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Abstract 

 
Complex secondary metabolites display a wealth of biological activities and, together with 

their derivatives, have provided over 60% of new pharmaceutical agents over the past 40 years. 

Despite their clinical success, limitations in isolation yields as well as the synthetic challenges 

posed by these scaffolds often hinders the medicinal chemistry efforts necessary to overcome 

suboptimal pharmacological properties, highlighting the need for alternative methods. A 

promising strategy for generating libraries of natural product analogues is through the use of 

biosynthetic enzymes. These systems have long been hypothesized to be capable of producing 

almost unlimited structural diversity, due to their modular nature, however to date, efforts towards 

PKS engineering have mostly met with failure. Despite notable successes, decreased product 

yields and/or failure to produce the desired structures entirely have stymied these efforts. Recent 

studies focusing on the interrogation of single modules or module domains via biochemical 

analysis coupled with structural determination have begun to shed light on these complex systems 

and give us insight into the reasons for the initial failures.  

The studies presented in this thesis focus on investigations into the structural and 

mechanistic parameters that govern selectivity in the biosynthetic enzymes of interest from two 

key natural products, the PKS/NRPS derived cryptophycin family of anticancer agents, and the 

PKS antibiotic Pikromycin. In the cryptophycin system, synthetic chain elongation intermediates 

have been coupled with the Crp TE macrocyclizing catalyst to produce a library of heterocyclic 

unit A analogues. This was met with remarkable success as all the analogues were processed by 

the TE with similar or greater efficiency than that seen with the native substrate. Current efforts 

are focused on gaining an NMR structure of this TE with hopes of shedding light on the underlying 

catalytic mechanism that makes this enzyme so versatile. This facilitated the biological evaluation 

of these analogues, allowing us to identify one that displays remarkable activity without the 

presence of an epoxide group that was previously thought to be necessary for maximum efficacy.  

Utilizing the same strategy in the Pikromycin system, five new pentaketides analogues 

were generated that could be used with three separate intact PKS modules, the PikAIII-TE and the 
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coupled PikAIII/AIV system. These synthetic intermediates have continued to lend credence to 

the hypothesis that in PKS systems, the TE tends to be the deciding factor on whether hydrolytic 

byproducts are formed or macrocycles. Utilizing our biocatalytic platform we have been able to 

show that the TE can more effectively produce 14 membered macrolactones containing unnatural 

functionality than 12, leading to the isolation of three new macrolactone products. Altered alkyl 

chain substituents on these pentaketides substrates have also shed light on the likelihood of a size 

restriction for the loading of these substrates onto the KS domain of the initial module. The 

continued investigation of these substrates as well as others continues to build the groundwork for 

future engineering campaigns aimed at generating more flexible catalysts for the production of 

novel natural product analogues.  
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Chapter 1 
Introduction and Background 

 
 

1.1  Natural Products as Therapeutic Agents 

1.1.1   History of Natural Products in Medicine  

Natural products, or secondary metabolites, are chemical compounds derived from all 

kingdoms of life, that are not required for primary survival (i.e. growth, reproduction, or 

metabolism), but confer a selective advantage to a given organism within their niche.1 These 

compounds have been used in the treatment of human illnesses since before the advent of modern 

medicine and continue to play a vital role in combating major diseases.2 The first recorded reports 

of natural product usage stem from ancient civilizations including Mesopotamia (2600 BC) and 

the ancient Egyptians (1550 BC) who used plant derived medicines to formulate oils, ointments, 

pills, and gargles to treat a variety of ailments including colds and inflammation.2-4 The early 

1800’s saw a renaissance of drug development and natural product exploration with the isolation 

of morphine and other alkaloids (including quinine and nicotine) from a variety of plant sources5 

and by 1853 salicylic acid, the active metabolite in aspirin, became the first natural product to be 

made by chemical synthesis with the advent of the Kolbe-Schmitt reaction.6 In 1928, natural 

product medicines were again a sensation as one of the most profound medical discoveries came 

when Alexander Flemming discovered a molecule, penicillin, with antibacterial activity from a 

fungus, Penicillium chrysogenum, changing the course of modern medicine.2  

1.1.2 Natural Products in Clinical Drug Discovery and Development   

The field of natural product drug discovery continued to expand through the early 1900s and 

with the onset of the “golden age of antibiotics”, all major pharmaceutical companies initiated 

natural products discovery teams, looking for not only antimicrobials, but anti-fungals and anti-

cancer agents.3 The wide variety of chemical diversity seen in these molecules makes them 

effective agents in all areas of clinical medicine, with over 60% of all drugs approved from 1981 
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to 2014 being direct natural products or natural product derivatives. The significance of these 

molecules is even more pronounced in the area of antibiotics and anticancer agents, with the 

number of compounds being derived from natural sources being above 70% for these classes of 

drugs.1 Some examples of clinically used natural products are antibiotics like penicillin and 

erythromycin A, anti-cancer agents like Taxol, antiparasitics like avermectin, analgesics like 

morphine, cholesterol lowering agents like lovostatin, insecticidal agents like spinosyn A, and 

immunosuppressant’s like cyclosporine (Figure 1.1).7  

Despite the clinical success of natural products, the early 2000’s saw a decline in 

pharmaceutical company involvement. With the advent of combinatorial synthesis and high 

throughput screening (HTS) technology, large libraries of compounds could be chemically 

synthesized and screened for activity over a variety of targets. These initial hit identifications could 

then be translated into promising leads through structure activity relationship (SAR) campaigns, 

 
 
 
Figure 1.1 Natural Products as Drug Leads. Examples of well-known natural products with clinical 
significance, demonstrating the vast array of scaffolds and assorted therapeutic applications of these 
types of compounds.  
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circumventing the need to pursue natural products which historically have been plagued with 

lengthy, complex chemical syntheses and high production costs.8 In recent years however, interest 

in natural products has been reinvigorated as combinatorial synthesis, despite many successes, 

cannot compete with the chemical diversity found in nature. These “privileged scaffolds” have 

developed over thousands of years to interact specifically with a variety of biological targets,9 

making their structural diversity an unavoidable necessity, and thus providing an advantage over 

traditional synthetic libraries. 

 

1.2 Polyketide Synthase and Non-Ribosomal Peptide Natural Products  

Polyketides (PKs), non-ribosomal peptides (NRPs), and their hybrids (PK/NRP) are a large 

sub-class of natural products which historically possess a wealth of pharmacological activates, 

specifically in the areas of anticancer and antibiotics.10-12 These molecules are formulated in an 

analogous manner by megasynthase enzymes that are organized into biosynthetic pathways. 

Polyketides are comprised of multiple, two carbon ketide units, that are joined together to form 

the growing polyketide chain.  Non-ribosomal peptides are also formulated by multidomain 

proteins, except these are responsible for the joining of amino acids or amino acid derivatives via 

peptide bond formation to produce the complex structures seen in nature (e.g. Figure 1.1). A subset 

of these PK and NRP natural products contain a macrocyclic core, formulated via an 

intramolecular ester or amide bond, which serves to lock these otherwise flexible molecules into 

their precise, biologically relevant, conformation. The biosynthesis of these is terminated by a 

thioesterase, the enzyme responsible for effecting, regio- and stereo- specific macrocyclization.13  

1.2.1 General Biosynthetic Machinery of Polyketide Synthases   

The enzymatic systems responsible for the production of polyketide natural products are 

termed Polyketide Synthases (PKS) and utilize a similar mechanistic strategy as Fatty Acid 

Synthases (FAS) found in primary metabolism. Based on their architecture, PKSs can be classified 

into three different types, Type I, Type II,14 and Type III,15with Type I being covered here. Type 

I PKS, like FAS, select for two carbon units in the form of malonyl Coenzyme A (CoA) derivatives 

that are then joined together through a series of Claisen Condensation reactions. Each module of 

a polyketide synthase is comprised of three necessary domains, the ketosynthase (KS), the acyl 
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transferase (AT), and the acyl carrier protein (ACP) seen in Figure 1.2. 16-17 During elongation, 

the AT selects an appropriate malonyl derivative and loads it onto the ACP. The KS, containing 

the growing polyketide chain from the previous module, catalyzes decarboxylation of the ACP 

bound malonyl derivative. This generates a transient nucleophile that reacts with the growing chain 

in a Claisen Condensation type reaction, increasing the backbone length by two carbons with each 

cycle.  

In addition to the necessary domains, there are three “optional” domains, the ketoreductase 

(KR), dehydratase (DH), and enoyl reductase (ER) which are responsible for reductions of the 3-

keto group to either a hydroxyl, alkene, or alkane functionality (Figure 1.2: 2, 3, and 4). In FAS 

there are a single copy of all six of these which iteratively act upon each ketide unit, producing the 

relatively simple, unsaturated chains seen in these systems. In PKS systems, the necessary domains 

are organized into modules, each capable of accepting potentially different extension units 

(malonyl, methyl malonyl, and ethyl malonyl, etc.). Each module will contain all three necessary 

domains and can be complemented with one, two, or all three optional domains, producing the 

vast diversity seen in polyketide chains (Figure 1.2).10  

Once a single module has completed its extension, the growing polyketide chain is then passed 

off to the downstream module via protein-protein interactions. These are modulated by a non-

 
 
Figure 1.2 Schematic of a generic PKS module. The cycle starts when the AT selects an appropriate 
extender unit and loads it to the ACP. Decarboxylation and subsequently Claisen Condensation is 
catalyzed by the KS which produces the b keto substrate 1. Optional domains present in the different 
modules can then act upon the newly extended product. These include the KR which performs a keto 
reduction (2), DH which performs dehydration (3), and the ER which reduces the double bond to a 
saturated alkane (4).  
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covalent association of “docking domains”, short helical segments that are fused to the C-terminus 

of the upstream module and the N-terminus of the downstream.18 The interaction of these two 

dimerization elements facilitates effective and specific transfer of growing polyketide chain.   

1.2.2 General Biosynthetic Machinery of Non-Ribosomal Peptide Synthetases 

 Non-ribosomal peptides are formulated by a separate set of multi-modular enzymes termed 

Non-Ribosomal Peptide Synthetases (NRPS). These systems utilize amino acids or amino acid 

derivatives, instead of malonyl derivatives, and join them together via peptide bond formation in 

a ribosome-independent fashion. These proteins also contain three necessary domains: the 

adenylation domain (A) which selects the appropriate amino acid, the condensation domain (C) 

which catalyzes peptide bond formation, and a peptidyl carrier protein (PCP) that shuttles the 

growing chain from module to module (Figure 1.3).19-20 These systems have a variety of optional 

domains as well, that can act upon the growing chain in a non-iterative fashion. An epimerization 

domain can take the L-amino acids, manufactured during primary metabolism, and invert the 

stereochemistry to produce the much rarer, D variant (6).  N-methylation is another optional 

domain that is accomplished through a s-adenysyl methionine (SAM) methyl transferase (7) and 

 
 
 
Figure 1.3 Schematic of a generic NRPS mechanism. The catalytic cycle begins when the A domain 
selects an appropriate amino acid and loads it to the cognate PCP. Peptide bond formation is then 
catalyzed by the C domain to produce substrate 1. Optional domains present in the modules include the 
Ep domain, responsible for epimerization of the a stereocenter (6), the MT domain which catalyzes N-
methylation (7), and the Cy domain that cyclizes nucleophilic sidechains to form the corresponding 
oxazole/thiazole rings (8). 
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lastly, cyclization of amino acids containing nucleophile sidechains (serine, threonine and 

cysteines) to form oxazoline and thiazoline rings (8). These rings can also undergo redox reactions 

to change their unsaturation state. Although many of these natural products are exclusively 

biosynthesized by PKS or NRPS systems, hybrid biosynthetic systems that combine both PKS and 

NRPS modules also exist and formulate molecules containing both polyketide portions and peptide 

portions, exponentially increasing the possible diversity that nature is able to make with these 

systems.  

The final step in the biosynthesis of macrocyclic PK and NRP natural products is offloading 

which, in the case of macrocycles, is catalyzed by a thioesterase that is appended to the terminal 

module of these biosynthetic systems. These enzymes are broadly classified as serine hydrolases 

and utilize a serine, histidine, aspartic acid catalytic triad to either hydrolyze off the growing linear 

chain or facilitate intramolecular cyclization to form the core macrocycle.   

1.2.3 Tailoring Enzymes in PKS and NRPS Systems  

 Polyketide/Non-ribosomal peptide cores are often modified by late stage tailoring 

enzymes, which can further increase the diversity seen in these systems. The common post-PKS 

and NRPS modifications seen are produced by a plethora of different enzymes, including 

oxidoreductases, group transferases, halogenases, cyclases, and deoxysugar biosynthetic 

casettes.21-22 Often these enzymes are responsible for the production of functional groups that are 

imperative for biological function. The very nature of macrolide (macrolactone glycoside)23 

antibiotics relies upon glycotransferases that append a variety of sugars to hydroxyls on 

macrocycles, whose cores are not active without this moiety. These hydroxyls can come from PKS 

KRs or from oxygenases, specifically P450s or flaven dependent oxygenases, that are able to 

install hydroxyl, aldehyde, and/or epoxide groups to often otherwise unactivated C-H bonds.  

 

1.3 Strategies for Synthesis of Natural Products  

Since the modern era of natural product total synthesis began, it has continued to expand 

exponentially, making complex scaffolds such as ciguatoxin CTX3C, a polyether containing 12 

rings and 30 stereogenic centers, synthetically tractable.24 The continued development of 

organometallics,25 chiral auxiliary chemistry, and asymmetric aldol reactions26 have been 

instrumental in natural product drug discovery as they facilitate access to analogues that are 
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unattainable by other methods including semi-synthesis and fermentation.27 Despite the 

formulation of these molecules usually being constrained to academic endeavors, complex total 

synthesis has also found practicality in industrial settings when low isolation yields cause 

“bottlenecks” that hinder development. This is best exemplified by Halaven (Eribulin mesylate), 

a drug approved in 2010 for the treatment of metastatic breast cancer.28-29 This molecule is 

considered the most structurally complex therapeutic formulated by total synthesis for clinical use. 

This molecule is a truncated, synthetic version of the halichondirn B isolated from a marine 

sponge. Low isolation yields, and the unculturable nature of sponges made access to this molecule 

for clinical development a major hurdle.30 The complexity seen, with its 19 stereocenters, would 

frequently make it out of reach for industrial scale total synthesis however, a herculean effort to 

formulate convergent synthesis led to a 62 step route, with the longest linear sequence being 30 

steps. The critical discovery, that changed the fate of this molecule in the clinic was the crystallinity 

of multiple late stage fragments, which facilitated easy access, with minimal chromatography, to 

the appropriate diastereomer needed to formulate this complicated scaffold.30-33  

Supply issues and medicinal chemistry efforts towards natural products are not limited to 

synthetic chemistry, but are also solved through fermentation, precursor directed biosynthesis 

(Figure 1.4), and/or semi synthesis.34 This is especially prevalent in antibiotic discovery. 

Erythromycin, the first clinically used antibiotic, has a single published total synthesis which 

requires 77 steps,35-37 illustrating the need for alternative methods. Fermentation has largely 

overcome this hurdle by providing rapid access to kilograms of this macrolide. The ease at which 

this can be produced allowed for further medicinal chemistry efforts to this scaffold which have 

identified second, third and even fourth generation antibiotics.38 These relatives are made by semi-

synthesis from the fermented erythromycin scaffold and include Azithromycin (Zithromax) one of 

the highest grossing drugs on the market today, which is synthesized through a Beckman 

rearrangement ring expansion. Other clinical natural products, like the anticancer agent taxol, are 

formulated for clinical use through semi-synthesis as well. In this case, isolation of the natural 

product faced insurmountable challenges as it is only produced in the bark of the pacific yew tree. 

In order to obtain it for clinical trials, the bark of a single tree had to be striped (effectively killing 

it) for each dose.39 Despite this, the clinical success of this drug later led to the discovery of a taxol 

precursor, 10-deacetyl-baccatin III made by the needles of the pacific yew tree, that could be 

extracted and synthetically converted to the anticancer agent without killing old growth trees. 
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Taking advantage of the efficiency and selectivity of the biosynthetic machinery in these 

organisms to formulate the full natural product or advanced intermediates cuts production time 

and costs significantly, lending credence to the effectiveness of this strategy.  

Although both methods are viable and have their advantages, each has their disadvantages: 

synthetic chemistry is able to produce almost unlimited structural variations, however the cost and 

time necessary is often debilitating, whereas fermentation and semi-synthesis is frequently more 

time and cost effective, but it is constrained by activated functional groups for manipulation, and 

low isolation yields. The ability to merge these two fields and explore chemoenzymatic syntheses 

could bridge the current gaps left by both disciplines and provide rapid access to previously 

inaccessible compound analogues. Despite the notable enzymatic transformations that are widely 

used in synthetic chemistry (esterases, lipases),40 the use of multienzyme systems such as PKS and 

NRPS modules has yet to gain widespread interest, presumably due to the specificity seen in these 

systems and the expertise necessary to overcome these hurdles. Continued research in this area is 

required to gain a more detailed understanding of the catalytic systems used by these enzymes as 

well as their selectivity profiles in order to reach our ultimate goal of engineering broad scope 

catalysts capable of processing large libraries of “unnatural” natural products with the same 

enzyme variant.  

 

1.4 Combinatorial Biosynthesis in Drug Discovery  

Utilizing PKS and NRPS systems to formulate natural product libraries has met with great 

enthusiasm in academics over the past two decades due to the almost limitless structural variation 

that could be imparted to scaffolds of interest. These systems have the capability to produce 

hundreds of millions of compounds by exploiting substrate promiscuity through protein and 

pathway engineering. Diversity can be introduced in these systems in three main ways: precursor 

directed biosynthesis, modification of discrete enzymes within a pathway, and recombinant 

pathway construction (Figure 1.4: 1, 2, and 3).41-44 Feeding of alternate precursors has been used 

extensively to modify natural products as it takes advantage of inherent flexibility in the 

biosynthetic systems to incorporate new extender units without the need for genetic engineering 

(Figure 1.4: 1).45-50 This is exemplified by the polyether antibiotic monensin, which contains a 

leaky AT and has been shown to accept synthetic propargyl malonyl when cultures are 

supplemented with it.51 Augmenting with larger synthetic intermediates has also shown some  
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success as in the 6-deoxyerythronolide B (DEBS) system. In this study, synthetic diketides were 

fed to E. coli containing plasmids encoding the remaining PKS modules as well as the enzymes 

responsible for glycosylation/oxidation. This system was effectively able process these substrates 

into novel macrolides.52 

 
 
Figure 1.4 Schematic of the strategies used in combinatorial biosynthesis: 1 Precursor Directed 
Biosynthesis which takes advantage of the inherent flexibility of the system and synthetic precursors 
to formulate unnatural analogues, 2 Module level modifications which include moving parts of one 
module into a homologous one termed “domain swapping”, as well as site-directed mutagenesis and 
directed evolution which take advantage of mutations throughout the biosynthetic cluster to produce 
new molecules, and finally 3 Pathway recombination which takes entire genes from multiple pathways 
to formulate chimeric ones. 
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The second two facets of combinatorial biosynthesis rely heavily on genetic engineering to 

produce structural variations. Modifications to discrete enzymes within a pathway frequently 

focuses on swapping of domains within modules. Diversity can be introduced in a number of ways 

by changing the selectivity and optional processing of an overall module including choice of 

malonyl or amino acid extender units (selected for by the AT or A domains), degree of unsaturation 

in both products (controlled by optional domains in PKS and NRPS systems), as well as altered 

stereochemistry.53-54 This strategy has led to impressive libraries in the both the DEBS pathway 

and the NRPS derived daptomycin pathway. Both of these studies swapped analogous domains in 

related systems to form novel molecules with the same scaffold, but altered redox states and side 

chain incorporation.55-58 Other methods of modifying discrete enzymes within a pathway take 

advantage of site directed mutagenesis or directed evolution to increase promiscuity for non-native 

extender units,59-62 fluorine atom incorporation,63 and redox state changes.64 Lastly, pathway level 

changes can produce hybrid molecules through the formulation of chimeric biosynthetic systems. 

This has met with success especially in the case of sugar containing natural products. The ability 

to append non-cognate sugars to macrolactones using genetic systems has produced altered 

biological activities, including modulating toxicity and potency.65-71  

Despite the successful examples discussed above, this strategy often meets with failure as 

alterations to biosynthetic enzymes frequently causes abysmal isolation yields, when products can 

be detected with many more expected products being elusive. Unraveling the molecular 

mechanism responsible for this diminished activity has garnered minimal traction as many of these 

manipulations have targeted early genes, making it impossible to determine what portions of the 

downstream modules are incompatible with the desired structural modifications. More detailed 

investigations into discrete enzymes within these systems will shed light on the selectivity of each 

step in the biosynthesis and can guide rational engineering endeavors in the future.  

 

1.5 Thesis overview 

 My doctoral research has focused on two projects aimed at merging synthetic chemistry 

with in vitro biocatalysis in order to leverage chemoenzymatic platforms for the discovery of 

“unnatural” natural products of biological significance. Combining this biochemical information 

with current and future structural endeavors will hopefully continue to shed light on the complex 

processes used by biosynthetic enzymes to effect synthetic transformations. This will enable us 
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to achieve our ultimate goal of engineering more general biocatalysts for medicinal chemistry 

exploration.  

 The first of the two projects focused on the use of discrete biosynthetic enzymes in the 

cryptophycin anticancer agent’s biosynthetic pathway to produce heterocyclic analogues for 

medicinal chemistry exploration. This work had four main themes, the first of which focused on 

the development of a scalable synthesis of seco cryptophycin chain elongation intermediates as 

the N-acetyl cysteamine (SNAC) thioesters, that could be diversified at a late stage. The second 

utilized these intermediates to interrogate the cryptophycin thioesterase (CrpTE) to effect 

macrocyclization. The in vitro evaluation produced all the desired macrocycles which could be 

isolated and tested for activity in HCT-116 human colorectal cancer cells. This strategy 

facilitated the discovery of one of the most potent analogues of this family seen to date with 

single digit picomolar IC50 values. In addition, this analogue does not contain a b epoxy 

functionality that had previously been thought necessary for maximum potency, as all other 

analogues lacking it show activities in the low nM range. 

 The second facet of the cryptophycin project, described in Chapter 3 has focused on 

gaining structural information on the CrpTE. Over the past decade countless crystal trays have 

been set in the hopes of identifying conditions that would promote crystal growth. With the 

continued failures our efforts turned to designing new constructs and taking advantage of a 

strategy like Surface Entropy Reduction (SER) in hopes of engineering better crystal packing 

interfaces. We in collaboration with Dr. John Lutz at Eli Lilly designed and formulated a number 

of constructs that hoped to eliminate some of the potential issues identified in a more thorough 

examination of the primary structure.  

 Although these efforts have yet to produce any significant breakthroughs in crystal 

formation, they have identified constructs that are predominantly monomeric allowing us to 

consider alternative structural pursuits. In collaboration with Dr. Vivekanandan Subramanian in 

biophysics, we screened the CrpTE for potential NMR characterization. Finding that it had ideal 

folding and tumbling properties, structural characterization utilizing multiple labeling strategies 

and triple resonance NMR experiments are possible. We are currently completing the 

assignments of each residue in the NMR spectra and will be moving forward with three-

dimensional analysis shortly.  
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 The last subset of my doctoral thesis, focuses on a second system, the pikromycin family 

of macrolide antibiotics. Previous efforts in our lab have focused on reconstituting the last two 

modules of the biosynthetic system for use in the production of the pikromycin macrocyclic core. 

From here these can be glycosylated and oxidized to form the fully functionalized macrolide 

antibiotics. Utilizing this platform, we hoped to explore the ability of these enzymes to accept 

unnatural chain elongation intermediates. It has been hypothesized that the TE may be the most 

selective enzyme in these pathways and may hold the key to successful processing of unnatural 

substrates. Although this work is ongoing, it has indicated that the TE does play a large role in 

selectivity of substrates, but that it has some flexibility. We have been able to formulate 

macrolactones on milligram scale that contain unnatural ester, amide, and di desmethyl 

functional groups, the details of which can be found in Chapter 4. It has also shown that the KS 

in these systems may also play a large role in selecting substrates and that it is sensitive to larger 

groups closer to the site of transthioesterification. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 13 

1.6 References 
 

1. Newman, D. J.; Cragg, G. M., Natural Products as Sources of New Drugs from 1981 to 
2014. Journal of natural products 2016, 79 (3), 629-661. 
2. Bernardini, S.; Tiezzi, A.; Laghezza Masci, V.; Ovidi, E., Natural products for human 
health: an historical overview of the drug discovery approaches. Nat Prod Res 2017, 1-25. 
3. Dias, D. A.; Urban, S.; Roessner, U., A historical overview of natural products in drug 
discovery. Metabolites 2012, 2 (2), 303-36. 
4. Cragg, G. M.; Newman, D. J., Biodiversity: A continuing source of novel drug leads. Pure 
Appl Chem 2005, 77 (1), 7-24. 
5. Hosztafi, S., The discovery of alkaloids. Pharmazie 1997, 52 (7), 546-550. 
6. Lindsey, A. S.; Jeskey, H., The Kolbe-Schmitt Reaction. Chem Rev 1957, 57 (4), 583-620. 
7. Clardy, J.; Walsh, C., Lessons from natural molecules. Nature 2004, 432 (7019), 829-837. 
8. Ortholand, J. Y.; Ganesan, A., Natural products and combinatorial chemistry: back to the 
future. Curr Opin Chem Biol 2004, 8 (3), 271-280. 
9. Evans, B. E.; Rittle, K. E.; Bock, M. G.; Dipardo, R. M.; Freidinger, R. M.; Whitter, W. 
L.; Lundell, G. F.; Veber, D. F.; Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.; Cerino, D. J.; Chen, 
T. B.; Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield, J., Methods for Drug Discovery - 
Development of Potent, Selective, Orally Effective Cholecystokinin Antagonists. Journal of 
medicinal chemistry 1988, 31 (12), 2235-2246. 
10. Hertweck, C., The Biosynthetic Logic of Polyketide Diversity. Angew Chem Int Edit 2009, 
48 (26), 4688-4716. 
11. Chan, Y. A.; Podevels, A. M.; Kevany, B. M.; Thomas, M. G., Biosynthesis of polyketide 
synthase extender units. Natural Product Reports 2009, 26 (1), 90-114. 
12. Staunton, J.; Weissman, K. J., Polyketide biosynthesis: a millennium review. Natural 
Product Reports 2001, 18 (4), 380-416. 
13. Horsman, M. E.; Hari, T. P.; Boddy, C. N., Polyketide synthase and non-ribosomal peptide 
synthetase thioesterase selectivity: logic gate or a victim of fate? Nat Prod Rep 2016, 33 (2), 183-
202. 
14. Hertweck, C.; Luzhetskyy, A.; Rebets, Y.; Bechthold, A., Type II polyketide synthases: 
gaining a deeper insight into enzymatic teamwork. Natural Product Reports 2007, 24 (1), 162-
190. 
15. Shimizu, Y.; Ogata, H.; Goto, S., Type III Polyketide Synthases: Functional Classification 
and Phylogenomics. Chembiochem 2017, 18 (1), 50-65. 
16. Weissman, K. J., Uncovering the structures of modular polyketide synthases. Natural 
Product Reports 2015, 32 (3), 436-453. 
17. Weissman, K. J., The structural biology of biosynthetic megaenzymes. Nature Chemical 
Biology 2015, 11 (9), 660-670. 
18. Buchholz, T. J.; Geders, T. W.; Bartley, F. L.; Reynolds, K. A.; Smith, J. L.; Sherman, D. 
H., Structural Basis for Binding Specificity between Subclasses of Modular Polyketide Synthase 
Docking Domains. ACS chemical biology 2009, 4 (1), 41-52. 
19. Walsh, C. T., Insights into the chemical logic and enzymatic machinery of NRPS assembly 
lines. Nat Prod Rep 2016, 33 (2), 127-35. 
20. Cane, D. E.; Walsh, C. T., The parallel and convergent universes of polyketide synthases 
and nonribosomal peptide synthetases. Chem Biol 1999, 6 (12), R319-R325. 



 14 

21. Olano, C.; Mendez, C.; Salas, J. A., Post-PKS tailoring steps in natural product-producing 
actinomycetes from the perspective of combinatorial biosynthesis. Natural Product Reports 2010, 
27 (4), 571-616. 
22. Rix, U.; Fischer, C.; Remsing, L. L.; Rohr, J., Modification of post-PKS tailoring steps 
through combinatorial biosynthesis. Natural Product Reports 2002, 19 (5), 542-580. 
23. Katz, L.; Ashley, G. W., Translation and protein synthesis: Macrolides. Chem Rev 2005, 
105 (2), 499-527. 
24. Hirama, M.; Oishi, T.; Uehara, H.; Inoue, M.; Maruyama, M.; Guri, H.; Satake, M., Total 
synthesis of ciguatoxin CTX3C. Science 2001, 294 (5548), 1904-1907. 
25. Zweig, J. E.; Kim, D. E.; Newhouse, T. R., Methods Utilizing First-Row Transition Metals 
in Natural Product Total Synthesis. Chem Rev 2017, 117 (18), 11680-11752. 
26. Andrushko, V.; Andrushko, N.; ProQuest (Firm), Stereoselective synthesis of drugs and 
natural products. Wiley: Hoboken, N.J., 2013; p. 2 v. in 1. 
https://ebookcentral.proquest.com/lib/umichigan/detail.action?docID=1435995. 
27. Wender, P. A., Toward the ideal synthesis and molecular function through synthesis-
informed design. Natural Product Reports 2014, 31 (4), 433-440. 
28. Twelves, C.; Cortes, J.; Vahdat, L. T.; Wanders, J.; Akerele, C.; Kaufman, P. A., Phase III 
Trials of Eribulin Mesylate (E7389) in Extensively Pretreated Patients With Locally Recurrent or 
Metastatic Breast Cancer. Clin Breast Cancer 2010, 10 (2), 160-163. 
29. Cortes, J.; Vahdat, L.; Blum, J. L.; Twelves, C.; Campone, M.; Roche, H.; Bachelot, T.; 
Awada, A.; Paridaens, R.; Goncalves, A.; Shuster, D. E.; Wanders, J.; Fang, F.; Gurnani, R.; 
Richmond, E.; Cole, P. E.; Ashworth, S.; Allison, M. A., Phase II Study of the Halichondrin B 
Analog Eribulin Mesylate in Patients With Locally Advanced or Metastatic Breast Cancer 
Previously Treated With an Anthracycline, a Taxane, and Capecitabine. J Clin Oncol 2010, 28 
(25), 3922-3928. 
30. Yu, M. J.; Zheng, W. J.; Seletsky, B. M., From micrograms to grams: scale-up synthesis 
of eribulin mesylate. Natural Product Reports 2013, 30 (9), 1158-1164. 
31. Chase, C. E.; Fang, F. G.; Lewis, B. M.; Wilkie, G. D.; Schnaderbeck, M. J.; Zhu, X. J., 
Process Development of Halaven (R): Synthesis of the C1-C13 Fragment from D-(-)-Gulono-1,4-
lactone. Synlett 2013, 24 (3), 323-326. 
32. Austad, B. C.; Calkins, T. L.; Chase, C. E.; Fang, F. G.; Horstmann, T. E.; Hu, Y. B.; 
Lewis, B. M.; Niu, X.; Noland, T. A.; Orr, J. D.; Schnaderbeck, M. J.; Zhang, H. M.; Asakawa, 
N.; Asai, N.; Chiba, H.; Hasebe, T.; Hoshino, Y.; Ishizuka, H.; Kajima, T.; Kayano, A.; Komatsu, 
Y.; Kubota, M.; Kuroda, H.; Miyazawa, M.; Tagami, K.; Watanabeb, T., Commercial Manufacture 
of Halaven (R): Chemoselective Transformations En Route to Structurally Complex Macrocyclic 
Ketones. Synlett 2013, 24 (3), 333-337. 
33. Austad, B. C.; Benayoud, F.; Calkins, T. L.; Campagna, S.; Chase, C. E.; Choi, H. W.; 
Christ, W.; Costanzo, R.; Cutter, J.; Endo, A.; Fang, F. G.; Hu, Y. B.; Lewis, B. M.; Lewis, M. D.; 
McKenna, S.; Noland, T. A.; Orr, J. D.; Pesant, M.; Schnaderbeck, M. J.; Wilkie, G. D.; Abe, T.; 
Asai, N.; Asai, Y.; Kayano, A.; Kimoto, Y.; Komatsu, Y.; Kubota, M.; Kuroda, H.; Mizuno, M.; 
Nakamura, T.; Omae, T.; Ozeki, N.; Suzuki, T.; Takigawa, T.; Watanabe, T.; Yoshizawab, K., 
Process Development of Halaven (R): Synthesis of the C14-C35 Fragment via Iterative Nozaki-
Hiyama-Kishi Reaction-Williamson Ether Cyclization. Synlett 2013, 24 (3), 327-332. 
34. Newman, D. J., Developing natural product drugs: Supply problems and how they have 
been overcome. Pharmacol Therapeut 2016, 162, 1-9. 



 15 

35. Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Auyeung, B. W.; 
Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chenevert, R. B.; Fliri, A.; Frobel, K.; Gais, 
H. J.; Garratt, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. 
A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.; Kojima, K.; Krowicki, K.; Lee, V. J.; Leutert, 
T.; Malchenko, S.; Martens, J.; Matthews, R. S.; Ong, B. S.; Press, J. B.; Rajanbabu, T. V.; 
Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.; Truesdale, E. A.; Uchida, I.; 
Ueda, Y.; Uyehara, T.; Vasella, A. T.; Vladuchick, W. C.; Wade, P. A.; Williams, R. M.; Wong, 
H. N. C., Asymmetric Total Synthesis of Erythromycin .3. Total Synthesis of Erythromycin. J Am 
Chem Soc 1981, 103 (11), 3215-3217. 
36. Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Auyeung, B. W.; 
Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chenevert, R. B.; Fliri, A.; Frobel, K.; Gais, 
H. J.; Garratt, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. 
A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.; Kojima, K.; Krowicki, K.; Lee, V. J.; Leutert, 
T.; Malchenko, S.; Martens, J.; Matthews, R. S.; Ong, B. S.; Press, J. B.; Rajanbabu, T. V.; 
Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.; Truesdale, E. A.; Uchida, I.; 
Ueda, Y.; Uyehara, T.; Vasella, A. T.; Vladuchick, W. C.; Wade, P. A.; Williams, R. M.; Wong, 
H. N. C., Asymmetric Total Synthesis of Erythromycin .2. Synthesis of an Erythronolide a Lactone 
System. J Am Chem Soc 1981, 103 (11), 3213-3215. 
37. Woodward, R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Auyeung, B. W.; 
Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H.; Chenevert, R. B.; Fliri, A.; Frobel, K.; Gais, 
H. J.; Garratt, D. G.; Hayakawa, K.; Heggie, W.; Hesson, D. P.; Hoppe, D.; Hoppe, I.; Hyatt, J. 
A.; Ikeda, D.; Jacobi, P. A.; Kim, K. S.; Kobuke, Y.; Kojima, K.; Krowicki, K.; Lee, V. J.; Leutert, 
T.; Malchenko, S.; Martens, J.; Matthews, R. S.; Ong, B. S.; Press, J. B.; Rajanbabu, T. V.; 
Rousseau, G.; Sauter, H. M.; Suzuki, M.; Tatsuta, K.; Tolbert, L. M.; Truesdale, E. A.; Uchida, I.; 
Ueda, Y.; Uyehara, T.; Vasella, A. T.; Vladuchick, W. C.; Wade, P. A.; Williams, R. M.; Wong, 
H. N. C., Asymmetric Total Synthesis of Erythromycin .1. Synthesis of an Erythronolide a Seco 
Acid-Derivative Via Asymmetric Induction. J Am Chem Soc 1981, 103 (11), 3210-3213. 
38. Fernandes, P.; Martens, E.; Pereira, D., Nature nurtures the design of new semi-synthetic 
macrolide antibiotics. J Antibiot 2017, 70 (5), 527-533. 
39. Wani, M. C.; Horwitz, S. B., Nature as a remarkable chemist: a personal story of the 
discovery and development of Taxol. Anti-Cancer Drug 2014, 25 (5), 482-487. 
40. Clouthier, C. M.; Pelletier, J. N., Expanding the organic toolbox: a guide to integrating 
biocatalysis in synthesis. Chem Soc Rev 2012, 41 (4), 1585-1605. 
41. Donadio, S.; Sosio, M., Strategies for combinatorial biosynthesis with modular polyketide 
synthases. Comb Chem High Throughput Screen 2003, 6 (6), 489-500. 
42. Floss, H. G., Combinatorial biosynthesis - Potential and problems. J Biotechnol 2006, 124 
(1), 242-257. 
43. Sun, H. H.; Liu, Z. H.; Zhao, H. M.; Ang, E. L., Recent advances in combinatorial 
biosynthesis for drug discovery. Drug Des Dev Ther 2015, 9, 823-833. 
44. Weissman, K. J., Genetic engineering of modular PKSs: from combinatorial biosynthesis 
to synthetic biology. Nat Prod Rep 2016, 33 (2), 203-30. 
45. Kreutzer, M. F.; Kage, H.; Herrmann, J.; Pauly, J.; Hermenau, R.; Muller, R.; Hoffmeister, 
D.; Nett, M., Precursor-directed biosynthesis of micacocidin derivatives with activity against 
Mycoplasma pneumoniae. Organic & Biomolecular Chemistry 2014, 12 (1), 113-118. 
46. Sheehan, L. S.; Lill, R. E.; Wilkinson, B.; Sheridan, R. M.; Vousden, W. A.; Kaja, A. L.; 
Crouse, G. D.; Gifford, J.; Graupner, P. R.; Karr, L.; Lewer, P.; Sparks, T. C.; Leadlay, P. F.; 



 16 

Waldron, C.; Martin, C. J., Engineering of the spinosyn PKS: Directing starter unit incorporation. 
Journal of natural products 2006, 69 (12), 1702-1710. 
47. Boddy, C. N.; Hotta, K.; Tse, M. L.; Watts, R. E.; Khosla, C., Precursor-directed 
biosynthesis of epothilone in Escherichia coli. J Am Chem Soc 2004, 126 (24), 7436-7437. 
48. Cane, D. E.; Kudo, F.; Kinoshita, K.; Khosla, C., Precursor-directed biosynthesis: 
Biochemical basis of the remarkable selectivity of the erythromycin polyketide synthase toward 
unsaturated triketides. Chem Biol 2002, 9 (1), 131-142. 
49. Donadio, S.; Mcalpine, J. B.; Sheldon, P. J.; Jackson, M.; Katz, L., An Erythromycin 
Analog Produced by Reprogramming of Polyketide Synthesis. P Natl Acad Sci USA 1993, 90 (15), 
7119-7123. 
50. Leaf, T.; Cadapan, L.; Carreras, C.; Regentin, R.; Ou, S.; Woo, E.; Ashley, G.; Licari, P., 
Precursor-directed biosynthesis of 6-deoxyerythronolide B analogs in Streptomyces coelicolor: 
understanding precursor effects. Biotechnol Prog 2000, 16 (4), 553-6. 
51. Bravo-Rodriguez, K.; Ismail-Ali, A. F.; Klopries, S.; Kushnir, S.; Ismail, S.; Fansa, E. K.; 
Wittinghofer, A.; Schulz, F.; Sanchez-Garcia, E., Predicted Incorporation of Non-native Substrates 
by a Polyketide Synthase Yields Bioactive Natural Product Derivatives. Chembiochem 2014, 15 
(13), 1991-1997. 
52. Harvey, C. J. B.; Puglisi, J. D.; Pande, V. S.; Cane, D. E.; Khosla, C., Precursor Directed 
Biosynthesis of an Orthogonally Functional Erythromycin Analogue: Selectivity in the Ribosome 
Macrolide Binding Pocket. J Am Chem Soc 2012, 134 (29), 12259-12265. 
53. Hertweck, C., Decoding and reprogramming complex polyketide assembly lines: prospects 
for synthetic biology. Trends Biochem Sci 2015, 40 (4), 189-199. 
54. Winn, M.; Fyans, J. K.; Zhuo, Y.; Micklefield, J., Recent advances in engineering 
nonribosomal peptide assembly lines. Natural Product Reports 2016, 33 (2), 317-347. 
55. McDaniel, R.; Thamchaipenet, A.; Gustafsson, C.; Fu, H.; Betlach, M.; Betlach, M.; 
Ashley, G., Multiple genetic modifications of the erythromycin polyketide synthase to produce a 
library of novel "unnatural" natural products. P Natl Acad Sci USA 1999, 96 (5), 1846-1851. 
56. Nguyen, K. T.; He, X. W.; Alexander, D. C.; Li, C.; Gu, J. Q.; Mascio, C.; Van Praagh, A.; 
Mortin, L.; Chu, M.; Silverman, J. A.; Brian, P.; Baltz, R. H., Genetically Engineered Lipopeptide 
Antibiotics Related to A54145 and Daptomycin with Improved Properties. Antimicrob Agents Ch 
2010, 54 (4), 1404-1413. 
57. Doekel, S.; Gal, M. F. C. L.; Gu, J. Q.; Chu, M.; Baltz, R. H.; Brian, P., Non-ribosomal 
peptide synthetase module fusions to produce derivatives of daptomycin in Streptomyces 
roseosporus. Microbiol-Sgm 2008, 154, 2872-2880. 
58. Baltz, R. H.; Miao, V.; Wrigley, S. K., Natural products to drugs: daptomycin and related 
lipopeptide antibiotics. Natural Product Reports 2005, 22 (6), 717-741. 
59. Zhang, K.; Nelson, K. M.; Bhuripanyo, K.; Grimes, K. D.; Zhao, B.; Aldrich, C. C.; Yin, 
J., Engineering the Substrate Specificity of the DhbE Adenylation Domain by Yeast Cell Surface 
Display. Chem Biol 2013, 20 (1), 92-101. 
60. Thirlway, J.; Lewis, R.; Nunns, L.; Al Nakeeb, M.; Styles, M.; Struck, A. W.; Smith, C. 
P.; Micklefield, J., Introduction of a Non-Natural Amino Acid into a Nonribosomal Peptide 
Antibiotic by Modification of Adenylation Domain Specificity. Angew Chem Int Edit 2012, 51 
(29), 7181-7184. 
61. Evans, B. S.; Chen, Y. Q.; Metcalf, W. W.; Zhao, H. M.; Kelleher, N. L., Directed 
Evolution of the Nonribosomal Peptide Synthetase AdmK Generates New Andrimid Derivatives 
In Vivo. Chem Biol 2011, 18 (5), 601-607. 



