

remains that NRPs interact with a wide variety of transmembrane and secreted proteins that 

could modulate NRP function in HH signaling. In addition to SEMA and VEGF ligands, NRPs 

bind to PIGF-2, heparan sulfate, TGF-β1, HGF, PDGF, FGF, L1-CAM, Plexins, and integrins at 

the cell surface (Prud'homme and Glinka, 2012). While the assumption is that most of these 

interactions are mediated through NRP’s extracellular domains, the HH-regulating motif within 

the NRP1 CD could contribute to these interactions, or its activity could be modulated when 

NRP1 forms complexes with any number of these partners. It is therefore possible that these or 

other interactions could also contribute to NRP-mediated promotion of HH signaling.  

 Because NRPs play known roles in SEMA and VEGF signaling (Gu et al., 2002; Gu et 

al., 2003; He and Tessier-Lavigne, 1997; Kolodkin et al., 1997), it is also conceivable that 

intracellular mechanisms or genomic targets regulated by these pathways might influence GLI 

activity. I find that the NRP extracellular domains which mediate interactions with SEMA and 
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VEGF ligands are dispensable for HH promotion. However, another group has shown that the 

addition of SEMA ligands can enhance NRP-mediated HH promotion (Ge et al., 2015), and I 

have not directly tested the impact of addition of SEMA or VEGF ligands in our experimental 

system. I cannot exclude the possibility that specific target genes of these pathways or even a 

more global cellular response like cytoskeletal disassembly or chromatin regulation could 

contribute to NRP-mediated HH regulation. NRPs also play important roles in regulating 

endocytosis (Pang et al., 2014), which could relate to their mechanism in HH signaling. Further 

experiments involving transcriptional inhibitors or inhibitors of endocytosis are required to 

investigate these possibilities.  

 

4.2.2 Is Neuropilin Subcellular Localization Important for Hedgehog Regulation? 

 Another interesting and potentially important aspect of NRP function in HH signal 

transduction is its subcellular localization. Our findings suggest that NRP1 must be localized to 

the cell membrane in order to function in HH regulation, since a cytosolic version does not 

promote HH signaling. It is logical to speculate why NRP membrane localization might be 

important for signaling at all: Do NRP1 proteins form some sort of cluster within a membrane 

region that is important for their activity? Does NRP1 form a complex at the cell surface with 

other proteins through its TM or CD domains? NRP1 homodimerizes and heterodimerizes with 

NRP2 (Roth et al., 2008; Sawma et al., 2014). However, my data suggest that mutating the 

dimerization motif within the NRP1 TM domain does not impact its ability to promote HH 

signaling, contrasting with the important role of NRP dimerization in Semaphorin signaling 

(Roth et al., 2008). It is possible that the NRP TM dimerization is not required but somehow 

modulates HH signal transduction. Another possibility is that NRP interacts with other TM 
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proteins such as VEGF receptors, FGF receptors, PDGF receptors, or Plexins, to regulate HH 

signaling (Muhl et al., 2017; Prud'homme and Glinka, 2012), although many of these proteins 

bind to NRP1 through its extracellular domains, which our data indicate are dispensable for 

NRP1 function in HH promotion. One experiment to address these types of questions might be to 

replace the NRP1 transmembrane domain with that of an unrelated, single-pass transmembrane 

protein that is not involved in HH regulation, or perhaps a GPI anchor. This type of experiment 

would elucidate whether the NRP1 TM is truly required for HH promotion, or whether 

membrane tethering through another means is sufficient to allow NRP regulation of HH 

signaling. It would also be interesting to analyze whether NRP1 localization changes in response 

to addition of HH or SEMA ligand, compared to untreated cells. This could be accomplished, for 

example, by expressing fluorescently tagged NRP1, perhaps with a C-terminal RFP marker, in 

NIH-3T3 cells that also contain a GFP or YFP cilia marker and performing confocal super-

resolution live cell imaging. 

 These questions are particularly intriguing given our finding that NRP1 localizes to the 

primary cilium. Although we find that cilia localization does not correlate with NRP ability to 

promote HH signaling, other molecules at the ciliary base regulate HH signaling in important 

ways (Barzi et al., 2010; Tukachinsky et al., 2010; Tuson et al., 2011; Zeng et al., 2010). 

Interestingly, all of the membrane-tethered NRP constructs we tested were detected broadly 

throughout the membrane, including at the base of the cilium. Others have shown that reducing 

NRP expression does not change the amount of GLI accumulation at the tips of primary cilia 

(Hillman et al., 2011), suggesting that NRPs at the ciliary base might regulate GLI proteins after 

they have been processed in the cilium. One could imagine a mechanism by which NRPs 

interfere with GLI activator degradation after ciliary processing. It would be useful to test 
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whether NRPs affect the accumulation of GLI activator in cells, perhaps using quantitative 

western blot methods. Alternatively, GSK3β phosphorylates GLI proteins after they have cycled 

through the cilium (Hui and Angers, 2011). Similar to our approach with PKA phosphorylation 

in Chapter 2, one could mutate GSK3β phosphorylation sites on GLI proteins and assess whether 

NRP can promote HH when co-transfected into cells with these modified GLI activators. NRPs 

also regulate endocytosis (Pang et al., 2014). It would also be interesting to inhibit its ability to 

do so, to test what role NRP-mediated endocytosis plays in regulating HH signaling. This 

approach may be tricky, since HH signaling and many other cellular processes require 

endocytosis. However, many types of endocytosis inhibitors exist (Dutta and Donaldson, 2012), 

so if one agent specifically blocked NRP-mediated endocytosis, or if the NRP sequences which 

mediate endocytosis were mutated or deleted, one could begin to address this role of endocytosis 

in NRP-mediated HH promotion.  

 If NRP1 localization to primary cilia is not required for HH signaling, why does it traffic 

there? NRP1 cilia localization may play other important roles in the cell independent of HH 

regulation. For example, it could be binding to another protein that requires cilia localization for 

its function, or regulating a different cellular process altogether, such as angiogenesis or 

endocytosis. In addition, a role for NRP1 cilia localization may be important for Semaphorin 

signaling. One aspect to consider is that NRP2, unlike NRP1, is not enriched in cilia. As 

discussed in Chapter 2, NRP1 cilia localization could be important for regulating angiogenesis in 

arterial endothelial cells, which rely on mechanosensory cilia for homeostasis (Nauli et al., 2011; 

Prud'homme and Glinka, 2012). Another possibility is that the same mechanisms which allow 

NRP entry into dendritic spines and axon terminals mediate their cilia localization, which may or 

may not impact NRP function in HH signaling or other pathways.  
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4.2.3 Broader Consequences of Neuropilin Regulation of Hedgehog In Vivo 

 While several studies suggest the importance of NRP-mediated HH signal promotion in 

vivo (Ge et al., 2015; Hayden Gephart et al., 2013; Hillman et al., 2011), this is an area with 

potential for much more extensive exploration. Given that the NRP1 CD is required for HH 

promotion (Ge et al., 2015), one intriguing experiment would be to generate mice lacking both 

the NRP1 CD and the NRP2 CD. Previous groups have deleted the NRP1 CD alone, noting 

defects in vascular permeability (Roth et al., 2016). However, NRP2 also promotes HH signaling 

(Ge et al., 2015; Hayden Gephart et al., 2013; Hillman et al., 2011), suggesting the potential for 

functional redundancy between NRP1 and NRP2 in this model. One approach might be to design 

CRISPR guides to delete the NRP2 CD in the mice which lack the NRP1 CD, since they are 

viable and fertile (Roth et al., 2016). One could then analyze any effects on HH-dependent 

tissues at critical times during mouse embryonic development. 

