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ABSTRACT

With the improvement of high-throughput technologies, association studies related to

molecular phenotypes have become increasingly significant. Associated genetic vari-

ants found from studies based on high-throughput omics experiments provide valu-

able information to help understand biological mechanisms behind complex traits.

While analyses using high-throughput data can play a crucial role to study complex

traits, many analytical challenges remain unresolved.

This dissertation primarily focuses on two outstanding issues in genetic associa-

tion analysis of high-throughput sequence data. First, when incorporating functional

annotations into multi-SNP association analyses and the number of candidate SNPs

increases, computational burden increases. Second, there is a need to identify re-

producible signals between studies. Measuring reproducibility between assays in

high-throughput experiments and association results between studies is crucial to

assess the quality of the overall procedures and the association evidence.

In Chapter 2, we propose an algorithm to incorporate functional annotations

into Bayesian multi-SNP analysis based on a probabilistic hierarchical model. The

proposed algorithm, name as deterministic approximation of posteriors (DAP), shows

superior accuracy and computational efficiency over the existing methods, including

Markov Chain Monte Carlo (MCMC) algorithms to fit a sparse Bayesian variable

selection model.

In Chapter 3, we propose a probabilistic quantification of association evidence,

xi



accounting for linkage disequilibrium (LD). By identifying a set of SNPs in LD and

representing a single association signal, we are able to construct credible sets and

perform appropriate false discovery rate (FDR) control in Bayesian multi-SNP as-

sociation analysis. We also derive a set of sufficient summary statistics that lead to

equivalent inference results as using individual-level data.

In Chapter 4, we propose a set of computational methods to measure reproducibil-

ity among high-throughput sequencing experiments. In particular, we propose a sta-

tistical approach to take advantage of the fact that a strong and genuine signal is

expected to show the same directional effects in multiple studies.We design a novel

Bayesian hierarchical model and estimate the posterior probability of each testing

unit (e,g, SNP) being reproducible under a proposed set of prior probabilities. We

also propose visualization tools and quantification measures tool to assess the overall

reproducibility among multiple experiments.

In three chapters of the dissertation, we discuss several issues in studies utilizing

high-throughput data and propose computational methods to deal with these issues.

xii



CHAPTER I

Introduction

With the improvement of high-throughput technologies, association study related

to molecular phenotype has become significant recently. Recently many studies have

been successfully discovered quantitative trait loci (QTL) that are associated with

the regulation of gene expression, histone modification, DNA methylation. These

findings, along with genomic variants that are revealed from genomewide association

studies (GWAS), are expected to provide valuable evidence to understand underlying

mechanisms behind complex traits.

There have been several issues in association studies utilizing high-throughput

data. One of the issues is related to the integrative analysis functional annotations

and multi-SNP analysis.

Thanks to large-scale studies that utilize high-through data, functional anno-

tations on regulatory variants become feasible. This also make association stud-

ies incorporating functional annotations feasible. Most studies considering func-

tional annotations have been commonly performed at single-SNP analyses. How-

ever, single-SNP association analysis often fails to identify multiple signals co-exist

in small genomic regions. Incorporating annotations into multi-SNP analysis stud-

ies can enables to find multiple independent signals exist in small genomic region.

1
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It can also improve the power to identify QTL and provided valuable information

on understanding molecular mechanisms. One of Major challenges in incorporat-

ing annotations into multi-SNP analyses is that as number of tested SNP increases,

computational burden increases rapidly.

Another issue of utilizing high-throughput data is measuring reproducibility be-

tween high-throughput assays and association studies. To ensure the quality of data

processing, it is crucial to quantify the degree of concordance between replicate assay.

Also, some QTLs identified from a single association study often fails to be discovered

in other studies, since their signals are not strong enough to overcome study-specific

variations. Therefore, classifying eQTLs that can be reproducible between studies

can provide valuable information on finding strong causal variants. While several

methods have been proposed to measure reproducibility, they are based on rank-

transformed information and ignore the directional information of estimated effects.

In this dissertation, we propose statistical methods to deal with the two issues

discussed. In Chapter 2, we propose an algorithm to incorporate functional annota-

tions into Bayesian multi-SNP analysis based on a probabilistic hierarchical model.

This algorithm is called deterministic approximation of posteriors (DAP). Compared

with exiting methods, DAP shows the improvement in accuracy and computational

efficiency in fitting a sparse Bayesian variable selection model. We also apply DAP

to cis-eQTL results of GTEx study.

In Chapter 3, we propose a probabilistic quantification of association evidence

which accounts for linkage disequilibrium (LD). By identifying a set of SNPs in

LD that represent a single association signal, the construction of credible sets and

performing appropriate false discovery rate (FDR) in Bayesian multi-SNP association

analysis become feasible. We also derive a set of sufficient summary statistics that



3

leads to the equivalent inference results as using individual-level data.

In Chapter 4, we propose computational methods to measure reproducibility for

high-throughput experiments. First, we propose a visualization tool to assess the

degree of concordance, and a measure to quantify it. Second, we propose a Bayesian

hierarchical model to estimate the posterior probability of each testing unit being

reproducible. This model assumes that a strong and genuine signal is expected to

show the same directional effects across studies.



CHAPTER II

Effcient Integrative Multi-SNP Association Analysis via
Deterministic Approximation of Posteriors

2.1 Introduction

Association analysis has become a powerful tool for identifying genetic variants

that impact complex traits at both the organismal and molecular levels: in the past

decade, genome-wide association studies (GWAS) have successfully identified a rich

catalog of genetic variants that are linked to many human diseases. Most recently,

molecular QTL mapping has revealed an abundance of quantitative trait loci (QTLs)

for cellular phenotypes such as gene expression Lappalainen et al. (2013), Ardlie et al.

(2015), chromatin accessibility Degner et al. (2012), histone modifications McVicker

et al. (2013) and DNA methylation Banovich et al. (2014). Nevertheless, the causal

molecular pathways from genetic variants to complex phenotypes remain poorly un-

derstood Albert and Kruglyak (2015). This is mainly because a good proportion

of identified trait-associated variants are located in the non-coding regions of the

genome, and our knowledge of the functional roles of non-coding variants is gener-

ally lacking. With the recent advancements in high-throughput experimental tech-

nologies, functional annotations for regulatory variants have become increasingly

available ENCODE Project Consortium (2012), Kundaje et al. (2015), Ardlie et al.

(2015). As a consequence, it is now feasible to perform association analysis incorpo-

4
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rating functional genomic annotations. The integrative analysis strategy presents two

obvious advantages: first, it improves the power of association analysis by prioritizing

functional variants; second, it helps to reveal the underlying molecular mechanisms

that lead to the observed associations.

In the past, integrative analysis was typically performed by searching for overlaps

between putative association signals and SNP annotations. This analysis strategy

implicitly assumes that a SNP with specific genomic annotations is likely causal. To

justify the results from the post-hoc overlapping analysis, quantitatively validating

this implicit assumption from the observed association data, which essentially re-

quires estimating the enrichment levels of the annotations in the association signals,

is critical. This point becomes particularly crucial when multiple types of annotations

are used, and a rigorous quantitative enrichment analysis should help to determine

which annotations are relevant and how much we should weigh each annotation. The

availability of functional annotations also enables high-resolution multi-SNP genetic

association analysis. From both GWAS and molecular QTL mapping studies, it is

increasingly evident that multiple independent association signals can co-exist in a

relatively small genomic region. Multi-SNP fine-mapping analysis has now become

a standard procedure to tease out potential multiple association signals. It is only

natural that genomic annotations are integrated into this process.

Recently, a few computational approaches for integrative enrichment and associ-

ation analysis have been proposed and successfully demonstrated in molecular QTL

mapping Veyrieras et al. (2008), Gaffney et al. (2012) and GWAS Pickrell (2014),

Kichaev et al. (2014). However, these existing approaches make simplifying assump-

tions for either enrichment analysis Kichaev et al. (2014) or multi-SNP fine-mapping

analysis Veyrieras et al. (2008), Pickrell (2014). Therefore, the power of integrative



6

analysis has not been maximized and can be further improved. In addition, com-

putational efficiency has always been a hurdle in terms of applying a probabilistic

integrative analysis approaches to genetic data at the genome-wide scale.

In this chapter, we propose a probabilistic hierarchical model that is generalized

from our recent work Wen et al. (2015b) to describe multi-SNP genetic associa-

tions while accounting for functional genomic annotations. Based on this model,

we consider analyzing genetic association data in two settings: traditional GWAS

and molecular cis-QTL mapping studies. Note that a distinct feature of molecular

QTL mapping is that tens of thousands (or hundreds of thousands) of molecular

phenotypes (e.g., gene expression, DNA methylation) are simultaneously measured

and analyzed, which imposes some unique statistical challenges. In addition, the

candidate genomic region for each molecular phenotype is typically defined in the

proximity of relevant genomic landmarks of the corresponding molecular phenotypes

(e.g., transcription start site of a target gene for expression phenotypes) and much

smaller in length (usually spanning 1 to 2 Mb) comparing to GWAS. We outline a

3-stage inference procedure to sequentially perform enrichment analysis, QTL discov-

ery and multi-SNP fine-mapping. One of our main contributions is a computationally

efficient algorithm for Bayesian multi-SNP association analysis. This fast fitting al-

gorithm, named Deterministic Approximation of Posteriors (DAP), facilitates the

proposed rigorous integrative inference procedure. Compared to the alternative fit-

ting algorithm, i.e., the Markov Chain Monte Carlo (MCMC) algorithm, we show

that the DAP is several hundreds times faster and more accurate for genetic associ-

ation analysis. Taking full advantage of the DAP algorithm, we lay out the analytic

strategies for analyzing genetic association data from GWAS and molecular cis-QTL

mapping studies, and we demonstrate the proposed procedures through a series of
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simulation studies and real data applications.

2.2 Methods

2.2.1 Model and Notation

First, we consider a generic setting of association analysis of a single quantitative

trait and p SNPs both measured for n unrelated individuals. We model the genotype-

phenotype association using a multiple linear regression model,

(2.1) ~y = µ1 +

p∑
i=1

βi~gi + ~e, ~e ∼ N(0, σ2I).

For each SNP i, we denote its binary association status, γi, by dichotomizing its

corresponding genetic effect βi, i.e, γi = 1 if βi 6= 0 and 0 otherwise. In particular,

we refer to the causal SNPs for which γi = 1 as the quantitative trait nucleotides

(QTNs)Veyrieras et al. (2008). Our primary interest for association analysis is the

inference of ~γ := (γ1, ..., γp). To integrate genomic annotation into the association

analysis, we assume that having certain genomic features will increase (or decrease)

the odds that a particular SNP is a QTN. Equivalently, certain genomic features are

enriched (or depleted) in QTNs. We quantitatively represent this assumption using

an a priori independent logistic model for each γi, i.e.,

(2.2) log

[
Pr(γi = 1)

Pr(γi = 0)

]
= α0 +

q∑
k=1

αkdik,

where ~di := (di1, . . . , diq) denotes q genomic annotations that are specific to SNP i at

a particular locus and α1, ..., αq are referred to as the enrichment parameters. Note

that the annotations can be either categorical or continuous in this framework. We

assume that the phenotype data, ~y, the genotype data, G := (~g1, ...,~gp), and the

annotation data, D := (~d1, ..., ~dp), are observed, while the enrichment parameters,

~α := (α0, α1, ..., αq), are unknown.
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For molecular QTL mapping, tens of thousands of phenotypes are simultane-

ously measured, and we denote the collection of all measured phenotypes by Y :=

(~y1, ..., ~yL). For each phenotype, a small genomic region, typically spanning 1 to

2 Mb and on average containing a few thousands of SNPs, is pre-defined as the

candidate locus in the proximity of relevant genomic landmarks of the correspond-

ing molecular phenotypes, and we denote the union of the SNP genotypes from all

candidate loci by G := (G1, ..., GL). Similarly, we use D := (D1, ..., DL) and

Γ := (~γ1, ...,~γL) to denote the collections of annotations and latent association sta-

tus, respectively.

In GWAS, there is usually only one phenotype of interest, which can be viewed

as a special case of molecular QTL mapping. Nevertheless, it is important to note

that the candidate region for GWAS spans the whole genome.

2.2.2 Inference Procedure

We propose an inference procedure consisting of three inter-related stages to fit

the proposed hierarchical model. Sequentially, these stages are as follows:

1. estimating the enrichment parameter ~α using the full data Y ,G and D for

enrichment analysis

2. screening candidate loci for QTL discovery

3. performing multi-SNP fine-mapping for the high-priority loci identified in stage

2

The maximum likelihood estimate (MLE) of ~α can be obtained by the EM algo-

rithm proposed in our recent work Wen et al. (2015b). Briefly, the EM algorithm

treats Γ as missing data and pools information across all available loci. In the E-

step, the posterior inclusion probability (PIP) for each SNP i at each locus l (namely,
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Pr(γli = 1 | ~yl,Gl, ~α
(t))) is computed given the current estimate of ~α; in the M-step,

a logistic regression model is fit by plugging in the PIPs as the response variables

and SNP annotations as predictors. The estimate of ~α is subsequently updated by

the corresponding fitted regression coefficients.

Given the MLE of the enrichment parameter, ~̂α, we then attempt to identify

genomic loci that are likely to harbor causal QTNs. This is achieved by testing

the null hypothesis, H0 : ~γ l = 0, for each candidate locus l using a Bayesian false

discovery rate (FDR) control procedure. Specifically, the null hypothesis is rejected

if the locus-level posterior probability Pr(~γ l = 0 | ~yl,Gl, ~̂α) is smaller than the

pre-defined threshold determined by the observed data and desired FDR control

level Wen (2016). At the end of this stage, we gather a list of potential QTLs for

fine-mapping.

