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ABSTRACT

The scale and complexity of environmental and earth systems introduce an

array of uncertainties that need to be systematically addressed. In numerical mod-

eling, the ever-increasing complexity of representation of these systems confounds

our ability to resolve relevant uncertainties. Specifically, the numerical simulation

of the governing processes involve many inputs and parameters that have been

traditionally treated as deterministic. Considering them as uncertain with tradi-

tional approaches introduces a large computational burden, stemming from the

requirement of a prohibitive number of model simulations. Furthermore, within

hydrology, most catchments are sparsely monitored, and there are limited, dis-

parate types of data available to confirm the model’s behavior. Here I present a

blueprint of a general, computationally efficient approach to uncertainty quantifi-

cation for complex hydrologic models, taking advantage of recent methodological

developments.

The framework is used in two basic science problems in hydrology. First, it

is applied to the problem of combining heterogeneous data sources representing

different physical processes to infer physical parameters for the complex hydrologic

model tRIBS-VEGGIE. The inference provides a probabilistic interpretation of bulk

soil characteristics and related hydraulic properties for an experimental watershed

in central Amazonia. These parameters are then used to propagate uncertainty in

hydrologic response to an array of quantities of interest through tRIBS-VEGGIE

and determine their sensitivity to uncertain model inputs.

Second, the framework is used to explore landscape controls mediated by sub-

surface hydrologic dynamics on the distribution of vegetative traits in a mature

Amazon rainforest. This study features a large parameter set as uncertain across

xvi



three different soil types and three layers of vegetation, explicitly incorporating in-

teractions between subsurface moisture and vegetation biophysical function. Veg-

etative performance is examined using a hypothesized cost-benefit approach be-

tweenvegetation carbonuptake andhydraulic effort required tomaintain long-term

production.

The research enables model-driven inference using a disparate set of observed

hydrologic variables including stream discharge, water table depth, evapotranspi-

ration, soil moisture, and gross primary production from the Asu experimental

catchment near Manaus, Brazil. Computationally inexpensive model surrogates

are constructed and shown to mimic solution of the complex hydrologic model

tRIBS-VEGGIE with a high skill. The two applications demonstrate the flexibil-

ity of the framework for hydrologic inference in watershed with sparse, irregular

observations of varying accuracy. Significant computational savings imply that

problems of greater computational complexity and dimension can be addressed.

Furthermore, the framework simultaneously yields probabilistic representation of

model behavior, robust parameter inference, and sensitivity analysis without the

need for greater investment in computational resources.
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CHAPTER 1

Introduction

In hydrology, or any large-scale earth system science, models are needed to study

the system’s processes and outcomes. Unlike disciplines in which experiments can

be performed at a lab bench, one cannot generate a physical "model earth" ormodel

watersheds to experiment on. In hydrology, attempts to do such make for valuable

science and interesting showcases (e.g., Figure 1.1), but these physical models rely

onfixedgeometries andallow forminimal carryingout of "what if?" scenarios on the

complex system. Here complex system is used in the terms of complexity science,

meaning that not only are the elements of a system complicated and hard to model

(e.g., biomes, atmosphere, cities, animals, human intervention, climate), but that

there are interactions between these different elements of the system which may

not (and usually do not) have a mechanistic method of interaction. Because of this

complexity, models of earth surface processes need many simplifications to make

the solution of the governing equations computationally tractable. Introducing

these simplifications in the form of boundary conditions, closure rules, or state

variables places uncertainty into models.

Getting best-possible representation of these uncertainties is a major goal in

hydrology (Beven 1993; Montanari and Koutsoyiannis 2012; Efstratiadis and Kout-

soyiannis 2010; Beven and Westerberg 2011), traditionally around estimation of

streamflow for engineering design or watershed management purposes (Beven

2006; Seibert and Beven 2009; Beven 1993). In these assessments, inference is often

used to determine parameter or boundary values for a model, but these attempts

usually provide a scalar value for a parameter that is then used as an estimate

of a "true" value. However, the complex nature of hydrologic systems leads to

heterogeneous, anisotropic features and behaviors that cannot be accounted for
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Figure 1.1: Picture of theUnited StatesArmyCorps of Engineers BayModel, approximately

11,500 [m2] in area, provides a hydraulic scale model of the greater San Francisco Bay area.

The model was previously used for scientific research and engineering planning between

1958-2000 and is now used as a public education tool. The model is scaled 1:1000 on the

horizontal and 1:100 on the vertical axis to enable the shallow water approximation, and

operates at a time scale of 1:100. The construction of the model required approximately

1,300 metric tonnes of concrete. Today, the hydraulic processes of this model can be

simulated on a computational cluster.

with a scalar value, and attempting to resolve uncertainties in this way neglects

variability of parameter values and watershed processes. General, focused efforts

are required to address the effects of uncertainty on hydrologic systems and the

models that represent them.

1.1 Aim of uncertainty quantification

Since all models are wrong the scientist cannot obtain a "correct" one by

excessive elaboration. On the contrary following William of Occam he

should seek an economical description of natural phenomena. Just as

the ability to devise simple but evocative models is the signature of the

great scientist so overelaboration and overparameterization is often the

mark of mediocrity. — George Box (1976)

In computational science and engineering, the major goal is to accurately represent

physical problems through simulation. The simulation approach offers several

advantages such as quick iteration in the design cycle, ability to represent domains

for which physical models cannot be constructed, observe alternate histories, or

investigate potential future realizations of the problem of interest. In all of these
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approaches, the main goal is to map a space of inputs X to a space of potential

outputsY.

The exact mapping from X to Y is not analytic, i.e., we do not know the

exact properties of the mapping. To this end we represent the mapping by using

conservation laws, relying on approximations to these laws from mathematical

closures. The models made from these approximations are often computationally

expensive, and makes it difficult to experiment with a large number of unique

realizations of X. Even if perfect information about the parameterizations of these

model were known, errors could still appear in forecasting or inference. Despite

the great advances in physicalmodeling sinceGeorge Box’s famous quote above, all

models are still "wrong," but valuable work has been put forth into making models

less wrong. A core tenet of uncertainty quantification (UQ) is the investigation of

the sources andmagnitude ofwrongness or inaccuracy in numerical simulations. In

the domain of UQ, bothX andY are treated probabilistically, and the goal becomes

to get adequate sampling of X to get a robust classification of Y. Therefore, the

inputs and outputs are treated as random variables.

Most UQ problems are classified as uncertainty propagation or inverse estimation.

In uncertainty propagation, we sample from the input space X in order to get

an output probability density for Y. In inverse estimation, we have a sample of

the output Y and would like to infer what is the most likely selections for X.
The goal in either problem is to use the probability spaces for prediction, risk

analysis, or estimation of model parameters. For example, in hydrology, there has

been a decades-long goal of quantifying uncertainty in rainfall/runoff models to

get estimates of streamflow (e.g., Kirchner 2009a; Burns et al. 2001; Milly et al.

2002; Orlandini et al. 1996). With hydrologic systems, the mapping of X to Y
(or vice-versa) includes macro and micro-level physical processes often described

through a large number of model parameters or inputs (e.g., Gutiérrez-Jurado et

al. 2006; Weiler and McDonnell 2004; Meerveld and Weiler 2008; Krause et al.

2015). This large input space leads to the desire to have information on sensitivities

of the inputs, i.e., how perturbations in the values of X change the output Y.

This information allows for both better understanding of the interactions between

processes in the mapping function (model), but also can lead to understanding

of the underlying processes being modeled by this mapping (Sobol 2001; Saltelli

2002).
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In hydrology, limited observational data is often available because many basins

are sparsely gauged or ungauged (Winsemius et al. 2009; Hrachowitz et al. 2013).

Furthermore, it is expensive or infeasible to install monitoring equipment in order

to obtain data to inform models. Therefore, hydrologic modeling often needs to

assess outcomes with limited data availability. A Bayesian approach has been used

in hydrology precisely due to its ability to work with limited amounts of data (e.g.,

Montanari et al. 2009). The strength of the Bayesian approach is that it allows for

the use of available prior knowledge, however limited it may be, in probabilistic

estimation. If we have two events A and B in a probability space, then Bayes’

theorem can be presented as

p(B | A) �
p(A | B)p(B)

p(A) . (1.1)

In the case of inverse problems, ifwehave a set of observationsyobs � {yi}Ni ∈ Y,

we would like to find the possible inputs x ∈ X that could lead to the observed

data. We assume that the values in X follow a probability distribution p(x) called
the prior. After we observe y, we can update the prior according to Bayes’ rule as

p(x | y) �
p(y | x)p(x)

p(y) , (1.2)

which is called the posterior distribution. This approach can be favorable to the

deterministic approach because it provides probabilistic assessments of quantities

of interest, risk assessments, etc. These solutions are updating knowledge about the

system in question. The drawbacks to this approach are large computational costs

to estimate posterior probabilities, but these costs have been readily decreasing

with an increase of computational power.

1.2 Research scope

The call for uncertainty assessments in hydrology has been a constant drumbeat

(e.g., Winter 1981; Chapman 1986; Beven 1993; Liu et al. 2009; Montanari and

Koutsoyiannis 2012). However, assessments are still urgently needed in hydrology

for the following purposes, among others:
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• where limited data are available (Seibert and Beven 2009; Borga et al. 2008;

Cibin et al. 2014; Hrachowitz et al. 2013);

• making management and engineering decisions in problems of flood fore-

casting (Borga et al. 2008; Norbiato et al. 2008; Bogner and Pappenberger

2011; Salamon and Feyen 2009; Fontanazza et al. 2012; Villarini et al. 2010;

Wong et al. 2015);

• investigating the implications of changing climate on earth and hydrologic

systems (Cayan et al. 2010; Najafi et al. 2011; Milly et al. 2002; Kundzewicz et

al. 2014; Peel and Blöschl 2011; Blöschl and Montanari 2010; Kim and Ivanov

2015); and

• for a better understanding of the underlying dynamics of these hydrologic

systems using complex, process-based models (Beven 2000; Kim and Ivanov

2014; Kim et al. 2016; McCord et al. 1991; Ivanov et al. 2010; Rosenbaum et al.

2012).

In all of these cases, a general uncertainty quantification approach is desired

such that a hydrologic model can help to build the probabilistic understanding

available through the use of Equation (1.2). In the following chapters, a novel

approach to uncertainty quantification in hydrologic models is presented which

allows the probabilistic interpretation of model parameterizations, outputs, and

sensitivities.

In Chapter 2, the uncertainty quantification framework is presented. The frame-

work relies on the approximation of model behavior over a range of parametric

variability using non-intrusive spectral projection through polynomial chaos (PC)

expansions. These expansions fit a series of polynomials to the model’s input-to-

output mapping. This mapping, once trained, allows the approximation of the

model’s behavior through computation of polynomials instead of complex hydro-

logic models, and is much cheaper computationally than using Monte Carlo for

uncertainty propagation, estimation of model parameters, and global sensitivity

analysis. The construction of these PC surrogates is aided by the use of Bayesian

compressive sensing—a technique that facilitates dimensionality reduction. Fi-

nally, the use of these surrogates in Bayesian inference is presented.

Chapter 3 outlines the novel adaptation of this UQ framework to the complex,

three-dimensional ecohydrologic model tRIBS-VEGGIE to a tropical watershed in

Amazonia. The work provides a blueprint of a general approach to uncertainty
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quantification for complex hydrologic models, taking advantage of recent method-

ological developments in uncertainty quantification. Heterogeneous data sources

in both time and space are used to perform probabilistic, parametric inference of

soil properties controlling the flow of water in the watershed and the availability

of water for ecologic function. The advantages and limitations of the approach are

presented, along with implications of the approach being used to address larger

problems in hydrology.

In Chapter 4, the framework presented in Chapter 3 is used in a basic science

application to the functional, adaptive strategy of vegetation function in anAmazon

rainforest. In a first of its kind work in terms of the scale of the dimensionality and

complexity of modeled processes, uncertainty is prescribed to heterogeneous plant

and soil types for a computational transect in anAmazonian rainforest. By applying

the framework, uncertainty in the complex ecohydrologic system is addressed and

competitive vegetation strategy is ascertained through parametric inference and

the introduction of a thermodynamics-based performance metric for soil-water

controlled vegetative function.

Chapter 5 summarizes this dissertation and addresses ongoing and future stud-

ies. The major conclusions and critical assumptions of the conducted research are

presented, along with the feasibility of expanding the framework to hydraulic and

engineered systems for use in flood forecast and resilience modeling.
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CHAPTER 2

Uncertainty quantification

2.1 Introduction

Since the birth of modern computational methods, scientific computing and ad-

vancements in engineering have complimented each other and spurned innovation.

Some of these innovations have gone on to be widely adopted throughout many

scientific disciplines or provided greater capabilities for numerical simulation, e.g.,

theMonte Carlomethod for sampling, Runge-Kuttamethods for approximating or-

dinarydifferential equations, or theKalmanfilter for estimatingunknowns through

data assimilation (Owen 2013; Flegal et al. 2008; DeChant and Moradkhani 2012).

As advances in computational science continue, programming packages are freely

available for specific tasks. In addition to this software availability, advances in

computational power mean that larger (in computational domain) and more com-

plex systems can be simulated.

The accuracy of these simulations rely on an adequate level of knowledge about

the system being simulated. Uncertainty arises in any systemwhen simplifications

are made in order to make the expression of the system through numerical mod-

eling feasible. Within hydrology, as computational power has increased, the level

of complexity of these models has also increased. In its simplest form, one can

model a hydrologic system with a “bucket” model (Manabe 1969; Romano et al.

2011), where water enters the top of the bucket and drains out of the bottom, with

parameterizations controlling the drainage from the bucket. The uncertainty asso-

ciated with this type of model is small as its dynamics are fully represented with a

few equations and parameters. As an effort to more accurately model the physical

processes controlling hydrology, very complex models have been created which
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account for stochastic rainfall, saturated and unsaturated flow in the subsurface,

infiltration, runoff and run-on, and energy fluxes, among many other processes

(Liu et al. 2009; Maxwell et al. 2014). The introduction of these complexities leads

to far greater uncertainties than those arising from a bucket model.

The trade off of greater uncertainties is that the understanding of these smaller

scale processes could lead to greater understanding of higher-level characteristics

of hydrologic systems. This line of thought is consistent with the idea of a complex

system, i.e., a systemwhere the characteristics of the high-level behavior is the result

of low-level interactions, which is explicitly argued with respect to hydrologic

systems (Allan et al. 1997; Bonan 2008; Kirchner 2009a). Therefore, having a

greater understanding of the controls onwater and energy balances in a hydrologic

model can benefit the understanding of higher level hydrologic behavior. In a

hydrologic model, these lower-level processes are often parameterized as a result

of a mathematical closure of physical phenomena. These parameterizations lead

to simplifications in the way physical processes are expressed through a model,

and the selection of values for these parameters is dependent on any available data

of properties of the system, parameters describing a property of a medium, or the

modeler’s expert opinion. The selection and estimation of parameter values has

been the subject of numerous studies in hydrology (Yeh 1986; Russo and Bouton

1992; Abbaspour et al. 2004; Kowalsky et al. 2004; Salamon and Feyen 2009; Vrugt

et al. 2008; Schoups and Vrugt 2010; Romano et al. 2011; Yu and Coulthard 2015).

In addition to these parameters, there are input fields which describe spatial or

temporal states of the domain. These parameters and fields are the assumptions

made about the makeup and behavior of our domain, and these will be inherently

uncertain since there is no possible way to have perfect information about the

system being modeled, and this is especially true for natural systems. The data

that we do have is often limited in both quantity and quality by variability, bias in

measurements, and by the degrees to which information about the system is able

to be collected (Grabe 2014). Attempting to model these systems numerically, we

need to account for these limitations as well as take into account the limitations

of the numerical techniques and mathematical models used to mimic the system

(Beven 2008; Higham 2002). This is the objective of uncertainty quantification.

Due to the ubiquity of these uncertainties, significant investment has beenmade

to address these various sources of uncertainty within hydrology (e.g., Liu et al.
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2009; Bulygina and Gupta 2011; Beven 1993; Gupta et al. 2014; Salamon and Feyen

2009; Chen et al. 2011a; Reichle et al. 2008; Grayson et al. 2002; Evensen 2009;

Montanari and Koutsoyiannis 2012). However, many of these approaches require

a Gaussian assumption on model inputs or behavior, or make other assumptions

which result in a loss of interpretability of the model results. For example, using

neural networks to emulate model behavior requires calculations of many coeffi-

cients of hidden nodes with no physical meaning, making interpreting the process

that led to results difficult (Lin et al. 2006; Srivastava et al. 2013; Alemohammad

et al. 2016). Although these frameworks can work well, there is still a desire within

hydrology to have a general framework for quantifying uncertainty which allows

for interpretability of results as well as understanding of the internal dynamics

of the model, and therefore the internal dynamics of the hydrologic system being

modeled.

More broadly, a completely holistic approach to UQ encapsulates all uncertain-
ties of computer simulations within a specific context. This is a valuable pursuit for

many computational sciences, and as such, UQ has emerged in the last two decades

as very active research fieldwhich incorporated appliedmathematics, engineering,

and physical sciences.

Within engineering and the physical sciences we often want to distinguish be-

tween epistemic and aleatory uncertainties (De Rocquigny 2012; Beven et al. 2016;

Beven2013). Epistemicuncertainty is the lackof knowledgeof themechanismbeing

modeled due to limited data or incomplete representation of the process. Aleatory

uncertainty (or variability) emerges from the natural stochasticity of the system

being modeled. These uncertainties are amplified by the complexity of problems

tackled through simulations in modern engineering and physical sciences. How-

ever, in the world created through numerical experiments, these different types of

uncertainties often get combined (Der Kiureghian and Ditlevsen 2009), meaning

that it often makes sense to apply UQ to approximate both epistemic and aleatory

uncertainty.

Within a complete UQ analysis of a model or mechanism, a significant portion

of the following analyses may be undertaken (in approximate order):

• Determine output of model to study.

• Identify impactful parameters and inputs to this output and specifying their

uncertainty. This requires the knowledge of the underlying framework of
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the model, i.e., the governing equations and assumptions, and any associated

parameters or forcings.

• Generate a training and validation set from uncertain inputs and propagate

the uncertainty through the model. This is the uncertainty propagation step of

UQ. Within this step, we are looking for the full probability density function

(PDF) of specified model outputs — quantity of interest (QoI) — based on

the PDF of uncertain inputs. A QoI is any model output or derivative of

model output that can be represented through a scalar, e.g., monthly mean

streamflow or a basin-averaged water table depth. A discussion on the use of

multiple QoIs within the UQ framework is provided in Section 2.3.1.

• Investigateuncertainty in themodel’s output and the sensitivity of the outputs

to changes in the inputs through global sensitivity analysis (Saltelli 2002).

• If interested in estimation of parameter values using observed data, perform

inverse estimation of uncertain parameters. This is referred to as inverse
estimation and its goal is to infer parameter values for the system given the

response of theQoI to uncertain states or parameters during a dynamic period

of simulation.

• Once obtained, the PDF for inferred parameters can be used to further prop-

agate uncertainty through the model, or be used to investigate behavior of

other QoIs that may not have an associated observations used for inference.

In order to perform the process above, many model runs must be performed.

This has traditionally been done using Monte Carlo methods (Neal 1993; MacKay

1998), but the computational expense of the model being evaluated in the Monte

Carlo framework can lead to a total cost of evaluations that is prohibitive. For

an explanation of how Monte Carlo methods scale poorly with dimension, see

Appendix A.

The models used in these Monte Carlo methods will impact the feasibility and

scale of investigation into uncertainties. In hydrology, the physical, process-based

models that have become standard for investigation into surface/subsurface in-

teractions (e.g., ParFlow, HydroGeoSphere, tRIBS+VEGGIE, Maxwell et al. 2014;

Kollet and Maxwell 2006; Brunner and Simmons 2012; Ivanov et al. 2008b) are

also computationally expensive, taking on order of days of simulation time for

a moderately-sized watershed. Therefore, uncertainty quantification driven with

Monte-Carlo methods may require thousands of model simulations, quickly mak-
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ing computation infeasible. An alternative approach that has been gaining traction

in the physical modeling community is to approximate the process-based, physical

model with a “surrogate model” that maps the process-basedmodel’s input to out-

puts using methods at a reduced computational cost. Surrogate models can range

in complexity, replacing the complexmodel using regression, radial basis functions,

Gaussian processes, neural networks, or polynomial expansions (Jin et al. 2001; Xiu

and Karniadakis 2002). Polynomial chaos expansions (PCEs) are one such sur-

rogate modeling technique that provides an approximation to a computer model

through the model’s spectral representation on a basis of polynomial functions

(Najm 2009; Elsheikh et al. 2014a). The reduction of computation time stemming

from this surrogate modeling enables the use of UQ in "real-world" applications

for risk analysis and to inform decision making.

This chapter will be used to introduce key aspects of the uncertainty quantifica-

tion framework used throughout this dissertation. It will focus on the probabilistic

approach to UQ enabled by polynomial chaos expansions (PCEs) for both uncer-

tainty propagation and Bayesian inference. This will serve as an overview for the

hydrologic application of UQ introduced in Chapter 3, including recent advances

in UQ which are utilized for this work.

2.2 Propagation

As an introduction to uncertainty quantification, we will look at the probabilistic

propagation of uncertainty, whose purpose is to quantify the contribution of the

uncertainty of model parameterizations to the outcome of a deterministic model

(Arnst and Ponthot 2014). Representing these parameterizations as random vari-

ables following a known probability distribution, this uncertainty is propagated

through a model and we are interested in the distribution of model outputs.

2.2.1 The model

Consider a forwardmodel of the system of interest. In this work, this model will be

a hydrologic model describing the movement of water, but it can be generalized as

follows. Say we have a modelM with inputs x ∈ P from the parameter domain

P ∈ RM
with M > 0. This model is used to predict some output QoI ŷ ∈ R, where
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we keep ŷ as a scalar quantity, but it can (and will) be used for multiple QoIs in

this work. Therefore, this model is a simple function that maps uncertain inputs to

an uncertain output:

ŷ �M(x). (2.1)

We assume thatM is a deterministicmodel that can scale in complexity depend-

ing on the problem being solved (e.g., in its simplest form it could beM(x) � ∑
xi).

Where uncertainty quantification becomes interesting is whenM is complex, such

as the numerical solutions to the governing equations of fluid flow. It is not un-

common for investigations of fluid flow to make single evaluations of the model

represented by Equation 2.1 and treat it as a “black box,” i.e., the internal model

dynamics are assumed unknown and only a relationship between model inputs

and outputs is analyzed. For some models, the internal dynamics may truly not be

known; in others, the model may be computing hundreds of different numerical

approximations to governing laws at each time step. The only requirement that is

imposed on the model is that it must be executable, i.e., provided its inputs x, the
model produces its output ŷ.

2.2.2 Inputs and outputs

If we believe that the modelM adequately captures the dynamics of the system

being modeled, then we can also believe that the output ŷ � M(x) we receive

from the model gives an accurate prediction, when the values of the input param-

eters/variables x are known. However, a typical case for the majority of models

of environmental systems is that input values are uncertain, either due to natural

variability in the system or inadequate knowledge of parameter values, in general.

In this case, it is consistent to represent these input parameters as uncertain, so they

follow a random vector

X ∼ π(x), (2.2)

where X � (X1,X2, . . . ,XM) are independent and π(x) is a vector of marginal

probability density functions (PDF) describing the variability in each of the M
uncertain variables inX , which are knownanddefinedprior tomodeling. Random

input variables to the model result in QoIs that can also be treated as random, i.e.:

Y �M(X). (2.3)
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With uncertainty propagation, we are interested in determining the probability

distribution of Y. For example, if Y roughly follows a Gaussian distribution, the

mean and variance of Y could be considered as estimates of the location and scale of

the distribution. However, with complex interactions occurring within the model

M, the distribution of Y could be multi-modal or have large skewness or kurtosis,

making conventional methods relying on the assumption of Gaussian behavior a

poor approximation. As an illustration, consider that if themodel output of interest

has a similar variability as the prediction quantity Y in Figure 2.1, one cannot

describe the output distribution through its moments, and the full characterization

of the density function is required.

InputsX

ModelM

Output Y

Figure 2.1: Diagram of forward propagation.

2.2.3 Approximating output with Monte Carlo simulation

Perhaps the simplest approach to carrying out the propagation in Figure 2.1 is

to use random sampling with Monte Carlo (MC) simulation. The use of random

sampling for statistics and probability is very old in mathematics, dating back to at

least 1733 when Georges Louis Leclerc (known as Comte de Buffon) used random

sampling to answer the question “Given a needle of length a and an infinite grid of

parallel lines with common distance d between them, what is the probability that a

needle, tossed at the grid randomly, will cross one of the parallel lines?” (Ramaley

1969). There are variations of this problem, sometimes involving a noodle instead

of a needle for more complex geometries, or a coin tossed onto a finite floor with

congruent squares, but it showed that random sampling was a powerful tool to

solve complex integration problems. Buffon’s work in using random sampling was

relatively unknown and unused until Pierre Simon Laplace used the methodology

to estimate the value of π later in the 18th century.
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To approximate the output of the model M, take N input samples X �

{x1, x2, · · · , xN} that are independent and identically distributed (iid) from the

distribution for the input parameters from Equation 2.2. Then, the computation

of the outputs Y � { ŷ1, ŷ2, · · · , ŷN} is done via propagation where ŷi �M(xi) are
realizations of the random variable in Equation 2.3. The first two moments of the

output distribution can be approximated as:

µ̂Y � E [M(X)] ≈ 1

N

N∑
i�1

ŷi ,

σ̂2

Y � E
[ (
M(X) − µ̂Y

)
2

]
≈ 1

N − 1

N∑
i�1

(
ŷi − µ̂Y

)
2

.