 

4.3 Plexins and Hedgehog Signaling: Summary of Key Findings 

 While NRPs have been identified as HH regulators (Ge et al., 2015; Hillman et al., 2011; 

Pinskey et al., 2017), a role for PLXNs in HH transduction remains unexplored. In Chapter 3, I 

provide evidence that multiple PLXN family members promote HH signaling in NIH-3T3 cells. 

My data suggest that, similar to NRPs, the PLXN CD and TM are required for HH promotion. 

Also, similar to NRPs, my data suggest that PLXNs regulate HH signaling at the level of GLI 

activator function.  

 Within its CD, PLXNs contain a split GTPase activating protein, or GAP domain, which 

regulates the activity of small intracellular GTPases (Puschel, 2007). To investigate the 
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requirement for GAP activity in PLXN-mediated HH promotion, I mutated key residues within 

the PLXN GAP domain (Rohm et al., 2000). My data suggest that GAP enzymatic activity is 

required for PLXN-mediated HH promotion. Furthermore, constitutive activation of the GAP 

domain (and possibly other signaling pathways) through the deletion of autoinhibitory 

extracellular domains results in amplified HH pathway activity, suggesting that decreasing or 

increasing PLXN GAP activity correlates with the level of HH signaling (Takahashi and 

Strittmatter, 2001). Interestingly, tyrosine phosphorylation by FYN kinases is also required for 

HH promotion, raising the possibility that multiple regions of the PLXN CD might mediate HH 

signaling. Many questions remain, however, about how these regions modulate GLI function.  

 

4.4 Plexins and Hedgehog Signaling: Future Directions 

4.4.1 Do all Plexins Promote Hedgehog Signaling? 

 The nine different PLXN family members can be divided into four subfamilies: A, B, C, 

and D (Neufeld and Kessler, 2008). One common feature of PLXN family members is that they 

all contain a cytoplasmic GAP domain (Neufeld and Kessler, 2008). I found that GAP activity 

correlates with HH promotion, raising the question: do all PLXN family members promote HH 

signaling? Initially, I focused on the A subfamily of PLXN proteins, since they interact with 

NRP receptors to transduce signals from secreted SEMA ligands (Neufeld and Kessler, 2008). I 

showed that all members of the A subfamily (PLXNA1, PLXNA2, PLXNA3, and PLXNA4) 

robustly promote HH signaling. Surprisingly, I found that PLXNB2, which does not interact with 

NRPs, can also promote HH signaling. To further understand which PLXNs are involved in HH 

regulation, I will need to compare the ability of the remaining PLXNS (B1, B3, C1, D1) to 

promote HH signaling in functional assays. Because we show that PLXN GAP activity mediates 



172 
 

HH promotion, and because all of the PLXN family members contain cytoplasmic GAP 

domains, I would predict that these additional constructs can also promote HH signaling. 

 Another interesting question to explore is whether GAP domain-containing proteins that 

do not belong to the PLXN family can promote HH signaling. One way to address this question 

would be to overexpress other GAP proteins and analyze their effects on HH signaling. By 

choosing GAPs that are specific for certain small intracellular G proteins, this could also provide 

insight into which of the many G proteins regulated by PLXN activity might intersect with HH 

transduction. One caveat with this experiment, however, is that it would be difficult to control for 

binding specificity and overall activity levels of other GAPs, which could complicate the 

interpretation of the results. Another caveat is that PLXNs act uniquely at the plasma membrane, 

whereas most GAPs are cytosolic (Neufeld and Kessler, 2008). To further explore the 

importance of membrane localization in PLXN regulation of HH signaling, one could: 1) express 

a cytosolic version of the PLXN CD and assess its ability to promote HH, and/or 2) tether a 

different GAP protein to the membrane by adding the PLXN TM domain to ask whether any 

membrane-bound GAP activity is sufficient to promote HH signaling. If GAP activity from other 

proteins is unable to promote HH signaling, one interpretation might be that HH regulation 

requires one or more of the various other activities and processes regulated by the PLXN CD. 

Alternatively, one could utilize Rho and Ras activity assays to better understand G protein 

regulation downstream of cytosolic and membrane-bound PLXNs and how this correlates with 

HH pathway activity.  
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4.4.2 How do Plexins Promote Hedgehog Signaling? 

 While my data suggest that PLXNs promote HH signaling through their cytoplasmic 

GAP activity at the level of GLI activator, the precise mechanism of PLXN action in HH signal 

transduction remains unclear. One question is whether GAP activity is the only part of the PLXN 

CD that regulates HH signal transduction. In addition to manipulations to the GAP region, I 

found that mutating key tyrosines phosphorylated by Fyn kinase (St Clair et al., 2018) also 

blocks PLXN promotion of HH signaling. One of these tyrosines lies within the PLXN GAP 

domain, while the other is outside of the GAP region (St Clair et al., 2018). An unanswered 

question is whether these tyrosine mutations simply disrupt GAP activity, or whether they may 

function independently of GAP regulation. Most functional assays for PLXN activity test for 

cytoskeletal collapse, but teasing apart the cytoplasmic activities downstream of arginines within 

the GAP domains vs tyrosines phosphorylated by Fyn kinases will require a more sensitive and 

specific approach, perhaps measuring GTP-bound vs GDP-bound RAS and RAP. This will 

establish a framework to decipher whether GAP activity can be distinguished from Fyn kinase 

phosphorylation and provide further insight into how PLXN cytoplasmic activity mediates the 

HH response.  

 Downstream of PLXNs, another obvious question is where does GAP regulation or other 

cytoplasmic activity intersect with HH signal transduction? My data suggest that PLXNs may 

regulate GLI activator, but how this regulation is achieved remains completely unexplored. One 

possibility is that PLXN GAP activity indirectly impacts GLI function through one of its many 

downstream effectors. However, exactly which intracellular PLXN effectors mediate HH 

promotion will be complicated to dissect.  
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 Considering this question from the standpoint of GLI regulation, several possible 

candidates can be identified that may intersect with HH signal transduction downstream of 

PLXN cytoplasmic activity. As previously discussed, GLI proteins are regulated by PKA, 

GSK3b, and CK1 phosphorylation (Pan et al., 2006; Pan and Wang, 2007; Pan et al., 2009; 

Tempe et al., 2006; Wang et al., 2000; Wang and Li, 2006). Therefore, PLXNs could regulate 

GLI proteins by mediating the activity of one or more of these kinases. Interestingly, SEMA 

signaling through PLXNs requires activation of many of these same proteins. For example, 

SEMA3A activates GSK3b at the leading edge of growth cones, which in turn phosphorylates 

key microtubule regulatory proteins and is essential for radial cell migration and dendritic 

orientation in the developing cortex (Eickholt et al., 2002; Morgan-Smith et al., 2014; Uchida et 

al., 2005). In addition, SEMA3A signaling induces both anterograde and retrograde axonal 

transport in dorsal root ganglia neurons via kinesins and dyneins, whose motor function in axons 

is controlled by GSK3, protein phosphatase1 (PP1), And Cdk5 (Goshima et al., 1999; Goshima 

et al., 1997; Morfini et al., 2004; Niethammer et al., 2000). Therefore, PLXNs may regulate GLI 

phosphorylation or their intracellular transport via kinesins and dyneins – a possibility that could 

be potentially be explored through existing collaborations here at the University of Michigan.  