Finally, we perform multi-SNP fine-mapping analysis for the identified QTLs. In

particular, we compute the posterior distribution for each locus l, namely, Pr(~γ l |

~yl,Gl, ~̂α), to i) identify potentially multiple independent association signals within

locus l and ii) assess the importance of each SNP by computing its PIP, i.e., Pr(γli =

1 | ~yl,Gl, ~α
(t)). A credible set of potential causal SNPs for each independent signal

can then be constructed from the resulting PIPs in a manner similar to previously

proposed methods Maller et al. (2012), Wen et al. (2015b). This Bayesian approach

for multi-SNP analysis has been known to present some unique advantages over the

traditional conditional analysis approach. For example, it fully accounts for patterns

of linkage disequilibrium (LD) and shows superior power in discovering independent

association signals Guan and Stephens (2011), Wen et al. (2015b).

This 3-stage procedure represents a coherent empirical Bayes strategy to fit the

proposed hierarchical model for inference. In all three stages, the computational
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difficulty lies in the efficient evaluation of the posterior probability Pr(~γ l | ~yl,Gl, ~α).

We propose an algorithm to tackle this problem in the following sections. The

software package implementing the computational approaches (in C++ programming

language) is freely available (Web Resources).

2.2.3 Deterministic Approximation of Posteriors

The computation of the target posterior probability Pr(~γ l | ~yl,Gl, ~α) is concep-

tually straightforward by applying the Bayes theorem, i.e.,

(2.3) Pr(~γ l = ~γ | ~yl,Gl, ~α) =
Pr(~γ | ~α) BF(~γ)∑
~γ
′ Pr(~γ ′ | ~α) BF(~γ ′)

,

where the Bayes factor

BF(~γ) :=
P (~yl | Gl,~γ l = ~γ)

P (~yl | Gl,~γ l ≡ 0)

represents the marginal likelihood function of ~γ l evaluated at ~γ. Based on (2.3), the

PIP of each candidate SNP can be subsequently marginalized from Pr(~γ l | ~yl,Gl, ~α).

For any given ~γ value, both the Bayes factor (whose computation involves inte-

grating out the the nuisance parameters µ, β and σ2) and the prior probability can

be analytically evaluated Servin and Stephens (2007), Wen (2014). The difficulty

lies in evaluating the normalizing constant

C :=
∑
~γ

Pr(~γ l = ~γ | ~α) BF(~γ).

For a locus consisting of p candidate SNPs, the exact computation requires enumer-

ating all 2p possible ~γ values; hence, it is intractable even for modest p. Previously,

the only feasible solution was to employ a Markov Chain Monte Carlo (MCMC) algo-

rithm Guan and Stephens (2011), Wilson et al. (2010), Wen et al. (2015b). However,

the MCMC algorithm is computationally too costly in our grand scheme for integra-

tive genetic association analysis: the evaluation of Pr(~γ l | ~yl,Gl, ~α) for every locus is
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required for each E-step in the EM algorithm for enrichment analysis. Furthermore,

the inherent stochastic variation in the MCMC algorithm may affect the performance

and reproducibility of the overall analysis.

Here, we present an alternative algorithm to perform deterministic approximation

of posteriors (DAP) for each locus and efficiently compute PIPs for all candidate

SNPs. This algorithm is mainly motivated by two observations in genetic associ-

ation analysis. First, in almost all genetic applications, the number of convincing

QTLs (i.e., those have relatively large effect sizes) discovered from the association

data are typically small compared with the number of candidate SNPs within a can-

didate locus (typically 1 to 2 Mb). In molecular QTL mapping, this observation is

also supported by many recent experimental work Patwardhan et al. (2009), Findlay

et al. (2014), Savic et al. (2013). It implies that the vast majority of the posterior

probability mass in the space of all possible combinations of SNPs must be con-

centrated in a much lower-dimensional subspace. That is, only association models

containing a few SNPs are likely to have non-negligible posterior probabilities within

a locus. Second, noteworthy QTL SNPs, as reflected by their non-negligible PIP

values, are thought to typically show modest to strong marginal association signals

in either single-SNP or conditional analysis. Based on the above observations, we

design the DAP algorithm to adaptively select a small subset of noteworthy candi-

date QTL SNPs and thoroughly explore the low-dimensional model space composed

by these SNPs within each candidate locus. In addition, the DAP algorithm applies

a combinatorial approximation to estimate the posterior probability mass from the

unexplored model space. Unlike the MCMC, the DAP algorithm is highly paralleliz-

able, and our implementation takes full advantage of this property. More specifically,
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the proposed DAP algorithm approximates the normalizing constant C by

(2.4) C∗ =
∑
~γ
′
∈Ω

Pr(~γ l = ~γ ′ | ~α) BF(~γ ′) + ε,

where Ω denotes a subset of the selected most plausible models to be explored ex-

plicitly and ε is an estimate of the approximation error C −
∑
~γ
′
∈Ω

Pr(~γ l = ~γ ′ |

~α) BF(~γ ′). The key to the DAP algorithm is the construction of the set Ω: it

is desirable that models in Ω capture the vast majority of the posterior proba-

bility mass; on the other hand, Ω should be compact enough for efficient explo-

ration. In this chapter, we propose two different approaches to construct Ω. In

both cases, we define the size of the association model, ||~γ l||, as the number of as-

sumed QTNs (also known as the 0-norm of the vector ~γ l), i.e., ||~γ l|| =
∑p

i=1 γli , and

partition the complete model space of {~γ l} by the size of association models, i.e.,

{~γ l} = {||~γ l|| = 0} ∪ {||~γ l|| = 1} ∪ · · · ∪ {||~γ l|| = p}.

Adaptive DAP Algorithm

The first approach, named adaptive DAP, includes the null model and all the

single SNP association models in the candidate set Ω. For a larger size of candidate

models, it approximates Cs :=
∑
||~γ ||=s Pr(~γ | ~α) BF(~γ) by a corresponding estimate

C∗s =
∑
~γ∈Ωs

Pr(~γ | ~α) BF(~γ), where Ωs consists of a subset of association models

with size s but is constructed only from a set of adaptively selected high-priority

SNPs. The adaptive selection of the high-priority SNPs is similar to a Bayesian ver-

sion of conditional analysis Flutre et al. (2013) that naturally accounts for LD. More

specifically, suppose that a “best” model with the maximum posterior probability for

||~γ|| = s− 1 has been identified. The SNP selection procedure then goes through all

candidate SNPs, adding a single SNP at a time to the existing best model, and eval-

uates their posterior probabilities of being the sole additional QTN (see the details
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in the Appendix A.1). Note that this procedure is similar to single-SNP analysis

and is computationally trivial. The candidate SNPs whose posterior probabilities in

the conditional analysis are greater than a pre-defined threshold λ, which is a valid

probability measure (by default, we set λ = 0.01), are then added to the existing

subset of high-priority SNPs. Finally, the DAP algorithm enumerates the updated

subset of priority SNPs for all combinations of ||~γ|| = s to compute C∗s and, in the

process, records the “best” posterior model with the increased model size.

Additionally, the adaptive DAP only extensively explores the model partitions

with relatively small sizes. Suppose that there are truly K QTLs in p candidate

SNPs. It should be clear that {Cs} becomes a (sharply) decreasing sequence as s >

K and that the behavior of this decreasing sequence is mathematically predictable

(Appendix A.2). This behavior occurs because the marginal likelihood becomes

saturated as the model size exceeds the number of true associations and because the

additional prior term imposes a hefty penalty on the overall product. Utilizing this

fact, we derive an approximate recursive relationship between Cs and Cs+1 as s ≥ K

(Appendix A.2). Based on this relationship, the stopping rule for explicit exploration

is determined, and we estimate ε by

(2.5) ε =

p∑
s=t+1

R∗s with R∗s+1 =
p− s
s+ 1

ωR∗s for s = t+ 1, ..., p,

where t is the stopping point of the extensive exploration, R∗t = C∗t , and ω =

1
p

∑p
i=1 exp (α0 +

∑q
l=1 αldil) represents the average prior odds ratio across SNPs.

This estimation essentially assumes that the marginal likelihood is completely satu-

rated for the partitions with s > t, and the overall contribution to the normalizing

constant from each size partition can be roughly estimated by re-calibrating the

prior changes (see the details in Appendix A.2). To ensure a high accuracy for the

approximation, we also build in an optional criterion on top of the stopping rule
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by monitoring the convergence of the partial sum Sk =
∑k

i C
∗
i and enforcing the

exploration until

log10

[
St
St−1

]
< κ, κ > 0,

or, equivalently
C∗t∑t−1
i C∗i

< 10κ − 1. By default, we set κ = 0.01. This additional cri-

terion only makes a difference for the partitions whose model sizes barely exceed the

estimated size of the saturated models: instead of using the combinatorial estimate

of the corresponding C∗s , it enforces additional DAP explorations for more accurate

evaluations.

Finally, it should be recognized that the built-in tuning parameters (λ, κ) enable

great flexibility to run the adaptive DAP. As both λ → 0 and κ → 0, the adaptive

DAP enumerates all models and becomes an exact calculation with no loss of preci-

sion, whereas when λ is very large, the behavior of the DAP algorithm becomes very

similar to the commonly applied step-wise conditional analysis that has very high

computational efficiency. In practice, we attempt to strike a good balance between

the precision and efficiency.

DAP-K Algorithm

Instead of adaptively selecting a subset of high-priority SNPs from all the model

size partitions, the DAP algorithm can also be applied by pre-fixing the maximum

model size (namely, K) while allowing the exploration of all possible SNP combina-

tions under the restriction. We refer to this variant of the algorithm as the DAP-K

algorithm. In the special case of K = 1 (DAP-1), the algorithm essentially assumes

that at most one causal QTL exists in the region of interest. Although this very

assumption has been successfully utilized by many other approaches Pickrell (2014),

Servin and Stephens (2007), Veyrieras et al. (2008), Flutre et al. (2013), it has always
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been formulated as an explicit prior assumption and hence requires a somewhat non-

natural parameterization that also complicates the maximization step when used in

the EM algorithm for enrichment analysis (Appendix A.3). The DAP-1 algorithm

provides the advantage of considerably faster computation, even when compared with

the adaptive version of the DAP algorithm. More importantly, it can be applied us-

ing only summary statistics from single-SNP association analysis (in the form of the

marginal estimate of the genetic effect and its standard error for each SNP). This

feature is particularly attractive, especially when the individual-level genotype and

phenotype information is difficult to access. We provide the derivation and other

technical details for the DAP-K algorithm in the Appendix A.3.

Applying DAP in Inference

We use both variants of the DAP algorithms in our inference procedure. Specifi-

cally, we propose applying the DAP-1 algorithm in the EM algorithm for enrichment

analysis and the adaptive DAP for multi-SNP fine-mapping at the last stage.

The performance of the enrichment analysis mostly relies on the average accuracy

of the PIP estimates. We show, both theoretically (Appendix E) and numerically

(Figure 2.4), that the DAP-1 algorithm provides on average precise estimates suitable

for enrichment analysis. Most importantly, the DAP-1 algorithm exhibits the best

computational efficiency among the appropriate alternatives (e.g., adaptive DAP,

MCMC).

For the multi-SNP analysis in the final fine-mapping stage, we strongly recom-

mend applying the adaptive DAP algorithm. Although the DAP-1 algorithm only

yields inferior results for a small proportion of the loci that harbor multiple QTNs,

we argue that identifying multiple independent association signals from those loci is

of particular importance for the overall analysis. To achieve better accuracy for all
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loci, the adaptive DAP seems a logical choice for multi-SNP fine-mapping analysis.

2.2.4 Application to GWAS

In practice, the DAP works well for small genomic regions harboring a handful

of QTNs. This is typically the case in molecular QTL mapping, where candidate

loci usually span no more than 2 Mb. When there are more QTNs (e.g., > 5)

in a locus, the adaptive DAP exploration with high precision may become time

consuming because the size of the candidate set Ω grows exponentially fast with the

increasing number of independent signals. Nevertheless, in applications of GWAS,

we essentially consider a single locus that spans the whole genome, and for a single

trait, the number of independent association signals may range from hundreds to

thousands.

To apply the DAP to GWAS (or molecular QTL mapping with considerably

larger candidate loci), we propose an additional approximation that factorizes Pr(~γ l |

~yl,Gl, ~α) (where locus l spans a much larger genomic region) into

(2.6) Pr(~γ l | ~yl,Gl, ~α) ≈
K∏
k=1

Pr(~γ [k] | ~yl,Gl, ~α),

where {~γ [k] : k = 1, ..., K} represents a partition of ~γ l by sets of non-overlapping LD

blocks. This factorization is based on previous theoretical results Wen and Stephens

(2010), Wen (2014). Recently, Berisa and Pickrell Berisa and Pickrell (2016) pro-

vided a working recipe to segment the full genome based on the population-specific

LD structures. Based on these results, we provide mathematical arguments to jus-

tify the factorization (Appendix A.4). Briefly, applying the analytic approximation

of the Bayes factors Wen (2014), it can be shown that

BF(~γ) ≈
K∏
k=1

BF(~γ [k]).
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This result, along with the fact that our priors are independent across SNPs, nat-

urally leads to the approximate factorization of the posterior probability. As an

important consequence, the factorization (2.6) suggests that the DAP can be ap-

plied to each LD block independently.