 17 

62. Fischbach, M. A.; Lai, J. R.; Roche, E. D.; Walsh, C. T.; Liu, D. R., Directed evolution can 
rapidly improve the activity of chimeric assembly-line enzymes. P Natl Acad Sci USA 2007, 104 
(29), 11951-11956. 
63. Walker, M. C.; Thuronyi, B. W.; Charkoudian, L. K.; Lowry, B.; Khosla, C.; Chang, M. 
C. Y., Expanding the Fluorine Chemistry of Living Systems Using Engineered Polyketide 
Synthase Pathways. Science 2013, 341 (6150), 1089-1094. 
64. Kushnir, S.; Sundermann, U.; Yahiaoui, S.; Brockmeyer, A.; Janning, P.; Schulz, F., 
Minimally Invasive Mutagenesis Gives Rise to a Biosynthetic Polyketide Library. Angew Chem 
Int Edit 2012, 51 (42), 10664-10669. 
65. Shinde, P. B.; Han, A. R.; Cho, J.; Lee, S. R.; Ban, Y. H.; Yoo, Y. J.; Kim, E. J.; Kim, E.; 
Song, M. C.; Park, J. W.; Lee, D. G.; Yoon, Y. J., Combinatorial biosynthesis and antibacterial 
evaluation of glycosylated derivatives of 12-membered macrolide antibiotic YC-17. J Biotechnol 
2013, 168 (2), 142-148. 
66. Nunez, L. E.; Nybo, S. E.; Gonzalez-Sabin, J.; Perez, M.; Menendez, N.; Brana, A. F.; 
Shaaban, K. A.; He, M.; Moris, F.; Salas, J. A.; Rohr, J.; Mendez, C., A Novel Mithramycin 
Analogue with High Antitumor Activity and Less Toxicity Generated by Combinatorial 
Biosynthesis. Journal of medicinal chemistry 2012, 55 (12), 5813-5825. 
67. Han, A. R.; Shinde, P. B.; Park, J. W.; Cho, J.; Lee, S. R.; Ban, Y. H.; Yoo, Y. J.; Kim, E. 
J.; Kim, E.; Park, S. R.; Kim, B. G.; Lee, D. G.; Yoon, Y. J., Engineered biosynthesis of 
glycosylated derivatives of narbomycin and evaluation of their antibacterial activities. Appl 
Microbiol Biot 2012, 93 (3), 1147-1156. 
68. Shepherd, M. D.; Liu, T.; Mendez, C.; Salas, J. A.; Rohr, J., Engineered Biosynthesis of 
Gilvocarcin Analogues with Altered Deoxyhexopyranose Moieties. Appl Environ Microb 2011, 
77 (2), 435-441. 
69. Han, A. R.; Park, J. W.; Lee, M. K.; Ban, Y. H.; Yoo, Y. J.; Kim, E. J.; Kim, E.; Kim, B. 
G.; Sohng, J. K.; Yoon, Y. J., Development of a Streptomyces venezuelae-Based Combinatorial 
Biosynthetic System for the Production of Glycosylated Derivatives of Doxorubicin and Its 
Biosynthetic Intermediates. Appl Environ Microb 2011, 77 (14), 4912-4923. 
70. Jung, W. S.; Han, A. R.; Hong, J. S. J.; Park, S. R.; Choi, C. Y.; Park, J. W.; Yoon, Y. J., 
Bioconversion of 12-, 14-, and 16-membered ring aglycones to glycosylated macrolides in an 
engineered strain of Streptomyces venezuelae. Appl Microbiol Biot 2007, 76 (6), 1373-1381. 
71. Jung, W. S.; Lee, S. K.; Hong, J. S. J.; Park, S. R.; Jeong, S. J.; Han, A. R.; Sohng, J. K.; 
Kim, B. G.; Choi, C. Y.; Sherman, D. H.; Yoon, Y. J., Heterologous expression of tylosin 
polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. 
Appl Microbiol Biot 2006, 72 (4), 763-769. 

 



 

 18 

 

 

 

Chapter 2 

Chemoenzymatic Synthesis of Cryptophycin Anti-Cancer Agents 

 
2.1 Introduction to the Cryptophycin Family of Natural Products  

2.1.1 Cryptophycin Discovery 

The cryptophycins are a family of macrocyclic natural products produced by a lichen 

symbiotic cyanobacteria of the genus Nostoc sp ATCC 53789. These compounds were originally 

isolated in 1990 by researchers at Merck as a part of their algae screening program.1 The main 

isolate, later termed cryptophycin 1 (Figure 2.1), was determined to have exceptionally potent 

antifungal properties, specifically against its namesake Cryptococcus fungi, but was not pursued 

as a potential lead due to systemic toxicity seen in mice. In 1992, cryptophycin 1 was rediscovered 

in a related cyanobacteria Nostoc sp GSV 224 by Moore et al. as a potent antiproliferative agent .2 

A close analogue of cryptophycin 1, arenastatin A (later renamed cryptophycin 24) was also 

discovered in the same year from an Okinowan marine sponge Dysidea arenaria and is proposed 

to be biosynthesized by a cyanobacterial symbiont.3 Over the next 10 years, over 25 naturally 

occurring analogues of cryptophycin were isolated from GSV 224 including different chlorination 

 
 
Figure 2.1: Select cryptophycin analogues produced by the Lichen symbiont Nostoc.  
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events, altered amino acids, as well as some variability in the PKS produced a/b unsaturated 

amide.4-6 All naturally occurring cryptophycins are described by subdividing them into 4 units that 

form the 16-membered core macrolactone; unit A a hydroxy-phenyloctenoic acid moiety, unit B 

a 3-chloro-O-methyl tyrosine, unit C a methyl-b-alanine, and unit D a leucic acid seen in Figure 

2.1.  

 

2.1. Introduction to the Cryptophycin Family of Natural Products  

2.1.2 Mechanism of Action for Cryptophycin Anticancer Agents   

Many of the isolated cryptophycins display potent antiproliferative activity with the major 

isolate, cryptophycin 1 containing low picomolar activity. More exciting was the marked potency 

seen against drug resistant cancers including p-glycoprotein (PGP) and multiple drug resistant 

protein (MRP) expressing cell lines.6-7 More in-depth studies into the mechanism of action of the 

cryptophycin has shown that it is an antimitotic, which specifically bind b tubulin leading to 

apoptosis and cell death. Tubulin is a hetero-dimeric protein comprised of 2 subunits, a and b 

(Figure 2.2, B), which associate and polymerize to formulate microtubules.8 The majority of anti-

mitotic agents bind to the b subunit of tubulin including the taxanes, vinca alkaloids, colchecine, 

and epothilone anticancer agents (Figure 2.2, A).9 The vinca alkalods and colchicine bind in 

distinctive sites named after these specific agents (the vinca site and the colchicine site shown in 

green and purple in Figure 2.2 C)10-11 and prevent the polymerization of tubulin. The taxanes and 

epothilone natural products also bind distinct site on b tubulin (the taxane site, shown in blue and 

yellow, Figure 2.2 C)12-13 and are known to operate by the opposite mechanism, promoting 

microtubule polymerization and further stabilizing them.14 Ultimately both modes of action cause 

altered microtubule dynamics which results in an inability to undergo effective mitosis and 

ultimately cell death.  

Despite the interest in cryptophycins as antimitotic, there are no crystal structures of b 

tubulin with cryptophycin bound leaving the exact site and mode of binding unclear. Biochemical 

assays along with computational methods have shed light on both the likely binding site as well as 

the orientation. Cryptophycins were determined to bind b tubulin and have a similar mechanism 

of action as the vinca alkaloids and colchicine in that they destabilize microtubules.15-17 

Competition assays with the afore mentioned microtubule binding agents taxol, colchicine, and 
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vinblastine show non-competitive inhibition with only vinblastine indicating the binding site 

overlaps with the vinca site.18-21 This is further supported by molecular dynamics and molecular 

docking experiments that identified a common binding site of multiple known depsipeptides 

natural products including the cryptophycins, termed the “peptide site”.22 Early hypotheses on the 

mode of binding included a covalent linkage through the epoxide group seen on unit A. A 

combination of synthetic analogues and biochemical assays have mostly disproven this theory. 

Cryptophycins containing other acceptor functionalities including enones, ynones and allylic 

electrophiles were all not active.23 Additionally, biochemical work that shows intact cryptophycin 

could be recovered from its tubulin complex upon denaturation.24All of these experiments indicate 

that most likely, the epoxide does not undergo a covalent modification upon binding to b tubulin 

and is likely a mixture of hydrophobic and electrostatic interactions.  

2.1.3 Structure Activity Relationship of Cryptophycin Anticancer Agents  

Aside from the many natural analogues of cryptophycin that were isolated, hundreds of 

synthetic analogues have been reported the majority of which were synthesized by Eli Lilly.25-43 

 
 
Figure 2.2 Common microtubule binding agents: (A) subdivided by mechanism of action. B Cartoon 
of tubulin assembly by the association of the a/b tubulin dimers. C The binding sites of A on b tubulin 
(C). The binding sites of Taxol and Epothilone somewhat overlap and stabilize microtubules whereas 
Vinblastine and Colchicine bind distinct sites and act by the opposite mechanism, destabilizing the 
microtubules.  
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These analogues have given a distinct understanding of the functional groups that are important 

for biological activity, a summary of which can be seen in Figure 2.3.  The unit A aryl group 

tolerates methyl group substituents as well as some larger amine containing groups in the para 

position, although substituting the benzene ring with a thiophene or a furan ring showed a 1000-

fold decrease in potency.14, 44 The R,R configuration of the unit A epoxide group is far superior to 

that of the S,S as well as the styrene, again showing 1000 fold decrease in potency.45-46 Replacing 

the epoxide with a chlorhydrin, cryptophycin 55 (Figure 2.1) was equally as potent as the native 

b epoxide as it spontaneously reforms this moiety in water. Many substitution patterns have been 

investigated in unit B, however without exception all caused a decrease in potency, including the 

necessity for the uncommon D-tyrosine stereochemistry.6, 45, 47 The b amino acid seen in unit C 

was necessary for the active conformation and larger substitutions off either the a or b position of 

this unit were detrimental to activity.30-31 A geminal dimethyl group introduced at the a position 

was tolerated fairly well and was later termed cryptophycin 52 (Figure 2.1), and used for the 

subsequent clinical trials. This small change imparted more stability to the ester bond between 

unit’s C and D as well as removed a stereocenter that was costly to generate synthetically. Unit D, 

which has some flexibility within the biosynthesis, tolerates changes to sec-butyl and n-propyl 

groups from the isobutyl without deleterious effects to potency.6 Interestingly, the stereochemistry 

may not be important in this region as an analogue with the inverted (R) stereochemistry appears 

to be equipotent as its (S) counterpart.41 

 
 
 
Figure 2.3 Generalized schematic of Cryptophycin SAR.  
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Out of all the synthetic analogues generated, one that contained a geminal dimethyl in unit C 

(cryptophycin 52, LY355703) was determined to be the best candidate for clinical trials by Eli 

Lilly.30 This modification protected the ester bond between unit’s C and D from degradation as 

well as simplified the synthesis. Cryptophycin 52 (LY355703) entered into clinical trials for non-

small cell lung cancer as well as platinum resistant ovarian cancer, but failed out of phase 2 due to 

reversible dose limiting peripheral neuropathy as well as only modest in vivo efficacy with the 

dosing schedule utilized.48-50 Despite these failures, both studies indicated that alternative 

analogues or dosing schedules could greatly affect the outcomes and should be further investigated 

especially for difficult to treat, resistant cancers. 

2.1.4 Cryptophycins as Antibody Drug Conjugate Warheads 

 Recently, the incredible potency of cryptophycins has generated interest in them as 

antibody drug conjugate (ADC) warheads. Sanofi was the first to investigate these using both 

cleavable and non-cleavable linkers to connect the benzyl amine containing cryptophycin with an 

hu2H11 antibody.51-52 Genentech has also utilized a similar strategy to conjugate cryptophycin to 

their antibody that targets HER2 and CD22 receptors.53 These have shown some promise for target 

antigen expressing cells.  

2.1.5 Biosynthetic Assembly of Cryptophycins  

The continued interest in cryptophycins as well as the complexity of this molecule and the 

difficulties formulating it, led to investigations into its biosynthesis, and potentially the use of 

discrete enzymes as biocatalysts for the production of novel analogues. The cryptophycins are 

biosynthesized by a mixed PKS/NRPS system (Figure 2.4). Unit A is believed to be initiated by 

an unusual NRPS loading domain that incorporates a phenylalanine which is then deaminated to 

produce a cinnamyl group.54 Feeding experiments previously reported by Magarvey et al. indicate 

that this is not the starter unit picked up by the first PKS module in the cryptophycin pathway, as 

there is a lack of deuterium present when the organism is supplemented with [2H8]phenylalanine.55 

It likely undergoes a single carbon truncation to give the phenyl acetyl group, which is then loaded 

and processed by the rest of the cryptophycin biosynthetic pathway.54 From here the full length 

unit A is extended via the condensation of three malonyl extender units by the Crp A and B PKS 

modules,55 with an s-adenosyl methionine (SAM) dependent methylation at C6,54 completing the 

unit A biosynthesis.  
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Once the PKS intermediate is formulated, it is passed off to the NRPS portion of the 

biosynthetic pathway, CrpC and CrpD. CrpC is a monomodular NRPS domain that contains an O-

methyl transferase which is capable of methylating the tyrosine residue. This tyrosine residue is 

further modified by CrpH, a Flavin dependent halogenase, that is responsible for the chlorination 

event, however it is unclear if this enzyme acts on the full length substrate or the tyrosine prior to 

incorporation. Next it is passed to the bimodular CrpD which first incorporates a methyl-b-alanine, 

derived from aspartate. Finally, CrpD module 2 incorporates an a-hydroxyisocaprioic acid moiety 

derived from leucine to produce the full length chain elongation intermediate. This is then passed 

to the third portion of CrpD, the thioesterase which is responsible for the formulation of the 

macrocyclic core by facilitating intramolecular attack of the unit A hydroxyl.55 This is further 

tailored by the CrpE, a heme containing P450 responsible for the installation of the b epoxy group 

on unit A from molecular oxygen.56 Each of the above modules has been shown to contain some 

inherent flexibility for unnatural substrates as is evident by the large size of this family (over 25 

members). This feature presents a unique opportunity to leverage some of the enzymes within this 

 
 
Figure 2.4 Biosynthetic Pathway of the mixed PKS/NRPS natural product cryptophycin.  
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pathway for use in a biocatalytic syntheses of not only the native molecules, but structural 

analogues that could combat some of the shortcomings seen in clinical trials.  

Thioesterases contain a serine, histidine, and aspartic acid catalytic triad that are able to 

accept upstream intermediates and effect macrocyclization. The linear chain elongation 

intermediate is passed from the upstream PKS or NRPS module via the peptidyl or acyl carrier 

protein by a prosthetic group known as the phosphopantatheine (Ppant) arm (Figure 2.5).57 

Nucleophilic attach by the serine hydroxyl on substrate bound Ppant arm, creates a tetrahedral 

intermediate stabilized by the area of the TE known as the oxanion hole. Loss of the Ppant arm 

then generates the acyl-TE intermediate and a free carrier protein. Within the TE active site the 

intramolecular hydroxyl is folded back in towards the ester bond, and nucleophilic attack causes 

macrocyclic offloading of the product (Figure 2.5).58 

In a previous study, we demonstrated that excised CrpTE is able to catalyze facile 

cyclization of native and modified substrates to formulate cryptophycin 3, 51 (Figure 2.1) and an 

unnatural cryptophycin containing a terminal olefin in unit A, originally synthesized as LY404291 

at Eli Lilly.59 This work indicated that the CrpTE’s inherent flexibility may render it an effective 

biocatalyst for the production of novel cryptophycin analogues. This was further supported by 

investigations into the Crp D-M2 NRPS module which further showed the ability of the CrpTE to 

accept unnatural amino acids for unit D, an unusual result as often the site of ring closure is very 

sensitive to amino acid changes.60  In order to continue to interrogate the CrpTE as well as explore 

some under-represented areas of cryptophycin SAR, we embarked on an effort to synthesize a 

series of novel cryptophycin chain elongation intermediates. Heterocyclic unit A analogues were 

designed to probe the CrpTE substrate tolerance, as well as produce analogues that may address 

 
 
Figure 2.5 Generalized schematic of a Thioesterase mechanism. The upstream carrier protein (CP) 
delivers the growing chain to the active site serine of the thioesterase. A deprotonation event, 
facilitated by the histidine and aspartic acid (catalytic triad) allows for nucleophilic transfer of the 
chain elongation intermediate. The histidine is then responsible for coordinating the intramolecular 
hydroxyl and facilitating cyclization 
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some of major shortcomings identified in clinical trials, including dose limiting peripheral 

neuropathy and broad in vivo efficacy.48, 50  

 

2.2 Synthesis of seco cryptophycin analogues  

In order to test the flexibility of the CrpTE towards unnatural unit A aryl groups, we needed 

to devise a scalable synthesis of the seco cryptophycin intermediate containing an N-acetyl 

cysteamine (NAc) on unit D that is used as a recognition element by the TE. A synthesis of the 

native chain and the unit C gem dimethyl chain elongation intermediates had been reported 

previously59 as well as a diversifiable unit A synthesis61 that took advantage of crotylation 

chemistry to set the stereocenters seen in unit A. Initial analogues made use of this strategy 

unfortunately, low yields and scalability issues prompted us to investigate alternative strategies 

that would be more amenable to the larger scale formulation.  

Retrosynthetically, the linear chain elongation intermediate can be disconnected through 

the ester and amide bonds present between units A, B, C, and D as well as through the double bond 

of the a/b unsaturated amide present in unit A. In order to avoid peptide coupling between unit A 

and unit B that has been plagued with difficulties, analogues were synthesized using two key 

intermediates, a boronic ester containing unit AB and unit CD-NAc (Figure 2.6). Further 

disjoining units AB can be accomplished with a Horner Wadsworth Emmons olefination (HWE) 

olefination between the modified tyrosine (unit B) and a boronic ester containing unit A in order 

to take advantage of a late stage Suzuki coupling strategy reported by Bolduc et al.61 to diversify 

the aryl group. Unit A can be further disconnected by a single aldol reaction which set the (2R, 3S) 

 
 

Figure 2.6 Retrosynthetic analysis of seco cryptophycin chain elongation intermediate. This 
highlights the main disconnections including final peptide coupling between Units AB and Units CD, 
Suzuki coupling for aryl ring diversification, HWE for formulation of Unit AB, and an aldol 
responsible for setting the C6 and C7 stereocenters. 
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stereochemistry seen. Units’ CD-NAc can be formulated via peptide coupling of commercially 

available starting materials (Figure 2.5).   

2.2.1 Synthesis of Cryptophycin Unit AB Fragment 

Towards that end, unit A was synthesized using an Evans asymmetric aldol with N-

crotonyl oxazolidinone 2.1 and aldehyde 2.2, which proceeded in excellent yields with a high dr 

(>20:1) to afford the desired (2R, 3S) adduct 2.3. Subsequent silation with TBS 

trifluoromethanesulfonate and reductive cleavage of the chiral auxiliary afforded alcohol 2.4.39 

Tosylation and consecutive reductive deoxygenation was next investigated. Reduction of the 

corresponding tosylate proved difficult, however a screen of reducing reagents saw the best results 

with lithium triethylborohydride which produced the desired intermediate 2.6 in 85% yield.62 At 

this stage a pinacol boronic ester (2.7) was introduced via Hoveyda-Grubbs cross metathesis for 

use as a Suzuki handle for later diversification.61 Removal of the PMB protecting group of 2.8 

with DDQ and subsequent Des Martin Periodinane (DMP) oxidation to 2.9 furnished the unit A 

aldehyde fragment necessary for the HWE olefination (Scheme 2.1).63  

The phosphonate partner 2.12 (Scheme 2.2) was synthesized via Boc deprotection of 

previously described 2.10 with 4 M HCl/Dioxane and subsequent coupling with 

diethylphosphonoacetic acid (2.11) and EDC. From here conditions for the HWE olefination were 

explored. The best results were seen with sodium hydride in THF, which yielded diversifiable unit 

 
 
Scheme 2.1 Synthesis of unit A. Formation of unit A 18 from crotonyl alkylated Evans auxiliary 9, 
incorporating the use of a pinacol boronic ester for use as a Suzuki handle in late stage diversification.  
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AB fragment 2.13 in a 63% yield of the correct isomer (80% overall yield, with ~ 5:1 E:Z product 

dispersion).  

2.2.2 Formulation of Unit CD Fragment  

Unit CD-NAc was readily synthesized from commercially available leucic acid 2.15 and 

methyl-b-alanine 2.17 (Dimethyl unit C 2.18, see section 2.3.3, Scheme 2.3). Initial benzyl 

protection of leucic acid and subsequent coupling with b-amino acids 15 or 16 produced the 

desired ester, which could be readily deprotected via hydrogenolysis to furnish the desired acids 

2.21 or 2.22.64 These were coupled with NAc to yield Units CD.  

2.2.3 Assembly of Seco-Cryptophycin Chain Elongation Intermediate and Suzuki Diversification 

 
 
Scheme 2.2 Synthesis of unit AB. Formation of diversifiable units AB 22 from unit A (18) and unit B 
phosphonate adduct (21) mediated by a Horner Wadsworth Emmons (HWE) reaction. Successive 
Suzuki coupling produced the desired unit AB analogues 2.14 a-m.  
 

 
 
Scheme 2.3 Synthesis of unit CD. Formation of native unit CD fragment and dimethyl version from 
leucic acid and either b-homo-alanine or the dimethyl variant 2.18 
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With diversifiable substrates 2.13 in hand, coupling with 2.23 and successive Suzuki 

diversification were investigated. A screen of palladium catalysts as well as bases and solvents 

yielded no conditions that successfully produced cross coupling in moderate to high yields without 

racemization or degradation of the NAc thioester. With these results, Suzuki coupling prior to the 

final peptide coupling was investigated. Another screen of palladium catalysts and solvents yielded 

Pd2(dba)3 with K3PO4 in dimethyoxy ethane and water at reflux as the highest yielding, however 

racemization was still observed. By running this at room temperature for 12 hours, racemization 

was completely abolished and we were able to produce a suite of novel unit AB cryptophycin 

analogues 2.14 a-m (Scheme 2.2), in moderate to excellent yields (45 – 92%). Successive 

saponification of the methyl ester to produce 2.25 a-m (Scheme 2.4) also proved to be susceptible 

to racemization and a screen of different hydrolysis procedures yielded trimethyl tin hydroxide 

that provided the desired acids in good yield with no detectable racemization. Subsequent peptide 

coupling on ice produced the TBS protected intermediates with an 8:1 dr (Scheme 2.4).65-66 

Diastereomers were resolved using reverse phase HPLC in order to obtain CrpTE data for the 

native diastereomer only. Finally, deprotection of the silyl group using aqueous HF furnished the 

desired seco cryptophycin NAc analogues (Scheme 2.4, 2.28 a-m).  

 

 
 
Scheme 2.4 Assembly of the seco cryptophycin analogues. unit AB fragments (2.14 a-m) and unit CD 
fragment (2.23 or 2.24) fragments were simultaneously deprotected and carried through to EDC 
coupling without purification. Diastereomers were separated by reverse phase HPLC prior to 
deprotection with HF.  
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2.3 Optimization and Evaluation of seco cryptophycin analogues with CrpTE biocatalyst  

2.3.1 Analytical Scale Evaluation of the CrpTE with Seco Analogues  

With a diversifiable synthesis in hand we began exploring the flexibility of CrpTE against 

the heterocyclic unit A chain elongation intermediates (Scheme 2.4, 2.28 a-m). Initially, 

enzymatic conditions were optimized using the native, benzyl containing intermediate. Initial 

screens utilized the standard 5% DMSO to look at different concentrations of substrate and using 

an arbitrary 0.5 uM of CrpTE catalyst. Screening conditions from 10 uM to 500 uM substrate 

concentration at 3 different temperatures showed that these enzymes are much more efficient at 

elevated temperatures (30 °C or 37 °C) and need to be at lower concentrations. This is likely 

because of the inherent insolubility of the substrates in the reaction media, leading to enzyme 

inaccessibility. In order to keep reaction volumes to the minimum, and to minimize the variability 

seen in the 37 °C reactions, 30 °C and 50 uM was chosen as the optimal substrate concentration 

for analysis (Figure 2.7).  

The initial set of CrpTE analogues contained six membered ring heterocycles in place of 

the native benzene ring (Figure 2.8, 2.28 b-g) were run using the previously optimized conditions. 

Initial analytical scale reactions revealed remarkable turnover to product compared to the native 

benzyl substrate (Figure 2.7, a).  The 2-, 3-, 4-pyridyl and pyrazine (2.28 b, c, e, g) substrates 

 
 
Figure 2.7 Analysis of substrate concentration on % conversion. Conditions include  5% DMSO and 
0.5 uM CrpTE. 
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showed complete turnover of starting material and nearly undetectable levels of hydrolytic bi-

products (Figure 2.8) in contrast to 2.28a, which shows incomplete consumption of starting 

material for an overall conversion of ~ 68%. This is reflected in the % conversion as well as 

cyclization to hydrolysis ratios (Table 2.1), all of which are significantly greater (91 – 96% 

conversion, >10:1 cyclization:hydrolysis ratio) when compared to the native substrate (68% 

conversion, 9:1 cyclization: hydrolysis). It is unclear if this is due to more favorable interactions 

in the binding pocket of the CrpTE, reflecting more productive catalysis or if these heterocyclic 

groups impart improved solubility in the reaction medium making these substrates more accessible 

to the enzyme.  

 
 
Figure 2.8 QTOF-LCMS analysis of seco cryptophycin analogues with the CrpTE, product peaks are 
denoted in blue color and hydrolysis peaks in green.  
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The set of unnatural unit A analogues was expanded to include five membered ring 

aromatic heterocycles with varying alkyl chains. 2-, 3-, and 4-methyl pyrazole (2.28 h-j) were 

formulated and tested in the same analytical assay as previously discussed, utilizing the benzyl 

substrate as standard. The 2-methyl pyrazole (2.28 h) and 3-methyl pyrazole (2.28 i) groups 

showed slightly lower % conversion than the previous six membered rings at 85% and 84% (Table 

2.1). This decrease in conversion was not attributed to nonproductive catalysis (as the hydrolysis 

to cyclization ratios are still above those of the native substrate), but to a lack in substrate 

consumption. Despite these substrates being processed less efficiently than the six membered ring 

 
 
Table 2.1 Comparison of cryptophycin analogues 2.29 a-m percent conversion, isolation yields, and 
cyclization to hydrolysis ratio.  
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analogues, they retain % conversion to product comparable to native substrate reaction catalyzed 

by wild type CrpTE. Interestingly, the 4-methyl pyrazole (2.28 j) showed nearly complete 

conversion to product with essentially no remaining starting material and no hydrolytic 

byproducts. 

  Testing a larger alkyl chain, the 4-isopropyl pyrazole (2.28 l) provided important insight 

into potential size restrictions of the CrpTE binding pocket. Although there is again a very high 

cyclization:hydrolysis ratio (40:1), starting material remained after conclusion of the reaction 

(83% conversion), indicating possible steric constraints within the enzyme. Finally, a dimethyl 

isoxazole substrate was investigated. This substrate showed similar % conversion in comparison 

with the native substrate (Figure 2.8) with a significant amount of starting material remaining.  

2.3.2 Semi-Preparative Scale Enzymatic Reactions, Isolation, and Subsequent Biological 

Evaluation   

All reactions were conducted on semi-preparative scale (using the same conditions as the 

analytical reactions) of 10 mg in order to obtain isolated yields, full structural characterization, 

and biological evaluation. These results corresponded closely with percent conversions observed 

in the analytical reactions. The six membered heterocycles 2.29 b, c, e, and f were isolated in good 

yields from 62 – 66% (Table 1). The five membered rings 2.29 h - 12j, 12i and 12m were also 

isolated in yields that span from 55% for the isoxazole analogue to 69% for the 4-methyl pyrazole 

analogue (Table 1). All novel cryptophycin analogues generated from these chemoenzymatic 

reactions were confirmed by HRMS, 1HNMR, and 13CNMR and subsequently tested for biological 

activity.  

Each of the cryptophycin analogs were assessed for IC50 in HCT-116 human colorectal 

cancer cell line. Previous studies on synthetic cryptophycin analogues containing a thiophene and 

a furan in place of the benzyl ring on unit A showed a marked decrease in activity.67 Our results 

(Table 2) showed significant differences in activities depending on the heterocyclic ring present. 

For the six membered rings, the IC50 values spanned a wide range even within the pyridyl set of 

analogues, varying by three orders of magnitude from the 2.29 c and 2.29 e (0.860 nM and 0.51 

nM, Table 2) to the 2.29 b (102 nM, Table 2). The five membered rings show even larger 

differences in IC50 values spanning almost six orders of magnitude. The inclusion of an isoxazole 

ring (2.29 m) greatly diminished activity, however, the introduction of a 4-methyl pyrazole ring 
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(2.29 j) provided a low pico-molar IC50, making it one of the most potent cryptophycin analogues 

observed to date. The potency observed in the 4-methyl pyrazole cryptophycin derivative has only 

been observed in previously described b-epoxy cryptophycin analogues, which had previously 

demonstrated the requirement of the epoxide functionality to achieve maximum activity. Here, we 

have shown that a similar single digit picomolar potency is achievable in the absence of the b-

epoxy group. This could have crucial effects on the neurotoxicity observed with these compounds 

during clinical trials as this moiety has been considered the likely cause of this side-effect.  

2.3.3 Formulation of Geminal Dimethyl Unit C variants of Unit A Analogues 

Utilizing the above data to guide our design of analogues to test with the CrpTE biocatalyst, 

the geminal dimethyl unit C analogues were synthesized utilizing the same chemistry as above for 

our top three analogues, the 3- and 4- pyridyl as well as the 4-methyl pyrazole, substituting the 

dimethyl unit C (2.18). The ester linkage between units C and D is thought to be somewhat 

metabolically labile and addition of a second methyl group adjacent to this labile position is known 

to improve drug half-lives as well as remove a stereocenter which simplifies the synthesis.6, 68 In 

our previous work we showed an increase in hydrolytic byproducts (6:1 cyclization to hydrolysis 

versus 10:1) when including the gem dimethyl in the benzyl containing unit A.59  Our new 

 
 
Table 2.2 IC50 values for unit A heterocyclic analogues in HCT 116 cells.  
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analogues (2.28 d, f, and k) were first tested on an analytical scale for a direct comparison of 

hydrolysis to cyclization ratios as well as % conversion to their monomethyl counterparts. All 

three showed an increase in hydrolytic activity when incubated with CrpTE (Table 2.1 and Figure 

2.8) as well as a higher percentage of unreacted starting material, consistent with our previous 

findings. Despite the lower overall processing to macrocycle, the corresponding chain elongation 

intermediates were processed with almost the same efficiency as the native substrate, further 

demonstrating the remarkable flexibility of CrpTE against substrates containing non-native 

functional groups in both the PKS and NRPS derived portions of the molecule.  

 

2.4 Evaluation of Cryptophycin P450 with Unit A Analogues 

2.4.1 Cytochrome P450 Background  

Cytochromes P450 have been used extensively in the pharmaceutical industry for the 

production of drug molecules as they are capable of regio- and stereo-selectively installing 

oxidative functionality often replacing otherwise inactivated C-H bonds. P450s are iron-heme 

containing enzymes capable of utilizing molecular oxygen to formulate the oxygenated organic 

compound and water via a two electron transfer mechanism mediated by NAD(P)H. The catalytic 

mechanism, which has been reviewed extensively,69-70 starts with ferrous iron (FeII), generated by 

a single electron transfer, and the binding of O2. A second electron transfer event generates the 

peroxo intermediate which can then be protonated to generate compound 0 (Figure 2.9). 

Compound 0 then rapidly undergoes heterolytic cleavage to produce compound 1, water, and an 

FeIV radical species known as compound 1. This is then able to abstract a hydrogen atom from the 

correctly oriented substrate, leading to a radical rebound that produces the hydroxylated species 

(Figure 2.9). In this catalytic process, there are three separate possible shunt pathways including 

autoxidation shunt, the peroxide shunt, and the oxidase shunt pathway all of which cause 

ineffective catalysis.  

The cryptophycin pathway contains a late stage P450 that is responsible for the installation 

of the b epoxy functionality that imparts 100 to 1000 times greater potency to the styrene 

counterparts. Historically, this has been incredibly difficult to install both regio- and stereo-

selectively as only a couple of catalytic systems exist to execute this transformation, many of which 

having only modest selectivity for the b epoxide over the a. Initial synthetic methods utilized m-
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Chloroperoxybenzoic acid however the yields were only moderate as the selectivity seen with this 

method was at most 2.5:1 b:a isomer.71 Other strategies have utilized dimethyldioxirane 

(DMDO)46 however these usually didn’t increase the diastereomeric ratio or Shi conditions72 

which only produced a 17% conversion due to low solubility in the aqueous reaction conditions. 

Diol epoxidations have also been utilized and took advantage of a modified sharpless epoxidation 

strategy that gave the desired b epoxide from the diol in 3 steps with a 38% overall yield.73 Despite 

some success installing this functionality, the use of a P450 to facilitate this process could have 

profound implications for the formulation of the most active compounds.  

Previously, Dr. Yousong Ding cloned and expressed the MBP fusion of CrpE as soluble protein. 

As the native redox partners for this protein was unknown, spinach ferredoxin (Fdx) and ferredoxin 

NADP+ reductase (Fdr) along with the glucose-6-phosphate NADPH regeneration system were 

utilized to recapitulate the P450 activity and show ~45% conversion of cryptophycin 3 to 

cryptophycin 1. This was further extended to show that the P450 was tolerant of structural 

 
 
Figure 2.9 P450 catalytic cycle; O2 is utilized along with a two electron transfer, mediated by 
NAD(P)H to produce the desired hydroxylated species.  
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variations on unit B and C indicating this P450 could be used as a biocatalyst for the production 

of epoxidized cryptophycin analogues.56   

2.4.2 Evaluation of P450 with unit A heterocyclic analogues 

With successful implementation of the CrpTE as a biocatalyst for the production of novel 

cryptophycin analogues, we turned to investigating the use of the CrpE P450 to generate fully 

functionalized, b epoxy cryptophycins. With the help of Dr. Yogan Khatri, the CrpE was re-cloned 

into His tag containing pET-17b as the MBP fusion was not ideal due to its large size. This was 

then expressed in TB media, with extensive oxygenation. Purification yielded bright red protein 

which, when combined with the Fdx/Fdr NADPH system, again showed ~45% turnover of styrene 

 
 
Figure 2.10 Analysis of CrpE P450 with styrene cryptophycin analogues. Epoxidized products 
observed by mass are in blue.  
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cryptophycin 3 to epoxidated cryptophycin 1 (Figure 2.10). Interestingly, experimentation with 

another redox partner commonly used in the lab, RhFRED produced no turnover to product 

indicating the importance of an appropriate redox partner. With the CrpE activity reconfirmed, the 

newly generated, unit A analogues were assayed with the CrpE.   

 Initial analytical tests were run and analyzed by TOF-MS, showing varying results. 

Turnover to a product that corresponds to the epoxidized mass is observed with the 3-pyridyl, 4 

pyridyl, pyrazine, and 2 methyl pyrazole cryptophycins (Figure 2.10, peaks corresponding to 

product by MS in blue). The most potent analogue from the previous section, the 4 methyl pyrazole 

shows a mass indicative of the dihydroxylated species which has been seen before with extremely 

electron withdrawing aryl substituents. The rest of the analogues produced no detectable product 

formation. Although the initial results are not as exciting as with the CrpTE, seeing turnover to 

epoxidized products on these was surprising, as aryl ring modifications are conjugated into the 

double bond, causing the electronics of it to change significantly from analogue to analogue, likely 

causing the decrease or lack of product production.  

 In order to utilize this enzyme along with our CrpTE for the effective production of 

epoxidized cryptophycins, continued optimization and exploration of reaction conditions needs to 

be examined. The native substrate only shows ~45% turnover to product which isn’t optimal. It is 

currently unclear if this is caused by instability in the protein or another factor. This protein begins 

to precipitate out of the reaction mixture within a few hours which may not be enough time to 

effect total turnover of substrate indicating dosing schedules should be investigated for better 

consumption of starting material. Another potential problem is that spinach ferredoxin is being 

used as a surrogate redox partner, because the native one is currently unknown. This system may 

not be as adept at electron transfer as the native partners would be causing decreases in turnover. 

Continued exploration of surrogate redox partners or a screening campaign of the seven potential 

redox partners found within the producing organism’s genome may lead to better turnover and 

more effective production of products.  
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Chapter 3 

Structural Studies and Mechanistic Insights into the Cryptophycin 
Thioesterase 

 
3.1 Background on Thioesterase Structure and Function 

3.1.1 Overall Structural Features of Thioesterases   

The promising data from our in vitro biochemical assays prompted us to investigate the 

structural and mechanistic features that impart the broad scope flexibility seen with the CrpTE. 

Type 1 thioesterases belong to a larger family of a/b hydrolases, which also includes proteases, 

esterases, and lipases.1 Unlike other PKS or NRPS domains, thioesterases generally contain very 

low sequence identity within the family(<30%), making it difficult to predict the type of chemistry 

these will catalyze. All known structures show that TEs contain a similar  b-a-b motif that displays 

a central b sheet (with either seven or eight strands with seven being more common for Type 1 

thioesterases while eight is more frequently seen in other hydrolases, Figure 3.1). The active site 

serine is located between the fifth b strand and N terminus of a helix 3 as a part of a characteristic 

Gly-xx-Ser-xx-Gly motief, known as the “nucleophilic elbow”. Currently, there are a handful of 

known macrocyclizing PKS and NRPS TEs which have shed light on the innate differences in 

 
 
Figure 3.1 General thioesterase structure diagrams. (A) General topology schematic of a Type 1 TE 
highlighting the active site catalytic triad residues as well as the oxanion participants shown in black 
circles (B) 3D representation of the aflatoxin TE (pdb 3ILS) highlighting active site residues, the 
central b sheet, and the lid region.  
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structure between the two.2-15 Sequence alignments have previously shown that the most structural 

diversity in TEs lies within two a helices (although three are not uncommon) in the region between 

b6 and b7 known as the lid region (Figure 3.1, A). This usually consists of two a helices that can 

range from 25 to 80 amino acids in length has been hypothesized to play a major role in 

selectivity.16 The cryptophycins are made by a mixed PKS/NRPS system with the thioesterase 

being appended to the terminal NRPS domain. Despite some rather detailed studies on both PKS 

and NRPS TEs, there have yet to be any on macrocyclizing TE’s from mixed systems begging the 

question, will this display structural features more similar to PKS TEs, NRPS TEs or will it contain 

some of both?  

3.1.2 Structural Insights into PKS Derived TEs 

Studies on the PKS TEs in the erythromycin (DEBS) and pikromycin (Pik) pathways 

revealed unusual features seen in this subtype of hydrolases that are not present in other members 

of this family.  There are two N terminal dimerization helices as well as a surprisingly large and 

wide active site, shaped as a channel that spans the entire protein. This channel is lined with a 

mixture of conserved hydrophobic residues as well as a few non-conserved hydrophilic ones, that 

differ between these proteins and likely play a vital role in the catalytic mechanism.15  A mixture 

of docking studies on the DEBS TE as well as crystal structures with a substrate mimic affinity 

probes show a complex interplay of a few distinct hydrogen bonding interactions as well as 

significant hydrophobic packing and likely inherent substrate structural features necessary for 

productive cyclization.11-12, 15 This has been corroborated through a mixture of synthetic substrates 

and docking studies that have shed light on some of the necessary structural features as well as 

demonstrated the proteins tolerance for non-essential elements with the formulation of new 

macrocyclic products.15, 17 

3.1.3 Structural Insights into NRPS Derived TEs 

NRPS TE’s have also benefited from structural and biochemical characterization. In the 

NRPS derived tyrocidine and daptomycin TE systems, solid phase peptide synthesis was utilized 

to formulate a suite of unnatural chain elongation intermediates that furnished novel macrocyclic 

analogues with varying biological activities.18-20  The substrate tolerance seen in these TEs has 

been attributed to a hydrogen bond network that enables substrate preorganization. Thus, the TE 

in this case, was hypothesized to exert minimal influence except on the amino acid being employed 
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as the intramolecular nucleophile, which appears to be critical for productive catalysis.21 This is 

further supported by structural studies on the NRPS TEs from the surfactin and fengycin 

biosynthetic pathways. These TE’s possesses a large, bowl shaped active site, in contrast to the 

tunnel seen in PKS TEs. The bowl is lined with predominantly nonpolar and aromatic amino acids, 

with specific interactions occurring primarily at the hydroxyl containing C-terminus of the linear 

NRPS substrate.10, 14 These compelling studies continue to shed light on the complex mechanism 

employed in these different systems. Further investigations into PKS, NRPS, and PKS/NRPS 

hybrid TEs are necessary to expand our understanding of the factors that govern macrocyclization 

on a broad scale.   

Extensive screening in the Sherman/Smith labs over the past 10 years have demonstrated 

the CrpTE is resistant to crystal packing and has yet to garner any traction, fostering the need for 

design and formulation of alternate constructs with potentially better crystal packing interfaces. In 

conjunction with Dr. John Luz at Eli Lilly, we pursued a two-pronged approach to obtain crystals. 

The first focuses on the identification, cloning, and expression of the initial set of enzyme mutants 

to help promote crystal packing. The second involved a strategy of trapping native substrates in 

the active site, which will hopefully facilitate protein ordering, as well as provide important 

insights regarding substrate binding and orientation. 

 

3.2 Optimization of the CrpTE for Structural Characterization  

3.2.1 Rational Construct Design of variant CrpTEs 

In accordance with our first approach and in collaboration with Dr. John Luz (Eli Lilly), 

we identified a series of potential regions for protein engineering. Utilizing the Surface Entropy 

Reduction prediction (SERp) server developed by the University of California at Los Angeles two 

surface cysteines, as well as six predicted surface residues were identified as problematic. This 

server predicts tertiary structure from primary sequence data and utilizes that to identify regions 

of charged or hydrophilic amino acids that may be interfering with packing, and ultimately crystal 

formation. Utilizing this knowledge, three separate expression constructs were designed: the first 

included mutations of the two surface cysteines (C145S and C226S, Table 3.1 DHS7150) to 

serines, the second contained the two surface cysteine residue mutations plus the first four 

mutations of charged residues less polar ones that were found adjacent to one another (E61G, 



 

 46 

K66S, E70A, and K77A, Table 3.1 DHS7151), and the third containing mutations to all six of the 

problematic residues (K195G and K219A, Table 3.1 DHS7152).  

The cryptophycin thioesterase is natively attached to an upstream peptidyl charrier protein 

on the terminal NRPS module by a linker region. Analysis of the protein sequence using BLAST 

and AntiSMASH (a secondary metabolite analysis and prediction server) as well as the Phyre2 

secondary structure server revealed disordered region at the N-terminus of the originally cloned 

CrpTE, which was excised in the middle of the initial linker. In hopes of developing a construct 

with better crystallization properties, variants that included the entire linker region, half the linker 

region, and none of the linker region were designed. All three constructs were made by quick 

change mutagenesis and consisted of a seven amino acid addition (Table 3.1 DHS 7153) to the 

amino terminus of the original clone, a five amino acid truncation (Table 3.1, DHS 7154), and a 

ten amino acid truncation (Table 3.1, DHS 7155). The addition is predicted to add secondary 

structure lending credence to this variant and the truncations would remove the disordered regions 

in two portions in case of deleterious effects. Combining some of these mutations produced four 

other constructs that could be utilized as well.  