 Another important negative regulator of GLI function is SUFU, which binds to and 

inhibits GLI proteins and regulates their processing within the primary cilium (Ding et al., 1999; 

Svard et al., 2006). One could therefore imagine PLXN proteins interrupting GLI/SUFU 

interactions, or perhaps influencing their trafficking relative to the primary cilium to modulate 

HH signaling. Future experiments could address these possibilities by testing whether PLXN 

overexpression, constitutive activation, or deletion impacts GLI-SUFU interactions using 

immunoprecipitation, FRET, or some other approach. Another interesting experiment would be 
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to visualize fluorescently tagged SUFU and GLI proteins within cells and observe how their 

distribution changes with HH activation, PLXN overexpression, or a combination of the two.  

 While connections to GLI regulation are just beginning to be explored, another 

possibility is that small intracellular GTPases downstream of PLXN GAP activity influence HH 

signal transduction. As discussed in Chapter 1, G-proteins downstream of PLXN GAP domains 

play a number of important roles within the cell. While it remains unclear how G-proteins may 

influence GLI regulation, several studies have focused on how HH signaling may influence G-

protein activity. Interestingly, SHH can stimulate small Rho GTPases, including Rac1 and RhoA, 

through SMO interactions with Gi family G-proteins to regulate fibroblast migration (Polizio et 

al., 2011; Riobo et al., 2006). Strikingly, this process is not dependent upon GLI transcriptional 

activity (Polizio et al., 2011). These studies raise the question: could SMO act together with 

PLXNs to signal in this non-canonical way? One could imagine that PLXN binding to SMO 

could mitigate PTCH inhibition, or somehow change SMO regulation of GLI activity to favor 

HH transcription. This could be an exciting area to explore with future experiments.  

  It is important to consider that small intracellular GTPases downstream of PLXN GAP 

regulation induce cytoskeletal collapse via integrin signaling and disassembly of focal adhesions 

(Bos and Pannekoek, 2012; Kinbara et al., 2003; Oinuma et al., 2004; Serini et al., 2003; Wang 

et al., 2012). Therefore, global cytoskeletal instability may mediate PLXN-dependent HH 

promotion. Interestingly, however, transfecting a constitutively active form of PLXN that 

robustly causes cytoskeletal collapse (PLXNA1DECD) fails to induce HH signaling on its own 

without another means of HH pathway induction. One experiment to examine the role of 

cytoskeletal instability in HH regulation might be to add different types of cytoskeletal 

disruptors, such as nocodazole or cytochalasin, for varying amounts of time and assess HH 
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signaling using our NIH-3T3 luciferase reporter assay. One might predict that cytoskeletal 

disruption might impact multiple signaling pathways simultaneously. Therefore, it will be 

important to include other pathway reporters as controls for these experiments. My very 

preliminary results using a WNT luciferase reporter (courtesy of Dr. Ken Cadigan) suggest that 

PLXNA1DECD does not strongly promote WNT signaling as it does HH (Figure 4-1). In one 

experiment, PLXNA1DECD promotes WNT signaling when stimulated with 12.5 ng of b–catenin 

(Figure 4-1). However, another experiment using 20 ng of b–catenin shows that PLXNA1DECD 

significantly inhibits WNT signaling (Figure 4-1). Notably, across experiments I only see about a 

five-fold induction of WNT signaling, and quite a bit of variation exists between even pCIG-

transfected cells treated with 20 ng of b–catenin (Figure 4-1). These experiments should be 

further optimized, and these results will need to be repeated and confirmed before making any 

conclusions.   

 If PLXN-mediated cytoskeletal collapse indeed affects HH signaling specifically, an 

important aspect to consider is the specific requirement for primary cilia in vertebrate HH 

signaling. Similar to neuronal projections in some ways, cilia are microtubule-based structures, 

and may therefore be very sensitive to PLXN-mediated cytoskeletal disruptions. Thus, PLXN 

GAP activation may mediate GLI processing in the primary cilium. While one might predict that 

disruption of primary cilia may result in a decrease in HH signaling, the opposite has been found 

to be true, due to the inability of GLI3 to be processed into its repressor form (Wong et al., 

2009). Therefore, PLXN-mediated cytoskeletal disruption could be impacting primary cilia in a 

way that boosts HH target gene expression. Interestingly, my preliminary data suggest that 

PLXNA1 is not enriched in the primary cilium. However, the effect of PLXNs on cilia length 

and morphology have not been explored, and how PLXNs regulate GLI processing is completely 
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unknown. Fixed or live cell imaging with stained or fluorescently tagged GLI constructs and 

cilia markers could be used to investigate these questions.  

 Yet another aspect to consider is the possibility for interactions between PLXNs and 

additional proteins at the cell surface to play some role in HH regulation. Similar to NRPs, 

PLXNs interact with a variety of cell surface proteins, including tyrosine kinases Met and 

ERBB2, and Off-track receptors (Giordano et al., 2002; Winberg et al., 2001). Currently, it is 

unknown whether PLXNs bind directly to any of the HH pathway components or cell-surface 

regulators. While I cannot formally exclude the possibility that each PLXN or PLXN subfamily 

regulates HH signaling via a unique mechanism, it is more likely that PLXNs from the A and B 

subfamilies converge upon a similar regulatory process. Therefore, focusing on interacting 

proteins and intracellular mechanisms that are shared between PLXN subfamilies will be useful 

moving forward.  

 

4.4.3 Do Plexins Regulate Hedgehog Signaling In Vivo? 

 PLXNs strongly regulate HH signaling in NIH-3T3 fibroblasts, raising interesting 

possibilities about their potential roles in other cell types and tissues in vivo. Unfortunately, 

functional redundancy between the nine members of the PLXN family vastly complicates loss of 

function analyses, particularly given our finding that PLXNs from multiple subfamilies can 

regulate HH signaling. A first step toward an in vivo loss of function approach might be to 

carefully characterize PLXN expression at different stages in mouse development using in whole 

mount and section in situ hybridization and/or antibody staining. While this will be a significant 

amount of work, a more comprehensive analysis of PLXN expression will help identify areas 

that may express fewer PLXNs, making genetic deletion experiments much more feasible. 
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Particular tissues that may be interesting to consider in light of their reliance on HH signaling 

during development include the neural tube, limb buds, intestines, and forebrain/craniofacial 

tissues, although many additional tissues rely on HH signaling for patterning.  

