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ABSTRACT
 

 
A major translational challenge in the fields of therapeutic angiogenesis and regenerative 

medicine is the need to create functional microvasculature. Cell-based strategies to promote 

neovascularization have been widely explored, but cell sourcing remains a significant limitation. 

Induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) are a promising, autologous, 

alternative cell source. The purpose of this study was to assess whether a potentially autologous 

endothelial cell (EC) source derived from iPSC-ECs can form the same robust, stable 

microvasculature as previously documented for other sources of ECs.  

The endothelial lineage of iPSC-ECs was first characterized as through endothelial marker 

expression and compared to human umbilical vein endothelial cells (HUVECs). Similarities in 

endothelial markers were demonstrated and genetic expression profile analysis revealed significant 

genotypic similarities between the iPSC-ECs and HUVECs. 

A well-established in vitro assay was utilized, in which endothelial cell-coated (iPSC-ECs 

or HUVECs) beads were co-embedded with fibroblasts in a 3D fibrin matrix, to assess the iPSC-

ECs’ ability to form stable microvessels. iPSC-ECs exhibited a five-fold reduction in capillary 

network formation compared to HUVECs in this assay. Variation of cell sourcing, lot, cell density, 

and media formulation demonstrated no differences in iPSC-EC sprouting, eliminating these 

variables as the underlying cause. Despite quantitative differences, iPSC-ECs demonstrated some 

characteristics of mature vasculature including hollow lumen formation, pericyte recruitment and 

association, and deposition of basement membrane components. 
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To determine a cause of the in vitro sprouting attenuation, iPSC-ECs’ capillary 

morphogenetic mechanisms were identified through chemical inhibition of sprouting and analysis 

of the expression levels of key proteases. Increasing matrix density reduced sprouting, although 

this effect was attenuated by distributing the normal human lung fibroblasts (NHLFs) within the 

3D matrix. Inhibition of both MMP- and plasmin-mediated fibrinolysis was required to completely 

block sprouting of both HUVECs and iPSC-ECs. Further analysis revealed MMP-9 expression 

and activity were significantly lower in iPSC-EC/NHLF co-cultures than in HUVEC/NHLF co-

cultures, which may account for the observed deficiencies in angiogenic sprouting of the iPSC-

ECs. 

To investigate if the in vitro attenuation was also an in vivo phenomenon, iPSC-ECs were 

evaluated for their ability to form functional microvasculature in a well-established in vivo model, 

in which endothelial cells (iPSC-ECs or HUVECs) were co-injected with fibroblasts and a fibrin 

matrix into the dorsal flank of severe combined immunodeficiency (SCID) mice. Qualitatively, 

iPSC-ECs were capable of forming perfused vessels that inosculated with mouse vessels and 

demonstrated similar vessel morphologies to HUVECs. However, quantitatively, iPSC-ECs 

exhibited a two-fold reduction in vessel density and a three-fold reduction in the number of 

perfused vessels compared to HUVECs. Further analysis revealed that the presence of the 

basement membrane component, type IV collagen, and the mural cell marker, alpha-smooth 

muscle actin, were significantly lower, roughly 25% and 33% respectively, around iPSC-

EC/NHLF vasculature relative to that observed in HUVEC/NHLF implants, suggesting reduced 

vessel maturity. Collectively, these findings demonstrate that a potentially autologous EC with an 

unlimited source, specifically iPSC-ECs, has the ability to revascularize tissue and argues for a 
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deeper understanding of iPSC-ECs and their differences to enable the promise and potential of 

iPSC-ECs for clinical translation.  

 
 



 

 1 

CHAPTER 1

Introduction 
 
 
1.1 Motivation 

Cardiovascular disease is the leading cause of death worldwide, accounting for nearly 30% 

of all global deaths and claiming more lives than all forms of cancer combined. In 2011, one out 

of every three deaths in America was attributed to cardiovascular disease. The number of deaths 

associated with cardiovascular disease continues to rise, with an expected 23.6 million deaths per 

year by 2030. Including health expenditures and lost productivity, it is estimated that the direct 

and indirect cost of cardiovascular disease and stroke total more than $320.1 billion [1].  

Atherosclerosis, the obstruction of blood flow due to the deposition of cholesterol and 

fibrous tissue in the arterial walls, is the major cause of many cardiovascular diseases [2]. 

Atherosclerosis begins when the endothelium, the lining of blood vessels, becomes damaged, 

typically caused by high blood pressure, high cholesterol, smoking, or inflammation from other 

diseases [3]. Cholesterol, or low-density lipoprotein (LDL), then enters the damaged endothelium, 

initiating an inflammatory response and signaling macrophages to digest the excess fat. These cells 

leave behind debris and lipids, causing additional cell recruitment, such as smooth muscle cells 

(SMCs), and the deposition of fibrous matrices [4]. Over time, the plaque calcifies, resulting in 

ischemia, the reduction/obstruction of oxygenated blood supply to tissues [5]. Ischemia causes 

cells and tissues to die and lose function, which leads to additional health complications, including 
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heart attacks and peripheral arterial disease (PAD) [6]. In the U.S., 10 to 12 million people suffer 

from some form of PAD, approximately 20% of whom are more than 60 years of age [7], [8]. 

While PAD causes a variety of symptoms, intermittent claudication, pain or cramping in the legs 

upon exertion, is the most common [9]. This pain is intermittent and can quickly subside after 

exertion, resulting in many patients avoiding medical attention and compounding their health 

problems [10].  

In severe cases, PAD can lead to critical limb ischemia (CLI), where oxygenated blood no 

longer reaches the lower extremities of the body. Approximately 1% of patients with PAD are 

diagnosed with CLI [11]. However, with the increasing prevalence of diabetes, the number of 

patients with CLI is expected to rise, as the progression of CLI is accelerated in diabetics [12]. 

Patients with CLI can experience resting pain and eventually tissue loss [13]. One year after 

diagnosis, 25% of patients suffering from CLI will die and 30% will have some form of amputation 

[14]. After 5 years, over 60% of patients will die. Due to the increasing number of deaths and costs 

attributed to these ischemic diseases, it is critical to create new therapies focused on rebuilding 

vasculature to provide cells with sufficient oxygen and nutrients to prevent necrosis and 

amputations.  

 

1.2 Current Cardiovascular Disease Treatments 

 The current treatment methods for patients afflicted with PAD include lifestyle 

modifications, pharmaceutical therapies, and surgical treatment. In the early stages of PAD, 

patients experience mild symptoms, which can be managed through exercise and pharmaceuticals. 

Patients with more severe symptoms may undergo surgical intervention to first determine the 

extent of the disease and then to restore blood flow. 
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 As mentioned, exercise is one effective non-invasive method to treat PAD. Patients who 

underwent supervised exercise programs demonstrated improved walking ability and reduced 

intermittent claudication [15]. However, exercise is not always an option due to age of the patient 

or functional limitations caused by the disease [16]. Other lifestyle changes include diet 

modification. As many patients with PAD have high cholesterol levels [6], a diet low in saturated 

and trans-fat may help lower cholesterol levels [17]. Since some patients with PAD are also likely 

to suffer from diabetes, management of diabetic symptoms may help reduce limb-related 

complications as diabetes causes endothelial dysfunction through increased adhesion molecule 

expression [18]. Smoking is also a major cause of many CVDs, including heart attacks, stroke, and 

PAD [19]. Smoking cessation is also effective in reduction of PAD symptoms [20]. 

 While lifestyle changes can aid in the treatment of PAD, medication is prescribed when 

lifestyle modifications are not effective. Typically, pharmaceutical therapies involve medications 

to reduce blood pressure and/or cholesterol [9]. Atorvastatin has been shown to improve 

claudication symptoms by lowering lipid levels [21]. To reduce the risk of stroke or vascular death, 

patients may also be given aspirin first and then clopidogrel, if patients experience additional 

complications with aspirin, as an antiplatelet therapy [22], [23]. Various vasodilators are also 

prescribed, including cilostazol, minoxidil, and hydralazine, to augment blood flow. Research has 

shown cilostazol reduced patients intermittent claudication and increased pain-free walking [24]. 

While all these medications improve symptoms, these various pharmaceuticals are limited to 

patients with mild to moderate PAD [23]. 

 In severe cases when CLI is a factor, or when the above treatments are not effective, surgery 

may be required. Depending on the location and severity, an angiography is performed to 

determine the surgical treatment [25]. Less severe cases can be treated with endovascular 
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interventions, such as stenting and angioplasty. These procedures involve insertion of a surgical 

device into the patient’s artery. The device is moved through the patient’s vessels to the site of 

plaque deposition. Either a stent is inserted, to keep the vessel dilated, or a balloon is inflated, to 

break apart the plaque, resulting in improved blood flow [26]. More complicated surgeries require 

revascularization intervention. The most common is bypass surgery, a technique in which the 

obstructed blood vessel is bypassed through the creation of a new blood vessel [27]. Most bypass 

surgeries involve the removal of a blood vessel from healthy tissue to replace the diseased vessel 

[28]. Typically, 50-90% of CLI patients will require one or more of these surgical interventions 

[10]. Despite the success of surgery at preventing amputation and death, complications can arise 

from surgery and additional surgery may be needed for the continued treatment of PAD [29]. 

Unfortunately, due to the progression of their disease, surgery may not be suitable for some 

patients, leading to the critical need for new solutions/therapies in PAD treatment. 

 

1.3 Vascular Development and Physiology 

To develop alternative revascularization therapies, intimate understanding of the 

cardiovascular system is necessary. The function of the cardiovascular system is to maintain 

homeostasis throughout the body, through delivering oxygen and nutrients to cells, and in return, 

removing waste from cellular production [30]. The cardiovascular system consists of the heart and 

blood vessels that run throughout the entire body. Blood vessels are broken down into multiple 

subsets: arteries, veins, arterioles, venules, and capillaries [31]. The heart pumps blood through 

the arteries, carrying oxygenated blood away from the heart. Arteries consist of multiple layers of 

cells, including smooth muscle cells which maintain vascular tone [32]. The arteries branch into 

arterioles and ultimately, capillaries, the smallest blood vessels. Capillaries are typically one cell 
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layer, ranging in size from 10 to 15 μm in diameter, and directly involved in nutrient delivery to 

cells [33]. Ultimately, the venous system returns the deoxygenated blood back to the heart through 

venules and then veins [34]. 

 The structure of blood vessels varies depending on their type. Veins and arteries are the 

largest, consisting of three layers [35]. The outer layer, called the tunica adventitia, is composed 

collagen, which anchor the blood vessel to the surrounding tissues [36]. The middle layer, called 

the tunica media, is made up of smooth muscle cells and elastic fibers, which are larger in arteries 

than veins. Not only does this layer provide support for blood vessels, but also changes the shape 

of blood vessels to regulate blood flow and blood pressure [37]. The inner layer, called the tunica 

intima, is the thinnest layer consisting of a simple squamous endothelium and connective tissue 

[38].  

The endothelium is present in all blood vessels, including capillaries, and is made up of 

endothelial cells (ECs), the building blocks of blood vessels, and mural cells [39]. Endothelial cells 

make up the inner lining of blood vessels and are in direct contact with the blood. In general, the 

main function of these cells is to regulate hemostasis, but other functions include leukocyte 

trafficking, regulation of vascular tone, and coagulation [40]. Endothelial cells can signal mural 

cells to aid in vessel stabilization [41]. Mural cells also have a role in angiogenesis and the 

maturation of blood vessels. In capillaries, mural cells are typically pericytes, while in arteries and 

veins, these are typically smooth muscles cells [42].  

Blood vessels can form via three distinct, yet complementary mechanisms, vasculogenesis, 

angiogenesis, and arteriogenesis. Vasculogenesis is the de novo formation of vessels from the 

differentiation of endothelial and hematopoietic progenitor cells into a primitive vascular plexus 

[43], [44]. Typically, this process occurs primarily in embryonic development, but recent research 
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has shown the ability of vasculogenesis in adults [45]. Angiogenesis is the sprouting of new vessels 

from pre-existing vessels and is the major process for blood vessel development in adults [46]–

[48]. In brief, angiogenesis is a complex process regulated by endothelial cells in response to 

various signals present in the extracellular matrix (ECM) [49]–[51]. Angiogenesis will be 

discussed in more detail in Chapter 4. Arteriogenesis is a distinct process and the second major 

form of blood vessel growth after birth [52]. During arteriogenesis, pre-existing arterioles are 

remodeled into larger diameter arteries. In contrast to angiogenesis, arteriogenesis is driven in 

response to increased blood pressure instead of hypoxia [53]. Arteriogenesis is critical for the 

ischemic limb survival as increased vessel diameters can handle increased blood volumes, 

resulting in decrease blood pressure [54].  

 

1.4 Tissue Engineering Approaches 

As previously mentioned, the current strategies for PAD treatment are not suitable or 

effective for every patient, especially those with more severe conditions, such as CLI. Several 

tissue engineering approaches have, for this reason, emerged to promote angiogenesis and 

vasculogenesis as the formation of new blood vessels will provide an alternative route to deliver 

oxygen and nutrients to cells and tissues. Approaches such as angiogenic growth factor delivery 

and cell-based tissue engineering constructs have shown potential to facilitate revascularization. 

These approaches generally implement two different strategies, implantation of vasculature 

formed ex vivo or vascularization formation in vivo. Both approaches aim to treat ischemic 

conditions and prevent tissue death and organ failure.  

During angiogenesis, growth factors are key in signaling ECs to sprout and proliferate, 

creating new vasculature [55], [56]. In theory, delivering growth factors to patients could stimulate 
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revascularization of ischemic regions. As a result, many growth factor therapies involve the 

delivery of angiogenic factors, such as vascular endothelial growth factor (VEGF), transforming 

growth factor (TGF-β), or basic fibroblast growth factor (bFGF), to stimulate endothelial cells 

recruitment, and, eventually, increase vessel formation [57]–[59]. VEGF is the most common 

growth factor used to promote capillary morphogenesis. VEGF has been shown to recruit ECs 

while signaling them to proliferate and to facilitate pericyte recruitment for vessel stabilization 

[58], [60]. bFGF stimulates VEGF expression in endothelial cells and stromal cells, furthering 

invasion, migration, proliferation, and vessel formation [61]–[63]. TGF-β induces angiogenesis 

indirectly through stimulating the expression of VEGF or other angiogenic factors in epithelial or 

other cell types [64]. TGF-β also aids in pericyte adhesion and differentiation [65].  

In many cases, the growth factors are administered systematically i.e. via the blood stream. 

In some cases, engineered nanoparticles or scaffolds can be used to control the release of the 

growth factors. For nanoparticles, PLGA can be used to encapsulate the growth factors, creating 1 

– 100 nm diameter particles [66]. These nanoparticles can also be designed to target specific 

tissues, aiding in delivery [67]. Nanoparticles can either be directly injected into the tissue or 

intravenously [68]. Similarly, scaffolds can be designed to conjugate growth factors to natural or 

synthetic biomaterials [69]–[71]. These scaffolds mimic the ECM, allowing growth factors to be 

readily active or activated through cleavage from cells [68]. However, preformed scaffolds, as 

opposed to hydrogels that gel in situ, are the more invasive of the previously mentioned techniques, 

as they involve surgical implantation [72]. 

Unfortunately, growth factor delivery approaches are limited by rapid diffusion, short half-

lives, and poor biostability, leading to the formation of immature and often unstable vasculature 

[73]. In addition, growth factors must also be delivered in a specific order to mimic their natural 
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expression patterns observed in vessel development [73], [74]. Due to these complexities, human 

clinical trials have not been successful using growth factor delivery [75], [76].  

While growth factor delivery focuses on stimulating the existing cells and vasculature, cell-

based therapies focus on providing new cells for vessel formation. Many cell-based approaches 

involve the delivery of cells to directly differentiate into capillary structures or provide angiogenic 

cues to accelerate revascularization. Various cell types have been shown to create new capillary 

networks in vivo, such as human umbilical vein endothelial cells (HUVECs), human aortic 

endothelial cells (HAECs), and human microvascular endothelial cells (HMVECs) [77]–[81]. 

However, the delivery of endothelial cells alone typically results in the formation of immature 

vessels. These vessels are unstable, unable to regulate permeability, and do not demonstrate 

characteristics associated with mature vessels [82]. Recent studies have demonstrated the co-

delivery of endothelial cells and some type of stromal cells promotes the formation of stable, 

mature vasculature [83], [84].  

Similar to growth factor therapies, cell-based approaches involve directly injecting cells 

into the patient or incorporating the cells into some type of engineered construct using either a top-

down or bottom-up approach. Top-down approaches involve encapsulating cells in larger 

structures, such as scaffolds, to create an engineered tissue [85]. Scaffolds are created with natural 

or synthetic biomaterials and embedded with various growth factors and proteins to mimic the 

chemical, mechanical, and biological properties of the extracellular matrix (ECM) [72]. Bottom-

up approaches, or modular tissue engineering, involve the creation of smaller building blocks 

which are assembled into larger tissues structures for enhanced biomimicry [86]. These building 

blocks, comprised of cells and a supporting matrix, can be created in a number of ways, such as 

self-assembled aggregation, hydrogel microfabrication, or direct printing [87]–[90].  
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Despite these advances, there are still critical challenges that plague the application of 

engineered tissues for revascularization. Immunological response is one of these concerns. Since 

most of the proposed therapies involve transplanting cells and other supporting material, the host 

body may elicit an immunological response to the cells (if they are not autologous), materials, or 

both, resulting in rejection of the implant [91]. There are other issues related to ethics and 

misinformation, especially when stem cells are involved. The term stem cell carries a stigma 

because many believe all stem cells are embryonic stem cells. While stem cells can come from a 

variety of sources, translational applications may be limited, whether or not embryonic cells are 

involved, due to this misunderstood stigma [92], [93]. Teratoma formation is another risk, which 

can lead to additional health complications [94], [95].  

The biggest hurdle for the clinical translation of cell-based approaches is the limited supply 

of cells [96]. While cell sourcing may be abundant for in vitro or even small mammal in vivo 

studies, the number of cells required significantly increases when shifting to human applications. 

One study using endothelial progenitor cells (EPCs) for therapeutic neovascularization in mice 

required 0.5-2.0 x 10
4 human EPCs/ g of host body weight [97]. Typical expansion of EPCs from 

peripheral blood mononuclear cells (MNCs) from human volunteers yields 5 million cells per 100 

mL of blood, which would equate to over 12 L of blood needed to harvest enough EPCs for one 

clinical human trial [97]. Another therapeutic angiogenesis pilot study required over 1.6 billion 

cells per treatment per individual [98]. While one clinical study found the effects of cell number 

directly correlated with the success of the therapy, the results are inconclusive due to a limited 

sampling size [99]. Additional experiments/clinical trials are needed to ultimately determine if cell 

numbers correlate with therapeutic success.  
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1.5 Induced Pluripotent Stem Cells (iPSCs) 

To address the limitations of these cell-based therapies, various alternative cell sources 

have been considered, including a new type of stem cell. Self-renewing, living cells were first 

discovered in 1961 [100]. These cells, since coined stem cells, have the potential for differentiation 

into different cell types and self-renewal without senescence [101]–[104]. Stem cells are typically 

classified as embryonic (ESC) or adult (ASC) and can have varying degrees of multi lineage 

potential, i.e. how many cell type differentiations are possible [105], [106]. Unfortunately, as these 

cells differentiate, they lose their self-renewal potential, limiting their lifespan [107]. While 

research has demonstrated the promising potential of stem cells for the treatment of various 

diseases [108]–[111], as previously mentioned, the ethical issues and stigma surrounding ESC 

isolation from embryos creates a barrier for use of other stem cells [112]–[114].  

However, in 2006, the excitement for stem cell applications was reignited with the 

generation of a new type of stem cell, induced pluripotent stem cells (iPSCs). Unlike ESCs, or 

ASCs, this cell type is derived from reprogramming adult somatic cells to an embryonic stem cell-

like state with properties similar to ESCs. iPSCs were first generated by using a combination of 4 

reprogramming factors, including Oct4 (Octamer binding transcription factor-4), Sox2 (Sex 

determining region Y-box 2), Klf4 (Kruppel Like Factor-4), and c -Myc [115]. These genes are 

highly expressed in ESCs and implicated in pluripotency and the self-renewal abilities of cells 

[116]. Additional research since the discovery of iPSCs has found other reprograming factors to 

replace one or more of the original factors or enhance the reprogramming efficiency [117]–[120]. 

Most importantly, the ability of iPSCs to self-renew and differentiate like ESCs has been 

demonstrated in research [121]–[123]. Due to these similarities, iPSCs could be used as an 

alternative for ESCs in various clinical applications. 



 

 11 

iPSCs may solve many of the challenges current cell-based approaches face. First, iPSCs 

can be autologous, i.e. derived from the same individual, possibly eliminating any immunological 

concerns as the patient’s body should recognize these cells as being native. Second, since these 

cells theoretically can be derived from numerous adult cell types, there is reduced ethical concern 

over as some claim that iPSCs should be considered equally to ESC because, in theory, iPSCs 

could be used to create human embryos [124]. Third, these cells are pluripotent meaning they can 

theoretically differentiate into any cell, allowing for their application not only in revascularization 

but various other therapies [115]. Ultimately, iPSCs can be created from a plentiful source, such 

as skin, and theoretically have the potential to proliferate indefinitely, resulting in a potentially 

larger reservoir of cells. While iPSCs offer great potential for regenerative medicine, there are 

limited research and clinical studies on how these cells behave in vitro and in vivo [125]–[127].  

iPSCs have been successfully differentiated into an endothelial cell lineage. These induced 

pluripotent stem cell derived endothelial cells (iPSC-ECs) express markers, morphologies, and 

phenotypes characteristic of other endothelial cells [128]–[131]. iPSC-ECs also have the ability to 

differentiate and form vessel-like networks when seeded on top of Matrigel [132]–[134]. 

Additionally, iPSC-ECs are capable of forming vasculature in Matrigel plugs in vivo, 

demonstrating some therapeutic revascularization potential [133], [135], [136]. However, 

comparison of the iPSC-ECs’ vasculogenic potential to other endothelial cells, specifically in 

terms of quantity, quality, and mechanisms of vasculature formation is mostly unknown. While 

similar capillary networks between iPSC-ECs and human umbilical vein endothelial cells 

(HUVECs) was demonstrated in recent research, these studies investigated 2D vessel formation, 

which has little physiological relevance to the proposed therapeutic applications [137].  
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1.6 Hypothesis 

This project will characterize the vascularization potential of ECs derived from induced 

pluripotent stem cells (iPSCs), a potentially autologous source of ECs, that may overcome many 

of the limitations of current cell sources. The overall goal of this research is to assess whether 

iPSC-ECs form the same robust, stable microvasculature as previously documented for other 

sources of ECs. Preliminary experiments from a 3D fibrin-based sprouting angiogenesis assay 

consisting of ECs co-cultured with normal human lung fibroblasts (NHLF) have shown that these 

iPSC-ECs create vessel-like networks in vitro at a slower rate than human umbilical vein 

endothelial cells (HUVECs). Based on these preliminary data, we hypothesize the following: 

1) iPSC-ECs exhibit sprouting deficiencies, in both quantity and quality, compared to 

HUVECs. 

2)  iPSC-ECs exhibit differential ECM remodeling capabilities during capillary 

morphogenesis compared to HUVECs. 

 

1.7 Specific Aims 

 
We propose the following specific aims to address the hypotheses and outline how the overall 

project will be accomplished:  

Aim 1. Quantify the ability of iPSC- ECs to form new vasculature in 3D fibrin culture 

models of angiogenic sprouting and compare their potential to that of more established EC 

sources. This aim will focus on assessing the functionality of iPSC-EC vasculature and how these 

cells affect the characteristics of the microenvironment using the an established microcarrier bead 

assay. Fluorescent microscopy will be used to quantify the total network lengths of neovasculature 
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in 3D fibrin cultures sprouting from EC-coated microcarrier beads. Several hallmarks of functional 

vessels will also be assessed to qualify iPSC-EC vasculature. 

Aim 2. Identify the expression and/or activity of critical matrix metalloproteinases in 

the development of microvasculature networks formed via iPSC-ECs. In order to understand 

how iPSC-ECs remodel the fibrin matrix during capillary morphogenesis, this aim will focus on 

inhibiting critical proteases implicated in capillary morphogenesis and determining quantitatively 

if the rate of capillary sprouting in 3D tissue assays change. Experiments will be performed in 

elevated matrix densities or with the addition of chemical inhibitors to affect the sprouting 

formation of the ECs. The quantity and quality of capillary networks formed will be assessed in 

3D tissue cultures using an established microcarrier bead assay. Furthermore, the expression of 

these key proteases at the RNA, protein, and activity level will be quantified. 

Aim 3. Determine the ability of iPSC-ECs to stimulate vascularization in vivo using a 

subcutaneous injection model in a SCID-mouse. This aim will assess the capability of iPSC-

ECs to form functional microvascualture. ECs, fibroblasts, and fibrin will be injected in a 

subcutaneous dorsal flank of SCID mice and monitored over time. Immunohistochemical and 

immunofluorescent staining and imaging of the removed implants will be used to determine the 

efficiency and potential of using iPSC-ECs in a clinical setting. 

The insights gained from these aims will guide the choice of using autologous sources of 

ECs, specifically iPSC-ECs, to build functional vasculature, and most importantly provide 

fundamental knowledge about the mechanisms by which iPSC-ECs form vasculature. In the long 

term, this project will move cell-based revascularization therapy closer to clinical applications 

through a fundamental understanding of cell sourcing potential. 
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1.8 Translational Potential 

 As previously mentioned, cardiovascular disease is the leading cause of death worldwide 

and the number of patients affected is rising. While various pharmaceutical or surgical treatments 

are currently available to reestablish proper blood flow in ischemic tissue, these methods can be 

highly invasive. As a result, development of regenerative medicine therapies offers one potential 

solution to restore blood flow to damaged tissue.  

 For patient translation, all therapeutic products need to be approved by the US Food and 

Drug Administration (FDA). Therapies, such as the growth factor delivery, utilizing defined 

biomaterials and compounds are more commercially successful in regenerative medicine [138], 

[139]. Despite promising pre-clinical and early clinical results, many of the approaches to deliver 

growth factors to signal angiogenesis in ischemic tissue did not result in functional restoration 

[140]. While cell-based approaches may offer more control over vascular formation, FDA 

approval of these methods is more complex. Aside from approval over the supporting material 

administered, cells activity and function can be highly variable, raising the question about safety 

and efficacy [141]. For this reason, there is no FDA approved cell-based therapy currently 

employed for cardiovascular disease treatment [138], [139]. We employed fibrin as the supporting 

matrix, as it is FDA cleared for use in human patients [142]. 

 iPSCs and their derivatives offer additional complications to clinical translation. One of 

the major obstacles for iPSCs is their tendency to form tumors in vivo. Once differentiated, cells 

lose their pluripotent potential. However, the viruses, used originally to alter the cells, encode for 

oncogenic transcription factors [143]. Furthermore, as cells can be differentiated into multiple 

lineages, iPSC therapies could potentially delivery an incorrect population of cells [144]. While 

iPSC-ECs potential autologous nature would ease translation due to reduced or no immunological 
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concerns, additional research is necessary to ensure the patients do not elicit an immunological 

response to the cells [145].  

 

1.9 Overview of Thesis 

 Chapter 1 discussed the motivation for the dissertation, current treatment methods for 

CVD, an overview of the cardiovascular system, possible new tissue engineering therapies, the 

overall hypothesis, the aims addressing the hypothesis, and the translational potential of this work. 

Chapter 2 defines the nature of endothelial cells and their importance in the 

angiogenic/vasculogenic process. This chapter also establishes whether the iPSC-ECs display an 

endothelial cell lineage through characterization of key markers expressed by other mature 

endothelial cells.  

Parts of Chapter 3 were first published in 2018 in Scientific Reports following peer review, 

and address aim 1 by performing an in vitro assessment of iPSC-EC microvascular formation in 

comparison to HUVECs. Endothelial cells were coated on microcarrier beads and embedded with 

fibroblasts in a fibrin matrix to quantify the capillary morphogenic process. Microvascular 

formation, by both HUVECs and iPSC-ECs, was characterized with variations of cell lots, media 

formulation, and cell density. Vessel maturity was also qualitatively assessed by visually 

examining microvessels for the presence of hollow lumens, basement membrane deposition, and 

pericyte association.  

Parts of Chapter 4 were also first published in 2018 in Scientific Reports following peer 

review and address aim 2 by identifying a candidate mechanism by which iPSC-ECs remodel the 

ECM during capillary morphogenesis. Various inhibition studies were conducted, either through 

elevated matrix densities or the addition of chemical protease inhibitors, and the expression of key 
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proteases implicated in capillary morphogenesis were evaluated. The goal of this study was to 

better understand iPSC-ECs’ invasive mechanisms and determine a possible cause for iPSC-EC 

vessel network differences in vitro. 

In Chapter 5, the in vivo potential of iPSC-ECs is evaluated in a physiologically relevant 

mouse model. This chapter addresses aim 3 by evaluating iPSC-ECs’ ability to form vessels and 

inosculate with the host vasculature in comparison to HUVECs. These cells were co-injected with 

NHLFs and fibrin subcutaneously on the dorsal surface of SCID mice. This study also investigated 

vessel maturation and determined whether there are differences between in vivo and in vitro iPSC-

EC vessel formation.  

Finally, the key findings and results are summarized in Chapter 6, with additional 

discussion of future directions and translational implications. The appendices contain detailed 

experimental procedures, to facilitate future reproducibility, and smaller studies, involving the 

reprograming and differentiation of iPSC-ECs and characterization of media composition effects 

on HUVECs. 
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CHAPTER 2  

Evaluation of iPSC-ECs’ Phenotype and Relevancy as 
an Endothelial Cell 

 
 

2.1 Introduction 

 
Almost all tissue in the human body requires some form of blood supply to deliver nutrients 

and remove waste products [1]. While blood vessels transport the blood supply, their development 

and function depend on endothelial cells (ECs), the main cellular component of blood vessels [2]. 

These cells proliferate, migrate, and remodel the extracellular matrix (ECM) to form the luminal 

structure that characterize blood vessels [3]. In addition, endothelial cells act as the main interface 

between the blood and surrounding tissue, responding to any tissue changes and regulating 

vascular hemostasis [4]. Because these cells are the main component of blood vessels, 

understanding endothelial cells is key to the development of therapeutic revascularization. 

As mentioned iPSCs, which are derived from somatic cells, can be used to create 

endothelial cells. However, this is different from traditional endothelial cell generation [5]. 

Originally, endothelial cells were thought to originate exclusively from the proliferation of existing 

endothelial cells postnatally [6]. However, recent studies have demonstrated EC proliferation is 

not the only mechanism contributing to adult EC production. Similar to vasculogenesis in 
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embryonic development, endothelial progenitor cells (EPCs) were found to contribute to adult 

vascular formation [7]. EPCs are bone marrow-derived cells expressing high levels of endothelial 

cell surface markers and low levels of hematopoietic markers [8]. Various studies have 

demonstrated the vasculogenic potential of EPCs and their ability to form endothelial colonies for 

the regeneration of endothelial cells [9]–[13]. The true role of EPCs in angiogenesis remains 

controversial as a majority of the cells characterized as EPCs were derived from a myeloid-

monocytic lineage and demonstrated minimal proliferative ability [14]–[16].  

While a full characterization and classification of EPCs is yet to be determined, endothelial 

cell characterization has been extensively studied [17]–[21]. Key endothelial cell markers include 

von Willebrand Factor (vWF), Angiopotein (ANGPT), and vascular endothelial cadherin (VE-

Cadherin). vWF is a blood glycoprotein which binds biological compounds for platelet adhesion 

in hemostasis [22]. ANGPT is a family of vascular growth factors involved in the signaling 

pathway for angiogenesis [23]. VE-Cadherin is a cell adhesion molecule found in the intercellular 

junctions of endothelial cells and maintains the restrictive endothelial cell barrier [24]. Along with 

VE-Cadherin, various other cluster of differentiation (CD) proteins are also used to identify 

endothelial cells. Cluster of differentiation-31 (CD31), also known as platelet endothelial cell 

adhesion molecule (PECAM-1), is found in intercellular junctions between endothelial cells. CD31 

functions to maintain junctional integrity and to aid in restoration of the vascular permeability 

barrier following inflammation [25], [26]. Similarly, cluster of differentiation-34 (CD34) is 

another glycoprotein found in endothelial cells which may aid in adhesion [27], [28]. However, 

the true function of CD34 is yet to be determined [29]. Unlike the previous markers, both CD31 

and CD34 can also be found in other cell lineages, specifically platelets, monocytes, and 
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neutrophils and progenitor cells respectively [27], [30]. Ultimately, despite the large expression of 

the aforementioned markers, endothelial cell markers can vary depending on their origin [31]. 

Since the circulatory system spans the whole body, various endothelial cell phenotypes 

exist. These phenotypes not only vary between different organs but can also vary within the same 

organ depending on its venous or arterial origin [32]. While some characteristics are similar, the 

structure and function of each type varies significantly [18], [33]–[36]. For example, ECs in 

arteries and veins have a continuous, uninterrupted pattern of cells [37], [38]. On the other hand, 

ECs in capillaries may have a continuous, fenestrated, or discontinuous pattern of cells [32]. These 

structural differences result from the functional needs of the underlying tissue, as capillaries need 

to readily transport material and arteries need to supply the blood with losing any during delivery  

[37]. Permeability of the ECs can vary as well, with ECs in the brain have tightly regulated 

permeabilities to prevent loss or entry of various blood components [39]. On the contrary, ECs in 

organs such as the liver, kidney, and lymphatics are highly permeable to allow for an easier 

exchange of blood compounds [38].  

Selection of an EC phenotype for revascularization is dependent on the type of treatment 

needed. For revascularization of the microvasculature, several sources, including HUVECs and 

human microvascular endothelial cells (HMVECs), have been extensively tested [40]–[46]. iPSC-

ECs offer another potential cell source. However, unlike other endothelial cells, iPSC-ECs can 

originate from any type of somatic cell [47]–[49]. While the selection of most iPSC-ECs is based 

on the aforementioned endothelial cell markers, such as CD31 and CD34, variations in 

reprograming and differentiation could result in vastly different expression levels [50]–[53]. There 

is limited research on how iPSC-ECs’ phenotype compares to other endothelial cells [54]–[57]. 
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Prior to understanding the vasculogenic potential of iPSC-ECs, the authenticity of iPSC-ECs as 

endothelial cells must first be determined. 

The present study explores whether our source of iPSC-ECs represents an endothelial cell 

lineage based on the presence of key EC characteristics prominent for a well-established EC 

source. Endothelial cells were cultured in 2D on tissue culture plates/flasks until confluency. Key 

endothelial cell markers were then identified and quantified by immunofluorescent microscopy 

and fluorescent activated cell sorting respectively. The proliferation rates of each EC source on 

varying matrix stiffnesses were also explored. Total RNA was harvested to investigate key 

differences in the genetic expression profile of iPSC-ECs in comparison to HUVECs via an 

Affymetrix microarray. 

 

2.2 Materials and Methods 

 
2.2.1 HUVEC Isolation and Cell Culture 

Human umbilical vein endothelial cells were harvested from fresh umbilical cords obtained 

from the University of Michigan Mott Children’s Hospital via an IRB-exempt protocol and 

isolated using methods previously described [40]. Briefly, umbilical cords were rinsed in 

phosphate buffer saline (PBS) and then digested with 0.1% collagenase type I (195 U/ml, 

Worthington Biochemical, Lakewood, NJ) for 20 min at 37°C. The digested product was 

subsequently washed in PBS, collected, and centrifuged (200×G for 5 min). The pellet was 

resuspended in endothelial growth media (EGM-2, Lonza), and the cells were plated in tissue 

culture flasks/plates and cultured at 37°C and 5% CO2. After 24 hours, HUVECs were rinsed with 

PBS to remove any non-adherent cells. Media were exchanged every 48 hours. Cells from passage 
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3 were utilized for all experiments. iPSC-ECs of human fibroblastic origin were commercially 

purchased, iCell endothelial cells (Cellular Dynamics International, Madison, WI), and cultured at 

37°C and 5% CO2 in Vasculife VEGF endothelial media (Lifeline Cell Technology, Fredrick, MD) 

supplemented with iCell Endothelial Cell Medium Supplement (Cellular Dynamics International) 

per the manufacturer’s instructions. iPSC-ECs tissue culture flasks/plates were coated with 35 

µg/mL fibronectin (Invitrogen, Carlsbad, CA) for 1 hr at room temp prior to plating the cells. 

Culture media was replaced every 48 hours and cells from passage 3 were used in experiments.  

 

2.2.2 Immunofluorescent Staining on Tissue Culture Plates 

Once cells reached confluency (~4 days), cells were briefly rinsed 2x with PBS solution 

for 10 seconds at room temperature. Cells were then fixed with 4% paraformaldehyde (Sigma) for 

10 min at room temperature. Cells were then permeabilized with 0.1% Triton-X100 in TBS for 10 

min at room temperature. Samples were blocked overnight at 4 °C with a 2% Abdil solution 

(bovine serum albumin (Sigma) dissolved in TBS-T). The primary antibody/staining agent was 

dissolved in 2% Abdil at the appropriate concentration (anti-CD31, 1:200 (Dako, Santa Clara, 

CA); VE-Cadherin, 1:200 (Invitrogen, Waltham, MA); vWF, 1:200 (Invitrogen)) and this solution 

was added to the cells for a 1 hr incubation at room temperature. Cells were then rinsed 3x for 5 

min with TBS-T. The appropriate secondary antibody (1:400, Alexa Fluor 488 Goat anti-mouse 

IgG, Invitrogen) dissolved in 2% Abdil was added for a 45 min incubation at room temperature. 

Following a 3x rinse for 5 min at room temperature with TBS-T, cells were incubated with TBS-

T at 4 °C until microscopy imaging.  
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2.2.3 Fluorescent Imaging and Microscopy 

Fluorescent images were captured utilizing an Olympus IX81 equipped with  a 100 W high-

pressure mercury burner (Olympus America, Center Valley, PA), a Hamamatsu Orca II CCD 

camera (Hamamatsu Photonics, K.K., Hamamatsu City, Japan), and Metamorph Premier software 

(Molecular Devices, Sunnyvale, CA).  

 

2.2.4 Immunofluorescent Staining in Suspension and FACS Analysis 

Endothelial cells were cultured in T-75 flasks to 80% confluency and rinsed with PBS 

before being harvested via 0.25% trypsin incubation for 5 min at 37 °C and 5% CO2. Trypsin was 

neutralized using DMEM supplemented with 10% FBS. The cellular suspension was centrifuged 

(200×G for 5 min) and supernatant was aspirated immediately. Cells were resuspended and 

counted using a hematocytometer. The cell solution was then filtered through a 40 μm filter and 

the pellet recovered following centrifugation at 200×G for 5 min. Cells were re-suspended in an 

ice cold solution of 0.1% BSA, dissolved in PBS, and placed in microcentrifuge tubes. Cells were 

then rinsed 3X with the ice cold 0.1% BSA – PBS solution, with centrifugation (200×G for 5 min) 

between each rinse. The primary antibody/staining agent was dissolved in a 0.1% BSA – PBS 

solution at the appropriate concentration (anti-CD31, 1:50 (Dako, Santa Clara, CA); VE-Cadherin, 

1:50 (Invitrogen, Waltham, MA). Cells were re-suspended in 1 mL of this solution and placed on 

tube rotator for a 1 hr incubation at 4 °C. Cells were then rinsed 3X with the ice cold 0.1% BSA – 

PBS solution, with centrifugation (200×G for 5 min) between each rinse. Cells were resuspended 

in 1 mL of the appropriate secondary antibody (1:400, Alexa Fluor 488 Goat anti-mouse IgG, 

Invitrogen) dissolved in a 0.1% BSA – PBS solution and placed on a tube rotator for a 45 min 

incubation at 4 °C. Following a 3X rinse with the ice cold 0.1% BSA – PBS solution and 
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centrifugation (200×G for 5 min) between each rinse, cells were fixed for 10 min at 4 °C on a tube 

rotator with 1% paraformaldehyde in PBS. Lastly, cells were rinsed 2X with the ice cold 0.1% 

BSA – PBS solution. Cells were then analyzed using a MoFlo Astrios cell sorter (Beckman 

Coulter, Pasadena, CA). 

 

2.2.5 Fibrin Gel Assembly 

A fibrinogen (Sigma-Aldrich) solution of the desired concentration (2.5 mg/mL) was 

dissolved in an appropriate amount of serum-free EGM-2 and placed at 37 °C in a water bath. The 

solution was sterile filtered through a 0.22 µm syringe filter (Millipore, Billerica, MA). 500 µL of 

fibrinogen solution was added to a single well of a 24-well tissue culture plate and polymerized 

with 10 μL of thrombin (50 U/mL, Sigma-Aldrich). Fibrin gels were left undisturbed for 5 min at 

room temperature before incubation for 30 min at 37 °C and 5% CO2. ECs, cultured and prepared 

as described above, were added on top of the gels along with media following fibrin 

polymerization. Media were changed the following day and every other day thereafter. 

 

2.2.6 Proliferation Assay  

Endothelial cells were cultured either on TCP or 2.5 mg/mL fibrin gels in a 24 well plate 

at a starting seeding density of 20K per well. At various time points, cells were removed from the 

wells depending on their culture condition. For cells cultured on TCP, cells were rinsed with PBS 

before being harvested via 0.25% trypsin incubation for 5 min at 37 °C and 5% CO2. Trypsin was 

neutralized using DMEM supplemented with 10% FBS. The cellular suspension was centrifuged 

(200×G for 5 min) and supernatant was aspirated immediately. Cells were resuspended and 

counted using a hematocytometer. For cells on fibrin gels, the fibrin gel was first digested using 
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Natto Kinase (NSK-SD, Japan BioSceince Laboratoy Co. Ltd) dissolved in a 1 mM EDTA PBS 

solution. 1 mL of the aforementioned solution was added to each well and incubated for 45 min at 

37 °C. The degraded fibrin cell solution was centrifuged (200×G for 5 min) and supernatant was 

aspirated immediately. The cells pellet was then suspended in 0.25% trypsin incubation for 5 min 

at 37 °C and 5% CO2 to break apart the cell sheet. Trypsin was neutralized, the cellular suspension 

was centrifuged (200×G for 5 min), and the supernatant was aspirated immediately. Cells were re-

suspended and counted using a hematocytometer. 