(2.4)

When the output is unimodal and close to Gaussian, the mean and variance in

Eq. (2.4) may accurately represent the location and scale. If the output distribution

is multimodal (as in Fig. 2.1) or more complex, higher-order moments of Y may

be required. In the case where M is computationally expensive, we will want

a faster way to calculate the moments in Equation 2.4. In the next section we’ll

look at surrogate modeling as a technique to get a computationally inexpensive

approximation ofM.

2.3 Surrogate modeling

A surrogate model or metamodel is generally used to simulate the behavior of a

more computationally complex model. The purpose of using a surrogate model

is that it is computationally inexpensive compared to the original model, and

it can therefore be rigorously sampled for uncertainty propagation, parameter

inference, or sensitivity analysis. This does not come for free, however. If many

uncertain inputs are taken, or there are high-order interactions between uncertain

inputs in the computationally expensive model M, then significant effort will

need to be expended. However, as we will see later, recent advancements have

made constructing surrogates more computationally efficient, enabling surrogate

construction for models of increasing complexity.

There are multiple frameworks that fall into the class of surrogate models,

e.g.: Guassian process models (Rasmussen 2006; Kennedy and O’Hagan 2000),
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artificial neural networks (Ripley 1996), support vector machines (Abe 2010), and

polynomial chaos expansions (Xiu andKarniadakis 2002; LeMaître andKnio 2010).

These different classes of surrogates were often developed in parallel fields over

the last two decades, with Gaussian process (GP) models and PCEs mainly being

used in statistics and engineering (often computational fluid dynamics), whereas

neural networks and support vector machines were more used in data-intensive

applications.

This work focuses on using PCEs as the main workhorse to construct surrogate

models. The methodology was developed 80 years ago (Wiener 1938), but laid

largely untouched until recently as advancement in computational power made

the method feasible for addressing real engineering challenges (e.g., Xiu and Kar-

niadakis 2003; Xiu and Tartakovsky 2004; Najm 2009; Marzouk et al. 2007). We’ll

start by looking at the spectral expansion as it pertains to PCEs, then focus on the

polynomial approximations to our complicated modelM.

Spectral expansion To construct the spectral expansion for themodel, we assume

that the model results belong in the square integral space L2
.1 This means that we

have a set in our parameter domain P and a weighting function w that maps to the

positive real-valued domain: w : P 7→ [0,∞). We further assume that the model

belongs to the function space L2

w(P) that has the inner product 〈·, ·〉 and norm ‖·‖w ,
which are defined as

〈u , v〉w �

∫
P

u(x)v(x)w(x)dx,

‖u‖w � 〈u , u〉1/2w

(2.5)

for the two elements u , v ∈ L2

w(P), where L2

w(P) is a Hilbert space.2 As a Hilbert

space, the integral of the weighting function across all real numbers is finite:∫
P

u2(x)w(x)dx < ∞.

1This section is included for completeness. A brief background onmeasure-theoretic probability

theory for this section can be found in many texts. An introduction based on the material of this

thesis is included in Appendix A of Le Maître and Knio (2010)

2Hilbert space is simply an abstraction of Euclidean space. It allows for the use of vector calculus

in any finite or infinite number of dimensions.
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To construct the spectral expansion, we introduce the vectorsΨi ∈ L2

w(P)which

are part of the orthonormal set {Ψi} for all positive integers i. Due to their or-

thonormality, for all i , j ∈ N+
,

〈
Ψi ,Ψ j

〉
� δi , j , where δi , j is the Kronecker delta.

This allows to construct the spectral expansion for our model:

M �

∞∑
i�1

ciΨi , where (2.6)

ci � 〈M ,Ψi〉w . (2.7)

The infinite series in Equation 2.6 needs to be truncated because evaluation of the

modelM is required for each i in the summand. To get a visual representation

of this expansion and projection, Figure 2.2 projects a model result M in three-

dimensional space to the truncated model resultM2 in two-dimensional space.

Ψ3

Ψ1

Ψ2

M

M2

c1c2

c3

Figure 2.2: Orthogonal projection for i � 3. Here, the error from truncation of Equation 2.6

fromM toM2 isM −M2 � c3Ψ3 sinceM � c1Ψ1 + c2Ψ2 + c3Ψ3.

To interpret the spectral expansionprobabilistically,we can associate theweight-

ing function with the probability density of the model inputs from Equation 2.2:

w(x) � π(x). From this, u , v are random variables u(X) and v(X), and the expec-

tation of their product is equal to the inner product from Equation 2.5:

〈u , v〉π � E [u(X)v(X)] .
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2.3.1 Polynomial chaos expansion

In this section we will construct the polynomial chaos expansions that are the

workhorse for the uncertainty analysis used in this dissertation. We concluded

the last section mentioning that weighting functions that are probability densities

offer a probabilistic interpretation for spectral expansions. Additionally, a subset of

probability densities have polynomials orthogonal with their inner products. Four

well known distributions are listed with their orthogonal polynomials and support

in Table 2.1. In order to use these polynomial approximations we must have our

input parameters x follow a distribution like those in Table 2.1. Wewill assume that

our data are already in such a form, but if that is not the case, parameters can be

shifted and scaled, often to a standard uniform or standard Gaussian distribution.

Table 2.1: Potential distributions for π(x) and their orthogonal polynomials.

Distribution Support Polynomial

Uniform [−1, 1] Legendre

Gaussian (−∞,∞) Hermite

Beta [−1, 1] Jacobi

Gamma [0,∞) Laguerre

Each variable for our uncertain input xi will have an associated univariate

polynomial {Ψi ,αi }, where αi aremembers of themulti-indexα � (α1, α2, . . . , αM),
where M is the dimensionality of our inputs.3 Then the multivariate polynomials

{Ψα(x)} is defined as

Ψα(x) �
M∏

i�1

Ψi ,αi (xi). (2.8)

We can now expand our model through the multivariate polynomial basis—as in

Equations (2.6) and (2.7):

M(x) �
∑
α

cαΨα, (2.9)

cα �
〈M ,Ψα〉π
‖Ψα‖2π

(2.10)

Using these equations, we can take the polynomial chaos expansion (PCE) of the

3A multi-index is introduced for simplification of notation. Each member αi of the multi-index

is a n-tuple of non-negative integers, which in our case are related to the order of a polynomial.
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Figure 2.3: Polynomial plots of order 4 as given in Table 2.1. From top left, going clockwise:

Legendre, Hermite, Jacobi, and Laguerre.

random input variable from Equation 2.2:

Y �M(X) �
∑
α

cαΨα(X) (2.11)

As mentioned previously, the right hand side of Equation 2.11 needs to be a

finite sumthrougha truncatedPCE (XiuandKarniadakis 2002; Lin andKarniadakis

2009). We select a finite number of terms by only selecting those with a total degree

of polynomials (from Equation 2.8) smaller than a certain value p. This redefines
our multi-index α asAp �

{
α : ‖α‖

1
≤ p

}
.4 The resulting size of this set depends

on the dimensionality M of the input parametersX and the maximal degree p of

4The 1-norm of a multi-index is defined as ‖α‖
1
�

∑M
i�1
|αi |.
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the polynomialsΨα∈Ap . This truncation leads the following equation for the PCE:

M(X) ≈ MPC(X) �
∑
α∈Ap

cαΨα(X). (2.12)

In practice, the right hand side of Equation 2.12 can be written as:

Y �M(X) ≈ MPC(X) �
P∑

j�0

c jΨ j(X), (2.13)

where j is a count of the multiindices α with a predefined order; this is discussed

further in B. There are a number P + 1 polynomial basis functions. A typical

truncation rule, a total degree truncation of degree p, i.e.
∑M

i�1
αi ≤ p leads to (see

Xiu and Karniadakis 2002):

P + 1 �
(M + p)!

M!p!

, (2.14)

As one might suspect from the factorials in Equation 2.14, the value for P grows

quickly. From Figure 2.4, one can see that moderate values of M and p quickly lead

to a number of terms that would require a near-prohibitive amount of simulations

if the simulation time ofM were more than a couple of hours. For example, with

M � p � 6, one is looking at 924 basis terms in Eq. (2.11), requiring at least as many

simulations ofM.

This approximation is convenient when our modelM is physics-based because

it offers an easy-to-interpret representation of the model. Each polynomial ba-

sis has terms directly related to the input parameter variables X , which means

that the interactions between these polynomials represent the interactions between

the parameters in the models. This means that we can classify the terms in the

polynomial based on the degree of the polynomials as well as their multivariate

interactions, allowing for differentiation between low- and high-order interactions

between variables.

Once the selection of polynomial basis has been made, one can run the polyno-

mial chaos expansion non-intrusively. To do this, we treat the fully deterministic

modelM as a heuristic model to inform the surrogate model based on the poly-

nomial chaos expansion. The goal is to obtain the right hand side of Equation
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Figure 2.4: Growth of P from Equation 2.14.

(2.13), where c j are deterministic weighting coefficients, andΨ j are the polynomial

expansions of the order associated with the index j for realized (sampled) values

ofX . The values for the coefficients c � {c0, c1, . . . , cP} allow the calculation of the

distribution of model output Y as it was induced from the model inputX .

These coefficients are calculated by solving Equation (2.13) through eitherGaus-

sian quadrature (Smolyak 1963), regression (Tibshirani 1996; Blatman and Sudret

2008; Blatman and Sudret 2011; Berveiller et al. 2006), or Bayesian approaches

(Sargsyan et al. 2014; Doostan and Owhadi 2011). The next step is to estimate

the distribution of model output Y as informed by the uncertain (but pre-defined

through marginal PDFs) model input X . The approximate response of Y is ob-

tained through sampling, often Markov-Chain Monte Carlo (MCMC) (Haario et al.

2001), because the constructed surrogate model in Equation (2.13) is much more

computationally efficient than a complex original deterministic model M. The

surrogate modelMPC
is assessed using samples of the random vector X . These

samples can be taken via, e.g., random uniform, stratified, or Latin hypercube

sampling (McKay et al. 1979), where the latter is used in this work.

The above considerations result in the feasibility of calculating a polynomial

chaos expansion of the model response by using Monte-Carlo or other sampling

techniques (Marzouk and Xiu 2009; Eldred and Burkardt 2009). In addition to
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the convenience of numerical approximation, the first two moments of the model

output are obtained from the coefficients of the constructed PCE such that themean

µ and variance σ2
of a scalar model output can be calculated as in (Le Maître and

Knio 2010):

E [M(X)] � µY � c0 ‖Ψ0‖π � c0 5 (2.15)

Var [M(X)] � σ2

Y �

∑
α∈Ap

c2

α ‖Ψα‖2π . (2.16)

Once the surrogate PCE is constructed, the calculation of these first two mo-

ments is simply the evaluation of the polynomials in Equations (2.15) and (2.16).

Curse of dimensionality

Thedimensionality of inputs to themodelM canhave a large effect on the feasibility

of performing uncertainty analysis for models of complex systems. This curse of
dimensionality (Caflisch 1998; Davis and Rabinowitz 2007) arises when dealing with

geometry of high-dimensional spaces with small volumes relative to this high-

dimensional space. An illustration of this behavior via the approximation of the

volume for a unit sphere within a unit cube is provided in Appendix A. Within

UQ applications, the curse of dimensionality arises within PCEs through high

dimensional inputs (Eq. (2.14)).

Luckily, this roadblock can be remediated through sparsity in high dimensional

spaces, meaning that there is a low-dimensional structure which carries much

of the information contained within the high-dimensional space. If one is able

to discover the structure of these low-dimensional structures, it can ease or even

eliminate the curse of dimensionality. Methodologies have been developed to

exploit this sparsity (e.g., Lee and Verleysen 2007; Ji et al. 2008; Babacan et al. 2010;

Constantine et al. 2014), and we will take advantage of this in Section 2.4.1.

Multivariate output

Up until this point, we have been dealing with a single output from a model

ŷ �M(x). We will now consider a model which maps our multivariate input x to

5Because the PDF π integrates to 1, ‖Ψ0‖ � 1 and the mean estimate is c0.
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multivariate output vector

y �


ŷ1

ŷ2

...

ŷN


�


M ŷ1
(x)

M ŷ2
(x)
...

M ŷN (x)


, (2.17)

where N is the number of output QoIs. Here, each model on the right hand

side of Equation 2.17 can be substituted with Equation 2.12. Practically, this just

means that a polynomial surrogate model needs to be computed for each output

QoI. Assuming that the model that produces the QoI provides many outputs that

can be manipulated into the desired QoIs, then no additional model evaluations

are required to train the separate surrogate models. Therefore, the methodology

naturally expands to multivariate output and the only limitations are one’s ability

to generate model output and the small amount of time to construct the surrogate

for the desired QoIs.6

2.3.2 Sensitivity analysis

Once the surrogate model (2.13) has been constructed, the use of Monte Carlo

methods allows the computation of Sobol’ indices for global sensitivity analysis of

themodel to its input uncertain variables (Sobol 2001; Saltelli 2002; Sudret 2008). In

the context of PCE surrogate models, estimates of Sobol’ indices is gained directly

from the PC surrogate, offering a convenient and computationally efficient way

to determine the relative importance of uncertain inputs to the variability of the

quantities of interest. Sobol’ indices are split intomain and joint sensitivities, where

the former measures the fraction of variance in the output that can be attributed to

the uncertain model input variable Xi :

Si �
Var

[
E

[
MPC

c (X) | Xi
] ]

Var

[
MPC

c (X)
] , (2.18)

6The time to construct the surrogate is often miniscule compared to the full model evaluations.

Within this dissertation, themodel simulation time isO(hours to days)whereas the time to construct

a surrogate is O(seconds).

22



where E and Var are operators for expectation and variance, respectively. Similarly,

the joint sensitivity measures the fraction of variance in the output that can be

explained by to the joint contribution of variables Xi and X j , and is defined as

Si j �
Var

[
E

[
MPC

c (X) | Xi ,X j
] ]

Var

[
MPC

c (X)
] − Si − S j . (2.19)

An additional benefit of using PCE machinery for the surrogate model is that the

Sobol’ sensitivities in Equations (2.18) and (2.19) can be calculated directly from

the coefficients of the PCE using the relations from Eqs. (2.15) and (2.16), one can

write the main and joint Sobol’ indices in terms of the PCE coefficients. This yields

an estimate for the main effect index Ŝmain

i as:

Ŝmain

i �

∑
α∈Amain

i

c2

α

〈
Ψ2

α

〉
∑

α∈A ,α,0

c2

α

〈
Ψ2

α

〉 , (2.20)

where Amain

i �
{
α ∈ A : αi > 0, αi, j � 0

}
. Similarly, one can use the PCE coeffi-

cients to account for the total variance contribution of Xi through the estimate of

the total effect index Ŝtotal

i :

Ŝtotal

i �

∑
α∈Atotal

i

c2

α

〈
Ψ2

α

〉
∑

α∈A ,α,0

c2

α

〈
Ψ2

α

〉 , (2.21)

where Atotal

i � {α ∈ A : αi > 0}. The benefit of Eqs. (2.20) and (2.21) is that, once

the PCE surrogateMPC
is constructed, global sensitivity analysis via Sobol’ indices

can be conveniently gained by performing simple arithmetic on the coefficients of

the PCE surrogate.

For both the main and joint sensitivities, the posterior distribution of the PC

coefficients c are available. It is possible to calculate uncertainty in the sensitivity

indices by sampling from the posterior distribution of c to calculate Equations

(2.18–2.21), but this study will use only the mean estimates of the coefficients for

sensitivity calculations.
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2.4 Dimensionality reduction

When the modelM being used in UQ is computationally complex, as in the case of

many process-based hydrologicmodels, there is a large set of input parameters that

can impact the model’s output that could be treated as uncertain. As mentioned in

2.3.1, one is somewhat limited in the number of uncertain inputs that can be treated

using PCEs due to the growth in basis terms (Eq. (2.14)). Additionally, some

uncertain model inputs may not be parameters, but rather stochastic fields (e.g.,

stream inflow, soil moisture fields, water table fields, distribution of precipitation

in both time and space). This section introduces the Bayesian compressive sensing

methodology for efficiently finding the coefficients c in Eq. (2.12). The possible

treatment of uncertain fields is also introduced by constructing an uncertain field

from data using Gaussian process regression, then parameterizing the resulting

field using Karhunen-Loève expansions.

2.4.1 Bayesian compressive sensing

The BCS approach provides marginal posterior probability distributions of the

vector of coefficients in the PCE model, c � {c0, c1, . . . , cP}. Given available data

D, Bayes’ formula (Jaynes and Bretthorst 2003) for this situation can be written as

q(c) ∝ LD(c)p(c), (2.22)

where q(c) is the posterior PDF, p(c) is the PDF representing prior information on

the PC coefficient vector c, and LD(c) is the likelihood function, i.e., a measure

of goodness-of-fit for the PCE surrogate modelMPC
from Equation (2.12) to the

fully deterministic modelM. Assuming a Gaussian noise model with a standard

deviation σ representing a tolerance of the discrepancy betweenMPC
andM for

the likelihood:

LD(c) � (2πσ2)(−N/2)
exp

[
−

N∑
k�1

(
Mk −MPC

c (Xk)
)
2

2σ2

]
, (2.23)

where k � 1, . . . ,N correspond to realizations of the random input parametersX .

Note that Equation (2.23) implies independence of marginal likelihood functions.

The prior PDF p(c) represents prior information on the PC coefficient vector c,
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the posterior PDF q(c) is the outcome of the inference given the data set D. In the

case of PCEs, the prior information of c should be flat, so no knowledge is assumed

in the calculation of the posterior for c. A flat prior is preferred because the use

of BCS motivates that many of the terms in c will be very close to zero, leading to

a lower number of polynomial basis terms that give valuable information for the

expansion in Equation (2.12).

Achieving a sparse posterior is strongly supported by sparse priors that give

vanishing values for the coefficients unless there is strong evidence to the contrary.

As such, this study uses the sparse Laplace prior (Babacan et al. 2010), that assumes

coefficient independence:

p(c) �
(
β

2

)P+1

exp

©«−β
P∑

j�0

|c j |
ª®¬ , (2.24)

where β is a positive shape parameter that also controls the optimization problem

in Equation (2.25). The vector c that maximizes the posterior q(c) is given by the

solution to

arg max

c

(
log LD(c) − β | |c| |1

)
, (2.25)

which is the compressive sensing algorithmused in signal processing (Candès et al.

2006), where the −β ‖c‖
1
term is due to the l1 norm-based regularization approach

in BCS. The regularization approach is used to reduce overfitting while learning

the coefficients c. Different approaches would lead to different regularization

terms in Equation (2.25). Details of the implementation of this approach are left

to (Sargsyan et al. 2014), but one of the key points is the selection of stopping

criterion. Specifically, the algorithm iterates finding the basis terms c until it

reaches a stopping criterion ε comparing the relative change in the maximal value

of the evidence E — the integrated likelihood. The stopping criterion is defined

as (En − En−1)/(En − E1) < ε, where n is the iteration number. As ε decreases,

more iterations are required, meaning that fewer basis terms are retained in the

final polynomial surrogate. A discussion on the selection of ε is included in Section
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3.3.1.

For example, in (Sargsyan et al. 2014), the Community LandModelwith carbon-

nitrogen cycling (Thornton et al. 2007) was modeled with 79 uncertain input pa-

rameters, where second, third, and fourth-order polynomials lead to order 10
3
,

10
5
, and 10

6
basis terms, respectively. Using 10,000 model simulations, the BCS

methodology demonstrated an excellent performance skill for a very large uncer-

tain parameter set by avoiding the calculation of all these basis terms and selecting

only those relevant to the QoIs. During testing, 17 model simulations failed re-

sulting in 9,983 simulations used for training the surrogate model. This displays

another advantage of the BCS method, as failed simulations do not limit the solu-

tion of the coefficients as it would in quadrature methods. The methodology also

allows additional simulations to be added if an initial simulation set is determined

to be insufficient to train the surrogate model.

2.4.2 Uncertain input fields

In hydrology, many inputs to a model can be thought of as a field. These could be

fields in space: soil moisture, hydraulic conductivity, water table, soil type, land

cover, etc, and could also be thought of in time, e.g., meteorologic time series. In or-

der to represent these fields under a formal uncertainty quantification framework,

approaches are needed to represent these fields in a manner which can be repre-

sented with polynomial chaos machinery. This approach requires the reduction of

these complex fields into a small number of parameters (Salamon and Feyen 2009).

In order to express the uncertainty in these functions (fields), we need to assign

some probability measures on the fields. These functions or fields can express

uncertainties in external forcing, initial conditions, field parameters, or boundary

conditions. Once the uncertainties in these quantities are quantified, they can

be propagated using simulation to understand outcomes of the simulations, e.g.,

flooded extent, cumulative evapotranspiration, inundation risk, etc. A convenient

way of quantifying the uncertainties in these fields is to use Gaussian processes

(Rasmussen 2006).
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Gaussian processes

A Gaussian process, in its simplest form, approximates a function (or field) based

on the inputs and outputs to that function. In Eq. (2.26), f (x) is treated as uncertain,

and we can express beliefs about f (x) as f (x) ∼ P( f (x)). The GP f (x) requires a
mean and covariance function. Having these allows the definition of a probability

measure on the space of the function:

f (x) ∼ P( f (x)) � GP
(

f (x) | m(x), k(x, x′)
)
. (2.26)

The mean function describes what the values of f (x) are, andmodels the expec-

tation of f (x):
m(x) � E

[
f (x)

]
.

When there are two different inputs, x and x′, the covariance function models the

belief of similarity between f (x) and f (x′), i.e., how close the corresponding outputs

are:

k(x, x′) � E
[
( f (x) − m(x))( f (x′) − m(x′))

]
.

In order to express a function as a GP we can write

f (·) ∼ GP
(

f (·) | m(·), k(·, ·)
)

(2.27)

Gaussian process regression

If we take the input features x ∈ Rd
, then we likely have some intuition about

a function of interest f (x). For instance, if f (x) is the precipitation intensity for

certain times x, then we know that min

[
f (x)

]
� 0. This is prior knowledge or a

prior belief for that process. Saying that f (x) is a GP means that it is a random

variable and a function, and can be written

f (x) | m(x), k(x, x′) ∼ GP
(

f (x) | m(x), k(x, x′)
)

(2.28)

where f (x) is a random function, m(x) : Rd → R is a mean function, and k(x, x′) :

Rd × Rd → R is a covariance function.

AGPcomes fromthemultivariateGaussiandistribution. Let x � {x1, x2, . . . , xn},
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be n points in Rd
. Let f ∈ Rn

be the output of f (x) on each element of x,

f �
©«

f (x1)
...

f (xn)

ª®®®¬ .
Since f (x) is a GP with mean and covariance function, we can treat the vector of

outputs f at the inputs x as multivariate-normal.

f | x,m(x), k(x, x′) ∼ N (f | m(x), K (x, x′)) (2.29)

where m is the mean vector

m(x) �
©«

m(x1)
...

m(xn)

ª®®®¬ ,
and K is the covariance matrix

K(x, x′) �
©«

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn , x1) · · · k(xn , xn)

ª®®®¬ .
The mean function, m(x), gives the most probable value for f (x), e.g., m(x) �

E
[

f (x)
]
.

The covariance function, k(x, x′), describes the similarity of the input space.

Choosing which covariance function to use has been widely discussed (e.g., Ras-

mussen 2006; Berrocal et al. 2008; Kennedy and O’Hagan 2000). If we take the

vector x, then k(x, x) is the variance of the random variable f (x), i.e., V
[

f (x)
]
�

E
[ (

f (x) − m(x)
)
2

]
. For x, x′ ∈ Rd

, the covariance function k(x, x′) explains how the

random variables f (x) and f (x′) are correlated, and can be expressed as

k(x, x′) � C
[

f (x), f (x′)
]
� E

[ (
f (x) − m(x)

) (
f (x′) − m(x′)

) ]
.

Properties of the covariance function There are a few important properties of

the covariance function: 1) via the definition of k(x) as the variance of the random
variable f (x), we can say that for any x ∈ Rd

, k(x, x) ≥ 0; and 2) the covariance
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matrix K(x, x′) is positive definite for x ∈ Rn×d
. It is often assumed that the

covariance k(x, x′) is a monotonically decreasing function of the distance between

x and x′, i.e., k(x, x′) � ˜k(|x − x′|), with
˜k(·) being a decreasing function. This is

not a necessary condition for covariance functions (Rasmussen 2006), but is often a

logical assumption for physical systems. Commonly used covariance functions that

follow this assumption are the squared exponential or Matérn class of covariance

functions.
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Figure 2.5: Example fit of a Gaussian process regression for the function f (x) � (1.125x −
3/4) [sin(5πx) − cos(πx)] using eleven sampling points.

Sampling a Gaussian process

If we represent the Guassian process as

P( f (·) | I) � GP
(

f (·) | m(·), k(·, ·)
)
, (2.30)

where I is known information about the process (observed input/output data,

for example). Once we have this GP, it can be sampled from by selecting test

locations, x � {x1, . . . , xn}. The function values at these locations is then f �{
f (x1), . . . , f (xn)

}
. Then, by definition, the probability of these function values at
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the test locations is normally distributed with a mean of f:

P (f | x, I) � N (f | m,K) .

Given that there are n locations at which the function is evaluated, we need n
random variables in order to sample from this. This is often intractable given grid

sizes, and is especially so in hydrology. If we have a domain that is 100 × 100, then

we would need 10,000 random variables in order to represent the GP, which bring

in the curse of dimensionality. Fortunately, it is possible to describe (2.30) using

just a few random variables using Karhunen-Loève expansions.

Karhunen-Loève expansions

A Karhunen-Loève expansion (Karhunen 1946; Zheng and Dai 2017) provides a

methodof presenting a stochastic processwith a small number of randomvariables.