 Another approach to consider might be designing CRISPR guides targeting the GAP 

domains of multiple (or potentially all) of the PLXN family members. Generating and validating 

mice with so many deletions would be challenging to say the least, but with rapid advances in 

CRISPR technology, this approach may be feasible in embryonic stem cells (ES cells) or 

immortalized cell lines. ES cells can be cultured and differentiated into multiple lineages, which 

may provide insight into PLXN regulation of HH signaling in different tissues should 

appropriate mouse models be inaccessible. My initial attempts using CRISPR to delete PLXNA1 

and PLXNB2 in NIH-3T3 cells have highlighted some of the challenges of this approach, 

including screening for effective guides, screening for cells in which the intended deletion has 

taken place, and designing experimental methodologies that will allow us to control for off-target 

effects. However, successfully deleting PLXNs using CRISPR will dramatically improve our 

understanding of PLXN function in HH signal transduction, and could also be applied to HH-

dependent cancer cell models. Alternate approaches may be to design a small-molecule GAP 

domain inhibitor that would simultaneously constrain all PLXN activity within a given cell, or 

perhaps generate antibodies against a conserved region within the extracellular SEMA domain 

shared between PLXN family members.   

 

4.5 Neuropilins and Plexins Within the Broader Signaling Landscape 

 Considering NRP and PLXN cooperation in SEMA signaling raises many important 

questions about their function in HH signal transduction. Do NRPs and PLXNs work together to 
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regulate HH signaling? Do they converge on the same downstream mechanism to achieve GLI 

regulation, or do they function through completely separate cascades? As discussed in Chapter 3, 

these possibilities are not mutually exclusive. To further define the contributions of different 

SEMA receptors in more detail, it will be important to generate HH-responsive cell lines lacking 

either PLXNs or NRPs. While CRISPR experiments with PLXN proteins are challenging based 

on the sheer number of PLXN family members, generating Nrp-/- cell lines may be much more 

feasible, considering that only two deletions would be required (NRP1 and NRP2). Several 

studies suggest that loss of NRP1 and NRP2 result in a severe reduction in HH signaling (Ge et 

al., 2015; Hillman et al., 2011). A HH-responsive Nrp-/- cell line would therefore allow for 

important rescue experiments with NRP deletion constructs to confirm and extend my findings in 

Chapter 2 and also allow me to determine whether PLXNs require endogenous NRPs to promote 

HH signaling. Experiments like these will provide an improved understanding of NRP and 

PLXN roles and contributions to HH regulation. 

 Another question that arises from the discovery that both NRPs and PLXNs promote HH 

signaling is whether SEMA ligand is involved in this process. As discussed in Chapter 3, SEMA 

ligand activation of PLXN GAP activity may contribute to increased HH signaling, although 

several lines of evidence suggest that SEMAs are not required for NRP-mediated HH promotion. 

Again, here a Nrp-/- or Plxn-/- HH-responsive cell line would be a useful tool to investigate 

SEMA ligand requirements, as the presence of endogenous NRPs and PLXNs complicates 

existing studies. Even so, this is a tricky question to address, as many variables, including the 

level of NRP or PLXN overexpression, the amount and duration of SEMA ligand added to the 

system, as well as the sensitivity of the assay could all impact the results. In this case, 

modulating levels of SEMA ligand in vivo and analyzing the impact on HH target gene 
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expression using qRT-PCR or other methods may be useful, in that NRPs and PLXNs will be 

present at endogenous levels.  

 Many additional questions remain when considering the broader implications of this 

work. Do NRPs and PLXNs promote HH signaling in other cell types beside NIH-3T3s? Do 

NRPs and PLXNs influence other developmental signaling pathways, or is their regulation 

specific to HH? What about other axon guidance pathways like Ephrins, Netrins, and Slits – do 

they also influence HH signaling? Are there differences between repulsive and attractive axon 

guidance cues that determine their effects on HH or other developmental signaling pathways? 

What factors determine whether a NRP or PLXN receptor acts within the HH signaling cascade 

or the SEMA signaling cascade, or are they able to do both simultaneously? In the words of 

Ramón y Cajal, “It is fair to say that, in general, no problems have been exhausted; instead, men 

[and women] have been exhausted by the problems” (Ramón y Cajal, 1999). It is my hope that 

fresh talent approaching these questions without prejudice will see many new possibilities.  
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4.6 Figures 

 

Figure 4-1. Plexin-A1 and Plexin-A1 lacking its extracellular domain do not consistently 
promote WNT signaling. 
WNT-dependent luciferase reporter activity measured in NIH-3T3 cells transfected with the 
indicated constructs and stimulated with b-catenin. Data are reported as mean -fold induction ± 
S.D., with p values calculated using two-tailed Student’s t test. n.s., not significant. 
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Abstract: 

Many barriers discourage underrepresented students from pursuing science careers. To 

access graduate education, undergraduate students must first gain exposure to a particular subject 

and subsequently accumulate related coursework and research experience. Many 

underrepresented students lack exposure to developmental biology due to limited undergraduate 

course offerings and finite resources at smaller institutions. To address this disparity, a group of 

University of Michigan graduate students and postdoctoral fellows created a portable short 

course focusing on developmental biology, titled “Developing Future Biologists” (DFB). This 

weeklong educational initiative provides hands-on laboratory sessions, interactive lectures, and 

professional development workshops to teach students about developmental biology and increase 

awareness of scientific career options. To evaluate course effectiveness, we developed a pre-post 

assessment, incorporating main ideas from the BioCore Guide. Student understanding of basic 

concepts and perceived experience in developmental biology increased in DFB participants, 

despite the abbreviated nature of the course. Here, we provide all course materials and an in-

depth analysis of the assessment we created. The DFB portable short course model is an easily 

adaptable tool that connects undergraduate students with opportunities for advanced study and 

lowers barriers for underrepresented students in science, technology, engineering, and 

mathematics.  
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Introduction:  

Similar to other science, technology, engineering, and mathematics (STEM) fields, 

developmental biology trainees do not proportionally represent the diversity of our nation (NSF 

(National Science Foundation), 2015).  Many barriers contribute to this lack of diversity, 

including limited opportunities to partake in relevant science coursework and gain research 

experience (Hurtado et al., 2010). It is widely accepted that increased diversity enhances 

graduate student training and development through the integration of a variety of cultural 

perspectives (Aguilera, 2012). For outstanding students from all backgrounds to join the 

developmental biology community, however, they need to be made aware of opportunities in 

science and develop a passion for this exciting field.  

To address this issue, a team of University of Michigan graduate students and 

postdoctoral fellows created Developing Future Biologists (DFB), an educational initiative 

designed to lower the cultural barriers to graduate education, increase awareness of science 

careers, and teach students core concepts of developmental biology. The program centers on a 

weeklong short course that includes developmental biology instruction, hands-on laboratory 

exercises, professional development activities, and networking sessions. A main focus of the 

course is to incorporate active learning strategies, which enhance student learning in STEM 

fields (Freeman et al., 2014; Haak et al., 2011). Additionally, the course aimed to assist students 

from a variety of backgrounds build long-term mentoring relationships with University of 

Michigan graduate students, postdoctoral fellows, and faculty members. Previous research 

suggests that similar mentoring efforts have helped students succeed in scientific endeavors 

(Tsui, 2007). Importantly, DFB was designed to be portable and scalable so that future iterations 

could be adaptable to a wide variety of subjects and locations. 
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In May of 2015, our team implemented the first DFB course in Ponce, Puerto Rico, 

where several of our instructors had completed undergraduate studies in biology and noticed a 

need for developmental biology instruction. Only three of the ten University of Puerto Rico 

(UPR) undergraduate campuses offer a developmental biology course on a regular basis, with 

only two of the three offering laboratory-based instruction. Therefore, after a successful pilot 

program focused on UPR Ponce students, we returned to Puerto Rico in 2016, opening the 

application to undergraduate students from all UPR campuses and providing room and board for 

students from other cities. To accomplish this, we compiled a variety of external and internal 

funding from sources such as the Society for Developmental Biology Non-SDB Educational 

Activities Grant, American Society for Cell Biology Committee for Postdocs and Students 

Outreach Grant, the Department of Cell and Developmental Biology at the University of 

Michigan, and the Rackham Graduate School Dean’s Strategic Initiative at the University of 

Michigan, among others (see Acknowledgements). In addition, we offered a local iteration of the 

course to underrepresented undergraduate students from the state of Michigan in 2017, allowing 

us to validate our assessment on a second student demographic.  