 

2.2.7 RNA Isolation and Affymetrix Analysis  

iPSC-ECs and HUVECs were cultured in 24 well plates using the previously described 

methods for 3-4 days or until confluency. Total RNA was purified using the RNeasy kit (Qiagen, 

Valencia, CA) per manufacturer’s protocol and quantified using a Nanodrop ND-1000 (Thermo 

Fisher Scientific, Rochester, NY). At least 200 ng of the harvest RNA was then processed by the 

University of Michigan’s DNA Core using an Affymetrix Human Gene 2.1 ST Array. Expression 

profiles were analyzed by a biostatistician and reported using the iPathwayGuide Software 

(Adviata Bioinformatics, Plymouth, MI). Any fold changes above 1.0 (2-fold change) were noted 

as significantly different between the two populations of ECs. 
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2.3 Results 

 

2.3.1 iPSC-ECs exhibit morphological similarities to HUVECs in 2D culture. 

 In this study, iPSC-derived ECs were cultured in 2D and characterized for their phenotypic 

similarities to HUVECs, a mature and well-established EC population. Brightfield images from 

these cultures demonstrated morphological similarities between the HUVECs and iPSC-derived-

ECs (Fig. 2-1), with the iPSC-derived-ECs displaying a cobblestone-like morphology and a 

spindle-like shape for each individual cell, which are characteristic of cultured endothelial cells 

[58].  

 

 

 
Figure 2-1: iPSC-ECs exhibit morphological similarities to HUVECs in 2D culture. 
Representative brightfield images of confluent ECs cultures on TCP at varying magnification intensities. Scale bar = 200 µm.  
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2.3.2 iPSC-ECs demonstrate comparable expression levels of a panel of EC 

markers compared to HUVECs 

To validate the observations from the brightfield images and confirm an endothelial cell 

phenotype, ECs were immunofluorescently (IF) stained for various endothelial cell markers (Fig. 

2-2). Cluster of differentiation 31 (CD31) is a molecule expressed in the intercellular junctions of 

endothelial cells within blood vessels [30]. IF staining revealed both HUVECs (Fig. 2-2A) and 

iPSC-ECs (Fig. 2-2.1A’) expressed CD31 around their peripheries. Vascular endothelial cadherin 

(VE-Cadherin) is a cadherin required for maintaining a restrictive endothelial barrier and a major 

component in the integrity of endothelium intercellular junctions [24]. Both HUVECs and iPSC-

ECs expressed VE-Cadherin at their junctions (Fig. 2-2.1B-B’) as gauged by IF staining. Lastly, 

both cell types demonstrated the production of von Williebrand factor (vWF) (Fig. 2-2.1C-C’), a 

glycoprotein involved in hemostasis and produced by the endothelium during blood clotting [22].  
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Figure 2-2.1: iPSC-ECs demonstrate comparable EC marker expression compared to HUVECs.  
HUVECs (A-C) or iPSC-ECs (A’-C’) were cultured in 24-well plates. Cultures were monitored for confluency over a 4 day period. 
Cultures were fixed and IF stained for (A,A’) CD31 (green), (B,B’) VE-Cadherin (yellow), (C,C’) vWF (magenta), and DAPI 
(blue). Scale bar = 200 µm. 

 
 
 

 In addition to qualitative expression, iPSC-ECs expressing endothelial cell markers were 

quantified via fluorescent activated cell sorting (FACS) to further characterize their endothelial 

lineage. Cells were cultured, immunofluorescently stained in suspension, and analyzed to 

determine the number of cells expressing both CD31 (Fig. 2-2.2) and VE-Cadherin (Fig. 2-2.3). 

Both populations of cells demonstrated high levels of cells expressing CD31 (99.88% for HUVECs 

and 98.46% for iPSC-derived-ECs). Similarly, high levels of iPSC-ECs and HUVECs expressing 

VE-Cadherin was observed (82.03% for HUVECs and 95.26% for iPSC-derived-ECs). 

Collectively, these results, and the previous qualitative EC marker and EC morphology 

experiments, demonstrate the iPSC-derived-ECs share many phenotypic similarities to an 

endothelial lineage.  
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Figure 2-2.2: iPSC-ECs express similar levels of key markers characteristic of endothelial cell lineage [Absorbance Plots] 
HUVECs or iPSC-ECs were IF stained for CD31. IF stained cells were analyzed using FACS and the number of cells expressing 
the indicated marker were quantified. 
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Figure 2-2.3: iPSC-ECs express similar levels of key markers characteristic of endothelial cell lineage [Absorbance Plots] 
HUVECs or iPSC-ECs were IF stained for VE-Cadherin.  IF stained cells were analyzed using FACS and the number of cells 
expressing the indicated marker were quantified. 
 
 

2.3.3 iPSC-ECs proliferate at a similar rate compared to HUVECs in 2D 

Although the iPSC-ECs displayed some characteristics of an endothelial cell phenotype, 

there could potentially be other phenotypic differences between the iPSC-ECs and HUVECs. The 

ultimate goal of this research is to determine the vasculogenic potential of the iPSC-ECs through 

the creation of vasculature both in vitro and in vivo. Since proliferation is a key aspect of vessel 

formation [3], [59], [60], we sought to characterize the proliferation rate of iPSC-ECs. Endothelial 

cells were plated at a constant seeding density (20K) on either tissue culture plastic (TCP) or 2.5 
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mg/mL fibrin gels. At various time points, cells were harvested, and the total number of cells 

counted. While total cell numbers were lower for iPSC-ECs in comparison to HUVECs on TCP 

across all timepoints, there was no significant difference between the two populations (Fig. 2-3A). 

Similarly, both endothelial cell populations proliferated at a similar rate on fibrin gels with no 

significant difference in total cell number for any of the time points examined (Fig. 2-3B). 

 

 

 

Figure 2-3: iPSC-ECs proliferate at a similar rate compared to HUVECs in 2D.  
HUVECs or iPSC-ECs were cultured in 24 well plates either on top of (A) TCP or (B) 2.5 mg/mL fibrin gels. Cells were removed 
from their wells at various time points and the number of cells were counted. * p < 0.05 denotes statistical significance. Error bars 
indicate ±SEM 
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2.3.4 Genetic expression profiles of iPSC-ECs are comparable to HUVECs 

 Despite the phenotypic similarities observed between the iPSC-ECs and HUVECs, these 

cells may still have genotypic differences. The iPSC-ECs were synthetically reprogramed into a 

pluripotent state from a fibroblastic lineage and then differentiated into an endothelial cell lineage 

using techniques proprietary to the vendor [56], [61]. Due to the iPSC-ECs’ origin, the gene 

expression profiles could largely differ from HUVECs. Furthermore, while the iPSC-ECs 

phenotypically have characteristics of an endothelial lineage, the expression of endothelial genes 

could vary [55]. To determine genotypic differences between the iPSC-ECs and HUVECs, total 

RNA was harvested from cells and analyzed via an AffyMetrix gene chip microarray. The 

expression profiles were quantified and the fold change between the iPSC-ECs and HUVECs was 

calculated. Of all the genes analyzed, the genetic expressions profiles of the two ECs differ by 

only 5.92% with respect to a greater than 2-fold change. Of the 14,352 genes analyzed, 13,502 

genes were within a 2-fold difference between the two populations, suggesting their expression 

levels were not significantly different. However, there was a 2-fold higher expression of 422 genes 

in the iPSC-ECs with respect to HUVECs. In comparison, there was a 2-fold lower expression of 

428 genes in the iPSC-ECs with respect to HUVECs (Fig. 2-4.1A).  
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Figure 2-4.1: Genetic expression profiles of iPSC-ECs are comparable to HUVECs  
HUVECs’ or iPSC-ECs’ RNA was harvested from the cells after 4 days culture. RNA was analyzed via an AffyMetrix assay to 
determine gene expression profiles. (A) The Venn diagram show the total number of genes with similar expression profiles between 
the two populations and the number of genes with expression profiles 2-fold higher in the respective cell type. (B) Quantification 
of iPSC-ECs’ expression fold change for specific genes associated with an endothelial lineage in respect HUVECs.  
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To further characterize the endothelial cell nature of iPSC-ECs, the fold change of key 

endothelial cell marker genes was investigated. Fold changes greater than a 2-fold difference 

(LogFC = 1.0) were considered significantly different. CD31, VE-Cadherin, VEGFA, VEGFB, 

VEGFC, and TIE1 showed no significant fold changes. However, vWF was expressed 6.5-fold 

greater in iPSC-ECs. A 4-fold lower difference was also seen for CD34 (Fig. 2-4.1B). Furthermore, 

pluripotency genes were investigated to determine whether the iPSC-ECs were still expressing 

genes inserted during reprogramming (Fig. 2-4.2). Once again, any fold changes greater than a 2-

fold difference (LogFC = 1.0) were considered significantly different. While c-Myc, Klf4, and 

Sox2 showed no significant expression difference, Oct3/4 was expressed significantly higher in 

the iPSC-ECs. 

 

 

 

Figure 2-4.2: Genetic expression profiles of iPSC-ECs are comparable to HUVECs.  
(C) Quantification of iPSC-ECs’ expression fold change for genes associated with reprogramming cells into pluripotency.  
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2.4 Discussion 

While prior studies have extensively investigated the ability of iPSC-ECs to express EC-

like characteristics, the reprograming and differentiation process for iPSC-EC creation can vary 

significantly, resulting in potential phenotypic differences [50], [51], [56], [62]. Therefore, this 

study characterized the phenotype of iPSC-ECs in comparison to the endothelial phenotype of a 

well-established EC line with demonstrated capabilities of stable, robust microvascular formation, 

HUVECs. iPSC-ECs were cultured in 2D on flasks, alongside HUVECs, and then analyzed for 

various characteristic of endothelial cells. Despite small genotypic differences, the data in this 

chapter demonstrate that iPSC-ECs are phenotypically similar to HUVECs. 

Although iPSC-ECs exhibited slight morphological differences, key endothelial cell 

markers were expressed by the cells. CD31, VE-Cadherin, and vWF are typically associated with 

endothelial cells [22], [24], [30], and thus the presence of these components is indicative of the 

iPSC-ECs’ endothelial cell nature. Both CD31 and VE-Cadherin were localized to the cortex of 

the cells; however, VE-Cadherin demonstrated less intense signaling. The signal intensity may be 

an artifact of imaging or background interference; nevertheless, the presence of both CD31 and 

VE-Cadherin suggests the iPSC-ECs are ECs. The expression of these markers is expected as 

iPSC-EC selection after differentiation is typically based on CD31 and VE-Cadherin. Both 

HUVECs and iPSC-ECs showed limited expression of vWF. Furthermore, the vWF strands were 

relatively short and close to the cell surface which is expected in non-inflammatory conditions. 

vWF is released from cells upon stimulation of inflammatory cytokines [65]. Since these cells 

were left undisturbed during culture, the production of vWF should be limited.  

To quantify the number of cells expressing the endothelial cell markers, iPSC-ECs were 

analyzed via FACS. Both CD31 and VE-Cadherin were highly expressed in both HUVECs and 
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iPSC-ECs. While CD31 expression was slightly higher, by roughly 1%, VE-Cadherin was 

expressed at lower levels in HUVECs. While most HUVECs should express VE-Cadherin [68], 

[69], one possible explanation for the lower number of HUVECs expressing VE-Cadherin is the 

increased presence of dead cells, noted by the smaller registered events for the HUVECs, which 

can affect the accuracy of flow cytometry analysis [70]. Collectively, the similarities between cell 

morphology and endothelial cell marker expression, both via IF staining and FACS analysis, 

suggest iPSC-ECs are phenotypically an endothelial cell lineage. 

In addition, iPSC-ECs demonstrated the same proliferative ability in comparison to 

HUVECs. While no statistical differences were observed between the two populations, difference 

were observed depending on the substrate in which cells were cultured. In comparison to TCP in 

which increased cell counts were noticeable on day 1, fibrin cultures showed relatively similar cell 

counts for the first few time points suggesting a slower proliferative ability on fibrin. The effect of 

matrix stiffness on cellular activity is well documented [41], [71]–[74], with “softer” matrices 

reducing cell proliferation in 2D [75]. However, both iPSC-ECs and HUVECs demonstrated 

higher cell numbers when seeded on fibrin gels. Although cells were cultured longer on fibrin than 

TCP, cell growth started to level off, and in the case of iPSC-ECs, decrease by day 7 on TCP. This 

difference could be attributed to the cell’s density dependence, a well-known limitation in the cell 

cycle [76], [77]. On TCP, the cells reached a finite density and stop proliferating. However, for 

fibrin, a dimensionality is added to the culture, allowing for ECs to potentially invaded the matrix 

and continue their growth and proliferation.  

Although similarities exist between iPSC-ECs and HUVECs, considerable differences 

could exist between them, especially in regard to their origin. To further investigate any 

differences, we performed a comparative analysis of the gene expression profile of iPSC-ECs 
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versus HUVECs. This study revealed iPSC-ECs have similar gene expression profiles to 

HUVECs. In addition, no significant differences were seen for many endothelial cell-specific 

genes. However, vWF was expressed higher in iPSC-ECs than HUVECs suggesting iPSC-ECs 

may be more suitable for wound healing. As previously mentioned, vWF is a glycoprotein secreted 

by endothelial cells and involved in platelet adhesion in wound healing [65]. While studies indicate 

vWF is involved in many vascular processes, elevated vWF levels may inhibit tube formation, 

proliferation, and migration of ECs in vitro through pathways that involve VEGFR-2 signaling 

[78]. Furthermore, CD34 was expressed lower in iPSC-ECs than HUVECs. CD34 is a glycoprotein 

involved in cell-cell adhesions and found in hematopoietic cells or endothelial progenitor cells 

[27]. HUVECs have been implicated in the support of hematopoiesis [79], possibly explaining the 

increased expression of CD34. Interestingly, pluripotent genes such as Oct3/4 can still be detected 

in the iPSC-ECs. Oct-3/4 expression is typically associated with an undifferentiated phenotype 

[80]. Oct3/4, along with other pluripotency genes, are introduced during the reprograming phase 

of iPSC-EC generation to induce a stem-cell like state [56]. Once differentiated to a specific cell 

lineage, the expression of these genes should be down-regulated. The higher Oct3/4 expression in 

iPSC-ECs is consistent with previous research and may indicate partial differentiation into the 

endothelial cell lineage [56], [81]. While additional differences may exist between the iPSC-ECs 

and HUVECs, this study demonstrates the large genotypic similarities between the two 

populations.   

One caveat to interpreting the observed similarities and differences is the fact that iPSC-

ECs were only compared to one source of endothelial cells. While HUVECs are an established 

and robust EC source [42], [43], [71], other ECs, such as microvascular endothelial cells (MVECs), 

may exhibit different phenotypes and gene expression profiles, which could be used to further 
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characterize the endothelial cell nature of iPSC-ECs [36], [82], [83]. Additionally, we only 

investigated a small number of endothelial cell markers via IF staining and FACS. While the 

selected markers are typically used to characterize ECs, a variety of other EC markers exist, such 

as CD34 [33], [34], [36], [63]. Fibrin was selected due to FDA clearance for clinical use and is 

found naturally in the human body during wound healing [84]. Other matrices could have been 

used in addition to fibrin, such as collagen or synthetic hydrogels, to better understand the effect 

of matrix identity on proliferation [74], [85]–[87]. Most importantly, these experiments were all 

conducted in 2D. Various studies have investigated the effect of 2D versus 3D on cells [88], [89]. 

While our study noted similarities to the HUVECs on 2D, iPSC-ECs may have different 

phenotypes when cultured in 3D, which will be investigated in Chapter 3. 

 

2.5 Conclusions 

In summary, this work characterized whether iPSC-ECs expressed an endothelial-like 

phenotype and a genetic profile similar to an established EC line. Both HUVECs and iPSC-ECs 

formed EC-like morphologies, expressed high levels of endothelial cell markers, and demonstrated 

similar proliferation rates on varying matrix stiffnesses. Despite small differences in the gene 

expression profiles, iPSC-ECs were approximately 94% similar to HUVECs in their genotypes. 

Future in vitro studies are necessary to assess phenotypic difference in 3D cultures, discussed in 

chapter 3, and if the various differences in the expression profile affect the iPSC-ECs’ 

vasculogenic potential. Ultimately, these findings suggest additional characterization of 

fundamental phenotypic differences is necessary to implement a successful clinical translation of 

iPSC-ECs for therapeutic revascularization. 
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CHAPTER 3 
 

Evaluating the Potential of iPSC-ECs to Form 
Microvascular Networks in 3D Cultures in vitro 

 
* Portions of Chapter 3, Copyright © 2018 Springer Nature or its licensors or contributors  

3.1 Introduction 

Numerous cardiovascular diseases are characterized by ischemia, a reduction/obstruction 

of oxygenated blood supply to tissues, which can eventually lead to necrosis [1]. Due to the 

increasing number of deaths and costs attributed to ischemic diseases, it is critical to create new 

therapies focused on rebuilding vasculature to provide cells with sufficient oxygen and nutrients 

to prevent additional necrosis and amputations [2-4].  

Over the past decade, several therapeutic approaches have emerged to promote 

angiogenesis and vasculogenesis, the processes by which new blood vessels form from preexisting 

blood vessels or de novo respectively. One technique involves the delivery of growth factors to 

stimulate endothelial cell recruitment [5-7]. However, these approaches are often limited by rapid 

diffusion, short half-lives, and poor biostability of growth factors [8]. An alternative tissue 

engineering approach involves the delivery of cells to directly differentiate into capillary 

structures. Various cell types have been shown to create new capillary networks in vivo [9-11]. In 

addition, some strategies involve implanting engineered scaffolds or co-delivering endothelial 
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cells (ECs) with stromal cells to promote vessel in-growth or stable, mature vasculature formation, 

respectively [12-15]. Despite these advances, there are still critical challenges that plague their 

application, such as possible immunorejection from the host and the vast number of cells required 

for human translation [16-18]. 

Advances in cellular reprograming have led to the discovery of one particularly exciting 

alternative cell source for therapeutic vascularization, induced pluripotent stem cells (iPSC). These 

cells are derived by reprograming adult somatic cells into pluripotency, a stem-cell like state, 

typically with four transcription factors [Oct4, Sox2, Klf4, and cMyc (OSKM)] [19]. In this state, 

cells can be differentiated into many different lineages, including the mesoderm to create 

endothelial cells [20]. iPSCs offer numerous advantages including their potential autologous 

nature, which could eliminate any immunological concerns during their therapeutic delivery. 

Furthermore, since these cells are derived from adult somatic cells, there is little ethical concern 

over their use, despite their stem cell-like lineage. More importantly, these cells can be created 

from various sources and have an unlimited proliferation capacity, in theory, leading to a 

potentially large reservoir of cells for clinical applications [21]. 

Research has successfully demonstrated the ability to differentiate iPSCs into endothelial 

cells [22-24]. These induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) are 

characterized by their ability to express endothelial cell markers. Further studies with iPSC-ECs 

revealed their potential to form vessel-like networks on a Matrigel supporting material both in 

vitro and in vivo [25-27]. While this research is promising for tissue engineering and 

revascularization, very little is known about how these cells behave and compare to other 

endothelial cell sources, specifically in the quantity, quality, and function of the vessel-like 

networks formed. 
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The present study explores whether a potentially autologous EC source derived from 

human induced pluripotent stem cells (iPSC-ECs) can form the same robust, stable 

microvasculature previously documented for other sources of ECs. Using a well-established in 

vitro model, endothelial cells were coated on dextran microcarrier beads and co-embedded in a 3D 

fibrin matrix with normal human lung fibroblasts (NHLFs). Fibrin was selected due to its naturally 

occurring presence in humans and FDA clearance for clinical use [28, 29], while NHLFs were 

chosen due to their aforementioned ability to aid in the formation of microvascular networks as 

previously reported [30-32]. We examined differences in capillary morphogenesis of iPSC-ECs 

and human umbilical vein endothelial cells (HUVECs) by quantifying total network lengths, 

number of branch points, and number of vessel-like segments and qualitatively identifying 

characteristics of mature capillaries.  

 

3.2 Materials and Methods 

 
 
3.2.1 HUVEC Isolation and Cell Culture 

Human umbilical vein endothelial cells were either purchased (Lonza, Walkersville, MD) 

or harvested from fresh umbilical cords from the University of Michigan Mott Children’s Hospital 

via an IRB-exempt protocol and isolated from methods previously described [33]. The umbilical 

cord was rinsed in phosphate buffer saline (PBS) and then digested with 0.1% collagenase type I 

(195 U/ml, Worthington Biochemical, Lakewood, NJ) for 20 mins at 37°C. The digested product 

was subsequently washed in PBS, collected, and centrifuged (200×G for 5 min). The pellet was 

resuspended in endothelial growth media (EGM-2, Lonza), and the cells were plated in tissue 
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culture flasks and cultured at 37°C and 5% CO2. After 24 hours, HUVECs were rinsed with PBS 

to remove any non-adherent cells. Fresh media was changed every 48 hours. Cells from passage 3 

were utilized for experiments. Normal human lung fibroblasts (NHLF, Lonza) were cultured at 

37°C and 5% CO2 in Dulbecco’s modified eagle media (DMEM, Life Technologies, Grand Island, 

NY) with 10% fetal bovine serum (FBS). Culture media was replaced every 48 hours and cells 

from passage 6-10 were used in experiments. Two sources of iPSC-ECs were used in our 

experiments. iCell endothelial cells (Cellular Dynamics International, Madison, WI), referred to 

as iPSC-EC (1), were cultured at 37°C and 5% CO2 in Vasculife VEGF endothelial media (Lifeline 

Cell Technology, Fredrick, MD) supplemented with iCell Endothelial Cell Medium Supplement 

(Cellular Dynamics International). Three different lots were used. A second source of iPSC-ECs, 

referred to as iPSC-EC (2), were graciously provided by Dr. Ngan Huang (Stanford University). 

iPSC-EC (2) were cultured at 37°C and 5% CO2 in EGM-2MV (Lonza). Both iPSC-EC tissue 

culture flasks were coated with 35 µg/mL fibronectin (Invitrogen, Carlsbad, CA) for 1 hr at room 

temp prior to plating the cells. Culture media was replaced every 48 hours and cells from passage 

3 were used in experiments. Microvascular endothelial cells (Lonza) were cultured at 37 °C and 

5% CO2 in EGM-2MV (Lonza). Culture media was replaced every 48 hours and cells from passage 

5 were used in experiments. 

 

3.2.2 Microcarrier Bead Assembly 

Cytodex microcarrier beads (Sigma-Aldrich, St. Louis, MO) were hydrated and sterilized 

in phosphate buffer saline (PBS). Beads were prepared for coating by washing repeatedly with 1 

mL of EGM-2, with time to settle between washes. Endothelial cells were cultured in T-75 flasks 

to 80% confluency and rinsed with PBS before being harvested via 0.25% trypsin incubation for 
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5 min at 37 °C and 5% CO2. Trypsin was neutralized using DMEM supplemented with 10% FBS. 

The cellular suspension was centrifuged (200×G for 5 min) and supernatant was aspirated 

immediately. The cell pellet was re-suspended in 4 mL of fresh EGM-2. 10,000 microcarrier beads 

were combined with four million ECs, HUVECs or iPSC-ECs, (5 mL total) in an inverted T-25 

culture flask. Over a 4 hour incubation period, the culture flask was agitated every 30 minutes to 

ensure EC coating of beads. After 4 hours, the cell-bead mixture was added to a new T-25 culture 

flask. Fresh EGM-2 (5 mL) was added to the old flask to remove any remaining beads and 

transferred to the new culture flask. The total volume (10 mL) was incubated overnight in standard 

cell culture position. 

 

3.2.3 Fibrin Tissue Assembly  

The next day, following bead coating, a fibrinogen (Sigma-Aldrich) solution of the desired 

concentration (2.5 mg/mL) was dissolved in an appropriate amount of serum-free EGM-2 and 

placed at 37 °C in a water bath. The solution was sterile filtered through a 0.22 µm syringe filter 

(Millipore, Billerica, MA). The previous day’s cell-bead solution was removed from the culture 

flask and placed in a 15 mL centrifuge tube. After the beads settled, the remaining supernatant was 

used to remove any remaining beads adhering to the culture flask and added to the centrifuge tube. 

Upon the beads settling, the supernatant was removed and 5 mL of fresh serum-free EGM-2 was 

added to the cell-coated beads. The appropriate amount of bead solution (~ 50 beads per well) was 

added to the fibrinogen solution with 5% FBS. Fibroblasts were prepared using a similar 

rinsing/trypsinization procedure as described above. 25,000 NHLFs per well were added to the 

bead-fibrinogen solution or plated on top of each gel after polymerization in our distributed and 

monolayer conditions respectively. 500 µL of above mixture was added to a single well of a 24-
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well tissue culture plate and polymerized with 10 μL of thrombin (50 U/mL, Sigma-Aldrich). 

Tissue constructs were left undisturbed for 5 min at room temperature before incubation for 30 

min at 37 °C and 5% CO2. 1 mL of media [EGM-2 (Lonza), EGM-2MV (Lonza), or Vasculife 

VEGF media (Lifeline) + iCell endothelial cell supplement (Cellular Dynamics International) 

depending on the experiment was added on top of the gels following incubation and changed the 

following day and every other day thereafter (Fig. 3-1).  

 

 

 
Figure 3-1: Angiogenic Assay Fabrication Process.  
ECs are coated on microcarrier dextran beads. Cell-coated beads and NHLFs are embedded in a 2.5 mg/mL fibrin gel. Resultant 
tissue constructs are cultured for 4, 7, 14 days and then analyzed.  
 

3.2.4 Vasculogenesis Tissue Assay Assembly  

The vasculogenesis assay was prepared using a similar procedure as described above. A 

fibrinogen (Sigma-Aldrich) solution of the desired concentration (2.5 mg/mL) was dissolved in an 

appropriate amount of serum-free EGM-2 and placed at 37 °C in a water bath. The solution was 

sterile filtered through a 0.22 µm syringe filter (Millipore, Billerica, MA). A 1:1 ratio of 

endothelial cells to NHLFs was added to the fibrinogen solution with 5% FBS at varying total cell 
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densities (250K or 500K). Endothelial cells and fibroblasts were prepared using a similar 

rinsing/trypsinization procedure as described above. 500 µL of above mixture was added to a 

single well of a 24-well tissue culture plate and polymerized with 10 μL of thrombin (50 U/mL, 

Sigma-Aldrich). Tissue constructs were left undisturbed for 5 min at room temperature before 

incubation for 30 min at 37 °C and 5% CO2. 1 mL of EGM-2 was added on top of the gels 

following incubation and changed the following day and every other day thereafter. 

 

3.2.5 Immunofluorescent staining 

After the constructs were cultured for a specified period of time (1, 4, 7, or 14 days), gels 

were rinsed 3x with PBS solution for 5 min at room temperature. Gels were then fixed with 500 

μL of formalin (1 mL of 36.5% Formaldehyde solution (Sigma), 1 mL of PBS, and 8 mL of 

d.d.H2O) for 15 min at 4 °C. Gels were rinsed again 3x with PBS for 5 min, then permeabilized 

with 0.5% Triton-X100 in TBS for 30 min at 4 °C. Following a rinse 3x for 5 min at room 

temperature with 0.1% Triton X-100 in TBS (TBS-T), samples were blocked overnight at 4 °C 

with a 2% Abdil solution (bovine serum albumin (Sigma) dissolved in TBS-T). The primary 

antibody/staining agent was dissolved in 2% Abdil at the appropriate concentration (Ulex 

Europaeus Lectin 1 (UEA), 1:100 (Vector Labs, Burlingame, CA); anti-CD31, 1:200 (Dako, Santa 

Clara, CA); collagen IV, 1:200 (Pierce Biotechnology, Waltham, MA); laminin, 1:200 (Pierce 

Biotechnology); alpha-smooth muscle actin (⍺SMA), 1:200 (Pierce Biotechnology)) and 1 mL of 

this solution was added to each gel for overnight incubation at 4 °C. The following day gels were 

rinsed 3x for 5 min with TBS-T. 1 mL of the appropriate secondary antibody (1:400, Alexa Fluor 

488 Goat anti-mouse IgG, Alexa Fluor 405 Goat anti-mouse IgG, Alexa Fluor 488 Goat anti-rabbit 

IgG, Alexa Fluor 405 Goat anti-rabbit IgG, Invitrogen) dissolved in 2% Abdil was added to each 
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gel for overnight incubation at 4 °C. Following a 3x rinse for 5 min at room temperature with TBS-

T, gels were incubated with TBS-T overnight at 4 °C.  

 

3.2.6 Fluorescent Imaging and Vessel Quantification 

Vessel formation was assessed at the aforementioned time points.  Fluorescent images were 

captured utilizing an Olympus IX81 equipped with Disc Spinning Unit and a 100 W high-pressure 

mercury burner (Olympus America, Center Valley, PA), a Hamamatsu Orca II CCD camera 

(Hamamatsu Photonics, K.K., Hamamatsu City, Japan), and Metamorph Premier software 

(Molecular Devices, Sunnyvale, CA). Imaged beads were chosen at random provided vessels 

emanating from a given bead did not form anastomoses with vessels from adjacent beads. Images 

from at least 30 beads per condition were captured over three separate trials at low magnification 

(4×) for each independent experiment and processed using the Angiogenesis Tube Formation 

module in Metamorph Premier (Molecular Devices). Each image was segmented and analyzed 

based on any tube-like pattern that falls within a specified minimum and maximum width of each 

segment above a contrast threshold. The total network length, the number of branch points, and 

number of segments were quantified.  

 

3.2.7 Statistical Analysis  

Statistical analyses were performed using StatPlus (AnalystSoft Inc.,Walnut, CA). Data 

are reported as mean ± standard error of mean (SEM). One- or two-way analysis of variance 

(ANOVA) with a Bonferroni post-test was used to assess statistical significance between data sets. 

Statistical significance was assumed when p<0.05. 
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3.3 Results 

 

3.3.1 iPSC-ECs exhibit deficiencies in capillary morphogenesis compared to 

HUVECs 

In-house isolated HUVECs (“isolated HUVECs”), commercially purchased HUVECs 

(“commercial HUVECs”), and two different sources of iPSC-derived ECs [iPSC-ECs (1) and 

iPSC-ECs (2)] were characterized for the ability to sprout from microcarrier beads when co-

cultured with NHLFs in a 3D fibrin matrix. Immunofluorescent staining for CD31 in these cultures 

demonstrated successful attachment, invasion into the ECM, and primitive sprouting across all EC 

types at day 1. However, on days 7 and 14, the capillary sprouting of iPSC-ECs (1) showed 

significant reductions in their networks compared to the two HUVEC conditions (Fig. 3-2.1A), 

while no capillary sprouting was evident for iPSC-ECs (2). Quantification of these networks (Fig. 

3-2.2B) demonstrated a significant decrease in total network length between the two HUVEC 

conditions and iPSC-ECs (1) (8311 ± 2091 µm for iPSC-ECs (1) versus 29458 ± 3977 µm for the 

isolated HUVECs and 21794 ± 3825 µm for the commercial HUVECs on day 14). This reduced 

total network length was accompanied by a five-fold decrease in the number of vessel branch 

points and number of segments formed (Fig. 3-2.2C-D).  iPSC-EC (2) was not quantified at day 7 

and day 14 time points due to the lack of sprouting. There was no statistical difference between 

the two HUVEC conditions, despite slightly reduced total network length, number of branch 

points, and number of segments. Since there were no statistical differences, subsequent 

experiments used only in-house isolated HUVECs, and henceforth are referred to as HUVECs 

solely. Furthermore, due to their ability to form at least some capillary-like networks, iPSC-ECs 
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(1) was used as the sole iPSC-EC source in subsequent experiments and henceforth are referred to 

as iPSC-ECs. 

 

 

 
Figure 3-2.1: iPSC-ECs exhibit deficiencies in capillary morphogenesis compared to HUVECs. [Rep. Images]  
(A) EC-coated microbeads embedded in 2.5 mg/mL fibrin with NHLF at various time points were stained for CD31 and visualized 
via fluorescent microscopy. Scale bar = 200 µm.  
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Figure 3-2.2: iPSC-ECs exhibit deficiencies in capillary morphogenesis compared to HUVECs. [Quantification]  
Over 3 separate experiments, a total of 30 beads per EC were quantified and averaged for (B) total capillary network length, (C) 
number of segments, and (D) number of branch points. *p<0.05 and **p<0.01 when comparing the indicated condition to the 
isolated HUVEC control at that time point. Error bars indicate ±SEM 
 
 
 
 

3.3.2 Multiple lots of iPSC-ECs exhibit deficiencies in capillary morphogenesis. 

One explanation for the attenuation of iPSC-EC sprouting seen in the prior experiment is 

lot-to-lot variation. While the previous experiments demonstrated attenuation across 3 independent 

trials, these experiments used only one lot from the commercial source. To determine if lot 

variation is a possible explanation for the attenuation, additional different lots were purchased from 
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the same vendor. Each iPSC-EC lot was characterized for the ability to sprout when embedded 

with NHLFs in a 3D fibrin matrix. Immunofluorescent staining for UEA in these cultures 

demonstrated significant reductions in their networks across all lots compared to the HUVEC 

condition (Fig. 3-3.1). Quantification of these networks (Fig. 3-3.2) demonstrated a significant 

decrease in total network length for each iPSC-EC lot in comparison to the HUVECs at every time 

point. This reduced total network length was accompanied by a statistically significant decrease in 

the number of vessel branch points and number of segments formed. Despite differences of each 

iPSC-EC lot to the HUVECs, there were no statistically significant differences between the iPSC-

EC lots. Collectively, this data demonstrates the similarities between different iPSC-EC lots, and 

lot variation does not account for the attenuation of iPSC-EC capillary morphogenesis. 
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Figure 3-3.1: Multiple lots of iPSC-ECs exhibit deficiencies in capillary morphogenesis. [Rep. Images] 
 ECs embedded in 2.5 mg/mL fibrin with NHLF at various time points were stained for UEA and visualized via fluorescent 
microscopy. Scale bar = 200 µm. 
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Figure 3-3.2: Multiple lots of iPSC-ECs exhibit deficiencies in capillary morphogenesis. [Quantification]  
Over 3 separate experiments, a total of 30 random locations in the fibrin gel per EC were quantified and averaged for total 
capillary network length, number of segments, and number of branch points. *p<0.05 and **p<0.01 when comparing the 
indicated condition to the HUVEC control at that time point. Error bars indicate ±SEM 
 
 
 
 
 

3.3.3 Various endothelial cell lineages express differences in capillary 

morphogenesis 

While HUVECs are a robust source of ECs with proven capability of capillary 

morphogenesis, particularly in the assay used here, another EC type of different origin, 

microvascular endothelial cells (MVECs), were also characterized for their ability to sprout from 

microcarrier beads when co-cultured with NHLFs in a 3D fibrin matrix and compared against 

iPSC-ECs. These tissue constructs were cultured with two different media conditions, EGM-2 and 
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EGM-2MV. Immunofluorescent staining for UEA in these cultures demonstrated successful 

attachment, invasion into the ECM, and primitive sprouting across all EC types and media 

conditions at day 1. However, on days 7 and 14, the capillary sprouting of iPSC-ECs and MVECs 

in both EGM-2 and EGM-2 showed significant reductions in their networks compared to the two 

HUVEC conditions (Fig. 3-4.1A, B). Quantification of these networks (Fig. 3-4.2) demonstrated 

a significant decrease in total network length in the iPSC-ECs and MVECs compared the HUVECs 

(2985.33 ± 757.9 µm for iPSC-EC EGM-2, 2782.83 ± 955.2 µm for iPSC-EC EGM-2MV, 1322.89 

± 135.4 µm for MVEC EGM-2, 2470.43 ± 240.4 µm for MVEC EGM-2MV, versus 15651.58 ± 

2070.4 µm for the HUVEC EGM-2 and 13401.33 ± 650.8 µm for HUVEC EGM-2MV on day 

14). Furthermore, there were no statistical difference between the two HUVEC conditions. There 

were also no statistically significant differences between the iPSC-EC conditions. Lastly, there 

was a 2-fold statistical difference between the two MVEC conditions. 
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Figure 3-3.1: Various endothelial cell lineages express differences in capillary morphogenesis [Rep. Images] 
 EC-coated microbeads embedded in 2.5 mg/mL fibrin with NHLFs cultured in either (A) EGM-2 or (B) EGM-2MV at various 
time points were stained for UEA and visualized via fluorescent microscopy. Scale bar = 200 µm.  

A 

B 
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Figure 3-3.2: Various endothelial cell lineages express differences in capillary morphogenesis [Quantification] 
 A total of 30 beads per EC were quantified and averaged for total capillary network length *p<0.05 and **p<0.01 when comparing 
the indicated condition to the HUVEC EGM-2 at that time point. $$ p<0.01 when comparing the indicated condition to the HUVEC 
EGM-2MV at that time point. ##pp<0.01 when comparing the indicated condition to the MVEC EGM-2MV at that time point. 
Error bars indicate ±SEM. 

 
 
 
 

 
 

3.3.4 Differences in media composition does not account for attenuation of 

iPSC-EC vasculogenic attenuation 

Another possible explanation for the reduction of iPSC-EC capillary morphogenesis is the 

culture media. The commercial vendor requires that a proprietary supplement be added to the 

media when culturing and passaging their iPSC-ECs. The aforementioned experiments used a 

general endothelial cell growth media for culturing the various tissue constructs. To assess whether 

media composition affects the capillary morphogenesis, ECs were coated on microcarrier beads 
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when co-cultured with NHLFs in a 3D fibrin matrix characterized for their ability to sprout in 

various media conditions, EGM-2 and Vasculife VEGF media with iCell Endothelial Cell 

Supplement, henceforth referred to as iPSC-EC media. Immunofluorescent staining for UEA in 

these cultures demonstrated reductions in the capillary sprouting of iPSC-ECs for both EGM-2 

and iPSC-EC media conditions in comparison to their respective HUVEC condition (Fig. 3-5). 

Quantification of these networks demonstrated a significant decrease in total network length in the 

iPSC-ECs compared the HUVECs (1466 ± 237 µm for iPSC-ECs in EGM-2, 2092 ± 288 µm for 

iPSC-ECs in iPSC-EC media versus 16384 ± 3016 µm for the HUVECs in EGM-2 and 8920 ± 

1596 µm for HUVECs in iPSC-EC media). There was a two-fold statistical difference between the 

two HUVEC conditions. However, there was no statistically significant differences between the 

iPSC-EC conditions. 
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Figure 3-5: Differences in media composition does not account for attenuation of iPSC-EC vasculogenic attenuation  
EC-coated microbeads embedded in 2.5 mg/mL fibrin with NHLF cultured in varying media formulation were stained for UEA 
and visualized via fluorescent microscopy at day 14. Scale bar = 200 µm. Over 3 separate experiments, a total of 30 random beads 
per EC were quantified and averaged for total capillary network length. *p<0.05 and **p<0.01 when comparing the indicated 
condition to the HUVEC EGM-2 condition. $ p<0.05 when comparing the indicated condition to the HUVEC iPSC-EC media 
condition. Error bars indicate ±SEM 
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3.3.5 Reduced Vasculogenesis of iPSC-ECs at Constant Cell Seeding Density 

In the angiogenic bead assay, endothelial cells are coated on microcarrier beads. While 

both endothelial cells adhere to the beads, the number of cells coated on one bead can vary. To 

ensure this variation in coating is not a contributor to the attenuated sprouting of iPSC-ECs, a 

different vasculogenesis assay was conducted. Here, ECs were characterized for their ability to 

sprout through directly embedding the ECs with NHLFs in a 3D fibrin matrix at a constant cell 

density. Immunofluorescent staining for UEA revealed significant reductions in the iPSC-EC 

networks compared to the HUVEC condition at both cell seeding density (Fig. 3-6.1). 

Quantification of these networks (Fig. 3-6.2) demonstrated a significant decrease in total network 

length for each iPSC-ECs condition in comparison to the HUVECs (7262.29 ± 1039 µm for iPSC-

EC at 250K, 11710 ± 1587 µm for iPSC-EC at 500K, versus 73689 ± 3236 µm for the HUVEC 

250K and 91327 ± 4128 µm for HUVEC 500K on day 14). This reduced total network length was 

accompanied by a 10-fold decrease in the number of vessel branch points and number of segments 

formed. Furthermore, there were no statistically significant differences between the HUVEC 

conditions and no differences between the iPSC-EC conditions. 
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Figure 3-6.1: Reduced Vasculogenesis of iPSC-ECs at constant cell seeding density. 
ECs embedded with NHLFs at a 1:1 ratio with a constant cell density of 250K cell or 500K cells per 2.5 mg/mL fibrin gel were 
stained for UEA and visualized via fluorescent microscopy on day 7. Scale bar = 200 µm.  
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Figure 3-6.2: Reduced Vasculogenesis of iPSC-ECs at constant cell seeding density.  
Over 3 separate experiments, a total of 30 random locations in the fibrin gel per EC were quantified and averaged for total capillary 
network length, number of segments, and number of branch points. *p<0.05 and **p<0.01 when comparing the indicated condition 
to the HUVEC control. Error bars indicate ±SEM 
 
 
 
 
 

3.3.6 iPSC-EC’s vessel-like structures express characteristics of mature 

capillaries 

Despite iPSC-ECs forming vessel-like structures, the quality of the structures was also 

examined to determine if they exhibit qualitative characteristics of mature capillaries. In 3D fibrin 
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cultures, vessels of both endothelial cell types (HUVECs and iPSC-ECs), stained with UEA, were 

surrounded by basement membrane sleeves, as gauged by immunofluorescent staining for collagen 

IV (Fig. 3-7B and B’) and laminin (Fig. 3-7C and C’), prominent components of native basement 

membranes [35]. Pericytes stabilize nascent endothelium and are characterized by physical 

association with ECs as well as expression of molecular markers such as αSMA [36]. IF staining 

revealed that NHLFs associated with vessels formed from both HUVECs (Fig. 3-7A) and iPSC-

ECs (Fig. 3-7A’) were positive for αSMA, suggestive of a pericyte-like phenotype when co-

cultured within the fibrin matrix. Confocal analysis through multiple parallel focal planes of UEA-

stained iPSC-EC and HUVEC cultures was used to verify the formation of hollow lumens. UEA 

staining was observed in a planar fashion in the bottom (Fig. 2-7D and D’) and top slices (Fig. 3-

7F and F’), but only present on the borders in the middle slice (Fig. 3-7E and E’), indicative of EC 

differentiation into lumen-containing structures. A full video demonstrating the hollow lumens can 

be seen in Appendix A along with a 3D rendering of the vasculature in Appendix B. Collectively, 

these results demonstrate that iPSC-ECs form vessel-like networks exhibiting characteristics of 

mature capillaries, similar to those formed by HUVECs in 3D co-cultures.  
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Figure 3-6: Both HUVECs and iPSC-ECs form vessel-like structures with characteristics of mature capillaries.  
HUVECs (A-F) or iPSC-ECs (A’-F’) were coated on micro carrier beads and embedded in a fibrin ECM with NHLFs interspersed 
throughout. Beads were monitored over a 14-day period. (A,A’) Cultures were fixed and IF stained at day 14 for UEA (red), F-
Actin (green), and ⍺SMA (blue). Pericytic association was observed for both EC types. Cultures were fixed and IF stained at day 
14 for (B,B’) UEA (red), and collagen IV (green) or (C,C’) UEA (red), and laminin (green). Basement membrane deposition was 
observed for both EC types. Hollow lumen formation was demonstrated through laser confocal microscopy at the bottom (D,D’), 
middle (E,E’), and top (F,F’) slice of vessel-like structures. The schematic in the upper right of each of these subsets indicates the 
slice relative to the vessel. Arrows indicate areas of focus.  Scale bars = 100 µm.  
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3.4 Discussion 

A number of different sources of endothelial cells have been explored for their ability to 

revascularize ischemic wounds or build microvasculature in engineered tissues. HUVECs are a 

robust source of ECs with proven capability of capillary morphogenesis, particularly in the assay 

used here, but these cells are not without their limitations. Their venous origins are often cited as 

a potential problem, despite evidence in the literature that ECs in the arterial circulation arise from 

a venous origin in development [42]. Furthermore, HUVECs and human microvascular ECs 

(HMVECs) have exhibited similar revascularization capacities in several studies [43, 44]. Two 

potentially more critical limitations of HUVECs (and also HMVECs) are their allogeneic origin 

and their limited proliferation potential, especially given the need to generate the large numbers of 

cells, on the order of billions [45, 46], for human applications.   