2.3 Results

First, we perform a series of simulation studies to examine the accuracy and

efficiency of the proposed DAP algorithms in our inference procedure. We then

apply the proposed approach to analyze two large-scale eQTL data sets.

2.3.1 Simulation Studies

Enrichment Analysis with DAP

The integration of DAP into the EM algorithm enables the efficient estimation

of enrichment parameters using large-scale QTL data sets. To investigate the per-

formance of the enrichment analysis, we simulate a modest-scale eQTL data set to

mimic the genome-wide investigation of cis-eQTLs. Specifically in each simulation,

we select a subset of 1,500 random genes from the GEUVADIS data Lappalainen

et al. (2013). For each gene, the real genotypes of 50 cis-SNPs from 343 European

individuals are used in the simulation. We annotate 20% of the SNPs with a binary

feature. For each SNP, we determine its binary association status by performing a

Bernoulli trial with the success rate p = exp(−4+α1d)
1+exp(−4+α1d)

. Given the QTNs, we then

simulate the expression levels according to a multiple linear regression model with

residual error variance set to 1. More specifically, the genetic effect of each QTN is

drawn from an independent normal distribution N(0, 0.62). As a result, the simulated

data sets resemble the practically observed cis-eQTL data (Figure 2.1). We vary the

α1 values from 0.00 to 1.00, and we generate 100 data sets for each α1 value.
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Figure 2.1: Comparison of simulated data set with the actual GTEx whole blood cis-eQTL data.
For each gene in each data set, we find the best associated SNP based on single-SNP testing, and
compute the heritability explained by the best SNP using a simple linear regression model. The
histograms show the distribution of the heritability across all genes. The similarity of the two
histograms indicates that the simulated data sets closely resemble the real observed cis-eQTL data.

We analyze the simulated data sets using two different implementations of the

EM algorithm with the E-step approximated by the DAP-1 and the adaptive DAP.

For evaluation, we also estimate α1 by fitting a logistic regression model using the

true association status of each SNP. This analysis represents a theoretical best-case

scenario, and its results should be regarded as the bound of the most optimal outcome

from any analysis that infers the latent association status (Γ) from observed data.

Figure 2.2 shows that the estimates from the adaptive DAP and DAP-1 are both
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seemingly unbiased. As expected, the variability of the point estimates from both

DAP implementations is higher than that from the best-case method because of the

uncertainty in determining the true association status of each SNP. The estimates

of the 95% confidence intervals from the individual simulations also confirm this

finding (Figure 2.3). Although the adaptive DAP seemingly generates more accu-

rate estimates on average, we conclude that the numerical performance of DAP-1

is very comparable. Importantly, DAP-1 provides superior computational efficiency:

the average running time for the DAP-1-embedded EM algorithm (with 10 parallel

threads in the E-step) is 65.05 seconds; in comparison, the adaptive DAP-embedded

EM runs for 387.30 seconds on average (which is a combination of slightly longer

iterations and longer running times per iteration).
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Figure 2.2: Point estimates of the enrichment parameter produced using various analysis methods
in different simulation settings. The point estimate of the α1 ± standard error (obtained from
100 simulated data sets) for each method is plotted for each simulation setting. The “best case”
method uses the true association status and represents the optimal performance for any enrichment
analysis method. Both the adaptive DAP and DAP-1 methods yield unbiased estimates in all
settings, although the adaptive DAP-embedded EM algorithm generates slightly smaller standard
errors.
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Figure 2.3: Comparison of individual estimates of the enrichment parameter and their uncertainty
quantification. Each panel represents a different simulation setting. We plot the point estimates of
α1 along with their 95% confidence intervals for each method using 10 randomly selected simulated
data sets. In all settings, all the methods compared (“best case”, EM with adaptive DAP and EM
with DAP-1) show the desired coverage probability. The figure also highlights the considerable
uncertainty in enrichment analysis.

Finally, we note that both the adaptive DAP and DAP-1 algorithms underestimate

the α0 parameter: on average, DAP-1 estimates α̂0 = −4.62, and the adaptive DAP

yields α̂0 = −4.32 (recall that the truth is α0 = −4.00). This is fully expected,

largely because of the limitation of the statistical power in detecting weak association

signals. The practical consequence is that the empirical Bayes priors constructed for

the final stage of multi-SNP fine mapping analysis are slightly conservative. However,

we argue that the conservative priors generally lead to reduced false discoveries and

may be welcomed in practice for fine-mapping analysis.

Accuracy of the Adaptive DAP Algorithm

In the second numerical experiment, we compare the performance of the adaptive

DAP algorithm with the exact Bayesian computation. In particular, we are interested

in evaluating the accuracy of the approximation Pr(~γ l | ~yl,Gl, ~α) and the induced

SNP-level PIP values from the adaptive DAP algorithm. The simulation setting
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mimics multi-SNP fine-mapping analysis at the final stage of our proposed inference

procedure.

For the exact Bayesian computation with reasonable computational cost, we have

to limit the number of candidate SNPs in a locus. Specifically, in each simulation,

we randomly select genotypes of p = 15 neighboring cis-SNPs of a gene from the

GEUVADIS data set. We then uniformly select 1 to 5 QTNs and generate the

phenotype measure using a multiple linear regression model.

We apply both the adaptive DAP algorithm and the exact Bayesian posterior

computation on a total of 1,250 simulated data sets using the identical prior specifi-

cation. The exact computation evaluates all 215 = 32, 768 association models for each

simulated data set. We apply the adaptive DAP algorithm by varying the threshold

value for selecting high-priority candidate SNPs, λ, from 0.01 to 0.05.

First, we compare the true normalizing constant C with the estimated value C∗

from the adaptive DAP by computing the ratio C∗/C in each simulated data set. Uti-

lizing all SNPs of all the simulated data sets, we also calculate the root-mean-square

error (RMSE) to characterize the precision of the PIP approximations. The results

indicate that for stringent λ values, the DAP can indeed estimate the normalizing

constant with very high accuracy (Table 2.1 and Figure 2.4), which ensures the high

precision of the estimated PIPs. As the λ threshold is relaxed, the approximation

of C becomes less accurate in some cases; nevertheless, we observe that the overall

precision level of the approximate PIPs is still reasonably high.
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λ Mean of C∗/C RMSE of approximate PIP

0.01 0.994 2.36× 10−3

0.02 0.986 5.32× 10−3

0.03 0.963 9.83× 10−3

0.04 0.921 1.40× 10−2

0.05 0.854 2.42× 10−2

Table 2.1: Numerical comparison of the exact calculation and the adaptive DAP algorithm at
different threshold values in the second simulation study
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Figure 2.4: Assessment of the accuracy of the adaptive DAP algorithm at different threshold
values. In the top panel, the individual PIP approximations from the DAP are compared to the
exact calculations. In the bottom panel, the distribution of C∗/C is plotted. The simulation results
are obtained for threshold values λ = 0.01, 0.02, 0.05 for the DAP algorithm.

Next, we examine the derived stopping rule and the analytic estimation of the

approximation error. Overall, we find that the stopping rule and the error approxi-

mation work extremely well for these simulations, and we summarize the results in

Figure 2.5.
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Figure 2.5: Examination of the recursive approximation of Cs by equation (A.2.4) in the simulated
data sets. Each panel represents a simulated data set containing K true QTLs. The ratio of the
estimated value C#

s (computed using the true value of Cs−1) over the true value Cs is plotted
on a log 10 scale for all model size partitions. The red vertical line indicates the size of the true
association model, and the blue dotted line represents the actual stopping point at which the
adaptive DAP halts explicit exploration. As the model size s exceeds K, the estimation by C#

s

becomes very accurate in all settings.

Using the simulated data set, we also benchmark the average computational time

for each simulation/analysis setting and present the results in Table 2.2. All runs

are performed with 10 parallel threads using the OpenMP library. For the exact

calculation, the average time remains constant regardless of the number of true

QTNs. The DAP algorithm represents a much reduced computational time compared

to the exact calculation. The general trend of the DAP running time is also clear

(albeit a few small deviations): with an increasing number of true QTNs, the running
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time increases, and with more relaxed λ values, the running time decreases.

Running Time (seconds)
Number of True QTLs

Method 1 2 3 4 5

DAP (λ = 0.01) 0.097 (0.234) 0.275 (1.180) 0.733 (3.704) 1.276 (7.140) 2.527 (13.181)
DAP (λ = 0.02) 0.093 (0.268) 0.208 (0.776) 0.663 (3.128) 1.275 (6.816) 2.368 (12.965)
DAP (λ = 0.03) 0.087 (0.238) 0.133 (0.408) 0.252 (1.060) 0.844 (4.644) 1.422 (7.876)
DAP (λ = 0.04) 0.063 (0.116) 0.122 (0.312) 0.230 (0.732) 0.615 (3.064) 0.571 (2.596)
DAP (λ = 0.05) 0.050 (0.072) 0.120 (0.280) 0.139 (0.320) 0.184 (0.448) 0.180 (0.276)

Exact 19.8 (121.4)

Table 2.2: Benchmark of the average computational time required for the DAP and exact compu-
tation. The running time is measured in seconds by the UNIX utility program “time”. In each cell,
we show the actual running time (“real” time), which is greatly reduced by parallel processing with
10 threads; in the parentheses, the “user” time is reported, which objectively reflects the actual
computational cost, i.e., this measurement is not reduced by the parallelization.

Power Comparison of the Multi-SNP Analysis Algorithms

In the final simulation study, we compare the performance of the adaptive DAP

with other existing algorithms in identifying multiple association signals. Specifically,

we directly use the simulated multiple-population eQTL data sets from Wen et al.

(2015b), where a genomic locus consisting of 100 relatively independent LD blocks

(with 25 neighboring SNPs per block) is artificially assembled using real genotype

data from the GEUVADIS project and 1 to 4 QTNs are randomly assigned to different

LD blocks per simulation.

In Wen et al. (2015b), we compared three competing approaches, i) a single SNP

analysis method, ii) a conditional analysis method, and iii) a multi-SNP analysis

method based on an MCMC algorithm, regarding their abilities to correctly iden-

tify the QTN-harboring LD blocks. We run the adaptive DAP algorithm on the

simulated data sets and compare the results with the three existing methods. Our

results indicate that the adaptive DAP algorithm presents a significant improvement

in performance (Figure 2.6) and a remarkable reduction in computational time com-
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pared with the MCMC algorithm (Table 2.3), and both approaches outperform the

single SNP analysis and conditional analysis approaches. In addition, Figure 2.6 also

shows that with prolonged sampling steps, the MCMC outputs seemingly “converge”

to the DAP results. We also run a fast version of the adaptive DAP algorithm with

tuning parameter λ = 0.05 (Figure 2.7), and the results indicate that the decrease

in performance from the default setting (λ = 0.01) is minimum.
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Figure 2.6: Comparison of DAP and MCMC algorithms in simulation study III. (a) Performance
comparisons for multi-SNP QTL mapping. We apply different analytical approaches to a simulated
data set reported in Wen et al. (2015b) to evaluate their abilities to identify multiple independent LD
blocks harboring true QTLs. The methods compared include a single-SNP analysis approach (navy
blue line), a forward selection-based conditional analysis approach, the MCMC algorithm described
in Wen et al. (2015b), and the DAP algorithm. Each plotted point represents the number of true
positive findings (of LD blocks) versus the false positives obtained by a given method at a specific
threshold. The MCMC algorithm and the DAP algorithm are based on the Bayesian hierarchical
model and clearly outperform the other two commonly applied approaches. Most importantly, the
DAP algorithm presents a significant performance improvement compared with the MCMC in both
accuracy and computational efficiency. (c) - (e) Comparison of PIP values estimated by adaptive
DAP and MCMC with various running lengths. We randomly selected 10 simulated data sets and
ran MCMC with 4 different lengths of sampling steps, ranging from 15,000 to 1 million (the results
shown in panel (a) are based on 75,000 sampling steps for each data set). With the prolonged
MCMC runs, the MCMC outcomes seemingly “converge” to the DAP results.
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Figure 2.7: Additional comparisons for multi-SNP QTL mapping. We show the additional simula-
tion results by running the adaptive DAP with λ = 0.05, which is most similar to the DAP outcome
with the default setting (λ = 0.01) and, for the most part, still outperforms the MCMC algorithm.

MCMC (reps) DAP
15K 75K 250K 1M λ = 0.01

Running Time (real) 4m 2.79s 10m 28.37s 28m 50.00s 107m 46.75s 28.44s
RMSE of PIP (w.r.t DAP) 0.080 0.052 0.034 0.030 −

Table 2.3: Average running time and PIP comparison using MCMC runs with varying sampling
steps in simulation study III. The actual running time reported from the UNIX “time” command
is shown for each experiment. The DAP algorithm runs with 10 parallel threads, and the average
user time (i.e., approximate running time without parallelization) is 1 minute and 8.66 seconds.

2.3.2 Re-analysis of the GEUVADIS Data

We re-analyze the cross-population eQTL data set generated from the GEUVADIS

project (Web Resources) using the proposed 3-stage inference procedure. In this re-

analysis, we focus on examining two types of genomic annotations that are known
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to impact the enrichment of eQTNs: the SNP distance to the transcription start site

(TSS) of the target gene and annotations assessing the ability of a point mutation to

disrupt transcription factor (TF) binding. Following Wen et al. (2015b), we group

all SNPs within 100 kb of a gene into 1 kb non-overlapping bins according to their

distances from the TSS and use the label of the corresponding bin for each SNP to

represent its distance to TSS (DTSS) as a categorical variable. In addition, a SNP

is classified as a binding SNP if it is computationally predicted to strongly disrupt

TF binding by the CENTIPEDE model using the ENCODE DNaseI data Pique-Regi

et al. (2011), Moyerbrailean et al. (2016) (Web Resources). If a SNP is located in a

DNaseI footprint region but there is no strong evidence for disrupting TF binding,

it is classified as a footprint SNP; otherwise, the SNP is labeled as a baseline SNP.