Since 2010, the Vision and Change Call to Action has been instrumental in guiding 

innovations in biology education (AAAS, 2010). The DFB course model incorporates many 

aspects of Vision and Change, including integrating core concepts into the curriculum, focusing 

on student-centered learning through active participation, and encouraging students and 

professors from the University of Michigan to embrace high quality, innovative teaching 

methods. To gauge the effectiveness of the course and measure students’ grasp of core concepts 

in developmental biology, we developed and incorporated formal pre-post assessments using the 

BioCore guide’s interpretation of the Vision and Change core concepts in Biology (Brownell et 
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al., 2014). To assess student attitudes, we also included a pre-post survey asking students to self-

rate their experience in developmental biology, their interest in graduate school, and their 

awareness of science career options.  

The purpose of this report is two-fold: 1) To present data addressing the effectiveness of 

the 2016 and 2017 DFB course iterations, and 2) To provide resources for the development of 

similar initiatives. Throughout the course, our goals were to build relationships with students, 

improve attitudes about graduate education and scientific careers, and effectively teach students 

the core concepts of developmental biology. Here, we present our course design, teaching 

materials and assessment data, demonstrating that this short course model can enhance student 

understanding and perceived experience in developmental biology.   

 

Course Development and Methods: 

Instructor Selection and Preparation 

 Graduate student, postdoctoral fellow, and faculty instructors for the DFB course were 

selected eight months before the course start dates. Faculty instructors were selected based on 

involvement with undergraduate and graduate education and were invited to participate via 

email. All other instructors submitted a cover letter and curriculum vitae, and selected applicants 

were interviewed. Instructors were selected based on teaching experience, interest in social 

justice/inclusion, and ability to commit two years to the program. A two-year commitment was 

required to help with turnover and ensure the continuation of the initiative. Over the course of 

the academic year, instructors met weekly to develop the course curriculum, design lab activities, 

create the course applications and advertisements, design assessments, review applications, 
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practice lab instruction, and perform other tasks related to creating this course. Meeting notes, as 

well as all other materials created for the course, were organized and stored on a shared drive.  

 

Student Applications & Selection 

Approximately three months before the course start date, advertisements were sent out 

via email, flyers (Figure A1-S1), the course Facebook page 

(https://www.facebook.com/developingfuturebiologists), and the course website 

(http://developingfuturebiologists.com). Applications, which were designed using Google Forms 

and linked through the course website, were open for one month. The course was restricted to 24 

students due to equipment limitations and to maximize the personal interactions among enrolled 

students and DFB instructors. Students were selected for participation based on grade point 

average (minimum of 2.8 on a 4.0 scale) year in college, major, career goals, and reason for 

course interest. While senior students participated in the course, we sought to accept a larger 

portion of first and second year students based on previous studies demonstrating that early 

research experiences increase continued participation in the sciences, particularly for students 

from underrepresented minority groups (Nagda B.A., 1998; Rodenbusch et al., 2016). Preference 

was given to students who communicated enthusiasm and a clear personal benefit from 

participation in DFB.  

 

Lectures and Labs 

 One of our main goals in developing this course was to teach students the core concepts 

of developmental biology. To achieve this objective, we developed interactive, discussion-based 

lectures and hands-on laboratories surrounding main ideas and experimental techniques in 
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developmental biology. Each day focused on a single theme, including early embryonic 

development, cell signaling, gene expression, organogenesis, and development and disease. 

Instructional sessions were held daily from 9:00 AM to 5:00 PM, with discussion-based lectures 

in the morning, interactive labs in the afternoon, and occasional evening networking activities 

(Figure A1-S2).  

 Prior research indicates that courses with hands-on activities, such as labs, increase 

enthusiasm and learning in students (Basey et al., 2014). Therefore, our course was designed to 

focus on lab activities, with discussion-based lectures serving to introduce core content that was 

later incorporated into laboratory material. Experienced faculty, postdocs, and graduate students 

led discussions, and slide presentations were combined with active-based learning to encourage 

student involvement. For example, one discussion session included reenactment of the Wnt 

cellular signaling pathway, where students acted out the functions of specific pathway 

components. In addition, the use of iClicker remotes allowed instructors to pose questions 

throughout the lecture to further engage students in the material (Caldwell, 2007; Crossgrove and 

Curran, 2008). 

Afternoon labs served as the main hands-on component of the course, with the objective 

of exposing students to basic research methods and tools used in the field of developmental 

biology. Instruction in basic laboratory safety and record keeping was provided prior to lab 

participation. Due to space limitations in 2016, the course was designed to have two lab sessions 

covering the same material each afternoon; half of the students attended lab, the other students 

attended professional development sessions, and then the groups switched sessions after 90 

minutes. This format was kept in 2017, as positive feedback from 2016 professional 

development sessions demonstrated a strong need for such instruction. Each lab session utilized 
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materials from common model organisms, including worms, frogs, flies, chickens, and mice. To 

guide participation, students were provided a lab workbook containing background information, 

experimental protocols, questions about each specific exercise, and space for students to record 

their observations (workbook available upon request. Please email jpinskey@umich.edu). 

Workbooks were not graded, and students were allowed to keep their workbooks following the 

conclusion of the course.  

 

Professional Development for Participants 

The importance of mentoring in underrepresented student success is well established 

(Nagda B.A., 1998; Villarejo et al., 2008; Whittaker and Montgomery, 2012). To facilitate 

mentoring relationships between DFB instructors and participants, students were split into 

groups and assigned two team leaders from the University of Michigan. The team leaders 

mentored their assigned students both during the course and after its conclusion. To encourage 

bonding within these teams, friendly competitions including questions about course content and 

lab-based challenges were held throughout the week for small prizes. In addition to the team 

assignments, networking activities at which students could informally interact with their assigned 

mentors as well as other instructors were held. These included an ice cream social, a bowling 

night, dinner with additional faculty from outside of the course, and an end-of-course networking 

dinner. These events created a welcoming environment for undergraduates to speak with 

graduate students, postdocs, and faculty, encouraging the formation of meaningful mentoring 

relationships. 

 We further aimed to help students envision themselves as researchers and learn about 

career opportunities by incorporating a series of career development and informational sessions. 
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Topics included curriculum vitae review, effective networking skills, interview skills, 

presentation skills, and program-based opportunities offered at institutions like the University of 

Michigan (Figure A1-S2). Additionally, career panels were incorporated into the course: one 

with current graduate students, and one with and faculty/postdoctoral instructors. The panels 

began with introductory statements from each member describing their personal scientific career 

paths, and proceeded with questions focused on careers in research. To allow students to gain 

further perspective on the types of projects and scope of work done by graduate students, the 

graduate student instructors gave short research talks about their specific projects daily during 

lunch. 