As a consequence of the perceived limitations of existing EC populations, the 

vascularization potential of iPSC-ECs as a more clinically relevant cell source is increasingly of 

interest. Prior studies have shown that iPSC-ECs are capable of forming vessel-like structures both 

in vitro and in vivo within supporting Matrigel matrices [25-27], but there is little (if any) evidence 

comparing their potential side-by-side with more widely utilized EC sources. This study therefore 

explored the ability of iPSC-ECs to create functional vessel-like structures in a clinically relevant 

3D in vitro model of angiogenesis [30, 33, 37, 40, 41, 47, 48]. We have shown iPSC-ECs coated 

on microcarrier beads embedded in fibrin with NHLFs yield networks with significantly shorter 

total network lengths (a quantitative measure of the extent of capillary morphogenesis) compared 

to HUVECs. If iPSC-ECs cannot efficiently yield microvascular networks of sufficient quantity, 

diseased or necrotic tissue may not be effectively revascularized in a timely manner, suggesting 
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significant technical barriers must be overcome in order for the translational potential of these cells 

to be realized. 

In addition to the side-by-side comparisons of iPSC-ECs and HUVECs in this study, we 

also examined two different sources of both iPSC-ECs and HUVECs. While both iPSC-EC sources 

resulted in reduced capillary network formation, the variation in sprouting between the two 

populations demonstrates the need for standardization of iPSC-EC production. The clinical 

potential for iPSC-ECs is promising and could revolutionize the field of therapeutic angiogenesis. 

However, without a standardized approach to differentiate iPSC into an EC lineage, the success of 

clinical translation may vary significantly, as we observed here with the different iPSC-EC 

sources. As for the HUVECs, we observed only slight differences between the two sources, 

especially on day 7, which may be attributable to the homogeneity of the source. Our in-house 

isolated HUVECs were isolated from a single umbilical cord, while the commercial source was a 

population of cells pooled from multiple cords. Further, the commercial HUVECs were pooled 

from donors of more than one gender, and there are reported differences in HUVECs isolated from 

different sexes [49]. The in-house isolated HUVECs, from a single source, represent a more 

appropriate comparison to the iPSC-ECs given the expectation iPSC-ECs might be derived from 

a patient, i.e. a single autologous cell source. 

We also examined three different lots from the selected commercial iPSC-EC source. 

While all lots of iPSC-ECs resulted in an attenuation of capillary network formation, there was no 

significant difference between each lot. This result demonstrates reproducibility in iPSC-EC 

manufacturing from the vendor. More importantly, lot variation as a cause of the attenuation can 

be eliminated. The total network formation remained relatively similar across the time points for 

the iPSC-ECs. This limited change over time could be attributed to the attenuation of capillary 
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morphogenesis. In comparison, the HUVECs increased total network length between day 4 and 7 

but deceased on day 14. While expected to increase at later timepoints as cells have more time to 

proliferate and grow, the decrease in sprouting is an artifact of the quantification method. As the 

network becomes increasingly dense, the software used for quantification begins to count certain 

areas as nodes of origin rather than vessels.  

While multiple sources and lots of cells were tested, we also investigated multiple ECs 

from different origin to use as a control against the iPSC-ECs. Aside from HUVECs, MVECs were 

also tested. While there were no significant differences between the iPSC-ECs and MVECs, there 

were significant differences between the MVECs and HUVECs. Previous research demonstrated 

similar revascularization capacities in several studies [43, 44]. The differences could be attributed 

to less favorable culture conditions for the MVECs. Depending on the amount of media used for 

culturing the tissue constructs or the ratio of endothelial cells to fibroblasts, capillary 

morphogenesis can vary significantly [44]. This explanation is further supported by the significant 

difference seen between the MVEC media conditions. MVECs culture in EGM-2MV expressed 

total networks lengths 2-fold greater than their EGM-2 counterparts. Per the supplier’s 

recommendations, MVECs are best cultured in EGM-2MV, an endothelial growth media designed 

for microvasculature. In comparison, the optimum media for HUVECs, per the supplier’s 

recommendation, is EGM-2. Despite lower total network formation in the EGM-2MV HUVEC 

condition, there were no significant difference between the two HUVEC conditions. While 

MVECs are still significantly different than HUVECs in the optimum media, the differences 

between the MVEC conditions demonstrates how sensitive MVECs can be to their environment.  

Similarly, iPSC-ECs tissue constructs were cultured in their recommended media and no 

difference was identified between the two media conditions. HUVECs demonstrated a significant 
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difference when cultured in the iPSC-EC media. One or more components found in this media is 

affecting capillary morphogenesis in HUVECs. However, we are unable to identify the specific 

agents due to the proprietary nature of the supplement added to the iPSC-EC media. However, the 

supplement is known to contain a higher serum concentration. While serum it typically added to 

cell culture media to provide various growth factors and hormones required in cell proliferation 

[50], serum is subject to batch-to-batch variations [50]. The additional serum in the iPSC-EC 

media supplement could potential explain the differences seen between the HUVEC conditions. 

However, it is difficult to conclude a specific reason for the reduction in sprouting, as the additional 

serum could have a multitude of components known to inhibit not only cell growth but vasculature 

formation. 

Ultimately, HUVECs were selected as the EC for comparison against the iPSC-ECs over 

MVECs. First, HUVECs have demonstrated their ability to form robust capillary networks 

irrelevant of culture conditions in the literature [30, 33, 37, 40, 41, 47, 48] as well as the 

experiments conducted in our research. Successful clinical translation will require microvascular 

networks of sufficient quantity to effectively revascularize tissue in a timely manner. To ensure 

the robustness of the iPSC-ECs, we wanted to compare their functional activity against this higher 

standard. 

Two different assays for capillary network formation were used throughout this research. 

One involved coating microcarrier beads with the endothelial cells, henceforth referred to as 

angiogenic assay, to embed in fibrin gels, while the other directly embedded the ECs, henceforth 

referred to as vasculogenesis assay. As discussed previously, the variability of cell coating is an 

issue for the angiogenic assay. Another critique of the angiogenesis assay is whether this assay 

truly represents an angiogenic process. Research has shown that ECs on the microcarrier bead have 
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an apical-basal polarity and deposit components of a basement membrane [51, 52], indicative of 

an angiogenic process. On the other hand, the vasculogenic assay has its own limitations. As 

mentioned, high vessel density can result in improper quantification of vessels as the quantification 

software has difficulty distinguishing vessels from one antoher. In the constant cell density 

experiment, day 7 was selected to avoid this issue. The vasculogenic assay also has more 

macroscopic changes on the fibrin gel, as ECs are spread throughout the gel instead of being 

localized to a bead. The lack of difference between the various cell densities and the respective EC 

condition could be due to increased remodeling of the ECM [53]. Ultimately, the angiogenic assay 

was selected due to a zero point origin for quantification and reduced macroscopic gel changes. 

While iPSC-ECs exhibit quantitative deficiencies in sprouting, the vessel-like structures 

formed displayed characteristics of mature capillaries. Collagen IV and laminin are components 

of the basement membrane of mature capillaries [35], and thus the presence of these components 

is indicative of iPSC-ECs’ ability to form mature capillary networks. Collagen IV was observed 

surrounding the nascent vessels completely, while the laminin coverage was sparser. The spatial 

distribution may be an artifact of confocal imaging, as multiple z-plane images were flattened on 

top of one another to create a single image. Nevertheless, the presence of both collagen IV and 

laminin suggest the iPSC-ECs can deposit a basement membrane. In addition, the NHLFs associate 

with the vessel-like structures formed from iPSC-ECs in a pericyte-like manner, which may serve 

to stabilize nascent vasculature [36, 40]. Importantly, this data suggest iPSC-ECs can recruit and 

signal stromal cells to differentiate into pericytes. Furthermore, the presence of hollow lumens in 

the iPSC-EC capillary-like networks demonstrates their potential to be perfused and, once again, 

suggests iPSC-ECs may be capable of attaining a more mature phenotype. 
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One caveat to interpreting the observed differences in iPSC-ECs’ vasculogenic potential is 

the fact only one source of iPSC-ECs was capable of capillary morphogenesis. While multiple lots 

and sources were tested and showed reduced network formation, it is possible variations in 

proprietary differentiation techniques could influence the potential of these cells. A notable 

difference between HUVECs and iPSC-ECs is the fact the former have been exposed to blood 

flow, while the latter have not. Given the role of shear stresses on vascular development [54], it 

seems reasonable the iPSC-ECs represent an immature EC phenotype that may require 

mechanobiological cues to fully differentiate into ECs capable of robust branching morphogenesis 

in response to angiogenic stimuli.  If indeed this is true, then clearly these cues (or their absence) 

should be considered when interpreting data involving the use of iPSC-ECs for drug discovery and 

toxicity testing.  

A prior study from our group has shown stromal cells of different origins induce ECs to 

form more mature capillaries characterized by less extravascular leakage, the expression of mature 

pericyte markers, and more tightly regulated permeability [56]. Stromal cells other than NHLFs 

may therefore be better able to induce iPSC-EC capillary morphogenesis. Similarly, it may be 

possible to enhance the angiogenic potential of iPSC-ECs using matrix materials other than fibrin. 

Synthetic hydrogels have recently been shown to support iPSC-EC capillary morphogenesis [57, 

58], and controlling their mechanical properties may represent a means to increase the expression 

of vasculogenic and proteolytic genes as recently reported for ECs derived from human embryonic 

stem cells [59]. Collectively, these possibilities suggest key features of the microenvironment may 

be manipulated to enhance the therapeutic potential of the iPSC-ECs. 
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3.5 Conclusions 

This work assessed whether iPSC-ECs form the same robust, stable microvasculature as 

previously documented for other sources of ECs in a well-characterized 3D fibrin-based co-culture 

model of angiogenic sprouting in vitro. Both HUVECs and iPSC-ECs formed vessel-like networks 

with some characteristics of mature microvasculature. However, iPSC-ECs demonstrated a 

significant attenuation in capillary morphogenesis. Additional experiments demonstrated lot 

variation, media composition, and cell number did not account for the reduction in total network 

length. Future in vitro studies are necessary to determine cause of this attenuation, discussed in the 

next chapter, as well as an in vivo investigation of the iPSC-EC vasculogenic potential, discussed 

in Chapter 5. Despite the promise and potential of iPSC-ECs for therapeutic revascularization, 

these findings suggest fundamental phenotypic differences must be understood to enable pre-

clinical and clinical translation. 
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CHAPTER 4 
 

Potential Mechanisms Involved in Vascular Network 
Formation by iPSC-ECs 

 
* Portions of Chapter 4, Copyright © 2018 Springer Nature or its licensors or contributors  

4.1 Introduction 

 Angiogenesis is the process in which new vasculature is formed from pre-existing vessel 

networks [1]. Unlike vasculogenesis, where vasculature forms de novo from the differentiation of 

endothelial progenitor cells into ECs, angiogenesis is a complex process that involves various 

mechanisms and cues from the extracellular matrix (ECM) [1], [2]. The study of angiogenesis is 

of increasing interest to create vascularized tissue constructs [3]. Further understanding of this 

complex process may aid in development of these engineered tissues for the treatment of numerous 

pathologies characterized by ischemia or reduced vessel formation and maintenance [4].  

There are two types of angiogenesis: sprouting angiogenesis and intussusceptive 

angiogenesis [1]. Sprouting angiogenesis is most common and involves a sprout of endothelial 

cells from a parent vessel. Intussusceptive angiogenesis is known as non-sprouting or splitting 

angiogenesis. This type of angiogenesis is a newly discovered process and involves the splitting 

of a pre-existing vessel into two different vessels [5]. While both sprouting and intussusceptive 
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angiogenesis occur in all types of tissues throughout the body, most angiogenic research focuses 

on sprouting angiogenesis [1], [5].  

Sprouting angiogenesis is a multistep process that first involves activation of endothelial 

cells in response to angiogenic cues, such as VEGF [6]. Many factors can trigger these cues, 

including a lack of oxygen within a region in the body, an inflammatory response, or other changes 

in the ECM [7]. This activation leads to the enzymatic degradation of the basement membrane and 

the associated matrix surrounding the interstitial preexisting vessel [1]. The endothelial cells then 

begin to migrate and proliferate towards the angiogenic cue [8]. Elongation of the sprout occurs as 

trailing endothelial cells proliferate and fill up the gap between the non-proliferating tip cell as it 

migrates [9], [10]. Once two tip cells inosculate with one another, lumen formation occurs and 

tubulogenesis begins [11].  The newly formed vessel is stabilized by the formation of a new 

basement membrane and the recruitment of pericytes and vascular smooth muscle cells [12]. 

The ability of endothelial cells to invade the tissue space through the extracellular matrix 

is fundamental to angiogenesis. To achieve this invasion, the extracellular matrix needs to be 

degraded by proteases [8]. In particular, the family of matrix metalloproteinases (MMPs) play a 

pivotal role not only in degradation but regulation of angiogenesis [13]. During the initial steps of 

angiogenesis, MMPs degrade the vessel basement membrane and the surrounding ECM [14]. 

Throughout angiogenesis, MT1-MMP, MMP-2, and MMP-9 continue to facilitate EC invasion 

and proliferation as other MMPs such as MT2-MMP, MT3-MMP, MMP-3, MMP-7, and MMP-

13 help in the release and activation of pro-angiogenic cytokines in the ECM [15]–[19]. After 

invading the matrix, as the new vessel forms, MMPs stabilize these capillaries through mediating 

cross-talk between endothelial cells and pericytes [20], [21]. After the vessel matures, MMPs aid 

in the pruning and regression of the vascular network [22], [23]. 
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Over the past decade, research has further characterized the expression of MMPs and their 

roles in vascular development [13], [14], [16], [22], [24]–[28]. In particular, MMP-2, MMP-9, and 

MT1-MMP, in HUVECs, are directly related in the formation of vessel-like networks [29]–[31]. 

Depending on the stromal cells co-cultured with the HVUECs, sprouting is completely attenuated 

in BMSC-HUVEC co-cultures when MMP inhibitors are introduced. NHLF-HUVEC co-cultures 

exhibit a plasticity, utilizing either MMP or serine protease mediated mechanisms for capillary 

morphogenesis in fibrin [30]. Additional studies involving the knockdown of the expression of 

MMPs revealed endothelial MT1-MMP ,in particular ,is key for vessel network formation in fibrin 

[31].  

Due to the involvement of MMPs in HUVEC capillary morphogenesis, and angiogenesis 

in general, the expectation is that iPSC-ECs must utilize these proteases as well, but limited 

research exists on the mechanisms involved in iPSC-EC capillary morphogenesis. Also, the iPSC-

ECs may not utilize MMPs in the same way as bonafide ECs because that are a sort of “synthetic” 

cell (reprogramed) and never exposed to physiological conditions, such as blood flow. As 

demonstrated in the previous chapter, iPSC-EC capillary morphogenesis was significantly 

attenuated in comparison to HUVECs [32]. Previous studies have has shown the disruption of 

ECM degradation, through increased fibrin concentrations or protease inhibitors, attenuated 

HUVECs’ microvascular formation [30], [33]. If iPSC-ECs require similar mechanisms for 

angiogenesis, differences in protease expression could provide one possible explanation for their 

attenuated response. 

The present study explores whether iPSC-ECs are functionally and mechanistically similar 

to HUVECs. Using the aforementioned in vitro model, endothelial cells were coated on dextran 

microcarrier beads and co-embedded in a 3D fibrin matrix with normal human lung fibroblasts 
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(NHLFs). Functional and mechanistic differences were identified through mechanically or 

chemically inhibiting capillary morphogenesis with elevated fibrin concentrations or protease 

inhibitors respectively. We also examined key differences in matrix proteolysis and identified a 

potentially significant mechanistic difference between iPSC-ECs and HUVECs that may influence 

the translational potential of the former (Fig. 4-1). 

 

 
Figure 4-1: Functional and Mechanistic Assessment Schematic 
 Overview of inhibition and protease research. ECs are coated on microcarrier bead and embedded in varying fibrin 
concentrations with either a monolayer or distributed NHLFs throughout. Separate experiments added chemical 
inhibitors to tissue cultures to assess possible inhibition on capillary morphogenesis. Finally, different EC coated 
beads were harvested from fibrin gels and the RNA, protein, and activity levels were analyzed for specific proteases. 
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4.2 Material and Methods 

 
4.2.1 HUVEC Isolation and Cell Culture 

HUVECs were harvested from fresh umbilical cords obtained from the University of 

Michigan Mott Children’s Hospital via an IRB-exempt protocol and isolated using methods 

previously described [29]. The umbilical cord was rinsed in phosphate buffer saline (PBS) and 

then digested with 0.1% collagenase type I (195 U/ml, Worthington Biochemical, Lakewood, NJ) 

for 20 min at 37°C. The digested product was subsequently washed in PBS, collected, and 

centrifuged (200×G for 5 min). The pellet was resuspended in endothelial growth media (EGM-2, 

Lonza), and the cells were plated in tissue culture flasks and cultured at 37°C and 5% CO2. After 

24 hours, HUVECs were rinsed with PBS to remove any non-adherent cells. Fresh media was 

changed every 48 hours. Cells from passage 3 were utilized for experiments. Normal human lung 

fibroblasts (NHLF, Lonza) were cultured at 37°C and 5% CO2 in Dulbecco’s modified eagle media 

(DMEM, Life Technologies, Grand Island, NY) with 10% fetal bovine serum (FBS). Culture 

media were replaced every 48 hours and cells from passage 6-10 were used in experiments. iCell 

endothelial cells (Cellular Dynamics International, Madison, WI) were cultured at 37°C and 5% 

CO2 in Vasculife VEGF endothelial media (Lifeline Cell Technology, Fredrick, MD) 

supplemented with iCell Endothelial Cell Medium Supplement (Cellular Dynamics International). 

iPSC-EC tissue culture flasks were coated with 35 µg/mL fibronectin (Invitrogen, Carlsbad, CA) 

for 1 hr at room temp prior to plating the cells. Culture media were replaced every 48 hours and 

cells from passage 3 were used in experiments. 
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4.2.2 Microcarrier Bead Assembly 

  Cytodex microcarrier beads (Sigma-Aldrich, St. Louis, MO) were hydrated and sterilized 

in phosphate buffer saline (PBS). Beads were prepared for coating by washing repeatedly with 1 

mL of EGM-2, with time to settle between washes. Endothelial cells were cultured in T-75 flasks 

to 80% confluency and rinsed with PBS before being harvested via 0.25% trypsin incubation for 

5 min at 37 °C and 5% CO2. Trypsin was neutralized using DMEM supplemented with 10% FBS. 

The cellular suspension was centrifuged (200×G for 5 min) and supernatant was aspirated 

immediately. The cell pellet was re-suspended in 4 mL of fresh EGM-2. 10,000 microcarrier beads 

were combined with four million ECs, HUVECs or iPSC-ECs, (5 mL total) in an inverted T-25 

culture flask. Over a 4 hour incubation period, the culture flask was agitated every 30 minutes to 

ensure EC coating of beads. After 4 hours, the cell-bead mixture was added to a new T-25 culture 

flask. Fresh EGM-2 (5 mL) was added to the old flask to remove any remaining beads and 

transferred to the new culture flask. The total volume (10 mL) was incubated overnight in standard 

cell culture position. 

 

4.2.3 Fibrin Tissue Assembly 

 The next day, following bead coating, a fibrinogen (Sigma-Aldrich) solution of the desired 

concentration (2.5 mg/mL, 5 mg/mL, or 10 mg/mL, based on desired experimental conditions) was 

dissolved in an appropriate amount of serum-free EGM-2 and placed at 37 °C in a water bath. The 

solution was sterile filtered through a 0.22 µm syringe filter (Millipore, Billerica, MA). The 

previous day’s cell-bead solution was removed from the culture flask and placed in a 15 mL 

centrifuge tube. After the beads settled, the remaining supernatant was used to remove any 

remaining beads adhering to the culture flask and added to the centrifuge tube. Upon the beads 
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settling, the supernatant was removed and 5 mL of fresh serum-free EGM-2 was added to the cell-

coated beads. The appropriate amount of bead solution (~ 50 beads per well) was added to the 

fibrinogen solution with 5% FBS. Fibroblasts were prepared using a similar rinsing/trypsinization 

procedure as described above. 25,000 NHLFs per well were added to the bead-fibrinogen solution 

or plated on top of each gel after polymerization in our distributed and monolayer conditions 

respectively. 500 µL of the above mixture was added to a single well of a 24-well tissue culture 

plate and polymerized with 10 μL of thrombin (50 U/mL, Sigma-Aldrich). Tissue constructs were 

left undisturbed for 5 min at room temperature before incubation for 30 min at 37 °C and 5% CO2. 

For studies involving inhibitors, the appropriate vehicle or inhibitor(s) solubilized in vehicle was 

mixed with the media prior to addition to the culture. 1 mL of fresh EGM-2 (± protease inhibitors) 

was added on top of the gels following incubation and changed the following day and every other 

day thereafter. The medium was changed to serum free EGM-2 two days prior to harvesting for 

protein and RNA analysis. 

 

4.2.4 Immunofluorescent staining 

After the constructs were cultured for a specified period of time (1, 4, 7, or 14 days), gels 

were rinsed 3x with PBS solution for 5 min at room temperature. Gels were then fixed with 500 

μL of formalin (1 mL of 36.5% Formaldehyde solution (Sigma), 1 mL of PBS, and 8 mL of 

d.d.H2O) for 15 min at 4 °C. Gels were rinsed again 3x with PBS for 5 min, then permeabilized 

with 0.5% Triton-X100 in TBS for 30 min at 4 °C. Following a rinse 3x for 5 min at room 

temperature with 0.1% Triton X-100 in TBS (TBS-T), samples were blocked overnight at 4 °C 

with a 2% Abdil solution (bovine serum albumin (Sigma) dissolved in TBS-T). UEA was dissolved 

in 2% Abdil at the appropriate concentration (Ulex Europaeus Lectin 1 (UEA), 1:100 (Vector 
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Labs, Burlingame, CA)) and 1 mL of this solution was added to each gel for overnight incubation 

at 4 °C. Following a 3x rinse for 5 min at room temperature with TBS-T, gels are incubated with 

TBS-T overnight at 4 °C.  

 

4.2.5 Fluorescent Imaging and Vessel Quantification 

 Vessel formation was assessed at the aforementioned time points.  Fluorescent images 

were captured utilizing an Olympus IX81 equipped with Disc Spinning Unit and a 100 W high-

pressure mercury burner (Olympus America, Center Valley, PA), a Hamamatsu Orca II CCD 

camera (Hamamatsu Photonics, K.K., Hamamatsu City, Japan), and Metamorph Premier software 

(Molecular Devices, Sunnyvale, CA). Imaged beads were chosen at random provided that vessels 

emanating from a given bead did not form anastomoses with vessels from adjacent beads. Images 

from at least 30 beads per condition were captured over three separate trials at low magnification 

(4×) for each independent experiment and processed using the Angiogenesis Tube Formation 

module in Metamorph Premier (Molecular Devices). Each image was segmented and analyzed 

based on any tube-like pattern that falls within a specified minimum and maximum width of each 

segment above a contrast threshold. The total network length, the number of branch points, and 

number of segments were quantified.  

 

4.2.6 Fibrin Gel Lysing 

 For each EC type, the spent media were collected from ten fibrin gels, each containing 

~100 EC-coated beads. Each gel was then washed with PBS. The gels were dislodged from each 

well in the plates using a small spatula to allow for optimal dissolution of the gels. Fibrin gels were 

dissolved using 500 μL of Nattokinase (1000 U/mL, Japan Bio Science Laboratory Co., Osaka 
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City, Japan) and incubated at 37 °C for 45 min with agitation periodically. To ensure complete 

removal of the ECs from the microcarrier beads, the contents of each well were pipetted repeatedly. 

The solution was removed and centrifuged at 200 x G for 5 min to collect the ECs. Supernatant 

was aspirated, and cells were lysed and suspended in RIPA lysis buffer (50 mM Tris-HCl pH 7.6, 

150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS) before storage at -80 

°C. A Bicinchoninic acid assay (Pierce Biotechnology, Rockford, IL) was utilized to determine 

the protein concentration of the lysed cells and supernatant. 

 

4.2.7 Western Blotting Analysis 

 Western blot analysis of the levels of MT1-MMP was conducted on the lysed tissue 

samples, while the levels of MMP-2, and MMP-9 were assessed in the spent media. After boiling, 

equal amounts of protein (25 µg) from the respective samples were electrophoresed in a 10% Tris-

glycine gel (Invitrogen) under reducing conditions and transferred to a PVDF membrane. Blots 

were probed in a 5% Abdil solution with mouse monoclonal antibodies for human MMP-2 

(1:1000, Abcam, Cambridge, UK) and human MMP-9 (1:1000, Abcam) or rabbit monoclonal 

antibodies for human MT1-MMP (1:2000, Abcam). Blots were incubated for two hours at 25 °C 

with gentle agitation and subsequently washed 6x with TBS-T for 5 min. After washing, the 

membrane was incubated in TBT-T with horseradish peroxidase-conjugated anti-mouse secondary 

antibody (1:10,000, Pierce Biotechnology) or horseradish peroxidase-conjugated anti-rabbit 

secondary antibody (1:10,000, Pierce Biotechnology) and goat anti-human GAPDH (1:10000, 

Santa Cruz Biotechnologies, Santa Cruz, CA). Protein expression was visualized using an 

enhanced chemiluminescence detection system. Bands were identified by comparing to a 

molecular mass ladder (Pierce Biotechnology). The resulting blots were scanned and imported into 
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Image J (National Institutes of Health, Bethesda, MD) in order to perform densitometry. 

Background was subtracted using the built-in background subtraction function in Image J to 

normalize the background between samples. Resulting intensity values were then normalized to 

the HUVEC condition for each time point. Normalized values for each condition from three 

separate experiments were then averaged to allow for statistical comparisons. 

 

4.2.8 Gelatin Zymography 

For gelatin zymography, precast Novex zymogram gels (10% Tris-Glycine gel with 0.1% 

gelatin, Invitrogen, Carlsbad, CA) were loaded with 15 µg of protein per condition and separated 

under nonreducing conditions. The gels were then washed twice for 30 min in a 50 mM Tris-HCl 

(pH 7.5), 5 mM CaCl2, and 2.5% Triton X-100 solution. After washing, gels were rinsed in 

incubation buffer (50 mM Tris-HCl (pH  7.5), 5 mM CaCl2, and 1% Triton X-100) for 10 min at 

37 °C with gentle agitation. The rinse was replaced with fresh incubation buffer and incubated for 

20 h at 37 °C. Gels were then Coomassie stained for 1 h and destained for 15 min twice in 10% 

acetic acid and 40% methanol. MMP-2 and MMP-9 bands were identified by comparing to a 

molecular mass ladder (Pierce Biotechnology). The resulting blots were scanned and imported into 

Image J (National Institutes of Health, Bethesda, MD) in order to perform densitometry. Bands 

were processed as described previously for the Western Blot. 

 

4.2.9 Reverse Transcription and quantitative Polymerase Chain Reaction  

Total RNA was purified from RIPA buffer lysed samples using the RNeasy kit (Qiagen, 

Valencia, CA) per manufacturer’s protocol and quantified using a Nanodrop ND-1000 (Thermo 

Fisher Scientific, Rochester, NY). First-strand cDNA templates were synthesized from equal 
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amounts of total RNA for each sample using the ImProm-II Reverse Transcription System 

(Promega; Madison, WI), also according to manufacturer’s protocol. Quantitative PCR (qPCR) 

was performed using a 7500 Fast Real-Time PCR System and TaqMan Gene Expression Master 

Mix (Applied Biosystems, Carlsbad, CA). Predesigned qPCR primers for human MMP-2, MMP-

9, MT1-MMP, and 18s rRNA were selected from the TaqMan Gene Expression Assays database 

(Applied Biosystems). The ΔΔCT method was used to assess the relative quantity of each target 

gene. 

 

4.2.10 Other reagents used 

 The broad spectrum MMP inhibitor BB2516 (Tocris Bioscience, Ellisville, MO) was used 

at a concentration in 10-fold excess (0.1-0.2 μM) of its IC50 against MMP-2, MMP-9, and MT1-

MMP [34]. The plasmin inhibitor aprotinin (Sigma-Aldrich) was used at a concentration greater 

than two-fold excess (22 nM) of its IC50 against plasmin. Equal volumes of dimethyl sulfoxide 

(DMSO, Sigma-Aldrich) were used as the vehicle control for these experiments. 

 

4.2.11 Statistical Analysis 

 Statistical analyses were performed using StatPlus (AnalystSoft Inc.,Walnut, CA). Data 

are reported as mean ± standard error of mean (SEM). One- or two-way analysis of variance 

(ANOVA) with a Bonferroni post-test was used to assess statistical significance between data sets. 

Statistical significance was assumed when p<0.05. 
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4.3 Results 

 

4.3.1 Distributing stromal cells throughout matrix abrogates sprouting 

decreases for iPSC-EC capillary network formation in elevated fibrin 

concentrations. 

Previous research has shown that elevated fibrin concentrations have an inhibitory effect 

on HUVEC capillary morphogenesis [33]. To investigate any functional similarities between 

iPSC-EC vasculature, ECs were cultured on microcarrier beads within 2.5 mg/mL, 5 mg/mL, or 

10 mg/ml fibrin gels overlaid with a NHLF monolayer. Extensive capillary networks stained for 

UEA were formed with either HUVECs (Fig. 4-2.1A) and iPSC-ECs (Fig. 4-2.1D) by day 14. 

Increasing matrix density to 5 mg/mL inhibited network formation slightly for both ECs (Fig. 4-

1.2B, E), while greatly inhibiting sprouting for both ECs in 10 mg/mL matrices (Fig. 4-2.1C and 

2.1F). Quantification of these networks, normalized to their respective 2.5 mg/mL condition, 

demonstrated a significant decrease in total network length (Fig. 4-2.2G), number of vessel 

segments (Fig. 4-2.2H), and number of vessel branch points (Fig 4-2.2I) between both ECs 2.5 

mg/mL conditions and their respective 10 mg/mL condition. Research suggests that for HUVECs 

distributing the fibroblasts throughout the matrix abrogated the inhibitory effect of increased fibrin 

concentration, primarily by overcoming diffusion limitations imposed on ECs in denser matrices 

with stromal cell monolayers [33]. Thus, to assess whether the same effect is seen with iPSC-ECs 

undergoing capillary morphogenesis, we distributed fibroblasts throughout the matrix embedded 

with EC-coated microcarrier beads. IF staining for UEA revealed a notable increase in network 

formation for both EC types across all matrix densities (Fig. 4-2.1A’-F’). Quantification of total 

network length (Fig. 4-2.2G), number of vessel segments (Fig. 4-2.2H), and number of vessel 
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branch points (Fig. 4-2.2I), normalized to their respective 2.5 mg/mL condition, no longer 

decreased significantly with increasing fibrin densities. Collectively, the inhibition of 

morphogenesis through elevated matrix density, and the subsequent abrogation of inhibition by 

direct co-culture of ECs with stromal fibroblasts, demonstrates iPSC-EC vascular networks are 

functionally regulated in a manner similar to HUVEC networks. 

 

 

Figure 4-2.1: Distributing stromal cells throughout the matrix abrogates reductions in EC sprouting caused by elevated 
fibrin concentrations for both HUVECs and iPSC-ECs. [Rep. Images]  
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Fluorescent images of UEA-stained HUVEC (A-C,A-C’) or iPSC-EC (D-F,D’-F’) coated microcarrier beads with (A-F) 
overlaying monolayer or (A’-F’) distributed NHLFs. Beads are embedded in (A,A’,D,D’) 2.5 mg/mL, (B,B’,E,E’) 5 mg/mL, 
(C,C’,F,F’) 10 mg/mL fibrin matrices. Scale bar = 200 µm. 
 
 
 
 
 

 

 
Figure 4-2.2: Distributing stromal cells throughout the matrix abrogates reductions in EC sprouting caused by elevated 
fibrin concentrations for both HUVECs and iPSC-ECs. [Quantification]  
A total of 30 beads over three separate experiments at day 14 were quantified, averaged, and normalized to the respective 2.5 
mg/mL stromal cell distribution of each EC type for (G) total capillary network length, (H) number of segments, and (I) number 
of branch points. *p<0.05 and **p<0.01 when comparing the indicated condition to the 2.5 mg/mL monolayer condition. Error 
bars indicate ±SEM 
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4.3.2 Capillary morphogenesis by iPSC-ECs involves both plasmin-mediated 

and MMP-mediated mechanisms. 

Proteases play a key role in degrading and remodeling the ECM in capillary morphogenesis 

[37-39]. Our prior findings demonstrate capillary morphogenesis of HUVEC-NHLF co-cultures 

in fibrin gels proceeds in a manner that involves both MMP- and plasmin-mediated fibrinolysis 

[30]. To assess the involvement of these proteases in iPSC-EC capillary morphogenesis, protease 

inhibitors dissolved in a vehicle (DMSO) were added to cultures of 2.5 mg/mL fibrin gels 

embedded with EC-coated microcarrier beads and distributed fibroblasts. Gels were fixed, stained 

for UEA, and imaged at day 14 for both HUVECs (Fig. 4-3.1A-E) and iPSC-ECs (Fig. 4-3.1A’-

E’). The addition of a broad spectrum MMP inhibitor, BB2516, at concentrations of 0.1 µM or 0.2 

µM, did not significantly reduce sprouting in iPSC-EC cultures compared to the vehicle control 

(Fig. 4-3.2F).  The resulting similarities in network formation is primarily attributed to no 

significant change in the number of branch points (Fig. 4-3.2G) or number of segments (Fig. 4-

3.2H). While spouting was significantly reduced with 0.2 µM of BB2516 in HUVEC cultures (Fig. 

4-3.2F), spouting was not completely eliminated, which is consistent with our previous findings 

[40]. For both HUVECs and iPSC-ECs, the serine protease inhibitor aprotinin, also did not alter 

network formation. However, the dual application of BB2516 (0.1 µM) and aprotinin (22 nM) 

completely eliminated network formation (Fig. 4-3.2E,E’,F), branching (Fig. 4-3.2G), and 

segmentation (Fig. 4-3.2H) in both EC types. In sum, these data demonstrate iPSC-ECs undergoing 

capillary morphogenesis stimulated by fibroblasts in 3D fibrin gels with similar proteolytic 

dependencies as HUVECs. 
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Figure 4-3.1: Capillary morphogenesis by iPSC-ECs and HUVECs proceed via similar preoteolytic mechanisms. [Rep. 
Images]  
HUVEC (A-E) or iPSC-EC (A’-E’) coated microcarrier beads were embedded in a fibrin matrix dispersed with NHLFs. Shown 
are fluorescent images stained for UEA at day 14 of the capillary network formation from cultures treated with (A,A’) vehicle 
(DMSO), (B,B’) 0.1 µM, or (C,C’) 0.2 µM of the broad spectrum MMP inhibitor BB2516, (D,D) 22 nM of the serine protease 
inhibitor aprotinin, or with a combination of BB2516 (0.1 µM) and aprotinin (22 nM) (“dual”). Scale = 200 µm.  
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Figure 4-3.2: Capillary morphogenesis by iPSC-ECs and HUVECs proceed via similar preoteolytic mechanisms. 
[Quantifacation] 
 (F) Total capillary network length, (G) number of segments, and (H) number of branch points from a minimum of 30 beads over 
three separate experiments at day 14 were quantified, averaged, and normalized to the respective EC vehicle control. * p<0.05 
and ** p<0.01 when comparing the indicated condition to the vehicle control. @ p<0.05 and @@ p<0.01 when comparing the 
indicated condition to the 0.1 µM BB2516 condition. # p<0.05 and ## p<0.01 when comparing the indicated condition to the 0.2 
µM  BB2516 condition. $ p<0.05 and $$ p<0.01 when comparing the indicated condition to the aprotinin condition. Error bars 
indicate ±SEM. 
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4.3.3 iPSC-EC/NHLF co-cultures show differences in MMP RNA expression, 

compared to HUVEC/NHLF co-cultures. 

The expression of MMPs, specifically MMP-2, MMP-9, and MT1-MMP, in HUVECs is 

directly related to the formation of vessel-like networks [29]–[31]. Knockdown of MT1-MMP 

expression, in particular, attenuates sprouting for HUVECs in fibrin [31]. Despite similar 

dependencies on MMP- and plasmin-mediated mechanisms revealed through the use of protease 

inhibitors, we sought to compare the expression levels of MMPs between iPSC-EC and HUVEC 

co-cultures as a potential explanation for the attenuated sprouting in the case of the former. qPCR 

demonstrated no significant differences in the RNA expression levels of MMP-2 (Fig. 4-4A) and 

MT1-MMP (Fig. 4-4B) across all time points. However, MMP-9 levels (Fig. 4-4C) were 

significantly different in iPSC-EC co-cultures. At earlier times points (day 4), iPSC-EC co-cultures 

show a ~3.5 fold increase in RNA expression, while at later time points (day 14), a ~4 fold 

reduction in RNA expression. 
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Figure 4-4: iPSC-ECs co-cultures show differences in MMP RNA expression levels compared to HUVEC co-cultures.  
The expression levels of key matrix metalloproteases [(A) MMP-2, (B) MT1-MMP, and (C) MMP-9] involved in capillary 
morphogenesis were quantified from iPSC-EC/NHLF co-cultures via qPCR. Expression levels were averaged across three separate 
experiments at the indicated time points and normalized to HUVEC/NHLF co-culture controls.  * p<0.05 when comparing the 
indicated time point to the HUVEC control. Error bars indicate ±SEM. 
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4.3.4 iPSC-EC/NHLF co-cultures show differences in MMP protein expression, 

compared to HUVEC/NHLF co-cultures. 

We next characterized MMP protein expression levels by Western blotting. MMP-2 (Fig. 

4-5A), MT1-MMP (Fig. 4-5B), and MMP-9 (Fig. 4-5C) were all expressed at the protein level in 

iPSC-EC co-cultures. Full Western Blot images with loading controls can be seen in Supplemental 

Fig. 4-S1. Semi-quantification, normalized to a GAPDH loading control, of the band intensities 

revealed no significant differences in protein expression for MMP-2 (Fig. 4-5D), MT1-MMP (Fig. 

4-5E), and at day 4 for MMP-9 (Fig. 4-5F). However, at later time points (day 7 and day 14), the 

protein expression levels of MMP-9 were significantly reduced in iPSC-EC co-cultures (~25% in 

both conditions), consistent with the qPCR results.  

 

 

 

Figure 4-5.1: iPSC-EC/NHLF co-cultures show differences in MMP protein expression levels compared to HUVEC/NHLF 
co-cultures. [Rep. Images] 
Representative images of Western blots for (A) MMP-2, (B) MT1-MMP, (C) MMP-9 from HUVEC or iPSC-EC coated 
microcarrier beads co-cultured with NHLFS at various time points 
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Figure 4-5.2: iPSC-EC/NHLF co-cultures show differences in MMP protein expression levels compared to HUVEC/NHLF 
co-cultures. [Quantification] 
Images were quantified and averaged across three separate experiments via scanning densitometry. Protein levels for (D) MMP-2, 
(E) MT1-MMP, and (F) MMP-9 were normalized to their respective HUVEC co-culture controls.  * p<0.05 when comparing the 
indicated time point to the HUVEC control. Error bars indicate ±SEM. Full (uncropped) Western blot images are shown in 
supplemental information (Fig. 4-S1). 
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4.3.5 iPSC-EC/NHLF co-cultures show differences in MMP activity levels, 

compared to HUVEC/NHLF co-cultures. 

Finally, the proteolytic activities of the MMPs in question were investigated using gelatin 

zymography. MMP-2 (Fig. 4-6A) and MMP-9 (Fig. 4-6B) both degraded a gelatin matrix across 

all time points in iPSC-EC co-cultures and HUVEC co-cultures. Full gelatin zymography can be 

seen in Supplemental Fig. 4-S2. Semi-quantification via densitometry indicated no discernible 

differences in both pro- (Fig. 4-6C) and active- (Fig. 4-6E) forms of MMP-2. While there were no 

significant differences in pro- (Fig. 4-6D) and active- (Fig. 4-6F) forms of MMP-9 at earlier time 

points (day 4 and day 7), both forms of MMP-9 were significantly less active at day 14 in iPSC-

EC co-cultures. Collectively, these data not only demonstrate the expression and activity of MMP-

9 is significantly different in iPSC-EC co-cultures, but offers one potential mechanism to explain 

the attenuated capillary morphogenesis by iPSC-ECs.  