3.2.2 Variant CrpTE Protein Expression and Purification 

 
 
Table 3.1 Schematic and table of mutant constructs of Crp TE generated. Corresponding expression 
yields are also denoted.  
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With the new constructs in hand, we investigated expression and purification of these 

protein that would be amenable to crystallization screens. Proteins were initially screened on 3 mL 

cultures for overexpression and solubility. Luckily, all of the constructs had significant 

overexpression bands seen in supernatant with minimal aggregates in the pellet. All six initial 

constructs (DHS7151 – 7155) were then grown on large scale, 3L batches in TB. Purification of 

1L the mutant proteins in HEPES buffer without glycerol (glycerol is known to cause active site 

acylation with this protein) and with varying concentrations of imidazole proved effective. The 

first chromatographic step included nickel affinity chromatography which produced between 70 

and 105 mg of protein for each of the constructs (Table 1). Following purification, cleavage with 

TEV protease and subsequent size exclusion chromatography led to sufficiently pure protein for 

initial crystallization screening. All the CrpTE variants were tested for activity prior to crystal 

screen and each showed minimal difference in turnover of substrates.  

With these proteins in hand, we in collaboration with Dr. Janet Smith’s Lab at the 

University of Michigan began crystallization screens. Size exclusion chromatography (SEC) of 

some of the mutant proteins used for setting trays revealed significant differences in monomeric 

and dimeric protein populations, with the original construct being 3:1 monomer to dimer. PKS 

TE’s are known to be dimers (as their entire modules are dimers) however, NRPS’s are thought to 

 
 
Figure 3.2 Gel of initial expression tests for mutant CrpTEs. These were run on 3 mL volumes and 
show over expression in the soluble fraction and minimal insoluble protein in the pellet.  



 

 48 

be monomers. Previous biochemical and structural work has briefly touched on the subject with 

slightly differing results. In the lipopeptide forming surfactin TE, dimerization was seen through 

the b sheet in the crystal structure, however this was not observed via SEC, causing them to 

conclude this was an artifact of crystallization.14 In contrast, the fengycin TE structure showed 

only monomers, however the SEC showed some tendency for dimerization.10 Our results have 

shown that different constructs lengths show different propensities for dimerization. The 

constructs containing shorter lengths at the amino terminus show interesting results, with the both 

constructs (DHS7154 – 7155) having significantly higher ratios of monomer to dimer than the 

initial one (greater than 10:1 vs 3:1). All the SEM mutant constructs as well as the plus 7 amino 

acid (DHS7150 – 7153) show similar dispersion of monomer and dimer (around 3:1) as the original 

construct (Figure 3.3). These were all separated via SEC and incubated overnight at 4 °C to 

determine if either the monomers or dimers would re-equilibrate to their original dispersion. 

Reinjection of all the monomeric forms as well as the three dimeric forms produced in higher 

quantity showed that neither the monomer or dimer fractions of any of the constructs showed re-

equilibration, and that they were stable in their initially adopted state.  

 
 
Figure 3.3 Size exclusion results for the different CrpTE constructs. These show that the minus 5 
amino acid and minus 10 amino acid variants have a lower propensity for dimerization. 
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With the different constructs expressed and separated into their monomer and dimer 

constituents, initial screening trays were set at high concentration (greater than 30 mg/mL) using 

Qiagen classics I and II kits. These initial screens produced 2 small crystal hits from two different 

mutant TEs, DHS 7156 and 7158 (minus 5aa) with the underlying factor in each hit being that they 

are the monomer population and the addition of magnesium chloride. With these promising initial 

results, countless refinement screens were run, however to date none have produced viable crystals 

for x-ray diffraction.  

3.2.3 Engineering the CrpTE from a Hydrolase to an Acyl Transferase 

Our second approach focused on trapping substrates in the CrpTE active site. This 

approached served two purposes, first often proteins are too flexible to crystalize unless substrate 

is present as it can help effectively lock the protein into its catalytic conformation and second 

obtaining a crystal structure with the full length chain elongation intermediate has not been 

accomplished to date and would provide a wealth of information about the selectivity and catalytic 

mechanism employed by these proteins. In order to accomplish this, we utilized a strategy 

previously reported for FAS that effectively changing the enzymes function from a hydrolase to 

an acyltransferase via two active site mutations.22 The first mutation was to the active site serine 

to cysteine (S94C, DHS 7160), which would serves as a more effective nucleophile for acylation. 

The second is to remove the active site histidine (H265) which is responsible for coordination of 

both the intramolecular hydroxyl group as well as water, which is necessary to abrogate hydrolytic 

or intramolecular offloading. The S94C as well as two separate histidine 265 mutants (H265N and 

H265Q) were constructed via quick change mutagenesis, in the hopes that one would be stable 

(Table 3.1, DHS 7161 – 7162) as often active site mutations are deleterious to protein folding. 

Upon expression and purification of these two variants using the same procedure as the previous 

constructs produced highly soluble, stable protein much to our surprise as this has not been the 

case with active site mutations in PKS TEs.  

With both double mutant CrpTE proteins in hand, they were assessed for substrate 

occupancy via QTOF-MS with the N-acetyl cysteamine substrate described previously (Scheme 

2.4, 2.28a). Initial screens aimed at identifying conditions for effective acylation. High pH buffers 

(tris pH9/10) were investigated along with temperatures ranging from 4 °C to 37 °C, and substrate 

to protein ratios from 2:1 to 20:1. Each of these were checked initially at three time points, by flash 
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freezing prior to assessment on the TOF. These initial screens produced no detectable acylation of 

the active site for either protein. After exhausting possible buffer and temperature conditions, we 

decided to investigate a more active substrate, bearing a thiophenol in place of the N-acetyl 

cysteamine (Scheme 3.1). This was generated utilizing a similar synthetic scheme as described in 

Chapter 2. Unit AB was formulated in an analogous manner to the SNAc containing substrate.  

Thiophenol containing unit CD was formulated by the benzyl deprotection of 2.19 with H2/Pd 

followed by thiophenylation using tributyl phosphine and diphenyl disulfide. This was then Boc 

deprotected, coupled to unit AB, and desilate as described in Chapter 2 to produce substrate 3.2. 

With this new, more active substrate, buffer, temperature, and times were again assayed in 

order to determine the optimal acylation procedure. Results indicated that higher temperatures (30 

or 37 °C), high pH buffer (Tris pH = 9) for short times (30 min to 1 hour) were optimal, however 

slow hydrolysis was still seen upon overnight incubation at 4 °C. Continued screening of 

temperatures and buffer conditions, indicated it was the higher pH buffers necessary for acylation 

that was responsible for the aberrant hydrolysis. Quenching of the reactions using a 10% formic 

acid solution, produced an acylated protein that was stable for 24 hours upon 4 °C storage. In hopes 

of eliminating the formic acid quench, a quick acylation time (30 min to 1 hour) in pH 9 Tris buffer 

at 37 °C followed by subsequent buffer exchange back to pH 7 HEPES and storage at 4 °C, 

produced a substrate bound enzyme that was again stable for more than 24 hours. Subsequent size 

exclusion chromatography produced protein for crystal screening. Again, the Qiagen classics I and 

II screening kits were utilized, but did not produce any significant crystals. 

 
 
Scheme 3.1 Synthesis of thiophenol containing substrate.  
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3.3 Evaluation of the Cryptophycin Thioesterase as a Candidate for Solution Phase Structure 

3.3.1 Background Information on Solution Phase (NMR) Structural Determination  

With the discovery of mostly monomeric CrpTE as well as the knowledge that it does not 

re-equilibrate to dimer, and the lack of crystallization hits in the crystal screens, we began to look 

for alternative methods for structural characterization. With the advent of super conducting, high 

field strength magnets, user friendly control software, and multi-frequency detection channels 

nuclear magnetic resonance (NMR) can be utilized to structurally characterize a wide range of 

 
 
Figure 3.4 General schematic of the workflow involved in assigning carbon and hydrogen signals 
using standard triple resonance NMR experiments, CBCA(CO)NNH and CBCANNH. 
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biological entitles. This method has the advantage of being able to detect protein structural changes 

in response to experimental conditions, giving us the ability to titrate in substrates and effectively 

monitor discrete amino acid shifts as the protein undergoes its catalytic cycle, giving us vital 

information about the dynamics of TE’s. 

Smaller proteins (<10 kDa) often lend themselves to assignment based on homonuclear 

two-dimensional experiments like TOCSY and NOESY, however larger sized proteins are 

accompanied by exponentially more signals, resulting in crowding that can’t be resolved.23 Further 

three-dimensional heteronuclear triple-resonance NMR experiments are necessary in these cases 

to assign the backbone and sidechain shifts. Standard resonance assignments are made through 

CBCANNH and CBCA(CO)NNH,24-26 which gives correlations for each NH group to both the 

corresponding Ca and Cb as well as the preceding Ca and Cb. which allows you to determine 

adjacent amino acid resonances (Figure 3.4). Utilizing knowledge of characteristic amino acid 

frequencies (Alanine, Serine, Threonine, and Glycine contain characteristic resonances) allow you 

to generate a general sequence idea (ex: Ala-xx-Thr-xx-xx-Ala) and compare that to your known 

sequence. From here you can identify the portions of the sequence using these known amino acids 

allowing the assignment of each atom of the polypeptide backbone to a shift in the spectra. In order 

 
 
Figure 3.5 Magnetization transfer pathways seen in three-dimensional NMR experiments necessary 
for the assignment of large proteins: CBCANNH, CBCA(CO)NNH, HNCA, HNCO, HNCACO, and 
HNCOCA 
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to assign the CrpTE, a 35 kDa protein, and ultimately build a structure it is necessary to not only 

run the previous two experiments, but others to confirm the assignments as well as resolve 

ambiguous signals. A standard set of three dimensional experiments which allow for the 

assignment of large proteins may include HNCA, HNCO, HNCACO, HNCOCA (Figure 3.5) all 

of which require different labeling patterns including 13C, 15N, and 2H.27 Once the backbone is 

assigned and the Ca and Cb of each sidechain has been assigned from those initial experiments 

(Figure 3.4) for flowchart on how you can utilize experiments to walk down peptide chain), an 

HCCH-TOCSY experiment can give the rest of the sidechain assignments, with the help of a 

separate experiment, HCCONH if these can’t be completely resolved. From here J values collected 

can be used to compute the structure based on the Karplus angles of each atom in the backbone. 

Sidechain position is assigned in an analogous manner once the backbone has been determined. 

3.3.2 Formulation of CrpTE Protein for NMR Experiments  

Utilizing the results from the construct optimization, DHS 7154 (minus 5aa) was chosen 

for structural characterization as it was predominantly monomeric and proved most stable to NMR 

buffer conditions (sodium phosphate buffer, pH = 6.5). The initial NMR experiment to check for 

protein folding and stability was a 1H/15N HSQC, which required 15N labeled protein. The protein 

was grown by first inoculating a 5 mL starter culture in LB using freshly transformed Bl21 (DE3) 

E. coli. This was grown to a high OD600 (~6 – 8 hours) and was used to inoculate overnight cultures 

in M9 media (see SI for recipe) augmented with 15NH4Cl and kanamycin (50 ug/mL). The 

overnight culture was then used to inoculate 1 liter cultures of the M9 (1:100 innoculum) media 

supplemented with kanamycin (50 ug/mL). This was grown to OD600 of 0.5 at 37 °C, cooled to 20 

°C and induced with 100 uM IPTG. This was expressed for 18 hours, spun down at 6,000 rpm for 

30 min and stored at -78 °C for purification. Frozen cells were purified using Phosphate buffer 

with varying amounts of imidazole over NiNTA resin, prior to cleavage with TEV protease, and 

size exclusion chromatography. Buffer exchanging into a pH 6 phosphate buffer yielded protein 

ready for NMR experiments. 

In collaboration with Dr. Vivekanandan Subramanian in UM Biophysics, initial 1H/15N 

HSCQ showed excellent resolution (Figure 3.6) and 250 NHs of the 296 total were resolved. In 

order to start putting together the backbone of the CrpTE, 13C, 15N, and 2H CrpTE was generated 

using the same procedure as above, substituting globally 13C labeled glucose and growing in 70% 
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D2O. Upon purification and TEV cleavage, this produced 19 mg/L of pure protein which was 

immediately concentrated to 500 uM and used to run HNCACB, CBCACONH, HNCA, and 

HNCACO experiments. Utilizing these experiments as well as NMR processing software 

SPARKY, each of the NHs present in the initial 1H/15N HSCQ have been correlated with their 

respective Ca and Cb. We are currently building the assignments off these correlations which will 

be used in the future structural characterization.  

 

 

 

 

 

 

 

 

 
 
Figure 3.6 15N/2H HSQC spectrum of CrpTE as observed in SPARKY NMR program.  
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Chapter 4 

Molecular Interrogation of Polyketide Synthase Modules in the 
Pikromycin System Using Unnatural Pentaketides  

 
4.1 Background on the Macrolide Antibiotic Pikromycin 

4.1.1 Macrolides as Antibiotics  

Polyketide antibiotics were originally discovered in 1950 with the isolation of pikromycin, 

followed closely by the isolation of a second macrolide antibiotic erythromycin, which is still used 

clinically today.1-2 The mechanism of action of these molecules was later determined to be through 

disruption of protein synthesis by binding to the 50S subunit of the bacterial ribosome.3 More 

recent work has shown that these likely bind to the peptidyl (P) site and disrupt the peptidyl transfer 

activity, which joins incoming t-RNA attached amino acids with the growing amino acid chain, 

ultimately stalling protein synthesis.4-6 It is also thought that these can act as a physical barrier by 

sitting in the nascent peptide exit channel (NPET).7 Although erythromycin was widely successful, 

its inherent instability causes breakdown products that produce undesirable gastric side effects. 

This combined with the continued emergence of resistant bacterial strains has led to extensive SAR 

campaigns for analogues with better biological properties and to combat continually emerging 

resistance. 

Erythromycin is considered a first generation antibiotic and is produced industrially from 

enhanced strains of Saccharopolyspora erythraea. Second generation analogues (Figure 4.1)8 

were developed by semi synthesis from erythromycin in order to combat the pharmacokinetic and 

pharmacodynamics shortcomings seen in the clinic, which lead to the discovery of the widely used 

Azithromycin (Z-pac). Third and fourth generation antibiotics have more recently been 

investigated to help combat one of the major forms of resistance seen in bacteria; macrolide, 

lincosamides, streptogramin B (MLSB) resistance. Macrolide antibiotics bind to the 23S RNA 

portion of the 50S subunuit.9 Resistance is conferred by either mono or demethylation of the 23S 

ribosomal RNA by the ERM (erythromycin resistance methylase) family of methyl transferases.10-

11 In the presence of erythromycin (specifically the cladinose sugar appended to C3), the previously 
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inaccessible ErmC ribosomal binding site is uncovered and translated, producing the methyl 

transferase protein that confers resistance. The requirement for the cladinose sugar for this process 

has led to third generation macrolides known as ketolide antibiotics, which remove the cladinose 

sugar and oxidize the remaining alcohol to a ketone, inhibiting resistance mechanisms.10  Addition 

of the alkyl-aryl side chain at positions 11 and 12 on the Erythromycin core, confers a second 

binding site on the ribosome and also helps modulate susceptibility in the macrolide resistant 

strains. 

4.1.2 Biosynthesis of Pikromycin  

In an effort to facilitate medicinal chemistry efforts necessary for the production of novel 

antibiotics, the Sherman lab has pursued a detailed understanding of the modular PKS biosynthetic 

systems responsible for the production of macrolide antibiotics, including pikromycin.12-16 

Pikromycin, the original member of this family is a natural ketolide antibiotic. Although it is not 

as potent as the Erythromycin series of antibiotics, its ability to induce MLS  

 
 
Figure 4.1 Antibiotic generations and their binding site on the ribosome. The MLS inducing cladinose 
sugar and the alkyl-aryl side chain that confers a second binding region are highlighted in pink and 
navy.  
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resistance is greatly diminished. Analogues formulated from this scaffold in efforts to make this 

macrolide more potent have produced solithromycin which is currently in clinical trials. 

Pikromycin contains a unique PKS biosynthetic system that it is capable of producing both a 12 

membered ring, the methymycin family of natural products as well as the 14 membered 

pikromycin ring structures (Figure 4.2). These can both be glycosylated and oxidized by 

cytochromes P450 to produce the full macrolide antibiotic (Figure 4.2). The inherent flexibility 

seen within this system makes it uniquely suited for exploration into the use of intact modules for 

 
 
Figure 4.2 Pikromycin biosythetic pathway for the formation of aglycones 10-Deoxymethynolide (10-
DML) and Narbonolide. Further tailoring enzymes for glycosylation and P450 transformations 
formulate the full macrolide antibiotics. 
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a biocatalytic syntheses of novel macrolide antibiotics.  Utilizing the biosynthetic machinery of 

macrolide antibiotics to introduce new functionality and alter the core pharmacophore could 

provide rapid access too novel structures with better pharmacological properties. Bioengineering 

efforts toward this end have focused on the introduction of non-native and unnatural malonyl 

derivatives, modification of module domain architecture in vivo to produce altered oxidation states, 

as well as swapping of entire modules with native modules from other systems to produce 

significant structural modifications.17 This has met with some success, however generally only 

trace products are detectable by mass spectrometry and in general this strategy meets with more 

failure than it does success. In order to further engineer polyketide synthases, a detailed 

understanding of the key factors involved in producing these must be understood. 

4.1.3 Structural Investigations of Polyketide Synthases 

Recent structural work on pikromycin modules has provided new insights into the overall 

architecture of PKS modules and their catalytic mechanism. Historically, crystal structures of 

excised domains have given us a wealth of information and served as a surrogate for full length 

module crystals, as to date they have remained elusive. Crystal structures of excised KS-AT from 

the Curacin and DEBS pathway, initially showed an elongated structure, similar to that of FAS 

 
 
Figure 4.3 Cryo-EM reconstruction of PikAIII. (C) showing the single active site chamber in 
comparison to the curacin excised module (B) which shows a similar linear structure to FAS (A). 
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leading to the structural model that has predominated.18-19 A breakthrough in intact PKS structural 

work came in 2015 with the publication of two Cryo-electron microscopy (Cryo-EM) papers that 

described a previously unseen architecture in PKSs.20-21 The reconstruction of the PikAIII module 

(Figure 4.3) showed an overall arc shape with a single active site chamber, not the extended 

structure that had long been hypothesized.22 The second surprising finding from these studies 

showed the incredibly mobility of the ACP, especially when substrate bound. The ACP appears to 

be able to shuttle its substrate around the arc shaped chamber, sampling separate domain active 

sites and effecting catalytic transformations. These studies had a profound impact on the current 

state of PKS catalytic mechanism knowledge and continued studies like this with different modules 

as well as different substrates could help indicate where catalysis stalls, giving us a selectivity 

profile, and guide engineering efforts to overcome this.   

4.1.4 Biochemical Characterization of PikAIII-TE and PikAIII/AIV 

To combat the current PKS selectivity deficit, work in the Sherman lab has been moving 

towards using synthetic chain elongation intermediates to interrogate the ultimate (PikAIV) and 

pent-ultimate (PikAIII) modules ability to produce unnatural macrolactones. A previous graduate 

student Dr. Douglas Hansen, was able to reconstitute the final two modules of the Pik biosynthetic 

system in vitro using a synthetically formulated pentaketide to produce both 10-Deoxymethynolide 

(10 DML) and narbonolide.13 In order to formulate these two different sized rings, he utilized both 

the native PikAIII/AIV system seen in the biosynthesis, as well as a non-native fusion protein of 

 
 
Figure 4.4 Reconstitution of PikAIII-TE and PikAIII/AIV modules. This facilitated the production of 
the 12 and 14 membered aglycones 10 DML and Narbonolide with successive biotransformation to their 
respective macrolide antibiotics. 
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AIIITE which were both heterologously expressed and, when combined with the synthetic 

pentaketides, methyl malonyl and an NADP recycling system, were able to formulate the two 

aglycones. This was further expanded to produce the active antimicrobial macrolides through 

biotransformations with engineered strains of Streptomycese venezuele (which natively produce 

pikromycin) that have had the pikromycin PKS cluster knocked out but are capable of 

glycosylating and oxidizing macrolactone rings.23-24  

In order to probe the selectivity and specificity of these enzymes, unnatural chain 

elongation intermediates with altered carbon sidechains and stereochemistry on the right half of 

the pentaketides were formulated in order to interrogate PikAIII-TE.12 Utilizing this fusion protein 

alone would hopefully help further narrow down the cause of any processing deficiencies. The 

results of the altered carbon chains show a clear trend towards less efficient turnover as the 

modifications become more drastic. The C10 desmethyl (4.5 to 4.12) shows almost wildtype 

turnover (56%) to its 12 membered macrolactone counterpart however, when you remove the C9 

 
 
Figure 4.5 Initial right half pentaketides analogues assayed with PikAIII-TE. The different desmethyl 
analogues show different propensities for extension and cyclization while the epimers showed no 
turnover to macrolactones.  
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ethyl group (4.8 to 4.15) you see a significant decrease in macrolactone recovery (9%). Attempts 

to process substrates with altered stereochemistry at the C8 and C9 position (4.9 – 4.11) produced 

no macrolactone products, however extended products were isolated and characterized as extended 

shunt products that included a decarboxylation and a hemiketalization. This suggested that the 

module was able to process all these substrates to some extent, but that it was the TE that precluded 

effective production of macrocyclic products. This was further supported through the generation 

of the Pik hexaketide containing altered stereochemistry and attempts at biocatalytic conversion 

through the stand alone TE. This produced exclusively hydrolyzed starting material, further 

demonstrating the profound role the TE plays in macrocycle production. 

In an accompanying publication by Dr. Aaron A. Koch, the previous results were further 

explained and the TE was engineered to partially overcome this effect.14 Molecular dynamics 

simulations that showed the PikTE could accommodate the epimerized substrates but that intrinsic 

substrate organization precluded cyclization. With this knowledge an active site mutation, S148C 

was made which altered the catalytic mechanism, which was capable of effectively cyclizing the 

epimerized hexaketide. This was then reincorporated into the PikAIII module and the epimerized 

pentaketides was again tested. This time, the module was able to formulate 2 corresponding 

macrolactones, the expected 11-epi-10 DML (4.16, 12% isolated yield) as well as a second ring in 

which the native KR in PikAIII didn’t act on the substrate producing a similar 3-keto-11 epi-10 

DML (12% isolated yield). These studies indicate that the modules are capable of processing at 

least distal chain modifications and continues to highlight that the TE is likely the underlying cause 

for unproductive formation of macrocyclic products.  

 

4.2 Synthesis of Alternate Pentaketides Chain Elongation Intermediates  

In order to continue to probe the flexibility of the terminal PikAIII-TE as well as the 

PikAIII/PikAIV biosynthetic pathway, a second suite of unnatural pikromycin pentaketides were 

designed to contain functionality that would not otherwise be present in polyketide synthase 

products, including heteroatoms in place of carbons, altered side chains, as well as various lengths 

of the backbone ketide units (Figure 4.6). With these substrates in hand we hoped to assay the 

ability of our PKS proteins to accept and process them to their corresponding macrolides, or other 

biproducts and help shed light on the complex factors associated with accepting, extending, and 
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cyclizing polyketide macrolactones, as well as guide structural studies, and ultimate engineering 

efforts.  

4.2.1 Synthesis of Ester and Amide Containing Pentaketides  

The first analogues formulated contained an a/b unsaturated ester (4.27) and amide (4.28) 

in place of the a/b unsaturated ketone. These were formulated by taking advantage of a peptide 

coupling strategy. The left portion of both the ester and the amide analogues were synthesized by 

protecting group manipulation of commercially available (S) – Roche ester 4.19 and (S)-Boc-β2-

HomoAla-OH 4.21 followed by thiophenylation of the acid with tributyl phosphine and diphenyl 

disulfide. The right half was formulated via cross metathesis of 2-pentenoic acid with 4.26 whose 

synthesis was reported previously.13 Subsequent deprotection of the two discrete left halves to 

produce 4.22  and 4.23 and coupling between these and 4.26 using either HATU or DCC/DMAP 

produced the desired TBS protected pentaketides. Deprotection with aq. HF produced the desired 

ester and amide containing pentaketides 4.27 and 4.28. 

4.2.2 Synthesis of Pentaketides containing Varied Alkyl Substituents  

Next we focused on the desmethyl, dimethyl, cyclohexyl, and ether analogues (4.37 – 4.40) 

as we envisioned utilizing a cyclic anhydride ring opening strategy for the formation of all four. 

 
 
Figure 4.6 Potential unnatural pentaketide analogues. These were designed to contain heteroatoms, 
unnatural side chains, and altered ketide length 
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Using glutaric anhydride 4.29 as the test platform, conditions for ring opening were investigated. 

Unfortunately, attempts to open the glutaric anhydride test platform with vinyl magnesium 

bromide produced either Michael addition polymerization or double addition products (Scheme 

4.2, A). Although our initial attempts were not successful, the ring opening strategy was still an 

attractive option for formulating these four analogues, leading us to investigate Weinreb amides. 

Opening of the anhydride could first be accomplished using N,O-dimethylhydroxylamine 

hydrochloride (4.31) in pyridine and DCM to form the Weinreb amide 4.32. Attempts to displace 

 
 
Scheme 4.1 Synthesis of ester and amide containing pentaketides.  

 
 
Scheme 4.2 Vinyl magnesium bromide ring opening strategy for analogue formation. First (A), second 
(B), and (C) third iterations of the cyclic anhydride opening strategy used to formulate altered carbon 
chain analogues.  
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the Weinreb amide in the presence of the acid functionality was met with some success although 

the elevated temperatures necessary to displace the Weinreb again promoted Michael addition and 

low reaction yields (Scheme 4.2, B). In order to mitigate the instability, we hypothesized that 

protection of the acid as a methyl ester could be used as the Weinreb amide would coordinate the 

vinyl magnesium bromide well enough to produce predominantly the desired product. This 

reaction was successful and produced 4.34 in a 62%yield. Subsequent cross metathesis with 4.25 

proceeded smoothly, however saponification with LiOH was prone to Michael addition upon the 

presence of methanol or long reaction times. Thiophenylation and subsequent aq. HF deprotection 

produced the desired desmethyl pentaketides 4.37. This strategy was utilized in order to make both 

the dimethyl and the cyclohexyl (racemic) containing analogues. The dimethyl analogue showed 

exclusive opening to the less hindered site as expected however unfortunately attempts to utilize 

the same strategy with a diglycolic anhydride the ether containing Weinreb produced varying 

products including addition into the methyl ester. This is likely due to the presence of a second 

five membered ring coordination network that can occur with the ether oxygen into the methyl 

ester.  

 
 
Scheme 4.3 Synthesis of desmethyl, dimethyl and cyclohexyl pentaketide analogues. Desmethyl 
pentaketides 4.37 as well as the dimethyl pentaketides 4.38 and cyclohexyl pentaketide 4.39 were 
formulated utilizing the same chemistry. Utilizing the diglyclic anhydride to formulate the ether 
containing pentaketide 4.40 unfortunitley did not produce the corresponding a/b unsaturated ketone.   
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4.2.3 Synthesis of Extended Chain Pentaketides  

Next we focused our attention on the substrates with altered ketide chain lengths in order 

to investigate the ability of TEs to formulate odd membered ring sizes. The initial analogue 

contained a homologation site directly adjacent to the a/b unsaturated ketone. This was chosen as 

it was easily homologated from the alcohol state of the right half of the pentaketides. After 

cleavage of the Evans chiral auxiliary to the alcohol 4.41 as reported previously13, subsequent 

tosylation, and cyanide displacement produced 4.42 which was reduced to the aldehyde and 

subjected to Wittig olefination conditions to produce 4.43. This was then cross metathesized with 

4.4413 to produce the homologated acid product. This was then thiophenylated and deprotected 

unfortunately, intramolecular Michael addition upon deprotection of the cyclizing alcohol 

precluded us from testing this substrate directly with our enzymes. Future attempts will be made 

to add a photocleavable protecting group to this in order to facilitate a single pot deprotection, 

biocatalytic reaction strategy that has been employed for other unstable substrates.25 Other 

homologation positions throughout the chain, including closer to the head group as well as prior 

to the a/b-unsaturated ketone will also be investigated.  

 

4.3 Biochemical Evaluation of Synthesized Pentaketides  

With the first set of substrate analogues in hand, analytical enzymatic reactions with the 

monomodule fusion protein PikAIII-TE, responsible for the production of 12 membered rings as 

well as the terminal two modules PikAIII/AIV responsible for the production of 14 membered 

rings were explored. Our previous results with the PikAIII-TE and the PikTE stand-alone proteins 

 

 
 
Scheme 4.4 Synthetic scheme for the formulation of homologated pentaketides.  
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show that the TE is usually the bottleneck to forming unnatural macrolactones, however the effects 

of this on the 14 membered rings have not been explored.  

4.3.1 Evaluation of Pentaketide Analogues with PikAIII-TE 

With five new pentaketides analogues in hand we began to assay the PikAIII-TE for its 

ability to produce new 12 membered rings. PikAIII accepts methyl malonyl as an extender unit 

which has been synthesized as the SNAc variant. It also contains a KR domain which requires 

NADPH to complete its reduction. With the high cost of NADPH it is not feasible to use 

 
 
Figure 4.7 Analytical reaction traces with new pentaketides utilizing the PikAIII-TE fusion protein. The 
no enzyme controls for each being in black and the different enzymatic reactions being denoted in the 
various colors. [*SM indicates starting material] 
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stoichiometric equivalents, instead a NADP recycling system which employs glucose-6-phosphate 

(G6P) and glucose-6-phosphate dehydrogenase (G6PDH) was used.  

Analytical reactions on a 50 uL scale were run along with a no enzyme controls to help 

discern what are enzymatic products versus reactions condition degradation products. 

Interestingly, the starting materials show different propensities for degradation as is evident when 

comparing starting material in just buffer versus starting material with the reaction components 

(see Chapter 7 for experimental traces). The ester, amide, and desmethyl products appear to show 

a distinctive [M+H] that is +9 from the starting material mass. It is still unclear what these products 

are however in the presence of enzyme, they seem to be produced in minimal quantities.  

Analysis of the reactions with the PikAIII-TE were initially disappointing (Figure 4.7) The 

native pikromycin pentaketides (green) shows a distinctive product peak (whose retention time 

was verified with an authentic standard), however the five analogues showed no peaks containing 

either the expected [M+H], [M+Na], or [M-18] peak that are often present when macrolactones 

are produced. The disappearance of starting material, however indicates that some enzymatic 

transformation is occurring. Further analysis of the reaction masses led to identification of peak 

masses that corresponding to an AIII extension, but hydrolysis instead of cyclization in the ester, 

amide, and desmethyl pentaketides ([M+H] = 303, 302, 287, Figure 4.8). Water mediated 

hydrolysis off of the thioesterase is a well-known competing process when it is incapable of 

cyclization, lending credence to the hypothesis that the thioesterase is often the “bottleneck” for 

 
 
Figure 4.8 Mechanism of hydrolytic byproduct production in PikAIII-TE. Extension of the pentaketides 
by PikAIII and subsequent TE mediated hydrolysis gives the masses seen in the box for each of the 
unnatural substrates which correspond to those seen in Figure 4.7. 
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production of novel macrolactones. Analysis of the reactions with the dimethyl and cyclohexyl 

substituents show minimal, if any consumption of starting material, indicating that the PikAIII is 

unable to accept these larger substituents. This begins to shed light on the selectivity of PikAIII, 

which appears to rely heavily on the substituents proximal to the trans-thioesterification site. 

4.3.2 Evaluation of Pentaketide Analogues with PikAIII/AIV 

 Despite to inability of PikAIII-TE to produce macrolactone products, the realization that 

PikAIII could accept the Ester, Amide, and Desmethyl pentaketides lend us to test them with the 

PikAIII/AIV system. This would give us insight into whether or not PikAIV would be capable of 

 
 
Figure 4.9 Analytical reaction traces with new pentaketides utilizing the PikAIII/AIV coupled system 
with the no enzyme controls for each being in black and the different enzymatic reactions being 
denoted in the various colors. [*SM indicates starting material] 
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accepting and processing them as well as the TE’s ability to cyclize 12 versus 14 membered rings. 

The cyclohexyl and dimethyl analogues were tested as well, with the assumption that they would 

not be accepted even in the presence of PikAIV. The proteins were expressed and purified as 

described previously and the fidelity of them was tested using the pikromycin pentaketide. The 

results were as expected and showed a large peak that was verified to be narbonolide with an 

authentic standard (Figure 4.9, Green).  

Analysis of the PikAIII/AIV reactions with the Ester, Amide, and Desmethyl pentaketides 

proved significantly different from those in the PikAIII-TE reactions. In this case, two peaks with 

the potential product mass were identified along with some extended, hydrolytic byproduct peaks 

for. Again, the dimethyl and cyclohexyl showed minimal consumption of starting material. 

In order to determine if either of the two peaks corresponding to the product masses were 

in fact the desired macrolactones, the reactions were run on a 10 mg scale and the products isolated 

for complete characterization. In each case, the later of the two isobaric peaks was the desired 

macrolactone isolated in 32% yield, 25% yield and 12% yield for ester, amide, and desmethyl 

narbonolide derivatives (Figure 4.10). Unfortunately, the byproducts were not isolated in large 

enough quantities for full characterization however ongoing efforts to elucidate their structure are 

underway. Analysis of potential products based on chemical formula derived from the mass, 

indicates these could be one of a few possibilities. First, although polyketides are usually fairly 

specific for the stereoisomer they produce, it is possible that with unnatural analogues that alternate 

ones could be produced. Other potential products that would have the same mass are doubly 

 
 
Figure 4.10 Semi-preparative Pik AIII/AIV scale ups of select pentaketides. Utilizing reaction 
conditions described and 3 uM of each protein, the corresponding isolation yields were obtained. 
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extended (PikAIII, PikAIV) hydrolytic products that have either hemiketalized or cyclized off 

another hydroxyl to produce a six membered macrolactone (Figure 4.11). Further characterization 

will hopefully shed light on these alternate products giving us more insight into the product 

dispersion.   

4.3.3 Evaluation of Pentaketide Analogues with PikAIII-TE S148C Mutant 

With our previous publication showing the effectiveness of the PikAIII-TE serine to 

cysteine mutant for the production of unnatural macrolactones we were cautiously optimistic that 

this variant may produce better results with the ester, amide, and desmethyl pentaketides. The 

fidelity of the PikAIII-TE S148C was tested using the pikromycin pentaketides, which shows a 

similar conversion to the desired product as the native PikAIII-TE (Figure 4.11, Green). 

Unfortunately, with these newly generated analogues, there was still no detection of masses 

consistent with potential products. What was observed was full conversion to of starting material 

to a variety of masses which are currently under investigation. For the ester containing pentaketide, 

the PikAIII-TE showed single extension and hydrolysis peak corresponding to an [M+H] of 319, 

however in the PikAIII-TE S148C mutant we see conversion to three separate products with 

[M+H] = 404, 356, and 298 (Figure 4.11, Blue), all of which can not be reconciled by any known 

or proposed byproducts of PKS reactions including dimerization of substrates, hemiketalization, 6 

 
 
Figure 4.11 Potential isoberic macrolactone products produced by the Pik AIII/AIV system. 
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membered ring formation, and decarboxylation of hydrolyzed starting materials. The amide 

reaction showed production of a single discernable peak with a [M+H] = 403 (Figure 4.11, 

Purple), which likely corresponds to the same transformation seen in the analogous mass from the 

ester reaction. Lastly, the desmethyl reaction shows three new peaks however the actual [M+H] 

mass is not readily identifiable as there are multiple fragmentation patterns in each peak. The 

dimethyl and cyclohexyl pentaketides were not run with these mutant proteins, as we have already 

established that the PikAIII can not accept these substrates making any consumption of starting 

material likely a TE mediated hydrolytic byproducts that are known to occur with this cysteine 

containing variant.  

 
 
Figure 4.12 Comparison of analytical reactions with Ester, Amide, and Desmethyl Pentaketides 
against wildtype Pik AIIITE and Pik AIII-TE S148C. Black denoting the no enzyme control for each 
with the corresponding traces labeled.  
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Chapter 5 

Summary, Discussion, and Future Directions  
 

Polyketides and non-ribosomal peptide synthases natural products are structurally diverse 

compounds that display a wealth of pharmacological activates. My graduate work has been 

focused on combining synthetic chemistry and biosynthetic enzymes in order to probe the ability 

to utilize these enzymes for the chemoenzymatic production of natural products and natural 

product analogues. The full scope of this work hopes to combine biochemical data on selectivity 

of biosynthetic enzymes for unnatural substrates with high resolution structural characterization. 

With a detailed understanding of the selectivity and reaction mechanisms of these enzymes, we 

can design more general biocatalysts for the production of large libraries of natural products, aiding 

in not only the drug discovery process, but hopefully the production scale use of chemoenzymatic 

methods as well. This chapter will summarize the findings of the three projects I worked on for 

my dissertation as well as discuss continuing and future work towards our ultimate goal of 

understanding these complex systems well enough to engineer broad scope biocatalysts.  

 

5.1 Biocatalytic Synthesis of Cryptophycin Anticancer Agents  

5.1.1 Summary and Discussion of Work Completed  

 The implementation of a biocatalytic synthesis for the production of cryptophycin 

anticancer agents has led to two important discoveries including previously unknown structural 

features that retain pico molar activity and may help modulate toxicity and efficacy as well as 

important insights into the continued characterization of biosynthetic enzymes. Despite the 

extensive SAR that was completed for these molecules prior to clinical trials in 2002, a distinct 

lack of heterocyclic functionality was investigated in unit A, presumably due to the deleterious 

effects seen with replacing the benzyl group with either a thiophene or furan ring. Despite these 

failures we saw this as a unique opportunity to not only fill a gap in the SAR of these molecules, 

but to continue the exploration of a biosynthetic enzyme of interest, the CrpTE. This enzyme has 



 

 77 

previously been shown to be flexible to changes in the amino acid portion, however it showed a 

complete change in selectivity, from productive cyclization to non-productive hydrolysis with the 

removal of the aryl group.1 At the time, it remained unclear how alternative starter units would 

affect the downstream ability of the thioesterase to process these substrates.  

 Development of a diversifiable synthesis that was amenable to large scale formulation (tens 

of grams) of the cryptophycin chain elongation intermediate facilitated the production of a library 

of nine initial heterocyclic unit A analogues. These were assayed with the CrpTE on analytical 

scale with incredibly promising initial results. All the analogues showed comparable or grater 

turnover to product. This trend was confirmed upon semi-preparative scale up to 10 mg and 

isolation of the corresponding macrocycles which proceeded in 49 - 69% in comparison to that of 

the natural analogues at 49%. The initial hypothesis derived from these observations centered on 

solubility of the substrate. It is evident form the retention times on the TOF-MS analysis that many 

of these were more soluble than their benzyl counterpart, however this does not appear to explain 

all the data presented as a deeper investigation into the concentration dependence on turnover 

indicated that even well below the solubility threshold, the native substrate never produced 

turnover numbers higher than 80%. It is currently unclear what factors may produce this interesting 

result however, utilizing current and future structural studies, described in Chapter 3 we hope to 

shed light on this phenomenon.  

 With our initial nine cryptophycin analogues in hand, we in collaboration with Dr. Frederik 

Valeriote at the Henry Ford Health Center, investigated the effects on IC50 in HCT 116 human 

colorectal cancer cells. These results produced three interesting leads with one, the 4-methyl 

pyrazole being far superior to rest. This compound showed an IC50 of 10 pM in this cell line. In 

order to do a head to head comparison, cryptophycin 52 (the one used by Eli Lilly for clinical 

trials) showed an IC50 value of 3.3 pM, indicating our analogue is equipotent. The most interesting 

discovery with this compound is that it achieves this potency as the styrene derivative. The b epoxy 

functionality found on all the most potent derivatives previously described indicate that this is 

necessary for maximum potency, showing between a 100 and 1000-fold difference in potency. 

This discovery could have important implications for this molecule in the clinic as the epoxide has 

long been speculated to be partially responsible for the excessive neurotoxicity seen with these 

compounds. Although this is by far the most interesting compound, the 3-methylpyrazole and the 

4-methyl pyrazole also shown picomolar IC50 values, making them also more potent than the 
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majority of styrene analogues. These all have basic nitrogen’s likely placed in similar orientations 

in chemical space indicating these may be forming a previously unknown interaction upon binding 

to b tubulin. Further structural work and/or docking studies would be necessary to confirm this.   

 With the exciting results from the analogues generated by the CrpTE we wanted to expand 

our chemoenzymatic synthesis to utilizing the CrpE, the P450 responsible for the installation of 

the b epoxide. Although it was exciting to identify a new analogue with low picomolar activity 

lacking this group, the majority of the analogues still of interest as warheads for antibody drug 

conjugates, contain this epoxide functionality, which is notoriously difficult to install. Having an 

active biocatalyst that can work on a variety of substrates could be of great use in formulating 

some of these analogues currently. With that we set out to gain active protein and test it for activity 

with our current analogues. Although these results are not as exciting, with the P450 being able to 

formulate presumed products for only a few of the analogues, it gives us some information on the 

current scope of this catalyst. Likely, as the aryl rings are conjugated to the double bond being 

epoxidized, electronics plays a huge factor in whether or not this can act upon a substrate.  

5.1.2 Future Directions 

 With the discovery of this new, equipotent, styrene analogue continued investigations 

into its viability as a clinical candidate need to be explored. We are currently working with Dr. 

Valeriote at the Henry Ford Health Center to run maximum tolerated dose (MTD) studies in 

order to run a future PK examination of this analogue. It should also be screened more 

extensively for IC50 values in a variety of cancer cell lines, including a more thorough 

examination of resistant cell lines as that may be where this holds the most promise.  