 

Assessment tools and statistical analyses 

Previous reports have outlined the major concepts in biology, including an adaptation for 

developmental biology in particular (Brownell et al., 2014; Rossi et al., 2013). Using these as a 

guide, we created pre-post assessments to evaluate student understanding of core concepts in 

developmental biology as well as lab techniques used throughout the course (Figure A1-1). 

Questions corresponded to each of the major topics of the course, each with five possible 

answers (Assessments available upon request, please email jpinskey@umich.edu). Question 

order was randomized from pre- to post-test to avoid memorization of the questions. A score of 0 

and 1 was assigned for each incorrect and correct answer, respectively. Additionally, five items 

on the pre-post examination were included to ascertain students’ general perspectives about 

scientific careers and developmental biology. Each answer was given a value of 0-4 with 0 

corresponding to least familiar/positive about the question topic and 4 being most 

familiar/positive about the question topic. All values are reported as mean ± standard deviation.  
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Normality of the data were tested with D’Agostino & Pearson normality tests, and statistical 

comparisons between pre-test and post-test results were made using paired two-tailed t-tests, 

Wilcoxon matched-pairs tests, or one-way ANOVA with Sidak’s post hoc test as dictated by 

design and data distribution. Importantly, all DFB instructors completed a training certification 

for research in human subjects through the Program for Education and Evaluation in Responsible 

Research and Scholarship (PEERRS) at the University of Michigan, and this study was formally 

exempt from ongoing Institutional Review Board (IRB) review. Furthermore, participants were 

provided the option of signing a release form for photography and videography taken during the 

course.  

Feedback for the course was collected on a combination of iClicker data, pre-post tests, 

and written feedback surveys. Student feedback was collected for each lecture and lab session at 

its conclusion, via a standard series of iClicker questions and a written feedback survey (Survey 

available upon request, please email jpinskey@umich.edu). To gain qualitative insight into the 

students’ experiences, we also encouraged open-ended reflections on the back of the course 

evaluations.  

 

Results:  

Student Understanding of Core Concepts Improved over the Course of the Week 

To measure understanding of core concepts in the field of developmental biology, we 

analyzed scores from pre- and post-test questions addressing our five content areas (Figure A1-

2). In 2016, students’ background knowledge varied widely, with pre-assessment scores ranging 

from 17-50% (4 to 12 correct out of 24) and an average score of 33% (8 correct out of 24). 

Student background knowledge prior to the course in 2017 was similar, with pre-assessment 
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scores ranging from 13-60% (4 to 18 correct out of 30) and average score of 36% (11 correct out 

of 30). Excitingly, for both course iterations, cumulative student understanding of the core 

concepts in developmental biology improved significantly following instruction (Figure A1-2A). 

Post-test scores rose from an average of 33% to 57% (raw score of 7.9±2.7 to 13.8±3.7, 

p<0.0001) in 2016 and from an average of 36% to 66% (raw score of 10.9±3.7 to 19.9±4.6, 

p<0.0001) in 2017. Overall, 22 out of 24 students in 2016 and all 15 students in 2017 improved 

their scores on the post-assessment, with increases ranging from an additional 1 to 10 points out 

of 24 in 2016, and 3 to 22 out of 30 in 2017 (Figure A1-2B).  In 2016, a single student’s test 

score decreased (from 11 to 8 of 24 points), and one did not change (7 of 24 points on both 

assessments). The average percent improvement per individual was 24% in 2016 and 30% in 

2017. Accordingly, the distribution of test scores shifted to more positive values on the post-test 

(Figure A1-2 C-D). Together, these results suggest an improved overall understanding of core 

developmental biology concepts after participation in DFB.  

In addition to the overall increase in test score, it was important to investigate whether a 

net improvement existed for each of the individual concept areas. Each test was divided into an 

equal number of questions assigned to each of the five concepts and a section on lab based 

techniques, with question order randomized. To analyze content-specific changes, questions 

were sorted and changes in pre-post scores were examined for each concept section (Figure A1-

3). Understanding of all concepts improved during both iterations of the course (two-tailed t-test, 

p<0.05), with some concepts improving more than others. In 2016, organogenesis improved the 

most (40% average increase in score for that concept), followed by early embryo (32%), 

techniques (27%), development & disease and cell signaling (18% each), and finally gene 

expression (10%). In 2017, questions covering techniques improved the most (41%), followed by 
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early embryo (40%), organogenesis (31%), development & disease (25%), cell signaling (24%), 

and finally gene expression (19%). These results suggest that intervention was successful for 

student learning each day of the course. 

Although scores improved for the test as a whole as well as for each individual concept 

area, post-assessment score in 2016 was still only 57%. While conducting our initial analysis of 

the 2016 data, we observed that some items on the 2016 assessment were simply not covered 

during the course. In some cases, instructors changed their lecture content after the assessments 

had been designed, whereas in other cases, instructors simply ran out of time to discuss all of 

their material. To address this consideration, we asked instructors to self-rate coverage of each 

assessment item relevant to their topic on a numerical scale. After receiving all instructor 

analyses, questions were divided into two equally-sized groups, labeled “less instructor 

coverage” and “more instructor coverage”.  As predicted, the topics that were covered more in 

depth or by multiple instructors had better learning outcomes than those topics that were not as 

well-discussed (Figure A1-4). We found that, while the “more covered” portion and the “whole” 

test improved from pre to post, there was no improvement in the “less covered” group of 

questions (percent correct mean±SD, less covered pre 37.9±14.7, post 46.5±15.5, more covered 

pre 27.8±16.2, post 68.4±20.0, whole test pre 32.8±11.1, post 56.9±15.2, p=0.162 less covered, 

p<0.0001 more covered and whole test, one-way repeated measures ANOVA/Sidak). These 

results demonstrate that in 2016, students improved to a greater extent on the material that the 

course rigorously covered than on material that was less-discussed. These findings were taken 

into consideration during planning of the 2017 course, leading to improvement of post-

assessment scores from an average of 57% in 2016 to an average of 66% in 2017.  
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Item Analysis Provided Recommendations for Assessment Improvement 

 To measure the validity and effectiveness of our assessments, we performed item 

analyses for difficulty for both the 2016 and 2017 pre-post exams (Tables 1 and 2). Item 

difficulty measures the proportion of students who answer an item correctly (Allen and Yen, 

2002). Therefore, a higher difficulty score signifies that an item was “easier”, because a higher 

percentage of students answered that item correctly. Importantly, overall difficulty scores 

increased from pre to post for both years, indicating that more students answered post-test items 

correctly following instruction (Tables 1 and 2). In 2016, 5 out of 24 items on the pre-assessment 

(21%) had difficulty scores above 0.5, with an overall average difficulty of 0.33, compared to 15 

out of 24 items on the post-assessment (63%), which had an overall average difficulty of 0.57 

(Table 1). Similar trends were observed in 2017, with 6 out of 30 items above 0.5 on the pre-test 

(20%) with an average score of 0.36, compared to 25 out of 30 items on the post-test (83%), 

which had an overall average difficulty of 0.66 (Table 2). Several questions had difficulty scores 

that decreased, including items 4, 19, and 24 in 2016 and items 4 and 10 in 2017 (Tables 1 and 

2). These items should be revised in future assessments.  