If we take the GP from (2.30), it can be expressed as a Karhunen-Loève expansion

f (x; X) � m(x) +
∞∑

i�1

Xi
√
λiϕi(x), (2.31)

where:

• Xi are standard normal variables, i.e., X � {X1,X2, · · · } ∼ N(0, 1).
• λi and ϕi(x) are the eigenvalues and eigenfunctions of the covariance func-

tion, respectively. Given that the covariance matrix is positive definite, the

eigenvalues λi will be positive and therefore

√
λi is well-defined.

The Karhunen-Loève expansion can be truncated after a number of terms, and

still reasonably express the stochastic process, if the eigenvalue term —

√
λi — is

sufficiently small. The ordering of Eq. (2.31) is done by the magnitude of λ, and

truncation depends on how fast value of λi decrease as i increases. This trunca-

tion offers the reduction of dimensionality and we can then write the truncated

Karhunen-Loève expansion as

f (x; X) � m(x) +
d∑

i�1

Xi
√
λiϕi(x). (2.32)

The decision for which value of d to use is based on capturing a desired amount
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of variance, or energy, of the field

d∑
i�1

λi � a
∞∑

i�1

λi ,

where a is chosenbasedon thedesired amount of capturedvariance, and is typically

chosen to be a value of around a � 0.95 (Zheng and Dai 2017).

A graphical representation of the Karhunen-Loève expansion is given in Figure

2.6. This figure shows the construction of a single realization of the stochastic

process determined from the GP regression in Fig. 2.5. Here m(x) is the mean

from the GP regression, and the remaining terms are the terms in the summation

of (2.32), where Xi ∼ N(0, 1).
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Figure 2.6: Construction of a Karhunen-Loève expansion using the first two terms in the

summand.

2.5 Inference

The previous sections displayed a framework which allows propagation of para-

metric and field uncertainties to model outputs, and possible ways to efficiently

use many uncertain inputs to a hydrologic model using approaches to dimension-

ality reduction. This section deals with the inverse question: given some observed
output data, how can this information be used to learn values of model parameters that
would produce the observed data? The workhorse for this purpose will be Bayesian

inference, which provides a probabilistic framework to quantify uncertainty with

what is often little data availability in hydrology. Bayesian inference’smain feature,

with respect to this work, is that it quantifies the degree uncertainty before and
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after introduction of observed data through the prior and posterior probability

distributions.

Much like PCEs, Bayesian probability has been widely used with increases in

computational power. Named after its original formulator, the British Reverend

Thomas Bayes, though popularized by the French mathematician Pierre-Simon

Laplace, Bayesian probability has been used for over two centuries to answer ques-

tions about gambling, cryptography, location of lost nuclear weapons, and the

authorship of the Federalist Papers (McGrayne 2011). It has gained popularity due

to its ability and flexibility in quantifying uncertainties in a wide range of complex

problems.

This section briefly introduces Bayesian inference based on the likelihood and

the prior and posterior distributions. Then, it introduces the inverse problem and

how it applies to hydrology and themethodology outlined in the previous sections

of this chapter.

2.5.1 Introduction of Bayesian inference

Bayesian inference relies on the application of Bayes’ theorem in Equation 1.1.

To make the notation more consistent with the previous sections, consider M
unknown parameters of a statistical model as x � (x1, x2, . . . , xM). Furthermore,

there are N measurements of observed data which is the target of the statistical

model D � (y1, y2, . . . , yN). Bayes’ theorem can then be rewritten from Eq. 1.1 in

terms of unknown parameters and observed data:

p(x | D) �
p(D | x)p(x)

p(D) . (2.33)

To gain any valuable information about the unknowns x from the observed quan-

tities D, there needs to be a relationship relating the two:

Y | x ∼ p(D | x). (2.34)

Here, as in Equation 2.3, Y is a random variable. In this case, it is treated as a

random realization of the observed values.7

7It should be noted that Bayesian inference was used in Section 2.4.1 for surrogate construction

through the coefficients c. This section focuses on using Bayesian inference of model parameters
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Likelihood

The probabilistic model relating the observed to the unknown (Equation 2.34) is

known as the likelihood function, and it is defined as

L(x) � p(D | x). (2.35)

The likelihood function incorporates assumptions about the discrepancy of the

data D and the model outputs stemming from input x. As such, any data added

irrelevant to the parameters x will not affect the value of the likelihood (Jaynes and

Bretthorst 2003).

Furthermore, one can get a point estimate of the unknown parameters, the

maximum likelihood estimate, as

x̂MLE � arg max

x
L(x). (2.36)

That is, the values of x that maximize the likelihood in Equation 2.35. However,

these are point estimates and are unable to capture the uncertainty in parameter

estimates, which is one motivating factor behind using Bayesian inference.

Prior distribution

In addition to imparting some randomness to the dataD (Equation 2.34), within the

Bayesian framework, randomness is also imparted into the unknown parameters x
The uncertainty around the values of the parameters before data is accounted for

is taken into account by assigning the random vector

X ∼ p(x), (2.37)

where p(x) is the prior density. This representation means that the epistemic uncer-

tainty around the parameter values are modeled as a probability distribution. As

with the observed data, the “true” values of unknown parameters are a realization

of the random variableX .

The prior distribution represents the knowledge of the modeler of the distri-

bution of the unknown parameters. The selection of the prior has long been a

with hydrologic observations.
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controversial aspect of Bayesian inference. In constructing the prior, one can in-

clude both qualitative and quantitative information, including expert knowledge

as well as physical knowledge (e.g., a prior on a mass of an object cannot be neg-

ative). Distilling diverse sources of information into a probability distribution is

not straightforward exercise. Additionally, one can use the posterior from previous

studies or experiments to inform the prior, a practice called sequential updating

(Spiegelhalter and Lauritzen 1990; Kong et al. 1994).

In practice, one often selects from standard families of distributions to con-

struct the prior in order to represent the uncertainty. For example, if an uncertain

parameter were to come from recorded sensor data on which the sensor’s speci-

fication stated that the errors in the observed values are normally distributed, it

would make the most sense to use a Gaussian distribution for the prior. Uniform

distributions are used for parameters where there is believed to be some minima

or maxima creating bounded values, and one can use Guassian distributions for

unbounded parameters, or lognormal for parameters which are positive. Deciding

on logical probabilistic mappings for a model’s parameters is an important part of

experimental design and is based on known values of the parameters in question

and expert knowledge about logical distributions a parameter may follow.

Posterior distribution

Given the marginal distribution of unknown parameters (Equation 2.37) and the

conditional distribution of the observed data (Equation 2.34), one can write the

joint distribution of the unknown parameters and data:

Y ,X ∼ p(D , x) � p(D | x)p(x) (2.38)

This is the full probability model, where the true parameter values and observed

data are realized. However, the true parameter values x are still unknown. But,

given the likelihood function and the prior density, the posterior density can be

calculated using Bayes’ theorem:

p(x | D) �
L(x)p(x)∫
L(x)p(x)dx

, (2.39)
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where the term in the denominator is a normalizing constant called the marginal
likelihood, which is used to ensure p(x | D) is a proper probability denity.

This formulation allows for an updating of the posterior density when new

information is added (or removed) in Equation 2.39. This updating from the prior

to posterior is shown for a single unknown in Figure 2.7. One of the goals of this

updating, as seen in the figure, is to reduce the epistemic uncertainty of the un-

known. In this figure, one can see that the mass of the parameter is becomingmore

concentrated, leading to higher probabilities. In complex models, the posterior is

unlikely to be a simple probability distribution like that shown in the figure, and

could possess higher order moments.

x

pdf prior

posterior

Figure 2.7: Prior and posterior density function. A goal of inference is to potentially

decrease uncertainty about input densities, e.g., reducing the variance as shown here.

Given the posterior, one can gain information for a given QoI h, such as its

expected value:

E [h(X) | y] �
∫

h(x)p(x | y)dx (2.40)

In particular, one can calculate the first two moments of the posterior, where the

expected value and covariance matrix are given by

E [X | y] �
∫

xp(x | y)dx, (2.41)

Cov [X | y] �
∫
(x − E [X | y]) (x − E [X | y])T p(x | y)dx, (2.42)

where the posterior mean can be taken as a point estimate of the parameter value
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and the covariance quantifies the uncertainty in the estimate. Another measure

for point estimation is the maximum a posteriori (MAP) estimate, which is the value

that maximizes the posterior density, or more simply, the mode of the posterior

distribution

x̂ � arg max

x
p(x | y) (2.43)

In the analog to frequentist statistics, one can also estimate the credible region for

the posterior mass. To calculate this, one needs to calculate if a certain set contains

the parameter value in question, or the posterior probability thatX ∈ A:

PX |Y (A | y) �
∫

A
p(x | y)IA dx, (2.44)

where A is a set of potential parameter values being investigated and IA is an

indicator function where

IA �


1 : X ∈ A

0 : otherwise

.

Using Equation 2.44, one can calculate the probability that the parameter value

belongs to a set, allowing for the calculation of credible regions.

2.5.2 Inverse modeling

Inversemodeling is a class of problemswhere, given somedata andaparameterized

model, determine the “true” values of parameters of the model given the observed

data. Here, “true” is in quotes because they are the parameters for the model,

not necessarily the actual values in the studied domain. Consider two hydrologic

models, MA and MB. If one performs an inverse problem for a parameter of

saturated conductivity usingMA, the posterior value of saturated conductivitywill

not necessarily fit the observeddata the bestwhenused inmodelMB. Nevertheless,

getting the value for the model MA is valuable as it provides more information

about the parameter, and therefore the domain, than existed previously, while also

better calibratingMA for future studies.

Inverse problems have been used in many disciplines, including geosciences,

engineeringmechanics, imaging, and hydrology (e.g., Butler et al. 2015; Elsheikh et
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al. 2014b; Marzouk and Najm 2009; Marzouk et al. 2007; McLaughlin and Townley

1996; Neuman et al. 1980; Yeh 1986; Idier 2013; Kowalsky et al. 2004). In these cases,

the numerical model is used to provide a mapping from the observed quantity

of interest and the parameter which cannot be observed which controls some

aspect of the behavior of that quantity of interest. Running mechanistic, process-

based models forward, i.e., defining the model inputs and calculating the physical

behavior of the outputs is a “well-posed” problem. In the mathematical sense,

a well posed problem is one where the solution exists, is unique, and stable to

changes in initial conditions (Hadamard 1902). As long as the model is robust

to changes in initial conditions, forward hydrologic modeling is generally well-

posed. However, the inverse problem is generally ill-posed, which means that the

above conditioned may not be met, i.e., a solution may not exist or not be unique,

and could be discontinuous given the data. In such a case, the ill-posed problem

must be regularized (Tikhonov and Arsenin 1977), where treating the problem in

a Bayesian frame and assigning priors is viewed as a form of regularization (Idier

2013).

Again, consider a modelM(X , t) that maps the variablesX ∈ RM
and t ∈ Rd

to

the observables û, where X are the unknown model parameters to be found and

t are well-determined experimental conditions such as locations in space or time

that are shared between the model and data. Additionally, it is assumed that the

model gives an adequate approximation of the observed values, u ≈ M(X ; t), and
it is common to that there is some residual error η such that

u �M(X , t) + η, (2.45)

where η combines both prediction errors and noise in the observed data. There

are ways to modify this assumption and separate model error from data error (e.g.,

Sargsyan et al. 2018), however the representation in Equation 2.45 is adequate for

the work in this thesis.

In most inversion problems, this residual error is modeled as a random vector

H , of the same length as u, often following a normal distribution:

H ∼ N(0,Σ). (2.46)

From Equation 2.46, it is assumed that the residual error is mean zero with a
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covariate matrix Σ, where the covariate structure is often dependent upon the

experimental conditions ormeasurements points, such thatΣ � Σ(t), i.e., a seasonal
or spatial relationship between an observable like streamflow or soil moisture.

The use of Bayes’ rule allows for the computation of the posterior parameter

values conditioned on the observed data:

Π (X | u) ∝ L (u | X) p(X), (2.47)

where p(X) is the prior distribution, L(u | X) is the likelihood function which

represents the probability of obtaining the data given the set of parameters, and

Π(X | u) is the posterior distribution for X , which represents the probability of

having the parameter values given the observed data.

To formulate a likelihood function, onemust represent the discrepancy between

the model and observations: η � u −M. Assuming that the components of η are

independent and identically distributed random variables with some marginal

density pη, the likelihood function can be written as

L(u | X) �
D∏

d�1

pη(ud −Md(X)), (2.48)

where there areD conditions (e.g., time snapshots ofmeasured streamflow,monthly

evapotranspiration, etc.) that are being used for inference.

If one assumes that the errors ηd are independent and normally distributed

ηd ∼ N(0, σ2), Equation (2.48) can be written as:

L(u | X) � 1(√
2πσ2

)D

D∏
d�1

exp

[
−(ud −Md(X))2

2σ2

]
, (2.49)

where the logarithm of this likelihood function corresponds to the least-squares

form of the objective function often used for deterministic parameter estimation

(Sargsyan et al. 2015).

If the variance or error in measurements are not know, it can be valuable to

introduce σ2
as a hyper parameter for the likelihood (Sargsyan et al. 2015) and
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rewrite the joint posterior of Equation (2.47) as

Π
(
X , σ2 | u

)
∝ 1√

2πσ2

D∏
d�1

exp

[
−(ud −Md(X))2

2σ2

]
p(X1) · · · p(Xn)p(σ2). (2.50)

The prior for the model parameters p(Xi) are based on their a priori knowledge,

e.g., that the parameters are uniform within a range or normally distributed with

some mean and variance. As the variance of the error noise, σ2
must be positive,

we therefore use a Jeffreys prior (Jaynes and Bretthorst 2003):

p(σ2) �


1

σ2
for σ2 > 0

0 otherwise.
(2.51)

To infer values for uncertain model parameters, the posterior from Equation

(2.50) needs to be sampled using methods such as the Metropolis-Hastings MCMC

(MacKay 1998). Note that sampling from posterior requires repeated evaluation

of the likelihood, implying multiple evaluations of the modelM. This tends to be

computationally expensive, and it is therefore expeditious to replace the modelM
with its PCE surrogate MPC

. In this way, the methodology outlined previously

in this section can be combined with those in Sections 2.3 and 2.4 to create a

computationally efficient, flexible framework to infer uncertain parameter values

for a complex, process-based hydrologic model with multiple inputs applied to a

sparsely monitored watershed. The benefit of the methodology is that it is able

to answer the question of inverse inference: what is the distribution of the model’s
uncertain parameters given observed data? Importantly, it is also able to address the

question of: what are the possible outcomes for certain quantities of interest given the
uncertainty in the model’s inputs?

2.6 Uncertainty quantification workflow

A diagram outlining the uncertainty quantification workflow is provided in Figure

2.8, encompassing the methods outlined in this chapter, with the exception of

Section 2.4.2.
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2.6.1 Example of workflow applied to a kinematic wave

To demonstrate the efficacy of theworkflow in Fig. 2.8, wewill consider an example

applied to a flow problem with the kinematic wave equation. The kinematic

wave equation is a simplification of the one-dimensional Saint-Venant equations

assuming no inertial terms and locally uniform flow, and is represented as:

∂h
∂t

+ w(h)∂h
∂x

� 0, (2.52)

where h is the flow depth, t is time, and w(h) is the kinematic wave speed:

w(h) � 1

n
m

√
S0hm−1, (2.53)

where n is Manning’s roughness coefficient, m � 5/3 is an empirical parameter

corresponding to the Manning equation, and S0 is the surface slope.

For the example problem, consider a 60 × 60 [m] parking lot that drains into

a gutter. The slope in the direction normal to the gutter is S0 � 0.005, with no

slope in the direction of the gutter. The surface is characterized by a Manning

coefficient of n � 0.01, roughly corresponding to debris-free concrete. Consider a

rainfall event from times t � [0, 180] [s], with an intensity R � 50 [mm hr
−1]. With

this information, we’d like to calculate the outflow hydrograph per unit width for

t < 1200 [s].

To construct the hydrograph, we need to consider the time of concentration of

the parking lot, i.e., the amount of time required for a drop of water to travel from

the furthest hydrologic point to the gutter. The time of concentration is calculated

as:

tc �

[
L

αRm−1

]
1/m

, (2.54)

where α �
√

S0/n. For this specific example, the time of concentration is greater

than the time of duration (td � 180 [s]) of the rainfall, so the hydrograph has three
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sections, calculated as:

Q(t) �


α(Rt)m for t < td

α(Rtd)m for td ≤ t ≤ t∗

solve
Q(t)

R + mQ(t)1−1/mα1/m(t − td) − L � 0 for t > t∗
(2.55)

where t∗ is the time where the recession curve starts, and is calculated by:

t∗ � td

[
1 +

1

m

((
tc

td

)m

− 1

)]
. (2.56)

In the last case of Eq. (2.55), Q(t) needs to be iteratively solved for to satisfy that

equation.

The UQ setup for this problem is as follows, the slope andManning’s coefficient

are treated as uncertain, such that S0 � X1 ∼ U[0.0045, 0.0055] and n � X2 ∼
U[0.006, 0.014]. Values forS0 are treatedas lessuncertain since the slope is an easily-

measured quantity, whereas Manning’s coefficient (n) is an empirical value and

therefore has more associated uncertainty. A simple script to calculate the outflow

is used forM(X), and 50 training simulations were performed to construct fourth-

order surrogate MPC(X) through Bayesian compressive sensing.8 An additional

eight simulations are used to validate surrogate performance.

The quantities of interest are selected to be the outflow at one-minute intervals

up to a time of 20 minutes. A residual error η from Eq. (2.45) is added to the

analytic solution such that η ∼ N(0, 0.025Q(t)). This error term is added in order to

represent outflow data with a small measurement error. These simulated data and

associated quantities of interest are use to perform parametric inference for S0 and

n (box B of Fig. 2.8). The posterior values for these parameters are then propagated

throughM(X) to compare to the analytic solution of Q(S0 � 0.005, n � 0.01).
The analytic solution, quantities of interest, and data used for inference are

shown in Fig. 2.9a. The median of the training simulations shows good agreement

with the analytic solution, but a slight underestimation of the analytic solution

between times 180 to 360 seconds.

8With a low number of uncertain variables, alternativemethods to Bayesian compressive sensing

(mentioned in Section 2.3.1) will require fewer training simulations to construct a surrogate as there

are only P +1 � 15 basis terms. However, BCS is still used here to demonstrate the workflow shown

in the chapter.
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Parametric inference is performed to get the posterior values in Fig. 2.9b, which

indicates a near-uninformative posterior for S0. This corresponds to the sensitivity

information in Fig. 2.9c, which shows that the total sensitivity (Eq. (2.21)) of Q(t)
is dominated by the change in values of n, with S0 having a very small (< 5%)

contribution for all times. Since changes in S0 have little effect on the variation of

Q(t), its posterior changed little from the uniform prior. The opposite can be said

for n, which has a large impact on the variability of Q(t), and therefore its posterior

is far different from its prior, with a MAP and mean estimate of 0.0101197 and

0.01019415, respectively. The error in the MAP estimate from the true value of n
is 1.2%, showing good agreement between the posterior parameter value and the

true value used to generate data for inference.

The posterior values for S0 and n in Fig. 2.9b are then propagated through

M(X) (box C of Fig. 2.8) in order to obtain Y � p(M(X) | D) for the QoIs, shown

in Fig. 2.9d. This plot shows very good agreement between the analytic solution

and the median posterior values. To quantify the agreement, consider the relative

L2 norm between the analytic and computed solutions:

L2,rel �

[∑NY
i�1
(Yi −Qi)2∑NY
i�1

Q2

i

]
1/2

,

where Qi is the analytic solution for QoI i, and NY � 20 is the number of QoIs in

this example. The results in Fig. 2.9d provide L2,rel � 0.019, and a maximum error

of max

1≤i≤NY
|Yi −Qi | � 6.76 × 10

−6
.

The results for this example demonstrate the efficacy of the UQ workflow out-

lined in this chapter. The construction of PC surrogates provide a computationally

inexpensive avenue to perform parametric inference. For this simple example, the

computation time for M(X) was approximately 0.07 seconds. Performing para-

metric inference with this model—assuming a chain length of 50,000—would take

approximately an hour. The use of the surrogate in inference decreased the time

for inference by a factor of 15, and this efficiency only increases as M(X) becomes

more computationally complex.

However, the primary benefit is the outcomes of the UQ workflow, e.g., para-

metric inference (Fig. 2.9b), global sensitivity analysis (Fig. 2.9c), and computation

of QoIs using inferred parameter values (Fig. 2.9d). Combined, these outcomes
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provide explanatory value to the underlying modeled processes and the impacts

of uncertainty on these processes. In Chapters 3 and 4, this UQ workflow will be

applied to problems of greater scale and complexity, demonstrating its value to

hydrology and ability to address basic science questions.
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Data
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Other QoIs
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Y = p(M(X)|D)

Dimension
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Figure 2.8: An overview of an uncertainty quantification (UQ) workflow. The set of meth-

ods in each box can be carried out on its own, or usedwithin the generalUQ implementation

scope illustrated here. In the “Forward UQ” boxes, uncertain inputs (X or p(X | D)) are
propagated through a model. The processes “Dimension Reduction” and “Likelihood” re-

quire amodelingdecision to bemade on the structure of the surrogatemodel and likelihood

function, respectively. Box (A) is the process of constructing a polynomial surrogate of the

hydrologic model. Box (B) describes how hydrologic data D are used to perform inverse

inference on a set of model parameters X to obtain parameter posteriors p(X | D). The

resultant posteriors can be used in a set of procedures in box (C) that propagate uncertainty

in the original modelM (orMPC
) in order to get probabilistic estimates of QoIs.
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Ŝ
to

ta
l

i

S0 n

(d)

180 360 540 720 900 1,080
0

1

2

3

·10−4

Time [s]

Q
(t
)
[m

2
s−

1
]

Q(t): analytic

Q(t): observed

Figure 2.9: Figures for the kinematic wave example. The analytic and observed values for

outflow are provided in (a), along with the uncertainty bounds of the training simulations.

The gray regions represent the 25/75 quantiles and the min/max of the training simula-

tions, and the dashed red line is themedian value of the training simulations. The posterior

as a result of parametric inference is provided in (b), where the vertical line in each plot

represents themean value. Total sensitivity information for each quantity of interest Q(t) is
given in (c), with the times specified on the x-axis. The results of the posterior propagated

through M(X) is given in (d), with the displayed information being the same as in (a).

Additionally, the median values of the QoIs are shown with the transparent red circles in

order to visually compare their values with the analytic solution.
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CHAPTER 3

Parameter inversion with heterogeneous data
sources

3.1 Introduction

In research areas of physical hydrology and ecohydrology, computational models

are used to improve the understanding and predictions of watershed and ecosys-

tem dynamics. Recent developments towards these objectives include modeling

at higher resolutions and investigating sensitivities of hydrologic response to wa-

tershed properties and climate forcings (e.g., Ringeval et al. 2014; Rudorff et al.

2014; Getirana et al. 2014; Kim and Ivanov 2015; Krakauer et al. 2014; Guan et al.

2015). Likewise, in climate assessment studies, resolving complex feedback sys-

tems requires the representation of relevant dynamics at commensurate spatial and

temporal scales (Brown and Lugo 1982; Detwiler and Hall 1988; Cramer et al. 2004;

Abril et al. 2014). Tackling this complexity requires models that rely on details of

mechanistic interactions and therefore demand large computational resources to

provide more robust assessments and predictions (Bisht et al. 2017).

Estimates from computational models are affected by a number of uncertainty

sources that can be partitioned into epistemic and aleatory uncertainties (De Roc-

quigny 2012; Beven et al. 2016; Beven 2013). The former type refers to lack of

knowledge of the mechanism being modeled due to limited data or an incomplete

representation of the process; epistemic uncertainty can theoretically be reduced

by gathering more data through a better representation of the modeled mecha-

nism. The aleatory type of uncertainty (or variability) emerges from the structural

randomness of the system being modeled. As an example, soil properties within a
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watershed can be sources of both types of uncertainties. The soil saturated conduc-

tivity of a soil can be a source of epistemic uncertainty as soil samples can be gath-

ered and tested in order to obtain relevant magnitudes. However, even with these

measurements, there are still uncertainties about the heterogeneity and anisotropy

of conductivity throughout a catchment, and this falls under aleatory uncertainty.

Indeed, this can be measured, and as such one can “transform” aleatory uncer-

tainty into epistemic uncertainty through measurement (Faber 2005), but given the

size and scope of what can be measured for the purposes of watershed hydrologic

analysis, accepting aleatory uncertainty is often preferred.

Furthermore, uncertainties can be amplified due to the complexity and nonlin-

earity of problems addressed through hydrologic simulations. In theworld created

through numerical experiments, the two types of uncertainties often become com-

bined (Der Kiureghian and Ditlevsen 2009). Therefore it is prudent to apply a

formal uncertainty quantification (UQ) machinery to evaluate both epistemic and

aleatory sources of uncertainty. More broadly, one needs a holistic approach to UQ

to seamlessly encapsulate all uncertainties of computer simulations within their

specific contexts. This is a valuable pursuit for many computational sciences, not

just hydrology, and as such, UQ has emerged in the last two decades as a very ac-

tive research field, which has incorporated applied mathematics, engineering, and

physical sciences (e.g., Xiu and Tartakovsky 2004; Najm 2009; Knio and Le Maître

2006; Ghanem and Doostan 2006; Sargsyan et al. 2014; Gilbert et al. 2016).

The overarching goal of UQ is accurate assessments, improvements in predic-

tions, and understanding of key sources and magnitudes of uncertainty, which can

inform decision making and control for management of natural and engineered

environmental systems (da Cruz et al. 1999; Morss et al. 2005; Ascough Ii et al.