 Cryptophycins are currently being extensively analyzed as antibody drug conjugates 

(ADCs) which could also be an interesting avenue of exploration for this analogue. The methyl 

pyrazole aryl ring contains a methyl amine functionality which could be replaced or utilized as 

an alternative linking region for these molecules. Currently, as the cryptophycins don’t contain 

any readily linkable functional groups, a benzyl amine is utilized to facilitate this without 

deleterious effects. Although many of these ADCs have been made and patented, they have yet 

to show up in the clinic indicating that they have not been as effective as previously hoped, 

potentially due to issues with warhead efficacy. Utilizing our analogue, without the epoxide, may 

show better efficacy and facilitate the continued development of these treatments.  
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5.2 Structural and Mechanistic Insights into the CrpTE  

5.2.1 Summary and Discussion of Work Completed  

 With the exciting results from Chapter 2, our interest in the structural and mechanistic 

features of the CrpTE led to a collaboration with both Dr. John Lutz at Eli Lilly and Dr. Janet 

Smith’s lab at the University of Michigan in hopes of solving a crystal structure of this fascinating 

enzyme. After numerous attempts over the past decade, we knew undertaking this again was going 

to require significant efforts. Utilizing numerous servers and prediction software, we identified a 

number of regions that could be problematic for crystal packing. Utilizing this knowledge, we 

designed and constructed numerous mutant CrpTE plasmids. These were all expressed, purified 

and screened for crystallization. Despite two initial hits, with two separate constructs, numerous 

counter screens to date, have not produced any viable crystals for x-ray diffraction. Despite this 

failure, a crucial discovery came during the purification of these mutant proteins which indicated 

two of the constructs were almost exclusively monomeric, whereas the others showed different 

dispersions of monomer and dimer as high as 2:1. This discovery facilitated a new collaboration 

with Dr. Vivekanandan Subramanian in biophysics, with the hopes of being able to utilize NMR 

to gain a solution phase structure of the CrpTE. Initial experiments looking at the stability, 

solubility, and tumbling of the CrpTE proved that it was an excellent candidate for further 

characterization. As this protein is large for the capabilities of NMR, at 35 KD, multiple three-

dimensional experiments, containing different 15N, 13C, and 2H labeling patterns is required in 

order to gather enough data to unambiguously assign each atom in this protein with its 

corresponding NMR signal. These proteins have been formulated and the experiments run, with 

excellent resolution. Although this work has not been complete, the data has been collected and it 

is a matter of fitting the pieces together in order to complete the assignments.  

5.2.2 Future Directions  

 Once the assignments for the protein have been made, we must utilize the J values acquired 

from these experiments to build a three-dimensional model of the CrpTE in order to gain a 

structure. Once this has been completed we will have the unique opportunity to explore the 

dynamics of this protein using our synthesized substrates. Despite a number of crystal structures 

to date of type I TEs, there are no NMR structures and none of the crystal structures contain full 
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length substrate. A few utilized a substrate mimic affinity probes as well as docking/modeling 

studies in order to gain insight into the binding orientation, however these are only able to speculate 

about the mechanism of cyclization. Using the NMR we are able to titrate in substrate and visualize 

the changes in both the protein backbone and sidechains (depending on the labeling pattern). Using 

these shift perturbations, we should be able to build a model of the changes in pose of this enzyme 

as it facilitates macrocyclization. 

 

5.2 Molecular Interrogation of Polyketide Synthase Modules in the Pikromycin Biosynthetic 

Pathway   

5.2.1 Summary and Discussion of Work Completed  

 Engineering of polyketide synthase modules has the ability to produce almost limitless 

structural modifications, however studies toward this goal have shown that a detailed 

understanding of these systems and their selectivity will be required to accomplish this. With the 

successful reconstitution of the PikAIII-TE and PikAIII/AIV modules, we began to focus on 

formulating “unnatural” pentaketides to interrogate these further and hopefully produce the 

corresponding macrocycles. In accordance with our goals, five new pentaketides were synthesized 

and tested with these proteins as well as the PikAIII-TE S148C variant that has previously been 

shown to facilitate macrolactone production where the wild type failed.  

 Initial examination of the ester, amide, and desmethyl pentaketides (4.27, 4.28, and 4.37) 

with the PikAIII-TE construct indicated that the PikAIII could accept and process these, 

formulating the extended product, however the TE was not able to cyclize them to macrolactones 

and only produced hydrolytic byproducts. Running the same assay with the dimethyl and 

cyclohexyl pentaketides showed no meaningful conversion of starting material by enzymatic 

conversion indicating these larger groups are unable to be accepted by the PikAIII.  

 Despite not producing macrolactones, we continued examining these analogues with 

PikAIII/AIV in order to gain insight into the ability of PikAIV to produce products. The ester, 

amide, and desmethyl pentaketides again showed consumption of starting material, however with 

this system, two peaks with the product mass were observed. Scale up reactions of 10 mg were run 

in hopes of isolating both products, however only the later of the two peaks in all cases (produced 
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in significantly greater yield) contained significant product for full characterization. These were 

determined to be 14 membered macrolactones although we only assume the stereochemistry is the 

as expected. Further analysis of these will need to be done in order to confirm the relative 

stereochemistry is as expected. The other peak corresponding to product mass has not been fully 

characterized for any of the three products however analysis of mass and hydrogen spectra indicate 

it may be a six membered macrolactone. Without full characterization this is only speculation and 

there are other structures that could potentially produce the same mass, however six membered 

macrolactones do have some precedence. Although it is unknown if this byproduct is TE catalyzed 

or spontaneous, previous work with triketides have shown that formation of a six membered ring 

at a rate significantly above a spontaneous are produced in the presence of a TE indicating this is 

likely a protein mediated process. Testing of the dimethyl and cyclohexyl pentaketides again 

showed no meaningful consumption of starting material as expected again indicating these are too 

large for the PikAIII KS to load. 

 Finally, we tested the PikAIII-TE S148C variant that has previously been shown to 

facilitate macrolactone production. Analysis of these reactions did not produce peaks that 

contained a mass consistent with product production. There are a number of produced products, 

however none are reconcilable with known byproduct pathways. Interestingly both the ester and 

amide show a peak that corresponds to the same transformation, which is [+ 119] from the product. 

In the DEBS TE, dimerize substrate has been observed, which could account for the significantly 

higher mass present here, however no combination of two pentaketides produces this mass 

(cyclized, dimerized substrate has an [M+H] = 453). Further characterization will be necessary to 

determine what is being produced by this TE variant and may shed light on interesting potential 

byproducts.  

5.2.2 Future Directions  

 This work is still in the middle stages of completion and requires synthetic work and 

enzymatic follow up to complete the story and answer some of the questions that have been 

identified thus far. Full characterization of the products being produced for the ester, amide, and 

desmethyl substrates with all three proteins is needed to fully understand the limitations of these 

enzymes as well as continued work on the synthetic substrates that have not been realized in Figure 

4.6. These studies will continue to shed light on the selectivity of the KS for alternative head groups 
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as well as the TEs ability to formulate macrolactones with esters/amides in different positions in 

the ring. Formulation of homologated pentaketides for examination with the PikAIII-TE and 

PikAIII/AIV may indicate size constraints as well as show that odd membered rings are possible 

for bacterial TEs (previously these have only been seen in very limited numbers in fungal 

pathways).  

 All the newly formulated pentaketides can also be tested with a second reconstituted 

system, the JuvE5 and JuvE6 from the juvenimycin pathway.2 This system natively accepts a 

hexaktide and produces the core macrolactone (tylactone) of a well-known, vetrenary antibiotic 

tylosin. Recently, our lab has discovered that this system is capable of accepting and processing 

the pik pentaketide into a 14 membered ring analogous to narbonolide except this one contains for 

a C3 reduction. Substitution of the native TE with the TE from the DEBS system has shown 

exceptional turnover to product with isolation yields of 42% (unpublished data). Utilizing the same 

JuvE5 and JuvE6 fusion protein, we can assay our pentaketides analogues with this system to gain 

insight into its selectivity.  

 The next facet of this project will focus on taking the macrolactones produced by this 

substrate manipulation and utilizing our Streptomycese venezuelae biotransformation strains to 

hopefully construct the corresponding macrolide antibiotics. These can then be tested with a wide 

range of bacterial pathogens for activity, further establishing this means of antibiotic discovery.  

 

5.4 Contributions to the Understanding of PKS Pathways for use in Combinatorial 

Biosynthesis 

 With the continued interest in natural products as drug leads, alternative strategies that 

reconcile the continued desire for medicinal chemistry efforts with the difficulties in synthesizing 

these molecules would play a profound role in the drug discovery world. The idea of engineering 

biosynthetic pathways in a strategy termed combinatorial biosynthesis has long been postulated to 

be capable of producing almost unlimited structural modifications to natural product scaffolds, 

facilitating the inexpensive and rapid production of libraries of “unnatural” natural products that 

can shed light on SAR and impart better drug properties on molecules of interest. Despite some 

notable examples, this strategy has largely met with failure presumably because we currently only 

have a limited understanding of the complex factors that govern the selectivity and specificity of 
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each catalytic domain. In both the cryptophycin pathway and the pikromycin pathway summarized 

above, we have used a mixture of biochemical analysis with structural interrogation to shed light 

on different facets of the catalytic cycle that are likely hindering the ability to utilize genetic 

recombination to formulate new products. Utilizing this knowledge, we envision being able to use 

mutagenesis both rationally, gained from the structural investigations, and in the form of directed 

evolution to engineer these proteins to accept and process substrates that are currently out of reach. 

Once optimized proteins of interest have been identified these can be screened again in an in vitro 

setting as broader scope catalysts with synthetic precursors and/or be reincorporated into the full 

biosynthetic pathways, pushing the field closer to realizing the vast amounts of products that can 

potentially be accessed through genetic engineering. 
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Chapter 6 

Cryptophycin Experimentals 
 

6.1 Chemical Synthesis of Seco Cryptophycin Analogues  

6.1.1 Unit A Synthetic Procedures and Characterization   

 
2 was synthesized over two steps from commercially available S1, all spectra were in accordance 

with previous literature.1-2 

 

 
(R)-4-benzyl-3-((2R,3S)-3-hydroxy-5-((4-methoxybenzyl)oxy)-2-vinylpentanoyl)oxazolidin-

2-one (2.3).  To a flame dried three neck flask under N2 was added a stirred solution of imide 2.1 

(7.5 g, 30.58 mmol, 1 eq) in CH2Cl2 (305 mL, 0.1 M) and treated with dibutylboron 

trifluoromethanesulfonate (1M in DCM, 33.64 mL, 33.64 mmol, 1.1 eq) at -78 °C. After stirring 

for 5 min, the mixture was treated with Et3N (6.02 mL, 42.81 mmol, 1.4 eq), then kept for 1 h at -

78 °C, and 20 min at 0 °C. The reaction was re-cooled to -78 °C and treated with a solution of the 

aldehyde 2.2 (8.31 g, 42.81 mmol, 1.4 eq) in CH2Cl2 (25 mL). The reaction was kept for 1 h at -

78 °C, then warmed to 0 °C for 1 h. The reaction was quenched by addition of pH 7 buffer (30 

mL) followed by MeOH (30 mL), keeping temperature > 5 °C. After 5 min, 30% H2O2 (30 mL) 

was added and the mixture stirred for 1 h at 0 °C. Organics were removed under reduced pressure 

and the remaining aqueous layer was extracted with EtOAc (3 x 100 mL). The organic phase was 

washed with 1 N HCl, 5% aq NaHCO3, brine, dried over Na2SO4, and concentrated. The crude 
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product was purified by flash chromatography (33% EtOAc/Hexanes) to give 2.3 (11.98 g, 89% 

yield) as a clear and colorless oil: Rf = 0.2 (33% EtOAc/Hexanes); 1H NMR (600 MHz, CDCl3) δ 

7.31 (ddd, J = 7.4, 6.4, 1.3 Hz, 2H), 7.28 – 7.25 (m, 2H), 7.24 – 7.21 (m, 2H), 7.20 – 7.15 (m, 2H), 

6.04 (dddd, J = 17.6, 10.0, 9.0, 1.1 Hz, 1H), 5.39 – 5.36 (m, 1H), 5.36 – 5.34 (m, 1H), 4.68 (ddt, J 

= 11.4, 6.3, 3.0 Hz, 1H), 4.58 – 4.51 (m, 1H), 4.42 (s, 2H), 4.25 – 4.19 (m, 1H), 4.18 – 4.11 (m, 

2H), 3.78 (d, J = 1.1 Hz, 3H), 3.69 – 3.64 (m, 1H), 3.64 – 3.56 (m, 1H), 3.28 – 3.17 (m, 1H), 2.74 

(dd, J = 13.4, 9.5 Hz, 1H), 1.93 – 1.78 (m, 1H), 1.74 (dt, J = 14.5, 7.0 Hz, 1H), 1.55 (s, 2H); 13C 

NMR (150 MHz, CDCl3) δ 173.46, 159.19, 152.90, 135.04, 131.67, 130.14, 129.42, 129.30, 

128.91, 127.35, 121.00, 113.78, 72.87, 70.54, 67.74, 65.95, 55.25, 55.17, 52.53, 37.58, 33.87; 

HRMS (ESI) clcd for C25H29NO6 [M+Na] 462.1887, found 462.1885. 

 

 
(R)-4-benzyl-3-((2R,3S)-3-((tert-butyldimethylsilyl)oxy)-5-((4-methoxybenzyl)oxy)-2-

vinylpentanoyl)oxazolidin-2-one (S 2.3).  To a solution of 3 (17.56 g, 39.9 mmol, 1 eq) and 2,6-

lutidine (46.28 mL, 79.9 mmol, 2 eq) in CH2Cl2 (135 mL, 0.3 M) was added tert-

butylsilyltrifluoromethane sulfonate (11.6 mL, 59.9 mmol, 1.5 eq) and the solution was stirred at 

rt for 18h. The mixture was quenched with H2O (100 mL), stirred for 30 min, and the extracted 

with CH2Cl2 (3 x 100 mL). The organic phase was washed with 1 N HCl, sat. aq NaHCO3, brine, 

dried over Na2SO4, and concentrated. The crude product was purified by flash chromatography 

(20% EtOAC/Hexane) to give S 2.3 (17.22 g, 78% yield) as a pale yellow oil: Rf = 0.6 (33% 

EtOAc/Hexanes);1H NMR (400 MHz, CDCl3) δ 7.33 – 7.26 (m, 3H), 7.25 (d, J = 8.8 Hz, 2H), 

7.18 (d, J = 6.9 Hz, 2H), 6.85 (d, J = 8.6 Hz, 2H), 6.00 (ddd, J = 9, 9.3,  18.2 Hz, 1H), 5.27 (d, J = 

10.2 Hz, 1H), 5.26 (d, J = 18.1 Hz, 1H), 4.58 (dd, J = 6.6 Hz, 8.8 Hz, 1H), 4.56 – 4.52 (m, 1H), 

4.41 (d, J = 11.4 Hz, 1H), 4.36 (d, J = 11.5 Hz, 1H), 4.21 (td, J = 5.2 Hz, 6.4 Hz, 1H), 4.05 (dd, J 

= 2 Hz, 9.2 Hz, 1H), 3.86 (t, J = 8.2 Hz, 1H), 3.78 (s, 3H), 3.59 (td, J = 6.5, 9.2 Hz, 1H), 3.48 (dt, 

J = 6.2, 9.4 Hz, 1H), 3.23 (dd, J = 3.0, 13.4 Hz, 1H), 2.70 (dd, J = 9.7, 13.4 Hz, 1H), 1.95 – 1.85 

(m, 2H), 0.86 (s, 9H), 0.02 (s, 3H), 0.01 (s, 3H);13C NMR (100 MHz, CDCl3) δ 172.62, 159.24, 

153.02, 135.58, 134.24, 130.86, 129.68, 129.49, 129.10, 127.48, 127.48, 119.70, 113.86, 72.77, 
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71.29, 66.03, 65.94, 55.66, 55.48, 53.39, 37.73, 35.47, 26.02, 18.22, -4.23, -4.38; HRMS calcd for 

C31H43NO6Si [M+Na] 576.2752, found 576.2767 

 

 
(2S,3S)-3-((tert-butyldimethylsilyl)oxy)-5-((4-methoxybenzyl)oxy)-2-vinylpentan-1-ol (2.4). 

To a stirred solution of S2.3 (17.22 g, 31.14 mmol, 1 eq) in THF (625 mL, 0.05M) was added a 

solution of NaBH4 (5.89 g, 155.7 mmol, 5 eq) in H2O (240 mL) at 0 °C. The reaction mixture was 

stirred at 0 °C for 5 min, warmed to rt, and stirred for 5 h. The reaction was quenched by the 

addition of sat. aq NH4Cl solution (200 mL) and the mixture stirred at rt for 1 h. The THF was 

removed under reduced pressure and the aqueous layer was extracted with EtOAc (3 x 75 mL), 

organics combined, washed with brine, dried over Na2SO4, and concentrated. The crude product 

was purified by flash chromatography (18% EtOAc/Hexanes) to afford 2.4 (10.04 g, 85% yield) 

as a colorless oil; Rf = 0.25 (20% EtOAc/Hexanes); 1H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 

8.5 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 5.71 (ddd, J = 17.3, 10.4, 8.6 Hz, 1H), 5.18 (dd, J = 10.5, 

2.0 Hz, 1H), 5.10 (d, J = 17.4 Hz, 1H), 4.43 (d, J = 11.5 Hz, 1H), 4.38 (d, J = 11.5 Hz, 1H), 3.99 

(dd, J = 12.7, 3.0 Hz, 0H), 3.80 (s, 3H), 3.75 (dt, J = 10.8, 6.6 Hz, 1H), 3.61 (ddd, J = 11.0, 7.0, 

5.0 Hz, 1H), 3.46 (t, J = 6.5 Hz, 2H), 2.50 – 2.35 (m, 1H), 2.15 (t, J = 5.7 Hz, 1H), 1.88 – 1.70 (m, 

2H), 0.88 (s, 9H), 0.09 (s, 3H), 0.06 (s, 3H);13C NMR (100 MHz, CDCl3) δ 159.28, 135.60, 130.61, 

129.41, 118.67, 113.89, 72.72, 71.06, 66.63, 63.67, 55.43, 51.34, 34.11, 25.98, 18.14, -4 

 

 
(5S,6S)-5-(2-((4-methoxybenzyl)oxy)ethyl)-2,2,3,3,9,9,10,10-octamethyl-6-vinyl-4,8-dioxa-

3,9-disilaundecane (2.5).3-4 To a stirred solution of alcohol (9.81 g, 25.78 mmol, 1 eq) in dry 

pyridine (250 mL, 0.1 M) was added p-toluenesulfonyl chloride (7.37 g, 38.66 mmol, 1.5 eq) at 0 

°C. The mixture was warmed to rt and stirred for 4 h prior to re-cooling to 0 °C. The reaction was 

quenched by the slow addition of 0.5 N HCl (300 mL). The aqueous layer was extracted with 

diethyl ether (3 x 200 mL), organics combined, washed with 1 M HCl, brine, dried over Na2SO4, 

and concentrated. The residue was purified using a silica plug (18% EtOAc/Hexanes) to afford 2.5 
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(11.67 g, 84.6% yield) as a colorless oil: Rf = 0.4 (20% EtOAc/Hexanes); 1H NMR (400 MHz, 

CDCl3) δ 7.75 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 

8.4 Hz, 2H), 5.58 (ddd, J = 8.7, 10.3, 17.3 Hz, 1H), 5.12 (dd, J = 1.2, 9.2 Hz, 1H), 5.04 (d, J = 17.2 

Hz, 1H), 4.39 (d, J = 11.6 Hz, 1H), 4.33 (d, J = 11.6 Hz, 1H), 4.08 (dd, J = 6.6, 9.4 Hz, 1H), 3.94 

(dd, J = 7.4, 9.4 Hz, 1H), 3.93 – 3.89 (m, 1H), 3.79 (s, 3H), 3.35 (t, J = 6.4 Hz, 2H), 2.46 – 2.42 

(m, 1H), 2.42 (s, 3H), 1.74 – 1.57 (m, 2H), 0.78 (s, 9H), -0.01 (s, 3H), -0.05 (s, 3H); 13C NMR 

(100 MHz, CDCl3) δ 159.30, 144.80, 133.44, 133.15, 130.53, 129.91, 129.39, 128.14, 119.79, 

113.92, 72.73, 70.54, 68.83, 66.36, 55.43, 48.61, 34.64, 25.91, 21.77, 18.11, -4.25, -4.69; HRMS 

(ESI) calcd for C28H42O6SSi [M+H] 534.2471, found 534.269. 

 

 
tert-butyl(((3S,4R)-1-((4-methoxybenzyl)oxy)-4-methylhex-5-en-3-yl)oxy)dimethylsilane 

(2.6).5  To a flame dried round bottom flask under N2 was added tosylate 2.5 (3.72 g, 6.96 mmol, 

1 eq) in dry THF (70 mL, 0.1 M). The mixture was cooled to 0 ºC and treated with lithium 

triethylborohydride (1M in THF, 17.39 mL, 17.39 mmol, 2.5 eq). The reaction was stirred at rt for 

2 h, cooled to 0 °C, quenched with water (15 mL), 3 N NaOH (15 mL), 30% H2O2 (15 mL), and 

stirred for 30 min. The organics were removed under reduced pressure and the aqueous layer was 

extracted with EtOAc (3 x 50 mL), the organics were combined, washed with brine, dried over 

Na2SO4, and concentrated. The crude product was purified by flash chromatography (10% 

EtOAc/Hexanes) to afford 2.6 (1.87 g, 74% yield) as a clear and colorless oil: Rf = 0.5 (10% 

EtOAc/Hexanes); 1H NMR (600 MHz, CDCl3) δ 7.25 (d, J = 9.0 Hz, 2H), 6.87 (d, J = 8.2 Hz, 

2H), 5.85 – 5.66 (m, 1H), 4.43 (d, J = 11.5 Hz, 1H), 4.38 (d, J = 11.5 Hz, 1H), 3.80 (s, 3H), 3.76 

(dt, J = 8.0, 4.2 Hz, 1H), 3.52 – 3.43 (m, 2H), 2.29 (td, J = 7.1, 3.9 Hz, 1H), 1.75 – 1.60 (m, 3H), 

0.99 (d, J = 6.9 Hz, 3H), 0.88 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 

159.23, 140.84, 130.85, 129.39, 114.67, 113.87, 72.68, 72.65, 67.24, 55.43, 43.58, 33.36, 26.05, 

18.27, 14.68, -4.26, -4.39; HRMS (ESI) calcd for C21H36O3Si [M+H] 364.2434, found 364.2439. 
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(tert-butyl(((3S,4R,E)-1-((4-methoxybenzyl)oxy)-4-methyl-6-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)hex-5-en-3-yl)oxy)dimethylsilane (2.8).6 A solution of Hoveyda Grubbs II 

(0.10 g, 0.16 mmol, 0.05 eq) catalyst in dry CH2Cl2 (15 mL, 0.2 M)) was added to a flame dried 

two neck flask fitted with reflux condenser under N2. Olefin 2.6 (1.15 g, 3.15 mmol, 1 eq) was 

then added to the mixture, followed by vinylboronic acid pinacol ester  2.7 (1.07 mL, 6.31 mmol, 

3 eq, passed through silica plug with 10% EtOAc/Hex to remove stabilizer immediately prior to 

use), and the reaction was heated to reflux for 18 h. The crude reaction was concentrated and 

purified by flash chromatography (5% EtOAc/Hexanes) to afford 2.8 (1.10 g, 74% yield) as a pale 

yellow oil: Rf = 0.35 (5% EtOAc/Hexanes); 1H NMR (400 MHz, CDCl3) δ 7.25 (d, J = 8.1 Hz, 

2H), 6.87 (d, J = 8.0 Hz, 2H), 6.56 (dd, J = 18.1, 6.6 Hz, 1H), 5.43 (d, J = 18.1 Hz, 1H), 4.41 (d, 

J = 18.0 Hz, 1H), 4.38 (d, J = 17.9 Hz, 1H), 3.87 – 3.75 (m, 1H), 3.80 (d, J = 0.8 Hz, 3H), 3.55 – 

3.38 (m, 2H), 2.40 (q, J = 6.2 Hz, 1H), 1.66 (q, J = 6.7 Hz, 2H), 1.26 (s, 12H), 1.00 (d, J = 6.9 Hz, 

3H), 0.87 (d, J = 0.8 Hz, 9H), 0.03 (s, 3H), 0.02 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 159.31, 

156.21, 130.88, 129.52, 123.53 113.96, 83.26, 72.77, 72.45, 67.42, 55.50, 45.53, 32.93, 26.12, 

25.06, 24.96, 18.32, 13.32, -4.20, -4.42; HRMS (ESI) calcd for C27H47BO5Si [M+H] 491.3359, 

found 491.3350.  

 

 
(3S,4R,E)-3-((tert-butyldimethylsilyl)oxy)-4-methyl-6-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)hex-5-en-1-ol (S 2.4). To a solution of 2.8 (1.90 g, 3.87 mmol, 1 eq) in CH2Cl2 

(25 mL, 0.15 M) and water (1.49 mL) at rt was added DDQ (1.32 g, 5.81 mmol, 1.5 eq) and the 

mixture was stirred for 1 h. The reaction was quenched with sat. NaHCO3 and diluted with water. 

The aqueous layer was extracted with CH2Cl2, the organics were combined, dried over Na2SO4, 
and concentrated. The crude product was purified by flash chromatography (12% EtOAc/Hexanes) 

to afford 2.8 (1.21 g, 83 % yield) as a colorless oil: Rf = 0.15 (10% EtOAc/Hexanes); 1H NMR 

(600 MHz, CDCl3) δ 6.54 (dd, J = 18.1, 6.6 Hz, 1H), 5.46 (dd, J = 18.1, 1.5 Hz, 1H), 3.87 (ddd, J 

= 7.9, 5.0, 3.8 Hz, 1H), 3.77 – 3.67 (m, 2H), 2.49 (pdd, J = 6.8, 5.0, 1.5 Hz, 1H), 2.03 (t, J = 5.4 

Hz, 1H), 1.71 – 1.63 (m, 2H), 1.26 (d, J = 1.7 Hz, 12H), 1.01 (d, J = 6.8 Hz, 3H), 0.89 (s, 9H), 

0.08 (s, 3H), 0.07 (s, 3H);13C NMR (150 MHz, CDCl3) δ 155.72, 123.53, 83.07, 74.24, 60.63, 
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44.92, 34.15, 25.84, 24.80, 24.71, 17.98, 12.81, -4.41, -4.69; HRMS (ESI) calcd for C19H39BO4Si 

[M+H] 371.2783, found 371.2778. 

 
(3S,4R,E)-3-((tert-butyldimethylsilyl)oxy)-4-methyl-6-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)hex-5-enal (2.9). To an open round bottom flask was added alcohol S 2.4 (1.00 

g, 4.09 mmol, 1 eq) in CH2Cl2 (41 mL, 0.1 M) and treated with NaHCO3 (1.72 g, 20.45 mmol, 5 

eq) and desmartin periodinane (2.082 g, 4.91 mmol, 1.2 eq). The reaction was stirred at rt for 1 hr, 

quenched with 10% Na2S2O3 solution, and stirred until both layers were clear. The mixture was 

separated and the aqueous layer extracted with CH2Cl2 (3 x 100 mL). The organics were combined, 

washed with brine, dried over sodium sulfate and concentrated. The crude product was purified by 

flash chromatography (10% EtOAc/Hexanes) to afford 2.9 (0.768 g, 77% yield) as a colorless oil: 

Rf = 0.5 (10% EtOAc/Hexanes); 1H NMR (400 MHz, CDCl3) δ 9.75 (dd, J = 2.1, 1.1 Hz, 1H), 

6.50 (dd, J = 18.1, 6.6 Hz, 1H), 5.46 (d, J = 18.0 Hz, 1H), 4.22 (dt, J = 8.1, 4.2 Hz, 1H), 2.54 – 

2.42 (m, 2H), 2.41 – 2.33 (m, 1H), 1.25 (s, 12H), 1.01 (dd, J = 6.9, 0.9 Hz, 3H), 0.85 (d, J = 0.8 

Hz, 9H), 0.05 (s, 3H), 0.02 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 202.47, 154.68, 123.53, 83.36, 

70.89, 47.17, 45.54, 29.86, 25.92, 24.98, 24.88, 18.16, 13.03, -4.33, -4.56; HRMS (ESI) calcd for 

C19H37BO4Si [M+H] 368.2554, found 368.250. 

6.1.2 Unit AB Synthetic Procedures and Characterization  

 
2.10 was synthesized in three steps as previously reported and all spectra were in accordance.7 
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methyl (R)-3-(3-chloro-4-methoxyphenyl)-2-(2-(diethoxyphosphoryl)acetamido)propanoate 

(2.12). To an open flask was added 2.10 (1.10 g, 3.20 mmol, 1 eq) and 4 M HCl/Dioxane (20 mL). 

This was stirred for 30 min at rt prior to acid and organics being removed under reduced pressure. 

The resulting white solid product was used directly. 

The above, deprotected product was added to a flask under N2 and suspended in DMF (32 mL, 0.1 

M). To this was added 2-(diethoxyphosphoryl)acetic acid 2.11 (0.69 g, 3.52 mmol, 1.1 eq) 

EDC·HCl (0.73 g, 3.84 mmol, 1.2 eq), HOBt hydrate (0.59 g, 3.84 mmol, 1.2 eq), and DIPEA 

(1.03 g, 1.40 mL, 8.00 mmol, 2.5 eq) and stirred at rt overnight. The reaction was quenched with 

half sat. aq NH4Cl, extracted 3 x 30 mL of DCM, organics combined, washed 2 x 100 mL of sat. 

aq. NH4Cl, dried over sodium sulfate, and concentrated. The crude product was purified by flash 

purification (1-7% MeOH/DCM) to afford 2.12 (0.90 mg, 66.6% yield) as a clear and colorless 

oil: Rf = 0.2 (2.5% MeOH/DCM); 1H NMR (600 MHz, CDCl3) δ 7.16 (d, J = 2.2 Hz, 1H), 7.09 

(bd, J = 7.5 Hz, 1H), 7.04 (dd, J = 8.4, 2.2 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 4.78 (td, J = 7.1, 5.4 

Hz, 1H), 4.13 (dt, J = 14.9, 7.2 Hz, 1H), 4.06 (dq, J = 8.2, 7.1 Hz, 2H), 3.85 (s, 3H), 3.70 (s, 3H), 

3.08 (dd, J = 14.2, 5.4 Hz, 1H), 2.97 (dd, J = 14.2, 6.8 Hz, 1H), 2.85 (d, J = 10.7 Hz, 1H), 2.81 (d, 

J = 10.5 Hz, 1H), 1.31 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H); 13C NMR (150 MHz, CDCl3) 

δ 171.45, 163.95, 163.93, 154.24, 131.09, 129.15, 128.72, 122.48, 112.22, 77.37, 77.16, 76.95, 

62.95 (d, J = 15.3 Hz), 62.91 (d, J = 15.3), 56.25, 53.94, 52.52, 36.88, 35.70, 34.83, 16.48, 16.43, 

16.39; HRMS (ESI) calcd for C17H25ClNO7P [M+H] 421.1057, found 421.1053.  

 

 
methyl (R)-2-((2E,5S,6R,7E)-5-((tert-butyldimethylsilyl)oxy)-6-methyl-8-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)octa-2,7-dienamido)-3-(3-chloro-4-methoxyphenyl)propanoate (2.13). To a flame 

dried flask under N2 was added unit B phosphonate 2.12 (0.63 g, 1.49 mmol, 1 eq) suspended in 

dry THF (15 mL, 0.1 M). The solution was cooled to 0 °C and NaH (60% suspension in oil, 0.055 

g, 1.64 mmol, 1.1 eq) was added slowly. The reaction was stirred for 20 min prior to the dropwise 

addition of aldehyde 2.9 (0.55g, 1.49 mmol, 1 eq) in THF (5 mL). The reaction was allowed to stir 

at 0 °C for 1 h and quenched with half sat. NH4Cl (10 mL). The THF was removed under reduced 

pressure and the remaining aqueous layer was extracted with DCM (3 x 50 mL), organics 
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combined, washed with brine, dried over sodium sulfate, and concentrated. The crude product was 

purified by flash chromatography (6-45% EtOAc/Hexanes) to afford 2.13 (0.545 g, 57.4% yield) 

as a clear and colorless oil: Rf = 0.25 (25% EtOAc/Hexanes); 1H NMR : (400 MHz, CD3OD) δ 

7.21 (d, J = 2.2 Hz, 1H), 7.10 (dd, J = 8.5, 2.2 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.75 (dt, J = 15.2, 

7.5 Hz, 1H), 6.57 (dd, J = 18.0, 7.7 Hz, 1H), 5.96 (d, J = 15.3 Hz, 1H), 5.38 (d, J = 18.3 Hz, 1H), 

4.68 (dd, J = 8.9, 5.5 Hz, 1H), 3.84 (s, 3H), 3.73 (q, J = 5.4 Hz, 1H), 3.70 (s, 3H), 3.11 (dd, J = 

14.0, 5.6 Hz, 1H), 2.90 (dd, J = 14.0, 9.0 Hz, 1H), 2.41 – 2.25 (m, 3H), 1.26 (s, 12H), 1.01 (d, J = 

6.8 Hz, 3H), 0.89 (s, 9H), 0.06 (s, 3H), 0.03 (s, 3H); 13C NMR: (100 MHz, CD3OD) δ 171.84, 

166.53, 155.89, 153.97, 141.84, 130.37, 129.89, 128.26, 124.84, 123.53, 121.75, 111.90, 82.97, 

74.64, 55.10, 53.75, 51.28, 45.03, 36.94, 35.85, 25.03, 23.70, 23.65, 17.56, 14.36, -5.44, -5.74. 

; HRMS (ESI) calcd for C32H51BClNO7Si [M+H] 635.3216, found 635.3215. 

6.1.3 Heterocyclic Unit AB Analogues  

 
General suzuki coupling procedure: To a long tube was added 2.13 (1 eq), K3PO4 (2.5 eq), aryl 

iodide (2 eq), and Pd2(dba)3 (0.05 eq) prior to evacuation and N2 refill. This was suspended in a 

mixture 1,2 dichloroethane and water (4:1, 0.1 M) and the reaction was stirred vigorously until 

reaction completion as assessed by TLC (2 – 12 hours). The reaction was diluted with 0.5 M HCl 

and CH2Cl2, the aqueous layer was extracted with CH2Cl2 (3 x 20 mL). The organics were 

combined, dried over Na2SO4 and purified by flash chromatography system as indicated below.  

 

 

methyl (R)-2-((2E,5S,6R,7E)-5-((tert-butyldimethylsilyl)oxy) 

-6-methyl-8-phenylocta-2,7-dienamido)-3-(3-chloro-4-

methoxyphenyl)propanoate (2.14a). Reaction was run as per 

general Suzuki procedure, and purified by flash chromatography system (20 – 50% 

EtOAc/Hexanes) to afford 23a (0.086 g, 93% yield) as a pale yellow oil: Rf = 0.35 (25% 

EtOAc/Hexanes); 1H NMR (400 MHz, CD3OD) δ 7.33 (d, J = 7.5 Hz, 2H), 7.27 (t, J = 7.6 Hz, 

OTBS
BO

O

H
N OMe

O

O

OMe
Cl

+
I

Het
Pd2(dba)3, K3PO4

1,2 DME/H2O OTBS

H
N OMe

O

O

OMe
Cl

Het

2.13 2.14 a-m

OMe

OH
N

OMe
Cl

OOTBS



 

 93 

2H), 7.21 (d, J = 2.2 Hz, 1H), 7.18 (t, J = 7.2 Hz, 1H), 7.10 (dd, J = 8.4, 2.2 Hz, 1H), 6.96 (d, J = 

8.4 Hz, 1H), 6.78 (dt, J = 15.2, 7.5 Hz, 1H), 6.38 (d, J = 16.0 Hz, 1H), 6.19 (dd, J = 16.0, 8.2 Hz, 

1H), 5.96 (d, J = 15.4 Hz, 1H), 4.69 (dd, J = 8.9, 5.6 Hz, 1H), 3.83 (s, 3H), 3.80 (q, 1H), 3.70 (s, 

3H), 3.11 (dd, J = 14.0, 5.6 Hz, 1H), 2.90 (dd, J = 14.0, 9.0 Hz, 1H), 2.44 (q, J = 6.5 Hz, 1H), 2.37 

(t, J = 6.9 Hz, 2H), 1.11 (d, J = 6.9 Hz, 3H), 0.90 (s, 8H), 0.06 (s, 3H), 0.05 (s, 3H); 13C NMR 

(100 MHz, CD3OD) 173.28, 168.03, 155.41, 143.50, 139.03, 133.10, 131.82, 131.73, 131.33, 

129.67, 129.50, 128.04, 127.06, 126.17, 123.18, 113.33, 76.54, 56.53, 55.15, 52.72, 44.11, 38.62, 

37.27, 26.44, 18.98, 16.80, -4.01, -4.32.; HRMS (ESI) calcd for C32H44ClNO5Si [M+H] 586.2750 

found 586.2754.  

methyl (R)-2-((2E,5S,6R,7E)-5-((tert-butyldimethylsilyl)oxy) 

-6-methyl-8-(pyridin-2-yl)octa-2,7-dienamido)-3-(3-chloro-

4-methoxyphenyl)propanoate (2.14b). Reaction was run as per 

general Suzuki procedure, and purified by flash chromatography 

system (Amine Silica, 20 – 50% EtOAc/Hexanes) to afford 2.14b (0.078 g, 45% yield) as a pale 

yellow oil: Rf = 0.35 (Amine column, 16-60% EtOAc/Hexanes);1H NMR (400 MHz, CD3OD) δ 

8.44 (d, J = 4.0 Hz, 1H), 7.76 (td, J = 7.8, 1.8 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.28 – 7.18 (m, 

1H), 7.21 (d, J = 2.1 Hz, 1H), 7.10 (dd, J = 8.5, 2.2 Hz, 1H), 6.96 (d, J = 8.3 Hz, 1H), 6.77 (dt, J 

= 15.3, 7.4 Hz, 1H), 6.64 (dd, J = 16.0, 8.2 Hz, 1H), 6.49 (d, J = 16.0 Hz, 1H), 5.98 (d, J = 15.4 

Hz, 1H), 4.70 (dd, J = 9.0, 5.5 Hz, 1H), 3.83 (m, 4H), 3.70 (s, 3H), 3.11 (dd, J = 14.0, 5.5 Hz, 1H), 

2.90 (dd, J = 14.0, 9.0 Hz, 1H), 2.51 (h, J = 6.8 Hz, 1H), 2.38 (t, J = 6.8 Hz, 2H), 1.14 (d, J = 6.8 

Hz, 3H), 0.90 (s, 10H).13C NMR (100 MHz, CD3OD) δ 173.27, 167.95, 157.17, 155.41, 149.74, 

143.24, 139.05, 138.66, 131.83, 131.34, 131.12, 129.70, 126.38, 123.38, 123.17, 122.34, 113.34, 

76.26, 56.53, 55.15, 52.73, 44.06, 38.62, 37.31, 26.43, 18.97, 16.47, -4.04, -4.34. HRMS (ESI) 

calcd for C31H43ClN2O5Si [M+H] 587.2703, found 587.2705.  

 

methyl (R)-2-((2E,5S,6R,7E)-5-((tert-butyldimethylsilyl) 

oxy)-6-methyl-8-(pyridin-3-yl)octa-2,7-dienamido)-3-(3-

chloro-4-methoxyphenyl)propanoate (2.14c,d). Reaction was 

run as per general Suzuki procedure, and purified by flash 

chromatography system (Amine silica, 16-60% EtOAc/Hexanes) to afford 2.14c,d (0.049 g, 72% 

yield) as a pale yellow oil: Rf = 0.15 (50% EtOAc/Hexanes); 1H NMR (600 MHz, CD3OD) δ 8.49 
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(d, J = 2.1 Hz, 1H), 8.35 (dd, J = 4.9, 1.5 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.37 (dd, J = 8.0, 4.8 

Hz, 1H), 7.21 (d, J = 2.1 Hz, 1H), 7.10 (dd, J = 8.4, 2.2 Hz, 1H), 6.96 (d, J = 8.5 Hz, 1H), 6.78 (dt, 

J = 15.2, 7.5 Hz, 1H), 6.43 (d, J = 16.1 Hz, 1H), 6.36 (dd, J = 16.1, 7.9 Hz, 1H), 5.97 (dt, J = 15.3, 

1.4 Hz, 1H), 4.70 (dd, J = 8.9, 5.6 Hz, 1H), 3.83 (s, 4H), 3.70 (s, 3H), 3.11 (dd, J = 14.0, 5.6 Hz, 

1H), 2.91 (dd, J = 14.0, 9.0 Hz, 1H), 2.49 (td, J = 7.2, 4.7 Hz, 1H), 2.38 (ddd, J = 7.4, 5.8, 1.4 Hz, 

2H), 1.13 (d, J = 6.9 Hz, 3H), 0.90 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H); 13C NMR (150 MHz, 

CD3OD) δ 173.27, 167.97, 155.43, 148.28, 148.13, 143.21, 136.88, 135.48, 134.71, 131.82, 

131.35, 129.68, 127.66, 126.31, 125.28, 123.20, 113.39, 76.32, 56.56, 55.15, 52.72, 44.24, 38.69, 

37.29, 26.42, 18.96, 16.65, -4.00, -4.34; HRMS (ESI) C31H43ClN2O5Si [M+H] 587.2703, found 

587.2702. 

 

methyl (R)-2-((2E,5S,6R,7E)-5-((tert-butyldimethylsilyl)oxy)-

6-methyl-8-(pyridin-4-yl)octa-2,7-dienamido)-3-(3-chloro-4-

methoxyphenyl)propanoate (2.14e,f). Reaction was run as per 

general Suzuki procedure, and purified by flash chromatography System (Amine Silica, 15 - 55% 

EtOAc/Hexanes) to afford 2.14e,f (0.062 g, 71% yield) as a pale yellow oil: Rf = 0.25 (50% 

EtOAc/Hexanes); 1H NMR (400 MHz, CD3OD) δ 8.49 (d, J = 2.2 Hz, 1H), 8.36 (dd, J = 4.9, 1.5 

Hz, 1H), 7.85 (dd, J = 8.0, 2.0 Hz, 1H), 7.37 (dd, J = 7.8, 4.8 Hz, 1H), 7.21 (d, J = 2.2 Hz, 1H), 

7.10 (dd, J = 8.4, 2.2 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.78 (dt, J = 15.2, 7.5 Hz, 1H), 6.44 (d, J 

= 16.2 Hz, 1H), 6.36 (dd, J = 16.1, 7.6 Hz, 1H), 5.97 (d, J = 15.3 Hz, 1H), 4.69 (dd, J = 8.9, 5.6 

Hz, 1H), 3.87 – 3.77 (m, 1H), 3.82 (s, 3H), 3.70 (s, 3H), 3.11 (dd, J = 14.0, 5.5 Hz, 1H), 2.90 (dd, 

J = 14.0, 9.0 Hz, 1H), 2.56 – 2.44 (m, 1H), 2.38 (t, J = 6.6 Hz, 2H), 1.13 (d, J = 6.8 Hz, 3H), 0.90 

(s, 8H), 0.06 (s, 3H), 0.05 (s, 3H); 13C NMR (150 MHz, CD3OD) 13C NMR (151 MHz, cd3od) δ 

173.28, 167.96, 155.44, 150.23, 147.68, 143.05, 139.96, 131.83, 131.36, 129.67, 129.19, 126.37, 

123.20, 122.32, 113.40, 76.19, 56.56, 55.14, 52.73, 44.24, 38.75, 37.28, 26.41, 18.96, 16.56, -4.02, 

-4.36; HRMS C31H43ClN2O5Si [M+H] 587.2703, found 587.2699. 