 In addition, item discrimination was used to measure how well each assessment question 

distinguished between high- and low-performing students (Allen and Yen, 2002). Discrimination 

scores below 0.2 reflected the need for item revision. Interestingly, in 2016, the pre-test had 10 

out of 24 questions (42%) adequately discriminating between low and high performing students, 

while the post-test displayed an increase in discrimination scores, with 18 out of 24 items (75%) 

above 0.2 (Table 1). Mean discrimination improved from 0.16 on the pre-assessment to 0.37 on 

the post assessment (Table 1). In 2017, however, both the pre- and post-assessments contained 

more questions with discrimination scores above 0.2: 22 out of 30 items on the pre-assessment 
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(73%) and 25 out of 30 questions on the post-assessment (83%) (Table 2). In addition, mean 

discrimination improved for the 2017 pre-assessment (from 0.16 to 0.29), whereas the post-test 

discrimination mean remained unchanged at 0.37 (Table 2, c.f. Table 1).  Six items in 2016 

showed decreased discrimination from pre to post (1, 9, 14, 20, 21, and 22), whereas eight items 

decreased in 2017 (3, 5, 8, 13, 16, 26, 27, and 29). Any item with a discrimination score below 

0.2 on the post-test should be considered for revision. Together, these item statistics will guide 

improvements to the pre-post assessment for future iterations of the course.  

Lastly, we used the Blooming Biology Tool to categorize assessment items depending on 

required cognitive domains (Crowe et al., 2008). Because the course was only a week in length, 

most items measured lower order cognitive skills at the knowledge level (Tables 1, 2). However, 

we did slightly improve the taxonomy of the test in 2017, with the amount of higher order items 

increasing from 33% to 40% of the assessment (c.f. Tables 1,2).  

 

Student Experience, but not Interest in Developmental Biology Improved after DFB  

Because our ultimate goal is to lower barriers to graduate education, we wanted to assess 

whether students felt they gained experience as a result of the course, and whether the course 

influenced their intended career pathway in some way. Student perspectives in these areas were 

assessed via five items in the pre-post analysis. Over the duration of both the 2016 and 2017 

course, students felt they became more familiar with career options in the sciences (p<0.02). In 

2016, the average pre to post test score in this area notably increased 75% in raw point value 

(2.88 to 3.36 out of 4). Students also felt that they had gained developmental biology experience 

in the classroom and the lab in both the 2016 Puerto Rico and 2017 Michigan courses (Figure 

A1-5, p< 0.01). Surprisingly, overall interest in developmental biology did not increase either 
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year (Figure A1-5, p≥0.4). These data may reveal a selection bias for students with a strong 

interest in developmental biology prior to their participation in DFB. Also of interest, the 

likelihood of students attending graduate school did not change (Figure A1-5, p≥0.2). Together, 

these results indicate that the DFB course improved students’ perceived experience in 

developmental biology, but not their immediate likelihood of pursuing graduate education.  

 

Discussion: 

In this report, we describe the development, implementation, and assessment of 

Developing Future Biologists, a portable short course in developmental biology. Our mission 

centers around engaging underrepresented undergraduate students in an active learning 

environment, while also providing professional development and continued mentorship. Two of 

our major goals during the course were to teach students the core concepts of developmental 

biology and to increase awareness of career options in the sciences. Using a pre-post method of 

assessment, we found that student understanding of core concepts in developmental biology 

improved, particularly in content areas of organogenesis and early embryonic development. Item 

analyses indicated that students were able to perform better on post-tests in both 2016 and 2017, 

and that discrimination and taxonomy improved with the revised test given for the second 

iteration of the course. Furthermore, students indicated an increased awareness of career options 

in the sciences, although their interest in developmental biology and likelihood of attending 

graduate school did not change. Overall, this course represents a novel educational model that 

could be widely adopted by other universities and departments to help reduce barriers to graduate 

education.  
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Portable Course Design and the Alumni Connection 

Many universities and research institutions offer paid summer research opportunities or 

internship programs that allow students to gain experience in developmental biology 

laboratories. For students to pursue these opportunities, however, they must first be motivated to 

seek out and apply for these programs, and they also must be willing to travel long distances and 

commit considerable time to these programs (typically around 10 weeks). Arguably, students 

with little background in developmental biology and with limited access to laboratory resources 

might be unaware of these summer research programs. Additionally, students may be hesitant to 

commit an extensive period of time to such endeavors without knowing if they are truly 

interested in the field. Our unique course model allows us to engage students who might be 

curious about developmental biology but are unable to commit to a full summer research 

opportunity in the field. By bringing this course directly to the students, we lower the activation 

energy required for participation. For students who are interested in pursuing additional research 

opportunities after the course, our professional development sessions and long-term mentoring 

model allows us to help them identify subsequent summer research programs and prepare 

successful applications.  

 The initial geographical location for the course arose naturally from our instructor alumni 

connections to UPR Ponce. Not only did our instructors from Ponce recognize the need for this 

type of initiative based on their own experiences, but they also were able to help tremendously 

with the course logistics. Given the portable nature of the course, great care was taken to ensure 

that laboratory activities were feasible with the equipment and resources available at UPR Ponce. 

Thus, it was incredibly helpful to have alumni involved who were familiar with the institution 

and facilities. Our alumni instructors also facilitated networking connections between the DFB 
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team and Ponce faculty members, who helped with advertising, coordinating space, and 

receiving material shipments (all tissues samples used in the labs were shipped to Ponce, with the 

exception of the locally obtained chicken eggs). Their experience and institutional knowledge 

was invaluable to the success of the course.  

Many groups have demonstrated that shared social identities, including visual identity, 

have a profound impact on students’ perceptions of themselves in a certain career path 

(Whittaker and Montgomery, 2012). Our Ponce alumni instructors as well as team members 

from other UPR campuses enabled course participants to instantly build connections on the basis 

of shared identity and common experience. DFB participants are therefore able to receive 

mentoring from positive role models from similar backgrounds to their own, who have already 

successfully navigated the path to graduate school and a career in science. Overall, we found that 

developing a partnership with the UPR Ponce community through alumni connections was 

crucial to the success of the program, and strongly advise that others trying to develop similar 

programs take this into consideration.  

 

Course Impact on Participants and Instructors 

Although a weeklong course seems like a very short period of time, the outcomes we 

present here strongly suggest the potential for a lasting impact, both on the UPR students 

participating in the course and the instructors from the University of Michigan. Within a single 

week, participants improved their understanding of the core concepts of developmental biology 

and became more aware of career options in the sciences. While the course was focused on 

developmental biology, the laboratories and lecture materials exposed UPR and Michigan 

students to a wide variety of model organisms and research techniques used broadly throughout 
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many fields in biology and biomedical science. Overall, we provided students with a basic 

introduction to developmental biology, highlighted some of the exciting ongoing research in the 

field, and helped students more easily envision career paths for themselves in STEM.  