 

 

 

 

 

 

 

 



 

 116 

 

 

Figure 4-6: iPSC-EC/NHLF co-cultures show differences in the levels of MMP activity compared to HUVEC/NHLF co-
cultures.   
HUVEC or iPSC-EC coated microcarrier beads co-cultured with NHLFs were digested and pooled to assay for activity via gelatin 
zymography. Representative images of zymograms performed at various time points for (A) MMP-2, and (B) MMP-9. A standard 
for MMP-2 and -9 was used to identify bands for pro-MMP-9 (92kDa), active MMP-9 (88kDa), pro-MMP-2 (72kDa), intermediate 
MMP-2 (64kDa), and active MMP-2 (62kDa). Images were quantified  and averaged across three separate experiments via scanning 
densitometry. The levels for (C) pro-MMP-2, (D) pro-MMP-9, (E) active-MMP-2, and (F) active-MMP-9 were normalized to their 
respective HUVEC/NHLF co-culture controls.  * p<0.05 when comparing the indicated condition to the HUVEC control. Error 
bars indicate ±SEM. Images were set to 8-bit color and contrast enhanced in an identical manner for each gel prior to quantification. 
Representative enhanced images are shown here. Full unedited gelatin images are shown in supplemental information (Fig. 4-S2)  
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Supplemental Fig. 4-S1:  
Full Western blot images of protein transcript levels of MMP-2, MT1-MMP, MMP-9 from HUVEC or iPSC-EC coated 
microcarrier beads co-cultured with NHLFS at various time points. Two protein standards were used, one for visualization during 
transfer and the other for visualization via chemiluminescence. 
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Supplemental Fig. 4-S2:  
Full Gelatin Zymograpy images of protein activity levels of MMP-2, MT1-MMP, MMP-9 from HUVEC or iPSC-EC coated 
microcarrier beads co-cultured with NHLFS at various time points 
 
 
 
 

4.4 Discussion 

Although current tissue engineering approaches have potential to revascularize ischemic 

regions, limitations of abundant sourcing and immunorejection inhibit their clinical translation. 

iPSC-ECs are of increasing interest because of their potentially limitless sourcing and autologous 

nature. In chapter 3, using a 3D fibrin-based in vitro model, we demonstrated that capillary 

morphogenesis by iPSC-ECs was significantly attenuated when compared to HUVECs [32]. While 

prior studies have shown that iPSC-ECs are capable of forming vessel-like structures [34], [35], 

there is little evidence regarding possible differences in vessel formation in comparison to widely 

utilized EC sources. Furthermore, there is little to no research on the iPSC-ECs’ functional abilities 

and mechanisms involved in capillary morphogenesis. This study explored the functional and 

mechanistic similarities in vitro between iPSC-ECs and HUVECs in the formation of capillary 

networks as a potential explanation for the iPSC-ECs’ reduced sprouting capability. Despite 

similar functional phenotypes and proteolytic remodeling mechanisms, we have shown that MMP-
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9 expression is significantly reduced for iPSC-ECs co-cultured with NHLFs in comparison to 

HUVECs. 

The inhibition, and subsequent abrogation of inhibition, of iPSC-EC capillary 

morphogenesis in fibrin gels of elevated concentrations demonstrates the mechanistic similarities 

in the ways both HUVECs and iPSC-ECs form vessel-like structures. In ECMs of higher density, 

transport of proangiogenic cues from stromal fibroblasts to ECs is inhibited, which significantly 

affects capillary morphogenesis when the fibroblasts are cultured atop gels at a fixed distance from 

the underlying ECs [24]. Distributing the stromal cells throughout the gel reduces these transport 

limitations, allowing for greater network formation. The data were normalized to their respective 

2.5 mg/mL condition to highlight the similarities between iPSC-ECs and HUVECs, since the 

response of iPSC-ECs was otherwise dwarfed in magnitude relative to that of HUVECs on a non-

normalized scale. Qualitatively, we also observed wider vessels formed with increased fibrin 

concentrations, a response that may be attributable to the reduced porosity of the matrix as 

increased densities are less porous [29]. Decreased pore size may cause cells to proliferate radially 

expanding laterally into the matrix. Another possibility is that an increase in ligand binding density 

can exert morphogenetic effects on these cells that are abrogated by signaling from the stromal 

cells [36]. Regardless, the effects of fibrin concentration and stromal cell distribution on network 

formation demonstrate the phenotypic similarities between the two EC populations. 

Broad spectrum protease inhibition revealed iPSC-EC/NHLF co-cultures utilize 

proteolytic mechanisms similar to those employed by HUVEC/NHLF co-cultures. The fibroblast-

mediated sprouting was only completely attenuated through dual inhibition of both MMPs and 

serine proteases, which is consistent with findings we previously reported for HUVEC/NHLF co-

cultures [30]. This proteolytic plasticity could be explained by the relationship between plasmin 
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and MMPs [37] or possibly a third type of extracellular protease involved in the morphogenic 

process [13]. Of the two doses of MMP inhibitor (BB2516) we tested, the higher dose (0.2 µM) 

did significantly reduce total network lengths in the HUVEC/NHLF co-cultures compared to 

vehicle controls, consistent with our prior findings [13], but did not significantly affect the iPSC-

EC/NHLF co-cultures.  Of course, the overall sprouting of the latter cultures is significantly less 

than the former, and thus any subtle effects of the protease inhibitors would be more difficult to 

detect. 

The experiments performed with elevated fibrin concentration and the effect of protease 

inhibitors suggested that iPSC-ECs and HUVECs utilize similar fibrinolytic mechanisms. 

However, we hypothesized that differential quantities and/or activities of key MMPs may underlie 

the attenuated iPSC-ECs sprouting relative to HUVECs. qPCR showed the expression levels of 

mRNAs encoding for MMP-2 and MT1-MMP were similar between HUVEC and iPSC-EC 

cultures and did not vary significantly with time. By comparison, MMP-9 mRNA levels were 

significantly higher in iPSC-EC than HUVEC cultures initially, but then dropped off dramatically 

over the time course of the sprouting assay to become significantly lower than the HUVEC 

expression level by day 14.  These findings were mirrored in terms of protein levels and enzymatic 

activities, with the levels and activities of MMP-9 significantly less in iPSC-EC cultures by day 

14 relative to HUVECs. While there is compelling evidence that the MT-MMPs may be the only 

essential MMPs for capillary morphogenesis [38], multiple MMP family members, including 

MMP-9, have been implicated in capillary invasion in fibrin gels [39] and there is evidence MT1-

MMP regulates MMP-9 specifically [40]. Therefore, it is entirely plausible the reduced MMP-9 

expression and/or activity contributes to the inability of the iPSC-ECs to form capillary-like 

networks of the same magnitude as HUVECs. While molecular genetics tools to knock-down 
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and/or over-express MMP-9 in iPSC-EC may offer a more definitive interpretation of our findings 

here, the key focus of this study was to compare iPSC-ECs head-to-head with an established EC 

source.   

It is also important to note our assessment of differences in the repertoire of proteolytic 

enzymes was performed in EC/NHLF co-cultures. While it is possible, though technically 

challenging, to separate the relative contributions of these two populations of cells, we elected not 

to do so given the importance of reciprocal cross-talk between ECs and their stromal support cells 

[41] and our intention to co-deliver both cell types in vivo for revascularization applications. 

Finally, while we focused on proteolytic differences between iPSC-ECs and HUVECs to partially 

explain the attenuation of sprouting, we of course cannot rule out other possibilities. 

 

4.5 Conclusions 

In summary, these studies assessed whether iPSC-ECs utilize similar mechanistic 

pathways previously documented for other sources of ECs in a well-characterized 3D fibrin-based 

co-culture model of angiogenic sprouting in vitro. Both HUVECs and iPSC-ECs capillary network 

formation were attenuated in elevated fibrin concentrations. Subsequent abrogation of spouting 

through distributing stromal cells throughout the matrix demonstrated functional similarities 

between the two populations. Proteolytic inhibition revealed iPSC-ECs utilized similar proteolytic 

invasion mechanisms. Furthermore, we identified differences in the RNA, protein, and activity 

expression levels of MMP-9 as a possible mechanistic explanation for the iPSC-EC attenuation 

documented in earlier chapters. Future in vivo studies, discussed in the next chapter, are necessary 

to determine if this attenuation is only an in vitro phenomenon. Ultimately, these findings suggest 
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an additional understanding of the fundamental mechanistic functions and phenotypic differences 

is necessary to reach the full potential of the iPSC-ECs. 
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CHAPTER 5 
 

Assessing the Ability of iPSC-ECs to Form Functional 
Microvasculature in vivo 

 
 
5.1 Introduction 

 Cardiovascular diseases (CVDs) are the leading cause of death worldwide with total yearly 

health expenditures and costs associated with lost productivity exceeding $300 billion and rising 

[1]. Many of these patients suffer from atherosclerosis, characterized by hardening of the vessels 

and typically caused by buildup of a cholesterol-rich plaque in an artery [2]. Atherosclerotic lesions 

can cause ischemia, a reduction/obstruction of oxygenated blood supply to tissues, which can lead 

to tissue damage and eventually necrosis [3]. With the number of deaths and costs attributed to 

CVD expected to rise over the next decade, there is an urgent clinical need for new approaches to 

revascularize ischemic tissues to prevent necrosis, amputations, and ultimately death [4], [5]. 

 A variety of therapeutic strategies have been investigated in recent years to direct 

angiogenesis. Growth factor delivery has been extensively studied to promote endothelial cell 

recruitment and eventually increase vessel formation [6], [7]. However, various challenges plague 

growth factor delivery therapies, including protein instability, the need for precision delivery, and 

rapid degradation [8]. Alternative tissue engineering approaches have attempted to revascularize 
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ischemic tissues using cell transplantation [9], [10]. Co-delivering endothelial cells (ECs) with 

stromal cells embedded in a hydrogel biomaterial promotes the formation of stable, mature 

microvasculature [11]–[14]. However, cell-based approaches have their own set of limitations, 

including potential immunorejection by the host. Perhaps the most critical challenge that must be 

overcome is the need for a plentiful cell source to supply the billions of cells required for clinical 

translation [15], [16]. 

 A great deal of enthusiasm emerged with the creation of induced pluripotent stem cells 

(iPSC). Using four transcription factors [Oct4, Sox2, Klf4, and cMyc (OSKM)], adult somatic 

cells can be reprogramed into a pluripotent stem-cell like state [17]. Because iPSCs are 

dedifferentiated from a potentially autologous somatic cell type, using them as a cell source not 

only minimizes ethical concerns associated with other pluripotent cell sources but may also 

potentially bypass immunological concerns in clinical applications [18]. Even if derived from 

allogeneic sources, iPSCs and their theoretical ability to proliferate indefinitely could ultimately 

overcome biomanufacturing hurdles by providing a large reservoir of cells necessary for human 

translation [19]. 

 Endothelial-like cells, characterized by their expression of endothelial cell markers, can be 

differentiated from iPSCs [20], [21]. Their functional abilities to form vessel-like networks both 

in vitro and in vivo have also been described [22]–[24]. However, because the potential of these 

cells has been lauded without appropriate benchmarking against other endothelial cell sources, we 

recently investigated the vasculogenic potential of iPSC-ECs in a well-established 3D cell culture 

model of sprouting angiogenesis [25]. The quantity, quality, and function of the vessel-like 

networks formed by these cells were compared to human umbilical vein endothelial cells 

(HUVECs), another endothelial cell source with a proven capability of capillary morphogenesis.  
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Our worked, seen in Chapter 4, revealed sprouting by iPSC-ECs was significantly reduced (vs. 

HUVECs) and identified differences in MMP-9 expression as a possible mechanistic explanation 

[25]. Despite highlighting these differences, the question remains if this attenuation is only an in 

vitro phenomenon. 

 

 In this present study, we compared the in vivo vascularization potential of iPSC-ECs head-

to-head with HUVECs. Endothelial cells (either iPSC-ECs or HUVECs) and normal human lung 

fibroblasts (NHLFs) were co-injected subcutaneously within a fibrin matrix into the dorsal flank 

of SCID mice. Vessel formation was characterized by quantifying vessel density, vessel perfusion, 

and markers of vessel maturity. Our findings demonstrate iPSC-ECs are unable to form vessels of 

equal quality and quantity compared to an established EC source. 

 

5.2 Methods 

 
 
5.2.1 Cell culture 

 Human umbilical vein endothelial cells (HUVECs) were harvested from fresh umbilical 

cords following a previously established protocol [26]. HUVECs were plated with endothelial 

growth media (EGM-2, Lonza, Walkersville, MD) in tissue culture flasks and cultured at 37 °C 

and 5% CO2. Media were changed every 48 hours and cells were used at passage 3. Normal human 

lung fibroblasts (NHLFs, Lonza) were cultured at 37 °C and 5% CO2 in Dulbecco’s modified eagle 

media (DMEM, Life Technologies, Grand Island, NY) with 10% fetal bovine serum (FBS). 

Culture media were replaced every 48 hours and cells from passage 6–10 were used in 

experiments. iCell endothelial cells (Cellular Dynamics International, Madison, WI), referred to 
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as iPSC-ECs, were cultured at 37 °C and 5% CO2 in Vasculife VEGF endothelial medium (Lifeline 

Cell Technology, Fredrick, MD) supplemented with iCell Endothelial Cell Medium Supplement 

(Cellular Dynamics International), per the manufacturer’s instructions. iPSC-EC tissue culture 

flasks were coated with 35 µg/mL fibronectin (Invitrogen, Carlsbad, CA) for 1 hr at room 

temperature prior to plating the cells. Culture media were replaced every 48 hours and cells from 

passage 3 were used in experiments. 

 

 

Figure 5-1: in Vivo Subcutaneous Schematic  
ECs are co-injected with NHLFs in a 2.5mg/mL fibrin solution into the dorsa flank of SCID mice. Implants are harvested, 
processed, and embedded in paraffin for sectioning, Tissue sections are IHC stained for CD31 to visualize vessel formation 

 
 
 
5.2.2 Sample Preparation for Subcutaneous Injection 

A 2.5 mg/mL bovine fibrinogen (92% clottable, Sigma-Aldrich, St. Louis, MO) solution 

was prepared by dissolving the protein in an appropriate amount of serum-free EGM-2 and placed 
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in a water bath at 37 °C. The solution was sterile filtered through a 0.22 µm syringe filter 

(Millipore, Billerica, MA). Cells were cultured in T-75 flasks to 80% confluency and rinsed with 

PBS before being harvested via 0.25% trypsin incubation for 5 min at 37 °C and 5% CO2. Trypsin 

was neutralized using DMEM supplemented with 10% FBS. The cellular suspension was 

centrifuged (200 × G for 5 min) and supernatant was aspirated immediately. Cells were 

resuspended at a 1:1 ratio of ECs:NHLFs in the previously prepared fibrinogen solution at a final 

concentration of 4 million cells/mL, totaling 2 million cells per injection (500 μL). Immediately 

before injection, 5% FBS and 12 μL of thrombin solution (50 U/mL; Sigma-Aldrich) were added 

to the 500 μL of fibrinogen–cell solution. Acellular controls containing fibrinogen, FBS, and 

thrombin were also prepared. 

 

5.2.3 Subcutaneous Injections 

 All animal procedures were performed in accordance with the NIH guidelines for 

laboratory animal usage and approved by the University of Michigan’s Institutional Animal Care 

and Use Committee (IACUC). Male CB17/SCID mice (6-8 weeks old; Taconic Labs, Hudson, 

NY) were used for all experiments. The mice were allowed to acclimate for ≥72 hours after arrival. 

Prior to surgery, mice were weighed and marked with permanent marker to identify experimental 

conditions. The mice were then anesthetized in an induction chamber with 5% isoflurane at 1L/min 

O2 (Cyogenic Gases) using a V-1 Tabletop isoflurane vaporizer system equipped with an Active 

Scavenging Unit (VetEquipt, Livermore, CA). Once mice were fully anesthetized, they were 

moved to a surgery bench and fitted with an active scavenging nose cone. The isoflurane level was 

reduced to 1-1.5%, depending on weight, during surgery to maintain anesthesia. Ophthalmic 

ointment (Puralube® 499 vet ointment, Dechra, Overland Park, KS) was added to the eyes of each 
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mouse. An analgesic, carprofen (5 mg/kg), was then administered to each animal via 

intraperitoneal injection. The dorsal flanks of each mouse were shaved and depilatory agent (Nair, 

Fisher Scientific, Pittsburg, PA) was applied to remove any remaining hair. Ethanol and betadine 

(Thermo Fisher Scientific, Fremont, CA) were applied alternating three times each to sterilize the 

injection site. The injection samples were then prepared, as described above. Each solution was 

rapidly mixed and drawn into a 1-mL syringe fitted with a BD PrecisionGlideTM 20G needle. The 

mixture (500 μL) was immediately injected subcutaneously on the dorsal flank of the mouse, with 

two implants per animal, one on each flank. The needle was left in the injection site for 1 min to 

allow for the solution to polymerize. Mice were then placed in a recovery cage to recover from the 

anesthesia, and then returned to their normal housing environment. Mice were monitored daily 

post-surgery. A total of 18 mice (4 implants/ cell condition x 3 time points x 3 cell conditions x 2 

implants/mouse) were used for this study. Bilateral implants were injected per animal, one on each 

flank in a randomized fashion. 

 

5.2.4 Implant retrieval post-processing 

 Animals were euthanized on day 4, day 7, or day 14 after implants were injected. The 

implants were surgically excised from each mouse via gross dissection and placed immediately in 

Z-fix (Fisher Scientific). After a 24 hour fixation, implants were washed 3x in PBS and stored in 

70% ethanol at 4 °C until further processing. Excess tissue was then removed from the implant 

using forceps and scissors, and samples were placed in embedding cassettes (UNISETTE cassette 

with lid, Simport, Canada), dehydrated, and embedded in paraffin using a KD-BMII tissue 

embedding center (IHC World, Ellicott City, MD). For further analysis, embedded samples were 
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sectioned (6 μm thick sections) with a Thermo Scientific HM 325 rotary microtome and placed on 

glass slides with 6 sections per slide. 

 

5.2.5 Hematoxylin and Eosin Staining 

 Paraffin sections on glass slides were dewaxed in xylene baths 2x for 5 minutes. Slides 

were then washed 2x in each decreasing ethanol concentration (100%, 95%, 70%) bath for 3 

minutes. Lastly, slides were rehydrated in deionized water for 3 minutes prior to staining with 

Mayer’s hematoxylin (Electron Microscopy Sciences) for 15 minutes. Slides were then rinsed in 

tap water for 15 minutes and briefly placed in 95% ethanol for 30 seconds. Following, slides were 

immersed in Eosin Y (Sigma) for 1 minute and dehydrated twice in each increasing ethanol 

concentration (95%, 100%) bath for 1 minute. Samples were cleared by washing in xylene baths 

2x for 3 minutes. Toluene mounting solution (Permount, Thermo Fisher Scientific) was added to 

cover slips prior to placing on top of each slide. Slides were left to dry before imaging. 

 

5.2.6 Immunohistochemical Staining 

 Implant region locations were first approximated with the aforementioned H&E staining.  

Serial sections were deparaffinized and rehydrated following the same protocol described for 

hematoxylin and eosin staining. Slides were then steamed in a vegetable steamer (95-99 °C) for 

35 minutes in an antigen retrieval solution (Dako, Carpinteria, CA) and equilibrated to room 

temperature for 30 minutes. Slides were washed 3x in 0.1% Tween 20 tris-buffered saline (TBS-

T) for 2 minutes/wash while changing the baths for every wash. Excess moisture was removed 

from each slide and the area around the tissue was marked with an ImmEdge pen (Vector 

Laboratories, Inc., Burlingame, CA). The Dako EnVision System-HRP (DAB) kit (Dako) was 
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utilized to detect labeled antigens in the sections. First, peroxidase blocking solution was added to 

each tissue section for 5 minutes. Slides were subsequently washed 3x in 0.1% Tween 20 tris-

buffered saline (TBS-T) for 2 minutes/wash (changing baths between washes). Mouse anti-human 

CD31 primary antibody (1:50, Dako), mouse anti-human smooth muscle actin antibody (1A4 

(asm-1)) (1:200, Thermo Fisher Scientific), or mouse anti-human collagen IV monoclonal 

antibody (COL-94) (1:500, Thermo Fisher Scientific) were diluted in TBS-T and added to each 

tissue sample. Primary antibodies were incubated for 16 hours at 4 °C for both CD31 and COL-

IV and 2 hours at room temperature for αSMA. After incubations, samples were rinsed 3x with 

TBS-T at 2 min/wash. The HRP-labeled polymer solution was then added to each sample and 

incubated for 30 minutes at room temperature. Samples were washed once again as described 

above. DAB+ substrate-chromogen buffer solution was then added to each tissue section for 5 

minutes, and immediately rinsed in deionized water for 30 seconds. Samples were counterstained 

with hematoxylin for 15 minutes, followed by a 15 minute wash in tap water. Slides were then 

washed, as described for H&E staining, with 95% ethanol, 100% ethanol, and xylene to dehydrate 

the samples. Lastly, toluene mounting solution was added to each slide prior to covering the 

samples with coverslips. Slides were left to dry before imaging. 

 

5.2.7 Vessel quantification 

 After staining, slides were imaged using an Olympus IX81 microscope with a DP2-Twain 

color camera (Olympus America, Center Valley, PA) and CellSens Imagining Software (Olympus) 

for visualizing stained slides. Brightfield images were taken at 4x and 20x for each of the various 

positively stained marker region of the sections. A 40x objective was used to image individual 

vessels. Positively stained sections from 3 separate implants for each condition, with 5 random 
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20x images per section, were then quantified to determine average vessel density on a per mm2 

basis for each of the indicated expression markers. Structures were considered a blood vessel if 

they exhibited a hollow lumen surrounded by a complete brown rim of positive stain. 

Quantification of vessels derived from the transplanted human cells was conducted by two 

independent evaluators via a one-side blinded study for hCD31. Lumen diameter was also 

quantified by each evaluator using Image J (National Institutes of Health, Bethesda, MD). 

Quantification of vessels expressing αSMA and COL-IV proceeded via the same methods 

described above but were unblinded. Acellular fibrin controls were not analyzed or shown because 

they did not contain any human EC-derived vessels. 

 

5.2.8 Statistical analysis 

 Statistical analyses were performed using StatPlus (AnalystSoft Inc.,Walnut, CA). One-

way analysis of variance (ANOVA) with a Bonferroni post-test was used to assess statistical 

significance between data sets. Data are reported as mean ± standard error of mean (SEM). 

Statistical significance was assumed when p < 0.05. 
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5.3 Results 

5.3.1 iPSC-ECs/NHLF fibrin implants capable of vascular morphogenesis in 

vivo 

 In this study, HUVECs and iPSC-derived ECs were characterized for their abilities to form 

microvasculature when co-injected with NHLFs in a 3D fibrin matrix into subcutaneous pockets 

in vivo. Hematoxylin and eosin (H&E) staining of tissue sections from these implants 

demonstrated the presence of vessel structures across all time points (Fig. 5-2A). Despite the 

evidence of vessel formation and the presence of lumens for both EC types at each time point, the 

vessels formed by day 4 were comparatively smaller relative to the later time points (Fig. 5-2A, 

D). Vessels identified in day 4 sections also showed minimal evidence of inosculation with host 

microvasculature due to relative absence of host erythrocytes observed within the lumens or in the 

surrounding matrix. However, by days 7 and 14, constructs exhibited larger vessel morphologies 

and host erythrocytes were increasingly apparent throughout the implant region (Fig. 5-2B, C, E, 

F). Sections from both day 7 and day 14 show evidence of vessel perfusion. The erythrocytes were 

largely contained within the lumens of the neovessels formed by both EC types (as opposed to 

leaking into the interstitial tissue space) at the day 14 time point. Collectively, these results suggest 

the iPSC-ECs and HUVECs form functional microvasculature with similar qualities in vivo. 
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Figure 5-2: Histological staining illustrates in vivo vessel formation and similar phenotypes across cell types 
Representative images of subcutaneous implants stained with hematoxylin and eosin. Implants were formed by co-injecting 
HUVECs (A-C) or iPSC-ECs (C-F) with NHLFs in 2.5 mg/mL fibrin. Implants were harvested at day 4 (A,D), day 7 (B,E), and 
day 14 (C,F). Insets are images from a 40x objective lens, taken from the region indicated with black dashed lines, to more clearly 
show vessel morphologies and the presence of host erythrocytes. The white dashed lines are to indicate the boundary between the 
implant and mouse tissue, while arrows point to the implant region (Scale bar = 200 μm)  
 
 
 
 
 

5.3.2 iPSC-ECs produce vessels with comparable morphologies and similar 

diameters 

 To validate the observations from the H&E-stained sections and confirm the human origins 

of the neovasculature, human ECs were identified in explanted tissue constructs via 

immunohistochemical staining of human CD31 (Fig. 5-3.1A-F). Both EC types demonstrated 

hollow lumens surrounded by a brown rim of positive staining at each time point, confirming 

successful vessel formation by the implanted human cells as suggested by the H&E stain. Vessels 

iPSC-ECs 
 

HUVECs 
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also demonstrated morphological similarities with both cell conditions. Furthermore, vessel 

lumens demonstrated similarities in size. Quantification of the inner lumen diameter supported 

these qualitative observations (Fig. 5-3.2G-I) demonstrating no significant differences between the 

HUVEC and iPSC-EC condition across all time points (12.03 ± 1.45 µm, 16.33 ± 1.19 µm, 

14.04 ± 1.15 µm for iPSC-ECs versus 12.30 ± 0.38 µm, 17.58 ± 1.32 µm, 15.59 ± 2.01 µm for 

HUVECs on days 4, 7, and 14 respectively). Despite slightly smaller lumens at the day 4 time 

point, there were also no significant differences between time points for each of the cell conditions.  

 

 

 

 

 

 

 

 

Figure 5-3.1: Both iPSC-ECs and HUVECs express comparable vessel morphologies with similar vessel diameters [Rep. 
Images] 
Representative images of human CD31-stained HUVECs (A-C) or iPSC-ECs (D-F) subcutaneous implants at various time points. 
All images were counterstained with hematoxylin. Implants were harvested at day 4 (A,D), day 7 (B,E), and day 14 (C,F). Insets 
are images from a 40x objective lens and dashed lines are present to more clearly show similarities between vessel diameters. 
(Scale bar = 200 μm)  
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HUVECs 
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Figure 5-3.2: Both iPSC-ECs and HUVECs express comparable vessel morphologies with similar vessel diameters 
[Quantification] 
Vessel diameters, both with or without erythrocytes, were measured and quantified over a total of 5 random images per selected 
section across three separate animals. Quantifications were single-blinded and averaged at the given time points (G-I). Error bars 
indicate  ± SEM. 
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5.3.3 iPSC-ECs exhibit deficiencies in vessel lumen formation compared to 

HUVECs in vivo 

 Our previous study demonstrated that iPSC-ECs are quantitatively deficient in vascular 

network formation in vitro compared to HUVECs [25]. To investigate the extent of network 

formation in vivo, sections from subcutaneous implants were stained with an endothelial cell 

marker, hCD31, and the number of vessels throughout a given area were quantified. Vessels with 

clearly identifiable lumens surrounded by a positive hCD31 brown rim were counted. 

Representative images of average vessel density for both HUVECs and iPSC-ECs at varying time 

points are shown (Fig. 5-4.1A-F). Quantification of the vessel density (Fig. 5.4.2G-I) revealed 

significant differences in the average number of vessels per mm2 at day 4 and day 7 

(42.27 ± 4.82 µm and 86.43 ± 21.86 µm for HUVECs versus 25.48 ± 4.41 µm and 35.58 ± 7.62 µm 

for iPSC-ECs on day 4 and day 7 respectively). However, at later time points, i.e. day 14, there 

were no significant differences between the iPSC-EC and HUVEC implants with a relatively equal 

average number of vessels per mm2 (37.61 ± 13.61 µm for HUVECs versus 36.46 ± 3.76 µm for 

iPSC-ECs on day 14 respectively). Vessel density peaked for the HUVECs at day 7 and regressed 

by day 14, while iPSC-EC vessel density increased over time. 
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Figure 5-4.1: iPSC-ECs exhibit deficiencies in vessel lumen formation compared to HUVECs [Rep. Images] 
Representative images of non-perfused (without erythrocytes) vessel formation from human CD31-stained HUVECs (A-C) or 
iPSC-ECs (D-F) in subcutaneous implants at various time points. All images were counterstained with hematoxylin. Implants were 
harvested at day 4 (A,D), day 7 (B,E), and day 14 (C,F). Insets are images from a 40x objective lens to more clearly show vessel 
lumens. (Scale bar = 200 μm).  
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Figure 5-4.2: iPSC-ECs exhibit deficiencies in vessel lumen formation compared to HUVECs 
A total of 5 random images per selected section across three separate animals were quantified for +hCD31 vessels with lumens. 
Quantifications were single-blinded, averaged, and normalized to the respective +hCD31 implant area of each EC type at the given 
time points (G-I). * p < 0.05 and comparing the indicated condition to the HUVEC condition. Error bars indicate ± SEM 
 
 
 
 
 

5.3.4 iPSC-ECs vessels exhibit less perfusion compared to HUVECs 

 Once the baseline density of vessels formed by the implanted cell types was established, 

potential differences in functionality of these newly formed vessels were examined. To evaluate 

functional anastomoses with the host vasculature, the numbers of vessel lumens perfused with 

erythrocytes were quantified. Once again, vessels were quantified only if lumens surrounded by a 

positive hCD31 brown rim were clearly present and erythrocytes were clearly visible within the 
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lumen. Representative images of average number of perfused vessels for both HUVECs and iPSC-

ECs at varying time points are shown (Fig. 5-5.1A-F). Erythrocytes can clearly be seen in higher 

magnification inserts. Quantification of these vessels (Fig. 5.5.2G-I) demonstrated no significant 

differences in the average number of perfused vessels per mm2 at day 4 (4.54 ± 1.89 µm for iPSC-

ECs versus 2.39 ± 2.25 µm for HUVECs). However, at day 7, iPSC-ECs exhibited a statistical 

significant reduction in perfused vessel density compared to HUVECs (22.83 ± 4.06 µm versus 

72.81 ± 21.72 respectively). No significant differences were seen once again by day 14. While 

iPSC-EC vessel perfusion increased over time, HUVEC vessel perfusion peaked at day 7, but 

decreased to similar levels as iPSC-ECs by day 14. 

 

 

 

 

 

 

 

Figure 5-5.1: iPSC-ECs vessels exhibit less perfusion compared to HUVECs [Rep. Images] 
Representative images of perfused (with erythrocytes) vessel formation from human CD31-stained HUVECs (A-C) or iPSC-ECs 
(D-F) in subcutaneous implants at various time points.  All images were counterstained with hematoxylin. Implants were harvested 
at day 4 (A,D), day 7 (B,E), and day 14 (C,F). Insets are images from a 40x objective lens to more clearly show vessel lumens. 
(Scale bar = 200 μm). 
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Figure 5-5.2: iPSC-ECs exhibit deficiencies in vessel lumen formation compared to HUVECs [Quantification] 
A total of 5 random images per selected section across three separate animals were quantified for +hCD31 vessels with lumens. 
Quantifications were single-blinded, averaged, and normalized to the respective +hCD31 implant area of each EC type at the given 
time points (G-I). * p < 0.05 and comparing the indicated condition to the HUVEC condition. Error bars indicate ± SEM. 

 
 

 

5.3.5 iPSC-ECs express differences in αSMA in vivo compared to HUVECs 

 Despite the iPSC-ECs’ ability to form vessel-like structures in vivo, the quality of the 

structures was also examined to determine if they exhibit qualitative characteristics of mature 

capillaries in vivo. To assess vessel development and maturity, sections serial to the positively-

stained hCD31 samples in the previous experiments were IHC stained and quantified for various 
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maturity markers to identify pericytic association of the co-implanted NHLFs and basement 

membrane deposition by the ECs. Vessels were quantified only if they were previously identified 

as human origin through hCD31 staining in former tissue section, and erythrocytes were present 

in the lumen. Representative images reveal the presence of alpha smooth muscle actin, αSMA, 

across all time points for both iPSC-ECs and HUVECs, suggesting recruitment and a pericyte-like 

phenotype of the co-implanted NHLFs (Fig. 5-6A-D). Pericytes stabilize nascent endothelium and 

are characterized by physical association with ECs as well as expression of molecular markers 

such as αSMA [27]. Quantification of the vessel density indicated significant differences in αSMA 

at both time points between iPSC-ECs and HUVECs (Fig. 5-6E, F). The number of vessels 

surrounded by αSMA also increased from day 7 to day 14 for both cell conditions.  
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Figure 5-6: α-SMA staining of iPSC-ECs show differences in vessel maturity compared to HUVECs  
Representative images of αSMA-stained HUVEC (A,B) or iPSC-ECs (C,D) subcutaneous implants at various time points. All 
images were counter stained with hematoxylin. Implants were harvested at day 7 (A,C) and day 14 (B,D). Insets are images from 
a 40x objective lens to more clearly show smooth muscle actin surrounding vessel lumens. Scale bar = 200 μm Vessel lumens 
surrounded by αSMA were quantified over a total of 5 random images per selected section across three separate animals. 
Quantifications were averaged and normalized to the respective + human αSMA implant area of each EC type at the given time 
points (E,F). * p < 0.05 and comparing the indicated condition to the HUVEC condition. Error bars indicate ± SEM. 
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5.3.6 iPSC-ECs express differences in COL-IV in vivo compared to HUVECs 

We next characterized basement membrane deposition by immunohistochemical staining 

for type IV collagen, a prominent component of this specialized form of ECM [28]. Representative 

images reveal the presence of collagen-IV across all time points for both iPSC-ECs and HUVECs 

(Fig. 5-7A-D). While there was no significant change in type IV collagen staining between day 7 

and day 14 for either iPSC-ECs or HUVECs, type IV collagen levels were decreased by roughly 

25% in iPSC-ECs at both day 7 and day 14 (Fig. 5-7E, F). Collectively, this data demonstrates that 

are iPSC-ECs vessels lack maturity in comparison to HUVECs. 
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Figure 5-7: COL-IV staining of iPSC-ECs show differences in vessel maturity compared to HUVECs  
Representative images of COL-IV-stained HUVEC (A,B) or iPSC-ECs (C,D) subcutaneous implants at various time points. All 
images were counter stained with hematoxylin. Implants were harvested at day 7 (A,C) and day 14 (B,D). Insets images from a 
40x objective lens to more clearly show collagen IV surrounding vessel lumens. Scale bar = 200 μm. Vessel lumens surrounded 
by COL-IV were quantified over a total of 5 random images per selected section across three separate animals. Quantifications 
were averaged and normalized to the respective + human COL-IV implant area of each EC type at the given time points (E,F). * p 
< 0.05 and comparing the indicated condition to the HUVEC condition. Error bars indicate ± SEM. 

iPSC-ECs 
 

HUVECs 
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5.4 Discussion 

 Due to a critical need for a more sustainable and abundant clinically relevant cell source, 

the vascularization potential of iPSC-ECs is of increasing interest. In previous studies, using a 3D 

fibrin-based in vitro model, we demonstrated that iPSC-ECs’ capillary morphogenesis was 

significantly attenuated, with reduced MMP-9 expression as one possible candidate for such 

phenomena [25]. While prior studies have shown that iPSC-ECs are capable of forming vessel-

like structures in vivo within supporting Matrigel matrices [22], [23], there is little evidence 

comparing their in vivo potential with more widely utilized EC sources. Therefore, this study 

explored the ability of iPSC-ECs to create functional vessel-like structures in a fibrin-based 

subcutaneous implant and compared the quantity and quality of such vessels formed against 

HUVECs. When co-delivered with stromal fibroblasts (NHLFs), iPSC-ECs formed functional 

microvessels that inosculated with host vasculature; however, the resultant vasculature was of 

significantly lower density quantitatively and less mature qualitatively when compared to that 

formed by HUVECs. 

 Fibrin was selected as the material for implantation because it is a naturally occurring 

biopolymer that promotes wound healing and neovascularization [29] and is FDA cleared for some 

uses in humans [30]. In addition, fibrin was selected for these studies due to its track record of 

supporting neovascularization in vivo [29]–[31] and to match our prior in vitro study in which we 

evaluated the potential of iPSC-ECs relative to HUVECs [25]. NHLFs were chosen due to their 

ability to aid in the formation of microvascular networks, adopt a mural cell-like localization 

around the vessel-like structures, and express a subset of pericyte markers as previously reported 

[26], [32]–[34]. We selected a 1:1 ratio of ECs to stromal cells based on previous studies from our 

group and others [11], [34], [35]. HUVECs are a robust EC source and were selected for their 
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proven capability of capillary morphogenesis not only in the model used for this study, but in other 

in vivo models as well [34], [36], [37]. The animal model used here has been widely explored in 

the literature to approximate wound healing and test the ability of transplanted human cells to form 

vasculature [11], [38], [39], [40]. This model also avoids potential immunorejection of the human 

cells injected into SCID mice. 

 H&E staining of the retrieved implants suggested some similarities, in terms of 

morphology and phenotype, across the different EC conditions. Both iPSC-ECs and HUVECs 

formed vessels with similar lumen diameters and shapes across all time points. Capillary diameters 

are typically around 4 µm [41]. While our results reveal 3-to-4 fold larger lumen diameters, 

capillary diameters can range much larger depending on the tissue [42]. The larger diameters could 

also indicate less mature vessel formation. As the neovasculature matures, ECs form tightly 

regulated junctions to each other [43]. The ECs in our study may not yet have formed these tight 

boundaries leading to increased extracellular space between each cell and therefore causing the 

larger than expected diameters. The vessels formed also exhibit a slightly irregular morphology 

and lacked a definitive circumscribed geometry. Vessel cross-sections typically yield lumens with 

an orbicular shape [44]. While, once again, this could be indicative of less mature vasculature that 

has yet to form a more robust geometry, these results are consistent with our previous studies [34]. 

Vessels formed by both types of ECs contained few, if any, erythrocytes at day 4 within their 

lumens.  Their presence at later time points suggests inosculation with the host vasculature 

occurred between days 4 and 7. Qualitatively, extravascular erythrocytes decreased by day 14, 

similar to a previous study [34], suggesting stabilization and maturation of vessels. However, free 

erythrocytes still remained in the interstitial space of constructs containing iPSC-ECs, further 

supporting the aforementioned lack of vessel maturity. 
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 Despite morphologic and phenotypic similarities in vessels formed from both EC types, 

IHC staining for hCD31 demonstrated quantitative differences in the vasculogenic abilities of 

iPSC-ECs. This may be due to reduced abilities of iPSC-ECs (relative to HUVECs) to 

proteolytically degrade the fibrin matrix, as they exhibit reduced expression of MMP-9 [25]. 

However, while vessel density was significantly reduced at day 4 and day 7, there were no 

significant differences between iPSC-ECs and HUVECs at later time points. Quantification of 

vessels containing erythrocytes further revealed iPSC-EC vasculature was less perfused. Early 

time points showed no difference between the two cell conditions, but the relatively low vessel 

density indicates the neovascualture formed did not sufficiently inosculate with the host’s 

vasculature at this time. The large increase in vessel diameter by day 7 suggests inosculation 

sometime between day 4 and day 7. We attributed the observed significant differences in vessel 

density (both total and perfused vessels) to the reduced abilities of iPSC-ECs to undergo capillary 

morphogenesis. By day 14, densities of perfused vessels in implants containing either HUVECs 

or iPSC-ECs were similar due to significant reduction in vessel density for the HUVEC group. 

This regression in the HUVEC group is consistent with a previous study from our group [34]. 

Vessels undergo selective branch regression and pruning during the normal process of wound 

healing angiogenesis, changing network architecture over time as tissue metabolic demands 

change [45]. This could be a result of increased tissue oxygenation by the HUVEC group at earlier 

time points, causing a down-regulation of VEGF expression, a key signal involved in EC 

proliferation and invasion during vessel formation, and EC apoptosis in the newly established 

vessels [46].  

 In addition to the observed differences in vessel quantity, vessels formed by the iPSC-ECs 

showed lower levels of COL-IV and αSMA staining, which may be indicative of a reduced 



 

 151 

maturity. Collagen-IV is a prominent component of the basement membrane of mature capillaries 

[28], and thus the presence of this component is indicative of ECs’ ability to form mature capillary 

networks. In addition, smooth muscle α-actin is commonly used as a pericyte marker [27], albeit 

not a very selective one as it also stains myofibroblasts [47]. Pericytes stabilize nascent vasculature 

and their presence suggests mature capillary networks [27], [48]. As revealed by positive αSMA 

staining, the co-implanted NHLFs associated with the vessels formed in a pericyte-like manner. 

However, whether these NHLFs are capable of becoming bona fide pericytes in either EC 

condition is difficult to prove given the limited availability of bona fide pericyte markers [49], 

[50]. Although still significantly different to the HUVECs, iPSC-ECs demonstrated an increase in 

αSMA presence at day 14, perhaps indicating more recruitment of the NHLFs over time. 

Collectively, these data suggest iPSC-ECs are capable of recruiting and signaling stromal cells to 

differentiate into pericytes and depositing the components necessary for a basement membrane in 

vivo, but to a lesser degree than HUVECs. 

Despite these differences in comparison to HUVECs, the iPSC-ECs performed better in 

vivo than expected relative to our previous in vitro findings [25]. This perhaps suggests the in vivo 

microenvironment is able to induce the iPSC-ECs to attain a more mature phenotype. As the iPSCs 

from which the iPSC-ECs were differentiated were themselves generated from fibroblasts via an 

artificial reprogramming process, the iPSC-ECs have never been exposed to physiologic 

conditions, including blood flow. Shear stresses play a critical role in vascular development and 

EC phenotype [51], and one avenue for future studies would be to explore the ability to induce 

maturation of the iPSC-ECs through exposure to fluid flow. Additionally, while this experiment 

chose to use NHLFs as the stromal cells for co-injection, different stromal cells may better support 

iPSC-ECs vessel formation. Recent research has demonstrated differences in vascular 
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morphogenesis of iPSC-ECs in vitro when co-cultured with stromal cells of varying identities [52]. 