Due to the computational restraint, our previous enrichment analysis reported in

Wen et al. (2015b) was based on a single iteration of the MCMC-within-EM (or

EM-MCMC) algorithm (i.e., the E-step is carried out by the MCMC algorithm), as

our main goal was enrichment testing. Although the evidence is sufficiently strong

for testing purposes, the enrichment parameters were known to be severely underes-

timated.

We ran the complete DAP-1-embedded EM algorithm to perform the enrichment

analysis. The full EM algorithm runs for 25 iterations to meet our convergence crite-

ria, which require an increment ≤ 0.01 in the log-likelihood between two consecutive

iterations (Figure S5). The complete EM run takes 21 minutes on a Linux box with a

single 8-core Intel Xeon 2.13 GHz CPU. In comparison, the MCMC algorithm takes

approximately 84 hours of computational time to fully process all 11,838 genes in a

single E-step on the same computing system.

After a single iteration, the DAP-1-embedded EM algorithm yields point estimates
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for the TF binding annotations that are very similar to our previous results reported

in Wen et al. (2015b) (Table 2.4). As expected, the final estimates from the complete

EM run have very high enrichment values: the binding SNPs have an estimated log

odds ratio α̂1 = 0.94, or fold change of 2.56, with the 95% CI [0.84, 1.05], whereas

the footprint SNPs have a much lower enrichment estimate (log odds ratio α̂1 = 0.53

or fold change of 1.70, with the 95% CI [0.40, 0.67]). Note that the two confidence

intervals are non-overlapping. In comparison, our previously reported estimates of

the corresponding enrichment parameters are 0.40 (95% CI [0.32, 0.49]) and 0.14

(95% CI [0.04, 0.24]) for binding and footprint SNPs, respectively.

Footprint SNPs Binding Variants
Method α 95% C.I. α 95% C.I.

EM-MCMC 0.14 (0.04, 0.24) 0.39 (0.32, 0.49)
EM-DAP1 0.12 (−0.01, 0.25) 0.41 (0.30, 0.51)

Table 2.4: Comparison of enrichment estimates by EM-DAP1 and EM-MCMC after a single
iteration in analysis of GEUVADIS data. The binding SNPs refer to the genetic variants that are
computationally predicted to disrupt TF binding, and the footprint SNPs are those simply located
in the DNaseI footprint region but not predicted to affect TF binding. The enrichment estimates
from both methods are very similar. The MCMC algorithm accounts for multiple independent
association signals and yields slightly tighter confidence intervals, as expected. However, the EM-
DAP1 is much more computationally efficient: it runs almost one thousand times faster than the
EM-MCMC algorithm.

Next, we repeat the multi-SNP fine-mapping analysis using the adaptive DAP al-

gorithm and the new set of the empirical Bayes priors obtained from the enrichment

analysis. For most genes, the results (i.e., the number of independent signals for each

gene) are qualitatively unchanged compared to the previous MCMC results. Nev-

ertheless, we find that fine-mapping with the adaptive DAP is much more efficient,

and the annotated SNPs, especially the binding SNPs, are further prioritized in the

new fine-mapping results (Figure 2.9).
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Figure 2.8: Traceplots of the marginal likelihood (in Bayes factor on the log scale) during the
DAP-1-embedded EM run for analyzing the GEUVADIS data.
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Figure 2.9: Output from the re-analysis of GEUVADIS data. (a) - (b) Traceplots of estimates of
the enrichment parameters for binding variants and footprint SNPs during the DAP-1-embedded
EM iterations for analyzing the GEUVADIS data. Both estimates are stabilized after approximately
8 iterations. (c) - (d) Comparison of multi-SNP cis-eQTL mapping with and without incorporating
functional annotations. We plot the multi-SNP QTL mapping results of LY86 [MIM 605241] using
the GEUVADIS data. Panel (c) shows the results assuming that all SNPs are equally likely to be
associated a priori, i.e., no functional annotation is used. Panel (d) shows the results using the
functional annotations with enrichment parameters estimated by the DAP-1-embedded EM algo-
rithm. In both cases, we use the adaptive DAP algorithm to perform the multi-SNP QTL mapping
and plot the SNPs with PIP > 0.02 with respect to their positions relative to the transcription start
site. SNPs in high LD are plotted with the same color, and the filled circles indicate that a SNP is
annotated as disrupting TF binding. It is clear that three independent cis-eQTLs exist because in
both panels, the sums of the PIPs from the SNPs with the same color all→ 1. When incorporating
functional annotation to perform integrative QTL mapping, the binding variants show much greater
PIP values and are prioritized over the non-annotated SNPs in high LD.
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2.3.3 Analysis of the GTEx Data

We analyze the cis-eQTL data from the GTEx project (Web Resources). One

of the most unique advantages of the GTEx data is that they enable the study of

the commonality and specificity of the eQTLs in multiple tissues. Taking advantage

of the high computational efficiency of the EM-DAP1 algorithm, we perform the

enrichment analysis of the TF binding annotations, derived from the ENCODE data

and the CENTIPEDE model, in eQTLs across 44 human tissues while controlling

for the SNP distance to TSS. More specifically, for each gene, we consider a 2 Mb

cis region centered at the transcription start site. For each tissue, we perform the

enrichment analysis using two sets of TF binding annotations, one derived from the

ENCODE LCL cell-line and the other from the ENCODE liver-related HepG2 cell-

line Moyerbrailean et al. (2016) (Web Resources). This exercise aims to assess the

impact of the cell type-specific annotations on the proposed integrative analysis.

Our results indicate that the binding variants are significantly enriched in eQTLs

in all tissues regardless of the origin of the annotations. Furthermore, the point

estimates of enrichment levels for binding variants are consistently higher than those

for footprint SNPs, except in one occasion (small intestine tissue with LCL-derived

annotations) where the two estimates are indistinguishable. Importantly, we find

that the enrichment estimates in specific tissues are quantitatively correlated with

the origins of the annotations. Figure 2.10 shows the results of the enrichment level

estimates (α̂1) of the binding variants in each tissue using the LCL- and HepG2-

derived TF binding annotations. Most interestingly, the LCL-derived annotations

yield the highest enrichment estimates in LCLs and whole blood from the GTEx

data sets, whereas the liver-related HepG2-derived annotations obtain the highest

enrichment estimate in the GTEx liver tissue. Overall, our results suggest that TF
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binding annotations derived from different tissues must have substantial overlaps;

nevertheless, the annotations from the relevant tissues may provide better functional

interpretations for expression-altering causal SNPs in a specific tissue.
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Figure 2.10: Enrichment estimates for binding variants in GTEx tissues. The estimates in panel
A are based on the annotations derived from the DNaseI data of the ENCODE LCLs, whereas
the estimates in panel B are based on annotations derived from the ENCODE liver-related HepG2
DNaseI data. In each panel, we plot the point estimate of the enrichment parameter and its 95%
confidence interval in each tissue. The tissues are ranked in descending order according to the
magnitude of the point estimates. All estimates are obtained controlling for the SNP distance from
TSS. All estimates are significantly far from 0 (at the 5% level). Interestingly, when the tissue and
origin of the annotations match, the point estimates for enrichment are the highest.
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Figure 2.11: Posterior expected number of cis-eQTL signals per eGene in GTEx liver, lung and
whole blood tissues. The top, middle and bottom panels display the histogram of the posterior
expected number of cis-eQTLs from all the eGenes in the liver, lung and blood tissues, respectively.
For most genes, we can only identify a single association signal. However, for a non-trivial number
of eGenes, multiple independent association signals can be confidently identified by the adaptive
DAP algorithm. The sample size is seemingly an important factor related to the ability to identify
multiple independent signals in a cis region.

We then proceed to identify genes that harbor QTNs (i.e., eGenes) using a

Bayesian FDR control procedure that we recently developed Wen (2016). Subse-

quently, we perform multi-SNP fine-mapping analysis for the identified eGenes in-
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corporating the enrichment estimates using the adaptive DAP algorithm. We present

the analysis results for the liver (sample size 97), lung (sample size 278) and whole

blood (sample size 338). There are 2,788, 8,605 and 7,937 eGenes that are identified

from the lung, liver and whole blood, respectively. We suspect that the number of

differences in eGenes discovery is largely attributed to the sample sizes but is also

correlated with the levels of experimental noise in measuring the gene expression in

each tissue. For each fine-mapped eGene l in each tissue, we compute the posterior

expected number of independent signals using
∑p

i=1 Pr(γli | ~yl.Gl, ~̂α) and plot the

histogram for each tissue in Figure 2.11. In all three tissues, we identify single eQTL

signals for the vast majority of eGenes. Nonetheless, for a non-trivial number of

genes, we are able to confidently identify multiple independent signals. Comparing

the fine-mapping results among the three tissues, we find that the ability to identify

additional independent signals is also seemingly correlated with the sample sizes.

We further examine some known individual genes to validate our integrative analy-

sis results. In particular, we examine SORT1 [MIM 602458], whose function is related

to plasma low-density lipoprotein cholesterol (LDL-C [MIM 613589]) metabolism

through modulation of hepatic VLDL secretion. Through GWAS meta-analysis and

extensive functional analysis Musunuru et al. (2010), a single SNP, rs12740374, is

identified to cause variations in LDL-C. More specifically, the major allele disrupts

the binding site of C/EBP transcription factors in human hepatocytes. Our integra-

tive fine-mapping analysis using the GTEx liver data yields a Bayesian 95% credible

set, narrowed down to only two potential causal eQTNs for SORT1: rs12740374

(PIP = 0.473) ranks second very closely only to SNP rs7528419 (PIP = 0.526).

Moreover, the direction of the genetic effect for rs7528419 fits the description pro-

vided in Musunuru et al. (2010). The two SNPs in the credible set are in high LD
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(r2 > 0.95), except that the genotypes of rs12740374 in the GTEx samples are not

directly genotyped but imputed. Upon further investigation, we find that the bind-

ing site reported by Musunuru et al. (2010) is not captured by the ENCODE DNaseI

experiments in HepG2, and hence, rs12740374 is not correctly annotated. We then

include the annotation of rs12740374 as a binding SNP based on the functional study

of Musunuru et al. (2010) and re-run the fine-mapping analysis using the adaptive

DAP. We find that rs12740374 yields the highest PIP value (PIP = 0.752) among all

the candidate SNPs (the PIP for rs7528419 drops to 0.247). The lesson learned here

is that the completion of the genomic annotations may have a profound impact on

the integrative analysis, and efforts should be made to generate a more comprehen-

sive set of genomic annotations by both accumulating new experimental data and

integrating them with all the existing data.

2.4 Discussion

The proposed EM-DAP1 algorithm provides an efficient and flexible framework

to perform enrichment analysis with respect to genomic annotations using genetic

association data – there is no restriction on the types of annotations (categorical or

continuous) or the number of annotations that can be simultaneously investigated.

Some of the commonly applied ad-hoc enrichment analysis methods in the same con-

text attempt to first classify the binary latent association status Γ for all candidate

SNPs based on their single SNP testing results. However, it is worth noting that

the classification based on hypothesis testing typically has very stringent controls

over type I errors but is much more tolerant (in practice, it may be too tolerant)

and has little control over type II errors, which are a major source of the overall

mis-classification errors for Γ Wen et al. (2015b). As a consequence, most ad-hoc
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procedures of this type provide poor quantification of enrichment levels. Recently,

probabilistic model-based enrichment analysis approaches have been proposed based

on the “one QTN per locus” assumption and applied to both molecular QTL map-

ping and GWAS Pickrell (2014). A common feature of these approaches is that they

treat each locus as the exchangeable/comparable unit in the analysis: in the simplest

case, each locus has the common prior probability, π1, of harboring causal QTNs.

Although the DAP-1 algorithm implicitly also makes the same assumption and en-

joys the benefit of fast and efficient computation using only summary statistics, it

presents some significant differences/improvements compared to the aforementioned

approaches. The DAP-1 algorithm, built on the proposed hierarchical model, con-

siders each SNP as the unit of analysis. This modeling strategy leads to a straight-

forward EM algorithm for parameter estimation, where the target function in the

M-step is convex with well-known optimization solutions. In comparison, with the

parameterization including π1, the target function in the M-step is no longer guaran-

teed to be convex, which can cause convergence issues in EM estimation and prevent

the simultaneous investigations of many annotations (see the details in the Appendix

A.3). Furthermore, π1 parameterization essentially assumes that genetic loci consist-

ing of many SNPs are equally likely to harbor causal QTNs as loci consisting of only

a few SNPs. From the empirical evidence produced by eQTL analysis, we find that

this assumption is likely false : the genes with more cis candidate SNPs are more

likely to harbor eQTNs Wen et al. (2015b). In summary, the proposed hierarchical

model and the EM-DAP1 algorithm represent better alternatives.