Our pre-post assessment indicated that the application process selected for students who 

were highly interested in developmental biology prior to formal instruction, and that student 

interest remained high throughout the course of the week. While the course did not increase 

students’ interest in developmental biology, it did allow interested students to access this topic in 

a meaningful way, as evidenced by significant increases in participants’ level of developmental 

biology experience in both the laboratory and the classroom. While these initial assessments 

show promising results, future courses could largely expand and improve assessment beyond the 

pre-post test mechanism. Several published indices exist to measure scientific integration 

(Estrada, 2009) as well as scientific self-efficacy (Chemers, 2006). These and other tools will 

allow us to improve our understanding of student attitudes and performance in the future.  

We observed that DFB did not improve the item score pertaining to likelihood of DFB 

student to attend graduate school. One complication of this metric was that our students had 

varying ideas of the definition of graduate school, some which included medical and veterinarian 

school, and others which did not. Additionally, a short term educational initiative that is only a 

week in length may not be long enough to change undergraduate students’ career plans. Perhaps 

a more appropriate question for future surveys might be whether students would be interested in 

attending a longer course or summer research program in developmental biology. Students were 

able to have honest conversations with graduate students, postdoctoral fellows, and faculty 

members to help them make more informed decisions about their career aspirations in the future. 

For students who do decide to pursue additional career development in the sciences, the extended 



208 
 

mentorship aspect of the initiative facilitates access to additional resources and continued 

support, including letters of recommendation, personal advice, and assistance with applying to 

research programs. The mentorship model also provides a mechanism to follow up with DFB 

participants and observe which careers they choose to pursue in the long-term. Continuing 

assessment will be crucial for past and future DFB courses to analyze impact on recruitment and 

retention of underrepresented students in scientific fields. 

 In addition to the impact of the course on enrolled students, DFB also had a profound 

impact on the team that created, planned, and implemented the course. Few opportunities exist 

for graduate students to create original learning modules and laboratory activities. This 

experience has also been invaluable for the graduate students and postdoctoral fellows involved, 

allowing instructors to develop exceptional teaching, communication, and organizational skills. 

University of Michigan instructors involved with DFB have a unique opportunity to learn more 

about students from diverse backgrounds and to better serve in mentoring capacities for these 

students. Presumably, this will make instructors more comfortable and more likely to engage in 

cross-cultural mentoring in the future, which will be critical for expanding diversity in the 

sciences overall. Future iterations of DFB should focus on improving instructors’ mentorship 

skills through resources like the National Research Mentoring Network (NRMN) and other 

current initiatives. 

 

Course Design and Scalability  

The DFB initiative provides a framework for the development of similar courses with 

flexible content and length. At the heart of this program are hands-on, active learning approaches 

and relationship-building between undergraduate students and their near-peer counterparts 
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(Ramani et al., 2006). Information gathered from instructor evaluations suggests that these 

approaches were highly valued by our students. Our assessment data suggest that a week of 

interactive learning is a sufficient amount of time to teach students core concepts of 

developmental biology. Our hope is that graduate students, postdocs, and faculty members from 

other departments and institutions will adapt this model to create similar courses in areas of need. 

To meet these ends, we formatted the course to be modular in nature so that it could easily be 

applied in any field of science education.  

 

Conclusion  

To improve diversity outcomes in the sciences, underrepresented students need to be 

engaged in a meaningful way and shown pathways to success. The weeklong DFB initiative 

addresses these issues through active learning strategies that have been previously shown to 

reduce the gap between students of different educational backgrounds (Haak et al., 2011) and by 

providing mentorship from individuals who have faced similar disadvantages and succeeded, a 

mentoring strategy demonstrated to increase retention of minority groups in other STEM fields 

(Dennehy and Dasgupta, 2017; Keller et al., 2017). Through these methods, DFB was able to 

build on personal connections, leverage existing diversity, and provide high quality long-term 

mentoring. We believe these aspects are crucial to the success of DFB and, more importantly, the 

improvement of the cultural climate in science as a whole.  
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Figures 

 

Figure A1-1: The Developing Future Biologists pre-post assessment covers the core 
concepts of developmental biology.  
The core concepts in Biology were defined by Vision and Change (AAAS, 2010) and further 
adapted into overarching principles by the BioCore Guide (Brownell et. al. 2014). Each question 
within the DFB pre-post assessment from 2016 (top row) or 2017 (bottom row) either relates 
directly to an overarching principle or relates to specific content covered in lecture or lab, as 
indicated by color coordination. Please contact jpinskey@umich.edu for full assessments. 
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Figure A1-2. Student understanding of developmental biology core concepts improved 
following course participation.  
(A) Aggregate test scores on pre- and post-assessment. Data reported as mean ± SD. *p<0.0001 
for both years, using a paired two-tailed Student’s t test. Score ranges: 2016, pre-assessment: 4 to 
12 points out of 24 (17% to 50%; median 33%), post assessment: 7 to 20 points (29 to 83%; 
median 54%). 2017, pre-assessment: 4 to 18 points out of 30 (13% to 60%; median 40%), post 
assessment: 13 to 27 points (43% to 90%; median 70%). (B) Individual student pre- and post-
assessment scores. Black lines connect each individual's pre and post score. (C-D) Range of 
scores on the pre (light gray) and post (dark gray) assessments for each year. 
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Figure A1-3. Student understanding of developmental biology improved within each 
conceptual area of instruction.  
The percentage of correct answers on the pre- and post-tests increased for all core concepts in 
both 2016 (left) and 2017 (right). The percentage of students who answered correctly on the pre 
(light grey) and post (dark grey) tests are displayed for each concept (4 questions per concept). 
Each concept showed significant improvement (two-tailed t-test, p<0.05). Average percent 
increase for each concept listed to the right of post-test bars (ppt = percentage point). 
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Figure A1-4. 2016 Student performance correlates with increased instructor coverage.  
Item coverage scores were collected from instructors, and test items were divided into two equal 
groups reflecting less instructor coverage (less than 60% instructor coverage score), and more 
instructor coverage (greater than 70% instructor coverage score). Student scores by item 
coverage changed based on instructor coverage scores (one-way repeated-measures ANOVA, 
p<0.0001). Post hoc analysis results suggest students scored similarly on pre and post items for 
which less instruction was given (Sidak p=0.1620), while scores improved on items for which 
more instruction was given (Sidak p<0.0001) and for the test overall (Sidak p<0.0001). 
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Figure A1-5. Student attitudes about developmental biology and careers in science.  
Pre (top, lighter bars) and post (bottom, darker bars) test analysis sorted by item from 2016 (left) 
and 2017 (right). Student reflection on familiarity with career options in the sciences and 
experience gained in the classroom and lab significantly improved (career options: p<0.02, and 
lab and classroom: p< 0.01). Overall interest in developmental biology and likelihood to attend 
graduate school did not significantly change (p≥0.2) *p<0.02, **p<001, ***p<0.0001. 

 

 

 

 

 

 



217 
 

 

Figure A1-S1 (A). Advertisement for 2016 Developing Future Biologists course.   
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Figure A1-S1 (B). Advertisement for 2017 Developing Future Biologists course.   
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Figure A1-S2 (A). Schedule for 2016 Developing Future Biologists course.   
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Figure A1-S2 (B). Schedule for 2017 Developing Future Biologists course.   
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