Co-injecting different stromal cells may aid in the maturation of the iPSC-ECs and as a result, 

increase the number of vessels formed. Furthermore, while the subcutaneous implant model used 

here is relatively simple and effectively demonstrated differences in vessel formation, evaluating 

iPSC-ECs in more advanced in vivo models is critical to aid clinical translation. For example, a 

window-chamber model has enabled real-time visualization of vessel formation and anastomosis 

[53] and may be useful to understand the abilities of iPSC-ECs to inosculate with host vessels. 

Similarly, hind limb ischemia models, where the lack of oxygen and nutrients may be more 

challenging (or more stimulatory) for vessel formation, have already been used to demonstrate the 

ability of iPSC-ECs to rescue ischemic tissue in a situation that better replicates the clinical target 

[24]. Our data here underscore the importance of comparing the efficacy of iPSC-ECs head-to-

head with HUVECs (and other sources of ECs) in these more advanced models as well. 

 

5.5 Conclusions 

 In summary, this work assessed whether iPSC-ECs form the same robust, stable 

microvasculature as previously documented for other sources of EC in a well-characterized 3D 

fibrin-based co-culture model of vasculogenesis in vivo. Both iPSC-ECs and HUVECs formed 

vessels with similar phenotypes and morphologies and demonstrated some characteristics of vessel 

maturation. However, the iPSC-ECs expressed significantly reduced vessel density, perfusion, and 

maturation in comparison to HUVECs. Ultimately, these findings suggest iPSC-ECs must be better 

understood to enable pre-clinical and clinical translation and achieve their promise and potential 

for therapeutic revascularization. 
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CHAPTER 6 
 

Conclusions and Future Directions 
 
 
 
6.1 Conclusions 

 The overall goal of this work was to examine an alternative endothelial cell source for 

potential revascularization therapy in the treatment of ischemic disease, the leading cause of death 

worldwide with rising rates. Current solutions involving pharmaceutical and surgical interventions 

are limited and not suitable for every patient, especially those with more serve progression of the 

disease, such as critical limb ischemia (CLI).  

 Various tissue engineering therapies have emerged to engineer new vasculature to replace 

those damaged or diseased within body. Although many different approaches, including growth 

factor delivery or cell-based therapies, have demonstrated the potential to revascularize tissue both 

in vitro and in vivo, there is currently no FDA approved tissue engineering approach for the 

treatment of ischemic diseases, such as PAD. While cell-based approaches offer additional control 

over microvessel formation, these methods may be critically limited by potential immunorejection 

and most importantly, the lack of an abundant cell source. 

 This dissertation investigated an alternative cell source, endothelial cells derived from 

induced pluripotent stem cells (iPSC-ECs). Aside from their potentially autologous nature, iPSC-

ECs are differentiated from a theoretically unlimited cell source. Prior to this work, studies 
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demonstrated iPSC-ECs’ abilities to form vessel-like networks in vitro when seeded on 2D 

Matrigel and in vivo in Matrigel plugs [1], [2]. Despite the iPSC-ECs’ abilities to form vessels, 

there is limited research on iPSC-ECs in more physiologically relevant models, especially in 

comparison to established EC lineages.  

 This work began by first characterizing the endothelial nature of iPSC-ECs in 2D (Chapter 

2). Both HUVECs and iPSC-ECs were cultured in flasks or plates and their expression of key 

endothelial cell markers was analyzed via immunofluorescent microscopy and fluorescent 

activated cell sorting (FACS). This study found no difference between the phenotypic expression 

of CD31, VE-Cadherin, and vWF. We also demonstrated both ECs have similar proliferation rates 

on varying substrate stiffnesses. In addition to similar phenotypic characteristics, the gene 

expression profile assessment identified various expression similarities between iPSC-ECs and 

HUVECs, including key endothelial cell and pluripotency genes. 

 Next, this dissertation established iPSC-ECs could form vessel-like structures when coated 

on microcarrier beads and co-embedded with normal human lung fibroblasts (NHLFs) in a fibrin 

matrix (Chapter 3). However, this study found iPSC-ECs produced quantitatively lower total 

networks lengths in comparison to HUVECs after 14 days of culture [3]. While the sources of 

cells, lots of cells, media formulations, and assay format were varied, iPSC-EC capillary 

morphogenesis was attenuated in each condition in comparison to HUVECs. We also investigated 

the maturity of the vessel-like structures formed, showing similar levels of basement membrane 

deposition, hollow lumen formation, and pericyte association. 

 To provide a possible explanation for the iPSC-EC attenuation, we characterized the 

mechanisms iPSC-ECs use to remodel the fibrin-based ECM during capillary morphogenesis in 

our experimental model systems (Chapter 4). EC-coated microcarrier beads were first embedded 
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in fibrin gels of increasing concentrations to mechanically inhibit sprouting. The iPSC-ECs were 

functionally similar to HUVECs, with elevated fibrin concentrations inhibiting sprouting of both 

EC types and distributing stromal cells through the entire 3D matrix largely abrogating this effect 

[3]. Chemical inhibition of both MMPs and serine-proteases revealed complete inhibition of 

sprouting morphogenesis occurring only under dual inhibition, demonstrating iPSC-ECs’ 

proteolytic plasticity in fibrin as seen similarly with prior studies on HUVECs [4].  

 In addition to these inhibition studies, we characterized the iPSC-ECs’ expression of key 

matrix metalloproteases implicated in capillary morphogenesis (Chapter 4) [5], [6]. Both RNA and 

protein were harvested from microcarrier beads coated with iPSC-ECs and embedded with NHLFs 

in fibrin at varying time points. Quantitative PCR demonstrated a significant over expression at 

day 4 and significant under expression at day 14 of MMP-9 in comparison to HUVECs. Western 

blot analysis further identified differences in MMP-9 expression at day 7 and day 14. Last, gel 

zymography analysis revealed significant differences in activity levels of MMP-9 on day 14. By 

contract. no differences in the expression levels and/or activity of MMP-2 and MT1-MMP were 

seen throughout all experiments. 

 Last, we established the in vivo vasculogenic potential of iPSC-ECs and determined the 

sprouting attenuation is not only an in vtiro phenomena (See Chapter 5). A subcutaneous model 

was used where ECs and NHLFs were embedded in fibrin and injected into the dorsal flank of 

SCID mice. iPSC-ECs demonstrated successful vessel formation, inosculation with the host 

vasculature, and morphologies comparable to HUVECs. However, the vessel density was 

significantly reduced at early time points compared to HUVECs. Additionally, the iPSC-EC 

vasculature was less perfused at day 7. Vessel maturity was also assessed through the deposition 

of a component in the basement membrane and pericyte association. Despite similar levels of 
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vessel density and perfusion between the two EC conditions at day 14, immunohistochemical 

staining revealed reduced expression of COL-IV and α -SMA for microvasculature derived from 

iPSC-ECs, demonstrating in vivo differences in vessel maturity compared to HUVECs. 

While iPSC-ECs generated microvasculature with some characteristics of mature 

capillaries, the vessel networks formed by HUVECs were quantitatively superior both in vitro and 

in vivo to the iPSC-ECs, as well as MVECs. Although the focus of this research was to assess 

iPSC-ECs, an underlying outcome of this work is the HUVECs’ vasculogenic potential. Despite 

critiques that HUVECs are not suitable to form microvascular networks due to their origin from a 

large vein, the data presented here argues HUVECs are able to form vessels comparable to 

microvasculature and at a greater extent than other ECs, demonstrating their potential for clinical 

translation. However, additional research is necessary as HUVEC delivery will likely be allogeneic 

and the EC phenotype of HUVECs may not be relevant for the target tissue [7]. 

 Collectively, this dissertation assessed the potential of iPSC-ECs to from microvascular 

networks in comparison to an established EC, HUVECs. Despite all deficiencies of capillary 

morphogenesis compared to HUVECs in a fibrin based in vitro model co-cultured with NHLFs, 

iPSC-ECs performed to a much higher degree than expected in a clinically relevant subcutaneous 

in vivo model and were capable of vasculature formation, perfusion, and vessel maturation. This 

work also established potential mechanisms for iPSC-EC capillary morphogenesis. While other 

ECs, such as HUVECs, are quantitatively better for revascularization, the work presented here, 

along with the autologous and unlimited sourcing potential, argues for continued research in the 

clinical translation of iPSC-ECs. Future studies, discussed in the next section, need to further 

investigate iPSC-EC vasculature differences and new approaches to create quantitatively and 
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qualitatively comparable iPSC-EC vessel networks prior to the successful translation and treatment 

of PAD with iPSC-ECs. 

 

6.2 Future Directions/Work 

The data present in this work open several avenues for iPSC-EC revascularization research. 

There are numerous in vitro and in vivo experiments described below to provide additional 

understanding of iPSC-ECs, to enhance iPSC-EC vasculature formation, and to further 

demonstrate iPSC-ECs’ therapeutic potential. 

 

6.2.1 Main Focus 

The primary focus of future research, discussed in more detail in the following subsections, 

should prioritize understanding the iPSC-ECs and enhancing their vasculogenic potential as 

demonstration of extensive, robust network formation is necessary prior to clinical translation. 

Specifically, this work demonstrated MMP differences along with other genetic expression 

differences in the iPSC-ECs, resulting in possible avenues to explore as an approach to strengthen 

the iPSC-ECs. Additionally, iPSC-ECs vessel formation in vivo was higher than expected possibly 

due to the exposure of physiological relevant conditions, suggesting prior in vitro shear stimulation 

could lead to iPSC-ECs’ maturation. 

 

Other MMP Expression, MMP Knockdown, and MMP Overexpression 

 MMPs are critical for ECs to remodel the ECM during angiogenesis. The expression of 

various MMP, specifically MMP-2, MMP-9 and MT1-MMP, were investigated during this work, 

concluding differences in MMP-9 expression as one possible explanation for iPSC-EC attenuation. 
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One caveat to these experiments is NHLFs were co-cultured with the iPSC-ECs to induce 

angiogenic sprouting. As a result, the MMP-9 expression differences are not solely from the iPSC-

ECs, but a combination from both populations of cells. This expression is further complicated as 

ECs and stromal cells signal each other during angiogenesis, regulating the expression of 

angiogenic genes, including MMPs [8]. Methods described in Kachgal et al. can be employed to 

knockdown the expression of MMP-2, -9, and MT1-MMP in a cell-type selective manner [6]. In 

addition to eliminating any stromal cell MMP contribution while still providing instructive cues to 

the ECs, knockdown of iPSC-ECs’ MMPs can be explored to further establish the role of specific 

MMPs in iPSC-EC capillary morphogenesis. On the other hand, these genes could also be 

overexpressed. Using a similar approach, MMPs, specifically MMP-9, can be overexpressed in 

iPSC-ECs to possibly rescue the iPSC-ECs sprouting deficiencies. Not only could this method 

enhance the vasculogenic potential of iPSC-ECs but formalize or overturn the conclusions that 

lower MMP-9 expression may be responsible for the attenuated angiogenesis properties of stem-

cell derived ECs.  

Finally, while these three MMPs were selected based on prior research implicating their 

importance in angiogenesis [6], the expression of other MMPs could also be investigated using 

similar methods described in Chapter 4. The gene expression profiles show no differences between 

HUVECs and iPSC-ECs for various MMPs (Fig. 6-1). However, the RNA was harvested from a 

monolayer of cells cultured in 2D. Despite these similarities, MMP expression will differ when 

cultured in 3D when the ECs are actively undergoing angiogenesis. 
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Figure 6-1: Expression fold change between 2D cultures of HUVECs and iPSC-ECs for various MMPs 
 

 

Gene Expression Studies 

 Angiogenesis is a highly regulated process depending on growth factors, proteases, 

integrins, cell adhesion receptors, and many other components [8], [9]. This work investigated the 

role of MMPs in iPSC-EC mechanisms to potentially explain the sprouting attenuation. However, 

there are a multitude of other cellular components that promote or inhibit angiogenesis which could 

explain the attenuated response of iPSC-ECs as well. The gene expression profile results indicated 

there are over 800 genes that display a 2-fold or greater difference in expression, between HUVECs 

and iPSC-ECs. These results are based on 2D cultures and expression profiles can change when 

cultured in 3D [10]. This experiment provides multiple avenues to further investigate differences 

between iPSC-ECs and other ECs lineages. 



 

 165 

 One possible avenue is to investigate tissue inhibitor of metalloproteinases 3 (TIMP-3) 

differences. TIMPs are a family of proteins that act as natural inhibitors to MMPs [11]. TIMP-3 is 

unique from other TIMPs as it is not freely diffusible; it blocks the binding of VEGF to its receptor 

VEGF2. In addition to inhibiting MMPs, it also acts on another class of metalloproteinases, the a 

disintegrin and metalloproteinase domain (ADAM) family [37], [38]. The gene expression profile 

analysis revealed a 16-fold overexpression of TIMP-3 in iPSC-ECs over HUVECs. Increased 

TIMP-3 expression could explain the sprouting attenuations as the MMPs are readily inhibited and 

unable to remodel the ECM for capillary morphogenesis. Experiments can be conducted to assess 

TIMP-3 RNA and protein level expression in the 3D fibrin assay.  

Another area to explore is differences in interleukin 6 (IL-6). IL-6 is a part of a family of 

cytokines involved in inflammatory response [14]. While IL-6 is typically secreted by T cells and 

macrophages to stimulate immune response during infection and after trauma, IL-6 is also 

implicated in stimulating angiogenesis [15]–[18]. Specifically, IL-6 upregulates the expression of 

various MMPs, including MMP-9 [19]. The gene expression profile analysis revealed a 4-fold 

lower expression of IL-6 in iPSC-ECs over HUVECs. Lower IL-6 expression levels could 

indirectly affect MMP-9 expression explaining the differences seen in this work. As with TIMP-

3, experiments can be conducted to assess IL-6 RNA and protein level expression in the 3D fibrin 

assay.  

 

Mechanical Shear Stress 

 Shear stress plays a critical role in vascular development and EC phenotype. Shear stress, 

caused by blood flow, activates integrins on the endothelial cell’s surface to upregulate eNOS 

activity through the PECAM-1 complex [20]. eNOS is responsible for NO generation which 
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regulates EC tone and proliferation as well as platelet aggregation [21]. While the HUVECs have 

been exposed to blood flow, the iPSC-ECs have never been exposed to any physiological 

conditions, including blood flow. Given the role of shear stresses on vascular development, the 

iPSC-ECs may represent an immature EC phenotype, which in turn could explain the sprouting 

attenuation seen in this work. A simple parallel plate flow chamber can be employed to expose the 

iPSC-ECs to flow. The capillary morphogenesis of flow-exposed iPSC-ECs can then be compared 

to unexposed iPSC-ECs and HUVECs in the angiogenic bead assay. Research has shown 

differences in the expression of various arterial and venous markers of iPSC-ECs exposed to flow 

[2], [22]–[24].  

 

Stromal Cell Identity 

 Stromal cells play a key role in vasculature development and help stabilize new vessels [9]. 

NHLFs were cultured with the ECs in all experiments to promote the formation of a stable, mature 

vasculature. However, research has demonstrated stromal cell identity can influence capillary 

morphogenesis as HUVEC-NHLF co-cultures, in particular, produce large networks of leaky 

vasculature while HUVEC-BMSC (bone marrow mesenchymal stem cells) co-cultures produce 

less extensive networks with more mature vasculature [25], [26]. Similarly, one study with iPSC-

ECs-BMSC co-cultures showed poor sprouting compared to HUVECs both in vitro and in vivo 

[27]. This study showed the ratio of ECs to stromal cells may affect efficient vascularization, which 

could imply the attenuation differences in iPSC-ECs sprouting is due to a less suitable ratio of ECs 

to stromal cells. Different types of stromal cells, such as normal human dermal fibroblasts 

(NHDFs), adipose derived stem cells (AdSC), and bone marrow stromal cells (BMSCs), can be 

cultured with the iPSC-ECs to assess their effect on vasculature formation, both quantitatively and 
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qualitatively. These studies could determine the appropriate stromal cell type and concentration to 

produce comparable levels of capillary morphogenesis to HUVECs.  

 

6.2.2 Auxiliary Focus 

The secondary focus of any future studies, discussed in the following subsections, should 

continue the evaluation of iPSC-ECs’ vasculogenic potential. While this work established the 

iPSC-ECs’ ability to form microvascular networks, our comparisons were largely limited to only 

one other EC source, suggesting an assessment to other ECs to formalize our conclusions about 

iPSC-ECs’ sprouting attenuation. In addition, other iPSC-ECs source should be examined, 

including an in-house reprogrammed and differentiated iPSC-EC source, as only one iPSC-EC 

source was largely tested during this work. Lastly, additional characterization of the iPSC-ECs’ 

ability to regulate permeability and form vasculature in ischemic regions would further establish 

their potential for clinical translation. 

 

Additional EC Sources 

 HUVECs were used as the main EC source for comparison during this work due to their 

proven ability to form robust microvasculature networks. While HMVECs were also compared 

against iPSC-ECs in the angiogenic assay, all other studies were only compared against HUVECs. 

Although many differences were established between HUVECs and iPSC-ECs, these differences 

may not be present when compared to other ECs, i.e. iPSC-ECs may be more similar to other ECs 

lines. As seen with this study, HMVECs and iPSC-ECs exhibited similar levels of capillary 

morphogenesis. Additional studies should characterize the iPSC-ECs vessel formation, genetic 

expression profile, mechanisms, and protease expression against many types of ECs. Not only can 
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different sources of ECs help to more thoroughly compare and contrast the vasculogenic potential 

of iPSC-ECs but expanding further to other sources may also provide additional mechanistic 

insights to explain the observed attenuation in vascular morphogenesis of iPSC-ECs compared to 

HUVECs.  

 

Additional iPSC-ECs Sources 

 Similar to the limitations of using only HUVECs, limited iPSC-ECs sources were tested 

throughout the course of this work. While two different sources of iPSC-ECs were investigated, 

only one source was capable of undergoing capillary morphogenesis. Although the data 

demonstrate a reduced vasculogenic potential of iPSC-ECs to HUVECs, there is a possibility the 

source of iPSC-ECs could be the cause of the sprouting attenuation. An experimental study using 

many sources of iPSC-ECs capable of sprouting in both the vasculogenic and angiogenic assay 

can be utilized to determine whether the capillary morphogenesis attenuation affects the whole 

lineage or specific sources. In addition, genetic expression profiles of the various iPSC-EC sources 

would aid not only in characterizing similarities and differences between the iPSC-ECs, but aid in 

characterization of other ECs as well. 

 

Reprograming and Differentiation of iPSC-ECs 

 One possibility to generate an additional iPSC-EC source is through in-house reprograming 

and differentiation. Research has demonstrated the ability to successfully reprogram fibroblasts 

into iPSCs and then differentiate the iPSCs to an EC lineage [1], [28]–[30]. Currently, there is no 

standardization for iPSC generation or differentiation into ECs. While most protocols use the 

OSKM genes for reprogramming and a VEGF-based media for differentiation, variations in the 
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methods could lead to varying clinical results. For the successful translation of iPSC-ECs, a 

consistent, robust differentiation approach is necessary to ensure efficacy. Preliminary studies for 

iPSC-EC generation can be found in Appendix A. Briefly, mouse embryonic fibroblasts were 

reprogrammed into a pluripotent state using lentiviruses, and then an attempt to differentiate these 

cells was conducted using EGM-2 media. IF staining for CD31 revealed little to no expression, 

indicating unsuccessful reprograming. Additional studies should follow the protocols established 

in the literature to successfully create an in-house source of iPSC-ECs from human fibroblasts. 

Not only would this provide an additional source of iPSC-ECs for comparison in all future 

vasculogenic experiments, but further the clinical translation of our work through establishing an 

approach to make autologous iPSC-ECs. The main source of iPSC-ECs used in our experiments 

is allogeneic, therefore, limiting the success for FDA approval and acceptance by the patient’s 

immune system.  

 

Perfusion and Permeability 

 The ultimate goal of this work is to create functional vasculature capable of supplying 

oxygen and nutrients to ischemic regions. As vessels mature through pericyte stabilization, 

basement membrane formation, and tight junction regulation, blood can be successfully perfused 

to the target tissue. While evidence of vessel maturity was present both in vitro and in vivo, the 

vessels may still be immature, resulting in leakiness and the inability to regulate permeability. To 

further assess the ability of IPSC-ECs to form stable capillaries in vitro, the functional properties 

of these engineered vessel structures can be quantified using an inverse permeability assay 

developed previously by Grainger et al [25]. The rationale behind this experiment is immature 

capillaries are unable to regulate permeability due to incomplete cell junctions [31]. Previous 



 

 170 

research showed HUVEC-NHLFs co-cultures resulted in leaky vasculature in comparison to other 

stromal cells [25], demonstrating the need to assess permeability with a variety of stromal cells. 

Additionally, tail vein injections can be employed in the subcutaneous mouse model to assess in 

vivo permeability and inosculation. Not only could a dextran tracer determine vessel maturity at 

varying time points but also determine exactly when the neovasculature inosculates with the host’s 

vasculature, providing a timeframe for restored perfusion. 

 

Advanced Animal Models 

 Since the iPSC-ECs are capable of vasculature formation in vivo, it is important to study 

more advanced in vivo models to aid in clinical translation. The model used in this work used 

young healthy mice and healthy tissue to assess vasculature formation, which does not 

appropriately replicate the clinical conditions of a diseased patient. Research has demonstrated 

young, healthy animals recover from ischemia easier than animals that more closely match the 

patient demographic [32], [33]. Non-obese diabetic (NOD)-SCID mice have been extensively 

studied for diabetes and CVD research and could be used as a more appropriate mouse model to 

better replicate the intended patients.  

 A hind-limb ischemia model can also be employed to evaluate iPSC-EC vasculature 

formation in an ischemic region and determine whether iPSC-ECs can re-vascularize and stabilize 

the network in a similar time frame to HUVECs. An adaptation of the murine model of hind-limb 

ischemia described by Niiyama et al. 2009 can be used to assess blood flow restoration in SCID 

mice first and then (NOD)-SCID mice [34]. In brief, this model consists of surgically ligating one 

of the mouse’s femoral arteries. ECs and stromal cells would be embedded in a fibrin matrix and 

injected into the ligated region of the mouse to revascularize the region and restore blood perfusion 
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to the limb. Laser Doppler perfusion imaging (LDPI) can be used to measure blood vessel 

perfusion during the study. 
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Appendix A – Videos of Vessel Hollow Lumens

NOTE: Videos will play in electronic format via Adobe Acrobat with Flash. Videos are also available upon request 
from the author. 

HUVECs 

Video 1: Hollow Lumens of HUVEC vessels in vitro 
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iPSC-ECs 

Video 2: Hollow Lumens of iPSC-EC vessels  in vitro 






176 

Appendix B – Video of 3D Vessel Reconstruction

NOTE: Videos will play in electronic format via Adobe Acrobat with Flash. Videos are also available upon request 
from the author. 

HUVECs 

Video 3: 3D Reconstruction of HUVEC vessel in vitro 


JB HUVECs 1 9.11.17

Creation Date: 2017-09-27 17:00:58.000
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iPSC-ECs 

Video 4: 3D Reconstruction of iPSC-EC vessel in vitro


JB iCELL 2 9.11.17

Creation Date: 2017-09-27 17:06:56.000
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Appendix C – Reprogramming MEFs to ECs 
 

AC.1 Introduction 

iPSCs were first generated over a decade ago by using a combination of 4 reprogramming 

factors, including Oct4 (Octamer binding transcription factor-4), Sox2 (Sex determining region Y-

box 2), Klf4 (Kruppel Like Factor-4), and c -Myc [1]. iPSCs are an alternative self-renewing 

pluripotent cell that can be differentiated in many lineages including ECs [2]. Throughout this 

work, we investigated various sources of iPSC-ECs and assessed their vasculogenic potential. 

However, these sources were either commercially purchased or donated from other labs, so little 

is known about the original origin of the cells or the methods for reprogramming and 

differentiation. Furthermore, the iPSC-ECs used in this work are not autologous, a potential 

requirement for successful clinical translation. 

The present study explores whether mouse embryonic fibroblasts (MEFs) can be 

reprogramed into an endothelial cell lineage. The overall goal of this study is to 1) create an 

alternative source of iPSC-ECs and 2) to establish a suitable reprogramming method for iPSC-EC 

generation. Using a previously established reprograming protocol [3], MEFs were plated on TCP 

or fibrin gels and transduced with lentiviruses. Transduced cells were then exposed to 

reprograming media to induce pluripotency and then differentiated using a VEGF based media, 
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EGM-2. We qualified differentiation of MEFs for each of the culture conditions through 

immunofluorescent staining for an endothelial cell marker.  

 

AC.2 Material and Methods 

AC.2.1 Lentiviral Production 

293-T cells were cultured on TCP in two separate flasks at a density of 1 million cells per 

15 cm2 with DMEM + 10% FBS with Glutamax. Cells were cultured at 37°C and 5% CO2 for 48 

hours. Cells were then rinsed with PBS before being harvested via 0.25% trypsin incubation for 5 

min at 37 °C and 5% CO2. Trypsin was neutralized using DMEM supplemented with 10% FBS. 

The cellular suspension was centrifuged (200×G for 5 min) and supernatant was aspirated 

immediately. Cells were resuspended in fresh DMEM + 10% FBS with Glutamax and plated in a 

T-225 flask. 293-T cells were cultured at 37°C and 5% CO2 until 70% confluency. Plasmid 

concentration was verified via a spectrophotometer to ensure the appropriate amount of each 

plasmid was added. Plasmids containing the following genes were added to 4.5 mL of Optimem 

in a 15 mL centrifuge tube: PLP1, PLP2, VSVG. M2rtTA and OSKM were then added to separate 

centrifuge tubes with the other 3 plasmids. Additionally, lipofectamine was added to 4.5 mL of 

Optimem in 15 mL tubes separate from the plasmid tubes. Plasmids and lipofectamine were 

incubated at room temperature for 5 minutes. Each plasmid tube, one for OSKM and another for 

M2rtTA, was then mixed with the lipofectamine Optimem tube. The two solutions were incubated 

at room temperature for 20 minutes. Media was aspirated from the 293-T cells and 21 mL of fresh 

media was added to each flask. The plasmid solutions were then added dropwise to separate 293-

T flasks. After 24 hrs after transfection, media was aspirated and changed to fresh media. The next 
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day, 48 hrs after transfection, the media was collected and spun down at 3000 rpm for 15 mins at 

4 °C. The supernatant was then aliquoted to vials and stored at -80 °C. 

 

 

AC.2.2 Fibrin Gel Assembly 

Following lentiviral production, a fibrinogen (Sigma-Aldrich) solution of the desired 

concentration (2.5 mg/mL) was dissolved in an appropriate amount of serum-free DMEM and 

placed at 37 °C in a water bath. The solution was sterile filtered through a 0.22 µm syringe filter 

(Millipore, Billerica, MA). 5% FBS was then added to the fibrinogen solution. 500 µL of above 

mixture was added to a single well of a 24-well tissue culture plate and polymerized with 10 μL 

of thrombin (50 U/mL, Sigma-Aldrich). Fibrin constructs were left undisturbed for 5 min at room 

temperature before incubation for 30 min at 37 °C and 5% CO2.  

 

AC.2.3 MEF Transduction 

 Mouse embryonic fibroblasts (MEFs) were plated on TCP or fibrin gels with DMEM + 

10% FBS with Glutamax at a cell density of 3,500/cm2 for 24 hrs prior to transduction. Cells were 

incubated at 37°C and 5% CO2. The next day, viral supernatant and polybrene were thawed on ice. 

Media was aspirated from the cells and fresh media with 0.5 μL/ mL-of-media of polybrene was 

added the cell cultures. Cell equilibrated to the polybrene solution for 30 minutes. 107 μL of 

OSKM viral supernatant and 18 μL of M2rtTA viral supernatant per mL of media was added to 

the cells and then incubated for 6 hrs at 37°C and 5% CO2. After 6 hrs, the solution was aspirated 

and changed to fresh with DMEM + 10% FBS with Glutamax. 
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AC.2.4 MEF Reprograming 

 After transduction, cells were cultured for 24 hrs, and then the media was changed to 

reprograming media 1 with 0.5% of 2 mg/mL doxycycline. Reprograming media 1 consists of 15% 

FBS, 5% Knockout Serum (KOSR), 1% Glutamax, 1% Non-Essential Amino Acids (NEAA), and 

0.1 mM beta-mercaptoethanol (BME) in Knockout DMEM. Cells were cultured in knockout media 

1 for 7 days total. Media was then changed to knockout media 2 which consists of 1% FBS, 14% 

Knockout Serum (KOSR), 1% Glutamax, 1% Non-Essential Amino Acids (NEAA), and 0.1 mM 

beta-mercaptoethanol (BME) in Knockout DMEM. Cells were cultured in this media for 72 hrs.  

 

AC.2.5 Differentiation 

 Once MEFs were reprogramed to a pluripotent-like state, differentiation to an endothelial 

cell lineage was induced with EGM-2 (Lonza), an endothelial cell growth media. Cells were 

cultured for 7 days and fresh media was changed every 48 hours. 

 

AC.2.6 Reprogramed Cell Removal 

While cells were reprogramed on either TCP or fibrin gels and then fixed, some cells were 

removed from their substrate and replated prior to enhance visualization. For cells removed with 

trypsin, cells were rinsed with PBS before being harvested via 0.25% trypsin incubation for 5 min 

at 37 °C and 5% CO2. Trypsin was neutralized using DMEM supplemented with 10% FBS. The 

cellular suspension was centrifuged (200×G for 5 min) and supernatant was aspirated immediately. 

Cells were resuspended and plated onto new wells. For natto kinase removal, the fibrin gel was 

first digested using Natto Kinase (NSK-SD, Japan BioSceince Laboratoy Co. Ltd) dissolved in a 

1mM EDTA PBS solution. 1 mL of the aforementioned solution was added to each well and 
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incubated for 45 minutes at 37 °C. The degraded fibrin cell solution was centrifuged (200×G for 5 

min) and supernatant was aspirated immediately. The cells pellet was then suspended in 0.25% 

trypsin incubation for 5 min at 37 °C and 5% CO2 to break apart the cell sheet. Trypsin was 

neutralized, and the cellular suspension was centrifuged (200×G for 5 min) and supernatant was 

aspirated immediately. Cells were resuspended and plated onto new wells. Cells were cultured for 

24 hrs in fresh EGM-2 to allow cells to adhere to the plate. 

 

AC.2.7 Immunofluorescent staining 

After the cells were cultured for with the EGM-2 for 7 days, cultures were rinsed 3x with 

PBS solution for 5 min at room temperature. Gels were then fixed with 500 μL of formalin (1 mL 

of 36.5% Formaldehyde solution (Sigma), 1 mL of PBS, and 8 mL of d.d.H2O) for 15 min at 4 

°C. Cultures are rinsed again 3x with PBS for 5 min, then permeabilized with 0.5% Triton-X100 

in TBS for 30 min at 4 °C. Following a rinse 3x for 5 min at room temperature with 0.1% Triton 

X-100 in TBS (TBS-T), samples were blocked overnight at 4 °C with a 2% Abdil solution (bovine 

serum albumin (Sigma) dissolved in TBS-T). The primary antibody/staining agent was dissolved 

in 2% Abdil at the appropriate concentration (Rabbit anti mouse-CD31, 1:200) and 1 mL of this 

solution was added to each gel for overnight incubation at 4 °C. The following day gels were rinsed 

3x for 5 min with TBS-T. 1 mL of the appropriate secondary antibody (1:400, Alexa Fluor 488 

Goat anti-rabbit IgG) dissolved in 2% Abdil was added to each gel for overnight incubation at 4 

°C. Following a 3x rinse for 5 min at room temperature with TBS-T, gels were incubated with 

TBS-T overnight at 4 °C.  
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AC.2.8 Fluorescent Imaging  

Phase contrast and fluorescent images were captured utilizing an Olympus IX81 equipped 

with Disc Spinning Unit and a 100 W high-pressure mercury burner (Olympus America, Center 

Valley, PA), a Hamamatsu Orca II CCD camera (Hamamatsu Photonics, K.K., Hamamatsu City, 

Japan), and Metamorph Premier software (Molecular Devices, Sunnyvale, CA).  

AC.3 Results  

Mouse embryonic fibroblasts (MEFs) were reprogramed and differentiated into an 

endothelial cell lineage on 2D fibrin or TCP cultures and compared to a control source of mouse 

endothelial cells. Phase contrast images revealed different morphologies between each of the 

culture conditions (Fig. AC-1). Typsinized cells, either seeded on fibrin or TCP, show areas with 

high density of cells. In contrast, the control mouse ECs and fixed reprogramed cells, either on 

fibrin or TCP, demonstrated a more uniform distribution of the cells. Immunofluorescent staining 

for mouse CD31 in these cultures demonstrated varying expression of the marker. The trypsinized 

conditions, both fibrin and TCP cultures, displayed the brightest signal for the reprogramed cells, 

while the natto kinase fibrin condition and fixed TCP demonstrated some signal intensity. 

However, the fibrin fixed cultured displayed weak to no signal. In comparison to the control EC, 

no condition expressed the same level of signal intensity or the expression of CD31 along the cell-

to-cell junctions.  
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Figure AC-1: Reprogramed MEF morphology is different from control Mouse ECs. 
MEF were reprogramed to a pluripotent like state and then differentiated into an EC lineage on 2.5 mg/mL fibrin or tissue culture 
plastic. Some cultures were removed with trypsin or natto kinase and replated to enhance visualization. Representative Images of 
phase contrast microscopy of the various cultures. Scale bar = 200 µm. 
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Figure AC-2: CD31 expression of reprogramed MEFs is significantly lower than Mouse ECs. 
MEF were reprogramed to a pluripotent like state and then differentiated into an EC lineage on 2.5 mg/mL fibrin or tissue culture 
plastic. Some cultures were removed with trypsin or natto kinase and replated to enhance visualization. Cultures were IF stained 
for mCD31 and visualized via fluorescent microscopy. Scale bar = 200 µm. 
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AC.4 Discussion and Conclusions 

iPSC-ECs are a potentially alternative cell source for revascularization therapies. This 

dissertation explored two different external sources of iPSC-ECs. However, iPSC-EC creation 

requires a complex method of reprograming stromal cells and typically only a low percentage of 

cells are successful differentiated [4]. In order to assess vasculogenic differences between 

additional sources of iPSC-ECs, this study explored the ability to produce in-house iPSC-ECs 

through reprograming stromal cells into a pluripotent state and then differentiating into an 

endothelial lineage. This data shows that MEFs were unsuccessfully reprogramed and 

differentiated into an EC lineage across all culture conditions. While research has demonstrated 

varying reprograming efficiencies on different matrix stiffnesses, no differences were seen 

between the TCP and fibrin cultures [3]. While signal intensity of the trypsinized fibrin and TCP 

cultures was stronger than other cultures, the intensity is most likely an artifact of the confocal 

microscopy caused by the large grouping of cells. The signal intensity was also stronger for these 

conditions as cells were removed and placed on fresh plates, allowing little time for ECM matrix 

deposition [5]. The high density pockets of the culture conditions is most likely caused by the 

trypsinization process only partly breaking apart cell-cell junctions, leaving groups of cells 

clumped together once plated again [6]. The fixed fibrin condition had weak signaling due to high 

background from the fibrin gel. The most important distinction between all the cell conditions and 

the control ECs is the location of CD31 expression. Typically, CD31 is expressed on the surface 

and between the cell-cell junctions of ECs, as seen with the mouse EC [7].  Ultimately, this study 

demonstrated additional studies, such as FACS analysis of CD31, other EC marker expression, 

and reprograming of human cells, are necessary to successfully create in-house iPSC-ECs. 
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Appendix D – Media Effect on HUVEC Capillary 
Morphogenesis 

 
AD.1 Introduction 

ECs require a variety of growth factors and signals to regulate angiogenesis [1]. To 

simulate this complex physiological environment, ECs are cultured in vitro using media designed 

specifically to promote growth and proliferation of this lineage of cells. However, media 

formulations vary by vendor and there are no specific requirements for which growth factors and 

protein are added to the media. In Chapter 3, we investigated the effects of media formulation on 

various sources of ECs. While no differences were seen for iPSC-ECs, HUVECs demonstrated a 

reduced network formation in iPSC-EC media.  

The present study explores whether HUVECs form the same robust, stable 

microvasculature in other growth media formulations. The overall goal of this study is to 1) assess 

the effects of media on HUVECs, and 2) to establish a suitable alternative media formulation for 

culturing HUVECs. Using the same well-established in vitro model, HUVECs were coated on 

dextran microcarrier beads and co-embedded in a 3D fibrin matrix with normal human lung 

fibroblasts (NHLF). We examined differences in capillary morphogenesis of HUVECs by 

quantifying total network lengths, the number of vessel-like segments, and vessel thickness.  
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AD.2 Material and Methods 

AD.2.1 HUVEC Isolation and Cell Culture 

Human umbilical vein endothelial cells were harvested from fresh umbilical cords from 

the University of Michigan Mott Children’s Hospital via an IRB-exempt protocol and isolated 

from methods previously described. Briefly, the umbilical cord was rinsed in phosphate buffer 

saline (PBS) and then digested with 0.1% collagenase type I (195 U/ml, Worthington Biochemical, 

Lakewood, NJ) for 20 min at 37°C. The digested product was subsequently washed in PBS, 

collected, and centrifuged (200×G for 5 min). The pellet was resuspended in either endothelial 

growth media (EGM-2, Lonza), Vasculife VEGF endothelial media (Lifeline Cell Technology, 

Fredrick, MD), or Endothelial Cell Media (ECM, ScienCell, Carlsbad, CA) and the cells were 

plated in tissue culture flasks and cultured at 37°C and 5% CO2. After 24 hours, HUVECs were 

rinsed with PBS to remove any non-adherent cells. Fresh media was changed every 48 hours. Cells 

from passage 3 were utilized for experiments. Normal human lung fibroblasts (NHLF, Lonza) 

were cultured at 37°C and 5% CO2 in Dulbecco’s modified eagle media (DMEM, Life 

Technologies, Grand Island, NY) with 10% fetal bovine serum (FBS). Culture media was replaced 

every 48 hours and cells from passage 6-10 were used in experiments.  

 

AD.2.2 Microcarrier Bead Assembly 

Cytodex microcarrier beads (Sigma-Aldrich, St. Louis, MO) were hydrated and sterilized 

in phosphate buffer saline (PBS). Beads were prepared for coating by washing repeatedly with 1 

mL of EGM-2, with time to settle between washes. Endothelial cells were cultured in T-75 flasks 

to 80% confluency and rinsed with PBS before being harvested via 0.25% trypsin incubation for 

5 min at 37 °C and 5% CO2. Trypsin was neutralized using DMEM supplemented with 10% FBS. 
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The cellular suspension was centrifuged (200×G for 5 min) and supernatant was aspirated 

immediately. The cell pellet was re-suspended in 4 mL of fresh EGM-2. 10,000 microcarrier beads 

were combined with four million HUVECs (5 mL total) in an inverted T-25 culture flask. Over a 

4 hour incubation period, the culture flask was agitated every 30 minutes to ensure EC coating of 

beads. After 4 hours, the cell-bead mixture was added to a new T-25 culture flask. Fresh EGM-2 

(5 mL) was added to the old flask to remove any remaining beads and transferred to the new culture 

flask. The total volume (10 mL) was incubated overnight in standard cell culture position. 

 

AD.2.3 Fibrin Tissue Assembly  

The next day, following bead coating, a fibrinogen (Sigma-Aldrich) solution of the desired 

concentration (2.5 mg/mL) was dissolved in an appropriate amount of serum-free EGM-2 and 

placed at 37 °C in a water bath. The solution was sterile filtered through a 0.22 µm syringe filter 

(Millipore, Billerica, MA). The previous day’s cell-bead solution was removed from the culture 

flask and placed in a 15 mL centrifuge tube. After the beads settled, the remaining supernatant was 

used to remove any remaining beads adhering to the culture flask and added to the centrifuge tube. 

Upon the beads settling, the supernatant was removed and 5 mL of fresh serum-free EGM-2 was 

added to the cell-coated beads. The appropriate amount of bead solution (~ 50 beads per well) was 

added to the fibrinogen solution with 5% FBS. Fibroblasts were prepared using a similar 

rinsing/trypsinization procedure as described above. 25,000 NHLFs per well were added to the 

bead-fibrinogen solution or plated on top of each gel after polymerization in distributed and 

monolayer conditions respectively. 500 µL of above mixture was added to a single well of a 24-

well tissue culture plate and polymerized with 10 μL of thrombin (50 U/mL, Sigma-Aldrich). 

Tissue constructs were left undisturbed for 5 min at room temperature before incubation for 30 
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min at 37 °C and 5% CO2. 1 mL of media [EGM-2 (Lonza), Vasculife VEGF media (Lifeline), or 

ECM (ScienCell)] was added on top of the gels following incubation and changed the following 

day and every other day thereafter.  

 

AD.2.4 Immunofluorescent staining 

After the constructs were cultured for a specified period of time (7 or 14 days), gels were 

rinsed 3x with PBS solution for 5 min at room temperature. Gels were then fixed with 500 μL of 

formalin (1 mL of 36.5% Formaldehyde solution (Sigma), 1 mL of PBS, and 8 mL of d.d.H2O) 

for 15 min at 4 °C. Gels are rinsed again 3x with PBS for 5 min. The primary antibody/staining 

agent was dissolved PBS (Ulex Europaeus Lectin 1 (UEA), 1:100 (Vector Labs, Burlingame, CA)) 

and 1 mL of this solution was added to each gel for 1 hr and 30 min incubation at room temperature. 

Gels were rinsed 3x for 5 min with PBS and incubated with PBS overnight at 4 °C as a final rinse.  

 

AD.2.5 Fluorescent Imaging and Vessel Quantification 

Vessel formation was assessed at the aforementioned time points.  Fluorescent images were 

captured utilizing an Olympus IX81 equipped with Disc Spinning Unit and a 100 W high-pressure 

mercury burner (Olympus America, Center Valley, PA), a Hamamatsu Orca II CCD camera 

(Hamamatsu Photonics, K.K., Hamamatsu City, Japan), and Metamorph Premier software 

(Molecular Devices, Sunnyvale, CA). Images from at least 30 beads per condition were captured 

over three separate trials at low magnification (4×) for each independent experiment and processed 

using the Angiogenesis Tube Formation module in Metamorph Premier (Molecular Devices). Each 

image was segmented and analyzed based on any tube-like pattern that falls within a specified 
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minimum and maximum width of each segment above a contrast threshold. The total network 

length, the number of branch points, and tube thickness were quantified.  