The proposed Bayesian hierarchical model does not explicitly consider potential

polygenic background. To evaluate the performance of the proposed enrichment

analysis method under an explicit polygenic model, we modify the simulation set-
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tings for enrichment analysis by imposing a small yet non-zero genetic effect on every

candidate SNP. Under such setting, γi should be interpreted as an indicator whether

the genetic effect of SNP i is significantly larger than the polygenic background. The

simulation results (Figure 2.12) indicate that the estimates of the enrichment pa-

rameters are biased toward 0 in the presence of polygenic background: although the

bias is negligible when the polygenic effects are small. We plan to extend our current

work to fully account for polygenic background in our future work by considering

a more appropriate model like the Bayesian sparse linear mixed model (BSLMM)

Zhou et al. (2013).
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Figure 2.12: Estimates of the enrichment parameters for data simulated from polygenic models. In
this experiment, the simulation scheme is mostly similar to the first simulation study described in
the main text, except that in addition to the SNPs sampled to have large effects, we assign a non-
zero genetic effect from an independent N(0, φ2) distribution for all the remaining candidate SNPs.
(In this case, γi should be interpreted as an indicator of large genetic effect.) We select φ = 0.02, 0.05
and 0.1 to represent different magnitude of polygenic background. The point estimate of the α1 ±
standard error (obtained from 50 simulated data sets using DAP-1-embedded EM algorithm) for
each φ value is plotted. In all cases, the non-zero α1 estimates are biased toward 0, however when
φ is small (φ = 0.02), the bias seems negligible.
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Our analysis of multi-tissue eQTL data yields many interesting findings that are

worthy of in-depth follow-up investigation. In particular, our results suggest that the

cell type specificity and the completeness/accuracy of the genomic annotations may

have profound impacts on the integrative association analysis in terms of different

aspects as follows: the cell-type specificity of the annotations affects the global enrich-

ment estimates and the multi-SNP analysis results of every subsequently fine-mapped

locus, whereas mis-annotations of certain variants likely impact functional interpre-

tations of specific loci but are not likely to alter the global enrichment estimates as

long as the annotations are accurate on average . These findings should motivate ef-

forts to generate a more comprehensive and accurate catalog of genomic annotations

to improve the overall quality of genetic association analysis. Furthermore, it should

be noted that all the annotations could have additional levels of complexity (e.g., cis

regulatory grammar) that can be consistently analyzed within the same framework

by extending our logistic prior model in a straightforward manner to allow interac-

tions. To aid these efforts, our proposed genome-wide scale enrichment analysis has

provided a principled way of assessing the tissue/cell type specificity of the genomic

annotations.

2.5 Acknowledgments

We thank the GTEx consortium and the GEUVADIS RNA sequencing project for

releasing valuable data in a timely fashion. This work is supported by NIH grants

MH101825 (XW), HG007022(XW) and GM109215 (XW, YL, FL and RP).

2.6 Web Resources

The URLs for data presented herein are as follows:

DAP software and tutorial, http://github.com/xqwen/dap/

http://github.com/xqwen/dap/
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GUEVADIS data, http://www.geuvadis.org/web/geuvadis/rnaseq-project

Re-analyzed multi-SNP fine-mapping results of the GUEVADIS data, http://www-personal.

umich.edu/~xwen/geuvadis/new_fm_rst/

GTEx data, http://www.gtexportal.org/home/datasets

Transcription factor binding site annotations by the extended CENTIPEDE model,

http://genome.grid.wayne.edu/centisnps/

http://www.geuvadis.org/web/geuvadis/rnaseq-project
http://www-personal.umich.edu/~xwen/geuvadis/new_fm_rst/
http://www-personal.umich.edu/~xwen/geuvadis/new_fm_rst/
http://www.gtexportal.org/home/datasets
http://genome.grid.wayne.edu/centisnps/


CHAPTER III

Bayesian Multi-SNP Genetic Association Analysis: Control
of FDR and Use of Summary Statistics

3.1 Introduction

In the past decades, genetic association analysis has become a primary analytic

tool to uncover genetic risk factors in complex diseases. With the advancement of

high-throughput genotyping and phenotyping technology, genome-wide association

studies (GWASs) and molecular quantitative trait loci (QTL) mapping have led to

discoveries of an abundance of signals through genetic association analysis. These

findings have subsequently played critical roles in exploring molecular mechanisms

of complex diseases and predicting risks for individual patients.

Single-SNP association testing has long been considered as the standard approach

for genetic association analysis. However, the results of the single-SNP analysis

are not sufficiently informative by their own and often difficult to interpret with-

out explicit references to linkage disequilibrium (LD) patterns of candidate variants.

Additionally, it has been convincingly demonstrated that single-SNP testing funda-

mentally lacks power in identifying multiple association signals that are close by in

relatively narrow genomic regions. A simple form of multi-SNP association analysis,

known as conditional analysis, seeks a single “best” multi-SNP association model by

a step-wise forward variable selection procedure (Yang et al., 2012). This approach

41
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addresses the power issue, but a single best solution oversimplifies the intrinsic diffi-

culty introduced by the complex LD patterns and fails to account for the uncertainty

of causal associations at SNP level.

Most recently, Bayesian approaches for multi-SNP association analysis have emerged

as a promising alternative. They have at least two unique advantages over the tra-

ditional frequentist methods in the practice of genetic association analysis. First,

they are built upon a natural hierarchical model that enables flexible incorporation

of SNP-level functional annotations through principled prior specifications. Second,

they utilize probabilistic quantification to characterize the strength of association

evidence at SNP level, which can fully account for the complex LD structures pre-

sented in the genotype data. The successful applications of Bayesian genetic associa-

tion analysis are illustrated in a wide range of applications for GWAS and molecular

QTL mapping by piMASS (Guan and Stephens , 2011), GUESS (Bottolo et al., 2013),

PAINTOR (Kichaev et al., 2014), CAVIAR (Hormozdiari et al., 2014), CARIVARBF

(Chen et al., 2015) and FINEMAP (Benner et al., 2016), just to name a few. One of

the significant limitations for the Bayesian approaches is the computational cost: in-

stead of seeking a single best association model (i.e., by optimization), the Bayesian

inference requires a comprehensive survey of all plausible association models (i.e.,

by integration). As a result, most existing Bayesian approaches do not scale well

for extended genomic regions and often limited to the applications of fine-mapping

analysis. Recently, we have proposed a new computational algorithm named de-

terministic approximation of posteriors (DAP), which is aimed to strike a balance

between the commonly applied stochastic approximation algorithms (e.g., MCMC

implemented in FINEMAP) and the exact computation by brute-force exhaustive

search (e.g., in CAVIAR). We have shown, in,512016Wen et al.Wen, Lee, Luca, and Pique-Regi
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that the DAP algorithm represents a highly efficient and accurate Bayesian inference

procedure that can scale up to large-scale multi-SNP genetic association analyses in

both GWAS and molecular QTL mapping.

Built upon the DAP algorithm’s high computational efficiency, this chapter ad-

dresses two outstanding issues in the Bayesian multi-SNP genetic association analy-

sis. First, we propose a novel false discovery rate (FDR) control procedure utilizing

the posterior probabilities generated by our Bayesian approach. Rigorous control

of type I error rate has always been an emphasis in genetic association analysis.

Nevertheless, there is a lack of formal statistical procedures that can effectively con-

trol potential false discoveries in the multi-SNP analysis. Most theoretical results

(Barber et al., 2015, Brzyski et al., 2017) on type I error control in the context of

high-dimensional variable selection do not directly applicable to genetic association

analysis because of the complex LD structures in the genetic association analysis.

Our approach aims to fill this gap by proposing an intuitive hierarchical representa-

tion of association signals and adopting a principled Bayesian FDR control paradigm.

Second, we discuss performing Bayesian multi-SNP association analysis based on

summary statistics. Many authors have proposed association analysis algorithms

that can work explicitly with summary-level data from single-SNP testing (Yang

et al., 2012, Kichaev et al., 2014, Hormozdiari et al., 2014, Chen et al., 2015, Benner

et al., 2016, Zhu et al., 2017). This has become an essential feature due to the na-

ture of genetic data sharing for privacy protection. Our work on this topic focuses on

understanding the analytic relationship of inference results based on individual-level

data versus summary data. For example, we examine the following questions: do

the two types of procedures (i.e., summary statistics vs. individual-level data) yield

the same results? If not, is the inference based on summary statistics valid? Based
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on the answers to these questions, we attempt to identify a set of sufficient sum-

mary statistics that can lead to identical inference results as individual-level data,

especially in Bayesian multi-SNP analysis.

The proposed novel computational approaches for multi-SNP genetic association

analysis are implemented in the software package DAP-G, which is freely available

at https://github.com/xqwen/dap/.

3.2 Method

3.2.1 Background, model and notation

In this chapter, we focus on the problem of identifying potentially multiple genetic

association signals using the following multiple linear regression model,

(3.1) ~y =

p∑
i=1

βi~gi + ~e, ~e ∼ N(0, τ−1I).

In practice, we assume that linear model (3.1) is obtained after regressing out a set of

controlled covariates, including the intercept, from both the outcome vector and each

genotype vector of candidate genetic variants. As a result, both ~y and all the ~gi’s

have mean 0. Furthermore, we denote the n× p design matrix G := [~g1 ~g2 · · · ~gp ],

which contains genotype data of all p candidate SNPs.

The point of interest for statistical inference is to identify the genetic variants

that have non-zero effects on the quantitative trait. To this end, we explicitly define

a latent binary indicator for each candidate predictor i by

(3.2) γi := 1(βi 6= 0),

and ~γ := {γ1, ..., γp}.

Based on this model, we formulate the problem of multi-SNP fine-mapping as a

variable selection problem with respect to ~γ given the observed data (~y,X). Further

https://github.com/xqwen/dap/
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details of the model are provided in Appendix B.1. Specifically, we compute the

posterior probability for a given ~γ by

(3.3) Pr(~γ | ~y,G) =
Pr(~γ)BF(~γ)∑
~γ
′ Pr(~γ ′)BF(~γ ′)

,

where Pr(~γ) denotes the prior probability and BF(~γ) =
P (~y|G,~γ)

P (~y|G,~γ=0)
denotes the

Bayes factor/marginal likelihood for ~γ. Subsequently, the SNP-level posterior inclu-

sion probability (PIP), which quantifies the strength of association for each SNP, can

be marginalized from the posterior distribution, Pr(~γ | ~y,G).

Overview of the DAP algorithm

For any given ~γ value, the prior and the Bayes factor can be analytically computed.

The computational difficulty lies in the evaluation of the normalizing constant, i.e.,∑
~γ
′ Pr(~γ ′)BF(~γ ′): it is infeasible to enumerate all possible values of ~γ for a large

number of candidate SNPs. The algorithm of deterministic approximation of pos-

teriors (DAP) is designed to tackle this problem directly and can efficiently operate

on a genomic region containing tens of thousands of candidate SNPs. (For larger

regions or genome-wide analysis, it requires to segment the genome into LD blocks

for separate processing.) The fundamental idea behind the DAP algorithm is based

on the fact that noteworthy genetic association signals are typically sparse for any

given genomic locus. Thus, only a very small number of candidate models (namely,

the plausible models) make a substantial contribution to the normalizing constant.

The DAP algorithm utilizes an efficient deterministic search strategy to identify the

plausible models and approximates the normalizing constants based on the proven

statistical principle known as sure independence screening (SIS,152008Fan and Lv). The

approximation error to the true normalizing constant is also estimated in the search

process, which plays a role in adjusting the estimated normalizing constant. In com-
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parison, the commonly applied Markov Chain Monte Carlo (MCMC) algorithm is

also designed to explore the plausible models but in a stochastic fashion. Because

of the sampling space is enormous and consists of discrete models, it is unrealistic

to expect that the MCMC algorithm reaches convergence with a limited computing

resource. As a result, we find that the DAP algorithm often outperforms conven-

tional MCMC algorithms in the setting of genetic association analysis. The new

DAP-G algorithm is built upon the existing DAP algorithm and enjoys the same

computational efficiency in the posterior inference of multi-SNP genetic association

analysis.

3.2.2 False discovery rate control for genetic association signals

Hierarchical representation of genetic association discoveries

Quantifying strength and uncertainty of genetic association signals is a long-

standing problem in statistical genetics. The intrinsic difficulty lies in the fact that,

with few exceptions, causal genetic associations may not be statistically identifiable

at individual SNP level; Instead, each association signal is typically represented by

a group of genetic variants whose genotypes are highly correlated. We argue that

quantification and representation of a potential association signal should be dealt in

a natural hierarchy, in which the following issues can be addressed:

1. the (un)certainty of the existence of an independent association signal;

2. the SNPs that are causally responsible for the association signal and their indi-

vidual uncertainties

To demonstrate, we consider a hypothetical example from522017Wen et al.Wen, Pique-Regi, and Luca

: one of the two perfectly linked SNPs is causally associated with the complex trait

of interest, and both SNPs are uncorrelated with the remaining candidate SNPs.

In an ideal analysis, a precise characterization of the genetic association discovery
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should reflect that i) there is overwhelming evidence for the existence of an associ-

ation signal; ii) there is a maximum degree of uncertainty to distinguish the causal

variant between the two linked SNPs. We argue that the inference result of an ideal

Bayesian analysis, which assigns PIP = 0.5 to each SNP, precisely encodes this in-

formation. The sum of the PIPs (= 1) indicates the sure existence of an association

signal. Nevertheless, the two SNPs are equally likely to be the causal variant and not

distinguishable solely based on the association data. (Further, if there exists addi-

tional information on the functional annotations of each SNP, it can be incorporated

into the prior specifications that make the two SNPs distinguishable and potentially

break the tie for the PIPs. )

This simple example illustrates the superiority of the probabilistic representation

by Bayesian inference, which can carry comprehensive information from genetic asso-

ciation analysis. Nevertheless, we note that although almost all Bayesian multi-SNP

analysis approaches generate SNP-level PIPs, there is no principled approach to sum-

marizing the probabilistic evidence at the signal level, to the best of our knowledge.