2008; García et al. 2015). The quantification of uncertainties related to a prediction

of a physical system involves two associated problems: (1) the estimation of model

input variables (e.g., process parameters, input forcings), addressed by compar-

ing model simulations with available observational data or “data products” (i.e.,

synthesized data and model estimates), and (2) the forward propagation of uncer-

tainty from input variables to output quantities of interest (QoIs). Both of these

approaches have traditionally focused on quantifying epistemic uncertainty in hy-

drologic modeling, though UQ allows investigation into aleatory uncertainties as

well.
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Quantifying uncertainties has long been a goal in hydrologic modeling (Beven

1993; Renard et al. 2010; Beven and Westerberg 2011). The first problem of in-

ference of input parameters is common in hydrologic modeling (e.g., Vrugt et al.

2008; Abbaspour et al. 2004; McLaughlin and Townley 1996). However, robust

quantification of uncertainties for complex models remains an area of high inter-

est (Krzysztofowicz 2001; Chen et al. 2011b; Hall et al. 2014; Beven et al. 2015).

Firstly, traditional UQ methods carry computational burden that makes working

with models of higher complexity difficult. Secondly, simpler, lumped models in

hydrology cannot provide information on variables that originate from physically

rich solutions; they therefore cannot take the full advantage of heterogeneous (in

terms of space-time coverage or target variables) observational data sets that are

typical of sparsely monitored watersheds. Many UQ studies have used of concep-

tual rainfall runoff models (e.g., Vrugt et al. 2008; Renard et al. 2010) that permit

fast computation and use of variations of Markov Chain Monte Carlo (MCMC)

sampling (Hastings 1970; Gilks et al. 1995) for UQ. Complex, integrated models

of hydrology (e.g., Maxwell et al. 2014; Kollet et al. 2017), however, require much

greater computational resources making the (tens of thousands of) simulations

required via MCMC analysis computationally prohibitive. An approach to reduce

this computational burden is to construct a surrogate or metamodel to approximate

the behavior of the complex hydrologic model.

Recent advancements in UQ applications have examples of comprehensive,

three dimensional fully integrated surface and subsurface flow models (Gilbert et

al. 2016; Miller et al. 2018). The methodologies used in these studies still required

hundreds of model simulations in order to accomplish rigorous uncertainty assess-

ments. In the case where wall-clock simulation time for a larger-scale, complex wa-

tershed is considerable (e.g., days to weeks), more efficient methods are required.

This study offers an approach with a UQ framework applied to a quasi-three-

dimensional fully-integrated hydrologicmodelwith surface and variably-saturated

subsurface flows, as well as vegetation biophysical dynamics. This framework al-

lows the likelihood-based estimation of input parameters to this complex model,

allowing the application of a diverse set of observations for the parameter inference.

To display the abilities of the framework on a complex terrain, the study domain is

a small, sparsely monitored tropical catchment in the Amazon rainforest.

Due to its size and richness, the Amazon rainforest is one of the most important
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biomes in the world. Large-scale studies of the Amazon have been undertaken to

understand the importance of how hydrology and carbon cycles interact (e.g., Fan

and Miguez-Macho 2010; Miguez-Macho and Fan 2012a; Miguez-Macho and Fan

2012b; Pokhrel et al. 2013; Lin et al. 2015). Many of these studies have simulated

the entire Amazon region, many with grid cell discretization of O(10 [km]) (e.g.,
Coe et al. 2008; Beighley et al. 2009; Yamazaki et al. 2011), with others having a 2

[km] discretization (Miguez-Macho and Fan 2012a; Miguez-Macho and Fan 2012b).

However, as has been previously shown (e.g., Miguez-Macho and Fan 2012b), this

discretization does not resolve the basic functional hydrologic units — hillslopes

and, as a result, the lateral mass fluxes from higher-elevation areas to the valleys of

the drainage network. Ignoring the connection between upstream recharge areas

anddownstreamdischarge regions canhave important consequences on robustness

of studies that depend on understanding space-time variability of the hydrologic

regime (Salvucci and Entekhabi 1995; Kim et al. 1999). Important ecohydrologic

processes occur in these upstream, lower-order, headwater catchments (Richey et

al. 2009; Richey et al. 2011). If one considers the upland regions to be those with

a water table depth greater than 5 [m] (as in Miguez-Macho and Fan 2012b), such

areas account for approximately 30 to 40% of the Amazon basin, depending on the

season (Miguez-Macho and Fan 2012b), and better understanding of the hydrologic

processes in these regions is scientifically justified and urgently needed.

Smaller scale studies of these upland areas have been undertaken (e.g., Fleis-

chbein et al. 2006; Nobre et al. 2011; Cuartas et al. 2012; Fang et al. 2017), but they

relied on frameworks unable to address the epistemic uncertainty associated with

numerical representation of these catchments. Limited sensitivity experiments

performed in (Vertessy and Elsenbeer 1999; Fang et al. 2017) were applied to these

catchments, but a sufficiently general framework of uncertainty quantification and

sensitivity analysis of hydrologic response of these catchments is still absent in the

literature.

One source for hydrologic uncertainties in the Amazon is the presence of deep

soilswhich give rise to fluctuating groundwater across climes and seasons (Miguez-

Macho and Fan 2012b; Cuartas et al. 2012). Due to difficulties in instrumenting and

measuring groundwater, data are sparse: and even experimental catchments have

few wells drilled for measuring water table depth. The spatial distribution and

initial states of groundwater can impact hydrologic models, such as spin up per-
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formance of the model (e.g., Seck et al. 2015; Ajami et al. 2014) or providing better

estimates of the impacts on below-surface processes to earth system models (Clark

et al. 2015; Riley et al. 2011). Additionally, accurate representation of groundwater

processes at smaller scales can provide valuable information to larger scale ground-

water processes and their impacts on earth system processes (Fan 2015; Fan et al.

2013; Krakauer et al. 2014; Riley and Shen 2014).

The large soil column depths in the Amazon mean that the parameterizations

of soil properties in a hydrologic model may have a large effect on the simulated

groundwater and vadose zone dynamics. Some field or lab measurements may

exist for the soil properties through core testing or well pump tests, but these are

limited to accessible areas and may not necessarily represent bulk soil properties

in the catchment (Russo and Bouton 1992; Kowalsky et al. 2004), which in turn

are a primary driver of hydrologic variability within the catchment. Therefore, we

assume uncertainty in the parameterization of these properties.

We introduce a way of accounting for and propagating these uncertainties by

implementing what has been termed non-intrusive spectral projection (Le Maître

and Knio 2010) to construct a surrogate model to emulate the behavior of a com-

plex hydrologic model. This methodology allows us to model, at high spatial

resolutions, the ecohydrologic interaction between groundwater and surface wa-

ter in the Asu research catchment (e.g., Tomasella et al. 2008; Cuartas et al. 2012)

in the Amazon rain forest. We account for uncertainties in model parameters,

which propagate to the initial conditions of the groundwater surface. Addition-

ally, streamflow, water table depth, soil moisture, and evapotranspiration data are

available within the catchment. We assume that all the data represent hydrologic

processes which are informed by soil characteristics, and therefore these data can

inform the parameterization of bulk soil properties. Specifically, this work focuses

on quantifying uncertainty in the soil parameterization of a small upland catch-

ment in Amazonia, focusing on the challenge of probabilistic estimates of bulk soil

properties in a sparsely-monitored catchment.

In the methodology section, we introduce (i) the mechanistic model for this

study: tRIBS-VEGGIE (TIN-basedReal-time IntegratedBasinSimulator—Vegetation

Generator for Interactive Evolution), (ii) construction of a surrogate model for

tRIBS-VEGGIE through polynomial chaos expansions (PCEs), (iii) dimensionality

reduction methods to more efficiently construct the PCE surrogate model, and (iv)
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accelerated inference of tRIBS-VEGGIE model parameterizations using PCE sur-

rogates. The case study of the Asu watershed demonstrates the construction of a

surrogate model representation and sensitivity analysis carried out with it. This

representation is then used to perform parametric inference, highlighting the flexi-

bility of the framework to identify uncertainties and use diverse observational data

for parameter estimation. The parameters obtained from inference are then used

to compute hydrologic output from tRIBS-VEGGIE. The benefits and limitations

of this framework are addressed in the end, with a focus on issues in hydrologic

modeling that benefit from an uncertainty quantification approach.

3.2 Methods and study design

This study provides a framework to derive uncertain model parameters for a

sparsely gauged catchment using a physically rich model tRIBS-VEGGIE and its

simplified mathematical representation, i.e., a surrogate model. The sparse avail-

ability of groundwater, soil properties, and streamflow data in the watershed is

recognized and accounted for in the design so that different data types can be

used to inform the model’s behavior. This section reports an approach to dealing

with the lack of observational data available within the modeling and uncertainty

quantification framework.

3.2.1 Hydrologic model

The representation of the hydrologic response of a tropical catchment strongly de-

pends on reliablemodeling of subsurface flows. tRIBS-VEGGIE (Ivanov et al. 2008a;

Ivanov et al. 2010) emulates essential processes of water and energy dynamics over

the complex topography of a river basin. Each computational element has a canopy

layer that contains two “big-leaves” (sunlit and shaded) representing the canopy.

Above-ground processes are coupled to a multi-layer soil model that computes

soil moisture, root water uptake, and heat transport using the one-dimensional

Richards equation (Hillel 1980) and the heat diffusion equation, in the direction

normal to the element’s surface. Gravity-driven flow for the unsaturated lateral

exchange is assumed and the Dupuit-Forchheimer approximation (Bear 1979) for

the saturated lateral exchange is implemented. Subsurface flows are routed using
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the D-∞ flow routing algorithm (Tarboton 1997), and the flow directions change

dynamically for the saturated zone, leading to spatial dynamics that reproduce the

three-dimensional numerical solutions (Hopp et al. 2015). In this study, vegetation

dynamics are not simulated. Only the biochemical model of photosynthesis and

canopy stomatal behavior (Collatz et al. 1991; Farquhar et al. 1980; Leuning 1990;

Leuning 1995) is used to simulate the response of latent heat flux to above- and

below-ground conditions. The amount of leaf area as well as other structural char-

acteristics of vegetation are imposed as pre-determined model input (see Section

3.2.3).

3.2.2 Uncertainty quantification framework

tRIBS-VEGGIE has a large set of inputs that could be treated as uncertain; these

are closures for certain approximations to physical laws or parameters describing

a property of a medium, for example, important for the movement of water in

the domain (e.g., saturated conductivity for different soil types present in the

domain). In addition to these parameters, there are input fields that describe

spatial or temporal states of the simulationwatershed. These parameters and fields

represent the assumptions made about the makeup and behavior of the domain.

They are inherently uncertain since it is not possible to have perfect information

about the system being modeled, and this is especially true for natural systems.

Therefore, instead of encoding assumptions into single estimates about the system

in question, we embrace the uncertainty in our knowledge and attempt to quantify

the consequences of this uncertainty on simulation results.

The uncertainty quantification framework from Chapter 2 will be used. Let’s

consider a model M (i.e., tRIBS-VEGGIE in this study) with inputs x, where

x � {x1, x2, . . . , xM} (e.g., M � 7 for this study). This model is used to predict

some output quantity of interest (QoI) ŷ ∈ R. Specifically, polynomial chaos ma-

chinerywill be used to construct a surrogatemodel of tRIBS-VEGGIEwith Bayesian

compressive sensing to perform accelerated inference of input parameters to the

model. Repeating from Eq. (2.13), the output QoI can be approximated through a

52



PCE as

Y �M(X) ≈ MPC(X) �
P∑

j�0

c jΨ j(X). (3.1)

This study uses Bayesian compressive sensing (BCS) (Section 2.4.1, Ji et al. 2008;

Babacan et al. 2010; Sargsyan et al. 2014) to find a sparse set of coefficients to

compute the coefficients in Eq. (3.1).

Parameter inference

Given a suite of results fromamechanisticmodelM and its constructedpolynomial

surrogateMPC
, one can infer which values of uncertain input parameters X are

most likely to provide results that match an observed quantity. An advantage of

the approach outlined here is that MPC
enables very efficient inverse analysis

(Marzouk and Xiu 2009). More generally, inverse problems occur when there are

related observations but they are not necessarily the ultimate quantity of interest.

Within hydrology, and particularly in sparsely monitored basins, there is a long

history of parameter identification through some form of inversion (e.g., Neuman

et al. 1980; Yeh 1986; McLaughlin and Townley 1996; Kirchner 2009b). Surrogate

models with dimension reduction as outlined in Sections 2.3 and 2.4, provides a

novel approach, enabling faster computation, inversion, and the ability to solve the

inverse problem on a larger set of uncertain model parameters (Section 2.5.2).

Summary of UQ framework

Sections 2.3-2.5 develop a general framework of high flexibility to infer model

parameters for a hydrologic model in a computationally efficient manner by using

polynomial surrogates. Figure 2.8 provides a diagram outlining this framework.

Generally, one uses a hydrologic model to construct a polynomial surrogate model

(Box A) that allows for fast computation of output quantities of interest from the

hydrologic model. In the case of many uncertain input parameters, dimensionality

reduction tools such as BCS are used to alleviate the burden ofmulti-dimensionality

of uncertain inputs for constructing the surrogate models. After a surrogate has

been constructed, one can then use it for accelerated, computationally inexpensive

inference of the uncertain parameters for the hydrologic model, provided that
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there are available data matching a quantity of interest (Box B). Once the posterior

distributions of the uncertain parameters have been calculated, they can then be

used within a model g(X). In theory, g(X) can be any model that uses the

parametersX , but it is prudent to use the posterior values in the same model used

for inference. Within this study, g(X) is going to be tRIBS-VEGGIE (M) in order

to estimate other quantities of interest (Section 3.2.3).

A methodological step that accounts for model error is not shown in Figure 2.8

and therefore is not accounted for in this study. More specifically, the likelihood

function in Box B accounts for data error, but does not consider the structural error
of tRIBS-VEGGIE. Accounting formodel error is an active, ongoing area of research

within UQ (e.g., Sargsyan et al. 2018), but is beyond the scope of this study.

The strength of this approach in the context of uncertainty quantification is

the relationship between QoIs—as discussed in Sec. 2.3—and observational data.

The generality of coupling the PCE and inference approaches means that QoIs

can be any output from the hydrologic modelM which is then used to construct

the surrogate model MPC
. If one can relate observational data to the QoI be-

ing addressed throughMPC
, then accelerated inference for diverse outputs (e.g.,

hydrologic, hydraulic, ecologic, biogeochemical, etc.) is possible within complex

hydrologic models.

3.2.3 Simulation setup

The watershed domain is located approximately 76 [km] northwest of Manaus,

Brazil (Figure 3.1a). Thewatershed is part of activities carriedunder theLarge-Scale

Biosphere-Atmosphere (LBA) Experiment in Amazonia managed by the National

Institute of Amazonian Research (INPA). This location was chosen due to the long

record of available atmospheric forcing data from a flux tower installed in 1999

as well as the availability of relevant data from streamflow gauges, soil moisture

sensors, and groundwater piezometers. This catchment is one of the most instru-

mented catchments in the Amazon Basin, surrounded by undisturbed rainforest.

This region is characterized by a tropical monsoonal climate, with average annual

rainfall of approximately 2,400 [mm], average annual temperature of 26
◦
C, and a

wet season from November–May and dry season from June–October (Nobre et al.

2011; Cuartas et al. 2012; Cuartas et al. 2007).

54



 (a)
 (b)

 (c)

Figure 3.1: The study location, labeled by the red star in (a), is approximately 76 kilometers

N-NW of Manaus, Brazil. Manaus lies at the confluence of the Negro and Solimões

rivers, and at this confluence the Amazon River begins. The vegetation types for the Asu

watershed are shown in (b) as derived in (Cuartas et al. 2012). The spatial distribution of

elevation within the watershed is illustrated in (c).
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Representation of simulation domain

The simulation domain, the Asu watershed (Figure 3.1b, c), represents a zero- to

third-order basin in Amazonia, previously detailed in (Cuartas et al. 2007; Nobre

et al. 2011; Cuartas et al. 2012). The total area is 12.4 [km
2], and the watershed has

varying soil thickness, with a maximum between 40 and 50 meters (Cuartas et al.

2012). To represent its subsurface domain, the layer thickness is fixed at 40 meters

using 35 irregularly resolved mesh layers, increasing from 0.04 [m] for the surface
layer, to 2.5 [m] for the layers between 5 and 40 [m]. The thickness of the layers

increase following a geometric series such that, as the soil depth increases, each

layer is some fraction r thicker than the previous layer: ∆zi+1 � ∆zi(1+ r), up to the

depth zi � 5 [m]. For this domain we chose r � 0.296, which allows for smaller soil

layers near the surface, and larger layers towards the bottom of the soil domain.

This discretization enables the capture of the dynamics of infiltration and lateral

water movement in the vadose zone, while maintaining computational efficiency.

In the horizontal plane, the domain is represented using 3 arc-second (90× 90 [m])

spacing from the SRTMdigital elevationmodel (Jarvis et al. 2008), resulting in 1,554

square Voronoi cells. Overall, this gives 1, 554 × 35 � 54, 390 computational nodes

in the domain.

Soil type and land cover

Previous classification of soils for this site have been undertaken in (Cuartas et al.

2012; Fang et al. 2017; Tomasella et al. 2008), but focused on the near-surface soil

properties at few locations that are hard to interpret in terms of their changes with

depth (see also Fang et al. 2017). The detailed soil classification such as the one

given in (Cuartas et al. 2012) can be useful, but understanding effective, watershed-

scale properties (i.e., that represent the catchment as a whole) is frequently of more

relevance, since the vast majority of basins are ungauged. Consequently, this study

assumes that there is a single soil type in the watershed and there is a need to have

its hydraulic, drainage, and retention characteristics understood.

Specifically, the uncertain parameterizations used for the retention characteris-

tics of the soil are calculated using the pedotransfer function for Brazilian soils from

(Tomasella et al. 2000). This study used multivariate linear regression relying on

texture (percentages of sand, silt, and clay), organic carbon, moisture equivalent,
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and bulk density to fit a second-order polynomial for the dependent variables of

α, n, θr and θs of the van Genuchten soil water retention and model (Genuchten

1980). Furthermore, the study of (Broedel et al. 2017) provides data on texture and

bulk density for the Asu catchment up to a depth of 14.3 [m], and the estimate for

moisture equivalent is given in (Tomasella et al. 2000). Values for the saturated con-

ductivity and the anisotropy ratio were not a part of this pedotransfer function, and

reasonable value ranges were estimated using the studies of (Cuartas et al. 2012;

Fang et al. 2017). The soil properties make up the uncertain model parametersX ,

which are treated as random variables with distributions provided in Table 3.1.

The two classes of vegetation present in the catchment are (a) terra firme forest
on the plateau and sloped areas, and (b) Campinarana forest (Ranzani 1980) in the

valleys and ecotone areas of the watershed (Figure 3.1b). The Type (a) forest has

dense evergreen tropical vegetation with heights of approximately 30 [m]. The

Type (b) forest is less dense with tree heights typically around 20-25 [m] (Cuartas

et al. 2012). The only difference in the parameterization between the two types

is the vegetation height, as the uncertainty in vegetation were intentionally de-

emphasized in order to focus on the impact of uncertainty in soil characteristics.

Table 3.1: Uncertain soil parameters X used in the workflow of Figure 2.8. The fraction

of coarse and fine sand (FCS , FFS), required for the pedotransfer function in (Tomasella

et al. 2000), is determined based on the sampled values of FC and FS, such that FCS �

αcs(1− FC − FS) and FFS � (1− αcs)(1− FC − FS). U[A, B] denotes the uniform distribution

with support [A, B].

Parameter Description Distribution

FC Fraction of clay [%] U[45, 65]
FS Fraction of silt [%] U[15, 25]
αcs Fraction of sand that is coarse [%] U[45, 55]
Me Moisture equivalent [g g

−1] U[0.1, 0.25]
ρb Bulk density [g cm

−1] U[1.1, 1.2]
ks Saturated hydraulic conductivity [mm hr

−1] U[2.0, 30]
ar Horizontal:vertical anisotropy ratio [-] U[1, 2]

Climate forcing

Climate forcing data are available at hourly intervals for 26,300 hours from January

1, 2003 to January 1, 2006. Aggregated time series of data used for forcing the

model are shown in Figure 3.2 (Restrepo-Coupe et al. 2013).
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Figure 3.2: Atmospheric forcings used in simulations. (a): Monthly aggregated rainfall

(gray bars) and air temperature (red line). (b) Monthly averaged vapor pressure and wind

speed. (c): The diurnal cycle of longwave and shortwave radiation estimated for the entire

simulation period. The line of each represents the median, and the shading is between the

10- and 90-percent quantiles.
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Initial and boundary conditions

For solving subsurface flow dynamics, the flux (Neumann) boundary condition

was specified at the surface (net rainfall) and bottom (zero flux) of the domain,

allowing for infiltration, runoff, and exfiltration fluxes. For surface flow, an open

boundary (in the form of free outfall) was assumed at the downstream end (Kim

et al. 2016). The watershed was delineated from the downstream end, therefore

for all other boundaries of the watershed, the no-flux (solid slip wall) boundary

condition was specified.

Water table initializations given soil parameter uncertainty

Given that the soil parameterizations are treated as uncertain, water table ini-

tializations that adequately represent the initial state of the water table within the

watershed are required. For example, a shallowwater table will result under a sim-

ulation with a soil type with a low hydraulic conductivity, and a deeper water table

will result with a higher hydraulic conductivity. Setting the water table to some

fixed value for the entire basin, then allowing steady flow conditions to develop for

a given soil type through forcing and draining requires computational resources

(e.g., Seck et al. 2015), which would be a detriment to the desired efficiency from

the UQ approach in this paper. Groundwater well data for the watershed (e.g.,

Cuartas et al. 2012; Fang et al. 2017) are available only for a few locations along a

transect in the watershed. This limitation, in both spatial and topographic spaces

(e.g., elevation, height above nearest drainage, slope, etc.) implies that the avail-

able data are inadequate to create meaningful realizations of initial depth to water

table to be used in simulations. However, groundwater plays an important role in

seasonal flooding and ET dynamics of the Amazon (Miguez-Macho and Fan 2012b;

Miguez-Macho and Fan 2012a). It must be accounted for in any comprehensive

hydrologic modeling and therefore some uncertainty should be associated with

the water table initialization.

In this work, uncertainty in initial depth to water table is propagated through

parametric uncertainty using a subset of the uncertain parameters in Table 3.1.

Specifically, the initial water table depth is estimated using an adapted mapping

function from (Sivapalan et al. 1987). This method supposes that there is a steady

state groundwater profile throughout the basin and that the streamflow at initial-
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ization time Q(t � 0) is derived from a constant, spatially uniform recharge to the

groundwater. Furthermore, each location in the basin has a contribution qi defined

by its position in the watershed:

qi �
acQ
A
, (3.2)

where qi is the saturated lateral flow, ac is the surface contributing area of a com-

putational cell, Q is the semi-steady state discharge at the basin outlet, and A is

the total basin area. This approach also assumes that the water table is parallel to

the soil surface, so the subsurface drainage aligns with the topographical gradient.

The water table depth for a single computational cell is given by:

Niwt � −
1

f
ln

[
f acQ

AK0arW tan S0

]
, (3.3)

where Niwt is the initial local water table depth, K0 is the surface saturated conduc-

tivity, f is the exponential decay parameter of the saturated hydraulic conductivity

with depth (Beven 1982), ar is soil anisotropy ratio (Ivanov et al. 2004), W is the

width of the saturated flow between cells, and S0 is the surface slope.

The decay parameter f is not used in the representation of soil hydraulic prop-

erties in this work. However, the rest of the parameters of Equation (3.3) are known

and therefore a value of f can be solved for a given set of soil parameters and local

watershed characteristics at location i. Specifically, the water table depths Niwt are

derived by taking the temporal average of water table depths for each observa-

tion location; the values of K0 and ar are treated as uncertain and obtained from

sampling (see Table 3.1); and the rest of the variables in Equation (3.3) are derived

from the basin topography. This leaves f as the only unknown of the equation and

therefore, f can be derived for each soil type in the UQ framework through least

squares optimization to fit the data to the model in Equation (3.3). The estimated

value of f for each soil type enables the generation of an initial spatial distribution

of water table, specific to the soil parameterization used in the simulation.
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Selections for quantities of interest

Quantities of interest (QoIs) are outputs from the tRIBS-VEGGIE model, which are

used on the left hand side of Equation (2.13) to construct the surrogatemodel. Each

QoI needs to be a scalar, and the number of QoIs is only limited by the memory

available to store data during computations outputting for QoIs, as well as the

time required to construct surrogate models. In practice thousands of QoIs can be

defined, such as the time series (i.e., multiple time instants), or a single QoI may

be selected, if it is believed to carry a lot of information about the phenomenon

being studied (e.g., the mean water table depth). For this study, a mix of targeted

quantities of interest is selected. They represent bothdomain-aggregatedquantities

of interest as well as time series of specific QoIs, which are provided in Table

3.2. Those QoIs that coincide with observations are used for parametric inference.

Commonmetrics of interest in hydrology are selected forQoIs not used in inference,

highlighting the use of the UQ methodology in a partially gauged basin.

The approach taken here does not follow the common model confirmation

paradigm where one separates available data for calibration and validation, typi-

cally used when there is a single variable representing the behavior of the dynamic

system, such as streamflow. Rather, the methodology utilizes the total amount of

data that might exist for a hydrologic system, such that if one obtains a reasonable

skill of the model for the suite of available data, then the model is trained given

the observations. In situations with limited data availability, preference is given

to include all data in inference, as exclusion reduces the chance that the resulting

posterior is accurate. In caseswhere included data increases uncertainty of inferred

parameter values, e.g., an increase in the standard deviation in the posterior, this

still provides valuable information about the representation of uncertainty within

the target domain.

The number of surrogates constructed for eachQoI is given in the fourth column

of the Table 3.2, with a total of 499 surrogates constructed for this study. QoIs that

were used in surrogateswere constrained to periodswhere datawere available, e.g.,

the soil moisture data in the study area only exists for January-October of 2005 (see

Figure 3.3). Outlet streamflow was collected starting December 2004 and running

through December 2005, however these data were only sampled once daily, often

with two to four days, or sometimes periods ofweeks between sampling. Due to the

absence of continuous observed streamflow, monthly aggregatedmean streamflow
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was used as a QoI to construct the surrogate model.