 

AD.2.6 Statistical Analysis  

Statistical analyses were performed using StatPlus (AnalystSoft Inc.,Walnut, CA). Data 

are reported as mean ± standard error of mean (SEM). One- or two-way analysis of variance 

(ANOVA) with a Bonferroni post-test was used to assess statistical significance between data sets. 

Statistical significance was assumed when p<0.05. 

 

AD.3 Results  

In-house isolated HUVECs were characterized for the ability to sprout from microcarrier 

beads when co-cultured with NHLFs in a 3D fibrin matrix with various media formulations. 

Immunofluorescent staining for UEA in these cultures demonstrated successful attachment, 

invasion into the ECM, and similar sprouting across media formulations at day 7. However, on 

days 14, the capillary sprouting of HUVECs in ScienCell Endothelial Cell Media (ScienCell) 

showed significant reductions in their networks compared to Lonza EGM-2 (Lonza) and Lifeline 

VEGF media (Lifeline) (Fig. AD-1.1). Quantification of these networks (Fig. AD-1.2) 

demonstrated a significant decrease in total network length between the ScienCell condition and 

the other two media formulations (30977 ± 2167 µm ScienCell versus 45368 ± 2126 µm for Lonza 

and 41949 ± 2762 µm for Lifeline on day 14). This reduced total network length was accompanied 

by a two-fold decrease in number of segments formed. The tube thickness of HUVECs cultured in 

the ScienCell media was also significantly smaller than the other two conditions at both timepoints 

(6.17± 0.23 µm ScienCell versus 7.16 ± 0.23 µm for Lonza and 8.00 ± 0.24 µm for Lifeline on 
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day 7 and 16.40 ± 0.26 µm ScienCell versus 18.36 ± 0.56 µm for Lonza and 20.27 ± 0.46 µm for 

Lifeline on day 14). There was no statistical difference between the Lonza and Lifeline media 

conditions, despite slightly reduced total network length and number of segments.   

 
Figure AD-1.1: Variations in media formulations affect HUVEC capillary morphogenesis. [Rep. Images]  
(A) HUVEC-coated microbeads embedded in 2.5 mg/mL fibrin with NHLF at various time points were stained for UEA and 
visualized via fluorescent microscopy. Scale bar = 200 µm. 
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Figure AD-1.2: Variations in media formulations affect HUVEC capillary morphogenesis. [Quantification]  
Over 3 separate experiments, a total of 30 beads per EC were quantified and averaged for total capillary network length, number 
of segments, and tube thickness *p<0.05 and **p<0.01 when comparing the indicated condition at that time point. Error bars 
indicate ±SEM 

 

 

AD.4 Discussion and Conclusions 

HUVECs are a robust source of ECs with proven capability of capillary morphogenesis, 

particularly in the assay used here. However, HUVEC cultures require media specifically designed 

to promote growth and proliferation. The study therefore explored the ability of various media 
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formulations from different vendors to promote functional vessel-like structures in a clinically 

relevant 3D in vitro model of angiogenesis. This data shows that HUVECs coated on microcarrier 

beads embedded in fibrin with NHLFs cultured in Endothelial Cell Media from ScienCell yield 

networks with significantly shorter total network lengths compared to both Lonza EGM-2 and 

Lifeline VEGF media. Furthermore, the thickness of vessels formed in ScienCell media are 

significantly smaller as well. Clearly, something in the ScienCell media is affecting the capillary 

morphogenesis of HUVECs. However, it is impossible to know specifically due to the proprietary 

nature of the ScienCell media. Unlike Lonza and Lifeline which include small aliquots of growth 

factors to add the base media, ScienCell media includes an unspecified vial of endothelial cell 

growth supplement. While one can assume similar growth factors are in this supplement, which 

exact growth factors and their concentrations are unknown. Similar to the iPSC-EC media in 

Chapter 3, one thing known about the supplement is a higher serum concentration. As previously 

mentioned, one of the prominent issues surrounding serum is batch-to-batch variations due to the 

unknown composition of each batch [2]. The additional serum in the ScienCell supplement could 

potentially explain the differences seen between the HUVEC conditions. Additionally, no 

statistical differences were seen between Lonza and Lifeline media. This similarity can be 

attributed to both media formulations adding the same growth factors at the same exact 

concentration. The only difference between the Lonza and Lifeline media are the base media 

formulation which could account for the slight differences observed. While the ScienCell media 

demonstrated small vessel thickness, the larger diameters for the other media formulations could 

indicate less mature vessel formation. As the neovasculature matures, ECs form tightly regulated 

junctions to each other [3]. The HUVECs in the Lonza and Lifeline media may not have formed 

these tight boundaries yet, leading to increased extracellular space between each cell. Future 
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studies can investigate vessel maturity differences between media formulation. Ultimately, this 

study demonstrated Lifeline Vasculife VEGF media could be used as an alternative media to Lonza 

EGM-2. 
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Appendix E – General Cell Culture Passaging and 
Freezing

 
Unfreezing Cells 

1. Warm up media in water bath 37 °C. 
2. Open hood sash. Open hood until set at appropriate level (alarm should stop sounding) 
3. Turn on vacuum pump 
4. Once airflow indicator light turns green on hood control panel, spray down and wipe 

down work surface with ethanol 
5. Put necessary supplies into hood by first spraying with 70% ethanol and wiping down 

with paper towel 
******* ANYTHING that enters hood needs to be sprayed with 70% ethanol 

6. Once media has warmed up, transfer media bottle to hood. Spray with 70% ethanol first 
before placing in hood 

7. Press indicator light/button on liquid nitrogen tank lid and then remove lid. Let it hang 
from the side handle of the tank 

8. Remove respective rack where cells are stored from tank. Let all liquid nitrogen drain 
into tank before completely removing 

9. Find cell vial in the respective box and remove from box 
10. Place rack back in liquid nitrogen, close lid, and repress indicator light/button. 
11. Place vial of cells in a foam float and thaw in water bath at 37 °C 
12. Once cells are near completely thawed (some ice still left in vial), transfer vial to cell 

culture hood 
13. Using micropipetter, transfer the content of the vial to a centrifuge tube. 
14. Add 1 mL of respective media, using a micropipetter, to the empty vial to ensure all cells 

are removed from the vial and add to the centrifuge tube. 
15. Add an additional 8 mL of media to the centrifuge tube bringing the total to 10 mLs 
16. Spin cells down at 200 X G for 5 mins. Make sure appropriate counterweight is used in 

centrifuge to balance machine 
17. After centrifugation is complete, aspirate off supernatant. 
18. Flick apart cell pellet and add 10 mL of fresh media to the centrifuge tube 
19. Add the cell solution to a respective flask or well plate at the appropriate seeding density 

1. 100K – 500K in T-25 
2. 500K-2M cells in T-75 
3. 2M – 6M in T-225 
4. 20K -40K 24 well plate 
5. 50-100K in 6 well plate 

20. Label flask or plate with initials, cell type/lineage, cell passage number, # of cells plated, 
and date
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21. Change media the day after and every day thereafter until cells are confluent 

1. 1 mL for 24 well 
2. 2 mL for 6 well 
3. 5 mL for T-25 
4. 10mL for T-75 
5. 30 mL for T-225 

 
Passaging Cells 

22. Warm up media and PBS and thaw trypsin and FBS in water bath 
23. Follow steps 2-6 above to prep hood. 
24. Aspirate off old media of ECs and fibroblasts 
25. Rinse with equal volume of PBS to media 
26. Aspirate off PBS 
27. Add appropriate amount of trypsin to each flask 

a. T-25 – 2 mL 
b. T-75 – 5 mL 
c. T-225 – 10 mL 

28. Incubate for 5 mins at 37 °C 
29. Verify cells are detached from plate using microscope. If not, enough cells are detached, 

gently tap sides of plate to detach remaining cells. If cells still seem adherent, incubate 
for a few more minutes 

30. Once cells are detached, add equivalent amount of media + 10% FBS to cells to 
neutralize trypsin 

31. Collect cells with serological pipette and add to centrifuge tube 
32. Spin down cells at 200 X G for 5 minutes 
33. Once cells are pelleted, aspirate off supernatant 
34. Flick pellet of cells to break pellet apart. 
35. Resuspend cells in 5 mL of media. Ensure cells are properly suspend by pipetting 
36. Take 10 μL of solution and count using hematocytometer 

a. Count cells in 4 – 4x4 corners 
b. Divide by 4 
c. Times number by 10000, this is your cells per mL 
d. Multiply by number of mLs used to resuspend cells (if following above, will be 

by 5. Resuspending vol. amount can vary depending on number of cells you 
expect to have) 

37. Add additional media to the cell solution to bring cell suspension the desired cell 
concentration. 

38. Split cells into multiple flasks/plates to achieve respective cell number listed in [step 19] 
39. Label flask or plate with initials, cell type/lineage, cell passage number, # of cells plated, 

and date 
40. Change media the day after and every day thereafter until cells are confluent (see step 21 

for respective amounts) 
 
Freezing Cells 

41. Repeat steps 22-36 above 
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42. Once cells have been counted, spin down cells again at 200 X G for 5 minutes 
43. While cells are spinning down, calculate amount of cryopreservation solution needed 

a. Cells can be frozen down at varying concentration 
b. Typically, each vial will have 1 mL of solution 
c. Cryopreservation solution needed is determined by desired cell concentration and 

number of cells counted 
44. Prepare cryopreservation solution in a centrifuge tube 

a. 70% respective cell media 
b. 20% FBS 
c. 10% DMSO 

45. Obtain the respective number of cryopreservation vials and label them with date, initials, 
cell type, passage, and cell count 

NOTE: Passage to label vial is current passage if cells were to be plated instead of frozen 
down. i.e. If cells came from a plate labeled P2, label the vials P3 
46. Once cells are spun down, aspirate off supernatant 
47. Flick pellet and add cryopreservation solution to cells 
48. Using a micropipetter, add cells to each vial.  

** After adding cryopreservation solution to cells, cells need to be frozen ASAP as 
DMSO can affect cell viability 

49. Once all vials are filled, place vials in a Mr. Frosty 
50. Place Mr. Frosty in -80 °C freezer overnight 
51. The next days, place vials in a box in liquid nitrogen tank 
52. Record in lab cell log what vials were added to the liquid nitrogen tank 

 
Respective Media for Varying Cells 

- In-house isolated HUVEC – EGM-2 [LONZA], can use Vasculife VEGF media 
[Lifeline] 

- Commercial LONZA HUVEC – EGM-2 [LONZA] 
- NHLFs – DMEM + 5% FBS [Invitrogen] 
- iPSC-ECs (Cellular Dynamics) – Vasculife VEGF media + iPSC-EC supplement 

[LIFELINE, Celluar Dynamic respectively]. 
- MVECs – EGM-2MV 
- iPSC-ECs (Ngan Huang Lab) - EGM-2MV 

General Tips for Culturing iPSC-ECs 
****Flasks/plates must be coated with fibronectin prior to culture iPSC-ECs 

53. Preparing fibronectin Plates/Flasks 
a. Reconstitute fibronectin in sterile water to make a stock solution at 1 mg/mL 
b. Prior to coating, make a working solution of 30 μg/mL 

i. For T-75, 225 μL of stock fibronectin solution (1 mg/mL) in 7.5 mL of 
sterile water 

c. Add working solution of fibronectin to plate/flask 
d. Incubate flask/plate for at least 1 hr at RT 

***** iPSC-ECs use TyrpLE to detach cells not the typical trypsin used for other cells 
***** Seeding density is MINIMUM 750K in T-75 flask, but ideally 1M in T-75 Flask 
***** Cell morphology is larger than other ECs, specifically HUVECs, but still make 
cobblestone pattern 
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Appendix F - Isolation of HUVECs from umbilical 
cords 

 
 
Materials:  
 • 2 Haemostats  
 • 1 pair of scissors  
 • 2 L beaker  
 • Foil and autoclave tape  
 • 2, 5 mL syringe  
 • 1, 33 mm Millex filter  
 • 2, 20 mL syringes  
 • Butterfly needle  
 • 1, 18-gauge needle (or 16-gauge needle)  
 • 40 mL of sterile PBS  
 • 5 mL of 0.1% collagenase (sterile-filter)  
 • 5 mL of EGM-2  
 • Umbilical Cord  
 
Protocol:  
 
Sterilization of Surgical Tools 
 • Place 2 haemostats, and 1 pair of scissors in a 2 L beaker. One pair of scissors doesn’t work  

properly; therefore, it’s better to add the 2 pairs of scissors to the beaker.  
 • Cover the beaker with aluminum foil and then tape one side of the aluminum foil to the 

beaker using autoclave tape.  
 • Autoclave beaker using the textiles setting.  
 a. Sterilization time: 45 minutes  
 b. Drying time: 10 minutes  
 • Check to make sure water level of pipe in the autoclave is at the specific set level. Then start 

the process.  
 
HUVEC isolation: 
 1. Place the umbilical cord and the sterile PBS in the water bath. Make sure that the cord is in 

the biohazard delivery bag to avoid contaminating the water bath.  
 2. Make 5 mL of 0.1% of collagenase in PBS. Make sure to make this solution every time this  

protocol is repeated, DO NOT store solution after experiment is completed. [Concentration 
= 5 mg/mL]  

 3. Sterile filter the 0.1% collagenase solution using a 5 mL syringe with a 33 mm Millex filter.  
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 4. Connect an 18-gauge needle to a 5 mL syringe and suction 5 mL of the sterile-filter  
collagenase. Place the syringe back in its wrapper for storage.  

 5. Remove the needle from the syringe carefully and throw it in the sharps needle biohazard  
container. Make sure you don’t recap the needle.  

 6. Suction 20 mL of PBS in each 20 mL syringe. Put the syringes back in their wrappers for 
storage  

 7. Sterilize the hood and all the materials needed in this protocol prior to putting them in the 
hood.  

 8. Place paper towels inside the hood (use sufficient amount to cover your working area  
properly).  

 9. Soak the towels with bleach (make sure surface is completely wet with bleach).  
 10. Put on a second pair of gloves prior to placing the umbilical cord in the container and 

especially prior to opening the umbilical cord container.  
 11. Take out the umbilical cord and PBS from the water bath and place them inside the hood 

after wiping them down with ethanol.  
 12. Take out the umbilical cord from its container and wipe off the clotted blood in the paper  

towels.  
 13. Locate the lines where they clamped the hemostats on both ends of the cord. Cut the cord  

below the clamp marks. Use cord container as a waste container for the pieces cut from the  
cord. The cleaner the cut is the easier it is to locate the veins and arteries.  

 14. Gently slide half of the butterfly needle into the vein and clamp the cord with the needle 
using the hemostat. You must spiral the needle around because vein spirals around the 
outside. NOTE – Leave the plastic casing of the butterfly needle covering the needle when 
inserting it into the vein. The vein looks like a stretch mark. You shouldn’t have to put a lot of 
force when inserting the needle to the vein, there should be no resistance.  

15.  Remove the extra part of the butterfly needle so that you only have the tube connected to the  
 butterfly needle. Attach the first 20mL syringe of PBS and inject all of it slowly into the vein  
 making sure there are no clots. Make sure the cord is on top of the waste container.  
16.  Attach the collagenase syringe and begin injecting the solution until the liquid coming down  

 changes its color to gold. (It takes approximately 1 mL of collagenase of color change to  
 occur). Make sure to put the cord on top of the white towel to make it easier to notice the 
liquid color change.  

17.  Clamp the other end of the cord and very carefully re-inflate the vein with the 4 mL of  
 collagenase remaining in the syringe.  
18.  Carefully place everything in the autoclaved beaker which initially contained the hemostats  
 and scissors. Cover the top with the aluminum foil taped at one side of the beaker.  
19.  Remove your outer pair of gloves and take the 2 L beaker to the bottom shelf of the 

incubator.  
 If there is no space, then use the top incubator instead. Don’t clean up workspace yet.  
 20. Leave the cord in the incubator for 20 min.  
 21. Put on a second pair of gloves and take out the cord from the incubator. Remove the hemostat  

that is not holding the needle and then attach the last 20 mL syringe of PBS.  
 22. Place the cord on top of a 50 mL centrifuge tube and begin injecting the PBS in the vein very 

slowly to wash off the cells but avoid bursting the vein. Collect the entire solution in the 
50mL tube and then discard the cord in the waste container after removing the needle and the  
hemostat holding it in place.  

 23. Make sure all waste goes in the biohazard bag. Clean up the hood with bleach and ethanol  
(rinsing).  
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Cell Culturing: 
 24. Centrifuge the tube in Setting 1 (200g for 5 min).  
 25. Take out a 25 mL flask and place it in the clean hood. Label it: “HUVEC P.0, Date, Your  

initials”.  
 26. Remove the 50 mL tube from the centrifuge and aspirate off the supernatant. Make sure to do  

it carefully to avoid aspirating off the HUVECs.  
 27. Add 5 mL of EGM-2 into centrifuge tube and mix well. Put the cell-media solution into the 

25 mL flask.  
 28. Place the flask in the incubator overnight.  
 29. Place flask in the hood and aspirate off the medium. Add 5 mL of PBS and rock the flask.  
 30. Aspirate off the PBS and add 5 mL of PBS (2X).  
 31. Remove PBS and add 5 mL of EGM-2.  
 32. Look at the HUVECs under microscope. Let them grow on the T-25 flask and make sure to  

check on them every day. Cells should be confluent in less than 1 week. If not, throw the 
cells away.  

 33. Once the cells are confluent, trypsinize and passage them into 2 T-75 flasks.  
 34. Grow to confluency and freeze them down. Label them P.2. 
  



 

 203 

Appendix G - Vasculogenesis Assay Protocol 
 

 
Preparing fibrinogen solution 
 
Note: Gels are 2.5 mg/mL of fibrinogen 

- You will add 5% FBS to the fibrinogen solution in the end. To adjust for this use 
2.625% mg/mL. 
 

1. Take fibrinogen out of freezer and warm up to room temperature 
2. To get amount of fibrinogen needed, calculate how many gels you are making 

a. Each gel is 500 μL 
b. Calculation is # of gels X 500 μL = # of mLs of fibrinogen solution needed 
c. Add 2 mL to # of mLs of fibrinogen solution needed to account for loss during 

filtering 
d. Divide 2.625 mg/mL by the protein content and clottable content of the fibrinogen 

to get actual concentration (Typically listed on the bottle. Varies Lot-Lot) 
e. Multiply # of mLs of fibrinogen by actual concentration to get # of grams to 

measure 
3. Measure out calculated fibrinogen and add to 50 mL centrifuge tube 
4. In cell culture hood, add serum -free EGM-2 equal to the # of mLs of fibrinogen solution 

needed to centrifuge tube with fibrinogen. 
5. Place fibrinogen solution in water bath to dissolve fibrinogen 

 
Prepare Cells 
While fibrinogen solution is dissolving, prepare cells. 

6. Aspirate off old media of ECs and fibroblasts 
7. Rinse with equal volume of PBS to media 
8. Add appropriate amount of trypsin to each flask 

a. T-25 – 2 mL 
b. T-75 – 5 mL 
c. T-225 – 10 mL 

9. Incubate for 5 mins at 37 °C 
10. Verify cells are detached from plate using microscope 
11. Once cells are detached, add equivalent amount of media + 10% FBS to cells to 

neutralize trypsin 
12. Collect cells with serological pipette and add to centrifuge tube 
13. Spin down cells at 200 X G for 5 minutes 
14. Once cells are pelleted, aspirate off supernatant 
15. Flick pellet of cells to break pellet apart 
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Assembling Gel Tissue Constructs 
16. Once fibrinogen solution has dissolved, using a needle and syringe, pull solution into 

syringe 
17. Using a 0.22 μL filter, filter fibrinogen solution into a clean centrifuge tube 

Note: May need to use multiple filters as filters can clog 
18. Add 10 μL of thrombin to the bottom of each well that a gel will be cast in a 24 well plate 

a. Note: Need one-24 well plate per timepoint due to fixation 
19. Determine cell concentration and cell ratio need for gels e.g. 250k/mL and 1:1 ratio of 

EC to stromal cells 
20. Add appropriate amount of stromal cells to ECs based on # of gels, amount of cells, and 

ratio  
a. e.g 10 gels needed, at 250k/mL (125k/ gel [gels are 500 μL]) = 1.25 M cells 
b. 1.25 M cells at 1:1 ratio is 625K each of ECs and stromal cells 

21. Add appropriate amount of fibrinogen solution to EC/stromal cells suspension 
a. e.g. 5 mLs of sterile-fibrinogen solution if using above example 

22. Add 5% FBS to fibrinogen/cell solution 
23. Pipette 500 μL of the FBS/fibrinogen/cell solution (using P1000) to each well 
24. All gels to polymerize at room temperature for 5 mins 
25. Incubate gels for 30 minutes at 37 °C to complete polymerization 
26. Add 1 mL of media to the top of each gel after polymerization is complete 
27. Change media on day 1 and every day thereafter. 
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Appendix H – Dextran Bead Coating Protocol 
 

 
Preparing dextran beads 

1. Measure 75 mg of powdered Cytodex dextran beads (~ 0.1 g is 200K beads) 
2. Suspend beads in 15 mL of 1x – PBS in small glass vial 
3. Autoclave beads for 40 minutes with cap unscrewed 
4. After autoclaving calculate concentration of beads 

a. Place 10 μL of solution on cover slip 
b. Count how many beads total are in droplet 
c. Concentration = count X 100 

5. Wrap beads in parafilm and store at 4 °C 
 

Prepare Cells 
6. Aspirate off old media of ECs and fibroblasts 
7. Rinse with equal volume of PBS to media 
8. Aspirate off PBS 
9. Add appropriate amount of trypsin to each flask 

e. T-25 – 2 mL 
f. T-75 – 5 mL 
g. T-225 – 10 mL 

10. Incubate for 5 mins at 37 °C 
11. Verify cells are detached from plate using microscope 
12. Once cells are detached, add equivalent amount of media + 10% FBS to cells to 

neutralize trypsin 
13. Collect cells with serological pipette and add to centrifuge tube 
14. Spin down cells at 200 X G for 5 minutes 
15. Once cells are pelleted, aspirate off supernatant 
16. Flick pellet of cells to break pellet apart 

 
Bead Equilibration: 

17. Take 10000 beads (based on concertation calculated) and add to a microcentrifuge tube 
18. Let beads settle by gravity 
19. Quickly spin down beads (~10 s) in centrifuge at max speed 
20. Aspirate off supernatant 
21. Add 1 mL of EGM-2 to beads 
22. Repeat 18-21 for a total of 3 times 
23. After final wash, resuspend beads in 1 mL of fresh EGM-2 

 
Bead Coating: 
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24. Resuspend cells in 5 mL of EGM-2 
25. Count using hematocytometer (need ~4 M cells) 
26. Add 4 M cells of cells to T-25 in upright position 
27. Bring total volume in flask to 4 mL 
28. Add all beads to T-25 flask with cells 
29. Shake flask side to side while holding upright for 1 minute 
30. Place in incubator at 37 °C in upright position 
31. Shake flask for 1 minute at the following timepoints from initially placing in incubator 

5 min, 25 min, 55 min, 1hr 25 min, 1 hr 55 min, 2 hr 25 min, 2 hr 55 min, 3 hr 25 min, 3 
hr 55 min 

32. After all timepoints have been shaken, take beads/cell solution and add to a a new T-25 
flask 

33. Add 5 mL of fresh EGM-2 
34. Incubate overnight in standard culture position 
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Appendix I – Angiogenic Bead Assay Protocol 
 

 
Preparing fibrinogen solution 
 
Note: Gels are 2.5 mg/mL of fibrinogen 

- You will add 5% FBS to the fibrinogen solution in the end. To adjust for this use 
2.625% mg/mL. 
 

1. Take fibrinogen out of freezer and warm up to room temperature 
2. To get amount of fibrinogen needed, calculate how many gels you are making 

a. Each gel is 500 μL 
b. Calculation is # of gels X 500 μL = # of mLs of fibrinogen solution needed 
c. Add 2 mL to # of mLs of fibrinogen solution needed to account for loss during 

filtering 
d. Divide 2.625 mg/mL by the protein content and clottable content of the fibrinogen 

to get actual concentration (Typically listed on the bottle. Varies Lot-Lot) 
e. Multiply # of mLs of fibrinogen by actual concentration to get # of grams to 

measure 
3. Measure out calculated fibrinogen and add to 50 mL centrifuge tube 
4. In cell culture hood, add serum -free EGM-2 equal to the # of mLs of fibrinogen solution 

needed to centrifuge tube with fibrinogen. 
5. Place fibrinogen solution in water bath to dissolve fibrinogen 

 
Prepare Stromal Cells 
While fibrinogen solution is dissolving, prepare cells. 

6. Aspirate off old media of fibroblasts 
7. Rinse with equal volume of PBS to media 
8. Add appropriate amount of trypsin to each flask 

a. T-25 – 2 mL 
b. T-75 – 5 mL 
c. T-225 – 10 mL 

9. Incubate for 5 mins at 37 °C 
10. Verify cells are detached from plate using microscope 
11. Once cells are detached, add equivalent amount of media + 10% FBS to cells to 

neutralize trypsin 
12. Collect cells with serological pipette and add to centrifuge tube 
13. Spin down cells at 200 X G for 5 minutes 
14. Once cells are pelleted, aspirate off supernatant 
15. Flick pellet of cells to break pellet apart
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Prepare EC Coated Beads 
16. Remove all media and beads from T-25 flask 
17. Place in 15 mL centrifuge tubes 
18. Let beads settle by gravity 
19. Once bead have settled, take supernatant and rinse flask to remove remaining beads stuck 

to flask 
20. Add supernatant to centrifuge tube 
21. Once beads have resettled by gravity, aspirate off supernatant 
22. Resuspend beads in 5 mL of fresh serum free EGM-2 

Note: Concentration should be ~ 2000 beads/ mL 
23. Calculate # of beads needed: 

a. 50 -100 beads per gel for protein assay 
b. 25 beads per gel for imaging 

24. Mix EC coated bead solution well 
25. Transfer # of beads needed to new centrifuge tube 
26. Let beads settle and aspirate off supernatant 

 
Assembling Gel Tissue Constructs 

27. Once fibrinogen solution has dissolved, using a needle and syringe, pull solution into 
syringe 

28. Using a 0.22 μL filter, filter fibrinogen solution into a clean centrifuge tube 
Note: May need to use multiple filters as filters can clog 

29. Add 10 μL of thrombin to the bottom of each well that a gel will be cast in a 24 well plate 
a. Note: Need one-24 well plate per timepoint due to fixation 

If using distributed stromal cell model: (if not skip to step 32) 
30. Add 1 mL of fibrinogen solution to stromal cells 
31. Add appropriate amount of stromal cells to centrifuge tube with beads (25 K stromal 

cells per 500 μL gel) 
 
32. Add FBS to tube with beads 

a. Volume to add is equal to 5% X of # of gels X 500 μL 
33. Add remaining volume (# of gels X 500 μL X 0.95) of fibirnogen solution to beads in 

centrifuge tube 
34. Mix well 
35. Pipette 500 μL of gel/bead solution into each well using p1000  

a. Mix solution well before pipetting into each well as bead settle quickly 
36. All gels to polymerize at room temperature for 5 mins 
37. Incubate gels for 30 minutes at 37 °C to complete polymerization 
 
If using monolayer stromal cell model: (if not skip to step 41). 
38. Calculate number of cell needed (25K per 500 μL gel) 
39. Aliquot appropriate amount of fibroblasts into a new tube 
40. Add 1 mL per gel of EGM-2 to fibroblasts 
41. Add 1 mL of EGM-2 or EGM-2 + fibroblasts to the top of each gel after polymerization 

is complete 
42. Change with fresh EGM-2 on day 1 and every day thereafter. 
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Appendix J - Immunofluorescent Staining of Fibrin 
Gels 

 
Solutions: 
 
10 X TBS:  44 g NaCl 
  15.75 g Tris (base) 

500 mL of di H2O 
pH balance to 7.4 
 

TBS-T: 50 mL of 10 X TBS  
  0.5 mL of Trition X-100 
  Quench to 500 mL of dd H2O 
 
Abdil:  2% (2g/100mL) of Bovine serum albumin in TBS-T 
 
Formalin:  1 mL of saturated formaldehyde solution (36.5%) 
  1 mL of 1 X PBS 
  8 mL of dd H2O 
 
Fixation: 

1. Aspirate off old media in cell culture hood 
2. Add 2x gel volume (1mL for 500 μL) of 1 X PBS to each well 
3. Rinse for 5 minutes at RT  
4. Aspirate off PBS using vacuum pump 
5. Repeat 2-4 a total 3 times 
6. Add formalin equal to gel volume to each well in fume hood 
7. Place in fridge (4 °C) for 15 minutes 
8. Remove formalin using pipette in hood. 
9. Dispose of formalin in appropriate waste container 
10. Add PBS equal to 2X volume of gel to each well 
11. Rinse for 5 minutes at RT  
12. Aspirate off PBS using vacuum pump 
13. Repeat 2-4 a total 3 times 

 
Staining: 
Depending on the target, permeabilization may be required, if so: 

14. Add 2X gel volume of TBS-T for 1 hr at RT 
15. Aspirate off TBS-T 
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16. Block unspecific target with 2X gel volume of abdil solution for 1 hr RT or overnight at 4 
°C 

17. Aspirate off abdil block solution 
18. Prepare Antibody solution: 

a. For CD31, use 1:200 dilution in abdil 
b. For UEA, use 1:100 dilution in abdil 

19. Add 2X gel volume of primary antibody solution to well 
20. Cover well plate with aluminum foil 
21. Incubate for 1 hr at RT 
22. Aspirate of antibody solution and rinse with 2X gel volume of PBS for 5 mins at RT. 
23. Rinse a total of 3X 

 
If secondary is needed: 

24. Prepare secondary antibody solution: 
a. Varies on primary antibody 
b. For CD31, use 1:450 of alexa fluro 488 goat anti-mouse in abdil 

25. Add secondary antibody solution to each well, 2X gel volume 
26. Incubate for 45 min-1 hr at RT 
27. Aspirate of antibody solution and rinse with 2X gel volume of PBS for 5 mins at RT. 
28. Rinse a total of 3X 
29. Add 1 mL of PBS to each well to keep gels moist 

 
Optional: 

30. Incubate gels overnight in fridge (4 °C) with PBS 
31. Aspirate off old PBS and add 1 mL of PBS to each well 

a. Sometimes an extra overnight rinse is needed if there is too much background 
noise 

 
Optional DAPI Staining: 

32. After rinse with PBS, prepare DAPI solution 
a. Dilute DAPI in PBS (1:10000) [Only for concentrated DAPI 
b. Some stocks are 500X (1:500 dilution needed) 

33. Add 2x gel volume of DAPI solution to each well 
34. Incubate for 10 min at RT 
35. Aspirate of DAPI solution 
36. Rinse with 2X gel volume of PBS for 5 mins at RT. 
37. Rinse a total of 3X 
38. Add 1 mL of PBS to each well to keep gels moist 

 
Note: UEA does not need permeabilization or blocking step can skip from step 13 to 18 
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Appendix K - Immunofluorescent Staining in 
Suspension 

 
Cell Harvesting: 

1. Remove media from the cell flasks 
2. Rinse cells with volume equal to media volume PBS 
3. Aspirate off PBS 
4. Add appropriate amount of trypsin to each flask 

1. T-25 – 2 mL 
2. T-75 – 5 mL 
3. T-225 – 10 mL 

5. Incubate for 5 mins at 37 °C 
6. Inhibit trypsin with media and 5% FBS 
7. Collect cells and solution from flask in a centrifuge tube 
8. Spin down cells in centrifuge at 200 X G for 5 mins 
9. Aspirate off supernatant 
10. Flick tube to break apart cell pellet 
11. Add 5 mL of PBS to cells 
12. Count cells using a hematocytometer 
13. Filter cells and PBS through a 40 μm nylon into a new centrifuge tube 
14. Spin down cells in centrifuge at 200 X G for 5 mins 

 
Primary Antibody Suspension Staining: 

15. Prepare solution of PBS + 0.1% BSA and cool on ice 
16. Once cells are pelleted, add ice cold PBS + 0.1% BSA solution to pellet so final 

concentration is 2M-5M per mL 
1. Cell concentration can vary depending on how many cells you have and want to 

use 
2. Minimum cell concentration is 1M cells / mL per sample for FACS 

17. Distribute 1 mL of cells solution to a microcentrifuge tube 
18. Spin down cells at 200 X G for 4 mins 
19. Aspirate of solution 
20. Rinse cells with 1 mL of ice cold PBS + 0.1% BSA 
21. Repeat 18 – 20 a total of 3X washes 
22. Prepare primary antibody solution 

1. Antibody diluted in ice cold PBS + 0.1% BSA solution 
2. CD31 1:50 dilution (20 μL in 1 mL) 
3. CD144 1:50 dilution (20 μL in 1 mL)  

23. Add 1 mL of antibody solution to their respective microcentrifuge tube 
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24. Place microcentrifuge tubes on mechanical rotator in fridge ( 4 °C) 
1. Cells need to be rotated to ensure proper binding 

25. Incubate for 1 hr 
 
Secondary Antibody Suspension Staining: 
 

26. Spin down cells at 200 X G for 4 mins 
27. Aspirate of solution 
28. Rinse cells with 1 mL of ice cold PBS + 0.1% BSA 
29. Repeat 16 – 28 a total of 3X washes 
30. Prepare secondary antibody solution 

1. Antibody diluted in ice cold PBS + 0.1% BSA solution 
2. Alexa Fluro Goat Anti Mouse 488 1:400 dilution (12.5 μL in 1 mL) 

31. Add 1 mL of antibody solution to their respective microcentrifuge tube 
32. Place microcentrifuge tubes on mechanical rotator in fridge (4 °C) 
33. Incubate for 40 mins - 1 hr 
34. Spin down cells at 200 X G for 4 mins 
35. Aspirate of solution 
36. Rinse cells with 1 mL of ice cold PBS + 0.1% BSA 
37. Repeat 34– 36 a total of 3X washes 

 
If cells are for FACS and analysis or sorting occurs over 2 hrs after step 37 is completed, cells 
need to be fixed 

38. Remove all solution from cells 
39. Fix cells by incubating with 1 mL 0.1%-1% paraformaldehyde in PBS. 
40. Place microcentrifuge tubes on mechanical rotator in fridge (4 °C) 
41. Incubate for 10 – 20 mins  
42. Spin down cells at 200 X G for 4 mins 
43. Aspirate of solution 
44. Rinse cells with 1 mL of ice cold PBS + 0.1% BSA 
45. Repeat wash 2X total 
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Appendix L - Immunofluorescent staining of 2D plate 
 

• Use protocol when staining for markers on cell surface and between cells 
• Adapting protocol from fibrin gels will results in cell contraction and possible removal of 

cell adherence to plate 

Fixation 
1. Warm up paraformaldehyde to RT 
2. Aspirate media off of plated cells 
3. Quickly rinse cells in PBS for second with equal volume of PBS to media 
4. Rinse for a total of 2X 

1. DO NOT leave PBS on cells as it will cause them to contract 
2. This is due to Mg and Ca ions present in DPBS powder 
3. If no, Mg or Ca, PBS can be left on longer 
4. Add PBS and then remove almost immediately for rinse. If less than 10 wells, can 

add PBS to all wells first and then aspirate PBS off 
5. Add 4% paraformaldehyde to cells. Volume to use is half of media volume used to 

culture cells 
6. Fix cells for 10 minutes at RT.  

1. Do not fix for longer than 10 mins as it could affect cell integrity 
2. Paraformaldehyde is used to ensure integrins stay bound to TCP and keep cells 

adherent 
 

Permeabilization and blocking 
7. Permeabilize for 10 min at RT with 0.1% TBS-T (Trition-X100) 
8. Can leave cells in TBS-T for extended periods of time and before blocking 
9. Block cells in 2% BSA dissolved in 0.1% TBS-T (Tween 20 pH 7.4) for at least 1 hr RT 

or overnight at 4 C 
 
Antibody Staining: 

10. Dilute primary antibody in 2% BSA dissolved in 0.1% TBS-T. Volume to add is equal to 
culture media volume 

1. CD31 [DAKO, Clone JC70A] 1:200 
2. VE-Cadherin [Invitrogen, BV-9, MA1-198] 1:200 
3. VWF [Invitrogen, MA5-14029,  ] 1:200 

11. Incubate for 1 hr at RT 
12. Rinse 3X with PBS at RT for 5 min 
13. Dilute secondary antibody in 2% BSA dissolved in 0.1% TBS-T. Volume to add is equal 

to culture media volume 
1. Goat anti-mouse alexa fluro 488 1:450 
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2. Can add DAPI at this step, (1:500) 
14. Rinse 3X with PBS at RT for 5 min 
15. Cells can be stored in 0.1% TBS-T until microscopy is performed. 
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Appendix M – Fluorescent Microscopy and 
Quantification of In Vitro Vascular Networks in 

Fibrin Gels 
 

Microscope Set-Up 
1. Turn on the microscope computer 
2. Login to PutnamOlympus. Password: rhoa 
3. Take the cover off the microscope 
4. Turn on microscope (Olympus 1x2), mercury lamp, camera controller (hamamatsu), and 

slide controller (prior) 
5. Record mercury lamp “ON” hr on data sheet next to microscope 
6. Open metamorph premier on computer 
7. Once open, on top tool bar, go to “AQUIRE”. On the drop down menu, click “AQUIRE” 

1. This opens a window which controls exposure, binning, gamma, and scaling 
8. In the window, the buttons do the following: 

1. AQUIRE – takes a picture of current field of view 
2. SAVE IMAGE – takes a picture of the current field of view and saves to a 

specified location 
3. SET SAVE – specify location to which save image button will save 
4. SAVE W/ SEQUENCE – automatically increment next image save file after you 

take an image using the save image button 
5. AUTO EXPOSE- determines optimal exposure for sample you are imaging (DO 

NOT USE) 
6. IMAGE GAMMA- increase or decreases the gamma 
7. IMAGE SCALING – set which band of light the camera will pick up (LEAVE 

AT MAX) 
8. AUTO SCALING – automatically sets the best exposure limits (max and min) for 

image 
9. Click the show live button. This will open up a new window showing you your sample 

live 
10. The buttons on the left screen do the following: 

1. BINOCULARS – look through the microscope eye piece 
2. CAMERA – will look through the standard microscope camera 
3. CIRCLE/DOT – will use the disc spinning unit 
4. RED  - for mCherry/Red filter (580 μm) 
5. GREEN – is for GFP/Green filter (480-560 μm) 
6. BLUE – is for DAPI/blue filter (405-420 μm) 
7. GREY – brightfield (standard lamp) 

11. Set filter to desired filter and camera 
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12. On tool bar, click APPs 
13. On scroll down list, click “multi-dimensional acquisition” 
14. In the new window, click “main”. From here you can select multiple stage positions to 

take images of multiple locations or select multiple wavelengths (if you need to take 
multiple images at different wavelengths) 

15. Click “SAVING” 
16. Click “select directory” 
17. Pick where you want images to save (this is different from SAVE IMAGE discussed 

prior) 
18. After you pick a location, set base name 
19. Check “increment base name” to automatically increment file name for multiple images 
20. Click exposure and set exposure time 
21. Click stage and click position location 
22. Delete all previous locations by clicking the red “X” in the window 
23. Set name of your location in the position label field 
24. Click “load” to load a previous stage position file 
25. Click “save” to save you current. Stage positions list to a file 
26. On the top tool bar, click “devices” 
27. On the scroll down menu, go to stage, and click “move stage to absolute position” 
28. Using the Prior stage controller, move microscope stage to one corner. Pick a corner and 

remember which corner you picked 
• By moving to one corner, microscopy stage will not be able to move any more in those 

directions. This is how you know you have reached the corner 
29. In “move stage position to absolute corner” window, click “set origin” 
• This will set the (X,Y) origin at the corner 
• Do this so your stage positions will always be relative to this corner 
• This will protect you and your stage positions if: 

• 1. You image on multiple days 
• 2. The camera stage messes-up/sticks 

 
Fluorescent Imaging: 

30. Move stage using stage controller to desired location of sample (Use the “live” window 
to view location) 

31. Focus using the microscope dials to obtain best focal plane or get the image in focus 
32. On “multi-dimensional acquisition” window, make sure you are on stage tab 
33. Click the black “+” button to set current stage position 
34. You have two options now: 

1. Continue moving stage to all locations you want to image and then take pictures 
(steps 34 – 38) 

2. Take a picture of current location and then move to next location (steps 41 – 44) 
35. For the earlier option, using microscope stage controller move to next position 
36. Adjust focus 
37. Click the black “+” button on the “multidimensional” window to save current position 
38. Repeat 34-36 until all sample images are taken 
39. Once done, click “acquire” on “multidimensional acquisition” 
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1. This will take a picture at all locations you just specified at the desired exposure 
set in step 2- and save to the location in step 17 

40. Once complete, click save on “multi dimensional window” 
41. Choose a location on computer to save you position locations for future use. 

 
42. For the latter option, on “Acquire” window, click save image 
43. Using the microscope control, move to the next position 
44. Adjust focus 
45. Repeat 41-43 until all sample images are taken 
46. Repeat if you have multiple slides, dishes, or plates you need to image 
47. Once complete, turn off all microscope components 

NOTE: Mercury lamp needs to be on for 1 hr after turning it on before turning off again. 
IF it hasn’t been 1 hr wait to turn lamp until 1 hr has passed from turning it off 
NOTE: Mercury lamp needs to cool down for 1 hr after turning off. If someone else is 
going to use the microscope within an hour, leave the lamp on 

48. On record sheet, write down lamp off hours, time turned off and your name 
49. Turn of computer 
50. Put microscope cover back on 

General Notes: 
• Exposure times: 

  10-20 for brightfield 
  100-200 for DAPI/BLUE 
  200-250 for GFP/GREEN 
  200-300 for mCHERRY/RED 

• On the show live screen window, on the left side there are 5 buttons. Look at the button 
that looks like a balance 

• The number next to the balance icon should say 12 to get best images 
• If it doesn’t, increase exposure time 

• On acquire window, look at black box with green bars, this is a histogram of the image 
exposure 

• Best images will have histogram bars peaking near the middle (Adjust exposure to 
do so) 
 

Quantification of vessels: 
1. Open metamorph 
2. Open images you want to quantify. Either: 

1. File -> Open and find your images 
2. Drag and drop from your folder into metamorph 

3. On the top tool bar, click “APPS” 
4. Go to “Angiogenesis Tube Formation” and click. A new window should appear 
5. Oon main computer desktop, go to start menu, and open up a new excel file 
6. Once excel is open go back to metamorph 
7. On the top tool bar, go to “Log” and click “Summary log” on the drop down menu 
8. A new window should appear. Click OK 
9. A second window should appear. On this window make sure Microsoft excel is selected 
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10. In the same window, name the sheet you will write to, and select the column and row you 
want to start writing to. 