In a practical setting, it can be challenging to identify SNPs that are responsible

for a single association signal (we will call the collection of such SNPs a signal clus-

ter, henceforth). Identifying signal clusters require simultaneously examining both

the overall evidence from multiple “similar” association models (e.g., when SNPs

from the same signal cluster co-exist in an association model, the overall strength of

evidence diminishes) and the pattern of LD.

The probabilistic quantification of association signals at both signal and SNP

levels has multiple benefits. First, it allows rigorous control of the false discovery

rate (FDR) at the signal cluster level (even though it can be challenging to pinpoint

the causal association at the SNP level). Second, it allows constructions of Bayesian
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credible sets for suitable signal clusters, which is proven particularly attractive in

genetic association analysis (Maller et al., 2012). Such credible sets provide a refined

list of candidate SNPs for the underlying causal variants and can be critically valuable

for the design of downstream molecular validation experiments.

Identification of signal clusters

In the DAP-G algorithm, we integrate the functionality of automatic identification

of signal clusters into the deterministic model search procedure.

Let ~γ(i,j),~γ (̄i,j) and ~γ(i,j̄) denote three related association models that only differ in

the values of γi and γj. Specifically, both SNP i and SNP j are assumed associated in

~γ(i,j), whereas only SNP i is assumed associated in ~γ(i,j̄) and only SNP j is assumed

associated in ~γ (̄i,j). We deem that SNP i and SNP j belong to the same signal cluster

if and only if

1. the genotype R2 between SNP i and SNP j is greater than a pre-defined thresh-

old;

2. the overall association evidence favors a single inclusion of SNP i or j, but not

both, i.e.,

Pr(~γ (̄i,j)) BF(~γ (̄i,j)) ≈ Pr(~γ(i,j̄)) BF(~γ(i,j̄))� Pr(~γ(i,j)) BF(~γ(i,j)).

The first condition simply requires that SNPs within the same signal cluster are

in LD and we use a rather relaxed threshold, i.e., R2 = 0.25, by default. In the

second condition, Pr(~γ (̄i,j)) BF(~γ (̄i,j)) ≈ Pr(~γ(i,j̄)) BF(~γ(i,j̄)) implies that the SNP i

and SNP j makes similar contribution to the marginal likelihood with everything

else being equal. However, when both SNPs within the same signal cluster co-exist

in an association model, i.e., in ~γ(i,j), the likelihood is expected to be saturated, and

the inequality is due to the prior “penalty” for assuming an additional causal SNP
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that is redundant. Essentially, this definition attempts to ensure that each signal

cluster harbors precisely one independent association signal.

Based on above criteria, the DAP-G algorithm explicitly searches for redundant

SNP representations of the same association signals and group them into signal

clusters. When evaluating the approximate normalizing constant, each signal cluster

is treated as an independent unit, and association models containing multiple SNPs

from the same inferred signal cluster are explicitly avoided. We evaluate a signal-

level PIP, denoted by SPIP, for each signal cluster by summing over the SNP-level

PIPs from the member SNPs, i.e.,

(3.4) SPIPi =
∑
j∈Ci

Pr(γj = 1 | ~y,G),

where the Ci denotes the set of SNPs representing the k-th signal cluster. Note that

our definition of the signal cluster and the search algorithm guarantees SPIP a valid

probability distribution (i.e., strictly bounded by [0, 1]).

Control signal-level false discovery rate

The signal-level PIPs enable a straightforward Bayesian FDR control procedure

to guard against false positive findings. Specifically, the complement of SPIP is

interpreted as the false discovery probability of signal cluster i and also known as

the local fdr of the signal i, i.e.,

(3.5) lfdri = 1− SPIPi.

The use of local fdr for multiple hypothesis testing is well established in the statistical

literature (Efron, 2012), and its result is asymptotically concordant to the frequentist

testing approach utilizing p-values (Wen, 2018). Briefly, the following null hypothesis

H0 : cluster i does not contain an association signal,
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is rejected, if lfdri is less than or equal to a pre-defined threshold t. Moreover, the

threshold t is determined by the pre-defined FDR control level α, such that the

average lfdr value from all rejected hypotheses is no greater than α. More precisely,

(3.6) t = arg max
λ

( ∑
lfdri<λ

lfdri

[
∑

i 1{lfdri < λ}] ∨ 1
≤ α

)
.

FDR control has become standard statistical approach for type I error control in

molecular QTL mapping, where abundant association signals can be identified with

modest sample size. Some also advocate direct specification of threshold value t

(Efron, 2012), e.g., setting t = 0.05, which, in this case, is more stringent/conservative

than controlling the overall FDR at 5%.

For a signal whose local fdr ≤ t, it is straightforward to construct a (1 − t)%

Bayesian credible set by selecting a minimum subset of SNPs, such that their cumu-

lative SNP-level PIPs reaches 1−t. The Bayesian credible intervals have been widely

applied in GWAS since its introduction by Maller et al. (2012) in this context.

3.2.3 Inference using summary-level data

In many practical settings, individual-level genotype data may not be available,

and association analyses have to rely on summary statistics. In this section, we

discuss inference procedures to fit the proposed Bayesian hierarchical model utilizing

only summary-level information. In comparison to the existing approaches in the

literature (Chen et al., 2015, Zhu et al., 2017), we address this problem from a distinct

point of view of statistical data reduction. In particular, we attempt to identify the

sufficient, or near sufficient, summary statistics, which could potentially lead to a

minimum or no loss of inference accuracy (comparing to using complete individual-

level data). Moreover, we aim to examine if the commonly applied approaches,

which utilize z-scores from single-SNP association testing, are optimal in multi-SNP
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association analysis.

The proposed Bayesian inference procedure depends on the observed genotype-

phenotype data through the evaluation of the marginal likelihood, i.e., the Bayes

factor,

(3.7) BF :=
p(~y | G,~γ)

p(~y | G,~γ ≡ 0)
.

For an arbitrary ~γ, Wen (2014) discusses an general analytic form of the Bayes

factor with model (3.1) as a special case. (Note that, we take Wen (2014) as the

starting point, because its results can be generalized to other designs of genetic asso-

ciation analysis, e.g., meta-analysis.) More specifically, if the residual error variance

parameter τ is known, the analytic expression is exact; otherwise, it becomes an ap-

proximation by plugging in a point estimate of τ . The summary statistics required

to compute the analytic form of BF include G′G (a p× p matrix), G′~y (a p-vector)

and a point estimate of τ if τ is not known (Appendix B.2.1). Under our formulation

of the regression model (i.e., all ~gi’s are centered), the matrix G′G can be factored

into

G′G = ΛRΛ,

where R denotes the p×p sample correlation matrix between the p candidate SNPs,

and Λ is a diagonal matrix defined by

Λ := diag

(√
~g′1~g1, . . . ,

√
~g′p~gp

)
.

In the absence of individual-level data, some authors (Liu et al., 2014) have argued

explicit sharing G′G for genomic regions of particular interests in multi-SNP fine-

mapping analysis, many (Kichaev et al., 2014, Benner et al., 2016, Zhu et al., 2017)

have proposed to estimate R and Λ, from an appropriate population panel. Hence-

forth, we assume that G′G is either provided or accurately estimated, and focus
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on the complete recovery of the information encoded in the p-vector, G′~y, from the

summary statistics obtained in single-SNP testing.

In case that τ is known, we show that G′~y can be accurately recovered given

z-statistics and Λ. This is because

(3.8) zi =

√
τ

~g′i~gi
· ~g′i~y,

and

(3.9) ~z =


z1

...

zp

 = τ
1
2 Λ−1G′~y.

Therefore, it follow that

(3.10) G′~y = τ−
1
2 Λ~z.

We note that Equation (3.9) directly leads to the z-score distribution utilized by

FINEMAP and CaviarBF (Appendix B.2.3). For some specific type of normal priors

on effect s ~β, which are explicitly scaled by Λ matrix, the required summary statistics

can be reduced to (R,~z).

In practice, it is unrealistic to assume the knowledge of τ and τ is required to

be estimated from the data. Note that even if the priors on genetic effects ~β are

scaled by τ , as in the case of FINEMAP and CaviarBF, τ still explicitly enters into

the Bayes factor computation (Appendix B.2.3). Precisely, Equation (3.9) should be

modified to

(3.11) ~̌z = T
1
2 Λ−1G′~y,

where T represents the following p× p diagonal matrix

(3.12) T = diag(τ̌1, . . . , τ̌p),
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and each τ̌i represents the estimate of τ from the simple regression model testing the

association of SNP i. For the first time, we provide rigorous justification to show that,

under a specific prior specification, the summary statistics, (R,Λ, ~̌z), can be used to

approximate required Bayes factor as an application of Laplace’s method (Appendix

B.2.3). More importantly, our derivation and numerical experiments in Appendix

B.2.3 also indicates that the residual error variance can be (sometimes severely)

over-estimated in applying z-scores to approximate Bayes factors, especially when

multiple independent signals co-exist. As a result, overestimation of the noise levels

can lead to reduced power in uncovering true association signals.

To remedy the conservativeness of the z-score based inference procedure, we pro-

pose a new analytic strategy that enables more flexible and accurate approximation

of marginal likelihood. Our approach requires following summary-level information,

1. estimated effect size and its standard error, (b̂i, se(b̂i)), from single-SNP analysis

for each SNP i (note that, zi = b̂i/se(b̂i));

2. sample size of the study, n;

3. total sum of squares (SST) of the quantitative trait: SST =
∑n

i=1 y
2
i , assuming

~y is pre-centered.

Let b̂ := (b̂1, ..., b̂p) and ŝ := (se(b̂1), ..., se(b̂p)). We show that the complete summary

statistics (R, b̂, ŝ, n, SST) are sufficient to accurately recoverG′~y andG′G. Further-

more, they allow estimating the corresponding MLE (or RMLE) of τ given ~γ, which

leads to a more accurate approximation of Bayes factors. The detailed justification

and derivation are provided in Appendix B.2.2. The major benefits of the proposed

approach are

1. It allows accurately estimating τ from the data matching any given ~γ value;
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2. It allows work with an arbitrary type of the normal prior on genetic effect size

(with or without scaling by τ and/or Λ).

Beyond the setting described by the model (3.1) for a single genetic association anal-

ysis, the proposed approach can be straightforwardly extended to multi-SNP analysis

in a meta-analysis or trans-ethnic genetic association analysis using summary-level

statistics Wen et al. (2015a). (For this purpose, the second point above is particularly

important.) From both simulations and real data analysis, we find that the ability

to dynamically estimate τ according to the selected candidate SNPs can significantly

improve the signal-to-noise ratios required for discovering multiple genuine genetic

association signals. This factor likely explains the observation that approaches utiliz-

ing individual-level data typically outperform the existing approaches utilizing only

z-scores. Our proposed strategy bridges this gap: if the LD information (namely,

R) is sufficiently accurate, the results based on the summary-level information are

identical to those based on individual-level genotype data.

3.3 Results

3.3.1 Simulation studies

We set up a simulation scenario mimicking cis-eQTL mapping in a practical set-

ting. In particular, we use the real genotype data from 343 European individuals

from the GUEVADIS project (Lappalainen et al., 2013). We artificially construct a

genomic region of 1,001 SNPs. The region is divided into 91 LD blocks, and each

block contains 11 SNPs. All LD blocks are selected from chromosome 1, and the

consecutive blocks are at least 1Mb apart. With this construction scheme, the LD

only presents within each block, and the SNP genotypes are mostly uncorrelated

across blocks (Supplementary Figure A8). We simulate a quantitative phenotype
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according to a sparse linear model. Specifically, with probability 0.05, an LD block

is selected and a causal association is randomly assigned to one of its 11 member

SNPs. On average, 4.75 genuine associations are expected from the whole region.

The genetic effect of a causal SNP is independently drawn from a normal distribu-

tion, N(0, 0.62), and the residual error for each sample is independently simulated

from N(0, 1). Those particular parameters are selected such that the distribution of

single SNP testing z-statistics from the simulated data matches the characteristics

of the empirical distribution observed from the cis-eQTL analysis from multiple real

eQTL data sets, namely GEUVDIS and GTEx (Supplementary Figure A9). We

generate 1,000 independent data sets using this scheme.

The simulated data sets are analyzed using three methods:

1. DAP-G with sufficient summary statistics, i.e., (R, b̂, ŝ, n, SST);

2. DAP-G with single SNP testing z-scores, i.e., (R,Λ, ~̌z) ;

3. FINEMAP with single SNP testing z-scores, i.e., (R,Λ, ~̌z)

The software package FINEMAP (Benner et al., 2016) implements a particular ver-

sion of MCMC algorithm using the shotgun stochastic search scheme. Moreover, it

utilizes the summary information (R,Λ, ~̌z) as input to compute the same approxi-

mate Bayes factors as in CAVIARBF. Because of its superior computational efficiency

and accuracy compared to other available methods (see Benner et al. (2016) for de-

tails), we considered it the state-of-the-art for multi-SNP genetic association analysis

using summary-level information.

We use the default priors for both DAP-G and FINEMAP, which are slightly

different. DAP-G employs a more conservative default prior with respect to the

simulated data sets, which assumes a single causal variant is expected a priori.