Water table data at this site were sampled with temporal resolution similar to

streamflow between 2012-2015, outside the time period for this study, and were

sampled similarly to streamflow. While twelve well locations were sampled, not

each location was sampled during both the wet and dry season, and several wells

were in close proximity to each other. Due to these issues, wells that had at least ten

recordings in both the wet and dry seasons were kept for analysis. After exclusion,

the remaining tenwells were aggregated into groups based on their locationwithin

computational cells in tRIBS-VEGGIE, i.e., if two or more well locations were in the

same computational cell, the data from these locations were combined into a group

for analysis. After this aggregation, six well groups remained with water table

depths between 0.5 and 5 [m] (Figure 3.3).

Table 3.2: Quantities of interest selected for this study. Those denotedTS(·) are time series

of a specific QoI. The “Inference” column denotes whether that QoI was used in inference

of model parameters in Section 3.3.2, and N is the number of surrogates constructed for

each QoI.

QoI Description Inference N
TS(Q) Daily time series of streamflow [m3

s
−1] 365

TS(Qmonth) Monthly aggregated streamflow [m3
s
−1] Y 13

Q0.95 Daily streamflows in the 95th percentile [m3
s
−1] 1

TS(θ1m) Soil water content in top 1m Y 10

TS(ETdry) Evapotranspiration in dry periods [mm day
−1] 92

TS(ETmonth) Mean monthly evapotranspiration [mm day
−1] Y 12

WT Depth to water table [m] Y 6

In Table 3.2, the distinction for the “dry” period for TS(ETdry) refers to amonth

exhibiting a cumulative water deficit (CWD):

CWD i �


∑D

j�1
P j − ET j if

∑D
j�1

P j − ET j < 0

0 if

∑D
j�1

P j − ET j > 0

, (3.4)

where P j and ET j are the daily accumulated daily precipitation and evapotran-

spiration, respectively, where j denotes the day in month i. The time period for

all reported QoIs are the year 2005, and during this period there was a negative

CWD in August, September, and October of 2005 of -49.1, -80.6, and -87.5 [mm],

respectively.

62



To construct surrogates for each QoI, one generates a set of training and valida-

tion samples from the uncertain parametersX in Table 3.1. Each parameter Xi is

scaled to a standard uniform variable for computational input, ξi ∈ [−1, 1]. These
are then run a set of training simulations throughM to construct the surrogate in

(2.13), and the performance of the surrogate is evaluated using the set of validation

simulations.

3.3 Results

This section provides an overview of the results of the construction of the surrogate

model from Section 3.2.2, uses the performance of the surrogate model against

observations (Table 3.2, “Inference” column) to infer parameter values, and uses

the latter to investigate the response of hydrologic variables of interest within the

catchment.

The data used to construct the surrogate and perform inference is summarized

in Figure 3.3. One would like the training simulations to overlap the observed

values used for inference, but this is not the case for all QoIs, especially those in

the discharge and water table groups. However, Section 3.3.2 shows how this can

be overcome using the inference techniques to better confirm tRIBS-VEGGIE with

the observed data.

3.3.1 Surrogate construction

The polynomial chaos surrogatesMPC
were constructed as in Equation (2.13) for

the QoIs in Table 3.2. To have a well-performing surrogate,MPC
should match the

simulations of themechanistic model tRIBS-VEGGIEM. In Figure 3.4, the absolute

errors between the constructed surrogate (MPC
) and simulations of tRIBS-VEGGIE

(M) are shown as illustration. Simulation results used for training purposes of

constructing the surrogate are shown. Also shown are the results corresponding to

validation of the surrogate, i.e., a comparison of the forward tRIBS-VEGGIE model

simulations and outputs of the trained surrogate for the same QoIs.

A quantitative error measure of the surrogate accuracy is the relative L2-norm
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as a representation of error, defined as:

L2,rel �


∑Ns

i�1

(
MPC

i −Mi

)
2∑Ns

i�1
M2

i


1/2

, (3.5)

where Ns is the number of training (or validation) simulations performed. The

value used for Ns depends on the computational expense of the model. A useful

heuristic is to have at least 3-4 samples in each uncertain parameter dimension,

which in this study would result in at least 3
7 � 2, 187 runs of tRIBS-VEGGIE.

These samples are taken at random, with the heuristic providing generally good

coverage of the sampling domain. To summarize surrogate performance, the QoIs

are aggregated into streamflow, water table depth, evapotranspiration, and soil

moisture groups. These groups are used to illustrate the relative surrogate error as

a function of PC order in Figure 3.5, which shows that for training simulations, the

decrease in L2,rel is muted after a PC order of 5 or 6.

Qualitatively, Figures 3.4 and 3.5 both show that the surrogates performs slightly

better (i.e., lower values of L2,rel in Fig. 3.5) using training rather than validation

results. This is the desired behavior as it means that the stopping criteria ε from the

BCS method (Section 2.4, 2.4.1) are chosen correctly. In the case where reducing ε

further improves the performance at the training set, at the expense of performance

at validation set, indicates that overfitting has occurred in surrogate training. This

means that the surrogate is being trained to only capture the behavior near the

parameter samples at the training locations, and will not accurately capture the

behavior at a significant distance away from these training samples. Evidence of

overfitting would be that L2,rel decreases with training data but remains the same

or increases in the validation data set. This is what occurs if higher-order terms in

the expansion are retained for most groups of QoIs.

Thus, we have selected a surrogate order p � 6 forMPC
as the optimal order that

leads to a sufficiently accurate surrogate without overfitting. Given the seven un-

certain input parameters (Table 3.1), Equation (2.14) gives a required P + 1 � 1, 716

basis terms inMPC
. Due to the use of the BCSmethod outlined in Section 2.4, there

were 100 simulations of tRIBS-VEGGIE used to train the surrogate. An additional

10 simulations were used to validate that the constructed surrogate accurately rep-
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resented the QoIs from tRIBS-VEGGIE. In this case, the BCS methodology enabled

the reduction of the number of required simulations by approximately 93%without

considerable accuracy loss.

Sensitivity analysis

The goal of variance-based sensitivity analysis is to relate the proportion of variance

in the model’s output to the uncertain input parameters. The constructed PCE

model allows for efficient computationof themain and joint effect sensitivity indices

from Equations (2.18) and (2.19). One can assess at the sensitivity contributions for

a single QoI, or for uncertain parameters across multiple QoIs.

For the first instance, themain and joint sensitivities of the uncertain parameters

for the QoIs of water table group 5 and evapotranspiration in April 2004 are shown

in Figure 3.5c and 3.5d, respectively. The main effect sensitivities — the fraction

of variance described by changing each uncertain parameter in isolation, averaged

over the input distribution of the other parameters — are given on the diagonal of

these figures. For the water table and evapotranspiration groups, one sees that ksat

is the dominant contributor in the variation of the QoIs shown. This displays that

the model is qualitatively consistent, as a higher value of saturated conductivity

allows faster drainage from the soil and impacts water available for vegetation

transpiration in the case of Figure 3.5d. The lower diagonal on Figures 3.5c, 3.5d

represents the joint effect sensitivities, e.g., in Fig. 3.5c, terms in the expansion

containing both ks and ar account for approximately 9.5% of the variability seen in

the fifthwater table group,while the equivalent contribution from terms containing

both ar and FC is approximately 0.45%. Recalling from Eqs. (2.20) and (2.21),

these sensitivities are computed directly from the PCE coefficients, so sparsity

or very low values in the lower diagonal (e.g., Figure 3.5c) represents sparsity

of the coefficients multiplying terms containing the uncertain parameters. The

implication of this sparsity is that interaction between those parameters in the

model have an insignificant impact on the resultant value of the QoI.

These indices are computed for each QoI, and summarized sensitivities across

all QoIs are given in Figure 3.5b. Based on the contributions to the variances of

the QoIs, it is clear that ksat is the uncertain parameter with the largest impact on

model sensitivity for the identified QoIs. This confirms intuition since values of

ksat control both infiltration excess runoff as well as impact of lateral flows in the
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Figure 3.3: Plots for observed discharge, depth to water table, evapotranspiration (ET), and

soil moisture content (θ). The discharge, ET, and θ figures plot the mean of the time series

of available data with the error bars being the standard deviation of the recorded data. The

discharge plot also shows the number of records aggregated into each month. Water table

depth is displayed in box andwhisker plots. The whiskers represent the 10- and 90-percent

quantiles, and the box limits represent the 25- and 75-percent quantiles, with the median

lying within the box. The diamond within each box is the mean water table value that

is used for inference. The shaded regions in the plot represent the training simulations

from tRIBS-VEGGIE that are used to train the surrogate model. The different shading

levels represent the 25/75, 10/90, and 5/95 percentiles of the 100 training simulations.

Additionally, the red line used in the time series plots represents the median of the training

simulations. The colors within the water table plot are divided into two y-axes to provide

better readability and clarity values in groups (1-5) and 6.
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hydrologic system,which is not included in the pedotransfer function of (Tomasella

et al. 2000).

3.3.2 Inference of soil properties

After the surrogate model is obtained, it is possible to calculate the posterior distri-

bution of model parameters throughMCMC sampling,as described in Section 3.2.2

above, by replacingM withMPC
. This enables faster computation and benefits hy-

drologic models that take more than a few minutes to perform a single simulation.

The marginal and pairwise joint marginal posteriors of the hydrologic parameters

in Table 3.1 are shown in Figure 3.6. These posteriors are summarized in Table 3.3

by their moments,maximum a posteriori (MAP) estimate, i.e., the mode of the poste-

rior distribution, and the coefficient of variation (ratio of standard deviation to the

mean value).

Table 3.3: First two moments and MAP estimate of parameter posteriors.

Xi µ̂ σ̂ ˆ
MAP σ̂/µ̂ [%]

Fc 56.0 1.871 56.3 3.34

FS 24.2 0.677 24.5 2.79

αCS 0.525 1.64E-3 0.525 0.31

Me 0.184 5.75E-3 0.184 3.13

ρb 1.2 1.19E-3 1.2 9.9E-2

ks 15.8 0.645 15.9 4.09

ar 1.45 6.11E-2 1.44 4.22

These posterior distributions provide information about the bulk soil properties

of the watershed, e.g., that the soil is mostly clay and silt, with a saturated conduc-

tivity around 20 [mm/hr], and an accompanying anisotropy ratio of approximately

1.25. These values are in agreement with previous studies of the catchment (e.g.,

Tomasella et al. 2008; Cuartas et al. 2012), which found four different soil types

within the watershed. The clay contents for these four soil types (below 1 [m])

ranged between 5–90% clay, where the soil type with 80–90% clay accounting for

45% of the catchment, and the soil type with 5% clay accounting for 30% of the

catchment. Using a single soil type in the catchment represents an aggregation

of the physical properties, whereby the posterior mean for clay content of 56% is

reasonable based on the observed properties. The other parameters of the pedo-

67



transfer function fall within ranges given in (Tomasella et al. 2000), with additional

qualitative agreement between the textural classification shown for Manaus. The

hydraulic properties of ks and ar in (Cuartas et al. 2012) have sixteen classifications

based on landscape classes and depth, with the inferred values in this study indi-

cating a soil type similar to the “plateau” or “slope” landscape which are at least

15 [m] above the nearest stream node, accounting for approximately 45% of the

catchment area. Similarly, (Fang et al. 2017) contains hydraulic properties with a

single landscape classification at four depths, where ks is approximately between

9 and 15 [mm/hr] with ar � 1, which qualitatively agrees to the inferred value of

15.8 [mm/hr]. Additionally, one can assess the pairwise correlations between pa-

rameters using Figure 3.6, e.g., that the anisotropy ratio (ar) is negatively correlated

with saturated conductivity (ks).

Posterior predictions of the QoIs are demonstrated in Figure 3.7. Here, the joint

posterior from Figure 3.6 is sampled in order to calculate the QoI values using the

surrogates constructed in Section 3.3.1. A comparison can then be made between

the posterior QoI values and the observed data values. One sees that the posterior

QoIs for ET and soil moisture match the data better than for discharge and depth

to water table. There are two main factors contributing to this: (1) the simulated

values (usingM) for ET and soil moisture match the data better than the simulated

discharges andwater table depths (see Figure 3.3), and (2) data noise for these QoIs

are much lower than those for discharge. If one were interested in getting a better

fit to the data for a set of QoIs, one could: (i) select a larger training set to have

more chances for the simulation results ofM to match observations; (ii) perform

inference using a subset of the observed data and QoIs in an attempt exclusively

fit for that subset of data; or (iii) attempt to collect more data to constrain the data

noise. In the cases of options (ii) and (iii), the PCE framework provides a benefit

of not needing to rerun simulations of the computationally-expensiveM, but also

allows fine-tuning of model parameters for investigations into specific QoIs.

The posterior QoIs as a result of performing inference separately on each group

of QoIs (i.e., only data of a given group are used to infer the entire set of parameters

in Table 3.1) is shown in Figure 3.8. In this figure, the data noise—σ2
in Equation

(2.50)—was set as a hyper-parameter and was also inferred because it provides a

better fit of the mean prediction ofMPC
to the data. This was done to illustrate an

approach that can be undertaken when data noise is large to the point of it being
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uninformative, e.g., in the case of discharge and ET data. In this case a Jefferys

prior (Eq. 2.51) is used for σ2
. Performing inference on each group of QoIs is

done at the expense that the parameter posteriors are constrained for use on each

separate group of QoIs. The posteriors in Figure 3.8 for the variables Xi contain

other important details about the information that can be gained with inference.

For example, the posteriors for the bulk density (ρb) are very close to the uniform

prior for most groups of QoIs, since this parameter is not informed by the available

data (except for soil moisture).

Whether one takes the approach shown in Figure 3.7 or 3.8 will depend on the

questions being investigated. Generally, the Bayesian framework prefers including

all data to perform inference, as long as the data are informative. In the case where

data come from disparate sources, e.g., sporadic sampling of discharge vs. hourly

evapotranspiration measurements, one may want to separate the inference using

these data, or incorporate more detailed structure in the data noise representation

among groups of QoIs to better inform their impact on inference.

3.3.3 Computing QoIs from posteriors

Frequently, in hydrologic modeling there are no direct observations of the studied

quantity of interest. With the framework presented in this study, one can construct

a surrogatemodel for quantities that have been observed (Section 3.3.1) and use this

surrogate to confirm the model (Section 3.3.2). This confirmed model can then be

used to assess the performance to unobserved QoIs or the same observed variables

using the parameter posterior distributions. This allows one investigate a wide

variety of model behavior, such as higher-frequency or aggregated quantities at

coarser or finer temporal/spatial intervals. In this work, the parameter posteriors

from Figure 3.8 resulted in a chain of 19,000 posterior values for each parameter

in Table 3.1, which can be directly sampled and used as input to a constructed

surrogate (box (C) in Figure 2.8).

FromTable 3.2, theQoIs held out from inferencewere: Q95 —the 95th percentile

of daily-averaged discharge during 2005 (representing the probability that 18 days

during the year have a mean daily discharge larger than Q95), TS(Q)— the daily

time series of streamflow in 2005, and TS(ETdry) — daily evapotranspiration in

months with cumulative water deficit as defined in Equation (3.4). Illustration Plot
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and sensitivity information for these QoIs are given in Figure 3.9. Note that the

surrogates for these higher-frequency and aggregated QoIs were not constructed

in Section 3.3.1, but doing so is straightforward and follows the methodology of

Section 2.3.1.

These results are provided to illustrate the flexibility of the UQ framework.

The benefits of the approach include that one can investigate hydrologic response

at higher temporal and spatial resolutions. For example, one can see the pattern

of discharge in Figure 3.9 follows that of Figure 3.8, but unlike the original data

sourced in Figure 3.3, this provides daily estimates of discharge.
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Figure 3.4: Comparison of tRIBS-VEGGIE and constructed surrogate for PC order p � 6.

The surrogates are separated into four groups depending on the QoI. Colors within groups

signify a different QoI, e.g., there are 12 colors in the bottom-left plot for ET since there

is a QoI for ET in each month of 2005. Circular and square marks represent the 100

training and 10 validation simulations, respectively. A y � x line is added to each plot,

such that points on the black line represent agreement between tRIBS-VEGGIE and the

constructed surrogate. The simulations are colored by the QoI, e.g., the different colors in

the plots for Q, ET, and SM represent a classifier to distinguish different months for the

QoI. The relative errors of the surrogates for each group are: L2,rel(Q) � 0.081, L2,rel(WT) �
0.10, L2,rel(ET) � 0.025, and L2,rel(θ) � 0.029.
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Figure 3.5: Plots of surrogate errors and sensitivities. The training and validation surrogate

error is given in (a). Each color represents a different group of QoIs, and the marker shape

differentiates between training and validation samples. A qualitative representation of

sensitivities is given in (b). Here, the diameter of the nodes around the circle are propor-

tional to the main effect sensitivities, and the width and opacity of the lines connecting the

nodes around the circle are proportional to the joint sensitivities, where the main and joint

sensitivities are calculated for each QoI, and the plot shows the average over all QoIs. The

lower triangular matrices in (c) and (d) show the main and joint sensitivities for water table

group 5 (c) evapotranspiration in April, 2005 (d). The main effect sensitivities are on the

diagonal, and joint sensitivities between parameters are lower triangular, with a minimum

sensitivity threshold of 10
−5
.
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Figure 3.6: Posterior distributions of parameters used in inference. The vertical line in each

of the diagonal is the estimated mean of the posterior. Summary statistics for the marginal

distributions are given in Table 3.3.
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Figure 3.7: Plots for observed discharge, depth to water table, evapotranspiration (ET), and

soilmoisture content (θ) compared to surrogate calculations using the samples of posteriors

from Figure 3.6, which are summarized in Table 3.3. The dashed red line corresponds to the

median training simulation values as in Figure 3.3, while the solid red line represents the

median values of the surrogate simulations with the posterior parameter samples. Please

refer to Figure 3.3 for a description of other presentation details.
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Figure 3.8: Plots for the four output groups of observed discharge, depth to water table,

evapotranspiration (ET), and soil moisture content (θ) compared to surrogate calculations

using posterior parameter values that were inferred for each individual output group. This

path of inference generates four separate posterior PDFs for X , which are shown at the

bottom of the figure. The dashed red line corresponds to the median training simulation

values as in Figure 3.3, while the solid red line is the median value of the surrogate

simulations with the posterior parameter samples. For each output group, the gray regions

represent the 95% uncertainty bound from propagating the parameter posteriors for that

output group (Q, WT, ET, SM) through the respective surrogates.
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Figure 3.9: Posterior QoIs (left) and their sensitivities (right) corresponding the the QoIs

not included in inference in Table 3.2, due to insufficiency/lack of observational data. The

surrogates for these QoIs were constructed using the same 100 training and 10 validation

simulations as in Figure 3.3. Inplots (c) and (e), the grayed region represents the 5%and95%

quantiles of surrogate simulations evaluated using the posterior parameter distributions in

Figure 3.8. See Figure 3.5b for details on the representation of sensitivities in (b), (d), and

(f).
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3.4 Discussion

Despite recent advances in computational power, simulation times for complex

hydrologic models, even for low-order catchments can be significant. When a large

number of uncertain parameters or, generally, uncertain model inputs are used,

thousands of model simulations may be required to perform robust uncertainty,

parameter inference, and sensitivity assessment. Even reduced-order simulation

approaches recently introduced to environment and earth-systemmodeling would

be prone to computational issues. This study addresses this challenge and adopts

an efficient methodology to enable uncertainty quantification and stochastic sim-

ulation with deterministic, process-based hydrologic models of higher complex-

ity. This work applies recent developments that combine reduced-order modeling

based on polynomial chaos expansions with Bayesian compressive sensing to con-

struct computationally inexpensive surrogate formulations of the complex hydro-

logic model, while reducing the number of required simulations. The surrogate

representation enables Bayesian inversion and calibration of uncertain model vari-

ables for any model output that can be compared to observable data, even when

these are sporadic and have time-varying accuracy. Furthermore, surrogate for-

mulation can be used to propagate uncertainty through a hydrologic model for

any of the model’s outputs, enabling one to estimate uncertainties of QoIs that are

difficult or too costly to measure.

This approach is flexible, but relies on a prior identification of input variables of

high impact before modeling. This means that although one can change the QoIs

being investigated, one cannot change the parameters that are treated as uncertain

without having to rerun training and validation simulations. Given the reduction

in computational due to the use of the Bayesian compressive sensing methodology,

it is possible to treat dozens of model parameters as uncertain (Sargsyan et al.

2014; Ricciuto et al. 2018), essentially assuming no a priori knowledge of impactful

variables. However, in most cases in hydrology, it is beneficial to constrain the

number of uncertain parameters using expert knowledge about the governing

processes controlling QoIs and the respective variables impacting these processes.

Alternatively, one can do an initial screening of model parameters with Bayesian

compressive sensing. This will not produce an accurate surrogate, but will yield

accurate sensitivities, so the parameter space can be reduced and the procedure
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repeated to gain a more accurate surrogate.

Given the scale and complexity of environmental systems, one must include

uncertainty if one hopes to capture or discover complex hydrologic behavior. Un-

certainties are abound within the field of hydrology, e.g., a measurement of a

basin-aggregated metric such as streamflow (Figure 3.3) is subject to aleatory un-

certainty within the catchment. Or there may be interactions with model input

variables, meaning that to best capture epistemic uncertainty about variables, de-

scription through probability densities (Figure 3.6) is preferred over scalar, deter-

ministic values. In either case, the presented approach offers a novel, sufficiently

general way forward to address uncertainties in hydrology, reducing or defining

the uncertainties of model inputs.

Generally, the framework outlined in this study provides flexibility to address

computationally expensive problems in hydrology (e.g. high-resolution modeling

of soil moisture (Krasnosel’skii and Pokrovskii 1989; Ivanov et al. 2010), repre-

sentation of macroporosity (Beven and Germann 1982, e.g.,), etc.) by enabling

high-fidelity simulations under uncertainty. In the cases where these simulations

are highly sensitive to input parameters and forcings, the presented approach can

be expanded to any process that can be represented through a set of parameters

X . For example, spatial model input can be viewed as a stochastic field that can be

represented with a finite number of parameters using a Karhunen-Loéve expan-

sion (Karhunen 1946; Zheng and Dai 2017). Following this philosophy, uncertain

soil moisture, precipitation, or water table fields could be propagated through a

hydrologic model.

Relevant software tools have been developed in recent years, so that the hy-

drologist need not also be an expert in uncertainty quantification to apply these

methodological approaches. Those that are freely available for research use and

actively developed include theUncertaintyQuantification Toolkit (UQTk) (Debuss-

chere et al. 2017, version 3.0.4 used in this study), UQLab (Marelli and Sudret 2014),

and the MIT Uncertainty Quantification Library (Parno et al. 2014).
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CHAPTER 4

Inference of landscape controls on
distribution of vegetation traits

4.1 Introduction

The Amazon rainforest exhibits large effects on global water, carbon and energy

cycles, as shown in numerous previous studies (e.g., Salati and Vose 1984; Pan

et al. 2011; Davidson et al. 2012). In turn, the production and function of global

forests are related to the spatial and temporal variability in rainfall (Fatichi et al.

2012), and approximately half of the Amazon basin experiences a drought season

(Marengo and Espinoza 2016). This inter-annual variability is also associated with

prolonged droughts, often coinciding with the El Niño Southern Oscillation events

and warm tropical Atlantic surface temperatures (Trenberth 2011). Furthermore,

the frequency and severity of drought may not be stationary, with some stud-

ies showing reduced precipitation in the basin in the 21st century (Marengo and

Espinoza 2016; Phillips et al. 2009).

These periods of limited water availability also coincide with increased water

and carbon fluxes, and an increase in photosynthetic activity (Saleska et al. 2003;

Huete et al. 2006; Santos et al. 2018). Multiple possible explanations for this behav-

ior exist, one being that in periods of high rainfall the forest is light-limited from

cloud cover, and therefore the reduction of cover during dry periods allow for an

increase in transpiration flux (Hutyra et al. 2007). However, previous modeling

efforts did not discover this pattern, with decreased transpiration fluxes during

the dry season. Other hypotheses to explain drought tolerance include: (i) water

availability from high water tables (Miguez-Macho and Fan 2012a), (ii) hydraulic

redistribution within the root zone, where the root system of the tree transports
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water vertically in the root zone to respond to water potential gradients (Baker

et al. 2008), and (iii) very deep root systems capable of root water uptake during

dry seasons (Baker et al. 2008).

There is partial and often inconclusive support for each of these hypothesis. In

the first instance, some 60-70%of theAmazon basinmay have awater table depth of

less than 5 [m] (Miguez-Macho and Fan 2012a), providing water at shallow rooting

depths. However, this still does not account for the remainder of the upland areas

of the Amazon basin, which have much deeper water table depths. Secondly, there

is mixed support for the hypothesis of hydraulic redistribution. Though evidence

exists for hydraulic distribution in three tree species in the Amazon rainforest

(Tapajós National Forest in Brazil, Oliveira et al. 2005), this study also showed

a reversal of sap flow, which appears orthogonal to the evolutionary strategy to

increase photosynthetic function (Eagleson 2005). Other studies have postulated

that hydraulic redistribution is not significant enough to adequately explain soil

water dynamics (Romero-Saltos et al. 2005; Markewitz et al. 2010). Lastly, there is

clear evidence of “deep” roots, where deep is defined as a rooting depth of greater

than three (3) [m]. However, the functionality of these roots remain unclear, as

there are questions around how the hydraulic functionality of the root and xylem1

system is able to transport water from deep roots to the top of the canopy. Further

studies have estimated that a small amount of the rootingmass lay at depths greater

than 4 [m], but the ability to infer global characteristics of rooting behavior from

these studies is highly uncertain (Fang et al. 2017; Fan et al. 2017; Brum et al. 2018;

Ivanov et al. 2012).