11. In the “Angiogenesis Tube” window, click the top button which says source 
12.  On the drop down menu, select image you want to quantify 
13. Check min, and max tube width values and make sure they are set to “3” and “60” 

respectively 
• These values set the minimum and maximum width the program will consider a tube 
• You can adjust these if your vessels are smaller or wider 
14. Next, you need to set the threshold value. The default is 100. 

1.  To set the optimal threshold for your image, drag mouse cursor over the image 
2. On the bottom of metamorph, as you move the cursor, numbers will change. The 

first 2 are position (x.y) and the third is intensity 
3. Determine the intensity of the background (place mouse over background and 

record intensity value) 
4. Place mouse cursor over vessel and record intensity value 
5. The threshold you should use is Intensity of vessel – Intensity of background  
6. Threshold value should be adjusted by a bit (20 – 50 lower than calculated to 

account for fluctuations in sprout intensity) 
15. After the threshold value are set, click “start” 
16. The module will begin to quantify the sprouts. Once done it will write the values to the 

excel file you opened 
17. Repeat will all the images you need to quantify. 
18. Save the excel file when you are finished and turn everything off. 

 
Optional: 
If there is too much background noise use the following steps: 

19. Open ImageJ 
20. Open Image you are quantifying in ImageJ 
21. Crop image to only have vessels in the frame 
• You can use selection tool to crop around vessels 
22. Save the image 
23. Open the cropped image in metamorph 
24. On the top tool bar, click measure 
25. Then click, “calibrate distances” 
26. A new window should appear. Click the cropped image 
27. In the “calibrate” window, select the focal lens used (4x, 10x, etc.) 
28. Click apply to the image 
29. Follow steps 11-17 
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Appendix N – Degradation of Fibrin Gels using Natto 
Kinase 

 
Preparation of Natto Kinase 

1. Prepare 1 mM of EDTA in PBS 
2. Calculate amount of Natto kinase ((NSK-SD, Japan Bio Science Laboratory Co. Ltd.) 
3. needed 

1. Need 50 FU/ mL (FU = fibrin degrading unit) 
2. FU/ g varies by lot 

4. Measure out Natto kinase and add respective amount to EDTA-PBS solution 
5. Natto kinase can be prepared and stored for up to a week 

 
Degradation of Fibrin gels 

6. Warm up Natto Kinase solution in water bath to 37 °C 
1. Only warm up amount on Natto Kinase needed 
2. Do not warm up solution multiple time as it will degrade or affect Natto Kinase 

activity 
7. Remove media from fibrin gels 
8. Rinse gels with PBS 
9. Aspirate off PBS 
10. Add Natto Kinase to gels. Volumes to add is equal to gel volume. 
11. Using a pipette tip, metal measuring spoon, or other small tool, gently move/disassociate 

gel away from edges of gel 
12. Gently separate gel from bottom of well. This will ensure uniform degradation of gel and 

speed up degradation 
13. Incubate gel in Natto Kinase solution at 37 °C until gel degrades. Typically, 35-45 mins, 

but could vary. Should not take more than 1 hr (See note below) 
14. Once gel is degraded, spin down solution and cells at 200 X G for 5 minutes 
15. Aspirate off degrade fibrinogen from cells 
16. Rinse cells in PBS and spin down at 200 X G for 5 minutes. 
17. Aspirate off PBS and proceed with experiment 

 
Optional: 

NOTE: If large constructs still appear in solution after an hour or incubation with Natto 
Kinase, fibrin may all be degraded, but a cell sheet may be present.  

18. Incubate cells/cell sheet in 1 mL trypsin for 5 mins at 37 °C. 
19. Neutralize trypsin with 1 mL of culture media and Spin down solution and cells at 200 X 

G for 5 minutes 
20. Aspirate off solution from cells and proceed with experiment 
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**** This procedure was used to harvest vasculature from fibrin gels for western blot, 
qPCR, and gel zymography experiment 
 
****Can also be used to harvest cells that are cultured on-top of fibrin gels in a 
monolayer as trypsinization is not effective. 
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Appendix O – Inhibition of Proteases in Fibrin Gels 
 

** Follow protocol in Appendix I for synthesis of fibrin tissue constructs with embedded cell 
coated microcarrier bead 

Inhibition of Capillary Morphogenesis: 
1. Prepare inhibitor solutions 

1. BB2516 stock concentration of 100 mM 
2. Aprotinin stock concentration 10 mg/mL (1540 μM) 
3. Dilute 0.2 μL of BB25126 in 2 mL of DMSO (10 μM final concentration) 
4. Dilute 0.4 μL of BB25126 in 2 mL of DMSO (20 μM final concentration) 
5. Dilute 2.2 μL of aprotinin in 2 mL of DMSO (2.2 μM final concentration) 

NOTE: Aprotinin can be diluted in water, but to remain consistent with BB2516 
DMSO was used as diluent 

6. Dilute 0.2 μL of BB25126 and 2.2 μL of aprotinin in 2 mL of DMSO [For DUAL 
condition] 

2. As fibrin gels are polymerizing, prepare inhibitor-media solution 
3. Calculate out amount of media needed for each inhibitor condition. (1 mL per gel per 

inhibitor condition) 
4. Add respective amount of media to a centrifuge tube 
5. Add 10 μL of inhibitor solution per 1 mL other respective media 

1. i.e. 180 μL of BB2516 inhbitor solution (10 μM concentration) to 18 mL of 
EGM-2 
Note: Final concentration will be 0.1 μM BB2516 

6. For vehicle control, Add 10 μL of DMSO per 1 mL of media 
7. Once gels are done polymerizing, add respective media-inhibitor solution to the 

respective gels 
8. During each media change, make new media-inhibitor solution and add this solution over 

standard media. If inhibitors are not added at each media change, vasculogenesis may no 
longer be inhibited 
 
 

NOTES for inhibitor studies for present research 
• Inhibitor Concentration are much lower than previous documented or used within the lab 
• Concentrations listed above (0.1 and 0.2 μM for BB2516 and 22 nM for aprotinin) are the 

FINAL concentration for iPSC-ECs experiments. These values are at least 2-10x the 
IC50 values for the respective proteases to be inhibited 
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• While 0.1 and 0.2 μM for BB2516 and 22 nM for aprotinin was used, it is POSSIBLE to 
increase stock concentration (Step 1.3-5) to 1 mM, 2 mM  for BB2516 and 220 μM for 
aprotinin, so final concentrations are actually 10 μM, 20 μM, and 2.2 μM respectively 

• 10 μL for vehicle control may be excess as well.  
• Consider using only 1 μL of vehicle control and adjust inhibitor concentrations 

accordingly 
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Appendix P – Cell Lysis for Protein Harvest 
 

Solutions: 
 
RIPA Lysis Buffer (store at 4  °C)   For 100 mL solution:  
 150 mM of NaCl      0.87735 g NaCl 
 1.0% Trition-X 100      1 mL Trition-X 100 
 0.5% Sodium Deoxycholate     0.5 g Sodium Deoxycholate 
 0.1% Sodium dodecyl sulfate (SDS)    0.1 g SDS 
 50 mM Tris (base)      0.607 g Tris 

 
Protease Cocktail (store at -20 °C)    
 Aprotinin, 10 mg/mL (1000x) in ddH2O 
 Leupeptin, 10 mg/mL (1000x) in ddH2O 
 Pepstatin A, 1 mg/mL (1000x) in methanol 
 PMSF, 100mM (100x) in anhydrous isopropanol 
 EDTA 500mM (100x) in ddH2O 
  Sodium Fluoride, 500 mM (100x) in ddH2O 
 Sodium Orthovanadate, 100 mM (100x) in ddH2O 

 
For 1 mL aliquots, 
Aprotinin - add 1 mL of H2O to 10 mg 
Leupeptin – add 1 mL of H2O to 10 mg 
Pepstatin A, 5 mL of methanol to 5 mg, place in water bath on hot plate until it dissolves  

  (60 °C) 
o Won’t fit in brown bottle pepstatin arrives in 

PMSF – 17.41 mg in 1mL of anhydrous isopropanol  
 Can be thawed multiple times 
 Warm up to RT before opening 
 After using anhydrous isopropanol, vent with extra dry N2 for 20 secs in hood 
EDTA – 146.115 mg in 1 mL of H2O, adjust pH to 8.0 to dissolve 
Sodium Fluoride – 41.0 mg in 1 mL of H2O 
Sodium Orthovanadate – 18.38 mg in 1 mL of H2O 
 

* Note: Alternative to house made protease cocktail is Thermo Scientific™ Halt™ Protease 
and Phosphatase Inhibitor Cocktails with EDTA [PI78442] 
 - Still need to add Pepstain A and PMSF 
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Cell lysis: 
1. Thaw protease inhibitors on ice 
2. Add protease inhibitors to RIPA lysis buffer 

1. For 1 mL of cell lysis solution 
1. 0.2 μL of 1000x aprotinin 
2. 1 μL of 1000x leupeptin 
3. 1 μL of 1000x Pepstatin A 
4. 10 μL of 1000x PMSF 
5. 10 μL of 1000x EDTA 
6. 10 μL of 1000x Sodium Fluoride 
7. 10 μL of 1000x Sodium Orthovanadate 

2. If using Halt Protease Cocktail, (skip 1-8), for 1 mL of RIPA lysis 
1. 10 μL of single use cocktail 
2. 10 μL of EDTA 
3. 1 μL of 1000x Pepstatin A 
4. 10 μL of 1000x PMSF 

3. Cool PBS, cell lysis buffer, and microcentifuge tube on ice 
4. Place cell scrapper in freezer to cool 
5. Once cooled, remove cells from incubator and place on ice 
6. Aspirate off old media 
7. Wash cells with 10 mL of ice cold PBS 
8. Aspirate off PBS 
9. Add 0.5 mL per 5M cells of ice cold lysis buffer to flask using P1000 

1. Add in a line at top of flask 
2. Have flask angled downward on ice 

10. Using a prechilled ice scraper, scrap down cells into lysis solution 
11. Gently transfer solution to precooled microcentrifuge tube 
12. Centrifuge at 4  °C for 30 mins at 12000 RPM 
13. Remove tubes from centrifuge and place on ice 
14. Pipette supernatant into a precooled microcentrifuge tube 

1. Supernatant is where protein is located 
2. Make sure you do not pipette any cell debris pelleted at bottom of tube 

15. Preform a BCA assay to measure protein concentration (See appendix Q) 
16. Store protein in -80 °C freezer 

 
Note: Whenever using protein samples are harvesting, ALWAYS keep on ice and thaw on ice. 
Protein warming could denature or degrade proteins 
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Appendix Q - BCA Protein Concentration Assay 
Protocol 

 
* Protocol adapted from Thermo Fisher Pierce BCA Protein Assay Kit [23225] 

1. Thaw samples on ice if needed 
2. Prepare BSA standard stock for standards 

a. Make 5 mLs at 2mg/mL in 15 mL centrifuge tube 
b. May need to make larger stock to accurately measure BSA 

3. Prepare standards in microcentrifuge tube accordioning to following table 
 

Vial Vol. of Diluents (μL) Vol. of Stock (μL) Protein Conc. 
(μg/mL) 

A 0 300 of stock BSA 2000 
B 125 375 of stock BSA 1500 
C 325 325 of stock BSA 1000 
D 175 175 of vial B 750 
E 325 325 of vial C 500 
F 325 325 of vial E 250 
G 325 325 of vial F 125 
H 400 100 of vial F 25 
I 400 0 0 

Table 1: Solution Prep for BCA Assay 
 

• Diluent is cell RIPA lysis buffer without protease inhibitors (see appendix P) 
 

4. Prepare working reagent (WR) in centrifuge tube 
1. Need (9 + # of samples) x 2 mLs of WR 
2. Make at 50:1 ratio of BCA reagent A to BCA reagent B 

 
For centrifuge tube protocol: 

5. Pipette 0.1 mL of each sample into separate 15 mL centrifuge tube 
6. Pipette 0.1 mL of each standard (A-I) into separate 15 mL centrifuge tube 
7. Pipette 2.0 mL of WR into each centrifuge tube 
8. Incubate in water bath for 30 mins (37 °C) 
9. Cool all tubes to RT 
10. Set spectrophotometer to photometric mode 
11. Go to set up, change wavelength to 562 
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12. Place 1 mL of water in a cuvette 
13. Calibrate/zero spectrophotometer to water 
14. One at a time, measure each standard in a new cuvette and record absorbance 
15. Measure each sample/unknown in a new cuvette and record absorbance 

 
For microplate protocol: 

16. Pipette 25 μL of each standard into a microplate well (96 well plates) 
17. Pipette 25 μL of each sample/unknown into a microplate well (96 well plates) 
18. Add 200 μL of the WR to each well and mix thoroughly on a plate shaker for 30 secs 
19. Cover plate and incubate at 37 °C for 30 mins (Typically used bacteria incubator) 
20. Cool plate to RT 
21. Using a plate reader, measure absorbance at 562 nm 

 
Determine Protein Concertation 

22. Subtract standard I from all other samples and standards 
23. Plot on graph standard vs absorbance (X - Y) 
24. Fit a 2nd order polynomial curve to graph 
25. Using sample absorbance (Y), solve for sample protein concentration (X) 
26. Throw away cuvettes, standards, and tubes in hazardous waste bin 
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Appendix R - Western Blot Electrophoresis and 
Transfer Protocol

 
Solutions: 
6X reducing laemlli sample buffer (store at -20 °C)  For 10 mL solution:  

12% SDS       1.2 g SDS 
30% Mecaptoethanol      3 mL of mecaptoethanol 

 60% Glycerol       6 mL of 100 % glycerol 
 0.012% Bromophenol blue     1.2 mg Bromophenol blue 
 375 mM Tris-HCl pH 6.8     1 mL of 3.75 M  
   

Note: Dissolve SDS, mercaptoethanol and bromophenol blue in Tris-HCl first before 
adding glycerol 

 
Running Buffer PAGE 1X Tris-Glycine (store at 4 °C) For 1L stock solution:  

25mM Tris Base      3.0375 g of Tris 
 190 mM Glycine      14.26 g of Glycine 
 0.1% Sodium dodecyl sulfate (SDS)    1 g SDS 
 dd H2O       1000 mL of H2O 
 ** DO NOT pH adjust ** 
 
Transfer Buffer (store at 4 °C)    For 1L stock solution:  

4% Tris-glycine buffer (25X) i.e 1:25 dilution  40 mL of Tris-Glycine 
 20% Methanol       200 mL of methanol 
 DI H2O       760 mL of H2O 
 
Tris-Glycine Buffer (25X) (store at RT)   For 500 mL stock solution:  

Tris base         18.2 g of Tris 
Glycine       90 g of glycine 

 DI H2O       500 mL of H2O 
 

Note: Add tris and glycine to 400 mL of ddH2O 
Place on water bath to dissolve 
Bring final volume to 500 mL 
Shelf life 6 months at RT 
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Electrophoresis: 
1. Place 300 mL of water in a larger beaker and place on hot plate to boil 
2. Calculate amount of protein volume need for experiment (Typically loading 20 – 40 μg 

will suffice) 
3. Calculate how much laemilli buffer (6X) to add to each sample (typically 6 μL if loading 

at max volume of 36 μL) 
4. Calculate out amount of DI water to add to each sample  

(Water vol. = Total Vol. – protein vol. – laemilli vol) 
e.g. Water vol. = 40 μL – protein vol. – 7 μL 

5. Thaw protein samples on ice 
6. Add protein, water, and laemilli buffer to microcentrifuge tube 
7. Boil samples at 97 °C for 8 mins in water on hot plate 
8. Place samples on ice when done 
9. While samples are boiling, assemble electrophoresis chamber 

1. Take out 10% Tris-glycine gel and cut open packet 
2. Remove tape from bottom of gel cassette 
3. Carefully remove well comb from top of cassette 
4. Check to make sure all wells are intact 
5. Rinse wells 2X with running buffer. Shake out between rinses 
6. Place gel in electrophoresis machine. If using one gel, place blocker/blank slide 

into another slot 
7. Pour 200 mL of running buffer into electrode side of electrophoresis machine or 

until wells are submerged in buffer 
8. Pour ~600 mL of running buffer into out chamber or until buffer is 80% near top 

of chamber 
10. Using special loading tips, add 10 μL of kaleidoscope marker to first well 
11. Add molecular weight marker to last well (Typically 3 - 5 μL) 
12. Add samples/unknowns to wells as desired. Try to balance so samples are in the middle 

of the gel 
13. If less samples than number of wells, and blanks (30 μL water + 6 μL laemilli loading 

buffer) to wells not being used to balance running lanes. 
14. Place electrophoresis lid on chamber 
15. Turn on machine 
16. Select Tris-Glycine gel setting 
17. Enter # of gels 
18. Run for 1 hr 30 mins @ 125 V 
• May run longer if protein bands need more separation 

 
Protein Transfer 

19. 10 minutes before electrophoresis is done, soak 5 sponge pads, 2 filters in transfer buffer 
in western blot tray 

20. Cut out PVDF membrane to template size. Cut off one corner of membrane to remember 
orientation 

21. Soak PVDF membrane in methanol for 1 – 2 mins 
22. Quickly transfer membrane to deionized water to rinse 

*** DO NOT let membrane dry out 
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23. Soak membrane in transfer buffer 
24. Once electrophoresis is done, remove gel cassette 
25. Using gel knife, beak open cassette. 
26. Using the gel knife, cut off top wells and discard 
27. Cut off foot of gel and discard 
28. Place a presoaked filter paper on top of gel 
29. Flip gel and filter paper over 
30. Using gel knife, remove gel carefully from cassette. 
31. Transfer presoaked PVDF membrane on top of gel. Place notched corner near top of gel 

next to kaleidoscope marker lane  
32. Place presoaked filter paper on top of membrane 
33. Using glass pipette, gently roll out air bubbles 
34. Assemble transfer cassette 

1. Place 2 soaked sponge pads on cathode (-, back) of cell blot apparatus 
2. Place filter paper, gel, membrane sandwich on top of pads  

**** NOTE: Gel should be closest to back of cell blot and PVDF membrane 
closest to front of apparatus. If reversed, transfer WILL NOT occur. 

3. Place 3 soaked sponge pads on anode side (+. Front) 
4. Place front lid on top and close cell lock 

35. Hold blot module firmly and place into cell sure lock apparatus 
36. Fill cell blot [where gel and membrane are] with transfer buffer (~200 mL) 
37. Fill buffer chamber ice  
38. Add deionized water to buffer chamber with ice  
39. Place lid on top of chamber. Set to WB setting 
40. Set to 25 V, 165 mA for 3 hrs 
41. While waiting, clean up excess buffer and discard in appropriate waste containers 
42. Throw away cassette a gel pieces in hazardous waste bin 
43. Pour 50 mL of 5% BSA in TBS-T (Tween 20) solution into a block tray  

Note: DO this step before removing membrane so membrane doesn’t dry out 
44. Once transfer is complete, remove PVDF membrane and place in tray with BSA solution 
45. Cover with parafilm 
46. Block overnight at 4 °C 
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Appendix S - Western Blot Staining and Development 
Protocol 

 
Solutions: 
P-Coumaric solution      For 2 mL solution: 
 90 mM p-Coumaric      0.02894 g of p-coumaric 
 DMSO        2 mL of DMSO 
 
Luminol solution      For 2 mL solution: 
 250 mM luminol      0.0885 g of luminol 
 DMSO        2 mL of DMSO 
 
Activator Solution A      For 5 mL solution:  

100 mM of Tris-HCl pH 8.6     5 mL of Tris -HCl 
0.06% Hydrogen Peroxide (30%)    3 μL of Hydrogen Peroxide 

    
Note: DO NOT prepare solution early. Prepare when mentioned in protocol 

 
Activator Solution B      For 5 mL solution:  

100 mM of Tris-HCl pH 8.6     5 mL of Tris -HCl 
0.44% p-coumaric       22 μL of p-coumaric solution 

 1% Luminol       50 μL of luminol solution 
 
Note: DO NOT prepare solution early. Prepare when mentioned in protocol 

 
Developer solution (store at RT)    For 500 mL stock solution:  

Kodak Developer powder     80 g of developer 
 DI H2O       500 mL of H2O 
 

Note: May need to be stirred to dissolve 
 
Fixer solution (store at RT)     For 500 mL stock solution:  

Kodax Fixer powder      92 g of fixer 
 DI H2O       500 mL of H2O 
 
Primary Antibody Staining: 

1. After membrane was blocked, prepare 5 mL of antibody solution in 50 mL tube 
1. Dilution of primary antibody in 5% BSA dissolved in TBS-T (Tween 20) 
2. MT1-MMP [Abcam: EP12647 (ab51074)] - 1:2000 dilution 
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3. MMP-2 [Abcam CA-4001 (ab3158)] - 1:400 dilution 
4. MMP-9 [Abcam 56-2A4 (ab58803)] - 1:400 dilution 

2. Using clean gloves, remove PVDF membrane from blocking tray 
3. Roll membrane and place inside tube. Top side of membrane should be oriented to face 

top of tube. 
4. Cap centrifuge tube and place on rotary rack. Rack should rotate so solution flow is 

parallel to bands 
5. Incubate at RT for 1 hr 30 mins 
6. Pour TBS-T (Tween 20) into wash tray 
7. Remove PVDF membrane from centrifuge tube and place in wash tray 
8. Rinse 6X for 5 mins each at room temperature with gentle agitation 

 
Secondary Antibody Staining 

9. During last wash, prepare 5 mL of secondary antibody solution in 50 mL tube 
1. Dilution of secondary antibody in TBS-T (Tween 20) 
2. Pierce Goat Anti-Rabbit HRP [Thermo Fisher: (31466)] - 1:10000 dilution 
3. Pierce Goat Anti-Mouse HRP [Thermo Fisher (31431)] - 1:10000 dilution 
4. GAPDH HRP - 1:2000 dilution 

10. Using clean gloves, remove PVDF membrane from blocking tray 
11. Roll membrane and place inside tube. Top side of membrane should be oriented to face 

top of tube. 
12. Cap centrifuge tube and place on rotary rack. Rack should rotate so solution flow is 

parallel to bands 
13. Incubate at RT for 1 hr 30 mins 
14. Pour TBS-T (Tween 20) into wash tray 
15. Remove PVDF membrane from centrifuge tube and place in wash tray 
16. Rinse 6X for 5 mins each at room temperature with gentle agitation 

 
Protein Band Visualization and Development: 

17. Prepare developer and fixer solutions 
1. Kodak Fixer 
2. Kodak Professional Developer D-19 

18. During last rinse of secondary solution prepare developer trays 
1. Pour 500 mL of developer solution into developer tray 
2. Pour 500 mL of fixer solution into fixer tray 
3. Pout 500 mL of DI water into rinse tray 

19. Prepare Activator Solution A and Activator Solution B 
20. After final rinse, bring tray with membrane, developer trays, and activator solutions into 

dark room 
21. Turn off lights, and block any excess sources of light (cracks) 
22. Turn on red lamp in dark room. 
23. Remove membrane and place in new tray 
24. Mix Activator Solution A and Activator Solution B together 
25. Add 2 mL of mixed solutions directly on top of membrane in tray. Make sure enough 

solution is added to completely cover on side of membrane 
26. Allow activate solution to incubate for 1 min 
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27. Turn off red light to see if bands are illuminating 
1. If not, allow a few extra minutes of incubation with activator solution 
2. If bands still aren’t seen, it possible bands are still present but just faint signal 

28. Turn red lamp back on. 
29. Place membrane in heat seal bag and seal off all but 1 side of bag. 
30. Remove any bubbles from the bag. Use finger to push bubbles away from membrane. 

Bubbles can affect band visualization on film 
31. Seal off final side of the bag. 
32. Tape bag inside of x-ray cassette 
33. Turn of red lamp 
34. With the lights off, find x-ray film box 
35. Remove 1 x-ray film from box and place inside x-ray cassette 
36. Close x-ray cassette and exposure film for 30 seconds 
37. While film is being exposed, close x-ray film box, to ensure no light ruin film 
38. After set exposure time, remove film and place in developer tray 
39. After 30 seconds, turn red lamp back on 
40. After a few minutes of film being in developer solution, while rocking, bands should start 

to appear. Incubate films in developer for set period of time for each film (~4-5 mins) 
41. Pick up film and shake off of excess developer 
42. Place in fixer tray 
43. Rock fixer tray for 3-5 mins 
44. Place in DI tray 
45. Repeat 33-43 for varying exposure times 

1. IF bands are too dark after first exposure, shorten exposure time 
2. If bands are faint after first exposure, increase exposure time 

46. Turn on lights 
47. Hang up each film to dry 
48. Record exposure time for each film 
49. Pour developer and fixer solutions into bottle. These can be reused multiple times (~20 

films) 
50. Throw away other solutions and materials into proper waste bins 
51. Place PVDF membrane bag into freezer. Membrane can be restained in the future if 

needed 
52. ****Rinse and dry developer trays****  

1. Developer and fixer trays that are not cleaned/maintained properly can lead to 
dirty films or increased background on films 
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Appendix T - Gel Zymography Protocol 
 

Solutions: 
5X non-reducing sample buffer (store at -20 °C)  For 25 mL solution:  

4% SDS       1 g SDS 
 20% Glycerol       5 mL of 100 % glycerol 
 0.01% Bromophenol blue     2.5 mg Bromophenol blue 
 125 mM Tris-HCl pH 6.8     0.491 g Tis base pH balanced  
 H2O        19.58 ml of DI H2O 
 

Note: add 15 ml of H2O at first. Wait until all is dissolved/bubbles gone and add 
remaining H2O to bring volume to 25 mL 

 
Running Buffer PAGE 1X Tris-Glycine (store at 4 °C) For 1L stock solution:  

25mM Tris Base      3.0375 g of Tris 
 190 mM Glycine      14.26 g of Glycine 
 0.1% Sodium dodecyl sulfate (SDS)    1 g SDS 
 ** DO NOT pH adjust ** 
  
MMP2+MMP9 Wash buffer (store at RT)   For 250 mL solution:  

2.5% Trition X-100      6.25mL of 100% 
 50 mM Tris-HCl pH 7.5     12.5 mL of 1M stock 
 10 mM CaCL2      2.5 mL of 1 M stock 
 DI H2O       228.75 mL of H2O 
 
MT1-MMP Wash buffer (store at RT)    For 250 mL solution:  

2.5% Trition X-100      6.25mL of 100% 
 50 mM Tris-HCl pH 7.5     12.5 mL of 1M stock 
 10 mM CaCL2      2.5 mL of 1 M stock 
 200 mM NaCl       10 mL of 5M stock 
 DI H2O       218.75 mL of H2O 
 
MMP2+MMP9 Incubation Buffer (store at RT)  For 500 mL solution:  

1% Trition X-100      5 mL of 100% 
 50 mM Tris-HCl pH 7.5     25 mL of 1M stock 
 10 mM CaCL2      5 mL of 1 M stock 
 DI H2O       465 mL of H2O 
 
MT1-MMP Incubation Buffer (store at RT)   For 500 mL solution:  

1% Trition X-100      5 mL of 100% 
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 50 mM Tris-HCl pH 7.5     25 mL of 1M stock 
 10 mM CaCL2      5 mL of 1 M stock 
 200 mM NaCl       20 mL of 5M stock 
 DI H2O       445 mL of H2O 
 
 
Coomassie Staining Solution (store at RT)   For 500 mL solution:  

40% Methanol       200 mL 
 10% Acetic Acid      50 mL of glacial acetic acid 
 0.5% Coomassie blue dye     2.5 g  
 dd H2O       250 mL of H2O 
 
Destaining Solution (store at RT)    For 1 L solution:  

40% Methanol       400 mL 
 10% Acetic Acid      100 mL of glacial acetic acid  
 dd H2O       500 mL of H2O 
 
Electrophoresis: 

1. Calculate amount of protein volume need for experiment (Typically loading 5 – 15 μg 
will suffice) 

2. Calculate how much laemilli buffer (5X) to add to each sample (typically 7 μL if loading 
at max volume of 35 μL) 

3. Calculate out amount of DI water to add to each sample  
(Water vol. = Total Vol. – protein vol. – laemilli vol) 
e.g. Water vol. = 40 μL – protein vol. – 7 μL 

4. Thaw protein samples on ice 
**** Activity will degrade! Keep samples on ice at all times! 

5. Add protein, water, and laemilli buffer to microcentrifuge tube 
6. Sample will not be denatured. DO NOT BOIL 
7. Take out 10% Tris-glycine, 1% gelatin zymogram gel and cut open packet 
8. Remove tape from bottom of gel cassette 
9. Carefully remove well comb from top of cassette 
10. Check to make sure all wells are intact 
11. Place gel in electrophoresis machine 
12. Pour 200 mL of running buffer into electrode side of electrophoresis machine or until 

wells are submerged in buffer 
13. Pour ~500 mL of running buffer into out chamber or until buffer is 80% near top of 

chamber 
14. Using special loading tips, add 10 μL of kaleidoscope marker to first well 
15. Add 3X molecular weight volume to last well 

(If molecular weight maker used 4 μL for westerns, use 3X or 12 μL) 
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• Need higher amount due to dark background of the gel once stained 
16. Add samples/unknowns to wells as desired. Try to balance so samples are in the middle 

of the gel 
17. Place electrophoresis lid on chamber 
18. Turn on machine 
19. Select Tris-Glycine gel setting 
20. Enter # of gels 
21. Run for 1 hr 30 mins @ 125 V 
• May run longer if protein bands need more separation 

 
Gel Incubation: 

22. While gel is running, make MMP wash buffer, incubation buffers, Coomassie stain, and 
destaining buffer 

23. Once electrophoresis is done, remove gel cassette 
24. Using gel knife, beak open cassette. 
25. Using the gel knife, cut off top wells and discard 
26. Cut off foot of gel and discard 
27. Carefully, remove gel from cassette using gel knife and place in washing tray 

** Be careful not to rip or damage gel 
** OK is edges are torn because sample is near center of gel 
**** Use whatever method you find best to remove gel without destroying it 

28. Add wash buffer (~50 mL) to tray 
29. Gently agitate gel for 30 mins at RT 
30. Remove washing buffer and add fresh washing buffer (~50 mL) to tray 
31. Gently agitate gel for 30 min at RT 
32. Remove washing buffer and add 50 mL of incubation buffer 
33. Rinse for 10 mins at 37 °C with gentle agitation 

** typically use bacteria flask incubator 
34. Remove buffer and add 50 mL of fresh incubation buffer 
35. Incubate for 16-24 hrs at 37 °C 
 

Gel Staining: 
36. Remove gels from incubator 
37. Discard/decant incubation buffer from each tray 
38. Pout 50 mL of Coomassie Solution into each tray with gel 
39. Stain gel for 30 mins – 1 hr with gentle agitation 
40. Decant Coomassie solution from gel 
41. Gently rinse gel with DI H2O 
42. Add 50 mL of destaining solution to tray until gel is completely covered 
43. Roll up a kimwipe and place in tray alongside to absorb Coomassie stain 
44. Place tray on orbital shaker and gently agitate for 15 mins 
45. After 15 mins, discard destaining solution and kimwipe 
46. Repeat 42-45 until bands can clearly be seen 
** Bands will be white/clear. Proteases degraded gel, so negative space is what the band is 
47. To save gels, add DI H2O to tray and cover so gels do not dehydrate 
48. Gel images can be taken using scanner in the lab 
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Appendix U - RNA Isolation Protocol 
 

* Protocol adapted from Qiagen RNeasy Mini Kit [74104] 

* Note: RNA is sensitive to RNases which are present on every surface. Take extreme caution 
when isolating RNA and handling RNA sample to avoid contamination with RNase. 

** Make sure all disposable used with RNA are RNase free and have only been handle with 
gloves 

Prepare Working Area:  
1. Ready hood in main lab area 

1. Remove all contents from hood 
2. Spray with 70% ethanol and wipe down hood 
3. Spray with RNAase Away and wipe down hood 
4. Spray a few spots on surface with 70% ethanol 
5. Place aluminum foil sheet on top of ethanol 
6. Repeat 2-3 on sheet of aluminum foil 
7. Spray RNAase on towel 
8. Wipe down all micropipetters with towel+RNAase and place on aluminum sheet 
9. Repeat 7 – 8 for pipette tips, tubes rack, sharpie, microcentrifuge tubes, and 

RNeasy Kit 
• DO for ANYTHING entering hood 

RNA Isolation: 
2. Cool PBS on ice 
3. Place cell scrapper in freezer to cool 
4. Once cooled, remove cells from incubator and place on ice 
5. Aspirate off old media 
6. Wash cells with 10 mL of ice cold PBS 
7. Aspirate off PBS 
8. Add the following amount of buffer RLT to cells  

1. 350 μL for < 5M cells 
2. 600 μL for > 5M cells 

a) Add in a line at top of flask 
b) Have flask angled downward on ice 

3. If using flask, scrape cells down into lysis buffer using prechilled cell scraper 
 

Optional: 
9. Remove lysis and cell suspension and add to QIAshredder tube to homogenize 
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10. Spin down from 2 mins at max speed in small centrifuge tube (provided in QIA shredder 
kit) 

 
11. Add 1 vol of 70% ethanol (RNase free) to lysis (homogenized or not). i.e. 350 μL of 

ethanol for 350 μL lysis buffer or 600 μL of ethanol for 600 μL lysis buffer 
12. Transfer up to 700 μL of sample to spin column (provided in kit)  

Note: If using 600 μL of buffer RLT, you will need 2 spin columns 
13. Spin down at 12000 RPM for 1 min 
14. Discard flow through (RNA is attached to membrane in spin column) 
15. Add 700 μL of buffer RW1 to top of spin column 
16. Spin down at 12000 RPM for 1 min 
17. Discard flow through 
18. Add 500 μL of buffer RPE to top of spin column 
19. Spin down at 12000 RPM for 1 min 
20. Discard flow through 
21. Add 500 μL of buffer RPE to top of spin column 
22. Spin down at 12000 RPM for 2 min 
23. Discard flow through 
24. Replace bottom collection tube with new 2 mL collection centrifuge tube 
25. Spin down at max speed (~14700 RPM for 2 min to dry membrane 
26. Place spin column in new 1.5 microcentrifuge tube (provided) 
27. Add 30 μL to 50 μL of RNase free water to top of spin column (best to start at 30 μL 

unless you know you will have a lot of RNA) 
28. Spin down for 1 min at 12000 RPM 
29. Place samples on ice 

 
Measure RNA Concentration: 

30. Go to nanodrop machine to measure concentration 
31. Start up Nanodrop Program 
32. Choose nucleic acid 
33. Add 1 μL of ultra pure water to nanodrop sensor 
34. Blank machine 
35. Rinse off nanodrop sensor with DI water 
36. Dry sensor completely with Kimwipe 
37. Add 1 μL of sample to sensor 
38. Measure absorbance and record 
39. Repeat 35-38 for each sample 

 
40. Store RNA samples at -80 °C 

 
*********** NOTE: Possible to harvest RNA from protein lysis samples. Add Buffer RLT 
directly to protein lysis.  

- Vol of Buffer RLT  to use = 350  or 600 μL (depending on cell count) – vol of protein 
lysis 
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Appendix V – First-Strand cDNA Synthesis Protocol 
 

* Protocol adapted from Promega ImProm-II Reverse Transcription System [A3800] 

* Note: Store all components of kit in -20 °C and thaw on ice 

** Make sure all disposable used with RNA are RNase free and have only been handle with 
gloves 

Primer Solution Preparation  
54. Place small, thin PCR tubes on ice. These tubes are specific to PCR. These are NOT 

small (0.6 mL) Eppendorf tubes 
55. Thaw RNA samples on ice. 
56. Remove Reverse Transcription Kit and thaw Primers, nuclease free water, ImProm-II 5X 

reaction buffer, MgCl2, dNTPs mix, RNasin Ribonuclease Inhibitor and Reverse 
Transcriptase on ice 

57. Calculate amount of RNA for each sample.  
a. Each experimental condition has to be the same amount of RNA loaded or results 

will be skewed during PCR 
b. Depending on all concentrations of RNA, one will be limiting reagent for other 

conditions 
c. Maximizing amount of cDNA is ideal 
d. Max amount of RNA to load is 4.0 μL 
e. E.g. Sample 1 is 50 ng/μL and Sample 2 is 75 ng/μL.    

 Load 4 μL of Sample 1 for a total of 200 ng of RNA. 
Load 2.67 μL of Sample 2 for a total of 200 ng of RNA.  
Extra volume will be water for Sample 2 

58. Calculate amount of water to add for each sample 
a. 4.0 μL - Sample vol = Amount of water needed 
b. Limiting reagent (RNA sample) will have no extra water added 

59. Add RNA to PCR tube on ice 
60. Add respective amount of H2O to each PCR tube 
61. Add 1.0 μL of primer to each PCR tube 

a. Oligo(dT) Primer binds to poly A tail 
b. Random Primer binds to random sequence in RNA 
c. Random primers can create first strand cDNA from all RNA types 
d. Oligo primer is primer of choice is most cases, but random primer may be needed 

depending on protein of interest 
e. For MMPs, random primer was used, but Oligo could be used as well 
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62. Close each tube tightly 

Primer Annealing:  
63. Bring PCR tubes on ice to PCR amplifier machine 
64. Turn machine on (switch is in back) 
65. Choose run, and find ImProm II program 

a. Some machines will already have a program ready, while others will need to be 
set manually 

b. Program set up for this experiment is the following 
i. 70 °C for 5 mins 

ii. 4 °C for at least 20 mins (best to set time to hold/infinite) 
iii. 25 °C for 5 mins 
iv. 42 °C for 1 hr 
v. 70 °C for 15 mins 

vi. 4 °C hold 
66. Place small PCR blocker into machine to prevent small tubes from breaking (looks like a 

rectangle with small pegs in corner 
67. Place PCR tubes into small holes in block. Larger holes are used for bigger PCR 

tubes/reactions 
68. Close lid 
69. Lock lid by turning until strong resistance is felt 
70. Give lid an extra ¼ turn to ensure lid is properly sealed 

 
Reverse Transcription: 

71. While primer anneal, prepare reverse transcription reaction mix in sterile RNAse free 1.5 
mL microcentrifuge tube. Recipe below is per sample (15 μL) 

a. 4.0 μL of ImProm-II 5X reaction buffer 
b. 1.0 μL of Reverse Transcriptase (RT) 
c. 1.0 μL of dNTPs 
d. 0.5 μL of RNAsin 
e. 1.2-6.4 μL of MgCl2 

i. Dependent on RNA size 
ii. Larger RNA (# of bases) need less MGCl2, while smaller RNA need more 

iii. For MMPs 4.9 mM = 3.9 μL MgCL2 was used 
f. X μL of water 

i. Determined to bring final volume to 15 μL 
ii. Water vol = 15 μL – MgCL2 – Rnasin – dNTPS – RT – buffer 

Water vol = 15 μL – 3.9 μL – 0.5 μL – 1.0 μL – 1.0 μL – 4.0 μL 
72. Vortex solution gently to mix 
73. Keep on ice prior to adding to RNA 
74. Once, primers are done annealing to RNA, pause program and remove PCR tubes 
75. Spin tubes down for 10 seconds to collect condensate. 

Note: Need to use small microcentrifuge tube inside of a 1.5 mL centrifuge tube to spin 
down PCR tubes 

76. Add 15 μL of reverse transcription reaction buffer to each 5.0 μL of RNA 
Note: Change tips between each addition to avoid cross-contamination 



 

 240 

77. Close each tube tightly and bring PCR tubes on ice to PCR amplifier machine 
78. Follow steps 14-17 to place tubes back into machine 
79. Continue program. If 4 °C step was set to hold, will need to press skip to continue 

program 
80. Once complete, store cDNA at -20 °C 
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Appendix W – Quantitative PCR (qPCR) Protocol 
 

* Protocol adapted from TaqMan Gene Expression Assays Protocol [PN 43333458N] 

* Note: Store all components of kit in -20 °C and thaw on ice 

Primer Selection 
1. Before to qPCR, primers need to be selected for your gene of interest 
2. TaqMan [Thermo Fisher] assay has primers specifically designed and fluorescently 

labeled for specific genes 
1. No need to design primers 
2. Purchase directly form Thermo Fisher Catalog 

3. TaqMan is more specific than SYBR green PCR as fluorescent tags are associated with 
primers. SYBR green has fluorescent dye in reaction mix which integrates between all 
double strand nucleic acids 

4. If Thermo Fisher does not have primers, you will need to design you own for use with 
SYBR green 

1. Protocol will work for both SYBR green and TaqMan 
 
Reaction Mix Preparation: 

5. Thaw cDNA, and primers on ice. Keep lid on ice bucket because primers are 
photosensitive 

6. Cool microcentrifuge tubes on ice. One per sample condition. 
7. Prepare reaction mixture. Each sample to be tested will considered 1 reaction.  