 

methyl (R)-2-((2E,5S,6R,7E)-5-((tert-butyldimethylsilyl) 

oxy)-6-methyl-8-(pyrazin-2-yl)octa-2,7-dienamido)-3-(3-

chloro-4-methoxyphenyl)propanoate (2.14g). Reaction was 

run as per general Suzuki procedure, and purified by flash 
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chromatography system (Amine Silica, 20 – 55% EtOAc/Hexanes) to afford 2.14g (0.115 g, 65% 

yield) as a pale yellow oil: Rf = 0.2 (50% EtOAc/Hexanes); 1H NMR (600 MHz, CD3OD) δ 8.57 

(d, J = 1.5 Hz, 1H), 8.51 (s, 1H), 8.39 (d, J = 2.6 Hz, 1H), 7.21 (d, J = 2.2 Hz, 1H), 7.10 (dd, J = 

8.4, 2.2 Hz, 1H), 6.96 (d, J = 8.5 Hz, 1H), 6.90 (dd, J = 15.9, 8.3 Hz, 1H), 6.78 (dt, J = 15.2, 7.5 

Hz, 1H), 6.54 (d, J = 16.0 Hz, 1H), 5.98 (d, J = 15.4 Hz, 1H), 4.70 (dd, J = 8.9, 5.5 Hz, 1H), 3.86 

– 3.84 (m, 1H), 3.83 (s, 3H), 3.70 (s, 3H), 3.11 (dd, J = 14.0, 5.6 Hz, 1H), 2.91 (dd, J = 14.0, 9.0 

Hz, 1H), 2.55 (q, J = 6.9 Hz, 1H), 2.41 – 2.33 (m, 2H), 1.15 (d, J = 6.8 Hz, 3H), 0.89 (s, 9H), 0.06 

(s, 3H), 0.05 (s, 3H); 13C NMR (150 MHz, CD3OD) δ 173.27, 167.93, 155.42, 152.99, 145.49, 

143.89, 143.49, 143.07, 141.77, 131.82, 131.34, 129.69, 127.88, 126.41, 123.19, 113.38, 76.20, 

56.56, 55.15, 52.73, 44.13, 38.74, 37.30, 26.42, 18.97, 16.46, -4.01, -4.36; HRMS (ESI) calcd for 

C30H42ClN3O5Si [M+H] 588.2655, found 588.2659.  

 

methyl (R)-2-((2E,5S,6R,7E)-5-((tert-butyldimethylsilyl) 

oxy)-6-methyl-8-(1-methyl-1H-pyrazol-5-yl)octa-2,7-

dienamido)-3-(3-chloro-4-methoxyphenyl)propanoate 

(2.14h). Reaction was run as per general Suzuki procedure, and 

purified by flash chromatography system (Amine silica, 20 – 70% EtOAc/Hexanes) to afford 2.14h 

(0.044 g, 63% yield) as a pale yellow oil: Rf = 0.1 (50% EtOAc/Hexanes); 1H NMR (600 MHz, 

CD3OD) δ 7.32 (d, J = 2.0 Hz, 1H), 7.19 (d, J = 2.2 Hz, 1H), 7.08 (dd, J = 8.4, 2.2 Hz, 1H), 6.95 

(d, J = 8.4 Hz, 1H), 6.76 (dt, J = 15.2, 7.5 Hz, 1H), 6.37 (d, J = 15.9 Hz, 1H), 6.32 (d, J = 2.1 Hz, 

1H), 6.19 (dd, J = 15.9, 8.3 Hz, 1H), 5.96 (dt, J = 15.4, 1.3 Hz, 1H), 4.68 (dd, J = 8.9, 5.6 Hz, 1H), 

3.82 (s, 3H), 3.80 (s, 1H), 3.78 (s, 3H), 3.68 (s, 3H), 3.10 (dd, J = 14.0, 5.6 Hz, 1H), 2.89 (dd, J = 

14.0, 8.9 Hz, 1H), 2.46 (s, 1H), 2.36 (t, J = 6.5 Hz, 2H), 1.10 (d, J = 6.9 Hz, 3H), 0.88 (s, 9H).13C 

NMR (150 MHz, CD3OD) δ 173.28, 167.98, 155.44, 143.09, 142.83, 139.14, 138.52, 131.81, 

131.36, 129.67, 126.33, 123.21, 118.11, 113.41, 103.42, 76.23, 56.57, 55.17, 52.72, 44.20, 38.79, 

37.28, 36.45, 26.42, 25.03, 18.97, 16.77, -3.99, -4.36; HRMS (ESI) calcd for C30H44ClN3O5Si 

[M+H] 590.2812, found 590.2811.  

 
methyl (R)-2-((2E,5S,6R,7E)-5-((tert-butyldimethylsilyl)oxy)-

6-methyl-8-(1-methyl-1H-pyrazol-3-yl)octa-2,7-dienamido)-

3-(3-chloro-4-methoxyphenyl)propanoate (2.14i). Reaction 
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was run as per general Suzuki procedure, and purified by flash chromatography (Amine column, 

16 - 55% EtOAc/Hexanes) to afford 2.14i (0.065 g, 70.6% yield) as a pale yellow oil: Rf = 0.25 

(50% EtOAc/Hexanes); 1H NMR (600 MHz, CD3OD) δ 7.46 (d, J = 2.3 Hz, 1H), 7.21 (d, J = 2.2 

Hz, 1H), 7.10 (dd, J = 8.5, 2.2 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.75 (dt, J = 15.2, 7.5 Hz, 1H), 

6.30 (d, J = 2.3 Hz, 1H), 6.17 (dd, J = 16.2, 8.1 Hz, 1H), 5.96 (d, J = 15.4 Hz, 1H), 4.69 (dd, J = 

9.0, 5.6 Hz, 1H), 3.84 (s, 3H), 3.83 (s, 3H), 3.78 (q, J = 5.6 Hz, 1H), 3.70 (s, 3H), 3.11 (dd, J = 

14.1, 5.6 Hz, 1H), 2.91 (dd, J = 14.0, 9.0 Hz, 1H), 2.42 (p, J = 6.7 Hz, 1H), 2.38 – 2.30 (m, 2H), 

1.09 (d, J = 6.8 Hz, 3H), 0.90 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H); 13C NMR (150 MHz, CD3OD) δ 

173.29, 167.99, 155.43, 152.12, 143.43, 134.95, 133.03, 131.82, 131.37, 129.71, 126.28, 123.29, 

123.22, 113.38, 103.22, 76.44, 56.55, 55.16, 52.71, 43.95, 38.60, 38.52, 37.33, 26.44, 18.98, 16.48, 

-4.04, -4.32; HRMS (ESI) calcd for C30H44ClN3O5Si [M+H] 590.2812, found 590.2809. 

 
methyl (R)-2-((2E,5S,6R,7E)-5-((tert-butyldimethylsilyl) 

oxy)-6-methyl-8-(1-methyl-1H-pyrazol-4-yl)octa-2,7-

dienamido)-3-(3-chloro-4-methoxyphenyl)propanoate 

(2.14j,k). Reaction was run as per general Suzuki procedure, and purified by flash chromatography 

(Amine column, 16 – 60% EtOAc/Hexanes) to afford 2.14j,k (0.085 g, 92% yield) as a pale yellow 

oil: Rf = 0.2 (50% EtOAc/Hexanes); 1H NMR (400 MHz, CD3OD) δ 7.61 (s, 1H), 7.48 (s, 1H), 

7.21 (d, J = 2.2 Hz, 1H), 7.10 (dd, J = 8.4, 2.2 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.77 (dt, J = 15.2, 

7.5 Hz, 1H), 6.20 (d, J = 16.0 Hz, 1H), 5.95 (d, J = 15.5 Hz, 1H), 5.90 (dd, J = 16.1, 8.1 Hz, 1H), 

4.69 (dd, J = 8.9, 5.6 Hz, 1H), 4.46 (p, J = 6.7 Hz, 1H), 3.83 (s, 3H), 3.75 (q, J = 5.5 Hz, 1H), 3.70 

(s, 3H), 3.11 (dd, J = 14.0, 5.6 Hz, 1H), 2.91 (dd, J = 14.0, 8.8 Hz, 1H), 2.34 (qt, J = 13.5, 7.1 Hz, 

3H), 1.46 (d, J = 6.7 Hz, 6H), 1.07 (d, J = 6.8 Hz, 3H), 0.90 (s, 9H), 0.06 (s, 3H), 0.03 (s, 3H); 13C 

NMR (100 MHz, CD3OD) δ 173.29, 168.04, 155.42, 143.72, 137.18, 131.83, 131.35, 129.68, 

126.09, 126.03, 123.19, 121.88, 121.43, 113.36, 76.65, 56.55, 55.16, 54.99, 52.72, 44.16, 38.27, 

37.28, 26.44, 23.07, 18.99, 16.38, -4.04, -4.32; HRMS (ESI) calcd for C30H44ClN3O5Si [M+H] 

590.2812, found 590.2813.  

 
methyl (R)-2-((2E,5S,6R,7E)-5-((tert-butyldimethylsilyl) 

oxy)-8-(1-isopropyl-1H-pyrazol-4-yl)-6-methylocta-2,7-

dienamido)-3-(3-chloro-4-methoxyphenyl)propanoate 

(2.14l). Reaction was run as per general Suzuki procedure, 
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and purified by flash chromatography system (Amine silica, 20 – 50% EtOAc/Hexanes) to afford 

2.14l (0.056 g, 83% yield) as a pale yellow oil: Rf = 0.35 (50% EtOAc/Hexanes); 1H NMR (600 

MHz, CD3OD) δ 7.53 (s, 1H), 7.47 (s, 1H), 7.21 (d, J = 2.2 Hz, 1H), 7.10 (dd, J = 8.4, 2.2 Hz, 1H), 

6.96 (d, J = 8.4 Hz, 1H), 6.77 (dt, J = 15.2, 7.5 Hz, 1H), 6.18 (d, J = 16.0 Hz, 1H), 5.95 (d, J = 

15.4 Hz, 1H), 5.89 (dd, J = 16.1, 8.1 Hz, 1H), 4.69 (dd, J = 9.0, 5.6 Hz, 1H), 3.84 (s, 3H), 3.83 (s, 

3H), 3.75 (q, J = 5.5 Hz, 1H), 3.70 (s, 3H), 3.11 (dd, J = 14.0, 5.6 Hz, 1H), 2.90 (dd, J = 14.0, 9.0 

Hz, 1H), 2.42 – 2.27 (m, 3H), 1.06 (d, J = 6.9 Hz, 3H), 0.89 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H). 13C 

NMR (150 MHz, CD3OD) δ 173.29, 168.03, 155.42, 143.67, 137.61, 131.83, 131.58, 131.36, 

129.68, 129.33, 126.10, 123.18, 122.45, 121.24, 113.36, 76.60, 56.55, 55.15, 52.72, 44.16, 38.72, 

38.32, 37.28, 26.44, 18.98, 16.45, -4.05, -4.31; HRMS (ESI) calcd for C32H48ClN3O5Si [M+H] 

618.3125, found 618.3129.  

 
methyl (R)-2-((2E,5S,6R,7E)-5-((tert-butyldimethylsilyl)oxy)-

8-(3,5-dimethylisoxazol-4-yl)-6-methylocta-2,7-dienamido)-

3-(3-chloro-4-methoxyphenyl)propanoate (2.14m). Reaction 

was run as per general Suzuki procedure, and purified by flash 

chromatography system (Amine silica, 10 – 50% EtOAc/Hexanes) to afford 2.14m (0.057 g, 85% 

yield) as a pale yellow oil: Rf = 0.35 (33% EtOAc/Hexanes); 1H NMR: (400 MHz, CD3OD) δ 

7.20 (d, J = 2.2 Hz, 1H), 7.10 (dd, J = 8.3, 2.2 Hz, 1H), 6.96 (d, J = 8.4 Hz, 1H), 6.76 (dt, J = 15.2, 

7.6 Hz, 1H), 6.11 (d, J = 16.3 Hz, 1H), 5.96 (d, J = 15.4 Hz, 1H), 5.90 (dd, J = 16.4, 8.5 Hz, 1H), 

4.68 (dd, J = 9.0, 5.5 Hz, 1H), 3.84 (s, 3H), 3.83 – 3.77 (m, 1H), 3.70 (s, 3H), 3.12 (dd, J = 14.0, 

5.5 Hz, 1H), 2.90 (dd, J = 14.0, 9.0 Hz, 1H), 2.48 – 2.32 (m, 5H), 2.26 (s, 3H), 1.11 (d, J = 6.9 Hz, 

3H), 0.90 (s, 9H), 0.07 (s, 3H), 0.06 (s, 3H).13C NMR: (100 MHz, CD3OD) δ 173.27, 167.98, 

166.46, 159.59, 155.42, 143.21, 135.80, 131.81, 131.33, 129.67, 126.21, 123.17, 119.01, 114.23, 

113.36, 76.35, 56.54, 55.17, 52.73, 44.65, 39.15, 37.26, 26.42, 18.97, 17.68, 11.50, 11.40, -3.95, -

4.38; HRMS (ESI) calcd for C31H45ClN2O6Si [M+H] 605.2808, found 605.2801.  

6.1.3 Synthesis of Units CD  
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2.19 and 2.20 were synthesized by a procedure from Ghosh et. Al.8 from leucic acid (2.15), all 

spectra were in accordance with published literature.8-9  

 

 
(S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-2-yl (R)-3-((tert-butoxycarbonyl) 

amino)-2-methylpropanoate (2.23) or (S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-

2-yl 3-((tert-butoxycarbonyl)amino)-2,2-dimethylpropanoate: (2.24): To a solution of 2.21 or 

2.22 in DMF (0.1M) was added EDC HCl (1.5 eq) and HOBt (1.2 eq) and the reaction was 

stirred for 30 min. NAc was added and stirred for 10 min prior to the addition of catalytic DMAP 

(0.05 eq). The reaction was stirred for 12 hours, diluted with water and EtOAc and the aqueous 

layer was extracted (2 x 40 mL), organics combined, washed with sat. NH4Cl (2 x 100 mL), and 

dried over sodium sulfate. The organics were removed under reduced pressure and the remaining 

residue was purified by flash chromatography system (1 – 10% MeOH/DCM) to afford 2.23 or 

2.24 as white solids. Spectra was in accord with published literature.10  

 

6.1.4 Synthesis of unit A seco chain elongation intermediates  
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General Peptide Coupling Procedure: Unit A/B (1 eq) was suspended in 1,2 dichloroethane (0.2 

M), treated with trimethyl tin hydroxide (4 eq), and heat to 80 °C for 4 hours. The reaction was 

cooled in a -20 °C freezer for 1 hour, filtered through celite, and concentrated. The crude acid was 

used directly.  

 

Simultaneously Unit C/D (1.1 eq) was suspended in 4 M HCl/Dioxane (5 mL) and stirred for 1 h, 

concentrated and used directly. 

 

Unit A/B acid was suspended in DCM, cooled to 0 °C, and treated with HATU (1.1 eq). 

Simultaneously amine salt of units C/D were suspended in DCM and treated with DIPEA (2.5 eq), 

cooled to 0 °C and added to Unit A/B. The reaction was allowed to stir overnight, warming to rt. 

The reaction was diluted with half saturated sodium bicarbonate, the aqueous layer extracted with 

DCM (3 x 10 mL), organics combined, washed with brine, dried over Na2SO4, concentrated and 

purified as specified below.  

 

General Deprotection Procedure: The crude coupling product was suspended in acetonitrile (0.1 

M) in a polypropylene vial. This was treated with 33% aq. HF (2 eq) and aloud to stir until the 

reaction was complete, as monitored by TLC. The reaction was quenched by the slow addition of 

sat. NaHCO3 until the aqueous layer was basic. The aqueous layer was then extracted with DCM 

(3 x 10 mL), organics combined, washed with brine, dried over Na2SO4, concentrated, and purified 

as specified. 

 
  (S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-2-

yl (R)-3- ((R)-3-(3-chloro-4-methoxyphenyl)-2-

((2E,5S,6R,7E)-5-hydroxy-6-methyl-8-phenylocta-2,7-

dienamido)propanamido)-2-methylpropanoate (2.28a). 

Reaction was run as per general coupling procedure, general deprotection procedure, and purified 

by flash chromatography (1-10% MeOH/DCM) to afford 2.28a (0.051 g, 42% yield over 3 steps) 

as a clear and colorless oil: Rf = 0.65 (10% MeOH/DCM). This was then deprotected as per general 

deprotection procedure and purified by flash chromatography (2 – 15% MeOH/DCM) to afford 
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the final product xx (xx, xx% yield) as a clear and colorless oil: Rf = 0.25 (10% MeOH/DCM); 1H 

NMR: (600 MHz, CD3OD) δ δ 7.37 (d, J = 7.0 Hz, 2H), 7.27 (t, J = 7.9 Hz, 2H), 7.25 (d, J = 2.2 

Hz, 1H), 7.18 (t, J = 7.3 Hz, 1H), 7.14 (dd, J = 8.4, 2.2 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.81 (dt, 

J = 15.1, 7.3 Hz, 1H), 6.41 (d, J = 15.9 Hz, 1H), 6.23 (dd, J = 15.9, 8.5 Hz, 1H), 6.01 (d, J = 15.4 

Hz, 1H), 5.21 (dd, J = 9.6, 4.0 Hz, 1H), 4.58 (dd, J = 8.1, 7.0 Hz, 1H), 3.83 (s, 3H), 3.65 (dt, J = 

8.7, 4.6 Hz, 1H), 3.48 (dd, J = 13.5, 6.6 Hz, 1H), 3.34 – 3.27 (m, 2H), 3.19 (dd, J = 13.5, 7.0 Hz, 

1H), 3.06 – 2.97 (m, 3H), 2.85 (dd, J = 13.7, 8.1 Hz, 1H), 2.70 (q, J = 7.0 Hz, 1H), 2.44 – 2.35 (m, 

2H), 2.35 – 2.28 (m, 1H), 1.91 (s, 3H), 1.80 – 1.74 (m, 1H), 1.74 – 1.69 (m, 1H), 1.66 – 1.59 (m, 

1H), 1.15 (d, J = 6.9 Hz, 3H), 1.10 (d, J = 7.1 Hz, 3H), 0.94 (d, J = 6.5 Hz, 3H), 0.91 (d, J = 6.5 

Hz, 3H).13C NMR: (150 MHz, CD3OD) 200.34, 175.06, 173.49, 173.42, 168.07, 155.40, 143.51, 

139.05, 132.50, 132.09, 131.91, 131.50, 129.84, 129.48, 128.05, 127.14, 126.08, 123.20, 113.35, 

78.63, 75.34, 56.57, 56.24, 44.21, 42.73, 41.95, 40.57, 39.85, 38.82, 38.07, 28.58, 25.74, 23.48, 

22.54, 21.97, 17.53, 14.87; HRMS calcd for C39H52ClN3O8S [M+H] 758.3236, found 758.3238. 

 

(S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-2-yl 

(R)-3-((R)-3-(3-chloro-4-methoxyphenyl)-2-

((2E,5S,6R,7E)-5-hydroxy-6-methyl-8-(pyridin-2-yl)octa-

2,7-dienamido)propanamido)-2-methylpropanoate 

(2.28b). Reaction was run as per general coupling procedure, and purified by flash 

chromatography (1-10% MeOH/DCM) Rf = 0.65 (10% MeOH/DCM). This was then deprotected 

as per general deprotection procedure and purified by flash chromatography (2 – 15% 

MeOH/DCM) to afford the final product 2.28b (0.025 g, 38% yield over 3 steps) as a clear and 

colorless oil: Rf = 0.25 (10% MeOH/DCM); 1H NMR: (600 MHz, CD3OD) δ 8.44 (d, J = 4.1  Hz, 

1H), 7.76 (td, J = 7.7, 1.9 Hz, 1H), 7.51 (d, J = 8.1 Hz, 1H), 7.26 (d, J = 2.3 Hz, 1H), 7.25 – 7.22 

(m, 1H), 7.14 (dd, J = 8.4, 2.2 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.81 (dt, J = 15.0, 7.3 Hz, 1H), 

6.67 (dd, J = 16.0, 8.4 Hz, 1H), 6.52 (d, J = 16.0 Hz, 1H), 6.02 (d, J = 15.4 Hz, 1H), 5.21 (dd, J = 

9.5, 4.0 Hz, 1H), 4.58 (dd, J = 8.1, 6.9 Hz, 1H), 3.84 (s, 3H), 3.68 (dt, J = 8.7, 4.7 Hz, 1H), 3.48 

(dd, J = 13.5, 6.6 Hz, 1H), 3.33 – 3.30 (s, 2H), 3.21 (dd, J = 13.5, 7.0 Hz, 1H), 3.05 – 2.99 (m, 

3H), 2.85 (dd, J = 13.8, 8.1 Hz, 1H), 2.71 (q, J = 7.0 Hz, 1H), 2.51 – 2.44 (m, 1H), 2.44 – 2.37 (m, 

1H), 2.37 – 2.29 (m, 1H), 1.91 (s, 3H), 1.81 – 1.69 (m, 2H), 1.67 – 1.59 (m, 1H), 1.18 (d, J = 6.9 

Hz, 3H), 1.11 (d, J = 7.2 Hz, 3H), 0.95 (d, J = 6.5 Hz, 3H), 0.92 (d, J = 6.5 Hz, 3H).13C NMR 

OH

H
N

O
N
H

O

O

O

O

SNAc

OMe
Cl

N



 

 101 

(150 MHz, CD3OD) δ 200.34, 175.09, 173.49, 173.42, 168.05, 157.30, 155.43, 149.71, 143.29, 

138.74, 138.61, 131.92, 131.56, 131.35, 129.85, 126.27, 123.36, 122.32, 113.42, 111.43, 78.67, 

75.12, 56.61, 56.25, 44.08, 42.75, 41.97, 40.60, 39.87, 38.75, 38.09, 28.61, 25.76, 23.46, 22.54, 

21.99, 17.10, 14.86; HRMS (ESI) calcd for C38H51ClN4O8S [M+H] 759.3189, found 759.3184. 

 

(S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-2-yl 

(R)-3-((R)-3-(3-chloro-4-methoxyphenyl)-2-

((2E,5S,6R,7E)-5-hydroxy-6-methyl-8-(pyridin-3-yl)octa-

2,7-dienamido)propanamido)-2-methylpropanoate 

(2.28c). Reaction was run as per general coupling procedure, and purified by flash chromatography 

(1-10% MeOH/DCM) Rf = 0.65 (10% MeOH/DCM). This was then deprotected as per general 

deprotection procedure and purified by flash chromatography (2 – 15% MeOH/DCM) to afford 

the final product 2.28c  (0.037, 51% yield over 3 steps) as a clear and colorless oil: Rf = 0.25 (10% 

MeOH/DCM);  1H NMR  (600 MHz, CD3OD) δ 8.52 (d, J = 2.2 Hz, 1H), 8.36 (dd, J = 4.9, 1.6 

Hz, 1H), 7.89 (dt, J = 8.1, 1.9 Hz, 1H), 7.37 (ddd, J = 8.0, 4.9, 0.9 Hz, 1H), 7.26 (d, J = 2.2 Hz, 

1H), 7.14 (dd, J = 8.4, 2.3 Hz, 1H), 6.97 (d, J = 8.5 Hz, 1H), 6.81 (dt, J = 15.2, 7.3 Hz, 1H), 6.46 

(d, J = 16.1 Hz, 1H), 6.41 (dd, J = 16.0, 7.9 Hz, 1H), 6.02 (d, J = 15.4 Hz, 1H), 5.21 (dd, J = 9.5, 

4.0 Hz, 1H), 4.59 (dd, J = 8.0, 6.8 Hz, 1H), 3.84 (s, 3H), 3.67 (dt, J = 8.0, 4.6 Hz, 1H), 3.48 (dd, J 

= 13.5, 6.6 Hz, 1H), 3.33 – 3.30 (m, 2H) 3.20 (dd, J = 13.5, 6.9 Hz, 1H), 3.03 (td, J = 6.6, 1.9 Hz, 

3H), 3.04 – 3.00 (m, 1H) 2.85 (dd, J = 13.7, 8.1 Hz, 1H) 2.70 (q, J = 7.0 Hz, 1H), 2.51 – 2.36 (m, 

2H), 2.36 – 2.28 (m, 1H), 1.91 (s, 3H), 1.83 – 1.68 (m, 2H), 1.65 – 1.61 (m, 1H), 1.17 (d, J = 6.9 

Hz, 3H), 1.10 (d, J = 7.1 Hz, 3H), 0.95 (d, J = 6.5 Hz, 3H), 0.92 (d, J = 6.5 Hz, 3H); 13C NMR 

(150 MHz, cd3od) δ 200.34, 175.08, 173.48, 173.42, 168.04, 155.42, 148.27, 148.22, 143.30, 

136.34, 135.52, 134.79, 131.91, 131.53, 129.85, 127.95, 126.19, 125.24, 123.23, 113.41, 78.66, 

75.16, 56.60, 56.24, 49.00, 44.33, 42.75, 41.97, 40.59, 39.86, 38.87, 38.08, 28.60, 25.76, 23.47, 

22.54, 21.99, 17.34, 14.86; HRMS (ESI) calcd for C38H51ClN4O8S [M+H] 759.3189, found 

759.3192. 

 

 (S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-2-yl 

3-((R)-3-(3-chloro-4-methoxyphenyl)-2-((2E,5S,6R,7E)-5-

hydroxy-6-methyl-8-(pyridin-3-yl)octa-2,7-
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dienamido)propanamido)-2,2-dimethylpropanoate (2.28d). Reaction was run as per general 

coupling procedure, and purified by flash chromatography (1-10% MeOH/DCM) Rf = 0.65 (10% 

MeOH/DCM). This was then deprotected as per general deprotection procedure and purified by 

flash chromatography (2 – 15% MeOH/DCM) to afford the final product 2.28d (0.19, 51% yield 

over 3 steps) as a clear and colorless oil: Rf = 0.25 (10% MeOH/DCM); 1H NMR (600MHz, 

CD3OD) δ 8.52 (d, J = 2.3 Hz, 1H), 8.35 (dd, J = 4.8, 1.6 Hz, 1H), 7.89 (dt, J = 8.0, 2.0 Hz, 1H), 

7.74 (t, J = 6.4 Hz, 1H), 7.37 (dd, J = 8.0, 4.9 Hz, 1H), 7.28 (d, J = 2.2 Hz, 1H), 7.15 (dd, J = 8.4, 

2.3 Hz, 1H), 6.96 (d, J = 8.5 Hz, 1H), 6.80 (dt, J = 15.0, 7.3 Hz, 1H), 6.46 (d, J = 16.1 Hz, 1H), 

6.40 (dd, J = 16.0, 7.9 Hz, 1H), 6.01 (d, J = 15.4 Hz, 1H), 5.20 (dd, J = 9.5, 3.8 Hz, 1H), 4.65 (dd, 

J = 8.5, 6.5 Hz, 1H), 3.92 (p, J = 6.2 Hz, 2H), 3.83 (s, 3H), 3.66 (dt, J = 8.7, 4.6 Hz, 1H), 3.44 – 

3.27 (m, 2H), 3.11 – 3.00 (m, 2H), 2.85 (dd, J = 13.9, 8.5 Hz, 1H), 2.44 (td, J = 7.2, 4.3 Hz, 1H), 

2.39 (dt, J = 13.0, 6.4 Hz, 1H), 2.32 (dt, J = 14.9, 7.6 Hz, 1H), 1.91 (s, 3H), 1.83 – 1.69 (m, 2H), 

1.64 (ddd, J = 13.4, 8.4, 3.9 Hz, 1H), 1.17 – 1.14 (m, 9H), 0.95 (d, J = 6.5 Hz, 3H), 0.92 (d, J = 

6.4 Hz, 3H). 13C NMR (150 MHz, CD3OD) δ 200.53, 176.86, 173.76, 173.42, 168.17, 155.38, 

148.26, 148.21, 143.36, 136.35, 135.52, 134.80, 131.89, 131.69, 129.82, 127.96, 126.16, 125.25, 

123.23, 113.41, 78.81, 75.15, 64.74, 56.61, 56.39, 47.89, 44.69, 44.31, 41.94, 39.86, 38.88, 37.86, 

28.73, 25.87, 25.26, 23.49, 23.26, 23.18, 22.59, 21.95, 17.35. HRMS (ESI) calcd for 

C39H53ClN4O8S  [M+H] 773.3345, found 773.3353. 

 

 

(S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-2-yl 

(R)-3-((R)-3-(3-chloro-4-methoxyphenyl)-2-((2E,5S,6R,7E)-

5-hydroxy-6-methyl-8-(pyridin-4-yl)octa-2,7-

dienamido)propanamido)-2-methylpropanoate (2.28e) Reaction was run as per general 

coupling procedure, and purified by flash chromatography (1-10% MeOH/DCM) Rf = 0.65 (10% 

MeOH/DCM). This was then deprotected as per general deprotection procedure and purified by 

flash chromatography (2 – 15% MeOH/DCM) to afford the final product 2.28e (0.048, 49% yield 

over 3 steps) as a clear and colorless oil: Rf = 0.25 (10% MeOH/DCM); 1H NMR (599 MHz, 

Methanol-d4) δ 8.42 (d, J = 6.3 Hz, 1H), 7.40 (d, J = 6.3 Hz, 1H), 7.25 (d, J = 2.2 Hz, 1H), 7.14 

(dd, J = 8.5, 2.2 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.80 (dt, J = 15.0, 7.3 Hz, 1H), 6.61 (dd, J = 

16.0, 8.5 Hz, 1H), 6.44 (d, J = 15.9 Hz, 1H), 6.01 (d, J = 15.4 Hz, 1H), 5.21 (dd, J = 9.5, 4.0 Hz, 
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1H), 4.58 (dd, J = 8.1, 6.9 Hz, 1H), 3.84 (s, 3H), 3.67 (dt, J = 7.9, 4.7 Hz, 1H), 3.48 (dd, J = 13.5, 

6.6 Hz, 1H), 3.20 (dd, J = 13.5, 7.0 Hz, 1H), 3.03 (td, J = 6.7, 1.9 Hz, 2H), 2.85 (dd, J = 13.8, 8.1 

Hz, 1H), 2.70 (q, J = 6.9 Hz, 1H), 2.51 – 2.42 (m, 1H), 2.42 – 2.25 (m, 2H), 1.91 (s, 3H), 1.82 – 

1.68 (m, 2H), 1.63 (ddd, J = 13.1, 8.1, 4.0 Hz, 1H), 1.17 (d, J = 6.8 Hz, 3H), 1.10 (d, J = 7.1 Hz, 

3H), 0.94 (d, J = 6.5 Hz, 3H), 0.92 (d, J = 6.5 Hz, 3H).13C NMR (150 MHz, CD3OD) δ 200.34, 

175.08, 173.48, 173.42, 168.02, 155.43, 150.20, 147.73, 143.18, 139.50, 131.92, 131.53, 129.84, 

129.42, 126.25, 123.24, 122.39, 113.42, 78.67, 75.03, 56.61, 56.23, 44.30, 42.75, 41.97, 40.60, 

39.87, 38.90, 38.09, 28.61, 25.76, 23.46, 22.54, 21.99, 17.19, 14.86.HRMS (ESI) calcd for 

C38H51ClN4O8S [M+H] 759.3189, found 759.3187. 

 

 

(S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-2-yl 

3-((R)-3-(3-chloro-4-methoxyphenyl)-2-((2E,5S,6R,7E)-5-

hydroxy-6-methyl-8-(pyridin-4-yl)octa-2,7-

dienamido)propanamido)-2,2-dimethylpropanoate (2.28f). 

Reaction was run as per general coupling procedure, and purified by flash chromatography (1-10% 

MeOH/DCM) Rf = 0.65 (10% MeOH/DCM). This was then deprotected as per general 

deprotection procedure and purified by flash chromatography (2 – 15% MeOH/DCM) to afford 

the final product 2.28f (0.039, 45% yield over 3 steps) as a clear and colorless oil: Rf = 0.25 (10% 

MeOH/DCM);1H NMR (600MHz, CD3OD) δ 8.41 (d, J = 6.1 Hz, 1H), 7.40 (d, J = 6.1 Hz, 1H), 

7.27 (d, J = 1.9 Hz, 1H), 7.15 (dd, J = 8.5, 2.2 Hz, 1H), 6.96 (dd, J = 8.5, 1.0 Hz, 1H), 6.79 (dt, J 

= 14.5, 7.1 Hz, 1H), 6.61 (dd, J = 16.0, 8.5 Hz, 1H), 6.43 (d, J = 16.0 Hz, 1H), 6.00 (d, J = 15.4 

Hz, 1H), 5.20 (dd, J = 9.5, 3.8 Hz, 1H), 4.65 (dd, J = 8.4, 6.6 Hz, 1H), 3.83 (s, 3H), 3.66 (dt, J = 

8.5, 4.4 Hz, 1H), 3.40 (d, J = 13.6 Hz, 1H), 3.36 (d, J = 12.9 Hz, 1H), 3.32 – 3.29 (m, 2H), 3.12 – 

2.99 (m, 3H), 2.85 (dd, J = 14.0, 8.5 Hz, 1H), 2.51 – 2.42 (m, 1H), 2.41 – 2.34 (m, 1H), 2.35 – 

2.27 (m, 1H), 1.90 (s, 3H), 1.81 – 1.68 (m, 2H), 1.68 – 1.60 (m, 1H), 1.16 (s, 6H), 1.15 (d, J = 5.1 

Hz, 3H), 0.95 (d, J = 6.5 Hz, 3H), 0.92 (d, J = 6.5 Hz, 3H).13C NMR (150 MHz, CD3OD) δ 199.11, 

175.43, 172.24, 172.00, 166.71, 153.95, 148.72, 146.35, 141.80, 138.12, 130.47, 130.25, 128.38, 

127.99, 124.78, 121.81, 120.98, 112.00, 77.38, 73.59, 55.18, 54.90, 46.35, 43.26, 42.85, 40.51, 

38.43, 37.49, 36.43, 27.30, 24.44, 22.06, 21.83, 21.75, 21.16, 20.52, 15.77; C38H51ClN4O8S [M+H] 

759.3189, found 759.3186. 
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(S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-2-yl 

(R)-3-((R)-3-(3-chloro-4-methoxyphenyl)-2-

((2E,5S,6R,7E)-5-hydroxy-6-methyl-8-(pyrazin-2-yl)octa-

2,7-dienamido)propanamido)-2-methylpropanoate (2.28g). Reaction was run as per general 

coupling procedure, and purified by flash chromatography (1-10% MeOH/DCM) Rf = 0.65 (10% 

MeOH/DCM). This was then deprotected as per general deprotection procedure and purified by 

flash chromatography (2 – 15% MeOH/DCM) to afford the final product 2.28g (xx, xx% yield 

over 3 steps) as a clear and colorless oil: Rf = 0.25 (10% MeOH/DCM); 1H NMR (400 MHz, 

CD3OD) δ 8.62 (s, 1H), 8.51 (s, 1H), 8.39 (d, J = 2.6 Hz, 1H), 7.26 (d, J = 2.0 Hz, 1H), 7.14 (dd, 

J = 8.5, 2.1 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.93 (dd, J = 15.9, 8.5 Hz, 1H), 6.81 (dt, J = 14.9, 

7.3 Hz, 1H), 6.57 (d, J = 16.0 Hz, 1H), 6.02 (d, J = 15.4 Hz, 1H), 5.21 (dd, J = 9.4, 3.9 Hz, 1H), 

4.58 (t, J = 7.5 Hz, 1H), 3.69 (dt, J = 9.0, 4.7 Hz, 1H), 3.48 (dd, J = 13.4, 6.6 Hz, 1H), 3.37 – 3.24 

(m, 2H), 3.20 (dd, J = 13.5, 7.1 Hz, 1H), 3.07 – 2.97 (m, 1H), 3.03 (t, J = 6.8 Hz, 2H), 2.85 (dd, J 

= 13.7, 8.2 Hz, 1H), 2.70 (apparent q, J = 6.9 Hz, 1H), 2.56 – 2.28 (m, 3H), 1.91 (s, 3H), 1.82 – 

1.68 (m, 2H), 1.68 – 1.56 (m, 1H), 1.19 (d, J = 6.8 Hz, 3H), 1.10 (d, J = 7.0 Hz, 3H), 0.95 (d, J = 

6.3 Hz, 4H), 0.92 (d, J = 6.3 Hz, 3H).13C NMR (151 MHz, cd3od) δ 200.34, 175.08, 173.47, 

173.42, 168.03, 155.42, 153.09, 145.39, 143.89, 143.46, 143.20, 141.38, 131.91, 131.54, 129.86, 

128.22, 126.28, 123.24, 113.42, 78.67, 75.01, 56.62, 56.24, 49.00, 44.21, 42.75, 41.97, 40.60, 

39.86, 38.80, 38.09, 28.61, 25.76, 23.46, 22.54, 21.99, 16.99, 14.86. HRMS (ESI) calcd for 

C37H50ClN5O8S [M+H] 760.3141, found 760.3143. 

 

 

(S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-2-yl 

(R)-3-((R)-3-(3-chloro-4-methoxyphenyl)-2-

((2E,5S,6R,7E)-5-hydroxy-6-methyl-8-(1-methyl-1H-

pyrazol-5-yl)octa-2,7-dienamido)propanamido)-2-

methylpropanoate (2.28h). Reaction was run as per general coupling procedure, and purified by 

flash chromatography (1-10% MeOH/DCM) Rf = 0.65 (10% MeOH/DCM). This was then 

deprotected as per general deprotection procedure and purified by flash chromatography (2 – 15% 

MeOH/DCM) to afford the final product 2.28h (xx, xx% yield over 3 steps) as a clear and colorless 
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oil: Rf = 0.25 (10% MeOH/DCM); 1H NMR (600 MHz, CD3OD) δ 7.34 (d, J = 2.2 Hz, 1H), 7.25 

(d, J = 2.2 Hz, 1H), 7.14 (dd, J = 8.4, 2.2 Hz, 1H), 6.97 (d, J = 8.5 Hz, 1H), 6.81 (dt, J = 15.0, 7.3 

Hz, 1H), 6.42 (d, J = 15.9 Hz, 1H), 6.38 (d, J = 2.1 Hz, 1H), 6.25 (dd, J = 15.9, 8.6 Hz, 1H), 6.01 

(dd, J = 15.4, 1.5 Hz, 1H), 5.21 (dd, J = 9.5, 3.9 Hz, 1H), 4.58 (dd, J = 8.1, 7.0 Hz, 1H), 3.84 (s, 

3H), 3.82 (s, 3H), 3.65 (dt, J = 8.0, 4.6 Hz, 1H), 3.48 (dd, J = 13.5, 6.6 Hz, 1H), 3.33 – 3.30 (m, 

2H) 3.20 (dd, J = 13.5, 7.0 Hz, 1H), 3.03 (td, J = 6.6, 1.8 Hz, 2H), 3.03 – 3.00 (m, 1H) 2.85 (dd, J 

= 13.8, 8.1 Hz, 1H), 2.70 (h, J = 6.9 Hz, 1H), 2.50 – 2.36 (m, 2H), 2.36 – 2.28 (m, 1H), 1.91 (s, 

3H), 1.82 – 1.68 (m, 2H), 1.63 (ddd, J = 13.2, 8.1, 3.9 Hz, 1H), 1.15 (d, J = 6.9 Hz, 3H), 1.10 (d, 

J = 7.1 Hz, 3H), 0.95 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 6.5 Hz, 3H). 13C NMR: (150 MHz, CD3OD) 

δ 200.35, 175.08, 173.48, 173.44, 168.04, 155.42, 143.25, 142.85, 139.10, 137.95, 131.90, 131.50, 

129.85, 126.20, 123.21, 118.41, 113.39, 103.55, 78.65, 75.00, 56.59, 56.25, 44.35, 42.74, 41.97, 

40.59, 39.86, 38.87, 38.08, 36.45, 28.59, 25.76, 23.48, 22.54, 21.97, 17.32, 14.86. HRMS (ESI) 

calcd for C37H52ClN5O8S [M+H] 762.3298, found 762.3295. 

 

 (S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-2-

yl (R)-3-((R)-3-(3-chloro-4-methoxyphenyl)-2-

((2E,5S,6R,7E)-5-hydroxy-6-methyl-8-(1-methyl-1H-

pyrazol-3-yl)octa-2,7-dienamido)propanamido)-2-

methylpropanoate (2.28i). Reaction was run as per general coupling procedure, and purified by 

flash chromatography (1-10% MeOH/DCM) Rf = 0.65 (10% MeOH/DCM). This was then 

deprotected as per general deprotection procedure and purified by flash chromatography (2 – 15% 

MeOH/DCM) to afford the final product 2.28i (0.019, 34% yield over 3 steps) as a clear and 

colorless oil: Rf = 0.25 (10% MeOH/DCM); 1H NMR (600 MHz, CD3OD) δ 7.34 (d, J = 2.2 Hz, 

1H), 7.25 (d, J = 2.2 Hz, 1H), 7.14 (dd, J = 8.5, 2.1 Hz, 1H), 6.97 (d, J = 8.5 Hz, 1H), 6.81 (dt, J 

= 15.0, 7.3 Hz, 1H), 6.42 (d, J = 15.9 Hz, 1H), 6.38 (d, J = 2.1 Hz, 1H), 6.25 (dd, J = 15.9, 8.6 Hz, 

1H), 6.01 (dd, J = 15.4, 1.5 Hz, 1H), 5.21 (dd, J = 9.5, 3.9 Hz, 1H), 4.58 (dd, J = 8.0, 7.0 Hz, 1H), 

3.84 (s, 3H), 3.82 (s, 3H), 3.65 (dt, J = 8.0, 4.6 Hz, 1H), 3.48 (dd, J = 13.5, 6.6 Hz, 1H), 3.32 – 

3.30 (m, 3H), 3.20 (dd, J = 13.5, 7.0 Hz, 1H), 3.05 – 2.98 (m, 3H), 2.85 (dd, J = 13.8, 8.1 Hz, 1H), 

2.70 (h, J = 6.9 Hz, 1H), 2.49 – 2.36 (m, 1H), 2.36 – 2.28 (m, 1H), 1.91 (s, 3H), 1.80 – 1.68 (m, 

2H), 1.67 – 1.60 (m, 1H), 1.15 (d, J = 6.9 Hz, 3H), 1.10 (d, J = 7.1 Hz, 3H), 0.95 (d, J = 6.4 Hz, 

3H), 0.92 (d, J = 6.5 Hz, 3H). 13C NMR: (150 MHz, CD3OD) δ 200.35, 175.08, 173.48, 173.44, 
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168.04, 155.42, 143.25, 142.85, 139.10, 137.95, 131.90, 131.50, 129.85, 126.19, 123.21, 118.41, 

113.39, 103.55, 78.65, 75.00, 56.59, 56.25, 44.35, 42.74, 41.97, 40.59, 39.86, 38.87, 38.08, 36.45, 

28.59, 25.76, 23.48, 22.54, 21.97, 17.32, 14.86. HRMS (ESI) calcd for C37H52ClN5O8S [M+H] 

762.3298, found 762.3295. 