Related to rooting depth, (Ivanov et al. 2012; Brum et al. 2018) investigated

the role of possible rooting depth niches between canopy layers in explaining the

photosynthetic behaviorduringdryperiods and found that sucha separation across

rooting depthmay provide an adaptive strategy for changingwater demands in dry

seasons. Further evidence leading to the plausibility of varying root depths come

from the rainfall exclusion experiments in (Nepstad et al. 2002), which showed

asymmetric response from overstory and understory trees. The overstory trees

were found to be the most vulnerable, potentially due to their higher exposure to

radiation and reliance on deeper soil water reservoir that was depleted during the

1Xylem is the conductive tissue in plants that is the pathway for water from the root to the leaf

of the plant.
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exclusion experiment. In addition to rooting depth, there has been linkages to the

role of other plant traits to drought resilience inAmazonia, including root hydraulic

redistribution (Oliveira et al. 2005), xylem embolism resistance (Anderegg et al.

2016; Meinzer et al. 2009), and community symbiosis (Silvertown et al. 2015). Any,

or likely some mixture of these traits may have explanatory value on the resilience

of Amazonian forests to drought.

Examining the combination of these traits in the field is a costly endeavor in both

time and money. To further experimental investigation, numerical modeling has

emerged as a way to investigate these traits in concert with field experiments (e.g.,

Ivanov et al. 2012; Fan et al. 2017; Fang et al. 2017). The simulation-based studies

to investigate plant behavior rely onmechanistic representation of hydrologic, cou-

pled water/energy, and vegetation processes. The computational expense of these

complex, coupled hydrology-vegetation models limits the amount of uncertainty

one can evaluate related to the multi-dimensional space of the model’s parameters

and inputs.

This studymakes a further effort to investigate the ecohydrology of the Amazon

rainforest, expanding on thework of root niche separation in (Ivanov et al. 2012) and

emerging evidence of vegetation trait adjustment in relation to a position within

a canopy Brum et al. 2018. The study further hypothesizes that the frequency of

water-logging conditions should also play a role in landscape distribution of traits.

By addressing landscape effects on a broad set of plant traits defining above-ground

carbon uptake and below-ground acquisition of soil water, this research explores

further how the hydrologic regime shapes ecosystem structure and function.

By employing data inference and uncertainty quantification (UQ), the perfor-

mance of vegetation is investigated. Specifically, we hypothesize that plants in

these environments evolved to maximize reproductive performance at the least possible
hydraulic effort. The reasoning behind this is that plants evolved targeting to invest

the least amount of resources possible towards constructing mechanical and bio-

chemical strategies to cope with periodic droughts and water-logging conditions.

Given constraints on carbon uptake when the root zone is in anoxic (i.e., saturated)

and drought conditions, this research seeks to identify traits and performance met-

rics that can demonstrate whether vegetation performs well in both dry and wet

conditions. To do this, we need to investigate the below-ground hydrologic con-

trols on root water uptake, and assess what types of constraints apply to either
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vegetation traits or soil hydrologic behavior.

The process to perform this investigation is as follows: (1) construct surrogates

for the computationally expensive tRIBS-VEGGIE for observedquantities of interest

to infer parameter values that accurately represent hydrologic and vegetative func-

tion in the case study domain; (2) Use these inferred parameter values to propagate

uncertainty through both QoIs used for inference as well as unobservable QoIs.

(3) Construct a performance metric that balances the maximization of vegetation

productivity and the cost of maintaining its performance in drought conditions.

(4) Investigate plant functional characteristics using sensitivity analysis from the
construction of surrogates and relationships with other QoIs across both time and

transect location.

In the following sections we introduce the study domain and the framework for

uncertainty quantification, providing reasoning behind the parameters treated as

uncertain in the study. A performance metric for vegetative function is introduced

in Section 4.2.6. Construction of surrogate models and the results of parametric

inference are reported, and the performance metric is used to interpret the role of

plant functional traits at differing locations in the study domain.

4.2 Methods and study design

4.2.1 Site description

The data are from the Asu experimental watershed near Manaus, Brazil in the

Cuieiras Biological Reserve, home to the ZF2 K34 flux tower (-2.61, -60.21) (Araújo

et al. 2002), which was installed in 1999. This location will be referred to as

“ZF2” in this study. The site is part of the Large-Scale Biosphere-Atmosphere

(LBA) Experiment in Amazonia, managed by the National Institute of Amazonian

Research (INPA), and is also one of the sites chosen for the Department of Energy’s

Next-Generation Ecosystem Experiments—Tropics (NGEE-Tropics) program and

has been used in a number of previous studies; across these two projects the site has

been featured in a number of previous studies (e.g., Cuartas et al. 2007; Tomasella

et al. 2008; Cuartas et al. 2012; Broedel et al. 2017; Fang et al. 2017; Dwelle et

al. 2018). The site has an average annual temperature and rainfall of 26
◦
C and

approximately 2,400 [mm], respectively, with forcing for the study period given in
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Figure 4.1. The site exhibits awet season fromNovember–May anddry season from

June–October, (Cuartas et al. 2007; Cuartas et al. 2012; Nobre et al. 2011). Some

months in the simulation period contain a cumulativewater deficit (CWD), defined

as amonthwith cumulative evapotranspiration greater than the accumulated daily

precipitation (Eq. (3.4)). These months are highlighted in Figure 4.1.
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Figure 4.1: Plot of forcing climate during simulation. Accumulated monthly precipitation

and average monthly temperature. The shadedmonths indicate months with a cumulative

water deficit.

Selection of computational transect

The domain is represented using the 3 arc-second spacing from the SRTM digital

elevation model (Jarvis et al. 2008). To study the effect of rooting and vegetation

function to the spatial and temporal availability of water in the watershed, a tran-

sect was selected that connects the upper and lower sections of the watershed. The

rationale for such a selection of the study domain is that one expects similar hydro-

logic behavior for many areas of the watershed. Choosing a transect allows us to

avoid the unnecessary computational burden for areas that have similar hydrologic

dynamics. This transect was chosen to start at the ZF2 flux tower, and follow a flow

path using the D8 flow routing algorithm (O’Callaghan and Mark 1984).

The resultant transect terminates at the main stream channel in the watershed

and contains three different soil types, with a total of ten square Voronoi cells in the

horizontal dimension, each measuring 8,100 [m2]. The elevations, soil types, and

initial water table position are provided in Figure 4.2. The subsurface domain of

each of these elements is represented with a 40-meter soil layer with 201 regularly-
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resolved mesh layers, providing 200 subsurface elements of depth 200 [mm]. The

horizontal and vertical discretization provides a total of 2,000 computational nodes

in the domain, resulting in two-dimensional flow in the depth dimension and along

the length of the transect.

10

20

30

0270540810

Distance from stream node [m]

H
ei
gh

t
ab

ov
e

st
re
a
m

n
o
d
e
[m

] Waterlogged

Ecotone

Plateau

Initial WT

Figure 4.2: Transect elevation, distance from stream, and soil type from Cuartas et al.

(2012).

4.2.2 Soil hydraulic properties

A description of the soil and vegetation of the site is provided in (Cuartas et al.

2012), and shows four different soil types in the watershed, with clay-rich soil in

the upland areas of the watershed and a clay-poor soil in the lowland regions.

These soils are classified by the landscape and terrain classes in (Cuartas et al. 2012;

Nobre et al. 2011), and are called (from lowest to highest elevation): waterlogged

(abbreviated in the following as W), ecotone (E), slope, and plateau (P). As a result

of the transect creation, three soil types: waterlogged, ecotone, and plateau, are

present in the transect. Additional on-site soil measurements are available for the

catchment up to a soil depth of 14.3 [m] (Broedel et al. 2017). The soil properties as

a result of model calibration (Cuartas et al. 2012) or on-site sampling (Broedel et al.

2017) provide a large range of possibly physical soil characteristics. These on-site

measurements are limited to areas around the flux tower, and uncertainties related

to the calibration of the soil hydraulic properties in (Cuartas et al. 2012) lead to

these properties being treated as uncertain in this study.

As in (Dwelle et al. 2018), the vanGenuchten-Mualem (vG) soil hydraulicmodel

(Genuchten 1980) is used. In order to have correct dependence of the soil hydraulic

model parameters within the uncertainty quantification framework, a pedotransfer
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function (PTF) for Brazilian soils (Tomasella et al. 2000) is used. This PTF relies

on the soil texture (percentages of sand, silt, and clay), organic carbon, moisture

equivalent, and bulk density to fit a second-order polynomial for the vG model

variables of α, n, θr , θs . At the catchment level, with one soil type representing

the entire domain, hydrologic outputs are generally most sensitive to the saturated

conductivity and anisotropy ratio of the soil (Dwelle et al. 2018). Combined with

the physical description of the soil in (Cuartas et al. 2012), only a few variables of

the PTF will be treated as uncertain. The soil hydraulic properties are provided

in Table 4.1. Given that at least one PTF variable is treated as uncertain for each

soil type in the domain, the resulting soil water retention (SWR) characteristics

will also be uncertain. As shown in Figure 4.3, each soil type has an envelope of

possible curves in the SWR plot. This is valuable as the relationship between soil

water content (θ) and soil matric potential (Ψ) plays a role in the energy required

for water uptake by plant roots (Hildebrandt et al. 2016).

Table 4.1: Soil hydraulic properties and variables for the pedotransfer function. Values

enclosed in brackets ([a , b]) represent the lower and upper bounds of the uncertain param-

eterization.

Parameter Waterlogged Ecotone Plateau

PTF variables
FC 5 25 85

FS [5, 50] [5, 50] 10

αcs 0.5 0.5 0.5

Me [0.1, 0.225] [0.1, 0.225] [0.1, 0.225]

ρb 1.2 1.2 1.2

Soil hydraulic parameters
ksat [35, 85] [22, 52] [3, 7]

ar [1E-3, 1E-2] [0.1, 1.5] [10, 50]

4.2.3 Selection of vegetation traits

A three “big-leaf” representation of the forest canopy is used to represent vertical

structure as in Ivanov et al. (2012). The three vegetation layers present are the “top-

canopy”, “mid-canopy”, and “bottom-canopy” trees. The different trees in each

layer are assumed to be sufficiently different in their physical and chemical prop-

erties that it is prudent to treat them separately, as characterizations are expressed
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Figure 4.3: Bounds of soil water retention (SWR) curves for uncertain parameterizations.

differently between plants exposed to full sun and those in shaded regions (Taiz

and Zeiger 2006). This delineation results in three different plant functional types.

For a thorough approach to uncertainty quantification, parameterizations for each

function type needs to be taken, and these are given in Table 4.2, where details of

how each parameter is used in tRIBS-VEGGIE is provided in (Ivanov et al. 2008a).

Many of the parameters are held constant, but those that are denoted as [a , b] in
Table 4.2 are treated as uncertain as uniform random variables Xi ∼ U[a , b]. These
parameters are defined as:

• dleaf [m] is the mean leaf size of the tree;

• χL is a parameter controlling the departure of leaf angles from random dis-

tribution where values of -1, 0, 1 represent vertical, random and horizontal

leaves, respectively;

• αleaf

Λ
and τleaf

Λ
[-] are the leaf reflectance and transmittance, respectively;

• αstem

Λ
and τstem

Λ
[-] are the stem reflectance and transmittance, respectively,

and the “VIS” and “NIR” identifiers represent the visible and near-infrared

spectral bands;

• Vmax,25 [µmol CO2 m
−2

s
−1] is the maximum catalytic capacity of Rubisco at

25
◦
C;

• K [-] is the time-mean PAR extinction coefficient parameterizing the decay of

nitrogen content in the canopy;

• m [-] is an empirical slope parameter for a linear model relating the net

assimilation rate and stomatal conductance;
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• b [µmol m
−2

s
−1] is the minimum stomatal conductance;

• ε3,4 [µmol CO2 µmol
−1

photons] is the intrinsic quantum efficiency of CO2

uptake;

• Ds ,0 [Pa] is the Leuning coefficient of stomatal sensitivity to humidity deficit;

• Kc [mm hour
−1] is the canopy water drainage rate coefficient;

• gc [mm
−1] is the exponential decay parameter of the canopy water drainage

rate;

• Ψ∗ [MPa] is the soil water potential at which stomatal closure begins;

• Ψw
[MPa] is the soil water potential at which plant wilting begins;

• Ψ∗
H2O

[MPa] is the soil water potential at which stomatal closure begins due

to waterlogged conditions;

• Ψw
H2O

[MPa] is the soil water potential at which plant wilting begins due to

being waterlogged; and

• Rd [-] is the decay parameter for the exponential function of root fraction as a

function of depth.

The rooting depth is defined by an exponential root distribution with respect to

depth, controlled by the coefficient of decay Rd and the fraction of root biomass R f

that defines the rooting depth. The rooting depth is then defined as

Zr [m] �
− ln(1 − R f )

Rd
(4.1)

where R f � 0.95 and the ranges for Rd for each plant functional type are in Table

4.2

Stomatal conductance as a function of soil water content is regulated through

the use of a soil moisture availability factor βT ∈ [0, 1], following the relationship

of (Feddes et al. 2001):

βT �

Nroots∑
i

βT,i(zi)ri(zi), (4.2)

βT,i � max

[
0,min

(
1,
θi(zi) − θw

θ∗ − θw ,
θi(zi) − θw

H2O

θ∗
H2O
− θw

H2O

)]
, (4.3)

where θi(zi) [m3
m
−3] is the soil moisture content at the mesh node depth zi ,

and the soil moisture contents θw , θ∗, θ∗H2O, θw
H2O
[m3

m
−3] correspond to the wa-
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ter potentials Ψ∗,Ψw ,Ψ∗
H2O

,Ψw
H2O
[MPa], respectively. Stomatal closure begins

at the water potentials Ψ∗,Ψ∗
H2O

due to being stressed and waterlogged, respec-

tively. Similarly, plant wilting begins at the water potentialsΨw ,Ψw
H2O

due to being

stressed and waterlogged, respectively. These potentials are treated as uncertain,

and the range of their values is provided in Table 4.2 and Figure 4.4a. Note that the

relationship is linear with respect to water potentials, but the relationship to soil

moisture contents depends on realized soil water retention parameters for each soil

type (Figure 4.3) following the van Genuchten model (Genuchten 1980). Similarly,

the values of βT,i(zi) will depend on the root profile for each plant functional type

at depth zi .

This factor accounts for variability in the root profile using weighting by the

fraction of root biomass ri(zi). A decrease in βT indicates a control of soil on

the transpiration flux. Within the model, βT,i(zi) is computed at hourly intervals

for each plant functional type, which are then used to constrain the maximum

catalytic capacity of Rubisco (Ivanov et al. 2008a). This approach is a simplified

representation of root water uptake, where studies have shown that plants may

be able to change their areas of active root water uptake when other parts of the

root system are stressed (Sharp and Davies 1985; Garrigues et al. 2006). This

compensation behavior cannot be effectively modeled by the Feddes approach of

Eq. (4.3).

The leaf area index [m2
m
−2] (LAI) for each layer was determined by averaging

LAI derived from LiDAR measurements in a similar forest in the Adolfo Ducke

Reserve just north ofManaus, Brazil (Stark et al. 2012), approximately 50 [km] away

from the ZF2 study area. These values for LAI were then used to generate seasonal

variability of LAI, which was applied to each layer giving the pattern for LAI in

Figure 4.4b. The pattern of LAI for each layer are the same and remain constant

over the simulation period, but qualitatively agree with the seasonal variation

of LAI in other studies (Stark et al. 2012; Poulter et al. 2009; Wu et al. 2016).

Importantly, this does not allow for leaf growth/death responses to excessmoisture

or drought conditions, however the bulk measure of LAI is well represented using

this approach (Stark et al. 2012).

88



Table 4.2: Vegetation biophysical, photosynthesis, interception, and water uptake param-

eters. Values enclosed in brackets ([a , b]) represent the lower and upper bounds of the

uncertain parameterization.

Parameter Top-Canopy Mid-Canopy Bottom-Canopy

Biophysical parameters
dleaf [m] 0.05 0.05 0.05

χL [—] [-0.4, 0.6] [-0.4, 0.6] [-0.4, 0.6]

αleaf

Λ
-VIS [—] 0.11 0.05 0.02

αleaf

Λ
-NIR [—] 0.5 0.5 0.5

αstem

Λ
-VIS [—] 0.2 0.2 0.2

αstem

Λ
-NIR [—] 0.45 0.45 0.45

τleaf

Λ
-VIS [—] 0.07 0.02 0.01

τleaf

Λ
-NIR [—] 0.33 0.32 0.32

τstem

Λ
-VIS [—] 1E-4 1E-4 1E-4

τstem

Λ
-NIR [—] 1E-4 1E-4 1E-4

Photosynthesis parameters
Vmax,25 [µmol CO2 m

−2
s
−1] [7.25, 76.25] [7.25, 76.25] [7.25, 76.25]

K [—] 0.35 0.35 0.35

m [—] [6, 12] [6, 12] [6, 12]

b [µmol m
−2

s
−1] 1E4 1E4 1E4

ε3,4 [µmol CO2 µmol
−1

photons] 0.055 0.06 0.065

Ds ,0 [Pa] [1E3, 4E3] [1E3, 4E3] [1E3, 4E3]

Interception parameters
Kc [mm hour

−1] 0.15 0.15 0.15

gc [mm
−1] 3.7 3.7 3.7

Water uptake parameters
Ψ∗ [MPa] [-0.6, -0.4] [-0.6, -0.4] [-0.6, -0.4]

Ψw
[MPa] [-3, -2] [-3, -2] [-3, -2]

Ψ∗
H2O

[MPa] [-6E-5, -4E-5] [-6E-5, -4E-5] [-6E-5, -4E-5]

Ψw
H2O

[MPa] [-1.2E-5, -8E-6] [-1.2E-5, -8E-6] [-1.2E-5, -8E-6]

Rd [—] [0.08, 0.4] [0.4, 2] [2, 14]

Zr [m] [7.49, 37.4] [1.5, 7.49] [0.21, 1.5]

4.2.4 Uncertainty quantification framework

This study employs an uncertainty quantification framework to allow input param-

eters to the hydrologic-vegetation model to be uncertain, i.e., uncertain variables in

Tables 4.1 and 4.2. These uncertainties are accounted from using polynomial chaos

machinery (Le Maître and Knio 2010) combined with Bayesian compressive sens-

ing (Sargsyan et al. 2014). Details of the framework are left to (Dwelle et al. 2018),
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Figure 4.4: Figures for describing vegetation function. The behavior of the soil moisture

availability factor regulating stomatal conductance is given in (a), showing the window

of possible realizations for all vegetation types given the uncertain priors. The annual-

varying LAI for each canopy layer is given in (b), and remains constant for each year in

model simulations, and the uncertain bounds of root biomass as a function of depth for

each canopy layer is given in (c, shaded areas in gray), with the cumulative root biomass

also provided in the center panel (dotted area).

Chapter 2, and references therein; material introduced in this section is included

for notation and interpretation of results.

Consider the modelM used in this study, tRIBS-VEGGIE, has inputs x and an

output quantity of interest (QoI) ŷ. With respect to the framework, the model is a

“black box” function that maps uncertain inputs to uncertain output:

ŷ �M(x). (4.4)
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In the case where the inputs x are uncertain, they can be represented by a random

vector X ∼ π(x), where X � (X1,X2, . . . ,XM) and π(x) is a vector of marginal

probability density functions describing the variability in each of the M uncertain

variables inX , which are known and defined prior to modeling. By propagating

the uncertain inputs through themodel, one can obtain the output QoI as a random

variable Y �M(X).
Multiple model evaluations need to be performed in order to get a density

for Y. This study employs the Bayesian compressive sensing (BCS) approach to

calculating the PCE coefficients c (Sargsyan et al. 2014). The benefit of using the BCS

approach is tominimize the “curse of dimensionality” associatedwith propagating

uncertainties froma large number of variables (Caflisch 1998; Davis andRabinowitz

2007). For example, with M � 38 uncertain model parameters and a p � 4 order

polynomial, from Equation (2.14) there are 111,930 basis terms in Equation (2.13).

To solve analytically (e.g., with quadrature methods), one would need to evaluate

M 111,930 times. Consider simulation times of M to be 1 second, 1 minute, and 1

hour; these would require total wall clock times of 1.3 days, 78 days, and 12.7 years,

respectively. Even the simplified domain used in this study requires simulation

times on the order of hours, and without the use of BCS the investigation of a large

number of uncertain model parameters would not be possible.

Once constructed, the surrogate model in Equation (2.13) can be used for model

calibration through inference from observational data at the study location. The

parameter priors in this study are uniform and given in Tables 4.1 and 4.2, and

the posteriors can be calculated conditional on observational data as in Eq. (2.50).

where σ2
is also introduced as an additional hyper parameter. To infer values for

uncertain model parameters, the posterior from Eq. (2.50) needs to be sampled.

Such methods as the Metropolis-Hastings MCMC or another similar sampling

method (MacKay 1998) can be used. One can sample the posterior directly from

simulation result of M, but it is computationally expensive, and it is therefore

expeditious to replace the deterministicM in the posterior with its PCE surrogate

MPC
.
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4.2.5 Selection of quantities of interest

Quantities of interest were selected such that they coincided with observable data

from ZF2 flux tower at the highest elevation of the transect. Data that were

available from the ZF2 flux tower included gross primary productivity (GPP)

[gC m
−2

day
−1], evapotranspiration (ET) [mm day

−1], and soil water content in

the top fivemeters (θ5m) [mm
3

mm
−3]. Each of these observables are aggregated to

the daily time scale, and the daily value is aggregated to a monthly average if there

are at least ten daily values available to aggregate. Soil water content is observed

at the flux tower in a five-meter deep soil pit, with measurements reported at one

meter increments, and therefore θ5m is calculated by taking the mean of these val-

ues. Given that the footprint of the K34 flux tower is estimated to be approximately

2-3 [km
2
] (Araújo et al. 2002), values for the GPP and ET quantities of interest are

averaged over all 10 computational nodes.

The time resolution of data is not regular across the simulation period of 2000-

2005, with a significant number of months not having a record. The resulting QoIs

are shown in Figure 4.6. These are the QoIs used for parameter inference in this

study, representing plant function (GPP and ET) as well as hydrologic processes in

the vadose zone (θ5m).

4.2.6 Construction of performance QoI

In order to investigate hydrologic controls on plant function, a new performance

metric was established. The metric was selected from the perspective of a cost-

benefit analysis, where the allocation of carbon to the root system must result

in a positive carbon growth over the life of the tree, e.g., the ability of a tree to

respond positively in drought conditions, increasing carbon uptake (Huete et al.

2006; Saleska et al. 2003; Ivanov et al. 2012). Such a metric will follow the form of

F � Benefit − Cost. (4.5)

The “Benefit” represents plant ’biochemical performance’—a variable thatmea-

sures the plant’s evolutionary objective to increase its reproductive capacity. Gross

Primary Production (GPP) is used in this study, as it is a well-studied and un-

derstood metric for forest photosynthetic response with many studies performed
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in the Amazon rainforest (Saleska et al. 2003; Graham et al. 2003; Poulter et al.

2009; Brando et al. 2010), consistent with the Darwinian approach in ecohydrology

developed by Eagleson (2005), while “Cost” is to be determined. We only consider

“Cost” to be a function of hydrologic conditions, aiming to quantify the cost related

to protection against drought such as design of water transport tissues in xylem

that can sustain low water potentials without embolism. The goal of this metric

is to allow a minimum ’hydraulic effort’ on the part of the plant, given hydrologic

controls of environment in which this plant is located. Therefore the metric should

contain information about both plant function and hydrologic states.

However, there is not a well-defined metric to represent hydrologic control on

plant function. As a proxy for this type of behavior, we propose the use of exported

energy from root water uptake (Hildebrandt et al. 2016), which is defined as the

product of the potential and flow across the root collar of the plant:

JE,exp � gρwψX Jwu, (4.6)

ψX [m] is the xylem water potential, Jwu [m3
s
−1] is the total root water uptake,

and ρw , g are the density of water and gravitational acceleration, respectively. For

simplicity, it is assumed that the total root water uptake is equal to the transpiration

flux for each plant functional type, which is obtainable as model output from

tRIBS-VEGGIE. Similarly, the xylem potential needs to be calculated for each plant

functional type, and is given by:

ψX �
Jwu +

∑N
i�1

(
ψM,iKr,i

)∑N
i�1

Kr,i
, (4.7)

whereKr,i [m2
s
−1] is the effective radial conductivity of roots in soil compartment i,

andψM,i [m] is thewater potential in each soil compartment, where N is the number

of soil compartments considered. The soil compartments are the computational

elements within the root zone for each plant functional type, which is a function of

the uncertain rooting depth exponential parameter Rd . Therefore, the summation

carried out in Equation (4.7) will carry with it propagated uncertainty.

The effective radial conductivity, Kr,i is not explicitly computed in tRIBS-VEGGIE,

so it is estimated using available information. Kr,i can be expressed as the ease of

flow of soil water into the root xylem, and is traditionally normalized by root sur-
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face area, i.e., Kr,i � LrAr . Here, Lr has units of [m3
s
−1

m
−2

m
−1

head], and Ar is

the root area. Lr is an intrinsic ecophysiological value of a root or root systems, with

values O(10
−6) [m3

s
−1

m
−2

m
−1

head]. The extrinsic value of root area still needs

to be determined. Given a dry root biomass density [g m
−3], one can determine the

root length density (RLD) [m m
−3] by using the measure of length of root grown

per gram carbon invested, called specific root length [m g
−1]. One can then get root

area from the product of root length density [m m
−3], root diameter (droot) [m], and

volume of soil (Vs) [m3]. Therefore, one can write the effective radial conductivity

as

Kr,i � LrRLDidrootVs , (4.8)

and Equation (4.7) can be rewritten as

ψX �
Jwu + Lr drootVs

∑n
i�1

(
ψM,iRLDi

)
Lr drootVs

∑N
i�1

RLDi
, (4.9)

where Vs is a constant due to the subsurface mesh having a regular discretization,

otherwise it would need to be included in the summation. The assumptions for

Equation (4.9) include: there is a single root type throughout the entire soil domain;

this root type has a constant diameter and specific root length, and that the root

biomass density is calculated from the fraction of roots in the subsurface as

Rb(z) �
Rfrac(z)
∆z

Rb ,total
, (4.10)

where Rb(z) [-] is the fraction of roots in the system present in the soil node

at depth z, and Rb ,total
[g m

−2] is the root biomass averaged over depth. Given

Equations (4.9) and (4.10), the exported energy fromEquation (4.6) canbe calculated

from available information from tRIBS-VEGGIE.