1. 20.0 μL per reaction.  
2. Will need 2 replicates per sample 

8. Calculate amount of cDNA needed 
1. Can load 1 ng to 100 ng 
2. Max cDNA volume is 20% of PCR mixture i.e. 4.0 μL if total reaction mixture is 

20.0 μL 
3. 20.0 ng used for MMPs 

9. Calculate amount of RNase-free water needed 
a) Determined to bring final volume to 20 μL 
b) Water vol = 20 μL – cDNA – Primers – TaqMan master mix  

Water vol = 20 μL – X μL – 1.0 μL – 10.0 μL  
10. Add water to each precooled microcentrifuge tube 
11. Add TaqMan Gene Expression Master Mix to each precooled microcentrifuge tube 

1. If using SYBR green, add SBYR mix here 
12. Add primers (TaqMan Gene Expression Assay) to each tube 
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1. If using SYBR green, add designed primers here 
2. MMP9 
3. MMP2 
4. MMP14 
5. 18s 

13. Add cDNA to each tube 
14. Ensure each solution is properly mixed by pipetting 
15. Centrifuge each tube briefly 

 
Quantitative Polymerase Chain Reaction 

16. Obtain a 96 well PCR plate. These plates are specific to each PCR machine. 
1. Plates used for Applied Biosystem 7500 Fast Real-Time system are MicroAmp 

Fast Optical 96-Well Reaction Plate with Barcode 
17. Add 20 μL of each PCR reaction mix to a well. Ensure sample row and column is 

recorded to set up machine properly 
18. Cover PCR plate with an PCR plate cover 

1. For aforementioned plate, use Optical Adhesive Covers 
19. Centrifuge plate briefly to ensure all reaction mix is at bottom of well. 2 mins at 2000 

RPM 
20. Turn on PCR machine 
21. Use air or compressed duster can to remove any dirt/dust from bottom to PCR plate 

1. Dust and debris can build up in PCR machine, leading to skewed results 
22. Place PCR plate into machine and close 
23. Run PCR program 

1. This guide will follow 7500 Fast Real-Time machine 
24. On screen, under set up wizard, select design experiment 
25. Enter experiment name in respective field 
26. Choose machine type (7500 Fast PCR) 
27. Choose quantification method 

1. Use ΔΔCt method for comparing the expression in two different cell population 
28. Choose reagent used (TaqMan or SBYR Green) 
29. Choose ramp speed/reaction time 

******* USE STANDARD FOR TaqMan Gene Expression Master Mix*********** 
- Only fast master mix can be used on fast setting 
- Original protocol from Thermo Fisher did not mention what speed for TaqMan Gene 

Expression Master Mix 
- Protocol Online from Thermo Fisher has been updated since to make this clear 

30. Choose type template (cDNA) 
31. Click plate set up 
32. Enter target name for each gene testing 
33. Enter sample names for each sample type 
34. On plate layout window assign respective sample types and gene target to each well 

(Colors will vary depending on what program assigns) 
35. Set up run program. Program should already be correct in system but double check 

1. Hold 50 °C for 2 mins 
2. Hold 95 °C for 10 mins 
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3. Cycle 95 °C for 15 seconds, then 60 °C for 1 min 
4. Number of cycles 40 
5. Ensure extend cycle box is checked to allow for ability to added extra cycles 

while running 
36. Ensure everything from step 25-35 is correct and press run 

1. You DO NOT need to worry about reaction setup or ordering supplies as program 
prompts you 

37. Program should take about 2 hrs to run 
38. Depending on gene, amplification will occur at various cycles 

1. 18s ~ cycle 9 
2. MMP9 ~ 32 
3. MMP2 ~ 26 
4. MMP14 ~ 22 
5. GAPDH ~ 24 

39. Extend cycles if needed, but if gene has not amplified by cycle 40, most likely gene of 
interest is not amplifying 

1. Possible problems could be primer, cDNA integrity, machine calibration, blocked 
PCR well in machine, old reagents and primers, etc. 

2. Extend cycle can only be performed once. Once an extra amount of cycle is 
added, you cannot add more cycle beyond that 

40. Once machine runs all of its cycle, a Ct value will be given for each sample 
41. Program can output results to an excel file which can then be saved 
42. Remove plate from machine. Plate can be reused. Only use wells that we not used in 

previous experiments 
 
Calculating ΔΔCt 

43. ΔΔCt is taking the difference between two different populations to determine relative 
expression of one gene to another 

44. ΔΔCt = [  (Experimental Gene of interest Ct value – experimental house keeping gene Ct) 
– (Control Sample gene of interest Ct – control house keeping gene Ct)  ] 

45. i.e. ΔΔCt = [ (Cell 1 MMP9 Ct value – Cell 1 18s Ct value) – Cell 2 MMP9 Ct value - 
Cell 2 18s Ct value) ] 

1. There a numerous house keeping genes (present is all cells) such as 18 s and 
GAPDH 

2. House keeping genes are to account for each cell types general cell 
activity/production 

46. Fold change is expression is 2^ ( - ΔΔCt) 
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Appendix X – In Vivo Subcutaneous Injection 
Protocol 

 
* Protocol adapted from Ana Y. Rioja protocol   

Materials:  
• Puralube® Vet Ointment – Sterile ocular lubricant (Dechra, Overland Park, KS)  
• Small cotton-tipped applicators Cat. No. 23-400-115 (Fisher Scientific)  
• Sterile alcohol prep pads (Fisherbrand®)  
• Sterling nitrile sterile powder-free exam gloves. KC300 (Kimberly-clark, Roswell, GA)  
• Polylined sterile drape field. (18 in. x 26 in.) Ref No. 697 (Bosse, Hauppauge, NY)  
• Isoflurane 
• Carprofen 
• Additional materials: Cap, gown, mask, shoe covers, warming pad/blanket, heating lamp, 

nair hair removal, hair clipper, betadine antiseptic solution, forceps, and scissors, 
formalin, 20 mL vials, 70% ethanol.  

Cell Preparation for Injection Protocol:  
1. Culture cells (ECs, and stromal cells) prior to beginning experiment with accordance to 

standard cell culture practices 
2. Take fibrinogen out of freezer and warm up to room temperature 
3. To get amount of fibrinogen needed, calculate how many implants you need 

a. Each implant is 500 μL. 
**** Plan for (600 μL) so there is excess for injection 
b. Calculation is # of implant X 500 μL = # of mLs of fibrinogen solution needed 
c. Add 2 mL to # of mLs of fibrinogen solution needed to account for loss during 

filtering 
d. Divide 2.625 mg/mL by the protein content and clottable content of the fibrinogen 

to get actual concentration (Typically listed on the bottle. Varies Lot-Lot) 
e. Multiply # of mLs of fibrinogen by actual concentration to get # of grams to 

measure 
2. Measure out calculated fibrinogen and add to 50 mL centrifuge tube 
3. In cell culture hood, add serum -free EGM-2 equal to the # of mLs of fibrinogen solution 

needed to centrifuge tube with fibrinogen. 
4. Place fibrinogen solution in water bath to dissolve fibrinogen 
5. Once dissolved, filter fibrinogen solution using a 0.22 μL filter into a clean centrifuge 

tube 
6. Aspirate off old media of ECs and fibroblasts 
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7. Rinse with equal volume of PBS to media 
8. Add appropriate amount of trypsin to each flask 

a. T-25 – 2 mL 
b.  T-75 – 5 mL 
c. T-225 – 10 mL 

9. Incubate for 5 mins at 37 °C 
10. Verify cells are detached from plate using microscope 
11. Once cells are detached, add equivalent amount of media + 10% FBS to cells to 

neutralize trypsin 
12. Collect cells with serological pipette and add to centrifuge tube 
13. Spin down cells at 200 X G for 5 minutes 
14. Once cells are pelleted, aspirate off supernatant 
15. Flick pellet of cells to break pellet apart 
16. Create a suspension of cells for each implant in 30 μL FBS in a 1:1 ratio of ECs : stromal 

cells 
a. A final concentration of 4 million cells/mL 
b. Totaling 2 million cells per injection (500 μL) 
***** Plan for (600 μL) so there is excess for injection 
c. While some implants may be the same condition, just different replicates or time 

points, have 1 centrifuge tube for each suspension. This is due to the time it takes 
after injection in mouse to polymerize implant. If only one large solution is made 
for each condition, fibrinogen will polymerize in tube before the next implant of 
same condition could be injected 

17. Place cells and fibrinogen solution on ice and bring to surgery room 
18. Thaw thrombin on ice 

 
Subcutaneous Injection Protocol:  

19. Mice must be left in their housing facility for 3 days to acclimate prior to surgery 
NOTE: Appropriate gown, gloves, face mask, cap, and shoe covers must be worn prior to 
handling animals  

20. Spray down surgery hood with Clidox spray 
21. Spray down various tools and solutions entering hood with Clidox 
22. Spray down ice bucket with prepared cell materials and place in hood 
23. Set up isoflurane machine 

a. Plug in active scavenging unit and turn on 
b. Ensure isoflurane tank has enough isoflurane in it. (Isoflurane can be purchased 

from ULAM) 
c. Attach Oxygen tube to Oxygen tank. 
d. Turn valves to flow through inoculation chamber (plastic box next to scavenging 

unit. 
e. Close valves going to nose cone 
f. Ensure charcoal filter from scavenging machine is attached 
g. Place a few paper towels in the inosculation chamber (mice tend to release 

excrement when under anesthesia) 
h. Turn flow to 1 L/min 

24. Set up small area with paper towels and a surgery area 
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25. Place a plastic waste container on mini scale in the hood 
26. Retrieve mouse cage from housing facility 
27. Remove one mouse from the cage and place on scale. Record weight 
28. Return remaining mice to housing facility 
29. Carefully, put mouse into the inosculation chamber by inverting weight container 
30. Turn isoflurane to 5%. 
31. Wait until mouse stops moving and breathing is slowed 
32. Record time of surgery begin. 
33. Once mouse is anesthetized, move mouse to hood, and place on paper towels 
34. Put nose cone over the mouse’s face.  

Note: Metal bar in nose coin should be parallel to the table and positioned closest to the 
table. Metal bar is to prop the mouse’s head up and allow for proper breathing 

35. Turn valves closed going to inosculation chamber 
36. Turn valves open going to nose cone 
37. Change isoflurane to 1.5% 
38. If mouse start waking up while steps (34-38) occur wait a minute before proceeding until 

next step. 
39. Using a cotton tip applicator, apply Paralube Vet ointment to each eye to ensure the eye 

doesn’t dry out during surgery 
a. Mouse will need to be removed from nose cone during this step 

40. Prepare a solution on carprofen based on mouse’s weight  
a. Dosage of carprofen (5 mg /kg) 
b. Dilute carprofen in sterile PBS 
c. Typically inject 50 μL 

41. Using a 28G ½ needle and syringe, inject the mouse with carprofen intraperitoneally 
a. Before injection, briefly pull plunger on syringe back and ensure no blood enters 

syringe 
b. Can remove mouse from nose cone during this step 

42. Once analgesia has been applied to mouse, shave the back of the mouse. DO NOT over 
shave and only shave the area where implant will be injected 

43. Apply Nair to the shaved area to remove an excess hair. 
44. Using PBS and ethanol, remove any excess Nair. The mice are sensitive to Nair and 

excess will lead to irritation and cause them to bite and scratch area around implant 
45. Alternatively, apply a few drops of Betadine antiseptic solution to the surgery area and 

wipe away with an ethanol wipe 
46. Repeat step 46 a total of 3X 
47. Make a sterile area by placing a polylined sterile drape in the hood.  
48. Drop syringes and needles (two of each) onto the sterile area  
49. Remove gloves and put on sterling nitrile sterile powder-free exam gloves 
50. In the meantime, second person should prepare samples by adding fibrinogen and 

thrombin to cells prepared earlier 
a. 558 μL of fibrinogen to cells in FBS 
b. Note – Thrombin shouldn’t be added until person injecting samples is prepared to 

do so  
51. Mix samples thoroughly and draw into a syringe using a needle 
52. Lift mouse skin with forceps to create a tent in order to facilitate injection 
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53. Inject each implant subcutaneously on the dorsal flank of the mouse, one sample per 
flank.  

54. After injection is complete, leave needle in the mouse for 1 min to let fibrinogen 
polymerize and the rinse the injection site with ethanol alcohol pads.  

55. Repeat steps 51-55 for the other injection on the opposite dorsal flank, unless only 1 
implant is needed 

56. Prepare a recovery cage on top of a heating pad 
57. Place mouse in recovery cage 
58. Record time of surgery end 
59. Once mouse is ambulatory, record on surgery log and return cage to house facility 
60. Clean up surgery area from first mouse. 
61. Repeat steps 26-62 for additional mice until all samples have been injected 
62. Monitor mice each day for signs of distress or pain for up to 1 week, and then everyday 

thereafter 

Implant Removal and Fixation Protocol:  
63. Depending on timepoints to harvest implants, place mice in cage and turn on CO2 to 

small mammals 
64. Monitor mice to ensure they are not in distress. 
65. Once mice stop breathing, one at a time, move mice to hood and place on paper towel. 
66. Using surgical scissors, cut open the thoracic cavity of the mice. Continue to cut major 

external organs to cause exsanguination and ensure mouse is euthanized.  
67. Wipe injection area with 70% ethanol 
68. Using scissors and forceps, cut skin of mouse along spine and then make a traverse cut to 

create a skin flap. 
69. Break facia away from skin to find implant. 
70. Surgical excise the implant with the scissors and place each implant into 20 mL vials 

containing Z-fix formalin. 
a. Implant compacts over time 
b. Acellular conditions may not be present as mice may have degraded all the matrix 

71. Once implants are removed, place paper towel and mouse carcass in a glove. 
72. Tie off glove and place in appropriate disposal area (typically fridge in surgery room) 
73. Repeat 67-73 for each mouse 
74. Store vials in fridge for 24 hours  
75. Rinse implants with PBS (2 to 4 times)  
76. Add 70% ethanol to 20 mL vials containing implant and place it in fridge until tissue 

processing  
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Appendix Y – Tissue Implant Embedding and 
Sectioning 

 
Tissue Embedding 

1. Obtain pink embedding cassettes pink cassettes (UNISETTE cassette with lid, Simport, 
Canada) and label with sample information  

NOTE: use a pencil for labeling as embedding chemicals will remove ink and 
markers 

2. Fill a beaker with 70% ethanol. 
3. Remove implant from previously fixed vials. 
4. Cut, using surgical scissors and with the aid of forceps, excess mouse tissue away from 

implant. Excess tissue will result in additional sectioning. To optimize time and sections, 
excess tissue should be excised 

5. Place extra pieces of tissue back into 70% ethanol in case some potions contained the 
implant. 

6. Place the trimmed implant into the cassette. If implant is small and looks like it could fall 
through the holes in the cassette, add a tissue embedding sponge to the cassette. 

7. Place cassette into the beaker with ethanol 
8. Repeat 3-7 for each implant. You can process up to 20 samples at a time. 
9. Take beaker of 70% ethanol and tissue cassettes to embedding machine 
10. Place all tissue cassettes into the metal tissue embedding basket (usually next to the 

machine)  
11. Raise the hood of the tissue processing machine. 

NOTE: When using tissue processing machine and hood is raised, individuals should 
where a protective mask as xylene vapors are hazardous 

12. Slide the metal tissue embedding basket onto the metal hooks in the tissue embedding 
machine. Hooks may be above solution bucket 1, 4 or 12 depending on where the last 
person who used the machine placed it. 

13. Once basket is attached, using the rotate button, rotate the basket so it is above solution 
bucket 4 

14. Lower the hood of the tissue processing machine. Samples and the metal basket should 
now be submerged in 70% ethanol 

15. Start the machine, by pressing the run button, and set to program 1 (P1) 
1. Program takes about 10 hours to run 
2. Typically, machine will run over night when no one is around to avoid exposure 

to xylene 
3. P1 is already programed to appropriately dehydrate and embed samples in 

paraffin 
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Paraffin Block Formation: 
16. Press the cool button on the tissue embedding center machine to start cooling of the cold 

plate 
17. Get a bucket of ice. Put a layer of aluminum foil over the ice. 
18. After tissue processing machine finishes, raise hood of tissue processing machine. 
19. Place tissue cassettes into paraffin bath in the tissue embedding machine. 
20. Take a metal paraffin block mold (to the side of the tissue embedding center) and place 

on the heating blocks under the paraffin lever. 
21. One at a time, remove a tissue cassette from the paraffin bath and break of the lid of the 

cassette 
22. Using forceps, remove the implant and place in the center of metal paraffin block mold 
23. Place the tissue cassette on top of the metal paraffin block mold. This is to keep a label 

for each implant as well as a way for the microtome (sectioning machine) to hold the 
paraffin tissue block.  

24. Slowly, press the paraffin lever to dispense paraffin into the metal paraffin block mold 
through the holes in the tissue cassette. 

25. Ensure the implant stays in the center of the mold. If not remove, the tissue cassette and 
adjust the implant. 

26. Repeat 24-25 until implant is in the center of the mold and paraffin completely fills the 
mold 

27. Place the mold on the cooling pad. 
28. Once paraffin has hardened, (turned white), move mold onto aluminum foil in ice bucket. 
29. Repeat 20-28 until all samples are complete. 
30. Let sample harden on ice overnight. While tissue may harden after 4 hrs, typically the 

paraffin is still too soft to section, so it is best to wait overnight. 
 
Sectioning: 

31. Remove the paraffin tissue block from the metal paraffin block mold 
32. Using a utility knife or metal blade, cut away excess paraffin surrounding the implant 

creating a smaller square of paraffin around the implant. 
33. Cut the 2 of corners (create notches) on the paraffin square to create an orientation for 

sectioning 
34. Place cut tissue blocks on ice to stiffen the paraffin for sectioning 
35. Repeat 31-34 for each tissue sample. Typically can process 4 samples a day due to 

limitation of slide drying. 
36. Turn on the slide heating/drying machine next to microtome 
37. Create a solution of 10% ethanol, and pour into empty pipette container near microtome 
38. Turn on water bath 
39. While water bath is heating, label glass slides with initials, implant information, and a 

sequential number to identify order of slides 
40. Uncover microtome. 
41. Place a new blade in the microtome. 
42. Place tissue block into the microtome holder. 
43. Adjust the blade so it is close to the tissue block, but enough to still have visible space 

between the blade and tissue block. 
44. Adjust the tissue block positioning so it is parallel both latitudinally and longitudinal.  
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45. Make sure microtome width is set to 6 microns 
46. Slowly rotate the microtome. You will hear an audible click each time the tissue block 

moves closer to the blade. 
47. Eventually, the blade will start slicing the tissue block making a thin strip of wax. Use 

forceps to hold the thin strip away from the cutting block. 
48. Elongate the paraffin strip until a length of a bout 1 ft, or whatever length the individual 

is comfortable handling. 
49. Using the brush, remove the last paraffin section from the blade and set the whole 

paraffin strip aside, shiny side down 
50. Repeat 47-49 until all of the tissue block has been processed or there is no implant left 

NOTE: Keep an order of each paraffin strip next the machine as to not lose the correct 
order of each section. 

51. Using a blade, cut 6 sections from a paraffin strip. 
52. Using forceps, place the paraffin strip in the ethanol bath, shiny side down. 
53. Remove any air bubble trapped underneath the paraffin sections with the forceps 
54. Slowly dip the glass slide into the bath and use the slide to remove the paraffin sections. 
55. Carefully, place the slide with the paraffin sections in the warm water bath. When 

dipping in the water bath, dip slide on an angle. 
1.  Paraffin sections should detach form the slide 
2. Water bath is to remove wrinkles from the paraffin sections 

56. After a few seconds, remove the paraffin sections from the water bath with the glass slide 
57. Place the glass slide on the slide warming plate to dry 
58. Repeat 51-57 using the next sequential slide number until all paraffins sections are on 

glass slides 
59. Allow glass slides to dry overnight 
 

TIPS:  
 

• Typically, 30-40 slides of 6 sections per slide is required for each implant 
• Typically, 4 implants of 40 slides each is max to fit on slide warming plates 
• Leave white slide label overhanging on the edge as this portion does not need to dry. This 

will allow for more slides to be processed at a time 
• If paraffin starts tearing as you are sectioning, try the following 

• Tissue block can become too soft causing the paraffin to tear. Using a paper 
towel, spray the tissue block with 70% ethanol. Then Place and hold an ice cube 
on the tissue block for a few minutes 

• Blade can get dull causing the paraffin to tear. Adjust the blade so a fresh section 
of the blade is cutting the tissue block.  

• Avoid excess moisture around paraffin strips. Moisture will cause paraffin stripe to stick 
resulting in loss of sections 

• It is possible you will lose sections, despite how careful you are with sectioning, This is 
ok as long as it is not in implant region or you have enough sample to mitigate losing 
some sections. 
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Appendix Z - H&E Histology Staining 
 

* Protocol adapted from Ana Y. Rioja protocol   

Protocol: 

Rehydration: 

1. Determine slide for staining and place into slide cassette 
2. Prepare area in hood for staining and set up various slide cassette baths 
3. Wash slides with Xylene 2X for 5 mins per wash 
4. Wash slides with 100% ethanol 2X for 3 mins per wash at RT 
5. Wash slides with 95% ethanol 2X for 3 mins per wash at RT 
6. Wash slides with 70% ethanol 1X for 3 mins per wash at RT 
7. Wash slides with DI water 1X for 3 mins per wash at RT 

Hematoxylin and Eosin Staining: 

8. Incubate slide in hematoxylin solution for 15 mins at RT 
9. Place slide cassette in tap water container  
10. Pour rinse down drain 
11. Add new tap water to container 
12. Mover slide cassette up and down to rinse slides 
13. Repeat 10 – 12 until waste solution is clear 
14. Add new tap water to container and rinse for 15 mins at RT 
15.  Wash slides with 95% Ethanol 1X for 30 seconds at RT 
16.  Stain slides with Eosin 1X for 1 min at RT 

Dehydration of Slides 

17. Wash slides with 95% Ethanol 1X for 1 min at RT 
18. Wash slides with 100% Ethanol 2X for 1 min at RT 
19. Wash slides with Xylene 2X for 3 mins at RT 

Mounting coverslips on slides  

20. Remove cover slips from container and set upright leaning on wash containers for easy 
access 
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a. Xylene make gloves slicky and will be hard to remove from container between 
slides 

21. One at a time, remove sample slides from cassette. 
22. Add 3 to 4 small drops of Permount solution onto coverslip and place it on top of the 

slides  
23. Lay slides flat and let slides dry overnight  
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Appendix AA - CD31 Immunohistochemistry Staining 
 

* Protocol adapted from Ana Y. Rioja protocol   

Solution: 

TBS-T: 100 mL of 10 X TBS (pH balance 7.4) 
  1 mL of Tween 20 
  Quench to 1000 mL of dd H2O 

Rehydration:  

1. Pour tap water in the food steamer and turn on  
2. Pour enough target retrieval solution (DAKO) in a 200 mL beaker to cover the slide 

cassette 
3. Place slides in the cassette 
4. Prepare area in hood for staining and set up various slide cassette baths 
5. Wash slides with Xylene 2X for 5 mins per wash 
6. Wash slides with 100% ethanol 2X for 3 mins per wash at RT 
7. Wash slides with 95% ethanol 2X for 3 mins per wash at RT 
8. Wash slides with 70% ethanol 1X for 3 mins per wash at RT 
9. Wash slides with DI water 1X for 30 second per wash at RT 

Antigen Retrieval Protocol: 

10. Place cassette in beaker containing the target retrieval solution.  
11. Incubate slides in the steamer for 35 minutes  
12. Take out beaker and let it cool for 30 minutes.  
13. While your slides are cooling, prepare the slide chamber for the staining protocol.  

1. Cover the bottom of the slide chamber with a paper towel.  
2. Completely wet paper tower with DI H2O  

14. Wash slides with TBS-T for 3X for 2 minute per wash at RT.  
15. Change baths for every TBS-T wash.  
16. Remove excess TBS-T from slides with Kimwipe tissues carefully.  

1. Make sure to avoid touch tissues sections 
17. Use PAP pen to circle area around the tissue section.  

1. Make sure not to touch the tissue with the pen.  
2. Minimize circles area to ensure solution will cover entire section 
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Staining Protocol: 
15. Add peroxidase block solution to cover section completely.  
16. Place slides in slide chamber to avoid slides from drying.  
17. Incubate for 5 minutes.  
18. Prepare primary antibody solution 

1. For CD31 1:50 dilution in TBS-T (5 μL CD31:245 μL of TBS-T) 
19. Wash slides with TBS-T for 3X for 2 minute per wash at RT.  
20. Change baths for every TBS-T wash.  
21. Remove excess TBS-T from slides with Kimwipe tissues carefully.  

1. Make sure to avoid touch tissues sections 
22. Add peroxidase block solution to cover section completely.  
23. Place each slide in slide chamber 
24.  Incubate for 16 hours at 4 °C.  
25. Dip each slide gently into TBS-T solution 
26. Wash slides with TBS-T for 3X for 2 minute per wash at RT.  
27. Change baths for every TBS-T wash.  
28. Remove excess TBS-T from slides with Kimwipe tissues carefully.  

1. Make sure to avoid touch tissues section 
29. Place slides in slide chamber and add peroxidase labelled polymer (enough to cover 

whole section).  
30. Incubate for 30 minutes at RT.  
31. Prepare chromogen solution: 

1. Add 1 mL of buffer substrate into provided calibrated test tube (~40 drops) 
2. Add 1 drop of liquid DAB+ Chromogen per mL of buffer substrate 

32. Dip each slide gently into TBS-T solution 
33. Wash slides with TBS-T for 3X for 2 minute per wash at RT. Change baths for every 

TBS-T wash.  
34. Remove excess TBS-T from slides with Kimwipe tissues carefully.  
35. Place slides in slide chamber and add prepared Liquid DAB+ substrate-chromogen 

solution to slides.  
36. Incubate for 5 minutes. If done correctly, brown stain should appear on tissues sections 

within a few minutes 

Hematoxylin Staining: 

37. Dip each slide gently into DI H2O. 
38. Place slide in slide cassette 
39. Wash slides with DI water 1X for 1 min per wash at RT 
40. Incubate slide in hematoxylin solution for 15 mins at RT 
41. Place slide cassette in tap water container  
42. Pour rinse down drain 
43. Add new tap water to container 
44. Mover slide cassette up and down to rinse slides 
45. Repeat 10 – 12 until waste solution is clear 
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Dehydration of Slides 

77. Wash slides with 95% Ethanol 2X for 1 min at RT 
78. Wash slides with 100% Ethanol 2X for 1 min at RT 
79. Wash slides with Xylene 2X for 3 mins at RT 

Mounting coverslips on slides  

1. Remove cover slips from container and set upright leaning on wash containers for easy 
access 

a. Xylene make gloves slicky and will be hard to remove from container between 
slides 

2. One at a time, remove sample slides from cassette. 
3. Add 3 to 4 small drops of Permount solution onto coverslip and place it on top of the 

slides  
4. Lay slides flat and let slides dry overnight  
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Appendix AB - αSMA Immunohistochemistry 
Staining 

 
Same protocol as Appendix F, except:  

• Primary antibody used: Smooth muscle actin monoclonal antibody (1A4 (asm-1)) 
[Invitrogen: Thermo Fisher Scientific]  

• Concentration of antibody: 1:800 in TBS-T  
• Incubation time: 2 hours at RT 
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Appendix AC - Col-IV Immunohistochemistry 
Staining  

 
Same protocol as Appendix F, except:  

• Primary antibody used: Collagen IV Monoclonal Antibody (COL-94) [MA1-22148] 
[Thermo Fisher Scientfic] 

• Concentration of antibody: 1:400 in TBS-T  
• Incubation time: Overnight at 4 °C. 
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Appendix AD – Histology Vessel Quantification 
 
 

Prep: 
 Go to the shared google drive folder for CD31 quantification 
1. Open up the indicated sample folder (e.g. M10R) 
2. Download all of the indicated 20x images (these are noted in the original e-mail I sent for 

which images to quantify) 
3. Open up the excel template (this was also sent in the original email) 
4. Rename each sheet/tab to the appropriate image name. (Each separate 20x image should have 

its own sheet) 
 
Quantification 
5. Open up the 20x image in imageJ 
6. Go to Analyze -> Set measurements 

1. Click area, shape descriptors, Feret’s diameter, add to overlay, limit to threshold, and 
display label 

2. Decimal places: 2 
3. Click OK 

7. Using the straight-line tool, draw a line across the inner diameter of a vessel lumen without 
erythrocytes (VL). 

1. In the case of an elongated/elliptical lumen, choose a diameter that is roughly halfway 
between the max and min diameter. 

8. Click Cntrl M to measure the lumen (If control M doesn’t work look under analyze -> measure 
to see what the short cut command is) 

1. A new window should appear with the measurements 
9. Repeat 7-8 for all lumens without erythrocytes (VL) 
10. Record the final label number, so you know where you stopped counting vessels lumens 

without erythrocytes (VL) 
11.  Repeat 7-8 for all lumens with erythrocytes (VE) 
12.  In data/measure window, (the window that appeared once clicked measure the first time) 

copy all the data. 
13.  Paste the data into the excel sheet (make sure the columns match the correct number) 
14.  Enter the label number into the box where you switched from vessels w/o erythrocytes 

(VL) to vessels w/ erythrocytes (VE). 
15.  Save a .jpeg image of the measured lumens with the data labels. Save as data set, image 

number, your last name (ex. M10R - 5 Putnam) 
16.  Repeat steps 5-15 for each image in the indicated image set using a new 

sheet/spreadsheet tab. 
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17.  Once completing all images in a set, save the excel file with your last name, the image 
set name, and my last name. (ex. Putnam M10R Bezenah Quantification) 

18.  Repeat steps 16-17 for all images sets. 
 
Tips/Notes: 

o Excel Template is attached to the email 
o Vessel = Redish Brown CD31 rim with or w/o erythrocytes  
o The number of vessels with hollow lumens (VL) 
o The number of vessels with hollow lumens and erythrocytes inside the lumen (VE)  
o Erythrocytes have a brown/orange color to them and are completely circular. 
o If data labels do not appear, go to image -> overlay -> labels and click show labels. 
o Make sure you save images after you finish analysis 
o Rule of Thumb:  

▪ Count the vessel if you can clearly see some white/greyish background 
completely surrounded by brown stain. DO NOT count vessels that have 
purple or brown lumens. 

▪ Smaller lumens may be hard to determine. If you can clearly see a 
white/greyish center to the lumen, DO NOT count it. 

▪ If you are not sure if there are erythrocytes or not (especially with smaller 
lumens), count it as w/o erythrocytes (VL) 
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Appendix AE – List of Materials
 
 

Antibodies: 
 
Name: Monoclonal Mouse Anti-Human CD31, Endothelial Clone, JC70A 
Vendor: Dako 
Catalog Number: M0823 
Experimental Use: Endothelial Cell staining (in vitro and in vivo) 
Dilution: 1:50 for histology, 1:200 for IF staining, 1:50 for FACS 
Dilution Buffer: 0.1% TBS-T (Tween 20) for histology, 2% BSA in 0.1% TBS-T (Tween 20) 
for IF staining, 0.1% BSA in Ice Cold PBS for FACS 
 
Name: Rhodamine Ulex Europaeus Agglutinin I (UEA) 
Vendor: Vector Labs 
Catalog Number: RL-1062 
Experimental Use: Endothelial Cell staining (in vitro) 
Dilution: 1:100 for IF staining 
Dilution Buffer: 1 X PBS 
 
Name: Alexa Fluor 488 goat anti-mouse IgG 
Vendor: Life Technologies 
Catalog Number: A11001 
Experimental Use: Secondary for GFP (Green Fluorescent tag) 
Dilution: 1:400 
Dilution Buffer: 2% BSA in 0.1% TBS-T (Tween 20) 
 
Name: Alexa Fluor 488 goat anti-rabbit IgG 
Vendor: Life Technologies 
Catalog Number: A11008 
Experimental Use: Secondary for GFP (Green Fluorescent tag) 
Dilution: 1:400 
Dilution Buffer: 2% BSA in 0.1% TBS-T (Tween 20) 
 
Name: Alexa Fluor 405 goat anti-mouse IgG 
Vendor: Life Technologies 
Catalog Number: A31553 
Experimental Use: Secondary for DAPI (Blue Fluorescent tag) 
Dilution: 1:300 
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Dilution Buffer: 2% BSA in 0.1% TBS-T (Tween 20) 
 
Name: Actin Smooth Muscle Antibody (1A4 (asm-1)) [a-SMA] 
Vendor: Invitrogen 
Catalog Number: MA5-11547 
Experimental Use: Stromal Cell/ Pericyte Staining 
Dilution: 1:800 for histology, 1:200 for IF staining 
Dilution Buffer: 0.1% TBS-T (Tween 20) for histology, 2% BSA in0.1% TBS-T (Tween 20) for 
IF staining 
 
Name: Ms mAb to MMP-9 [56-2A4] 
Vendor: Abcam 
Catalog Number: ab58803 
Experimental Use: Western Blot 
Dilution: 1:400 
Dilution Buffer: 5% BSA dissolved in TBS-T (Tween 20) 
 
Name: Ms mAb to MMP-2 [CA4001/CA719E3C] 
Vendor: Abcam 
Catalog Number: ab3158 
Experimental Use: Western Blot 
Dilution: 1:400 
Dilution Buffer: 5% BSA dissolved in TBS-T (Tween 20) 
 
Name: Rb mAb to MMP-14 [EP1264Y] (MT1-MMP) 
Vendor: Abcam 
Catalog Number: ab51074 
Experimental Use: Western Blot 
Dilution: 1:2000 
Dilution Buffer: 5% BSA dissolved in TBS-T (Tween 20) 
 
Name: Pierce Goat anti-Rabbit IgG (H+L) Peroxidase Conjugated 
Vendor: Thermo Scientific 
Catalog Number: 31466 
Experimental Use: Western Blot 
Dilution: 1:10000 
Dilution Buffer: 0.1% in TBS-T (Tween 20) 
 
Name: Pierce Goat anti-Mouse IgG (H+L) Peroxidase Conjugated 
Vendor: Thermo Scientific 
Catalog Number: 31431 
Experimental Use: Western Blot 
Dilution: 1:10000 
Dilution Buffer: 0.1% in TBS-T (Tween 20) 
 
Name: GAPDH (V-18) HRP 
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Vendor: Santa Cruz Biotechnology 
Catalog Number: sc-20357 
Experimental Use: Western Blot 
Dilution: 1:2000 
Dilution Buffer: 0.1% in TBS-T (Tween 20) 
 
Name: eBioScience Anti-Human CD144 [16B1] (VE-Cadherin) 
Vendor: Invitrogen 
Catalog Number: 14-1449-82 
Experimental Use: IF staining and FACS 
Dilution: 1:200 for IF staining, 1:50 for FACS 
Dilution Buffer: 2% BSA in 0.1% TBS-T (Tween 20) for IF staining, 0.1% BSA in Ice Cold 
PBS for FACS 
 
Name: vWF Antibody (F8/86) 
Vendor: Invitrogen 
Catalog Number: MA5-14029 
Experimental Use: IF staining  
Dilution: 1:200 for IF staining,  
Dilution Buffer: 2% BSA in 0.1% TBS-T (Tween 20) for IF staining,  
 
Name: Laminin beta-1 Antibody 
Vendor: Invitrogen 
Catalog Number: PA5-27271 
Experimental Use: IF staining  
Dilution: 1:200 for IF staining,  
Dilution Buffer: 2% BSA in 0.1% TBS-T (Tween 20) for IF staining,  
 
Name: Collagen IV Antibody 
Vendor: Invitrogen 
Catalog Number: MA1-22148 
Experimental Use: IF staining, and histology 
Dilution: 1:200 for IF staining, 1:400 for histology 
Dilution Buffer: 2% BSA in 0.1% TBS-T (Tween 20) for IF staining, in 0.1% TBS-T (Tween 
20) for histology 
 
Inhibitors: 
 
Name: Dimethyl Sulfoxide 
Vendor: Sigma Aldrich 
Catalog Number: D650-100mL 
Experimental Use: Cryopreservation and Vehicle in Inhibitor Studies 
Dilution: 1:100 (10 μL of DMSO in 1 mL of Media) 
 
Name: Marimastat (BB-2516) 
Vendor: TOCRIS Bioscience 
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Catalog Number: 2631 
Experimental Use: Inhibitor Studies 
Dilution: 10 μL of 20 μM in 1 mL of Media 
 
Name: Aprotinin (BB-2516) 
Vendor: Sigma Aldrich 
Catalog Number: A1153-1 MG 
Experimental Use: Inhibitor Studies 
Dilution: 10 μL of 2.2 μM in 1 mL of Media 
 
 
Media and Cell Culture: 
 
Name: Human Plasma Fibronectin  
Vendor: Life Technologies 
Catalog Number: 33016-015 
Experimental Use: Coating Culture Plates for iPSC-ECs 
Dilution: 225 μL (of 1 mg/mL stock) in 7.5mL sterile water for T-75 flask 
 
Name: Fibrinogen from bovine plasma 
Vendor: Sigma Aldrich 
Catalog Number: F8630-10G 
Experimental Use: Making Fibrin Gels 
 
Name: TrypLE Select 
Vendor: Life Technologies 
Catalog Number: 12563-011 
Experimental Use: Trypsinizing iPSC-ECs 
 
Name: Cytodex Microcarrier Beads 
Vendor: Sigma Aldrich 
Catalog Number: C3275-10G 
Experimental Use: For Angiogenesis Assay 
 
Name: Thrombin 
Vendor: Sigma Aldrich 
Catalog Number: T6634-500UN 
Experimental Use: For polymerizing Fibrinogen 
 
Name: EGM-2  
Vendor: Lonza 
Catalog Number: CC-3162 
Experimental Use: Culturing ECs 
 
Name: EGM-2MV  
Vendor: Lonza 
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Catalog Number: CC-3202 
Experimental Use: Culturing ECs 
 
Name: Vasculife VEGF Endothelia Cell Medium 
Vendor: Lifeline Cell Technologies 
Catalog Number: LL-0003 
Experimental Use: Culturing ECs, specifically iPSC-ECs 
 
Name: iCell Endothelial Cells Medium Supplement 
Vendor: Cellular Dynamics International 
Catalog Number: M1019 
Experimental Use: Culturing iPSC-ECs 
 
Name: DMEM 
Vendor: Life Technologies 
Catalog Number: 11995065 
Experimental Use: Culturing NHLFs 
 
Name: FBS 
Vendor: Life Technologies 
Catalog Number: 10437-028 
Experimental Use: Culturing cells 
 
 
Cell Lines:  
 
Name: HUVECs 
Vendor: Lonza 
Catalog Number: C2519A 
Lot: 0000394986 
 
Name: iPSC-ECs 
Vendor: Cellular Dynamics 
Catalog Number: R102 
Lot: 0000394986 
 
Western Blot and Gel Zymography: 
 
Name: Precision Plus Protein Kaleidoscope 
Vendor: BioRad 
Catalog Number: 161-0375 
Loading Volume: 10 μL 
 
Name: Magic Mark XP Western Standard 
Vendor: Invitrogen 
Catalog Number: LC5602 
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Loading Volume: 4 μL 
 
Name: Novex WedgeWell 10% Tris-Glycine Gel 
Vendor: Invitrogen 
Catalog Number: XP00100BOX 
Use: Western Blot Electrophoresis 
 
Name: Novex 10% Zymogram (Gelatin) Gel 
Vendor: Invitrogen 
Catalog Number: EC6175BOX 
Use: Gel Zymography Electrophoresis 
 
Name: Filter Paper Extra Thick Blot Paper 
Vendor: BioRad 
Catalog Number: 1703966 
Use: Western Blot Transfer 
 
Name: Immun-Blot PVDF Membrane For Protein Blotting 
Vendor: BioRad 
Catalog Number: 162-0176 
Use: Western Blot Transfer 
 
Name: Hyblot CL Autoradiography Film 
Vendor: Denville Scientifc Inc 
Catalog Number: E3012 
Use: Western Blot Development 
 
Name: Kodak Professional Fixer 
Vendor: Electron Microscopy Sciences 
Catalog Number: 74300 
Use: Western Blot Development 
 
Name: Kodak D-19 Developer Replacement Kit 
Vendor: Electron Microscopy Sciences 
Catalog Number: 74200 
Use: Western Blot Development 
 
Name: Halt Protease & Phosphatase Single Use Inhibitor Cocktail 
Vendor: Thermo Scientific 
Catalog Number: 78442 
Use: Protein Lysis 
 
Name: Pierce BCA Protein Assay Kit 
Vendor: Thermo Scientific 
Catalog Number: 23225 
Use: Protein Concentration Analysis 
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RNA Prep and qPCR: 
 
Name: RNeasy Mini Kit 
Vendor: Qiagen 
Catalog Number: 74104 
Use: RNA Lysis 
 
Name: QIAshredder 
Vendor: Qiagen 
Catalog Number: 79654 
Use: RNA Lysis 
 
Name: ImProm-II Reverse Transcription System 
Vendor: Promega 
Catalog Number: A3800 
Use: cDNA Synthesis 
 
Name: TaqMan Gene Expression Master Mix 
Vendor: Applied Biosystems 
Catalog Number: 4369016 
Use: qPCR 
 
Name: TaqMan Gene Expression Assay Primer (18s) 
Vendor: Applied Biosystems 
Catalog Number: Hs03003631_g1 
Use: qPCR 
 
Name: TaqMan Gene Expression Assay Primer (MMP2) 
Vendor: Applied Biosystems 
Catalog Number: Hs01548724_m1 
Use: qPCR 
 
Name: TaqMan Gene Expression Assay Primer (MMP9) 
Vendor: Applied Biosystems 
Catalog Number: Hs00957562_m1 
Use: qPCR 
 
Name: TaqMan Gene Expression Assay Primer (MMP14) 
Vendor: Applied Biosystems 
Catalog Number: Hs01037009_g1 
Use: qPCR 
 
Name: Optical Adhesive Covers 
Vendor: Applied Biosystems 
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Catalog Number: 4360954 
Use: qPCR 
 
Name: MicroAmp Fast Optical 96-Well Reaction Plate with Barcode 
Vendor: Applied Biosystems 
Catalog Number: 4346906 
Use: qPCR 
 
Histology: 
 
Name: Mayer’s Hematoxylin 
Vendor: Electron Microscope Services 
Catalog Number: 26043-06 
Use: H&E Staining 
 
Name: Eosin Y Solution 
Vendor: Sigma Aldrich 
Catalog Number: HT110132-1L 
Use: H&E Staining 
 
Name: Target Retrieval Solution 10X Concentrate 
Vendor: Dako 
Catalog Number: S1699 
Use: IHC Staining 
 
Name: EnVision System- HRP (DAB) For Use with Mouse Primary Antibodies 
Vendor: Dako 
Catalog Number: K4006 
Use: IHC Staining 
 
Name: Unisette Tissue Processing/Embedding Cassette 
Vendor: Simport 
Catalog Number: M505-3 
Use: Tissue Embedding 
 
Name: Fisherbrand Superfrost Plus Microscope Slides 
Vendor: Fisher Scientific 
Catalog Number: 12-550-15 
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