 

(S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-2-yl 

(R)-3-((R)-3-(3-chloro-4-methoxyphenyl)-2-((2E,5S,6R,7E)-

5-hydroxy-6-methyl-8-(1-methyl-1H-pyrazol-4-yl)octa-2,7-

dienamido)propanamido)-2-methylpropanoate (2.28j). Reaction was run as per general 

coupling procedure, and purified by flash chromatography (1-10% MeOH/DCM) Rf = 0.65 (10% 

MeOH/DCM). This was then deprotected as per general deprotection procedure and purified by 

flash chromatography (2 – 15% MeOH/DCM) to afford the final product 2.28j (0.039, 55% yield 

over 3 steps) as a clear and colorless oil: Rf = 0.25 (10% MeOH/DCM); 1H NMR (600 MHz, 

CD3OD) δ 7.54 (s, 1H), 7.50 (s, 1H), 7.25 (d, J = 2.1 Hz, 1H), 7.13 (dd, J = 8.2, 2.1 Hz, 1H), 6.97 

(d, J = 8.3 Hz, 1H), 6.80 (dt, J = 15.0, 7.3 Hz, 1H), 6.22 (d, J = 16.0 Hz, 1H), 6.00 (d, J = 16.1, 

1H), 5.94 (dd, J = 16.0, 8.4 Hz, 1H), 5.21 (dd, J = 9.5, 4.0 Hz, 1H), 4.58 (t, J = 7.5 Hz, 1H), 3.84 

(s, 3H), 3.84 (s, 3H), 3.60 (dt, J = 8.5, 4.5 Hz, 1H), 3.48 (dd, J = 13.5, 6.6 Hz, 1H), 3.33-3.30 (m, 

2H), 3.20 (dd, J = 13.5, 6.9 Hz, 1H), 3.03 (t, J = 5.8 Hz, 2H), 3.03 – 3.00 (m, 1H), 2.85 (dd, J = 

13.7, 8.2 Hz, 1H), 2.70 (q, J = 7.0 Hz, 1H), 2.40 – 2.23 (m, 3H), 1.91 (s, 3H), 1.81 – 1.68 (m, 2H), 

1.67 – 1.58 (m, 1H), 1.10 (d, J = 7.0 Hz, 6H), 0.95 (d, J = 6.3 Hz, 3H), 0.92 (d, J = 6.3 Hz, 4H).13C 

NMR (150 MHz, CD3OD): HRMS (ESI) calcd for C37H52ClN5O8S [M+H] 762.3298, found 

762.3294. 

 

(S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-2-yl 

3-((R)-3-(3-chloro-4-methoxyphenyl)-2-((2E,5S,6R,7E)-5-

hydroxy-6-methyl-8-(1-methyl-1H-pyrazol-4-yl)octa-2,7-

dienamido)propanamido)-2,2-dimethylpropanoate (2.28k). Reaction was run as per general 

coupling procedure, and purified by flash chromatography (1-10% MeOH/DCM) Rf = 0.65 (10% 

MeOH/DCM). This was then deprotected as per general deprotection procedure and purified by 

flash chromatography (2 – 15% MeOH/DCM) to afford the final product 2.28k (0.019, 44% yield 

over 3 steps) as a clear and colorless oil: Rf = 0.25 (10% MeOH/DCM); 1H NMR (600MHz, 
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CD3OD) δ 7.55 (s, 1H), 7.50 (s, 1H), 7.28 (d, J = 2.1 Hz, 1H), 7.15 (dd, J = 8.5, 2.2 Hz, 1H), 6.96 

(d, J = 8.5 Hz, 1H), 6.79 (dt, J = 14.9, 7.3 Hz, 1H), 6.21 (d, J = 16.1 Hz, 1H), 5.99 (d, J = 15.4 Hz, 

1H), 5.93 (dd, J = 16.0, 8.4 Hz, 1H), 5.20 (dd, J = 9.6, 3.9 Hz, 1H), 4.65 (dd, J = 8.6, 6.5 Hz, 1H), 

3.84 (s, 3H), 3.83 (s, 3H), 3.60 (dt, J = 8.8, 4.6 Hz, 1H), 3.44 – 3.32 (m, 2H), 3.12 – 2.98 (m, 3H), 

2.85 (dd, J = 13.9, 8.6 Hz, 1H), 2.32 (m, 3H), 1.91 (s, 3H), 1.83 – 1.68 (m, 2H), 1.64 (ddd, J = 

12.8, 8.4, 3.8 Hz, 1H), 1.16 (s, 6H), 1.10 (d, J = 6.9 Hz, 3H), 0.96 (d, J = 6.5 Hz, 3H), 0.92 (d, J = 

6.5 Hz, 3H). 13C NMR (150 MHz, CD3OD) δ 200.54, 176.85, 173.68, 173.44, 168.22, 155.38, 

143.62, 137.71, 131.90, 131.68, 130.86, 129.81, 129.39, 126.00, 123.23, 122.47, 121.60, 113.40, 

78.80, 75.37, 56.60, 56.35, 47.77, 44.68, 44.12, 41.94, 39.86, 38.72, 38.67, 37.85, 28.73, 25.87, 

23.49, 23.25, 23.17, 22.59, 21.94, 17.40. HRMS (ESI) calcd for C38H54ClN5O8S [M+H] xx, found 

x. 
 

(S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-2-yl 

(R)-3-((R)-3-(3-chloro-4-methoxyphenyl)-2-

((2E,5S,6R,7E)-5-hydroxy-8-(1-isopropyl-1H-pyrazol-4-

yl)-6-methylocta-2,7-dienamido)propanamido)-2-methylpropanoate (2.28l). Reaction was run 

as per general coupling procedure, and purified by flash chromatography (1-10% MeOH/DCM) 

Rf = 0.65 (10% MeOH/DCM). This was then deprotected as per general deprotection procedure 

and purified by flash chromatography (2 – 15% MeOH/DCM) to afford the final product 2.28l (xx, 

xx% yield over 3 steps) as a clear and colorless oil: Rf = 0.25 (10% MeOH/DCM); 1H NMR (600 

MHz, CD3OD) δ 7.64 (s, 1H), 7.51 (s, 1H), 7.25 (d, J = 2.2 Hz, 1H), 7.14 (dd, J = 8.4, 2.2 Hz, 1H), 

6.97 (d, J = 8.4 Hz, 1H), 6.80 (dt, J = 15.0, 7.3 Hz, 1H), 6.23 (d, J = 16.0 Hz, 1H), 6.00 (d, J = 

15.4 Hz, 1H), 5.94 (dd, J = 16.0, 8.5 Hz, 1H), 5.21 (dd, J = 9.5, 4.0 Hz, 1H), 4.58 (t, J = 7.5 Hz, 

1H), 4.46 (hept, J = 6.6 Hz, 1H), 3.84 (s, 3H), 3.61 (dt, J = 8.6, 4.5 Hz, 1H), 3.48 (dd, J = 13.5, 

6.6 Hz, 1H), 3.33 – 3.30 (m, 2H), 3.20 (dd, J = 13.5, 7.0 Hz, 1H), 3.03 (t, J = 6.6 Hz, 2H), 3.03 – 

3.00 (m, 1H), 2.85 (dd, J = 13.8, 8.1 Hz, 1H), 2.70 (h, J = 6.9 Hz, 1H), 2.43 – 2.23 (m, 3H), 1.91 

(s, 3H), 1.82 – 1.69 (m, 2H), 1.63 (ddd, J = 13.2, 8.1, 3.9 Hz, 1H), 1.47 (d, J = 6.7 Hz, 6H), 1.11 

(d, J = 6.9 Hz, 3H), 1.10 (d, J = 7.1 Hz, 3H), 0.95 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H).13C 

NMR (150 MHz, CD3OD) δ 200.36, 175.08, 173.49, 173.44, 168.11, 155.42, 143.59, 137.30, 

131.92, 131.52, 130.64, 129.85, 126.04 (2), 123.22, 121.90, 121.82, 113.39, 78.65, 75.41, 56.59, 
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56.24, 54.99, 44.15, 42.74, 41.97, 40.59, 39.86, 38.67, 38.07, 28.59, 25.76, 23.48, 23.08 (2) , 22.54, 

21.97, 17.44, 14.86. HRMS (ESI) calcd for C39H56ClN5O8S [M+H] 790.3611, found 790.3608. 

 

 

(S)-1-((2-acetamidoethyl)thio)-4-methyl-1-oxopentan-2-

yl (R)-3-((R)-3-(3-chloro-4-methoxyphenyl)-2-

((2E,5S,6R,7E)-8-(3,5-dimethylisoxazol-4-yl)-5-hydroxy-

6-methylocta-2,7-dienamido)propanamido)-2-methylpropanoate (2.28m). Reaction was run 

as per general coupling procedure, and purified by flash chromatography (1-10% MeOH/DCM) 

Rf = 0.65 (10% MeOH/DCM). This was then deprotected as per general deprotection procedure 

and purified by flash chromatography (2 – 15% MeOH/DCM) to afford the final product 2.28m 

(15, 43% yield over 3 steps) as a clear and colorless oil: Rf = 0.25 (10% MeOH/DCM); 1H NMR 

(600 MHz, CD3OD) δ 7.25 (d, J = 2.1 Hz, 1H), 7.14 (dd, J = 8.4, 2.2 Hz, 1H), 6.97 (d, J = 8.4 Hz, 

1H), 6.81 (dt, J = 15.0, 7.3 Hz, 1H), 6.14 (d, J = 16.3 Hz, 1H), 6.01 (d, J = 15.4 Hz, 1H), 5.93 (dd, 

J = 16.3, 8.5 Hz, 1H), 5.21 (dd, J = 9.5, 4.0 Hz, 1H), 4.57 (t, J = 7.5 Hz, 1H), 3.84 (s, 3H), 3.63 

(dt, J = 8.5, 4.7 Hz, 1H), 3.48 (dd, J = 13.5, 6.6 Hz, 1H), 3.33 – 3.30 (m, 2H) 3.20 (dd, J = 13.5, 

7.0 Hz, 1H), 3.03 (t, J = 6.8 Hz, 2H), 3.02 – 2.99 (m, 1H) 2.85 (dd, J = 13.7, 8.1 Hz, 1H), 2.70 (h, 

J = 7.0 Hz, 1H), 2.39 (s, 3H), 2.38 – 2.30 (m, 3H), 2.28 (s, 3H), 1.91 (s, 3H), 1.82 – 1.67 (m, 2H), 

1.63 (ddd, J = 12.6, 8.2, 3.9 Hz, 1H), 1.14 (d, J = 6.8 Hz, 3H), 1.10 (d, J = 7.1 Hz, 3H), 0.95 (d, J 

= 6.4 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H). 13C NMR (150 MHz, CD3OD) δ 200.36, 175.08, 173.49, 

173.44, 168.04, 166.54, 159.73, 155.42, 143.35, 135.53, 131.90, 131.50, 129.85, 126.13, 123.22, 

119.18, 114.25, 113.38, 78.65, 75.09, 56.59, 56.26, 48.57, 44.85, 42.74, 41.97, 40.59, 39.86, 38.94, 

38.09, 28.59, 25.76, 23.48, 22.53, 21.97, 17.69, 14.86, 11.47, 11.29. HRMS (ESI) calcd for 

C38H53ClN4O9S [M+H] 777.3295, found 777.3293. 

 

6.2 CrpTE Mediated Cyclization Experimentals and Characterization  

*CrpTE was purified as described in section 6.3  
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General Analytical CrpTE Cyclization Procedure. Seco cryptophycins 2.28a-m as a 10 mM 

soluiton in DMSO (xx, final conc. 50 uM) were added to 100 mM sodium phosphate buffer (150 

uL). The reaction medium was supplemented with DMSO to 5 v/v% and CrpTE as a 50 uM 

solution in reaction storage buffer (see buffer recipies) was added (0.5 uM final concentration). 

The reaction was shaken at 120 rpm for 12 hours at 37 °C prior to extraction with 300 uL of ethyl 

acetate. 100 uL of the organic layer was dried into an HPLC vial, taken up in 50 uL of MeOH and 

analyzed by Qtof MS, results are summarized in Figure 2.xx.  

General Semi-Preparative CrpTE Cyclization Procedure. To a 250 mL Erlenmeyer flask was 

added DMSO (5%), and substrate 2.28a-m (75 uM) suspended in DMSO. This was diluted with 

phosphate buffer (pH = 7.2, 100 mM) and warmed to 30 ºC for 20 min prior to treatment with 

CrpTE enzyme (0.5 uM). The reaction was allowed to shake at 120 RPM overnight, prior to 1:1v/v 

dilution with acetone and chilling to – 20 °C in the freezer. The precipitated protein was filtered 

through celite, washing with acetone, organics removed under reduced pressure, and the remaining 

aqueous layer was extracted with DCM 3 x 20 mL. The organics were combined, dried over 

sodium sulfate and concentrated. The reactions were purified using a HydroRP C18 (need 

dimensions) using a 20 – 80% water/acetonitrile gradient with a flow rate of 3 mL/min.  

 

Heterocyclic Cryptophycin Experimentals  

 
(3S,6R,10R,16S,E)-10-(3-chloro-4-methoxybenzyl)-3-isobutyl-6-

methyl-16-((R,E)-4-(pyridin-2-yl)but-3-en-2-yl)-1,4-dioxa-8,11-

diazacyclohexadec-13-ene-2,5,9,12-tetraone (2.28b). Reaction was 
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run and purified as general procedure for semi-preparative scale reaction. 1H NMR (600 MHz, 

CD3OD) δ 8.46 (dd, J = 5.0, 0.9 Hz, 1H), 7.78 (td, J = 7.7, 1.8 Hz, 1H), 7.48 (d, J = 7.9 Hz, 1H), 

7.28 (d, J = 2.2 Hz, 1H), 7.26 (ddd, J = 7.5, 5.0, 1.1 Hz, 1H), 7.17 (dd, J = 8.5, 2.2 Hz, 1H), 6.98 

(d, J = 8.5 Hz, 1H), 6.71 (ddd, J = 15.1, 11.1, 3.9 Hz, 1H), 6.61 – 6.57 (m, 2H), 5.93 (dd, J = 15.1, 

1.9 Hz, 1H), 5.09 (ddd, J = 11.3, 6.9, 1.9 Hz, 1H), 4.93 (dd, J = 9.9, 3.6 Hz, 1H), 4.52 (dd, J = 

11.3, 3.9 Hz, 1H), 3.84 (s, 3H), 3.58 (dd, J = 13.8, 3.3 Hz, 1H), 3.27 (dd, J = 13.8, 3.0 Hz, 1H), 

3.18 (dd, J = 14.5, 3.9 Hz, 1H), 2.80 – 2.73 (m, 2H), 2.73 – 2.65 (m, 2H), 2.39 (dt, J = 14.5, 11.2 

Hz, 1H), 1.69 – 1.52 (m, 2H), 1.34 (ddd, J = 14.1, 8.8, 3.6 Hz, 1H), 1.18 (d, J = 7.1 Hz, 6H), 0.74 

(d, J = 6.5 Hz, 3H), 0.71 (d, J = 6.6 Hz, 3H).13C NMR (151 MHz, CD3OD) δ 177.53, 174.04, 

172.22, 168.33, 156.60, 155.36, 149.99, 143.41, 138.74, 137.58, 132.23, 132.10, 131.49, 129.28, 

125.62, 123.71, 123.27, 122.82, 113.50, 78.48, 72.86, 57.35, 56.60, 43.46, 41.19, 40.88, 38.98, 

37.99, 36.36, 2 5.62, 23.20, 21.66, 17.53, 15.06. HRMS (ESI) calcd for C34H42ClN3O7 [M+H] 

640.2784, found 640.2787. 

(3S,6R,10R,16S,E)-10-(3-chloro-4-methoxybenzyl)-3-isobutyl-

6-methyl-16-((R,E)-4-(pyridin-3-yl)but-3-en-2-yl)-1,4-dioxa-

8,11-diazacyclohexadec-13-ene-2,5,9,12-tetraone (2.28c). 

Reaction was run and purified as general procedure for semi-preparative scale reaction.1H NMR 

(600 MHz, CD3OD) δ 8.53 (d, J = 2.2 Hz, 1H), 8.38 (dd, J = 4.8, 1.6 Hz, 1H), 7.92 (d, J = 8.0 Hz, 

1H), 7.40 (dd, J = 8.0, 4.9 Hz, 1H), 7.28 (d, J = 2.2 Hz, 1H), 7.17 (dd, J = 8.4, 2.2 Hz, 1H), 6.98 

(d, J = 8.4 Hz, 1H), 6.71 (ddd, J = 15.1, 11.2, 3.9 Hz, 1H), 6.53 (d, J = 15.9 Hz, 1H), 6.30 (dd, J = 

15.9, 8.9 Hz, 1H), 5.93 (dd, J = 15.2, 1.9 Hz, 1H), 5.08 (ddd, J = 11.2, 7.2, 1.9 Hz, 1H), 4.93 (dd, 

J = 9.9, 3.7 Hz, 1H), 4.52 (dd, J = 11.2, 3.9 Hz, 1H), 3.84 (s, 3H), 3.58 (dd, J = 13.8, 3.3 Hz, 1H), 

3.27 (dd, J = 13.8, 3.0 Hz, 1H), 3.18 (dd, J = 14.5, 3.9 Hz, 1H), 2.80 – 2.63 (m, 4H), 2.37 (dt, J = 

14.4, 11.1 Hz, 1H), 1.69 – 1.55 (m, 2H), 1.31 (ddd, J = 14.1, 8.9, 3.7 Hz, 1H), 1.19 (d, J = 3.5 Hz, 

3H), 1.18 (d, J = 2.9 Hz, 3H), 0.74 (d, J = 6.5 Hz, 3H), 0.70 (d, J = 6.5 Hz, 3H). 13C NMR (150 

MHz, CD3OD) δ 180.30, 177.53, 174.03, 172.21, 168.33, 155.36, 148.71, 148.40, 143.42, 135.55, 

134.96, 134.86, 132.21, 131.49, 129.28, 128.77, 125.62, 125.40, 113.49, 78.47, 72.80, 57.36, 

56.60, 43.75, 41.18, 40.94, 38.97, 37.88, 36.35, 25.60, 23.18, 21.69, 17.50, 15.06. HRMS (ESI) 

calcd for C34H42ClN3O7 [M+H] 640.2784, found 640.2789. 
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 (3S,10R,16S,E)-10-(3-chloro-4-methoxybenzyl)-3-isobutyl-6,6-

dimethyl-16-((R,E)-4-(pyridin-3-yl)but-3-en-2-yl)-1,4-dioxa-

8,11-diazacyclohexadec-13-ene-2,5,9,12-tetraone (2.28d). 

Reaction was run and purified as general procedure for semi-preparative scale reaction. 1H NMR 

(600MHz, CD3OD) δ 8.53 (s, 1H), 8.38 (d, J = 4.7 Hz, 1H), 7.92 (dt, J = 8.0, 1.9 Hz, 1H), 7.40 

(dd, J = 8.0, 4.8 Hz, 1H), 7.28 (d, J = 2.2 Hz, 1H), 7.17 (dd, J = 8.4, 2.2 Hz, 1H), 6.98 (d, J = 8.4 

Hz, 1H), 6.72 (ddd, J = 15.2, 11.2, 3.9 Hz, 1H), 6.53 (d, J = 15.9 Hz, 1H), 6.30 (dd, J = 16.0, 8.9 

Hz, 1H), 5.92 (dd, J = 15.1, 1.9 Hz, 1H), 5.07 (ddd, J = 11.1, 7.2, 1.8 Hz, 2H), 4.96 (dd, J = 9.9, 

3.4 Hz, 1H), 4.51 (dd, J = 11.3, 3.8 Hz, 1H), 3.84 (s, 3H), 3.46 (d, J = 13.6 Hz, 1H), 3.18 (dd, J = 

14.5, 3.8 Hz, 1H), 3.08 (d, J = 13.7 Hz, 1H), 2.74 (dd, J = 14.5, 11.4 Hz, 1H), 2.74 – 2.62 (m, 2H), 

2.36 (dt, J = 14.4, 11.2 Hz, 1H), 1.66 – 1.55 (m, 2H), 1.37 – 1.26 (m, 3H), 1.20 (s, 3H), 1.16 (s, 

3H), 0.74 (d, J = 6.4 Hz, 3H), 0.70 (d, J = 6.4 Hz, 3H). 13C NMR (150 MHz, CD3OD) δ 180.03, 

178.94, 173.68, 172.01, 168.22, 155.37, 148.71, 148.40, 143.63, 135.55, 134.85, 132.17, 131.46, 

129.26, 128.78, 125.43, 123.28, 113.50, 78.43, 72.58, 57.48, 56.60, 47.39, 44.02, 43.75, 40.92, 

37.92, 36.48, 31.64, 25.85, 23.32, 23.29, 23.22, 21.65, 17.49. HRMS (ESI) calcd for 

C35H44ClN3O7 [M+H] 654.2941, found 654.2940. 

 

 

(3S,6R,10R,16S,E)-10-(3-chloro-4-methoxybenzyl)-3-isobutyl-6-

methyl-16-((R,E)-4-(pyridin-4-yl)but-3-en-2-yl)-1,4-dioxa-8,11-

diazacyclohexadec-13-ene-2,5,9,12-tetraone (2.28e). Reaction was run and purified as general 

procedure for semi-preparative scale reaction. 1H NMR (600MHz, CD3OD) δ 8.43 (d, J = 6.2 Hz, 

2H), 7.42 (d, J = 6.3 Hz, 2H), 7.27 (d, J = 2.1 Hz, 1H), 7.15 (dd, J = 8.5, 2.1 Hz, 1H), 6.96 (d, J = 

8.4 Hz, 1H), 6.69 (ddd, J = 15.1, 11.1, 3.9 Hz, 1H), 6.50 – 6.47 (m, 2H), 5.91 (dd, J = 15.2, 1.8 

Hz, 1H), 5.08 (dd, J = 10.7, 8.3 Hz, 1H), 4.90 (dd, J = 9.9, 3.6 Hz, 1H), 4.51 (dd, J = 11.2, 3.9 Hz, 

1H), 3.82 (s, 3H), 3.56 (dd, J = 13.8, 3.3 Hz, 1H), 3.25 (dd, J = 13.8, 2.9 Hz, 1H), 3.16 (dd, J = 

14.5, 3.9 Hz, 1H), 2.77 – 2.62 (m, 4H), 2.34 (dt, J = 14.7, 11.2 Hz, 1H), 1.67 – 1.51 (m, 2H), 1.28 

(ddd, J = 12.9, 8.7, 3.5 Hz, 1H), 1.17 (d, J = 2.6 Hz, 3H), 1.16 (d, J = 2.0 Hz, 3H), 0.72 (d, J = 6.4 

Hz, 3H), 0.68 (d, J = 6.5 Hz, 3H). 13C NMR (150 MHz, CD3OD) δ 177.55, 174.02, 172.17, 168.31, 

155.36, 150.42, 147.12, 143.33, 138.63, 132.21, 131.49, 130.23, 129.28, 125.66, 123.27, 122.49, 
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113.49, 78.35, 72.78, 57.36, 56.60, 43.67, 41.17, 40.91, 38.96, 37.88, 36.35, 25.60, 23.15, 21.66, 

17.35, 15.06. HRMS (ESI) calcd for C34H42ClN3O7 [M+H] 640.2784, found 640.2787. 

 

(3S,10R,16S,E)-10-(3-chloro-4-methoxybenzyl)-3-isobutyl-6,6-

dimethyl-16-((R,E)-4-(pyridin-4-yl)but-3-en-2-yl)-1,4-dioxa-

8,11-diazacyclohexadec-13-ene-2,5,9,12-tetraone (2.28f). 

Reaction was run and purified as general procedure for semi-preparative scale reaction. 1H NMR 

(600MHz, CD3OD) δ 8.45 (d, J = 5.7 Hz, 2H), 7.44 (d, J = 6.3 Hz, 2H), 7.28 (d, J = 2.2 Hz, 1H), 

7.17 (dd, J = 8.4, 2.2 Hz, 1H), 6.98 (d, J = 8.5 Hz, 1H), 6.72 (ddd, J = 15.1, 11.2, 3.9 Hz, 1H), 6.51 

(s, 1H), 6.50 (d, J = 4.6 Hz, 1H), 5.92 (dd, J = 15.1, 1.9 Hz, 1H), 5.09 (ddd, J = 11.3, 7.2, 1.9 Hz, 

1H), 4.95 (dd, J = 9.9, 3.3 Hz, 1H), 4.51 (dd, J = 11.3, 3.7 Hz, 1H), 3.84 (s, 3H), 3.46 (d, J = 13.6 

Hz, 1H), 3.18 (dd, J = 14.6, 3.8 Hz, 1H), 3.08 (d, J = 13.6 Hz, 1H), 2.74 (dd, J = 14.5, 11.3 Hz, 

1H), 2.74 – 2.66 (m, 2H), 2.35 (dt, J = 14.5, 11.2 Hz, 1H), 1.67 – 1.54 (m, 2H), 1.37 – 1.24 (m, 

1H), 1.19 (s, 3H), 1.16 (s, 3H), 0.74 (d, J = 6.3 Hz, 3H), 0.71 (d, J = 6.4 Hz, 3H). 13C NMR (150 

MHz, CD3OD) δ 177.59, 174.05, 172.32, 168.36, 155.34, 143.63, 137.86, 132.21, 131.48, 130.26, 

129.63, 129.28, 125.50, 123.24, 122.46, 121.98, 113.46, 78.68, 72.91, 57.37, 56.58, 43.68, 41.18, 

40.87, 38.95, 38.75, 37.84, 36.36, 25.64, 23.18, 21.67, 17.75, 15.07. HRMS (ESI) calcd for 

C35H44ClN3O7 [M+H] 654.2941, found 654.2945. 

 

(3S,6R,10R,16S,E)-10-(3-chloro-4-methoxybenzyl)-3-isobutyl-

6-methyl-16-((R,E)-4-(pyrazin-2-yl)but-3-en-2-yl)-1,4-dioxa-

8,11-diazacyclohexadec-13-ene-2,5,9,12-tetraone (2.28g). 

Reaction was run and purified as general procedure for semi-preparative scale reaction. 1H NMR 

(600MHz, CD3OD) δ 8.61 (d, J = 1.5 Hz, 1H), 8.54 (dd, J = 2.6, 1.5 Hz, 1H), 8.42 (d, J = 2.6 Hz, 

1H), 7.28 (d, J = 2.2 Hz, 1H), 7.17 (dd, J = 8.4, 2.2 Hz, 1H), 6.98 (d, J = 8.5 Hz, 1H), 6.84 (dd, J 

= 15.7, 8.9 Hz, 1H), 6.71 (ddd, J = 15.2, 11.2, 3.9 Hz, 1H), 6.64 (d, J = 15.7 Hz, 1H), 5.93 (dd, J 

= 15.1, 1.9 Hz, 1H), 5.11 (ddd, J = 11.3, 6.8, 2.0 Hz, 1H), 4.94 (dd, J = 9.7, 3.7 Hz, 1H), 4.53 (dd, 

J = 11.2, 3.9 Hz, 1H), 3.84 (s, 3H), 3.58 (dd, J = 13.8, 3.4 Hz, 1H), 3.27 (dd, J = 13.7, 3.0 Hz, 1H), 

3.18 (dd, J = 14.5, 3.9 Hz, 1H), 2.81 – 2.72 (m, 3H), 2.69 (ddd, J = 12.6, 4.0, 2.0 Hz, 1H), 2.38 

(dt, J = 14.6, 11.2 Hz, 1H), 1.70 – 1.57 (m, 2H), 1.36 (ddd, J = 14.1, 8.7, 3.7 Hz, 1H), 1.19 (d, J = 

6.9 Hz, 3H), 1.19 (d, J = 7.5 Hz, 3H), 0.76 (d, J = 6.5 Hz, 3H). 13C NMR (150 MHz, CD3OD) δ 
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177.53, 174.03, 172.18, 168.32, 155.36, 152.52, 145.69, 144.15, 143.92, 143.33, 140.15, 132.22, 

131.48, 129.28, 128.83, 125.65, 123.27, 113.50, 78.45, 72.83, 57.35, 56.60, 43.37, 41.19, 40.91, 

38.98, 38.03, 36.35, 25.65, 23.23, 21.74, 17.37, 15.07. HRMS (ESI) calcd for [M+H] xx, found 

xx. 

 

(3S,6R,10R,16S,E)-10-(3-chloro-4-methoxybenzyl)-3-isobutyl-6-

methyl-16-((R,E)-4-(1-methyl-1H-pyrazol-5-yl)but-3-en-2-yl)-

1,4-dioxa-8,11-diazacyclohexadec-13-ene-2,5,9,12-tetraone 

(2.28h). Reaction was run and purified as general procedure for semi-preparative scale reaction. 
1H NMR (600 MHz, CD3OD) δ 7.36 (d, J = 2.1 Hz, 1H), 7.28 (d, J = 2.2 Hz, 1H), 7.17 (dd, J = 

8.5, 2.2 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.71 (ddd, J = 15.1, 11.2, 3.9 Hz, 1H), 6.52 (d, J = 15.8 

Hz, 1H), 6.42 (d, J = 2.1 Hz, 1H), 6.14 (dd, J = 15.8, 9.0 Hz, 1H), 5.93 (dd, J = 15.1, 1.9 Hz, 1H), 

5.07 (ddd, J = 11.3, 6.9, 1.9 Hz, 1H), 4.93 (dd, J = 9.8, 3.6 Hz, 1H), 4.52 (dd, J = 11.3, 3.9 Hz, 

1H), 3.84 (s, 6H), 3.59 (dd, J = 13.8, 3.3 Hz, 1H), 3.27 (dd, J = 13.8, 3.0 Hz, 1H), 3.18 (dd, J = 

14.5, 3.9 Hz, 1H), 2.79 – 2.73 (m, 2H), 2.73 – 2.62 (m, 2H), 2.35 (dt, J = 14.6, 11.2 Hz, 1H), 1.71 

– 1.57 (m, 2H), 1.35 (ddd, J = 14.0, 8.6, 3.5 Hz, 1H), 1.19 (d, J = 7.4 Hz, 3H), 1.17 (d, J = 6.9 Hz, 

3H), 0.77 (d, J = 6.4 Hz, 6H). 13C NMR: (150 MHz, CD3OD) δ 177.58, 174.04, 172.22, 168.32, 

155.35, 143.40, 142.29, 139.27, 136.81, 132.20, 131.48, 129.28, 125.61, 123.24, 119.18, 113.46, 

103.68, 78.39, 72.84, 57.39, 56.58, 43.68, 41.16, 40.96, 38.96, 37.96, 36.51, 36.36, 25.69, 23.25, 

21.76, 17.53, 15.08. HRMS (ESI) calcd for C33H43ClN4O7 [M+H] 643.2893, found 643.2890. 

 

(3S,6R,10R,16S,E)-10-(3-chloro-4-methoxybenzyl)-3-isobutyl-

6-methyl-16-((R,E)-4-(1-methyl-1H-pyrazol-3-yl)but-3-en-2-

yl)-1,4-dioxa-8,11-diazacyclohexadec-13-ene-2,5,9,12-tetraone 

(2.28i). Reaction was run and purified as general procedure for semi-preparative scale reaction. 1H 

NMR (600 MHz, CD3OD) δ 7.70 (s, 1H), 7.53 (s, 1H), 7.28 (d, J = 2.2 Hz, 1H), 7.17 (dd, J = 8.4, 

2.2 Hz, 1H), 6.98 (d, J = 8.5 Hz, 1H), 6.70 (ddd, J = 15.1, 11.2, 3.9 Hz, 1H), 6.28 (d, J = 15.8 Hz, 

1H), 5.92 (dd, J = 15.2, 1.9 Hz, 1H), 5.79 (dd, J = 15.9, 8.9 Hz, 1H), 4.98 (ddd, J = 11.2, 7.5, 2.0 

Hz, 1H), 4.91 (dd, J = 10.0, 3.5 Hz, 1H), 4.52 (dd, J = 11.2, 3.8 Hz, 1H), 4.47 (p, J = 6.7 Hz, 1H), 

3.84 (s, 3H), 3.58 (dd, J = 13.8, 3.3 Hz, 1H), 3.27 (dd, J = 13.7, 3.0 Hz, 1H), 3.18 (dd, J = 14.5, 

3.8 Hz, 1H), 2.79 – 2.71 (m, 2H), 2.71 – 2.63 (m, 1H), 2.50 (h, J = 7.2 Hz, 1H), 2.33 (dt, J = 14.5, 
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11.2 Hz, 1H), 1.72 – 1.54 (m, 2H), 1.46 (d, J = 6.7 Hz, 6H), 1.37 (ddd, J = 14.2, 9.0, 3.6 Hz, 1H), 

1.18 (d, J = 7.4 Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H), 0.77 (d, J = 6.5 Hz, 3H), 0.74 (d, J = 6.6 Hz, 

3H). 13C NMR (150 MHz, CD3OD) δ 177.60, 174.05, 172.33, 168.37, 155.35, 143.64, 137.40, 

132.21, 131.48, 130.12, 129.28, 126.34, 125.51, 123.25, 122.67, 121.38, 113.46, 78.67, 72.93, 

57.38, 56.59, 55.07, 43.80, 41.18, 40.87, 38.96, 37.85, 36.37, 25.64, 23.31, 23.09, 21.70, 17.79, 

15.07. HRMS (ESI) calcd for C35H47ClN4O7 [M+H] 671.3206, found 671.3025. 

 

 (3S,6R,10R,16S,E)-10-(3-chloro-4-methoxybenzyl)-3-

isobutyl-6-methyl-16-((R,E)-4-(1-methyl-1H-pyrazol-4-

yl)but-3-en-2-yl)-1,4-dioxa-8,11-diazacyclohexadec-13-ene-

2,5,9,12-tetraone (2.28j). Reaction was run and purified as general procedure for semi-preparative 

scale reaction. 1H NMR (600 MHz, CD3OD) δ 7.61 (s, 1H), 7.51 (s, 1H), 7.28 (d, J = 2.2 Hz, 1H), 

7.17 (dd, J = 8.4, 2.2 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.70 (ddd, J = 15.2, 11.2, 3.9 Hz, 1H), 6.27 

(d, J = 15.9 Hz, 1H), 5.92 (dd, J = 15.2, 1.9 Hz, 1H), 5.80 (dd, J = 15.9, 8.9 Hz, 1H), 4.99 (ddd, J 

= 11.3, 7.1, 1.9 Hz, 1H), 4.92 (dd, J = 10.0, 3.6 Hz, 1H), 4.52 (dd, J = 11.3, 3.8 Hz, 1H), 3.84 (d, 

J = 1.8 Hz, 6H), 3.58 (dd, J = 13.8, 3.3 Hz, 1H), 3.27 (dd, J = 13.8, 2.9 Hz, 1H), 3.18 (dd, J = 14.5, 

3.8 Hz, 1H), 2.81 – 2.70 (m, 2H), 2.69 – 2.60 (m, 1H), 2.50 (p, J = 7.1 Hz, 1H), 2.33 (dt, J = 14.5, 

11.2 Hz, 1H), 1.71 – 1.56 (m, 2H), 1.38 (ddd, J = 13.2, 9.0, 3.6 Hz, 1H), 1.18 (d, J = 7.5 Hz, 3H), 

1.11 (d, J = 6.8 Hz, 3H), 0.78 (d, J = 6.5 Hz, 3H), 0.76 (d, J = 6.6 Hz, 3H). 13C NMR (150 MHz, 

CD3OD) δ 177.59, 174.05, 172.32, 168.36, 155.34, 143.63, 137.86, 132.21, 131.48, 130.26, 

129.63, 129.28, 125.50, 123.24, 122.46, 121.98, 113.46, 78.68, 72.91, 57.37, 56.58, 43.68, 41.18, 

40.87, 38.95, 38.75, 37.84, 36.36, 25.64, 23.18, 21.67, 17.75, 15.07. HRMS (ESI) calcd for 

C33H43ClN4O7 [M+H] 643.2893, found 643.2890. 

 

(3S,10R,16S,E)-10-(3-chloro-4-methoxybenzyl)-3-isobutyl-6,6-

dimethyl-16-((R,E)-4-(1-methyl-1H-pyrazol-4-yl)but-3-en-2-

yl)-1,4-dioxa-8,11-diazacyclohexadec-13-ene-2,5,9,12-tetraone 

(2.28k). Reaction was run and purified as general procedure for semi-preparative scale reaction. 
1H NMR (600MHz, CD3OD) 7.60 (s, 1H), 7.51 (s, 1H), 7.27 (d, J = 2.1 Hz, 1H), 7.16 (dd, J = 8.5, 

2.2 Hz, 1H), 6.97 (d, J = 8.5 Hz, 1H), 6.70 (ddd, J = 15.2, 11.2, 3.9 Hz, 1H), 6.27 (d, J = 15.9 Hz, 

1H), 5.90 (dd, J = 15.1, 1.9 Hz, 1H), 5.79 (dd, J = 15.9, 8.9 Hz, 1H), 4.97 (ddd, J = 11.3, 7.1, 1.6 
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Hz, 1H), 4.94 (dd, J = 9.9, 3.4 Hz, 1H), 4.50 (dd, J = 11.4, 3.7 Hz, 1H), 3.83 (s, 3H), 3.83 (s, 3H), 

3.45 (d, J = 13.6 Hz, 1H), 3.17 (dd, J = 14.5, 3.7 Hz, 1H), 3.07 (d, J = 13.6 Hz, 1H), 2.73 (dd, J = 

14.5, 11.4 Hz, 1H), 2.65 (dt, J = 14.7, 2.4 Hz, 1H), 2.50 (h, J = 7.2 Hz, 1H), 2.32 (dt, J = 14.4, 

11.2 Hz, 1H), 1.68 – 1.57 (m, 2H), 1.43 – 1.36 (m, 1H), 1.19 (s, 3H), 1.15 (s, 3H), 1.11 (d, J = 6.9 

Hz, 3H), 0.77 (t, J = 6.7 Hz, 6H). 13C NMR (150 MHz, CD3OD) δ 178.97, 173.70, 172.12, 168.25, 

155.37, 143.83, 137.86, 132.17, 131.46, 130.26, 129.63, 129.26, 125.33, 123.27, 122.48, 121.98, 

113.49, 78.65, 72.69, 57.47, 56.59, 47.40, 44.01, 43.68, 40.85, 38.75, 37.88, 36.49, 25.90, 23.32, 

23.28, 23.20, 21.64, 17.74. HRMS (ESI) calcd for C34H45ClN4O7 [M+H] 643.2893, found 

643.2893. 

 

(3S,6R,10R,16S,E)-10-(3-chloro-4-methoxybenzyl)-3-isobutyl-

16-((R,E)-4-(1-isopropyl-1H-pyrazol-4-yl)but-3-en-2-yl)-6-

methyl-1,4-dioxa-8,11-diazacyclohexadec-13-ene-2,5,9,12-

tetraone (2.28l). Reaction was run and purified as general procedure for semi-preparative scale 

reaction. 1H NMR (600 MHz, CD3OD) δ 7.70 (s, 1H), 7.53 (s, 1H), 7.28 (d, J = 2.2 Hz, 1H), 7.17 

(dd, J = 8.4, 2.2 Hz, 1H), 6.98 (d, J = 8.5 Hz, 1H), 6.70 (ddd, J = 15.1, 11.2, 3.9 Hz, 1H), 6.28 (d, 

J = 15.8 Hz, 1H), 5.92 (dd, J = 15.2, 1.9 Hz, 1H), 5.79 (dd, J = 15.9, 8.9 Hz, 1H), 4.98 (ddd, J = 

11.2, 7.5, 2.0 Hz, 1H), 4.91 (dd, J = 10.0, 3.5 Hz, 1H), 4.52 (dd, J = 11.2, 3.8 Hz, 1H), 4.47 (p, J 

= 6.7 Hz, 1H), 3.84 (s, 3H), 3.58 (dd, J = 13.8, 3.3 Hz, 1H), 3.27 (dd, J = 13.7, 3.0 Hz, 1H), 3.18 

(dd, J = 14.5, 3.8 Hz, 1H), 2.79 – 2.71 (m, 2H), 2.71 – 2.63 (m, 1H), 2.50 (h, J = 7.2 Hz, 1H), 2.33 

(dt, J = 14.5, 11.2 Hz, 1H), 1.72 – 1.54 (m, 2H), 1.46 (d, J = 6.7 Hz, 6H), 1.37 (ddd, J = 14.2, 9.0, 

3.6 Hz, 1H), 1.18 (d, J = 7.4 Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H), 0.77 (d, J = 6.5 Hz, 3H), 0.74 (d, J 

= 6.6 Hz, 3H). 13C NMR (150 MHz, CD3OD) δ 177.60, 174.05, 172.33, 168.37, 155.35, 143.64, 

137.40, 132.21, 131.48, 130.12, 129.28, 126.34, 125.51, 123.25, 122.67, 121.38, 113.46, 78.67, 

72.93, 57.38, 56.59, 55.07, 43.80, 41.18, 40.87, 38.96, 37.85, 36.37, 25.64, 23.31, 23.09, 21.70, 

17.79, 15.07. HRMS (ESI) calcd for C35H47ClN4O7 [M+H] 671.3206, found 671.3025. 

 

(3S,6R,10R,16S,E)-10-(3-chloro-4-methoxybenzyl)-16-((R,E)-4-

(3,5-dimethylisoxazol-4-yl)but-3-en-2-yl)-3-isobutyl-6-methyl-

1,4-dioxa-8,11-diazacyclohexadec-13-ene-2,5,9,12-tetraone 

(2.28m). Reaction was run and purified as general procedure for semi-preparative scale reaction. 
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1H NMR (600 MHz, CD3OD) δ 7.28 (d, J = 2.2 Hz, 1H), 7.17 (dd, J = 8.4, 2.2 Hz, 1H), 6.98 (d, 

J = 8.4 Hz, 1H), 6.69 (ddd, J = 15.1, 11.1, 3.9 Hz, 1H), 6.23 (d, J = 16.2 Hz, 1H), 5.93 (dd, J = 

15.1, 1.9 Hz, 1H), 5.80 (dd, J = 16.2, 8.9 Hz, 1H), 5.06 (ddd, J = 11.3, 6.7, 1.9 Hz, 1H), 4.93 (dd, 

J = 9.7, 3.8 Hz, 1H), 4.51 (dd, J = 11.2, 3.9 Hz, 1H), 3.84 (s, 3H), 3.57 (dd, J = 13.7, 3.3 Hz, 1H), 

3.27 (dd, J = 13.8, 3.0 Hz, 1H), 3.17 (dd, J = 14.5, 3.9 Hz, 1H), 2.80 – 2.71 (m, 2H), 2.67 (ddt, J 

= 14.6, 4.0, 2.0 Hz, 1H), 2.58 (dt, J = 8.8, 6.6 Hz, 1H), 2.40 (s, 3H), 2.35 (dt, J = 14.5, 11.4 Hz, 

1H), 2.28 (s, 3H), 1.70 – 1.53 (m, 2H), 1.33 (ddd, J = 14.1, 8.7, 3.8 Hz, 1H), 1.18 (d, J = 7.4 Hz, 

3H), 1.15 (d, J = 6.9 Hz, 3H), 0.79 (d, J = 3.7 Hz, 3H), 0.78 (d, J = 3.8 Hz, 3H). 13C NMR (150 

MHz, CD3OD) δ 177.53, 174.04, 172.23, 168.34, 166.95, 159.53, 155.35, 143.40, 134.36, 132.19, 

131.48, 129.29, 125.65, 123.24, 120.19, 113.78, 113.46, 78.53, 72.77, 57.40, 56.58, 44.22, 41.16, 

41.02, 38.95, 37.87, 36.35, 25.62, 23.20, 21.77, 17.83, 15.07, 11.55, 11.45. HRMS (ESI) calcd for 

C34H44ClN3O8 [M+H] 658.2890, found 658.2893. 