To aid in comparison of performance across the transect and time, values of

GPP and JE,exp are scaled from [0, 1], such that for a variable γ the scaling is

(γ − γmin)/(γmax − γmin), where γ can be either GPP or JE,exp. The minimum and

maximum are computed over all simulations for each month of simulation, pixel,

and PFT. This allows for a comparison between parameterizations, leading to 2,160

quantities of interest (72months× 10 pixels× 3 PFTs). To compare the performance

of plant function and a hydrologic control on this function, the difference between

94



the two metrics are taken and the performance quantity of interest becomes:

F � �GPP −�JE,exp, (4.11)

where the tilde represents the scaled version of the quantity in Eq. (4.5). Generally,

one could classify four regions of performance based on the saturation of the soil

(Figure 4.5); when GPP is relatively high, one could have performance in wetter

(FHW) or drier (FHD) conditions. Similarly, one can have lower performance in

wetter or drier conditions, FLW and FLD, respectively. It is reasonable to assume

that the best performance will occur in the region of FHW, due to no limitation

of water for plant function. However, in the case with a reduction in stomatal

conductance in waterlogged conditions (Eq. (4.3), Fig. 4.4a), the upper right

quadrant of Fig. 4.5 may not be the optimal strategy. For example, this could be

the case where one has a deep root system in an area of shallow water table, where

much of the root biomass will be in a waterlogged area and therefore experience a

large overall reduction in stomatal conductance, thereby pushing the performance

into the FLW quadrant.

0 0.5 1
−1

0

1

FHWFHD

FLWFLD

Effective soil saturation

F

Figure 4.5: Qualitative classification of the performance metric from Equation (4.11) for

different effective soil saturation.

A valuable plant functional strategy would be the ability to operate in the FHD

quadrant, where vegetation production can be maintained in dry conditions with

relatively high xylem potentials. This would indicate a plants ability to succeed
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in drought-like conditions, like those experienced in Amazonia in 2005, 2010, and

2015 (Phillips et al. 2009; Lewis et al. 2011; Santos et al. 2018; Saatchi et al. 2013;

Brum et al. 2018).

4.3 Results

This section provides an overview of the construction of surrogates and inference of

model parameters using these surrogates. The data used to construct the surrogate

and perform inference is given in Figure 4.6. For inference, one wants training data

that overlaps observations, which is the case for the vast majority of the QoIs, with

a few exceptions in the ET time series.

4.3.1 Surrogate construction

Polynomial chaos surrogatesMPC
were constructed as in Equation (2.13) for the

observed monthly quantities in Figure 4.6. A total of 1,000 training, and 150

validation simulations were performed using a 96-core computational cluster. A

limit for wall clock time was set for each simulation, which resulted in a total of 983

completed training and 150 completed validation simulations. To test the accuracy

of the surrogate, a qualitative comparison can be made by comparing simulation

and surrogate values in Figure 4.7, with the relative error from Eq. (3.5) given

above each subplot. Due to the number of data points in these plots (983 training

simulations ×{61, 45, 46} QoIs � {59963, 44235, 45218} training data records for

{GPP, ET, SM} QoI groups, respectively), data are hexagonally binned to display

the distribution of fit. The plots show that the surrogate slightly overestimates

tRIBS-VEGGIE for GPP and ET, but has very good agreement (L
2,rel < 1E-2) for

θ5m.

These surrogates were constructed at a total polynomial order of p � 4, which

was chosen as it provided error agreement between training and validation simu-

lations. Other polynomial orders between 2-5 were tested, but these other orders

either increased the errors L2,rel in Figure 4.7, or decreased the training errors at the

expense of the validation errors, where the latter behavior indicates that overfitting

is occurring around the parameter space of the training samples.
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Figure 4.6: Observed quantities of interest and training simulations of tRIBS-VEGGIE.

Observed quantities are displayed as circles with the error bars representing the standard

deviation of the daily recorded data used to aggregate into a monthly mean. The shaded

regions represent the training simulations from tRIBS-VEGGIE that are used for construc-

tion of the surrogate and inference. The shading levels represent the 5/95, 10/90, and

25/75 percentiles of training simulations, and the red line in each plot is the median value

from training simulations.

Sensitivity of observed quantities

One of the benefits of using polynomial chaos based methods for surrogate model-

ing is that one obtains global sensitivity information “for free” from the calculation

of the polynomial coefficients in Equation (2.13). The main and joint sensitivities of

the 38 uncertain parameters, averaged over all QoIs, is provided in Figure 4.8. The

97



sparsity of the lower-diagonal indicates sparsity in the polynomial basis, allow-

ing for deployment of the Bayesian compressive sensing approach to calculating

PC coefficients. Although sparse, 17 parameters still have a averaged main effect

contribution > 10
−3
. One can see that a small subset of the parameters repre-

sent contributions to the variation in realized values for QoIs. More specifically,

the largest sensitivity contributions comes from soil hydraulic parameters, rooting

depths, and Vmax,25 for the top-canopy plant functional type.

4.3.2 Parametric inference

Givenacceptableperformanceof the surrogates constructed in Section 4.3.1, one can

perform inference using the surrogate. Inference was performed using the errors

associated with the standard deviations shown in Figure 4.6. Moment estimates

of the posterior distributions are provided in Tables 4.3 and 4.4 for the soil and

vegetation parameters, respectively. Given the limitations of plotting pairwise joint

distributions of the large number of parameters, plots of the marginal distributions

for the ten most impactful parameters, as measured by main effect sensitivity, are

provided in Figure 4.9.

These posteriors provide information about the bulk soil properties along the

transect, and provide insight into the differences between plant functional types

along a transect. The inferred hydraulic parameters coincide with the parameters

in Cuartas et al. (2012) where different soil types are present at differing depths.

The geometric means over the first three soil layers (to a depth of 4.8 [m]) in Cuartas

et al. (2012) for ks are 62.4, 19.2, 4.78 [mm hr
−1] and for ar are 8.3E-4, 0.62, and

36.1 [-] for the soil types of plateau, ecotone, and waterlogged, respectively. The

inferred MAP values given one soil layer in this work for ks are 41.6, 22.1, and

4.28 [mm hr
−1], and the inferred MAP values for ar are 1.24E-3, 0.87, and 44.0

[-] for the plateau, ecotone, and waterlogged soil types, respectively. Given the

differences across models and different simulations assumptions, e.g., multiple soil

layers in (Cuartas et al. 2012) vs. one soil layer in this study, there is good agreement

between soil parameters, with the added benefit that given the probabilistic nature

of this study, the full posterior can be used to propagate remaining uncertainty in

these parameter values through future simulations.

Less data are available in literature to compare the vegetation parameters to the
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ones inferred in this study. Indeed, this is often the case in ecohydrologic studies

as in situmeasurements are difficult to obtain for many vegetation parameters, and

therefore many modeling assumptions are made in order to carry out modeling

efforts. However, the values most impactful vegetation parameters — Vmax,25 —

are consistent with observations in the K34 watershed (Santos et al. 2018).

Inference provided a posterior chain that was sampled 3,200 times to compute

monthly average GPP, ET, and SM in Figure 4.10. Comparing the posterior sim-

ulations in this figure with the training simulations in Figure 4.6, one sees that

a much better fit of the data is using the calibrated model. This is aided to in a

large part by the range of training simulations available in Fig. 4.6, e.g., in the plot

for GPP training simulations overlapped with nearly every available observation.

The dashed red line in Fig. 4.10 is the median of the training simulations, and the

solid red line is the median of the posterior simulations. One important thing to

note is that the median of each plot is not the values for the median simulation,

but rather the median across all simulations. Where there is a large amount of

uncertainty in simulations, as in the training GPP simulations, the pattern of the

median value may not follow physical expectations. However, when uncertainty

in the simulations is constrained, one will begin to see the more physical behavior

of the model, (as in, e.g., SM Fig. 4.6 and all plots in Fig. 4.10).

4.3.3 Balance between productivity and hydraulic effort

Performance as a function of landscape position

As the performancemetric F is not observed along the transect—GPP ismeasured,

but root zone soil moisture is not—forward UQ was performed on the metric. For

this to take place, F was calculated as an aggregated output of tRIBS-VEGGIE from

the 983 training and 150 validation simulations described in 4.3.1, which was then

used to construct surrogates for F at each pixel, in each month, and for each of the

three PFTs. Once the surrogates were constructed, the posterior parameter values

from 4.3.2 were propagated through the surrogate model. The change in F along

the length of the transect is given in Figure 4.11, with the top three contributors to

fraction of variance of F plotted in the right column.

Given that the performance metric F is a balance between productivity and

hydraulic effort (Eq. (4.11)), the presence of Vmax,25 as the main contributor to vari-
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ation inF is expected for each plant functional type. Values forF are nearly always

in the “benefit” region (F > 0), which is indicative of the calibrated parameter val-

ues and model corresponding to a “wet” domain. However, the trend of F across

the transect depends on the PFT. For the top- and mid-canopy trees, F decreases

approaching the stream node, indicating that the deeper roots in the profile are

becomingwaterlogged and are limiting stomatal function and decreasing GPP. The

decrease in variability of F in the top-canopy (Fig. 4.11) are related to a correlation

between GPP and JE,exp, as the latter is a product of the tree’s transpiration and the

xylem potential. Therefore, when the deep root profile of the top canopy is very

saturated, both its GPP and water uptake will be very low, leading to a decrease in

the variability inF , which can be seen at distances less than 200 [m] from the stream

node. For the bottom-canopy trees, the inverse relationship is seen, performance

increases with proximity to the stream node. If one considers the shallow root

zone, the bottom-canopy trees will be much more susceptible to variations in near-

surface soil moisture, and the variability in near-surface soil moisture decreases

closer to the stream node, where a shallower water table will provide capillary rise

and a more consistent water supply for photosynthetic function.

The change of the performance metric with respect to mean water table depth

is given in Figure 4.12. The figure shows the relative contribution of G̃PP to F ,

meaning the difference between the two is the measure for hydraulic effort, JE,exp.

This hydraulic effort stays similar inmagnitude across themid- and bottom-canopy

layers, but appears inversely correlated towater table depth for the top-canopy. Two

possible explanations are: (1) as absolute GPP decreases, so does the hydraulic

effort. This coincides with the appearance of transpiration in the calculation of

hydraulic effort (Jwu in Eq. (4.6)). where the absolute values of GPP in the top

canopy are larger than those in the mid- and bottom-canopy. (2) The much deeper

roots in the top-canopy (see Table 4.4) mean that a much higher proportion of

the root zone is saturated in the lowland areas of the transect, which is therefore

reducing the hydraulic effort.

Sensitivity to soil and vegetation parameters

The interaction between the rooting depth and water table position exhibits a

control on the relative performance of the top-canopy vegetation as it is located in

regions of the transectwith shallowerwater table (Fig. 4.11), as judgedby sensitivity

102



of the rooting depth parameter on the performance metric F . As estimated in

Section 4.3.2, MAP rooting depths are 15.4, 2.3, and 0.63 [m] for the top, mid, and

bottom-canopy plant functional types, respectively. This hydraulic control is also

seen in the bottom-canopy tree type, but with an opposite interaction; changes in

the rooting depth of the bottom canopy are more sensitive in the lowland regions

of the transect. In this region, closer to the stream node, the rooting depth is much

closer to the water table and therefore is able to access this groundwater through

capillary rise or may become waterlogged due to root biomass being below the

water table. This sensitivity is not present in the mid-canopy tree type, with a

possible explanation that the distribution of root biomass (Fig. 4.4c) results in the

majority of roots being in non-waterlogged regions throughout the majority of the

transect and therefore does not have a large impact on performance.

Given the UQ framework, it is possible to investigate other possible controls

on vegetative function, as long as those controls can be described by one of the

parameters treated as uncertain. From Fig. 4.11, one sees that soil parameters also

impact the performance metric F . Of specific note is the anisotropy ratio in the

waterlogged region (labeled “W: ar” in the figure). This parameter controls the

flow of water out of the domain through the seepage face, and therefore the water

table depth at the last node in the transect as well as having a large impact on

the water table depths in its upslope neighbors, as witnessed by the sensitivity

experienced in distances < 250 [m] away from the stream node. For the mid-

canopy plant functional type Me , the moisture equivalent of the soil in the plateau

region impacts performance. This is likely due to Me being the only parameter

augmenting the soil water retention curve for the plateau soil type (Tab. 4.1, Fig.

4.3).

To separate the contribution of vegetation and soil parameterizations, Figure

4.13 provides the three vegetative and soil parameters with the highest sensitivity

contribution to F . As in Fig. 4.11, one sees that Vmax,25 is the dominant parameter

with respect to sensitivity for each plant functional type. The most sensitive pa-

rameters within each PFT generally come from that PFT (e.g., top-canopy traits are

impactful only to top-canopy F ), with the exception of the mid-canopy PFT having

a sensitivity contribution coming from χL from the top-canopy PFT. This indicates

that χL, the parameter controlling leaf orientation, has a significant effect on the

performance of vegetation in the mid-canopy layer. This can be explained by χL of
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the top-canopy controlling the amount of light available to the mid-canopy, show-

ing that there are interactions between functional types important for vegetative

performance. Additionally, Fig. 4.13 displays a transition from canopy-dominated

parameters (Vmax,25, m, χL) to root-dominated parameters (Rd ,Ψ
∗
) going from top-

to bottom-canopy functional types.

One can partition the soil parameters present in Fig. 4.12 into two classes, those

related to water infiltration and drought (Me , ks) and those related to drainage

(ar). In particular, the top-canopy PFT is sensitive to drought and infiltration in

the upland areas of the transect, with no real soil sensitivities present in the lower

areas of the transect. This can be explained by the fact that the rooting depths

(Table 4.4), when compared with the water table depths (Fig. 4.12), indicates that

a large portion of the root zone will be saturated in the ecotone and waterlogged

regions. With the mid- and bottom-canopy functional types, one see a dominance

of drainage-related sensitivities to F . In particular, the anisotropy ratio for the

waterlogged region controls the drainage from the transect, and therefore water

table depths, and impacts the waterlogged and ecotone regions of the transect.

Additionally, both of these PFTs show a preference towards the importance of

infiltration in the upland areas of the transect, which would then control the soil

moisture content impacting ψX and therefore F .
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(a) Training GPP: L2,rel � 0.0965
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Figure 4.7: Comparison of tRIBS-VEGGIE and constructed surrogate for PC order p � 4.

The surrogates are separated into six groups based on theQoI and simulation type (training

vs. validation). Due to the large number of simulations performed, values are hexagonally

binned, with the color scale representing the log
10

count of simulations in each bin. A

y � x line is added to each plot, such that points on this black line represent agreement

between tRIBS-VEGGIE and the constructed surrogate. The mean relative error (L2,rel) of

the surrogates for each group are given in the plot captions.
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Figure 4.8: Averaged sensitivity contributions to all QoIs. The diagonal of the plot contains

the main effect sensitivity contribution, and the lower diagonal plot is the joint sensitivity

contribution from interaction between parameters. Sensitivity values were averaged for all

sensitivity contributions greater than 10
−5
, with inclusion in the plot requiring an average

contribution of at least 10
−3
, with color scaling on the plot selected for visibility.
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Figure 4.9: Inferred parameter values for parameters with highest main contribution to

variance, column then row-wise. Therefore, the top-left plot is the parameter with the

largest main sensitivity, then the top right, bottom left, and bottom right have the 5th, 6th,

and 10th largest main sensitivity, respectively.
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Figure 4.10: Observed quantities of interest generated with constructed surrogates and

the posterior parameters. Presentation of quantities is the same as in Figure 4.6, except

the solid red line is the median of the simulations generated through posteriors, and the

dashed red line is the median of the training simulations from Figure 4.6.
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Ŝ
m
a
in

PFT0: Vmax,25

PFT0: Rd

PFT0: m

−0.2

0

0.2

0.4

F
:
M
id
-C

an
op

y

0

0.2

0.4

0.6

0.8

1

Ŝ
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Figure 4.11: Left: Uncertain values of the performance metric F for each plant functional

type given parametric uncertainty resulting from inference from Section 4.3.2. The gray

regions represent the 5/95 and 25/75 percentile uncertainty regions, and the red line is the

median. Each circle represents the center of a computational pixel. Right: Plots of main

sensitivity estimates along the transect for each plant functional type. The parameters with

the three largest maximumvalues of Ŝmain are provided in each plot, showing the transition

in the sensitivity of F to each of the three parameters along the transect. In each plot the

plateau, ecotone, and waterlogged regions of the transect are delineated by the vertical

dashed lines, and denoted as “P”, “E”, and “W”, respectively.
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Figure 4.12: Uncertain values of the performance metric F and scaled GPP (G̃PP) for each

plant functional type with respect to the mean water table depth at each computational

pixel. The representation of the performance metric is the same as in the left plots of Fig.

4.11. The water table depth decreases monotonically along the transect, so the ordering of

marks is the same as those in Fig. 4.11.

110



0

0.2

0.4

0.6

0.8

1

Ŝ
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respectively.
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4.4 Discussion

4.4.1 The principle of optimality

Throughout time, one expects a complex, dynamic system like a tropical rainforest

to evolve towards efficient performance. In terms of vegetation, this is related to the

biochemical cost of carbon investment into the canopy, roots, and water transport

tissues to aid in photosynthesis. Previous efforts to characterize this performance

focused on the maximization of a plant’s reproductive potential, and therefore its

investment into annual biomass through GPP (Eagleson 2005). However, tempo-

rally dynamic hydrologic controls across a watershed or catchment can impact

water available to plants, and there needs to be a trade off between a plant act-

ing to increase its reproductive potential (i.e., increase of biochemical productivity

through investment into the canopy) vs. carbon investment to increase its drought

resilience (i.e., costs associated with water transport tissues).

Given the deep water table present at the catchment of the studied transect, and

the relatively high amount of evapotranspiration occurring in the dry season (Fig.

4.9), there is sufficient evidence for deep roots within the transect (as shown in

other areas of the Amazon rainforest, e.g., Davidson et al. 2011; Ivanov et al. 2012).

The separation of root niches as a strategy for drought resilience in Amazonia

was first implemented into modeling in Ivanov et al. (2012), and in an attempt

to mimic this design, each plant functional type was assigned uncertain rooting

depths of depending on their canopy location (Table 4.2). Unlike the domain in

(Davidson et al. 2011; Ivanov et al. 2012), the K34 catchment transitions from a deep

(O(25) [m]) to shallow (O(1) [m]) water table from the upslope to valley regions,

exhibiting a larger variation on water table depth. One might expect to see this

variation translated tohydraulic controls onvegetative traits,whichprecipitated the

introduction of waterlogged photosynthetic restrictions through Ψw
H2O

and Ψ∗
H2O

into tRIBS-VEGGIE.Having these additional parameters enables the representation

of a decrease of vegetative function in both wet and dry conditions, where both are

possible within the K34 watershed and the study domain.

The investigation into the cost-benefit tradeoff displayed variation in perfor-

mance of plant function with its position in the landscape, related to the water

table depth and saturation in the root zone. This indicates that there is a transi-

tion in the contributions from vegetative to abiotic sources to plant performance,
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controlled by landscape position. Furthermore, certain landscape niches exhibit

the importance of interaction between vegetation types. These findings indicate

complex spatial relationships in vegetative performance controlled by the land-

scape, which also influences the degree of importance of interaction between plant

functional types. Additionally, the introduction of a cost-benefit analysis between

biochemical production and hydraulic resilience is required to further investigate

the tradeoffs of spatial and temporal variability of vegetative function in tropical

landscapes.

Given the complex nature of these tradeoffs, the resulting models representing

them also exhibit a high degree of complexity (Ivanov et al. 2012), which makes

accounting for uncertainties in model inputs difficult. This work shows that by

using a general uncertainty quantification approach, one can account for uncer-

tainty in a large number of model parameters, allowing for parametric inference

using heterogeneous data sources. As a result of this inference, one is able to

train the complex hydrologic model on the ecohydrologic dynamics of the system

in question, and then use the inferred parameters to investigate behavior derived

from model outputs. Given sufficient process-based representation available in

tRIBS-VEGGIE, this work was able to investigate the performance of three different

plant functional types along a tropical transect in response to their intrinsic vege-

tative traits as well as the controls exerted on vegetation through interaction with

hydrology.

4.4.2 Impacts of model representation and assumptions

The limits of the investigation into vegetative traits and function is limited to what

can be expressed through tRIBS-VEGGIE. For example, it has been proposed that

a “compensation” effect exists for root systems, where a plant will shift its water

uptake to deeper roots during periods of drought (Doussan et al. 2006; Lobet et al.

2014). This possible control cannot be addressed in this study as the factor βT

controlling root water uptake cannot account for such behavior, and therefore the

model lacks a mechanism or parameter to model this compensation effect. Other

limitations include the inability to look at potential effects from changes in any-

thing other than specified parameters. For instance, the response of the Amazon

rainforest to drought is gaining increasing interest with numerous studies devoted
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to the possible responses of the forest to prolonged periods of drought (Lewis et al.

2011; Davidson et al. 2011; Brando et al. 2010; Phillips et al. 2009; Nepstad et al.

1994; Santos et al. 2018; Brum et al. 2018; Chitra-Tarak et al. 2018; Ivanov et al. 2012).

Using the UQ methodology presented here and in Dwelle et al. (2018), one could

possibly investigate the ecohydrologic response to uncertain precipitation forcing

by representing atmospheric forcing as a stochastic process. These types of investi-

gation, incorporating uncertain forcings in addition to uncertain parameterizations

for ecohydrology, is an area yet to be presented in the research literature.

This study has addressed interactions between plant production, subsurface

moisture dynamics, and vegetative functional traits for a transect in an Amazonian

rainforest. Simplifying assumptions were made for modeling, but unlike previous

efforts in the research literature, great effort was undertaken to allow uncertainty

in model parameterizations. A total of 38 model parameters were allowed to be

uncertain, covering bulk soil properties, soil hydraulic properties, and photosyn-

thetic andwater uptake parameters for three different plant functional types across

three different soil types within the transect. These uncertainties were propagated

through the model to create an inexpensive computational surrogate that was then

used to infer parameter values based on available observational data covering veg-

etation function an subsurface soil moisture dynamics in the vadose zone.

A metric for vegetation performance, striking a cost-benefit balance between

vegetation production and biologic cost of water uptake was investigated using the

posterior parameter values. It was found that a large number (17) of the uncertain

parameters have anon-negligible impact on thevariationof theperformancemetric.

The large, impactful parameter set indicates that the trees can have a number of

strategies in order to meet the observed production. This study confirms that

rooting depth plays a large role in performance of vegetation for plant functional

types that have very deep or very shallow roots (Fig. 4.11), as well as the soil

exhibiting a control on the performance through availability of water via the water

table depth, or the value of water at the xylem potential through the shape of the

soil water retention curve (Fig. 4.3). These soil controls indicate that care needs to

be taken when choosing soil properties as they may have an impact on vegetative

function.
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CHAPTER 5

Research summary and future applications

5.1 Summary of research

Hydrologic systems are complex and interactions between different processes lead

to emergent phenomena. These phenomena can be small in scale, e.g., how a

specific treeutilizeswater near the saturated/unsaturated surface in the subsurface,

or they could be very large, e.g., how an entire forest finds symbiosis between

different tree types to maintain resilience during prolonged droughts. Regardless

of the phenomena being studied, understanding the variability of the phenomena

is informative for how the system may change in the future. This is especially

important for tropical forests and the Amazon as it has experienced prolonged

droughts this century and could experience many more (Pokhrel et al. 2014; Lewis

et al. 2011).

This dissertation presents my work to develop the experimental approach to

account for numerous uncertainties in hydrologic modeling in order to enable sci-

entific investigation. The uncertainty quantification framework provides a holistic,

robust approach to accounting for natural stochasticity in environmental systems.

It provides the benefit of an interpretable, probabilistic framework on which to

make inferences about the drivers of model behavior, as well as the sensitivities

of the model’s output to the uncertain inputs. Many approaches in hydrologic

uncertainty assessment focus on either the problem of uncertainty propagation or

inversion, and in the latter cases nearly all work is distributed around inferring

model inputs based on a single metric, streamflow (Q) (e.g., Beven 2006; Seibert

and Beven 2009). Previous efforts were often limited to this onemetric due to avail-

ability of data or computational resources required for inversion. However the UQ
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framework employed in this dissertation vastly reduces the computational burden

on the hydrologists and allows inference based on disparate, heterogeneous data

sources.

The strengths of the framework presented in Chapter 2 are as follows:

1. Provide a non-intrusive methodology for UQ. Do not need to make changes

to the underlying structure of the computational model; the UQ framework

treats model as a “black box.”

2. Preserves much of the physical structure of model outputs. Provided that

the surrogate is accurate (see, e.g., Section 3.3.1), it will conform to model

outputs, and not introduce statistical noise as a way to account for variability

in model outputs.

3. Provides global sensitivity information “for free” from computing the expan-

sion coefficients. This allows easy investigation into the sensitivity of model

outputs to inputs. Understanding changes with respect to changes in inputs

provides valuable insight into the physics behind a process and how well the

model is capturing those physics.