FINEMAP, designed for fine-mapping analysis, assumes Pr(~γ = 0) = 0 by default.
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In comparison, Pr(~γ = 0) = (1 − 1/1001)1001 = 0.368 for DAP-G. As a result, we

conclude that our simulated data scheme, in this case, slightly favors FINEMAP.

None of the methods assumes the knowledge of the artificial LD blocks constructed

in the simulated data, i.e., LD information is inferred from the genotype data through

R in all three approaches.

Power for signal discovery

We first examine the power of all methods in uncovering the LD blocks that

harbors a causal association signal.

Because the concept of a signal cluster is not defined in FINEMAP, we compute

the cumulative PIPs for each constructed LD blocks and use this quantity to rank

the blocks within each method. Although this approach does not always guarantee

a valid probability for each pre-defined block, especially for FINEMAP, we find very

few false positives from the blocks with cumulative PIPs > 1 for all three methods.

We construct and compare the receiver operating characteristic (ROC) curves based

on the ranking of the pre-defined LD blocks across all simulations. In addition

to the three aforementioned approaches, we also rank the LD blocks by their the

minimum p-values from the single SNP testing of their member SNPs. This approach

is commonly used to identify eGenes (i.e., genes harboring at least an eQTL in their

cis region) in cis-eQTL mapping.

Figure A1 shows the comparison of the ROC curves in a practically meaningful

range, i.e., the false positive rate < 50%. In this set of simulations, the best performer

is the DAP-G algorithm running with the sufficient summary statistics: for any

false positive rate threshold, it always identifies more true positives than any of

the approach in comparison. The difference in performance between the DAP-G

algorithms using different summary statistics input confirms our theoretical argument



57

for the superiority of the sufficient summary statistics over the z-scores. Although

the DAP-G with z-score input and FINEMAP compute the approximate Bayes factor

the same way, there is very noticeable difference reflected by the ROC curves. We

suspect this difference is mainly attributed to the convergence issue of the MCMC

algorithm employed in FINEMAP: if the MCMC run can be extended (significantly)

longer, we expect these two sets of results would eventually converge. Finally, it

is clear that all multi-SNP analysis approaches outperform the single-SNP method

in identifying genetic loci that harbor association signals by a large margin in this

simulation setting.

Calibration of SNP-level PIP

Next, we inspect the calibration of SNP-level PIPs obtained from the different

methods. The calibration of Bayesian posterior probabilities refers to the frequency

property in repeated observations. For example in our specific context, it is expected

that among many SNPs assigned PIP = 0.50, half of them are genuinely associated

if the PIPs are indeed calibrated. The calibration of the posterior probabilities

indicates the robustness of the model and the accuracy of the Bayesian computation.

For each method examined, we group all SNPs across simulated data sets into 10

bins according to their reported PIP values (namely, [0, 0.1), [0.1, 0.2), ..., [0.9, 1.0]).

We then compute the proportion of truly associated SNPs in each bin. We expect

that the frequency value is aligned to the average PIP value for each bin for calibrated

SNP-level posterior probabilities.

Figure A2 shows that, among three methods compared, DAP-G running with

sufficient summary statistics yield most calibrated SNP-level posterior probabilities.

As expected, the PIPs by DAP-G using z-scores as input are slightly conservative.

For FINEMAP, the posterior probabilities in some high-value PIP bins are shown to
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be anti-conservative, indicating potential convergence issues in MCMC runs.

FDR control at signal level

We then proceed to inspect the performance of FDR control at the signal cluster

level by DAP-G. We performed the proposed Bayesian FDR control procedure using

the inferred SPIP values. We label a true discovery if an inferred signal cluster indeed

contains a causal SNP and the corresponding SPIP is greater than a pre-defined

threshold and a false discovery otherwise. Subsequently, we compute the realized

false discovery proportion (FDP) and the power with respect to the corresponding

FDR control threshold. We repeat this procedure for a set of FDR levels ranging from

0.01 to 0.25. The detailed results are shown in Table A1. In all cases, the FDR’s of

the signal clusters are conservatively controlled at all pre-defined levels. Furthermore,

by utilizing sufficient summary statistics the power of discovering association signals

is consistently higher than using z-scores.

Computational efficiency

Our implementation of the DAP-G algorithm is highly efficient: we observe that

DAP-G runs magnitude faster than the state-of-the-art FINEMAP program. The

speed-up is mainly due to the nature of deterministic search algorithm. Additionally,

the implemented functionality of parallel processing for the DAP-G deterministic

search procedure (via the OpenMP library) also contributes to the improved compu-

tational efficiency. For a dataset contains 5 independent signals, DAP-G runs about

1.5 seconds with 4 parallel threads and correctly identifies 4 of the 5 signals. In

comparison, FINEMAP also achieves the same accuracy, and the runtime is bench-

marked at 1 minute and 45 seconds on the same computer. The total user time for

analyzing the complete set of 1,000 simulated data sets are 34 minutes 48 seconds
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and 741 minutes 6 seconds for DAP-G and FINEMAP, respectively. With 4 data

sets being simultaneously analyzed on an eight-core Xeon 2.13 GHz Linux system,

the real time of the complete analysis for DAP-G and FINEMAP are 7 minutes 50

seconds and 190 minutes 36 seconds, respectively.

3.3.2 Multi-SNP analysis of cis-eQTLs in GTEx whole blood samples

In this section, we illustrate a complete process of cis-eQTL mapping of the GTEx

whole blood samples (version 6p) using the proposed DAP-G algorithm. The GTEx

whole blood data include 338 individuals for which dense genotyping are performed.

The expressions of 22,749 protein-coding and lincRNA genes are measured by RNA-

seq experiments. The individual-level genotype-phenotype data are available for

analysis. We followed the procedures described in GTEx Consortium (2017) to per-

form pre-processing and quality control of the genotype and expression data. For

cis-eQTL mapping, we focus on the candidate genetic variants located within a 1Mb

radius of the transcription start site (TSS) of each gene. On average, there are 7,118

candidate genetic variants per gene and no further SNP filtering procedure is taken

before the multi-SNP association analysis.

We take an empirical Bayes approach to estimate the prior inclusion probabil-

ity for each SNP. The estimation procedure, implemented in the software package

TORUS Wen (2016), utilizes the single-SNP association testing results across all

genes. Additionally, it can incorporate SNP-level annotation data. We classify the

candidate SNPs into 21 categories according to their distances to the TSS (DTSS) of

corresponding genes and allow the priors vary in different categories. This decision is

motivated by the previous observations (in almost all eQTL studies) that the abun-

dance of cis-eQTLs is strongly associated with SNP DTSS. Our estimated priors by

DTSS bins (Figure A3) from the GTEx data clearly confirms this pattern.
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We then proceed to analyze all 22,749 genes using DAP-G. On a computing cluster

and with 30 to 50 genes simultaneously analyzed, the processing of the complete data

set takes about 14 hours. First, we compute the posterior expected number of cis-

eQTLs for each gene by

(3.13) E(

p∑
i

γi | ~y,G) =

p∑
i

Pr(γi = 1 | ~y,G).

Figure A4 shows the histogram of the expected number of cis-eQTLs across all

genes, which indicates that we are able to confidently identify multiple independent

cis-eQTLs for a good proportion of genes. Applying the proposed FDR control

procedure, we identify 9,056 independent cis-eQTL signals from 7,135 unique genes

by controlling FDR at 5% level. A subset of 6,328 signals from 5,123 unique genes

exceeds the more stringent threshold at 5% local fdr, for which we can construct

95% credible sets. There is a substantial variation in the size of the 95% credible

sets (Figure A5). The median size of the credible sets is 7, and the mean is 14.9.

The average pairwise r2 between SNPs in a credible set is 0.85 (median = 0.89). The

largest credible set observed in this data set represents a cis-eQTL signal for gene

KANSL1 (ensembl id: ENSG00000120071) located at chromosome 17 (SPIP ∼ 1.0),

which consists of 354 tightly linked SNPs (average pairwise r2 = 0.90). Even for a

single gene, we sometimes observe various sizes of credible sets. Figure A6 shows

gene TMTC1 (ensembl id: ENSG0000133687) for which we confidently identify 4

independent cis-eQTL signals. Interestingly, two of the signals have relatively small

95% credible sets containing 1 and 4 SNPs, respectively; while the credible sets for

the other two signals are noticeably larger, containing 20 and 32 SNPs, respectively.

These results reinforce our observations that causal associations can be complicated

to identify even if the evidence for the existence of an association signal (e.g., SPIP)

is overwhelming.
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To compare results with summary statistics based inference, we extract summary-

level information from the complete data in two forms: the sufficient summary statis-

tics, (R, b̂, ŝ, n, SST), and commonly used (R, ~̂z). As predicted by our theoretical

arguments, we find that the inference results based on sufficient summary statistics

are identical to the analysis of individual-level data, whereas noticeable discrepancy

can be observed from the inference results applying z-score based summary statistics.

Figure A7 shows the comparison of SNP-level PIPs among the three different inputs

for gene TMTC1. Particularly when z-scores are used as input, we note that the

SPIPs for the third and the fourth signals in the original analysis for TMTC1 are

severely under-estimated and the 95% credible sets can no longer be constructed. In

comparison, the SPIPs for the first two signals are still close to 1, and the correspond-

ing credible sets mostly remain the same. We find these results are also consistent

with our observations from the simulation studies.

In summary, we find our cis-eQTL mapping analysis by DAP-G is highly efficient.

The multi-SNP analysis results are more informative and more natural to interpret

in comparison to the standard single-SNP analysis. We provide the complete anal-

ysis results in, which include the quantification of allcis-eQTL signal clusters and

corresponding credible sets.

3.4 Discussion

In this chapter, we have described a powerful and efficient computational approach

to perform multi-SNP genetic association analysis. Within the Bayesian framework,

we have introduced a new paradigm to comprehensively represent a complex genetic

association signal in a natural hierarchy that accounts for LD structures and easy

to interpret. With the probabilistic quantification of the strength of association
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evidence, we have shown rigorous FDR control can be straightforwardly applied.

From the perspective of data reduction, we have derived the sufficient summary

statistics, (R, b̂, ŝ, n, SST), that result in identical inference with individual-level

data in quantitative trait mapping. Furthermore, we are also able to establish the

theoretical connection to the commonly applies inference based on summary-level

data, which is shown to be a conservative approximation to the exact inference using

individual-level data.

In cis-eQTL mapping, we have illustrated that multi-SNP analysis can completely

replace the need for reporting single SNP analysis findings because of its informa-

tiveness and efficiency. We believe the same argument can be made regarding the

analysis of GWAS data. We acknowledge that almost all multi-SNP genetic asso-

ciation analysis approaches, including ours, do not computationally scale beyond a

genomic region up to 4 Mb and most commonly applied for fine-mapping analysis

instead of genome-wide scan. Many have shown (Berisa and Pickrell , 2016, Wen

et al., 2016) that it is effective to apply a divide-and-conquer strategy that segments

genome according to population-specific LD blocks and performs multi-SNP analysis

independently on each LD block. This strategy may be necessary if genomic anno-

tations are incorporated into GWAS analysis and an unbiased enrichment analysis

contrasting annotated functional SNP versus unannotated is desired. Additionally,

with sample sizes of GWAS reach to the bio-bank scale, improved power for uncov-

ering modest genetic association signals has become critically important. As shown

in our simulation study, especially Figure A1, identifying critical regions through

filtering via single SNP testing may not be the best practice.

With the previous results on computing Bayes factors in complex linear systems

(Wen, 2014), our results presented in this chapter can be straightforwardly extended
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to accommodate many different study designs for studying complex and molecu-

lar traits. The important applications include multi-SNP analysis in meta-analysis

setting and eQTL mapping across multiple tissues, just to name a few. With the

availability of the analytic forms of approximate Bayes factors under these compli-

cated settings, it is now possible to perform rigorous FDR control and carry out the

computation through summary statistics.

Genetic association analysis is not and should never be the end point of scientific

discovery. It is therefore critically important to disseminate the findings in genetic

association analysis to the downstream analysis and experimental work. From this

perspective, Bayesian approaches are generally advantageous mainly because of their

use of probabilistic quantification to summarize association results comprehensively.

This point has been illustrated by the co-localization analysis of molecular QTL

and GWAS signals, where most existing approaches (Giambartolomei et al., 2014,

Hormozdiari et al., 2016, Wen et al., 2017) all require posterior probabilities from

both complex and molecular trait-association analyses. For integrative analysis re-

quiring results from genetic association analysis, e.g., SNP-level eQTL annotations,

the probabilistic quantification of association results is more appropriate than the

binary classification based on some stringent type I error threshold. This is because

the latter approach fundamentally ignores the potential type II errors (which also

contribute to the misclassifications) and can introduce severe bias in the integrative

analysis.

It is worth pointing out that the equivalency of analysis results by individual-

level and using summary-level data is based on the assumption that the correlation

matrix between candidate variants, R, is estimated accurately. The deviation from

this assumption can cause noticeable discrepancy between the two types of analyses.
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We acknowledge that the estimation of R from an appropriate population is an

important problem and refer the readers to some important recent works on this

topic (Zhu et al., 2017).