 

6.3 Cryptophycin TE Construct Design (Chapter 3) and Protein Expression 

6.3.1 Generation of Mutant Crp TEs 

The mutations of CrpTE were generated from a modified pET28b plasmid containing a 8x his tag 

and a TEV cleavage site in place of the thrombin cleavage site. A quickchange mutagenesis 

(Stratagene) protocol was utilized for the generation of mutants except the plus 7aa, minus 5aa, 

and the minus 10aa which utilized the same conditions except only a forward primer was utilize. 

All new constructs were verified with the UofM Sequencing core.   
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Mutation	
  	
   Primer	
  	
  
C145S	
   5'-­‐GGATAATGCAAAGTGGATAAGCCGAATGGCTGAGGTTATTG-­‐3'	
  

	
   5'-­‐CAATAACCTCAGCCATTCGGCTTATCCACTTTGCATTATCC-­‐3'	
  
C226S	
   5'-­‐CCAATCACTTTGTTTAGCGCGAGGGAGATAAATC-­‐3'	
  

	
   5'-­‐GATTTATCTCCCTCGCGCTAAACAAAGTGATTGG-­‐3'	
  
E61G	
   5'-­‐CAAGGTCTTGATGGTGGCACCGAACCTCATAAAAG-­‐3'	
  

	
   5'-­‐CTTTTATGAGGTTCGGTGCCACCATCAAGACCTTG-­‐3'	
  
K66S	
   5'	
  GTGGCACCGAACCTCATAGCAGTGTTGAAGCAATAGC	
  3'	
  

	
   5'	
  GCTATTGCTTCAACACTGCTATGAGGTTCGGTGCCAC	
  3'	
  
E70A	
   5'-­‐CATAAAAGTGTTGAAGCAATAGCCTCCCAACAC-­‐3'	
  

	
   5'-­‐GTGTTGGGAGGCTATTGCTTCAACACTTTTATG-­‐3'	
  
K77A	
   5'	
  GCAATAGCCTCCCAACACATTGCGGCAATTCAAACAGTTCAACC	
  3'	
  

	
   5'	
  GGTTGAACTGTTTGAATTGCCGCAATGTGTTGGGAGGCTATTGC	
  3'	
  
K195G	
   5'-­‐GCCTGCTCAAACAGATATCGGCATTGTTCGTGGTTTATTAC-­‐3'	
  

	
   5'-­‐GTAATAAACCACGAACAATGCCGATATCTGTTTGAGCAGGC-­‐3'	
  
K219A	
   5'-­‐CCGGAAAAGACTTATGCGACTCCAATCACTTTG-­‐3'	
  

	
   5'-­‐CAAAGTGATTGGAGTCGCATAAGTCTTTTCCGG-­‐3'	
  
Plus	
  7aa	
   5'	
  CCAACCGCTAGCGAACGACTAGCACTTCTTGTTGGTTCCGATTCCGGAGCCGAACTTTGG	
  3'	
  
Minus	
  5aa	
   5'CCAACCGCTAGCGCCGAACTTTGGTCTCCATTAG	
  3'	
  

Minus	
  10aa	
   5'	
  CCAACCGCTAGCCCATTAGTACCAATTCAATTCAACAAAACG3'	
  
S94C	
   5’	
  CTTGGCTGGTCATTGCTTTGGCAGTCATG	
  3’	
  	
  

	
   5’	
  CATGACTGCCAAAGCAATGACCAGCCAAG	
  3’	
  	
  
H265Q	
   5’	
  CATATAGTTCCGGGTAATCGTGTTTCAATGCTGAGTGAG	
  3’	
  

	
   5’	
  CTCACTCAGCATTGAAACACGATTACCCGGAACTATATG	
  3’	
  
H265N	
   5’	
  CATATAGTTCCGGGTAATCAGGTTTCAATGCTGAGTGAGC	
  3’	
  	
  

	
  	
   	
  5’	
  GCTCACTCAGCATTGAAACCTGATTACCCGGAACTATATG	
  3’	
  
Table 6.1 Primers utilized for generation of CrpTE mutants 

6.3.2 CrpTE Protein Expression and Purification: Crystallography  

Buffers For CrpTE Purification for Reactions and Crystallography 

 HEPES Lysis: 50 mM HEPES pH 8, 300 mM NaCl, 10 mM imidazole 

 HEPES Wash: 50 mM HEPES pH 8, 300 mM NaCl, 30 mM imidazole 

 HEPES Elution: 50 mM HEPES pH 8, 300 mM NaCl, 300 mM imidazole 

 HEPES Storage: 10 mM HEPES pH 7.5, 150 mM NaCl, 0.2 mM TCEP 

 Tris Storage: 10 mM Tris pH = 7.5, 100 mM NaCl, 0.2 mM TCEP 
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General Expression Protocol: Crystallography  

Prior to protein production, a starter culture of E. Coli (BAP1) cells were grown by inoculating 10 

mL of LB broth supplemented with kanamycin (50 mg/L) from freshly transformed colonies and 

grown overnight at 37 °C. Following overnight growth, 4 mL/L was used to inoculate a 1L 

expression culture in TB containing kanamycin (50 mg/L) and grown with shaking at 37 °C until 

an OD600 of 0.8 – 1.2 was reached. At which time the flasks were cooled in an ice bath until an 

internal temperature of 20 °C was reached (~15 min). The flasks were returned to a 20 °C shaker, 

induced with 300 uL of IPTG (1M stock solution), and shaken at 200 RPM at 20 °C for a minimum 

of 18 hours. The cells were harvested by centrifugation (6,000 x g, 25 min, 4 °C). The pellets were 

frozen in liquid nitrogen and stored at -80 °C until purification.  

 

General Protein Purification Protocol  

The frozen cells were suspended in Lysis buffer (7 mL/g cell pellet) and thawed at 4 °C with 

stirring for 1 hour. Benzenase was added and the solution was sonicated on ice (12 x 10s with 50s 

rest periods). The resulting cellular lysate was then pelleted by centrifugation (50,000 x g, 30 min, 

4 °C) and the supernatant was applied to 5 mL of Ni-NTA resin pre-equilibrated with wash buffer. 

After binding, the column was washed with 20 column volumes (100 mL) of wash buffer and the 

protein was subsequently eluted with 15 mL of elution buffer. The eluted fractions were combined, 

concentrated to 2.5 mL and buffer exchanged into storage (Tris for crystallography, HEPES for 

enzymatic reactions) buffer using a pre-equilibrated PD-10 column.  After elution with 3.5 mL of 

storage buffer, the fractions were collected and protein concentration determined by absorption at 

280 nm.  

 Enzymatic reactions: The fractions were pooled and diluted to 50 uM with HEPES storage 

buffer, flash frozen in liquid N2, and stored at -80 °C until use.  

 Crystallography: The fractions were pooled and run over an S75 size exclusion column 

previously equilibrated in Tris storage buffer using an AKTA FPLC system. The populations of 

monomer and dimer were collected and concentrated to 30 mg/mL concentration or higher and 

transferred to the Smith Lab for crystallographic screens.  

 

 

 



 

 119 

6.3.3 CrpTE Protein Expression and Purification: NMR  

 

*For unlabled Crp TE, expression was conducted as described above for crystallography  

 

Buffers For CrpTE Purification for NMR experiments  

 Phosphate Lysis: 100mM NaPO4 pH 8, 300 mM NaCl, 20 mM imidazole 

 Phosphate Wash: 100 mM NaPO4 pH 8, 300 mM NaCl, 50 mM imidazole 

 Phosphate Elution: 100 mM NaPO4 pH 8, 300 mM NaCl, 300 mM imidazole 

 Phosphate Storage: 100 mM NaPO4 pH 8, 150 mM NaCl  

 NMR Buffer: 100 mM NaPO4 pH 6.0, 150 mM NaCl 

M9 Salts (1L 5x concentration, no NH4Cl) 

 64 g Na2HPO4  

 15 g KH2PO4 

 2.5 gNaCl   

1L 100x Trace Elements  

 5 g EDTA   0.01 g H3BO3 

 0.8 g FeCl3   1.6 g MnCl2 

 0.05 g ZnCl2   0.005 g Ni2SO4 

 0.01 g CuCl2   0.005 g Molybdic Acid 

 0.01 g CoCl2  

Dissolve in 1L water, adjust pH to 7 with NaOH (some precipitation) and sterile filter, store cold 

500 mL 1000x vitamins  

 0.5 g riboflavin 

 0.5 g niacinamide 

 0.5 g pyridoxine monohydrate 

 0.5 g thiamine 

Dissolve in 500 mL water, store cold 

Minimal Expression Media 15N, 15N/13C, or 15N/13C/2H  (per L) 

 1 L M9 Salts (200 mL in 800 mL DI H2O or D2O) 

 2 mL 1M MgSO4 

 20 mL 20% glucose or 20 mL 20% 13C glucose 
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 1 mL Vitamins 100x 

 10 mL trace elements 100x 

 1 g 15NH4Cl 

 Kanamycin 50 mg/L 

  

Labeled Protein Expression Conditions 

Day 1: Bl21 (DE3) E. coli were transformed with the minus 5aa plasmid 

Day 2: Freshly transformed cells were used to inoculate 5 mL of LB containing Kanamycin (50 

mg//L) as a pre-culture which was grown to a high OD600 (6-8 hours). Overnight cultures were 

then inoculated in minimal expression media (15N, 15N/13C, or 15N/13C/2H) with Kanamycin (50 

mg/L) using a 1:100 inoculum. These were grown at 37 °C overnight.  

Day 3:  1L minimal expression media 15N main cultures were inoculated with overnight culture 

(1:100 inoculum, 10 mL per liter culture). These were grown at 37 °C until OD600 0.4 – 0.6 was 

reached, at which time the cells were cooled to 20 °C for 1 h and induced with 100 uL IPTG (1M). 

The cultures were allowed to express for 18 h prior to harvesting (6,000 x g, 25 min), flash freezing 

in liquid N2, and storage at -80 °C.  

 

General Purification Protocol for NMR 

The frozen cells were suspended in Lysis buffer (7 mL/g cell pellet) and thawed at 4 °C with 

stirring for 1 hour. Benzenase was added and the solution was sonicated on ice (12 x 10s with 50s 

rest periods). The resulting cellular lysate was then pelleted by centrifugation (50,000 x g, 30 min, 

4 °C) and the supernatant was applied to 5 mL of Ni-NTA resin pre-equilibrated with wash buffer. 

After binding, the column was washed with 20 column volumes (100 mL) of wash buffer and the 

protein was subsequently eluted with 15 mL of elution buffer. The eluted fractions were combined, 

concentrated to 2.5 mL and buffer exchanged into storage buffer using a pre-equilibrated PD-10 

column. After elution with 3.5 mL of storage buffer, the fractions were collected and protein 

concentration determined by absorption at 280 nm. These were then flash frozen and stored until 

NMR experiments were to be run.  

Prior to NMR experiments, proteins were thawed, and run over an S75 size exclusion column 

previously equilibrated in NMR buffer using an AKTA FPLC system. The dimer was excluded 

and monomeric protein was concentrated to 500 mM (protein would precipitate upon freezing in 
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this buffer so done directly before). This was then spiked with D2O and loaded into a shigemi 

NMR tube for analysis. 
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Chapter 7 

Polyketide Synthase Experimentals 

 
7.1 New Pentaketide Synthetic Procedures and Characterization  

 
*Synthesis previously developend by Hansen et. al.1  

 

 
methyl (S)-3-((tert-butyldimethylsilyl)oxy)-2-methylpropanoate (S7.4): To a stirred solution of 

(S)-Roche ester and imidazole in DMF was added TBSCl and the reaction was stirred at rt 

overnight. The reaction was diluted with 0.5N HCl and the organics separated, extracted with ethyl 

acetate (3 x 50 mL), organics combined, washed with sat. NH4Cl, dried over Na2SO4, and 

concentrated. The crude product was purified by flash chromatography system (2 – 20% Ethyl 

Acetate/Hexanes) to afford xx (4.12 g, 70% yield) as a colorless oil: Rf = 0.7 (10% Ethyl 

Acetate/Hexanes); 1H NMR (600 MHz, CDCl3) δ 3.76 (dd, J = 9.7, 6.9 Hz, 1H), 3.66 (d, J = 1.3 

Hz, 3H), 3.64 (dd, J = 9.7, 6.0 Hz, 1H), 2.64 (h, J = 7.0 Hz, 1H), 1.12 (d, J = 7.0 Hz, 3H), 0.86 (d, 

J = 1.8 Hz, 9H), 0.02 (s, 3H), 0.02 (s, 3H). HRMS (ESI) calcd for C11H24O3Si [M+H] 233.1568, 

found 233.1571. 

 

 

O N

Bn
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(S)-3-((tert-butyldimethylsilyl)oxy)-2-methylpropanoic acid (4.20): S7.5 (1 eq, 4.30 mmol, 1.0 

g) was suspended in a 4:1 mixture of THF/H2O (43 mL, 0.1M) and treated with LiOH (4 eq, 17.21 

mmol, 0.412 g) and stirred for 4 hours. The reaction was quenched with 1 M HCl (50 mL) and the 

organics removed under reduced pressure. The aqueous layer was extracted with ethyl acetate (3 

x 50 mL), organics combined, washed with brine, dried over Na2SO4, and concentrated. The crude 

product was purified by flash chromatography system (10 – 30% Ethyl Acetate/Hexanes + 1% 

AcOH) to afford 4.20  ( 0.81 g, 87% yield) as a clear and colorless oil: Rf = 0.4 (20% Ethyl 

Acetate/Hexanes); 1H NMR (600 MHz, CDCl3) δ 3.79 – 3.66 (m, 2H), 2.65 (td, J = 7.2, 6.0 Hz, 

1H), 1.17 (d, J = 7.1 Hz, 3H), 0.89 (d, J = 0.9 Hz, 9H), 0.07 (d, J = 1.4 Hz, 6H). 13C NMR (15 

MHz, CDCl3) δ 179.21, 64.85, 41.59, 25.71, 18.14, 13.00, -5.55, -5.57. HRMS (ESI) calcd for 

C10H22O3Si [M+H] 219.1411, found 219.1419. 

 

 
S-phenyl (S)-3-((tert-butyldimethylsilyl)oxy)-2-methylpropanethioate (S7.6): To a 25 mL 

flask was added 4.20 (1 eq, 0.92 mmol, 0.20 g) and Ph2S2 (1.1 eq, 1.01 mmol, 0.22 g) in CH2Cl2 

(9.2 mL, 0.1M) and cooled to 0 °C. PBu3 (distilled, 1.1 eq, 1.01 mmol, 250 uL) was added slowly, 

the reaction was stirred for 10 min before it was quenched with sat. NaHCO3. The organics were 

separated, extracted with CH2Cl2 (3 x 20 mL), dried over sodium sulfate, and concentrated. The 

crude product was purified by flash chromatography system (2 – 40% Ethyl Acetate/Hexanes) to 

afford S7.6 (225 mg, 77% yield) as a clear and colorless oil: Rf  = 0.25 (25% Ethyl 

Acetate/Hexanes); 1H NMR (400 MHz, CDCl3) δ 7.40 (s, 5H), 3.87 (dd, J = 9.9, 7.2 Hz, 1H), 3.66 

(dd, J = 10.0, 5.9 Hz, 1H), 2.97 (q, J = 6.7, 6.2 Hz, 1H), 1.21 (d, J = 7.0 Hz, 3H), 0.90 (d, J = 1.2 

Hz, 9H), 0.06 (s, 3H), 0.06 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 199.98, 134.42, 129.17, 129.06, 

127.90, 65.37, 51.06, 25.80, 18.22, 13.98, -5.50. HRMS (ESI) calcd for C16H26O2SSi [M+H] 

311.1496, found 311.1497. 
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S-phenyl (S)-3-hydroxy-2-methylpropanethioate (4.22): To an open 20 mL polyethylene vial 

was added S7.7 in CH3CN (4 mL, 1M) and aq. HF (48%, 1 mL). The reaction was monitored by 

TLC and upon completion it was diluted with CH2Cl2 (5 mL) and carefully quenched with sat. 

NaHCO3 (until pH was acidic). The aqueous layer was extracted with CH2Cl2 (3 x 10 mL), 

organics combined, dried over Na2SO4, and concentrated. The crude product was purified by flash 

chromatography system (20 – 60% Ethyl Acetate/Hexanes) to afford 4.22 (0.72 g, 87%) as a clear 

and colorless oil: Rf = (0.25) (25% Ethyl Acetate/Hexanes); 1HNMR (600 MHz, CDCl3) δ 7.41 

(s, 5H), 3.81 (dd, J = 11.2, 7.3 Hz, 1H), 3.73 (dd, J = 11.3, 4.4 Hz, 1H), 2.99 (pd, J = 7.1, 4.5 Hz, 

1H), 1.28 (d, J = 7.2 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ 201.53, 134.54, 129.49, 129.21, 

127.16, 64.69, 50.30, 14.32. HRMS (ESI) calcd for C10H12O2S [M+H] 197.0631, found xx. 

 

 
S-phenyl (S)-3-((tert-butoxycarbonyl)amino)-2-methylpropanethioate (S7.8): To a 25 mL 

flask was added xx (1 eq, 0.98 mmol, 0.20 g) and Ph2S2 (1.1 eq, 1.01 mmol, 0.236 g) in CH2Cl2 

(9.8 mL, 0.1M) and cooled to 0 °C. PBu3 (distilled, 1.1 eq, 1.01 mmol, 270 uL) was added slowly, 

the reaction was stirred for 10 min before it was quenched with sat. NaHCO3. The organics were 

separated, extracted with CH2Cl2 (3 x 20 mL), dried over sodium sulfate, and concentrated. The 

crude product was purified by flash chromatography system (2 – 40% Ethyl Acetate/Hexanes) to 

afford xx (225 mg, 77% yield) as a clear and colorless oil: Rf  = 0.25 (25% Ethyl Acetate/Hexanes); 
1H NMR (400 MHz, CDCl3) δ 7.42 (s, 5H), 4.88 (s, 1H), 3.43 – 3.23 (m, 2H), 3.11 – 2.97 (m, 

1H), 1.44 (s, 9H), 1.28 (d, J = 7.1 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ 201.15, 155.90, 134.48, 

129.45, 129.19, 127.27, 79.44, 48.33, 43.20, 28.35, 15.51. HRMS (ESI) calcd for C15H21NO3S 

[M+H] 296.1315, found 296.1311. 
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S-phenyl (S)-3-amino-2-methylpropanethioate HCl (4.23): To a 4 dram vial with S4.3 was 

added 5 mL of 4M HCl/Dioxane, and the mixture was stirred for 30 min, concentrated and used 

directly.  

 

 
(4R,5R,E)-5-((tert-butyldimethylsilyl)oxy)-4-methylhept-2-enoic acid (4.26): To a long tube 

under N2 was added Hoveyda Grubbs II (0.03 eq, 0.03 mmol, 0.019 g), 2-pentenoic acid (1 eq, 1.0 

mmol, 0.10 g), and 4.25 (4 eq, 4.0 mmol, 0.913 g) in DCM (2 mL, 0.5 M). This was allowed to 

reflux for 12 h, cooled, the solvent was removed under reduced pressure and purified directly by 

flash chromatography (1 – 25% Ethyl Acetate/Hexane + 1% AcOH) to afford 4.26 (0.231 g, 88% 

yield) as a white solid: Rf = 0.4 (20% Ethyl Acetate/Hexanes); 1H NMR (600 MHz, CDCl3) δ 7.11 

(dd, J = 15.8, 7.4 Hz, 1H), 5.80 (d, J = 15.8 Hz, 1H), 3.55 (q, J = 5.5 Hz, 1H), 2.49 (dq, J = 13.0, 

7.0 Hz, 1H), 1.48 (ddd, J = 13.2, 7.2, 5.5 Hz, 1H), 1.38 (dp, J = 14.1, 7.2 Hz, 1H), 1.03 (d, J = 6.8 

Hz, 3H), 0.88 (s, 9H), 0.86 (t, J = 7.4 Hz, 3H), 0.03 (s, 3H), 0.03 (s, 3H). 13C NMR (150 MHz, 

CDCl3) δ 171.63, 155.04, 119.92, 76.20, 41.37, 26.82, 25.84, 18.09, 13.88, 9.64, -4.38, -4.56. 

HRMS (ESI) calcd for C14H28O3Si [M-H] 271.1755, found 271.1759. 

 

 
(S)-2-methyl-3-oxo-3-(phenylthio)propyl(4R,5R,E)-5-((tert-butyldimethylsilyl)oxy)-4-

methylhept-2-enoate (S7.9): To an open flask was added 4.22 (1 eq, 0.31 mmol, 0.060 g) and 

4.26 (1 eq, 0.31 mmol, 0.083 g) suspended in CH2Cl2 (3.1 mL, 0.1M). The mixture was treated 

with DCC (1.2 eq, 0.37 mmol, 0.072 g) and DMAP (0.1 eq, 0.03 mmol, 0.004 g) and stirred at rt 

overnight. The reaction was filtered through celite and concentrated. The crude product was 

purified by flash chromatography system (2 – 40% Ethyl Acetate/Hexanes) to afford S7.9 (43 mg, 

33% yield): Rf = 0.6 (10% Ehtyl Acetate/Hexanes); 1H NMR (600 MHz, CDCl3) δ 7.40 (d, J = 
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0.6 Hz, 5H), 7.04 (dd, J = 15.8, 7.4 Hz, 1H), 5.81 (dd, J = 15.8, 1.3 Hz, 1H), 4.34 (dd, J = 11.1, 

7.8 Hz, 1H), 4.24 (dd, J = 11.0, 5.6 Hz, 1H), 3.54 (dt, J = 6.5, 5.1 Hz, 1H), 3.15 (pd, J = 7.1, 5.4 

Hz, 1H), 2.52 – 2.43 (m, 1H), 1.46 (dtd, J = 14.8, 7.4, 5.2 Hz, 1H), 1.38 (dp, J = 14.2, 7.3 Hz, 1H), 

1.29 (d, J = 7.0 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H), 0.88 (s, 9H), 0.85 (t, J = 7.4 Hz, 3H), 0.03 (s, 

3H), 0.02 (s, 3H). 3C NMR (150 MHz, CDCl3) δ 198.85, 166.20, 152.97, 134.41, 129.40, 129.15, 

127.30, 120.11, 76.28, 65.23, 47.37, 41.32, 26.81, 25.86, 18.10, 14.51, 14.04, 9.62, -4.38, -4.50. 

HRMS (ESI) calcd for C24H38O4SSi [M+H] 451.2333, found 451.2334. 

 

 
S-phenyl (S)-3-((4R,5R,E)-5-((tert-butyldimethylsilyl)oxy)-4-methylhept-2-enamido)-2-

methylpropanethioate (S7.10): To an open flask was added acid 4.26 suspended in CH2Cl2 (2 

mL, 0.1M) and treated with HATU (1.2 eq, 0.24 mmol, 0.093 g). Deprotected amine was 

suspended in DCM (0.5 mL) and DIPEA (2.5 eq, 0.51 mmol, 88 uL) and the mixture was added 

to the acid portion and stirred at rt overnight. The reaction was diluted with water and extracted 

with DCM (3 x 20 mL), organics combined, dried over Na2SO4, and concentrated. The crude 

product was purified by flash chromatography system (8 – 40% Ethyl Acetate/Hexanes) to afford 

S7.10 (58 mg, 66% yield) as a colorless oil: Rf = 0.4 (20% Ethyl Acetate/Hexanes); 1H NMR (600 

MHz, CDCl3) δ 7.41 (tq, J = 7.0, 3.7, 2.9 Hz, 5H), 6.83 (dd, J = 15.4, 7.4 Hz, 1H), 5.84 (s, 1H), 

5.69 (dd, J = 15.5, 1.3 Hz, 1H), 3.60 (ddd, J = 13.8, 6.4, 4.2 Hz, 1H), 3.51 (q, J = 5.5 Hz, 1H), 3.46 

(ddd, J = 13.9, 8.0, 6.0 Hz, 1H), 3.10 (pd, J = 7.3, 4.1 Hz, 1H), 2.53 – 2.30 (m, 1H), 1.46 (ddd, J 

= 14.1, 7.4, 5.3 Hz, 1H), 1.39 (tq, J = 14.1, 7.2, 6.4 Hz, 1H), 1.31 (d, J = 7.2 Hz, 3H), 0.99 (d, J = 

6.8 Hz, 3H), 0.87 (s, 9H), 0.84 (t, J = 7.4 Hz, 3H), 0.02 (s, 3H), 0.02 (s, 3H). 13C NMR (150 MHz, 

CDCl3) δ 201.77, 166.04, 147.86, 134.49, 129.53, 129.22, 127.14, 122.74, 76.34, 47.94, 41.67, 

41.00, 26.84, 25.88, 18.12, 15.82, 14.43, 9.47, -4.38, -4.45. HRMS (ESI) calcd for C24H39NO3SSi 

[M+H] 450.2493, found 450.2493. 

 
(S)-2-methyl-3-oxo-3-(phenylthio)propyl (4R,5R,E)-5-hydroxy-4-methylhept-2-enoate 

(4.28): The TBS protected S7.9 was suspended in 1 mL of CH3CN in a polyethylene vial and 
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treated with aq. HF (48%, 250 uL). The reaction was monitored by TLC and upon completion it 

was diluted with CH2Cl2 (5 mL) and carefully quenched with sat. NaHCO3 (until pH was acidic). 

The aqueous layer was extracted with CH2Cl2 (3 x 10 mL), organics combined, dried over Na2SO4, 

and concentrated. The crude product was purified by flash chromatography system (12 – 40% 

Ethyl Acetate/Hexanes) to afford 4.28 (0.035 g, 82% yield) as a clear and colorless oil: Rf = 0.6 

(33% Ethyl Acetate/Hexanes); 1H NMR (600 MHz, CDCl3) δ 7.40 (s, 5H), 6.98 (dd, J = 15.8, 7.8 

Hz, 1H), 5.87 (dd, J = 15.7, 1.3 Hz, 1H), 4.33 (dd, J = 11.0, 7.9 Hz, 1H), 4.25 (dd, J = 11.0, 5.6 

Hz, 1H), 3.48 (h, J = 4.3 Hz, 1H), 3.21 – 3.06 (m, 1H), 2.49 – 2.35 (m, 1H), 1.55 – 1.48 (m, 1H), 

1.41 – 1.33 (m, 1H), 1.29 (d, J = 7.0 Hz, 3H), 1.09 (d, J = 6.8 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H). 

13C NMR (150 MHz, CDCl3) δ 198.88, 166.04, 152.00, 129.45, 129.19, 127.23, 120.90, 75.85, 

65.35, 47.33, 42.23, 27.37, 14.50, 13.96, 10.22. HRMS (ESI) calcd for C18H24O4S [M+H] 

337.1468, found 337.1466. 

 

 
S-phenyl (S)-3-((4R,5R,E)-5-hydroxy-4-methylhept-2-enamido)-2-methylpropanethioate 

(4.27): The TBS protected xx was suspended in 1 mL of CH3CN in a polyethylene vial and treated 

with aq. HF (48%, 250 uL). The reaction was monitored by TLC and upon completion it was 

diluted with CH2Cl2 (5 mL) and carefully quenched with sat. NaHCO3 (until pH was acidic). The 

aqueous layer was extracted with CH2Cl2 (3 x 10 mL), organics combined, dried over Na2SO4, and 

concentrated. The crude product was purified by flash chromatography system (20 – 60% Ethyl 

Acetate/Hexanes) to afford 4.27 (0.045 g, 85% yield) as a clear and colorless oil: Rf = 0.55 (50% 

Ethyl Acetate/Hexanes);  1H NMR (600 MHz, CDCl3) δ 7.40 (dq, J = 7.5, 4.1 Hz, 5H), 6.80 (dd, 

J = 15.4, 7.8 Hz, 1H), 6.01 (t, J = 6.3 Hz, 1H), 5.76 (dd, J = 15.4, 1.3 Hz, 1H), 3.57 (ddd, J = 13.8, 

6.4, 4.3 Hz, 1H), 3.49 – 3.39 (m, 2H), 3.09 (pd, J = 7.3, 4.2 Hz, 1H), 2.38 (hept, J = 6.3 Hz, 1H), 

1.51 (dqd, J = 14.9, 7.5, 3.8 Hz, 1H), 1.43 – 1.32 (m, 1H), 1.30 (d, J = 7.2 Hz, 3H), 1.05 (d, J = 

6.8 Hz, 3H), 0.93 (t, J = 7.4 Hz, 3H). 13C NMR (150 MHz, CDCl3) δ 201.75, 165.95, 147.14, 

134.49, 129.56, 129.24, 127.08, 123.52, 75.87, 47.87, 41.93, 41.73, 27.25, 15.82, 13.99, 10.30. 

HRMS (ESI) calcd for C18H25NO3S [M+H]336.1628, found 336.1622. 
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methyl 5-(methoxy(methyl)amino)-5-oxopentanoate (4.33): A solution of glutaric anhydride (1 

eq, 42.82 mmol, 5.0 g) and N,O-dimethylhydroxylamine hydrochloride (1 eq, 43.82 mmol, 4.27 

g) in CH2Cl2 (0.4M, 110 mL) was cooled to 0 °C and treated dropwise with pyridine (2.2 eq, 96.41 

mmol, 7.78 mL). The resulting solution was warmed to rt and stirred overnight. The reaction was 

then concentrated under reduced pressure. The crude product was dissolved in 4:1 Toluene/MeOH 

(15 mL) and treated dropwise with TMS diazomethane (2M in diethyl ether, 10 mL). Upon 

persistence of yellow color, the reaction was quenched with a 10% Acetic Acid in CH2Cl2. This 

was concentrated under reduced pressure and the crude product was purified by flash 

chromatography system (30 – 80% Ethyl Acetate/Hexanes) to afford xx (6.05 g, 80% yield); 1H 

NMR (400 MHz, CDCl3) δ 3.66 (d, J = 0.8 Hz, 3H), 3.66 (s, 3H), 3.16 (s, 3H), 2.48 (t, J = 7.3 Hz, 

2H), 2.39 (t, J = 7.2 Hz, 2H), 1.95 (p, J = 7.3 Hz, 2H). 13C NMR (100 MHz, CDCl3) δ 173.69, xx 

61.19, 51.51, 33.22, 30.82, 19.76. HRMS (ESI) calcd for C8H15NO4 [M+H] 190.1074, found 

190.1070. 

 

 
methyl 5-oxohept-6-enoate (4.34): To a flame dried 25 mL flask under N2 was added 4.33 (1 eq, 

1.32 mmol, 0.25 g) in dry THF (0.2 M, 6.5 mL) and the mixture was cooled to 0 °C. Vinyl 

Magnesium Bromide (0.8 M THF, freshly titrated, 1.2 eq, 1.98 mL) was added slowly and the 

reaction was allowed to stir at 0 °C for 30 min. The reaction was quenched with half 0.5 N HCl 

(10 mL) and the aqueous layer was extracted with CH2Cl2 (3x20 mL), organics combined, dried 

over Na2SO4, and concentrated. The crude product was purified by flash chromatography system 

(10 – 50% Ethyl Acetate/Hexanes) to afford 4.34 (105 mg, 51% yield) as a clear and colorless oil 

(being careful not to pull this off on a high vacuum as it is volatile): Rf = 0.3 (25% Ethyl 

Acetate/Hexanes);  1H NMR (400 MHz, CDCl3) δ 6.34 (dd, J = 17.7, 10.4 Hz, 1H), 6.22 (dd, J = 

17.7, 1.3 Hz, 1H), 5.84 (dd, J = 10.4, 1.3 Hz, 1H), 3.67 (s, 3H), 2.67 (t, J = 7.2 Hz, 2H), 2.37 (t, J 

= 7.2 Hz, 2H), 1.95 (p, J = 7.2 Hz, 2H). 13C NMR (101 MHz, CDCl3) δ 199.87, 173.60, 136.42, 
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128.26, 51.56, 38.33, 33.00, 18.96. 13C NMR (100 MHz, CDCl3) δ 199.87, 173.60, 136.42, 128.26, 

51.56, 38.33, 33.00, 18.96. HRMS (ESI) calcd for C8H12O3 [M+H] 157.0862, found 157.0866. 

 

 
methyl (8R,9R,E)-9-((tert-butyldimethylsilyl)oxy)-8-methyl-5-oxoundec-6-enoate (4.35): To a 

long tube under N2 was added Hoveyda Grubbs II (0.03 eq, 0.02 mmol, 0.012 g), ester 4.34 (1 eq, 

0.58 mmol, 0.09 g), and 4.25 (4 eq, 1.73 mmol, 0.395g) in DCM (2 mL, 0.5 M). This was allowed 

to reflux for 12 h, cooled, the solvent was removed under reduced pressure and purified directly 

by flash chromatography (1 – 15% Ethyl Acetate/Hexane) to afford 4.35 (0.152 g, 74% yield) as 

a colorless oil: Rf = 0.25 (10% Ethyl Acetate/Hexanes); 1H NMR (600 MHz, CDCl3) δ 6.86 (dd, 

J = 16.1, 7.3 Hz, 1H), 6.05 (dd, J = 16.1, 1.3 Hz, 1H), 3.65 (s, 3H), 3.54 (q, J = 5.4 Hz, 1H), 2.60 

(t, J = 7.2 Hz, 2H), 2.46 (dq, J = 13.2, 6.5 Hz, 1H), 2.35 (t, J = 7.3 Hz, 2H), 1.93 (p, J = 7.2 Hz, 

2H), 1.47 (ddd, J = 13.2, 7.5, 5.6 Hz, 1H), 1.35 (dp, J = 14.2, 7.2 Hz, 1H), 1.01 (d, J = 6.8 Hz, 

3H), 0.88 (s, 9H), 0.85 (t, J = 7.5 Hz, 3H), 0.03 (s, 3H), 0.01 (s, 3H). 13C NMR (150 MHz, CDCl3) 

δ 195.67, 169.71, 146.41, 125.61, 72.38, 47.58, 37.46, 34.66, 29.19, 22.83, 21.94, 15.24, 14.16, 

10.12, 5.71, -8.31, -8.43. HRMS (ESI) calcd for C19H36O4Si [M+H] 357.2456, found xx. 

 

 
(8R,9R,E)-9-((tert-butyldimethylsilyl)oxy)-8-methyl-5-oxoundec-6-enoic acid (4.36): 4.35 (1 

eq, 0.30 mmol, 0.106 g) was suspended in a 4:1 mixture of THF/H2O (43 mL, 0.1M) and treated 

with LiOH (3 eq, 0.89 mmol, 0.037 g) and stirred for 4 hours. The reaction was quenched with 1 

M HCl (50 mL) and the organics removed under reduced pressure. The aqueous layer was 

extracted with ethyl acetate (3 x 50 mL), organics combined, washed with brine, dried over 

Na2SO4, and concentrated. The crude product was purified by flash chromatography system (10 – 

40% Ethyl Acetate/Hexanes + 1% AcOH) to afford 4.36 (89 mg, 87% yield) as a clear and 

colorless oil: Rf = 0.15 (25% Ethyl Acetate/Hexane) 1H NMR (600 MHz, CDCl3) δ 6.87 (dd, J = 

16.1, 7.3 Hz, 1H), 6.06 (dd, J = 16.1, 1.3 Hz, 1H), 3.55 (q, J = 5.5 Hz, 1H), 2.63 (t, J = 7.2 Hz, 

2H), 2.47 (dp, J = 13.1, 6.3 Hz, 1H), 2.41 (t, J = 7.2 Hz, 2H), 2.16 (d, J = 0.7 Hz, 3H), 1.98 – 1.87 
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(m, 2H), 1.47 (ddd, J = 13.3, 7.4, 5.5 Hz, 1H), 1.35 (dp, J = 14.1, 7.2 Hz, 1H), 1.01 (d, J = 6.8 Hz, 

3H), 0.88 (s, 9H), 0.85 (t, J = 7.4 Hz, 3H), 0.03 (s, 2H), 0.01 (s, 3H). 13C NMR (150 MHz, CDCl3) 

δ 195.64, 174.68, 146.63, 125.56, 72.37, 37.47, 34.51, 29.03, 28.95, 26.98, 22.84, 22.84, 14.94, 

14.15, 10.13, 5.73, -8.30, -8.50. HRMS (ESI) calcd for C18H34O4Si [M+H] 343.2299, found 

343.2292. 

 

 
S-phenyl (8R,9R,E)-9-((tert-butyldimethylsilyl)oxy)-8-methyl-5-oxoundec-6-enethioate 

(S7.11): To a 25 mL flask was added 4.36 (1 eq, 0.37 mmol, 0.126 g) and Ph2S2 (1.1 eq, 0.4 mmol, 

0.088 g) in CH2Cl2 (4 mL, 0.1M) and cooled to 0 °C. PBu3 (distilled, 1.1 eq, 0.40 mmol, 100 uL) 

was added slowly, the reaction was stirred for 10 min before it was quenched with sat. NaHCO3. 

The organics were separated, extracted with CH2Cl2 (3 x 20 mL), dried over sodium sulfate, and 

concentrated. The crude product was purified by flash chromatography system (0 – 10% Ethyl 

Acetate/Hexanes) to afford S7.11 (0.042 g, 82% yield) as a clear and colorless oil: Rf = 0.6 (10% 

Ethyl Acetate/Hexanes).  

 

 
S-phenyl (8R,9R,E)-9-hydroxy-8-methyl-5-oxoundec-6-enethioate (4.37): The TBS protected 

S7.11 was suspended in 1 mL of CH3CN in a polyethylene vial and treated with aq. HF (48%, 250 

uL). The reaction was monitored by TLC and upon completion it was diluted with CH2Cl2 (5 mL) 

and carefully quenched with sat. NaHCO3 (until pH was acidic). The aqueous layer was extracted 

with CH2Cl2 (3 x 10 mL), organics combined, dried over Na2SO4, and concentrated. The crude 

product was purified by flash chromatography system (12 – 40% Ethyl Acetate/Hexanes) to afford 

4.37 (0.036, 92%) as a clear and colorless oil: Rf = 0.3 (33% Ethyl Acetate/Hexanes);1H NMR 

(600 MHz, CDCl3) δ 7.40 (s, 5H), 6.82 (dd, J = 16.0, 7.7 Hz, 1H), 6.11 (dd, J = 16.0, 1.2 Hz, 1H), 

3.49 (dq, J = 9.1, 4.8 Hz, 1H), 2.72 (t, J = 7.1 Hz, 2H), 2.66 (t, J = 7.1 Hz, 2H), 2.42 (h, J = 6.8, 

6.3 Hz, 1H), 2.01 (p, J = 7.1 Hz, 2H), 1.57 – 1.48 (m, 2H), 1.38 (ddt, J = 16.1, 14.5, 7.4 Hz, 1H), 

1.08 (d, J = 6.8 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H).13C NMR (150 MHz, CDCl3) δ 199.27, 197.22, 
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149.42, 134.44, 129.93, 129.38, 129.17, 127.62, 75.90, 42.50, 42.28, 38.65, 27.40, 19.67, 13.91, 

10.25. HRMS (ESI) calcd for C18H24O3S [M+H] 321.1519, found 321.1516. 
 

 
methyl 5-(methoxy(methyl)amino)-2,2-dimethyl-5-oxopentanoate (S7.13): A solution of 

dimethyl glutaric anhydride (1 eq, 7.03 mmol, 1.0 g) and N,O-dimethylhydroxylamine 

hydrochloride (1 eq, 7.03 mmol, 1.0 g) in CH2Cl2 (0.4M, 17 mL) was cooled to 0 °C and treated 

dropwise with pyridine (2.2 eq, 15.48 mmol, 1.25 mL). The resulting solution was warmed to rt 

and stirred overnight. The reaction was then concentrated under reduced pressure. The crude 

product was dissolved in 4:1 Toluene/MeOH (15 mL) and treated dropwise with TMS 

diazomethane (2M in diethyl ether, 3 mL). Upon persistence of yellow color, the reaction was 

quenched with a 10% Acetic Acid in CH2Cl2. This was concentrated under reduced pressure and 

the crude product was purified by flash chromatography system (30 – 70% Ethyl Acetate/Hexanes) 

to afford S7.13 (1.36 g, 90% yield) as a clear and colorless oil: Rf = 0.65 (50% Ethyl 

Acetate/Hexanes); 1H NMR (600 MHz, CDCl3) δ 3.66 (s, 3H), 3.65 (s, 3H), 3.15 (s, 3H), 2.36 (t, 

J = 8.4 Hz, 2H), 1.93 – 1.80 (m, 2H), 1.19 (s, 6H). 13C NMR (150 MHz, CDCl3) δ 177.91, 174.02, 

61.18, 51.75, 41.77, 34.97, 27.73, 25.08. HRMS (ESI) calcd for C10H19NO4 [M+H] 218.1387, 

found 218.1288. 