4. Is computationally inexpensive. The effective dimensionality reduction from

using Bayesian compressive sensing to compute the surrogate coefficients

allows exploration of larger uncertain parameter sets.

5. Enables large-scale inference. Due to the framework being computationally

efficient, it allows inference using large observational sets.

Using the benefits above, I applied the UQ framework to a sparsely gauged

Amazonianwatershedwith disparate data sources to performparametric inference

for uncertain soil properties in Chapter 3. The results demonstrate the flexibility

of the framework for hydrologic inference in watersheds with sparse, irregular

observations of varying accuracy. Significant computational savings imply that

problems of greater computational complexity and dimension can be addressed

using accurate, computationally inexpensive surrogates for complex hydrologic

models. This will ultimately yield probabilistic representation of model behavior,

robust parameter inference, and sensitivity analysis without the need for greater

investment in computational resources.

Chapter 4 displayed the strength of this framework applied to the assessing

the possible distribution of vegetation traits for efficient and evolutionary-sound

water uptake strategies. A set of 38 parameters were treated as uncertain across
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multiple soil types and plant functional types and their values were inferred using

observational data representing vegetation production and below-surfacemoisture

dynamics. It was determined that parametric inference was able to get disperse

training simulations to follow the behavior of the ecohydrologic processes in the

studydomain. Furthermore, these trainedparameterswere thenused to investigate

the cost-benefit relationship between plant production and carbon investment,

finding a difference of preferred strategies as dependent upon functional type and

location in the study domain.

5.1.1 Assumptions and limitations of the research

Any modeling work has its limitations or assumptions associated with it. Critical

assumptions affecting the framework and findings are given here.

• Extrapolation; this was not done in the presented work, but is still worth not-

ing. As part of the UQ framework, distributions for uncertain parameters are

defined and these uncertainties are propagated through themodel. Inference

can then be performed on these parameters. One should constrain the poste-

rior distributions from inference to be within the prior if one wishes to then

propagate the posterior back through the model, as was done in Chapters 3

and 4. Because the uncertainty propagation is performed using the surrogate

model that was trained using parameter samples from the prior distribution,

attempting to propagate values outside of the prior distribution could likely

lead to erroneous or non-physical results.

• Expression of parameter distributions. Any distribution that follows the

Askey scheme (Xiu and Karniadakis 2002) could be chosen as the prior dis-

tribution for an uncertain parameter, but it is much more common to choose

more “standard” distributions, like those in Table 2.1. Furthermore, many

software packages that can construct PC surrogates only account for a few

polynomial schemes, andmay not allowmixing of polynomial types as input,

so one needs to be aware of these limitations during experimental design.

• Independence of uncertain parameters. The framework assumes that param-

eters are independent, and this will not be the case when large number of

uncertain parameters are being chosen.

– If one has parameters that are not independent, and in fact have some
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relationship or constraint, methods exist to transform the two or more

variables into uncertain variables for use in theUQ framework (Sargsyan

et al. 2015; Torre et al. 2017). This approach seems valuable to the

hydrologic community.

• Process-based model limitations. Every hydrologic model will have its own

sets of assumptions and limitations. For discussions of the limitations of the

model used in this dissertation, tRIBS-VEGGIE, see (Ivanov 2006; Ivanov et

al. 2008a; Ivanov et al. 2008b; Kim et al. 2016). It is important to keep these

in mind when performing UQ because the adage “garbage in, garbage out”

applies to surrogate construction framework as well. Just as one needs verify

the performance of the surrogate against the model (e.g., Fig. 4.7), one needs

to be confident in the behavior of the model generating the training set in

order to perform UQ. The quantification of model structural error is an active

area of research in UQ (Sargsyan et al. 2015; Sargsyan et al. 2018) and its

application to hydrologic models is a future area of research.

5.2 Future studies

5.2.1 Forest assessment studies with uncertainty under climate
change

Agoal of future studies is investigation into the uncertainty of forest and hydrologic

response to uncertain climatalogic signals for an Amazonian watershed system. In

addition to the parametric uncertainties addressed in this research, sources of

uncertainties for such an assessment include:

• Uncertainty in climate projections. Climate projections are often derived from

an ensemble of global circulation models (GCMs), which exhibit a large de-

gree of uncertainty, both spatially and temporally, for values for precipitation.

Ways to account for the stochastic nature of forcing are needed, i.e., ways to

systematically treat the stochastic input in a formal UQ framework.

• Extreme precipitation events. GCMsdo not capture extreme eventswell, such

as prolonged periods of drought or excess precipitation. These events have

the capacity to affect forest structure.

• Dynamic vegetation in response to extremes. During these extreme events,
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the possibility of plant die-off needs to be accounted for to capture the feed-

back system, i.e., long-term changes of water, carbon, and energy balances

after an extreme event.

5.2.2 Accounting for input dependencies in UQ framework

Dependence among parameterizations is common in hydrologic models, but UQ

frameworks treat inputs as independent. Therefore, the ability to model the de-

pendence structure of multivariate inputs is needed for a proper accounting of

both prior and posterior dependencies of input parameters. Recent workmodeling

dependencies through copulas (Torre et al. 2017) provides one potential avenue to

addressing this issue. Accounting for this dependence can help address questions

of: how can correlations between uncertain climate forcings be accounted for in

a UQ framework (Section 5.2.1)? Does accounting for the dependence structure

reveal emergent relationships across scales of hydrologic processes? Are there

significant impacts in modeled outcomes when accounting for this structure vs.

assuming independence?

5.2.3 Uncertainty quantification for urban flooding

This section briefly introduces the problem of uncertainty quantification for flood-

ing and presents a small case study that has been used as a proof-of-concept work

for applying the model tRIBS-OFM (Kim et al. 2012) to flooding in urban areas.

Despite substantial advances in civil engineering in the modern era, urbanized

areas are vulnerable to extreme flooding, since urban drainage and stormwater

management infrastructure are generally designed for flows of 10-20 year return pe-

riods (Hoang and Fenner 2016). Flooding in densely populated areas has remained

the costliest natural hazard of all weather-related events in terms of fatalities and

material costs. For example, in the U.S., while there has been a gradual negative

trend in annual flood-related fatalities, their 30-year (1985–2014) average remains

high: 81-85 people per year. Past events are clear harbingers of what is yet to come:

urban areas already occupy 2% of the Earth’s land surface concentrating over 45%

of the world’s population (Cohen 2003) and recent estimates indicate that the num-

ber of people residing in the flow path of high-risk floods will double — from one

to two billion, within two generations (De Groeve et al. 2014). Furthermore, global
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extremefloods are clearly on the rise (Hirabayashi et al. 2013) and continued climate

change is likely to promote the intensification of the land-surface hydrologic cycle

and flooding. Consequently, problems associated with flooding have the potential

to rapidly proliferate in the very near future, affecting populated environments of

all types, from small rural dwellings, to megacities. The emerging need is both to

understand how heterogeneity of urban environments impact extreme floods and

engineer a comprehensive modeling capacity relevant to decision making in the

critical times of flooding.

Understanding and predicting floods across a range of space-time scales at the

relevant level of detail andwith uncertainty assessment remains a poorly addressed

challenge. Large-scale operational modeling efforts, such as NASA’s Global Land

Data Assimilation System, are capable of yielding modeling results on runoff in

near-real time (Rodell et al. 2004) at 10
4
-10

5
[m] spatial resolution. The NOAA

National Weather Service recently launched the National Water Model to provide

streamflow for 2.7 million river reaches in the U.S. and other hydrologic variables

on 10
3
3 [m] and 250 [m] grids. These systems however inherently rely on over-

simplified physics of hydrologic and hydrodynamic processes and their coarse

resolutions entirely neglect intricate drainage routes and lump the structure of ur-

ban landscapes, preventing their direct use for predicting flooding dynamics at

local scales (10
0
-10

2
[m]), which are most relevant to the end-users: communities,

water utilities, and humans who are in the pathways of flood waves.

Furthermore, uncertainties remain unaddressed in a variety of types of input

information, such as precipitation, soil moisture, hydraulic characteristics of water

pathways below and above surface. Academic community-enabled capabilities to

simulate relevant processes across a range of temporal and spatial scales have been

steadily increasing and hold a lot of promise (Kollet andMaxwell 2006; Ivanov et al.

2008b; Kim and Ivanov 2015; Kim et al. 2012; Mirus and Loague 2013; Maxwell and

Condon 2016; Fatichi et al. 2016; Ivanov et al. 2004; Bates 2012). The development

of the coupled hydrologic-hydraulic models targeted the physical consistency of

transferring information from larger-scale drivers to local-scale dynamics with a

smaller number of simplifying approximations, lately reaching the scales that are

relevant for flood-forecasting.

The science of flood modeling has been steadily changing from a data-scarce

to data-rich environment because of the growing availability of geospatial, remote
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sensing datasets, as well as real-time sensor data for hydrologic systems (Lincoln

2007; Baldassarre and Montanari 2009; Hill et al. 2014). For example, due to

increasingly available LiDAR data on urban geometry, hydrodynamic modeling is

now possible at sub-meter resolutions and demonstrates excellent skill (Schubert

and Sanders 2012; Bates 2012). Finer spatial resolutions of relevant data sets on

topography, building layout, and civil infrastructure describe heterogeneity of the

real world and have the potential to advance knowledge in urban hydrology and

hydraulics, but also come at an extreme computational cost. Specifically, while

the temporal scales of flood events are fairly small (10
0
– 10

1
[day]), the level of

spatial detail that can take full advantage of geospatial data (10
0
– 10

1
[m]) and

is most useful to end-users creates extreme challenges of feasibility for any real-

time applications, especiallywhen input uncertainty is explicitly accounted for. For

example, a general circulationmodel (GCM) used for global-scale climatemodeling

at a 0.5-degree resolution has approximately 5×10
6
grid cells in three dimensions;

even on a high-end computer at a national center, a heavily parallelized simulation

takes approximately 3.5 hrs for a 1-year run. A relatively small, city-scale flooding

problem can have the same order of computational nodes (e.g., variable mesh

spacing for a flooding domain for the city of Nashville, TN, drainage area < 1,000

[km
2]). The physical equations describing hydrologic andhydrodynamic processes

have approximately the same degree of non-linearity, as compared to a GCM.

However, the use of the UQ framework can help to reduce the computational

burden of this model, but further advancements will be required. Consider the

problem presented in Chapter 4, where 38 parameters were treated as uncertain

and 1,000 training simulations of tRIBS-VEGGIE were performed. The domain

size and complexity of resolving flow pathways in urban environments would

render simulation times of tRIBS-OFM to be orders of magnitude greater than

those witnessed running tRIBS-VEGGIE in the work of this dissertation. However,

recent advancement in UQ such as multi-fidelity modeling (Ng and Eldred 2012;

West and Gumbert 2017), where one uses variable resolutions of the simulation

domain to approximate and resolve discrepancies of the model outputs at various

levels of complexity, may provide an avenue to tackle uncertainty quantification

for the urban flooding problem.
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5.2.4 Small-scale case study in Nashville, TN

Here I briefly present a case study for the 2010 “1000-year flood” event inNashville,

TN (Moore et al. 2011) using the framework presented in Chapter 2, using solely

uncertainty propagation techniques and constructing surrogates using Bayesian

compressive sensing. The storm inundated large portions of downtown Nashville,

including the industrial and downtown district, causing major disruptions to in-

dustry and tourism. Unlike natural hydrologic systems, urban settings require

the modeler to also resolve uncertainties in the built environment, with the largest

uncertainty being the placement and “porosity” of structures (Guinot 2012; Kim

et al. 2015).

Figure 5.1: Small study area (1.2 [km
2
]) used for Nashville case study. This location is

located at the heart of downtown next to the main tourist avenue and the Tennessee Titans

football stadium. The river flows from the bottom to the top of the figure along the channel

of the Cumberland River. Six locations were selected for analysis, representing different

levels of inundation throughout the storm. The blue outline represents the inundationmap

generated by the Federal Emergency Management Agency.

The parameters treated as uncertain in the domain are given in Table 5.1. Man-

ning’s roughness coefficient parameters n were treated as uncertain for both the

land and river channel. Four different land use types: prairie, grass, undeveloped,
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and developed were present within the simulation domain, and the saturated con-

ductivity of the soil (Ksat)in each were treated as uncertain to account for potential

drainage before the flood wave entered the simulation domain. The saturated

soil moisture content θsat was also treated as uncertain for the land use types,

with the exception of prairie. Finally, the inflow hydrograph was obtained from a

USGS gauge just upstream of the simulation domain, containing measurements of

streamflow [m3
s
−1] during the storm. These data were taken and used to generate

a Gaussian process in order to treat the inflow data as a stochastic time series of

inflow (Figure 5.2) following Section 2.4.2. The resulting process was used to gen-

erate six uncertain parameters ξ1,...,6 using Karhunen-Loève decomposition of the

stochastic process (Section 2.4.2), the truncation at six parameters was performed

to achieve a 95% explanation of the variability in the stochastic process (Eq. (2.32)).

Figure 5.2: Gaussian process of log
10
(Q) used for uncertain inflow boundary condition.

The logarithm of streamflowwas used instead of the non-transformed value as it provided

a smoother function to approximate.

A total of 750 training simulations were performed for the 15 uncertain param-

eters, and QoIs were given as the time series of water depth at each of the analyzed

locations in Fig. 5.1 as well as an aggregated value of inundated area (Figure 5.3).

Sensitivity analysis of the constructed surrogates showed that parameters re-

lating to the inflow boundary condition were the most impactful, followed by the

Manning’s roughness coefficient for the channel (nchannel). The preliminary results

display the ability of used stochastic fields as uncertain model inputs, and this is a
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Table 5.1: Uncertain parameterizations for the Nashville case study.

Parameter Distribution

nland U[0.02, 0.07]
nchannel U[0.01, 0.03]
ksat, prairie U[30, 45]
ksat, grass U[15, 30]
θsat, grass U[0.45, 0.5]
ksat, undeveloped U[3, 15]
θsat, undeveloped U[0.4, 0.55]
ksat, developed U[0, 3]
θsat, developed U[0.4, 0.55]
ξ1,...,6 N(0, 1)

Figure 5.3: Time series (15 min.) water depth over simulation time at three locations from

Figure 5.1

further area of research to be applied to not just inflow hydrographs, but also soil

moisture and water table fields, as well as atmospheric forcing conditions.
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APPENDIX A

Monte Carlo: why it fails for complex
problems

Monte Carlo analysis is very convenient for numerical integration or to generate

samples from a distribution. The accuracy of the method is independent of the

dimensionality of the problem, but it also scales poorly for complex problems.

Imagine using Monte Carlo to estimate the area of a high-dimensional function by

taking random points and tabulating howmany fall above or below the curve. The

error in the integration estimate decreases proportional to 1/
√

n, where n is the

number of samples used for approximation. This error is therefore independent

of dimension and a robust methodology which has been used in a large range of

problems (e.g., Gilks et al. 1995; Rajabi and Ataie-Ashtiani 2014; Vrugt et al. 2008;

Mishra et al. 2012; Aronica et al. 2012).

However as the dimensionality d of the problem grows, it becomes increasingly

difficult to get informative samples. As an illustrative example, consider trying

to estimate the volume of a unit sphere in d dimensions of radius 1 by randomly

sampling within the d-dimensional unit cube in [−1, 1]. Assume that d is even so

d � 2a, then the volume V(·) of the box and ball will be:

V(cube) � 2
2a

� 4
a

V(sphere) � π2a/2

(2a/2)! �
πa

a!

,
(A.1)

so the ratio of the volume of the sphere in the cube is πa/(4aa!). How this scaleswith

dimension can be seen in A.1. Sampling the volume of the sphere inside the cube,

one would estimate that the volume of the sphere is zero unless a large number
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Figure A.1: Left: Figure of Monte Carlo sampling (n � 200) of volume of a unit sphere in

a unit cube with dimension d � 2 (only 1/4 showed due to symmetry), coinciding to a � 1

in (A.1). The dots are colored blue if they fall within the sphere and red otherwise. Right:

Scaling of the ratio of the volume of a unit sphere to the volume of the unit cube in d � 2a
dimensions.

of samples are taken. Whether or not this is an issue depends on the question

being asked and the problem being solved. An estimate of volume zero provides

an absolute error that is very small, since the volume of the sphere is relatively small

compared to the sampling space.

When integrating with Monte Carlo methods, a small relative error is usually

desired, and one therefore wants an a large proportion of sampling points to be in

the region of interest. The desire is to have an efficient method, one where a large

proportion of samples are useful. This is an area of continuous development, and

includes importance sampling and transport maps (Siegmund 1976; Glynn and

Iglehart 1989; Parno and Marzouk 2018; Spantini et al. 2017). The samples in this

research are being generated from numerical simulations of a complex hydrologic

model, and therefore each rejected could be considered as “wasted” computational

expense, as more simulations are required to get a desired number useful samples.

For this reason, surrogate models (Section 2.3) are deployed, meaning that the

computational cost of getting a useful sample is significantly reduced.
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APPENDIX B

Construction of PC surrogate using
multi-index notation.

In order to construct the polynomial surrogate it is often helpful to use simplified

multi-index notation in place of the explicit terms being added to the index. To aid

interpretation of the notation, this section explicitly constructs a polynomial chaos

surrogate using the multi index notation, and then shows how terms are gathered

for sensitivity analysis as mentioned in Section 2.3.2.

Surrogate construction

As before, consider the multi-index α � (α1, α2, . . . , αm), a tuple of integers up to

m, where m is the number of uncertain variables considered: ξ � (ξ1, ξ2, . . . , ξm).
These are used to construct the multivariate polynomial used in the expansion in

Equation (2.13), constructed as in Equation (2.8) and repeated here:

Ψα � ψα1
(ξ1)ψα2

(ξ2) · · ·ψαm (ξm).

If one assumes that the random variables in ξ are Gaussian, then Hermite polyno-

mials would apply (see Table 2.1). The recurrence relation for Hermite polynomials

is:1

ψn+1(ξ) � ξψn(ξ) − nψn−1(ξ),

1This is the probabilists polynomial, or Hermite polynomial of the first kind. There also exists a

physicists version, or Hermite polynomial of the second kind.

128



which gives the first five terms as:

ψ0(ξ) � 1

ψ1(ξ) � ξ
ψ2(ξ) � ξ2 − 1

ψ3(ξ) � ξ3 − 3ξ

ψ4(ξ) � ξ4 − 6ξ2

+ 3

A plot of Hermite and Legendre polynomials are shown in Figure 2.3.

To construct the polynomial surrogate in Equation (2.13), one first selects the

graded lexicographic ordering of the multi-indexα to get the unique combinations

of polynomials andvariables in ξ under a certain total degree. For this ordering, one

first sorts by the total degree (sumofpolynomial order), then sorts lexicographically,

i.e., ξ1 ≺ ξ2 ≺ ξ3, where a ≺ b is read as: a precedes b in order. As an example,

consider a polynomial that is indexed by its arguments with three variables such

that Pα1 ,α2 ,α3
(ξ1, ξ2, ξ3) � ξα1

1
ξα2

2
ξα3

3
, then its graded lexicographic ordering would

be:

1 ≺ ξ1 ≺ ξ2 ≺ ξ3 ≺ ξ2

1
≺ ξ1ξ2 ≺ ξ1ξ3 ≺ ξ2

2
≺ ξ2ξ3 ≺ ξ2

3
≺ ξ3

1
≺ ξ3

2
≺ . . . .

The values of the members of the multi-index (α1, α2, α3) are the order of the poly-
nomial that is a function of (ξ1, ξ2, ξ3)Writing in terms of the Hermite polynomials

above, this becomes the following, where the underbraces are the values of the

multi-index tuple (α1, α2, α3).

1︸︷︷︸
(0,0,0)

≺ ψ1(ξ1)︸ ︷︷ ︸
(1,0,0)

≺ ψ1(ξ2)︸ ︷︷ ︸
(0,1,0)

≺ ψ1(ξ3)︸ ︷︷ ︸
(0,0,1)

≺ ψ2(ξ1)︸ ︷︷ ︸
(2,0,0)

≺ ψ1(ξ1)ψ1(ξ2)︸          ︷︷          ︸
(1,1,0)

≺ ψ1(ξ1)ψ1(ξ3)︸          ︷︷          ︸
(1,0,1)

≺ ψ2(ξ2)︸ ︷︷ ︸
(0,2,0)

≺ ψ1(ξ2)ψ1(ξ3)︸          ︷︷          ︸
(0,1,1)

≺ ψ2(ξ3)︸ ︷︷ ︸
(0,0,2)

≺ ψ3(ξ1)︸ ︷︷ ︸
(3,0,0)

≺ ψ3(ξ2)︸ ︷︷ ︸
(0,3,0)

≺ . . .
(B.1)

When truncating the expansion in Equation (2.13), polynomials that have at

most total order p are kept.2 The total order is calculated from the sum of the

2This is the total degree truncation scheme. Other truncation schemes (see, e.g., Sargsyan et al.

2014) can be chosen as a preprocessing step to select a different polynomial basis.
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polynomial orders, which can be easily calculated by the members of the multi-

index, and is denoted

p � ‖α‖
1
�

M∑
i�1

|αi |.

This means that both the terms ψ3(ξ1) and ψ2(ξ1)ψ1(ξ2) have total polynomial

order 3 as their multi-indices are (3, 0, 0) and (2, 1, 0), respectively.
To construct a PC surrogate, take an example with three uncertain variables and

polynomial order p � 2. One can gather the terms and use the ordering in Equation

(B.1), adding the respective coefficients. The truncated surrogate of these collected

terms would be:

MPC(ξ1, ξ2, ξ3) �c0 + c1ψ1(ξ1) + c2ψ1(ξ2) + c3ψ1(ξ3) + c4ψ2(ξ1)+
c5ψ1(ξ1)ψ1(ξ2) + c6ψ1(ξ1)ψ1(ξ3) + c7ψ2(ξ2)+
c8ψ1(ξ2)ψ1(ξ3) + c9ψ2(ξ3)

(B.2)

FromEquation (2.14), the expected (3+2)!/3!/2! � 10 terms appear inEquation (B.2).

Using Equation (B.2) and Figure 2.3, one gets a clear visual sense that, once the PCE

coefficients are determined, MPC
is simply a linear combination of polynomials

in order to determine the value for the QoI. The graded lexicographic ordering

mentioned previously is a way to assign and manage accounting of the coefficients

in Equation (B.2), and is the standard used in most software that constructs PCE

surrogates, though any ordering would work as long as it is used consistently in

calculations.

Given the PCE surrogate in (B.2), one can calculate the first two moments as in

Equations (2.15) and (2.16) as:

µPC
� c0 (B.3)

(σ2)PC
�

9∑
j�1

c2

j

〈
Ψ2

j

〉
., (B.4)

where

〈
Ψ2

j

〉
is the inner product or squared norm of the basis function in Equa-

tion (2.8), with the subscript j on the polynomial basis represents the multi-index

associated with the coefficient term c j . The inner product is calculated through
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numerical quadrature, and is given by:

〈u , v〉 �
∫
Dx

u(x)v(x)π(x)dx , (B.5)

whereDx is the domain of quadrature which is defined by the chosen polynomial

family, and π(x) is the weighting function. This can also be called the squared

norm since the norm is defined by:

‖u‖ � 〈u , u〉1/2 . (B.6)

Sensitivity analysis with calculated coefficients

As mentioned in Section 2.3.2, using PCE surrogates provides global sensitivity

analysis “for free” from the values of the coefficients c � (c1, c2, . . . , cP+1) (recall
that c0 gives the estimated mean of the surrogate). Continuing the example from

the previous section, the main and total sensitivities will be calculated fromMPC
.

Using Equations (B.2) and (2.16), the variance relation can be written as:

Var

(
MPC

)
�c2

1

〈
ψ2

1

〉
+ c2

2

〈
ψ2

1

〉
+ c2

3

〈
ψ2

1

〉
+ c2

4

〈
ψ2

2

〉
+ c2

5

〈
ψ2

1

〉 〈
ψ2

1

〉
+

c2

6

〈
ψ2

1

〉 〈
ψ2

1

〉
+ c2

7

〈
ψ2

2

〉
+ c2

8

〈
ψ2

1

〉 〈
ψ2

1

〉
+ c2

9

〈
ψ2

2

〉 (B.7)

TheSobol sensitivity indices canbe calculatedusingEquation (B.7),which is also

the denominator in Equations (2.20) and (2.21). The numerators of each equation

are given below, with the main effect contribution to the indices (Equation (2.20))

from each uncertain parameter being:

Ŝmain

i �


ξ1 : c2

1

〈
ψ2

1

〉
+ c2

4

〈
ψ2

2

〉
ξ2 : c2

2

〈
ψ2

1

〉
+ c2

7

〈
ψ2

2

〉
ξ3 : c2

3

〈
ψ2

1

〉
+ c2

9

〈
ψ2

2

〉 , (B.8)

and the corresponding contributions from each variable towards the total effect

131



indices (Equation (2.21)) are:

Ŝtotal

i �


ξ1 : c2

1

〈
ψ2

1

〉
+ c2

4

〈
ψ2

2

〉
+ c2

5

〈
ψ2

1

〉 〈
ψ2

1

〉
+ c2

6

〈
ψ2

1

〉 〈
ψ2

1

〉
ξ2 : c2

2

〈
ψ2

1

〉
+ c2

7

〈
ψ2

2

〉
+ c2

5

〈
ψ2

1

〉 〈
ψ2

1

〉
+ c2

8

〈
ψ2

1

〉 〈
ψ2

1

〉
ξ3 : c2

3

〈
ψ2

1

〉
+ c2

9

〈
ψ2

2

〉
+ c2

6

〈
ψ2

1

〉 〈
ψ2

1

〉
+ c2

8

〈
ψ2

1

〉 〈
ψ2

1

〉 . (B.9)
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