 

 
methyl 2,2-dimethyl-5-oxohept-6-enoate (S7.14): To a flame dried 25 mL flask under N2 was 

added S7.13 (1 eq, 0.81 mmol, 0.175 g) in dry THF (0.2 M, 4 mL) and the mixture was cooled to 

0 °C. Vinyl Magnesium Bromide (0.8 M THF, freshly titrated, 1.2 eq, 1.21 mL) was added slowly 

and the reaction was allowed to stir at 0 °C for 30 min. The reaction was quenched with half 0.5 

N HCl (10 mL) and the aqueous layer was extracted with CH2Cl2 (3x20 mL), organics combined, 

dried over Na2SO4, and concentrated. The crude product was purified by flash chromatography 

system (5 – 50% Ethyl Acetate/Hexanes) to afford S7.14 (90 mg, 62% yield) as a clear and 
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colorless oil (being careful not to pull this off on a high vacuum as it is volatile): Rf = 0.5 (25% 

Ethyl Acetate/Hexanes); 1H NMR (600 MHz, CDCl3) δ 6.32 (dd, J = 17.9, 10.4 Hz, 1H), 6.21 (d, 

J = 17.7 Hz, 1H), 5.81 (d, J = 10.6 Hz, 1H), 3.65 (d, J = 0.8 Hz, 3H), 2.57 – 2.51 (m, 2H), 1.87 – 

1.82 (m, 2H), 1.18 (s, 6H). 13C NMR (150 MHz, CDCl3) δ 200.14, 177.84, 136.33, 128.18, 51.81, 

41.67, 35.44, 34.12, 25.16. HRMS (ESI) calcd for C10H16O3 [M+H] 185.1172, found185.1172. 
 

 
methyl (8R,9R,E)-9-((tert-butyldimethylsilyl)oxy)-2,2,8-trimethyl-5-oxoundec-6-enoate 

(S7.15): To a long tube under N2 was added Hoveyda Grubbs II (0.03 eq, 0.01 mmol, 0.009 g), 

ester S7.14 (1 eq, 0.49 mmol, 0.09 g), and 4.25 (3 eq, 1.47 mmol, 0.335 g) in DCM (2 mL, 0.5 M). 

This was allowed to reflux for 12 h, cooled, the solvent was removed under reduced pressure and 

purified directly by flash chromatography (0 – 15% Ethyl Acetate/Hexane) to afford S7.15 (0.102 

g, 53% yield) as a colorless oil: Rf = 0.25 (10% Ethyl Acetate/Hexanes); 1H NMR (600 MHz, 

CDCl3) δ 6.85 (dd, J = 16.1, 7.3 Hz, 1H), 6.05 (d, J = 16.0 Hz, 0H), 3.65 (s, 3H), 3.54 (q, J = 5.5 

Hz, 1H), 2.52 – 2.46 (m, 2H), 2.50 – 2.42 (m, 1H), 1.87 – 1.80 (m, 2H), 1.52 – 1.41 (m, 1H), 1.41 

– 1.30 (m, 1H), 1.18 (s, 6H), 1.01 (d, J = 6.8 Hz, 3H), 0.88 (s, 9H), 0.85 (t, J = 7.4 Hz, 3H), 0.03 

(s, 3H), 0.02 (s, 3H). 13C NMR (150 MHz, CDCl3) δ 199.90, 177.90, 150.25, 129.48, 76.32, 51.78, 

41.68, 41.37, 35.63, 34.31, 26.78, 25.84, 25.14, 18.10, 14.05, 9.66, -4.33, -4.52. HRMS (ESI) 

calcd for C21H40O4Si [M+H] 385.2769, found xx. 

 

 
(8R,9R,E)-9-((tert-butyldimethylsilyl)oxy)-2,2,8-trimethyl-5-oxoundec-6-enoic acid (S7.16): 

Ester S7.15 (1 eq, 0.25 mmol, 0.095 g) was dissolved in 1,2 dichloroehtane  (2.4 mL, 0.1M) and 

after the addition of trimethyltin hydroxide (10 eq, 2.55 mmol, 0.304 g), the mixture was heated 

to 70 °C, and monitored by TLC until completion (~4 h). After completion, the reaction was cooled 

and concentrated. The residue was taken up in ethyl acetate (20 mL) and washed with 1N HCl (20 

mL), brine (20 mL), dried over Na2SO4, and concentrated. The crude concentrate was purified by 

flash chromatography system (5 – 50% Ethyl Acetate/Hexanes + 1% acetic acid) to afford S7.16 
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(75 mg, 83% yield): Rf = 0.1 (10% Ethyl Acetate/Hexanes + 1% AcOH);  1H NMR (400 MHz, 

CDCl3) δ 6.88 (dd, J = 16.2, 7.3 Hz, 1H), 6.07 (d, J = 16.1 Hz, 1H), 3.56 (q, J = 5.6 Hz, 1H), 2.62 

– 2.53 (m, 2H), 2.46 (dt, J = 13.6, 6.1 Hz, 2H), 1.92 – 1.82 (m, 2H), 1.54 – 1.41 (m, 1H), 1.45 – 

1.29 (m, 1H), 1.24 – 1.20 (m, 6H), 1.02 (d, J = 6.8 Hz, 3H), 0.89 (d, J = 0.9 Hz, 9H), 0.85 (d, J = 

7.4 Hz, 3H), 0.04 (s, 3H), 0.03 (s, 3H). HRMS (ESI) calcd for C20H38O4Si [M+H] 371.2612, found 

371.2610. 
 

 
S-phenyl (8R,9R,E)-9-((tert-butyldimethylsilyl)oxy)-2,2,8-trimethyl-5-oxoundec-6-

enethioate (S7.17): To a 25 mL flask was added S7.16 (1 eq, 0.09 mmol, 0.035 g) and Ph2S2 (1.1 

eq, 0.1 mmol, 0.023 g) in CH2Cl2 (1 mL, 0.1M) and cooled to 0 °C. PBu3 (distilled, 1.1 eq, 0.10 

mmol, 30 uL) was added slowly, the reaction was stirred for 10 min before it was quenched with 

sat. NaHCO3. The organics were separated, extracted with CH2Cl2 (3 x 20 mL), dried over sodium 

sulfate, and concentrated. The crude product was purified by flash chromatography system (0 – 

10% Ethyl Acetate/Hexanes) to afford S7.17 as a mixture of product and thiophenol byproducts: 

Rf = 0.6 (10% Ethyl Acetate/Hexanes). This was inseparable from thiophenol byproducts and was 

carried through to deprotection. 

 

 
S-phenyl (8R,9R,E)-9-hydroxy-2,2,8-trimethyl-5-oxoundec-6-enethioate (4.38): The TBS 

protected S7.17 was suspended in 1 mL of CH3CN in a polyethylene vial and treated with aq. HF 

(48%, 250 uL). The reaction was monitored by TLC and upon completion it was diluted with 

CH2Cl2 (5 mL) and carefully quenched with sat. NaHCO3 (until pH was acidic). The aqueous layer 

was extracted with CH2Cl2 (3 x 10 mL), organics combined, dried over Na2SO4, and concentrated. 

The crude product was purified by flash chromatography system (12 – 40% Ethyl 

Acetate/Hexanes) to afford 7.38 (0.027 g, 81% yield) as a clear and colorless oil: Rf = 0.4 (10% 

Ethyl Acetate/Hexanes); 1H NMR (600 MHz, CDCl3) δ 7.44 – 7.33 (m, 5H), 6.82 (dd, J = 16.0, 

7.7 Hz, 1H), 6.11 (d, J = 15.9 Hz, 1H), 3.49 (dt, J = 9.0, 4.6 Hz, 1H), 2.60 – 2.53 (m, 2H), 2.42 (h, 
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J = 6.7 Hz, 1H), 1.99 – 1.94 (m, 2H), 1.55 – 1.47 (m, 1H), 1.42 – 1.33 (m, 1H), 1.32 (s, 6H), 1.07 

(d, J = 6.9 Hz, 3H), 0.95 (t, J = 7.4 Hz, 3H). 13C NMR (151 MHz, cdcl3) δ 204.03, 199.53, 149.36, 

134.92, 129.83, 129.25, 129.12, 127.69, 75.88, 49.64, 42.27, 35.77, 34.74, 27.39, 25.43, 13.87, 

10.27. HRMS (ESI) calcd for C20H28O3S [M+H] 349.1832, found 349.1831. 

 
3-oxabicyclo[3.3.1]nonane-2,4-dione (S7.19): 1,3-cyclohexanedicarboxylic acid (1 eq, 9.70 

mmol, 1.67 g) in acetic anhydride (0.5M, 20 mL) was heated to 140 °C and stirred for 10 h. The 

reaction was cooled and the solvent removed under reduced pressure. The residual white solid was 

dissolved in CH2Cl2, filtered, and concentrated, yielding S7.19 (1.27 g, 84% yield). 1H NMR (600 

MHz, CDCl3) δ 3.06 (d, J = 3.3 Hz, 2H), 2.29 – 2.19 (m, 1H), 2.14 – 2.04 (m, 2H), 1.88 – 1.81 (m, 

1H), 1.81 – 1.69 (m, 3H), 1.55 – 1.41 (m, 1H).13C NMR (150 MHz, CDCl3) δ 169.91, 36.41, 

28.56, 27.26, 19.99. HRMS (ESI) calcd for C8H10O3 [M+H] 155.2703, found 155.2705. 

 

 
methyl 3-(methoxy(methyl)carbamoyl)cyclohexane-1-carboxylate (S7.21): A solution of 

S7.20 anhydride (1 eq, 3.24 mmol, 0.5 g) and N,O-dimethylhydroxylamine hydrochloride (1 eq, 

3.24 mmol, 0.5 g) in CH2Cl2 (0.4M, 8 mL) was cooled to 0 °C and treated dropwise with pyridine 

(2.2 eq, 7.14 mmol, 0.58 mL). The resulting solution was warmed to rt and stirred overnight. The 

reaction was then concentrated under reduced pressure. The crude product was dissolved in 4:1 

Toluene/MeOH (15 mL) and treated dropwise with TMS diazomethane (2M in diethyl ether, 3 

mL). Upon persistence of yellow color, the reaction was quenched with a 10% Acetic Acid in 

CH2Cl2. This was concentrated under reduced pressure and the crude product was purified by flash 

chromatography system (30 – 70% Ethyl Acetate/Hexanes) to afford S7.21 (0.66 g, 89% yield) as 

a clear and colorless oil: Rf = 0.65 (50% Ethyl Acetate/Hexanes); 
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methyl 3-acryloylcyclohexane-1-carboxylate (S7.22): To a flame dried 25 mL flask under N2 

was added S7.21 (1 eq, 0.65 mmol, 0.150 g) in dry THF (0.2 M, 6 mL) and the mixture was cooled 

to 0 °C. Vinyl Magnesium Bromide (0.8 M THF, freshly titrated, 1.2 eq, 0.92 mL) was added 

slowly and the reaction was allowed to stir at 0 °C for 30 min. The reaction was quenched with 

half 0.5 N HCl (10 mL) and the aqueous layer was extracted with CH2Cl2 (3x20 mL), organics 

combined, dried over Na2SO4, and concentrated. The crude product was purified by flash 

chromatography system (5 – 50% Ethyl Acetate/Hexanes) to afford S7.22 (65 mg, 51% yield) as 

a clear and colorless oil (being careful not to pull this off on a high vacuum as it is volatile): Rf = 

0.5 (20% Ethyl Acetate/Hexanes); 1H NMR (600 MHz, CD3COCD3) δ 6.49 (dd, J = 17.5, 10.6 

Hz, 1H), 6.27 (dd, J = 17.5, 1.4 Hz, 1H), 5.81 (dd, J = 10.6, 1.4 Hz, 1H), 2.84 (tt, J = 12.1, 3.2 Hz, 

1H), 2.43 (tt, J = 12.4, 3.6 Hz, 1H), 2.07 – 2.01 (m, 2H), 1.96 (dtt, J = 14.9, 3.5, 1.9 Hz, 1H), 1.91 

– 1.83 (m, 2H), 1.50 – 1.37 (m, 2H), 1.31 (tdd, J = 13.2, 12.3, 3.5 Hz, 1H), 1.26 – 1.16 (m, 1H). 
13C NMR (150 MHz, CD3COCD3) δ 201.32, 174.91, 135.05, 127.35, 50.77, 46.43, 42.10, 30.50, 

28.46, 27.93, 24.67. HRMS (ESI) calcd for C11H16O3 [M+H] 197.1172, found 197.1179. 

 

 
methyl 3-((4R,5R,E)-5-((tert-butyldimethylsilyl)oxy)-4-methylhept-2-enoyl)cyclohexane-1-

carboxylate (S7.24): To a long tube under N2 was added Hoveyda Grubbs II (0.03 eq, 0.01 mmol, 

0.006 g), ester S7.23 (1 eq, 0.31 mmol, 0.060 g), and 4.25 (3 eq, 1.22 mmol, 0.279 g) in DCM (2 

mL, 0.5 M). This was allowed to reflux for 12 h, cooled, the solvent was removed under reduced 

pressure and purified directly by flash chromatography (0 – 15% Ethyl Acetate/Hexane) to afford 

xx (0.099 g, 82% yield) as a colorless oil: Rf = 0.2 (10% Ethyl Acetate/Hexanes); 1H NMR (600 

MHz, CD3COCD3) δ 6.95 (dd, J = 15.9, 7.4 Hz, 1H), 6.23 (dd, J = 16.0, 1.4 Hz, 1H), 3.70 (q, J = 

5.5 Hz, 1H), 3.62 (s, 3H), 2.76 (ttd, J = 12.1, 3.4, 1.9 Hz, 1H), 2.59 – 2.49 (m, 1H), 2.41 (ttd, J = 

12.4, 3.5, 1.3 Hz, 1H), 2.05 – 2.00 (m, 1H), 1.95 (dtd, J = 14.4, 3.5, 1.9 Hz, 1H), 1.91 – 1.80 (m, 

2H), 1.54 (dtd, J = 14.9, 7.4, 5.4 Hz, 1H), 1.48 – 1.36 (m, 3H), 1.31 (qd, J = 12.9, 3.5 Hz, 1H), 
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1.23 (qt, J = 12.6, 4.2 Hz, 1H), 1.06 (d, J = 6.8 Hz, 3H), 0.92 (s, 9H), 0.89 (t, J = 7.4 Hz, 3H), 0.09 

(s, 3H), 0.08 (s, 3H). 13C NMR (150 MHz, CD3COCD3) δ 200.75, 174.92, 149.45, 127.92, 76.30, 

50.75, 46.92, 42.24, 41.15, (30.77 or 30.69), 28.48, (28.17 or 28.09), 26.65, 25.40, 24.75, 17.79, 

13.43, 9.06, -5.03, -5.21. HRMS (ESI) calcd for C22H40O4Si [M+H] 397.2769, found 397.2772. 

 

 
3-((4R,5R,E)-5-((tert-butyldimethylsilyl)oxy)-4-methylhept-2-enoyl)cyclohexane-1-

carboxylic acid (S7.25): S7.24 (1 eq, 0.13 mmol, 0.052 g) was suspended in a 4:1 mixture of 

THF/H2O (1 mL, 0.1M) and treated with LiOH (3 eq, 0.39 mmol, 0.017 g) and stirred for 4 hours. 

The reaction was quenched with 1 M HCl (2 mL) and the organics removed under reduced 

pressure. The aqueous layer was extracted with ethyl acetate (3 x 10 mL), organics combined, 

washed with brine, dried over Na2SO4, and concentrated. The crude product was purified by flash 

chromatography system (10 – 30% Ethyl Acetate/Hexanes + 1% AcOH) to afford S7.25 (20 mg, 

40% yield) as a clear and colorless oil: Rf = 0.15 (10% Ethyl Acetate/Hexanes + 1% AcOH);  ; 1H 

NMR (400 MHz, CD3COCD3) δ 6.96 (dd, J = 15.9, 7.3 Hz, 1H), 6.24 (dd, J = 16.0, 1.4 Hz, 1H), 

3.70 (dt, J = 6.4, 5.1 Hz, 1H), 2.77 (tt, J = 11.8, 2.6 Hz, 2H), 2.55 (h, J = 6.7 Hz, 1H), 2.39 (tt, J = 

12.2, 4.0 Hz, 1H), 2.12 – 1.95 (m, 1H), 1.94 – 1.81 (m, 2H), 1.62 – 1.17 (m, 6H), 1.06 (d, J = 6.8 

Hz, 3H), 0.92 (s, 9H), 0.90 (t, J = 7.5 Hz, 7H), 0.08 (s, 3H), 0.08 (s, 3H). HRMS (ESI) calcd for 

C21H38O4Si [M+H] 383.2612, found 383.2612. 

 

 
S-phenyl 3-((4R,5R,E)-5-((tert-butyldimethylsilyl)oxy)-4-methylhept-2-enoyl)cyclohexane-1-

carbothioate (S7.26): To a 25 mL flask was added xx (1 eq, 0.05 mmol, 0.018 g) and Ph2S2 (1.1 

eq, 0.05 mmol, 0.011 g) in CH2Cl2 (1 mL, 0.1M) and cooled to 0 °C. PBu3 (distilled, 1.1 eq, 0.05 

mmol, 15 uL) was added slowly, the reaction was stirred for 10 min before it was quenched with 

sat. NaHCO3. The organics were separated, extracted with CH2Cl2 (3 x 10 mL), dried over sodium 

sulfate, and concentrated. The crude product was purified by flash chromatography system (0 – 

10% Ethyl Acetate/Hexanes) to afford S7.26 as a mixture of product and thiophenol byproducts: 

MeO

O O OTBS
LiOH, THF/H2O

HO

O O OTBS

S7.24 S7.25

HO

O O OTBS
Ph2S2, PBu3, DCM

PhS

O O OTBS

S7.25 S7.26
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Rf = 0.6 (10% Ethyl Acetate/Hexanes). This was inseparable from thiophenol byproducts and was 

carried through to deprotection. 

 

 
S-phenyl 3-((4R,5R,E)-5-hydroxy-4-methylhept-2-enoyl)cyclohexane-1-carbothioate (4.39): 

The TBS protected S7.26 was suspended in 1 mL of CH3CN in a polyethylene vial and treated 

with aq. HF (48%, 250 uL). The reaction was monitored by TLC and upon completion it was 

diluted with CH2Cl2 (5 mL) and carefully quenched with sat. NaHCO3 (until pH was acidic). The 

aqueous layer was extracted with CH2Cl2 (3 x 10 mL), organics combined, dried over Na2SO4, and 

concentrated. The crude product was purified by flash chromatography system (5 – 25% Ethyl 

Acetate/Hexanes) to afford 4.39 (0.09 g, 74% yield) as a clear and colorless oil: Rf = 0.4; 1H NMR 

(400 MHz, CD3COCD3) δ 7.49 – 7.37 (m, 5H), 6.94 (dd, J = 15.9, 8.0 Hz, 1H), 6.23 (dd, J = 15.9, 

1.2 Hz, 1H), 3.69 (d, J = 5.7 Hz, 1H), 3.45 (td, J = 9.1, 5.5 Hz, 1H), 2.87 (tt, J = 12.1, 3.3 Hz, 1H), 

2.80 – 2.75 (m, 1H), 2.50 – 2.35 (m, 1H), 2.11 (d, J = 14.1 Hz, 1H), 1.99 – 1.83 (m, 2H), 1.61 – 

1.17 (m, 7H), 1.09 (d, J = 6.8 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H). HRMS (ESI) calcd for C21H28O3S 

[M+H] 361.1832, found 361.1833. 
 

 
(2R,3R)-3-((tert-butyldimethylsilyl)oxy)-2-methylpentyl 4-methylbenzenesulfonate (S7.27): 

To a stirred solution of alcohol (1 eq, 3.44 mmol, 0.80 g) in pyridine (100 eq, 28 mL) was added 

p-toluenesulfonyl chloride (1.3 eq, 4.47 mmol, 0.85 g) at 0 °C. The reaction was warmed to rt and 

stirred for 3 h, the reaction was quenching with sat. NH4Cl (30 mL) and concentrated under 

reduced pressure. The remaining oil was diluted with water and Ethyl Acetate and the aqueous 

layer was extracted (3 x 30 mL), organics combined, dried over Na2SO4 and concentrated. The 

crude product was purified by flash chromatography system (2 – 15% hexane/Ethyl Acetate) to 

afford S7.27 (1.13g, 85% yield) as a pale yellow oil: Rf = 0.7 (10% Ethyl Acetate/Hexanes);  1H 

NMR (400 MHz, CDCl3) δ 7.78 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 4.00 (dd, J = 9.2, 

PhS

O O OTBS
aq HF, CH3CN

PhS

O O OH

S7.26 4.39

HO

OTBS

4.41 *

TosCl, Pyridine
TsO

OTBS
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6.3 Hz, 1H), 3.84 (dd, J = 9.2, 7.4 Hz, 1H), 3.57 (td, J = 6.7, 3.0 Hz, 1H), 2.44 (s, 3H), 1.93 (qd, J 

= 6.8, 3.0 Hz, 1H), 1.50 – 1.28 (m, 2H), 0.82 (d, J = 7.0 Hz, 4H), 0.80 (s, 9H), 0.77 (d, J = 7.5 Hz, 

3H), -0.00 (s, 3H), -0.06 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 144.58, 133.11, 129.76, 127.92, 

73.21, 73.05, 36.88, 26.60, 25.77, 21.60, 17.98, 10.41, 10.08, -4.20, -4.87. HRMS (ESI) calcd for 

C19H34O4SSi [M+H] 387.2020, found387.2022. 

 

 
(3R,4R)-4-((tert-butyldimethylsilyl)oxy)-3-methylhexanenitrile (4.42): To a flame dried flask 

under N2 was added tosylate (1 eq, 2.92 mmol, 1.13 g) in anhydrous DMSO (20 mL)  and treated 

with a solution of NaCN (4 eq, 11.69 mmol, 0.573) in DMSO (10 mL). The reaction was then 

heated to 60 °C for 12h. Upon completion of the reaction, it was cooled, diluted with water and 

the aqueous layer extracted with Et2O (3 x 25 mL). The organics were combined, dried over 

Na2SO4, concentrated under reduced pressure and purified by flash purification system (0 – 10% 

Ethyl Acetate/Hexanes) to afford 4.42 (577 mg, 81%) as a clear and colorless oil: Rf = 0.75 (10% 

Ethyl Acetate/Hexanes); 1H NMR (600 MHz, CDCl3) δ 3.59 (td, J = 6.5, 3.2 Hz, 1H), 2.43 (dd, J 

= 16.6, 6.3 Hz, 1H), 2.20 (dd, J = 16.7, 8.3 Hz, 1H), 2.05 – 1.95 (m, 1H), 1.52 – 1.34 (m, 2H), 1.00 

(d, J = 6.9 Hz, 3H), 0.89 (s, 9H), 0.86 (t, J = 7.5 Hz, 3H), 0.07 (d, J = 1.2 Hz, 6H). 13C NMR (150 

MHz, CDCl3) δ 75.10, 35.05, 26.07, 25.81, 20.81, 18.05, 13.52, 10.06, -4.23, -4.68. HRMS (ESI) 

calcd for C13H27NOSi [M+H] 242.1935, found 242.1929. 

 

 
(2S,3R)-3-((tert-butyldimethylsilyl)oxy)-2-methylpentanal (S2.28): To a flame dried flask 

under N2 was added 4.42 (1 eq, 0.83 mmol, 0.201 g) in toluene (0.2 M, 4.2 mL) and cooled to -78 

°C. A solution of DIBAL (2M in Hexanes, 1.05 eq, 0.87 mL) was added and the reaction was 

stirred at -78 °C for 4 h. The solution was then warmed to 0 °C and poured into a mixture of 

potassium sodium tartrate (20 mL) and Et2O (20 mL) followed by stirring for 1 h until the phases 

became almost clear. The aqueous layer was extracted with Et2O (3 x 40 mL), organics combined, 

TsO

OTBS

S7.27

NaCN, NaI, DMSO
NC

OTBS

4.42

NC

OTBS
DIBAL, Toluene

4.42

OTBS

S2.28

O
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dried over sodium sulfate and concentrated. The crude product was purified by flash 

chromatography system (0 – 5% Ether/Pentane) to afford S2.28 (126 mg, 62% yield) as a clear 

and colorless oil: Rf = 0.5 (5% Ethyl Acetate/Hexanes).  1H NMR (400 MHz, CDCl3) δ 9.49 (t, J 

= 1.9 Hz, 1H), 3.35 (td, J = 6.7, 3.5 Hz, 1H), 2.31 (dd, J = 16.7, 4.9 Hz, 1H), 2.21 – 2.03 (m, 1H), 

1.88 (ddd, J = 16.6, 8.5, 2.1 Hz, 1H), 1.37 – 1.21 (m, J = 6.6 Hz, 2H), 1.00 (s, 9H), 0.83 (t, J = 7.4 

Hz, 3H), 0.78 (d, J = 6.9 Hz, 3H), 0.05 (s, 3H), 0.03 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 

200.42, 127.85, 127.62, 76.50, 46.89, 32.34, 25.81, 18.02, 14.41, 10.29, -4.51, -4.64. HRMS (ESI) 

calcd for C13H28O2Si [M+H] 245.1932, found xx. 

 

 
tert-butyldimethyl(((3R,4R)-4-methylhept-6-en-3-yl)oxy)silane (4.43): To a flame dried flask 

under N2 was added MePPh3Br (1.1 eq, 1.53 mmol, 0.55 g) and suspended in anhydrous THF (0.2 

M, 10 mL) and cooled to 0 °C. To this n-BuLi was added dropwise (the solution turned orange as 

the precipitant disappeared) and the reaction was allowed to warm to room temperature and stirred 

for a minimum of 1h. The flask was then recooled to -78 °C and a solution of aldehyde xx (1 eq, 

1.39 mmol, 0.34 g) in THF (5 mL) was added dropwise to the prepared ylide. The solution was 

stirred at -78 °C for 30 min, warmed to 0 °C and stirred for an additional 30 min at 0 °C. The 

reaction was quenched with half sat. NH4Cl and extracted with pentane (3x 40 mL), dried over 

Na2SO4 and concentrated. The crude product was purified by flash chromatography (0 – 5% 

Diethyl Ether/Pentane) to afford 4.43 (204 mg, 60% yield) as a clear and colorless oil: Rf = 0.9 

(5% Ethyl Acetate/Hexanes):  1H NMR (400 MHz, CDCl3) δ 5.78 (dddd, J = 16.9, 10.2, 7.7, 6.5 

Hz, 1H), 5.00 (d, J = 15.1 Hz, 2H), 4.97 (d, J = 6.9 Hz, 1H), 3.47 (td, J = 6.2, 3.5 Hz, 1H), 2.24 

(ddd, J = 12.4, 8.7, 4.6 Hz, 1H), 1.88 – 1.75 (m, 1H), 1.68 – 1.57 (m, 1H), 1.53 – 1.32 (m, 2H), 

0.89 (s, 9H), 0.87 (d, J = 12.5 Hz, 3H), 0.87 – 0.79 (m, 3H), 0.04 (s, 3H), 0.03 (s, 3H). 13C NMR 

(100 MHz, CDCl3) δ 138.34, 115.24, 76.81, 37.34, 37.15, 26.18, 25.93, 18.16, 13.89, 10.26, -4.19, 

-4.49. HRMS (ESI) calcd for C14H30OSi [M+H] 243.2139, found 243.2131. 
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*Synthesis previously described by Hansen et al.1  

 

 
 

(2S,4R,9R,10R,E)-10-((tert-butyldimethylsilyl)oxy)-2,4,9-trimethyl-5-oxododec-6-enoic acid 

(4.45): To a long tube under N2 was added Hoveyda Grubbs II (0.03 eq, 0.01 mmol, 0.006 g), Acid 

4.44 (1 eq, 0.31 mmol, 0.060 g), and 4.43 (3 eq, 1.22 mmol, 0.279 g) in DCM (2 mL, 0.5 M). This 

was allowed to reflux for 12 h, cooled, the solvent was removed under reduced pressure and 

purified directly by flash chromatography (0 – 15% Ethyl Acetate/Hexane) to afford 4.45 (0.099 

g, 82% yield) as a colorless oil: Rf = 0.2 (10% Ethyl Acetate/Hexanes);1H NMR (600 MHz,CD-

3COCD3) δ 6.91 (ddd, J = 15.8, 7.8, 6.9 Hz, 1H), 6.20 (dt, J = 15.8, 1.5 Hz, 1H), 3.59 (td, J = 6.3, 

3.4 Hz, 1H), 2.92 (dt, J = 14.2, 6.9 Hz, 1H), 2.51 – 2.39 (m, 2H), 2.09 – 2.05 (m, 1H), 1.87 – 1.75 

(m, 1H), 1.51 (ddd, J = 13.4, 7.5, 6.0 Hz, 1H), 1.45 (tt, J = 14.1, 7.2 Hz, 1H), 1.32 (ddd, J = 13.8, 

7.8, 6.2 Hz, 1H), 1.13 (d, J = 7.0 Hz, 3H), 1.06 (d, J = 6.8 Hz, 3H), 0.91 (s, 9H), 0.88 (t, J = 7.3 

Hz, 3H), 0.87 (d, J=7.0 Hz, 3H), 0.08 (s, 3H), 0.07 (s, 3H). 13C NMR (150 MHz, CD3COCD3) δ 

201.58, 146.34, 129.91, 76.61, 40.82, 37.02, 36.72, 36.65, 35.59, 25.98, 25.42, 17.81, 17.06, 15.80, 

13.47, 9.63, -4.91, -5.15. HRMS (ESI) calcd for C15H26O4 [M+H] 271.1904, found 271.1900. 

 

7.2 Pikromycin PKS Expression and Purification Protocols 

The cloning and expression of Pik AIII, Pik AIV, and Pik AIIITE as well as Pik AIIITE S148C 

have been reported previously as well as Juv E4 and Juv E5. Buffers used for all purifications 

include: 
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Buffers:  

[Lysis] –  HEPES (50 mM), NaCl (300 mM), imidazole (10 mM), glycerol (10% v/v), pH 8 

[Wash] – HEPES (50 mM), NaCl (300 mM), imidazole (30 mM), glycerol (10% v/v), pH 8 

[Elution] –  HEPES (50 mM), NaCl (300 mM), imidazole (300 mM), glycerol (10% v/v), pH 8 

[Storage] – HEPES (50 mM), NaCl (150 mM), glycerol (20% v/v), pH 7.2 

[Reaction Buffer] – Sodium Phosphate (800 mM), NaCl (150 mM), pH 7.2 

 

Bap1 pRARE cells were freshly transformed with the desired plasmid and grown overnight on 

LB agar plates supplemented with 50 ug/mL Kanamycin overnight at 37 °C. Multiple colonies 

were picked and grown in 15 mL of LB with kanamycin (50 ug/mL), and grown overnight at 37 

°C. The following morning, TB media (Kan 50 mg/L) were then inoculated with 4 mL of 

overnight culture and grown at 37 °C until OD600 reached 1.0. These were then flash cooled in 

ice baths for ~15 min until the internal temperature hit 20 °C, at which time the flasks were 

returned to a 20 °C shaker, and induced with IPTG (300 uL of 1 M solution) and shaken at 180 

RPM at 20 °C for 18 h. The cells were then pelleted at 6500 rpm (4 °C) for 30 min, and flash 

frozen for future purification.  

 

Frozen overexpression cultures were suspended in 5 mL of lysis buffer per gram of pellet and 

aloud to thaw at 4 °C with stirring. Cells were treated with 8 units/mL of benzonase and aloud to 

stir for 20 min prior to sonication (6 x 10s with 50 s rest periouds). Cellular debris was pelleted 

by centrifugation (55,000 x g, 25 min, 4 °C) and the supernatant was passed through a 0.45 uM 

filter and applied to the top of 5 mL of Ni-NTA resin, pre-equilibrated with wash buffer. This 

was allowed to gravity flow through, washed with 50 mL of wash buffer, and eluted with 15 mL 

of elution buffer. Fractions containing protein were assessed via their 280 nm absorbance and 

were concentrated using a 30 kDa centrifugal filter until volume reached 2.5 mL. These were 

then deslated on a storage buffer equilibrated PD-10 column, the concentration adjusted to 50 

uM, and flash frozen in liquid nitrogen prior to storage in the -80 °C.  

 

7.2.1 Enzymatic Reaction Experimental Procedures  
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General Analytical Enzymatic Reactions 
 
All Enzymatic reactions were performed at 50 uL volumes. To a PCR tube was added 12.5 uL 

reaction buffer, 26 uL water, NADP (50 mM, 0.5 uL), glucose-6-phosphate (500 mM, 1 uL), and 

glucose-6-phosphate dehydrogenase (100 miliunits/uL, 1 uL) which was allowed to sit at room 

temperature for 10 min. To this was added MeMal (500 mM, 2 uL), AIII (50 uM, 3 uL), AIV (50 

uM, 3 uL) and substrate in DMSO (50 mM, 1 uL). These were aloud to stand at rt for 2.5 hours. 

The reactions were quenched by the addition of 150 uL Methanol and clarified by centrifugation 

(17,000 x g 20 min, 4 °C). The supernatant was then loaded into an HPLC vial and analyzed via 

TOF-MS [Gradient from 20% - 100% Acetonitrile over 12 minutes. 

 

General Semi-Preparative Enzymatic Conditions  

To a 50 mL falcon tube was added phosphate buffer, water, NADP, glucose-6-phosphate, and 

glucose-6-phosphate dehydrogenase which was allowed to incubated at room temperature for 10 

min. To this was added Methyl Malonyl, desired PKS protein (AIIITE or AIII/AIV), and 

substrate prior to incubation at room temperature for 2.5 hours. The reaction was quenched by 

pouring into cold acetone (3x) and incubating at – 20 °C for 1 hour, filtered through celite, and 

the organics removed. The remaining aqueous layer was extracted with methylene chloride (3 x 

20 mL) and concentrated. The remaining residue was purified by reverse phase HPLC.  
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7.3 New Macrolactone Characterization  

 
Figure 7.1 HMBC correlations for amide narbonolide as blue arrows. 

 

Position	
   H	
   C	
   COSY	
   HMBC	
  
1	
   	
  	
   170.99	
   	
  	
   	
  	
  
2	
   3.78	
  (q,	
  J	
  =	
  7.1	
  Hz,	
  1H)	
   48.17	
   16	
   1,	
  3,	
  16	
  
3	
   	
  	
   205.66	
   	
  	
   	
  	
  
4	
   2.55	
  (p,	
  J	
  =	
  7.0	
  Hz,	
  1H)	
   50.29	
   5,	
  17	
   3,	
  5,	
  6,	
  17	
  
5	
   3.49	
  (m,	
  1H)	
   72.24	
   4,6	
   7,	
  4	
  
6	
   1.76	
  (tq,	
  J	
  =	
  7.1,	
  3.7	
  Hz,	
  1H)	
   37.32	
   5,	
  7',	
  19	
   	
  	
  
7	
   3.29	
  (dt,	
  J	
  =	
  14.0,	
  7.1	
  Hz,	
  1H)	
  

40.34	
  
6,	
  7'',8	
   9,6,19	
  

	
  	
   3.35	
  (m,	
  1H)	
   7',8	
   5	
  
8	
   6.98	
  (s,	
  1H)	
   	
  	
   7',7''	
   	
  	
  
9	
   	
  	
   168.02	
   	
  	
   	
  	
  
10	
   5.97	
  (dd,	
  J	
  =	
  16.1,	
  1.9	
  Hz,	
  1H)	
   123.91	
   11	
   9,12	
  
11	
   6.67	
  (dd,	
  J	
  =	
  16.2,	
  4.2	
  Hz,	
  1H)	
   146.26	
   10,	
  12	
   9,10,13,12,20	
  
12	
   2.77	
  (m,	
  1H)	
   38.23	
   11,	
  13,20	
   	
  	
  

13	
   5.09	
  (ddd,	
  J	
  =	
  9.3,	
  4.6,	
  2.6	
  Hz,	
  1H)	
   77.66	
  
12,	
  14',	
  
14''	
   	
  	
  

14	
   1.64	
  1.64	
  (ddt,	
  J	
  =	
  14.1,	
  7.3,	
  5.0	
  Hz,	
  1H)	
  
24.82	
  

13,	
  15	
   15	
  
	
  	
   1.71	
  (ddt,	
  J	
  =	
  14.9,	
  9.8,	
  7.4	
  Hz,	
  1H)	
   13,	
  15	
   13,15	
  
15	
   0.90	
  (d,	
  J	
  =	
  7.1	
  Hz,	
  3H)	
   9.92	
   14',	
  14''	
   14',14''	
  
16	
   1.25	
  (d,	
  J	
  =	
  7.0	
  Hz,	
  3H)	
   14.45	
   2	
   1,2,3	
  
17	
   1.06	
  (d,	
  J	
  =	
  7.0	
  Hz,	
  3H)	
   12.16	
   4	
   3,4,5	
  
18	
   	
  	
   	
  	
   	
  	
   	
  	
  
19	
   0.94	
  (d,	
  J	
  =	
  7.1	
  Hz,	
  3H)	
   17.17	
   6	
   5,6,7	
  
20	
   1.09	
  (d,	
  J	
  =	
  6.9	
  Hz,	
  3H)	
   8.93	
   12	
   11,12,13,14	
  

 

Table 7.1 Amide narbonolide assignments and correlations.  
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Figure 7.2 HMBC correlations for ester narbonolide as blue arrows. 

 

Position	
   H	
   C	
   COSY	
   HMBC	
  
1	
   	
  	
   171.55	
   	
  	
   	
  	
  
2	
   3.3	
  (q,	
  J	
  =	
  7.1	
  Hz,	
  1H)	
   49.51	
   16	
   1,	
  16	
  
3	
   	
  	
   204.74	
   	
  	
   	
  	
  
4	
   2.45	
  –	
  2.35	
  (m,	
  1H)	
   50.98	
   5,	
  17	
   3,	
  5,	
  17	
  
5	
   3.91	
  (t,	
  J	
  =	
  5.5	
  Hz,	
  1H)	
   70.96	
   4,	
  6	
   4,	
  6,	
  7	
  
6	
   1.83	
  –	
  1.76	
  (m,	
  1H)	
   36.48	
   5,	
  7,	
  19	
   	
  	
  
7	
   4.06	
  (dd,	
  J	
  =	
  10.9,	
  5.3	
  Hz,	
  1H)	
  

65.19	
   6,	
  7''	
   9,	
  5,	
  6,	
  19	
  
	
  	
   4.44	
  (dd,	
  J	
  =	
  10.9,	
  3.3	
  Hz,	
  1H)	
   6,	
  7'	
   9,	
  6,	
  19	
  
8	
   	
  	
   	
  	
   	
  	
   	
  	
  
9	
   	
  	
   165.67	
   	
  	
   	
  	
  
10	
   5.71	
  (dd,	
  J	
  =	
  15.9,	
  1.4	
  Hz,	
  1H)	
   121.53	
   11	
   9,	
  12	
  
11	
   6.86	
  (dd,	
  J	
  =	
  15.9,	
  6.7	
  Hz,	
  1H)	
   150.73	
   10,	
  12	
   9,	
  12,	
  13,	
  20	
  
12	
   1.87	
  –	
  1.81	
  (m,	
  1H)	
   38.51	
   11,	
  13,	
  20	
   11	
  
13	
   4.79	
  (ddd,	
  J	
  =	
  9.5,	
  4.4,	
  2.9	
  Hz,	
  1H)	
   77.53	
   12,	
  14	
   	
  	
  
14	
   0.91	
  (ddd,	
  J	
  =	
  14.3,	
  6.9,	
  4.5	
  Hz,	
  1H)	
   24.61	
   13,	
  14'',	
  15	
   	
  	
  
	
  	
   1.26	
  –	
  1.17	
  (m,	
  1H)	
   13,14',	
  15	
   13	
  
15	
   0.52	
  (t,	
  J	
  =	
  7.4	
  Hz,	
  3H)	
   9.73	
   14	
   13,	
  14	
  
16	
   1.23	
  (d,	
  J	
  =	
  7.1	
  Hz,	
  3H)	
   14.33	
   2	
   1,	
  2,	
  3	
  
17	
   1.03	
  (d,	
  J	
  =	
  6.9	
  Hz,	
  3H)	
   10.24	
   4	
   3,	
  4,	
  5	
  
18	
   	
  	
   	
  	
   	
  	
   	
  	
  
19	
   0.72	
  (d,	
  J	
  =	
  7.2	
  Hz,	
  3H)	
   15.61	
   6	
   5,	
  6,	
  7	
  
20	
   0.67	
  (d,	
  J	
  =	
  6.5	
  Hz,	
  3H)	
   9.86	
   12	
   11,	
  12,	
  13	
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Figure 7.3 Desmethyl narbonolide structure. 

Position	
   H	
   C	
   COSY	
   HMBC	
  
1	
   	
  	
   170.1	
   	
  	
   	
  	
  
2	
   3.15	
  (q,	
  J	
  =	
  7.3	
  Hz,	
  1H)	
   51.9	
   	
  	
   	
  	
  
3	
   	
  	
   208.81	
   	
  	
   	
  	
  
4	
   2.26	
  –	
  2.16	
  (m,	
  1H)	
   39.01	
   5,	
  17	
   	
  	
  
5	
   3.71	
  (dt,	
  J	
  =	
  8.7,	
  4.3	
  Hz,	
  1H)	
   69.03	
   4,	
  6	
   	
  	
  
6	
   1.39	
  –	
  1.31	
  (m,	
  1H)	
   31.88	
   5,7	
   	
  	
  
7	
   1.71	
  (ddt,	
  J	
  =	
  18.6,	
  13.6,	
  4.0	
  Hz,	
  2H)	
   21.85	
   6,	
  8	
   	
  	
  
8	
   2.03	
  (dt,	
  J	
  =	
  13.3,	
  5.5	
  Hz,	
  1H)	
   36.83	
   7,	
  8''	
   	
  	
  
	
  	
   2.57	
  (ddd,	
  J	
  =	
  13.5,	
  10.0,	
  5.4	
  Hz,	
  1H)	
   7,	
  8'	
   	
  	
  
9	
   	
  	
   199.89	
   	
  	
   	
  	
  
10	
   5.97	
  (dd,	
  J	
  =	
  16.0,	
  1.5	
  Hz,	
  1H)	
   131.9	
   11	
   	
  	
  
11	
   6.50	
  (dd,	
  J	
  =	
  16.0,	
  7.0	
  Hz,	
  1H)	
   146.59	
   10,	
  12	
   	
  	
  
12	
   2.26	
  –	
  2.16	
  (m,	
  1H)	
   51.4	
   11,	
  20,	
  13	
   	
  	
  
13	
   4.83	
  (dt,	
  J	
  =	
  10.1,	
  3.6	
  Hz,	
  1H)	
   77.91	
   12,	
  14	
   	
  	
  
14	
   1.06	
  (ddd,	
  J	
  =	
  14.3,	
  7.2,	
  3.9	
  Hz,	
  1H)	
   22.68	
   15	
   	
  	
  
	
  	
   1.20	
  (ddd,	
  J	
  =	
  14.6,	
  10.0,	
  7.3	
  Hz,	
  1H)	
   13,	
  15	
   	
  	
  
15	
   0.63	
  (d,	
  J	
  =	
  6.9	
  Hz,	
  3H)	
   10.14	
   14	
   	
  	
  
16	
   1.15	
  (d,	
  J	
  =	
  7.2	
  Hz,	
  3H)	
   12.92	
   2	
   	
  	
  
17	
   0.92	
  (d,	
  J	
  =	
  7.0	
  Hz,	
  3H)	
   10.69	
   4	
   	
  	
  
18	
   OH	
  Not	
  Seen	
   	
  	
   	
  	
   	
  	
  
19	
   	
  	
   	
  	
   	
  	
   	
  	
  
20	
   0.60	
  (d,	
  J	
  =	
  7.3	
  Hz,	
  3H)	
   12.33	
   12	
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