Web Resources

DAP-G software and tutorial, http://github.com/xqwen/dap/

GTEx data, http://www.gtexportal.org/home/datasets

Simulation data and code, https://github.com/xqwen/dap/tree/master/dap-g_

paper/simulation Multi-SNP fine-mapping results of the GTEx whole blood data, https:

//github.com/xqwen/dap/tree/master/dap-g_paper/gtex_v6p

http://github.com/xqwen/dap/
http://www.gtexportal.org/home/datasets
https://github.com/xqwen/dap/tree/master/dap-g_paper/simulation
https://github.com/xqwen/dap/tree/master/dap-g_paper/simulation
https://github.com/xqwen/dap/tree/master/dap-g_paper/gtex_v6p
https://github.com/xqwen/dap/tree/master/dap-g_paper/gtex_v6p


CHAPTER IV

Measuring Reproducibility Accounting for Reproducibility

4.1 Introduction

The advancement of high-throughput technologies has allowed researchers to study

transcriptomes and other metabolomics with large sets of data, including informa-

tion on numerous candidate genetic variants and various molecular expression levels.

However, utilizing data from high-throughput technologies often confronts by several

challenges in practice. One of these challenges is assessing the level of concordance

between high-throughput assays. Since batch effects and other unknown systematic

errors heavily affect signals from these assays, it is crucial to measure reproducibility

between signals from these assays.

In addition, many association studies are finding genetic variants that are associ-

ated with complex traits. However, some novel findings are not replicable in other

studies, either due to issues of powers or systematic differences between studies.

Therefore, by measuring reproducibility between these results, we seek to distinguish

strong and replicable signals from study-specific signals and non-signals.

One of the commonly used methods to measure reproducibility for high-throughput

assays is computing the Spearmans pairwise rank correlation coefficient among sig-

nificant results. However, this approach has several limitations, including the de-
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pendence on the choice of thresholds and not emphasizing the importance of the

consistency of top-ranked signals. Li et al. (2011) suggested an alternative method

of rank correlation, called the Irreproducibility Discovery Rate (IDR), which applies

the concept of false discovery rate (FDR) to this setting. The IDR approach assumes

two different dependent structures for the models of spurious and genuine signals,

and fits a Gaussian copula mixture model to estimate IDR and local IDR (analogous

to local FDR). The IDR approach resolves several issues of rank correlation method

and improve the power of identifying genuine signals. However, we find that fitting

the model using software provided by Li et al. (2011) often fails to converge, even

with a large number of iterations, and is sensitive to the user-provided parameters.

In addition, none of the existing methods to measure reproducibility utilizes the

directional information of estimated effects, because this information is lost during

rank transformation. Considering the directional consistency can provide additional

information to classify strong, genuine signals. For example, if a specific allele is

a genuine and strong regulate variants for a target gene, its association with an

expression level would generally increase (or decrease) the expression level across

studies. Assuming its regulation effect is strong enough to overcome study-specific

confounders, it should be identified as reproducible signals. By incorporating direc-

tional consistency of effects between studies, we can measure reproducibility with

improved accuracy and so better identify reproducible signals.

In this chapter, we utilize the Bayesian frameworks by Wen (2016) on summary

statistics to measure irreproducibility so address these limitations of existing meth-

ods. First, we propose a visualization and quantification tool to aid the assessment of

reproducibility using only rank information. Second, we propose a Bayesian approach

to control IDR rigorously within a local FDR framework. Our approach utilizes the
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quantitative information, specifically regression coefficients and its standard errors,

and is more powerful than rank-based approaches.

4.2 Models and Methods

In this section, we first describe a visualization tool to characterize the repro-

ducibility of two datasets based on rank information. We then proceed to propose a

probabilistic hierarchical model to fully utilize the information of directional consis-

tency of effects presented in multiple datasets.

4.2.1 Visualization of Reproducibility between Studies

We consider a scenario where we compare results of two association studies. We

aim to visualize the degree of concordance of the two association results via a scatter

plot.

Specifically, for each testing unit (e.g., a gene-SNP pair in single-SNP eQTL

analysis), we utilize summary statistics such as Bayes factors from association studies.

We rank n overlapping testing units within each study. For a testing unit i, we have

a pair of ranks (i1, i2) for studies 1 and 2. The higher rank typically implies stronger

evidence for association studies.

For study j, the rank transformation of the effect size estimate is as follows:

(4.1) zi,j = −Φ−1(
ij

n+ 1
),

where Φ denotes the cumulative probability distribution function of the standard

normal distribution. We plot (zi,1,zi,2) for all testing units and refer to the resulting

scatterplot as a rank copula plot. In the process, we also estimate the two-dimensional

empirical kernel density.

Rank copula plots are designed to visualize the degree of concordance and non-

concordance between two studies based on rank information. When results from two
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studies are extremely non-concordant, zi,1 and zi,2 tend to be uncorrelated, conse-

quently the rank copula plot would resemble a scatterplot of independent bivariate

normal distribution. For highly reproducible results, zi,1 and zi,2 tend to be highly

correlated. Hence, most points should scatter around the line of slope 1, which can

be approximated by a bivariate normal with correlation coefficient closed to 1. Rank

copula plots from real data are different from scatterplots of two extreme bivariate

normal distributions. Since the correlations between zi,1 and zi,2 are expected to be

high for stronger signals and low for weak and non-signals, the rank copula plots

from real data shows a pattern mixing the extreme scenarios.

We consider two measures to quantify the degree of concordance shown in rank

copula plots. These measures are the empirical Kullback-Leibler (KL) divergence

and the empirical mutual information (Kullback and Leibler , 1951).

KL divergence is a measure that quantifies the difference of an observed distribu-

tion from an expected distribution. In the calculation of the empirical KL, KL, the

observed distribution is the empirical distribution of derived from the transformed

ranks. For the expected distribution, we consider two reference distributions that

represents extreme concordance and extreme non-concordance. For the empirical

mutual information, we measure it by calculating the empirical KL divergence with

the same reference datasets as KL, and it is denoted by MI −KL in this chapter.

The observed distribution for the empirical mutual information is the joint distribu-

tion of the observed distribution and the reference distributions.

Let KLconcordance denote the empirical KL divergence computed from contrasting

observed rank distribution and the reference concordance distribution. This quan-

tity is computed using a reference dataset drawn from a bivariate normal with a

correlation coefficient close to 1. Similarly, we define KLnon−concordance as the empir-
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ical KL divergence computed from the observed rank distribution and the reference

non-concordance distribution, drawn from an independent bivariate normal.

In practice, we calculate the density functions by setting bins on two-dimensional

spaces and count the number of testing units in each bin. Both KLconcordance and

KLnon−concordance is calculated as follows:

(4.2) KL =
∑
t

Pobs,t × log(
Pobs,t
Pref,t

),

where Pobs,t is the density of observed dataset, and Pref,t is the density function

of reference dataset in bin t.

MI-KLs are also calculated using the same reference distributions, and denoted by

MI −KLconcordance and MI −KLnon−concordance respectively. When Pref,obs denotes

the joint distribution of reference and observed distributions, the empirical MI-KL

is calculated as follows:

(4.3) MI-KL =
∑
t

Pref,obs,t × log(
Pref,obs,t

Pref,t × Pobs,t
).

Since KL is not a bounded measure and has no explicit interpretation, we suggest

using KL mainly to compare the degree of concordance and non-concordance among

different pairs of studies. For example, when we compare the degree of concordance

of eQTLs between same tissues and different tissues, we can compute KLconcordance

and KLnon−concordance for two comparisons using the same reference datasets. Then

we can compare KLconcordance of same tissues and KLconcordance of different tissues,

and decide which result has the higher degree of concordance.
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4.2.2 Measuring Reproducibility Accounting for Directional Consistency

Motivation

Most existing methods measuring reproducibility use rank-based statistics and do

not consider the directional consistency of the estimated effects. However, directional

consistency is highly informative for measuring reproducibility. For example, for a

genuine eQTL, we expect that the same allele would always increase (or decrease) the

level of expression of a targeted gene in different studies. Therefore, the estimated

effects of the allele would have the same direction of effects across studies.

In practice, we always expect some heterogeneity due to biological variation. How-

ever, the degree of heterogeneity of reproducible signals should be constrained by the

directional consistency.

To meet the directional consistency requirement, we propose a novel probabilistic

hierarchical model to quantify the degree of concordance between studies.

Overview of Method

Basic Ideas of Model We define a reproducible signal as a genuine signal that is

reproducible across studies. To classify reproducible signals, we consider the case

of two studies. Maximum likelihood estimates (MLEs) of the effect size for a given

testing unit are denoted by β̂1 and β̂2, respectively.

We assume a prior that defines the level of heterogeneity expected from a repro-

ducible signal, i.e.:

P (β1 and β2 have different signs | a reproducible signal ),

where β1 and β2 are the unobserved true effects. This prior enables the computa-

tion of a posterior probability of being reproducible,
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(4.4) P ( a signal is reproducible |β̂1, β̂2),

which has a natural interpretation for classifying the reproducibility of the signal.

Statistical Model The likelihood of the observed data can be described by :

(4.5) β̂i|βi ∼ N(βi, σ
2
i ),

while βi is the unobserved true effect in study i. βi is study-specific, since it may be

affected by study-specific confounders. These confounders could be the characteris-

tics of samples, data processing procedures or other systematic errors.

We assume the prior distribution on βi, as follows:

(4.6) βi|β ∼ N(β, k2β2),

where β is the true underlying biological effect of the testing unit, assumed to be

the same for between studies. The parameter k quantifies the heterogeneity of effects

between studies. In the special case k = 0, the model becomes a fixed-effect meta-

analysis model. This type of prior is referred to as the curved exponential family

normal prior in Wen et al. (2014). With this prior, the probability of βi having a

different sign from β only depends on k and not β as follows:

(4.7) Pr(βi is having a different sign from β | a genuine signal ) = Φ(− 1

|k|
).

Finally, we assume the prior on β is given by:

(4.8) β ∼ N(0, ω2),

where ω quantifies the effect size of β. In the special case of ω = 0, both β and βi

are strictly becomes 0, which describes a theoretical null model.
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These parios specification imply that

(4.9)

Pr(β1 and β2 have a same sign | a genuine signal ) = {1− Φ(−1

k
)}2 + Φ(−1

k
)2.

We consider limiting the probability

(4.10) Pr(β1 and β2 have a same sign | a reproducible signal ) ≥ 0.98,

which implies k ≤ 0.43, following the expression 4.9. We note that reproducible

signals are a subset of genuine signals. Genuine signals cannot be identified in some

studies due to study-specific variations. However, reproducible signals are those who

are strong enough to be identified in both studies. Our method provides a measure

to classify reproducible signals from signals that are not reproducible (irreproducible

signals) and non-signals.

By using a set of different k and ω, testing units can be partitioned into three

possible scenarios. The first scenario describes non-signals, i.e. ω = 0. The second

scenario describes weak signals, considered as irreproducible. In such case, ω is

nonzero and k ≥ 0.43. Finally, the third scenario describes all the reproducible

signals, which not only have ω 6= 0, but also k ≤ 0.43.

Overview of Computational Procedures

Computational Overview For computational purposes, we use a set of grid (k, ω)

values to represent the complete model space to cover all three scenarios. We calcu-

late the corresponding Bayes Factor, for each grid based on β̂ and σ̂2, following the

approach suggested by Wakefield (2009) and Wen et al. (2014).

Let p1, p2, . . . pL denote the prior probabilities on all (k, ω) grid values. For a

target SNP, we compute the posterior probability as follows:



73

(4.11) PPrep =

∑
m∈ΩIII

pmBFm∑
o poBFo

,

where the set ΩIII denotes the grid values representing the reproducible scenario.

We take an empirical Bayes approach to estimate the priors p1, p2, . . . pL from data.

Specifically, we use the EM algorithm implemented in the software TORUS (Wen,

2017) to find maximum likelihood estimates (MLEs) for p1, p2, . . . pL. Note that

PPirr, 1 − PPrep, can be interpreted as the local false discovery rate (local FDR),

and we can apply the FDR control procedure suggested by Efron et al. (2007).

4.3 Results

4.3.1 Visualization of Reproducibility between Studies

We drew the rank copula plot for the comparison of gene-level eQTLs between FU-

SION skeletal muscle study (Scott et al., 2016) and skeletal muscle tissue from GTEx

project (GTEx Consortium, 2017). FUSION skeletal muscle study analyzes eQTLs

with 267 Finnish individuals for skeletal muscle tissue, while the GTEx project (v6)

analyzes eQTLs for 51 tissues with 570 donors. The sample size of skeletal muscle

tissue of GTEx project (v6) is 430 and that of blood tissue is 393.

We used 19,037 overlapping genes for the comparison between skeletal muscle

tissues from two studies. For the comparison of between FUSION skeletal muscle

tissue and GTEx blood tissue, we used 17,579 overlapping genes. We then computed

a gene-level Bayes factor for each gene by applying the statistical method proposed

in Veyrieras et al. (2008), following the procedure described in Wen (2016).

In Figure 4.1, the plot on the left side shows the degree of concordance of rank-

transformed gene-level Bayes factors between skeletal muscle tissues from FUSION

skeletal muscle study and the GTEx project. The plot on the right side displays the
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degree of concordance between FUSION skeletal muscle study and blood tissues from

the GTEx project. In the comparison of skeletal muscle tissues, most of gene-level

eQTLs are expected to be shared between tissues. Since the large portion of eQTLs

including muscle-specific eQTLs would be shared between the studies, we expect the

higher degree of concordance between muscle tissues than muscle and blood tissues.

As expected, the left plot in Figure 4.1 shows a more concordant pattern than the

right plot.

While the comparison between different tissues (muscle and blood) shows the lower

level of concordance than same tissues (muscle), the plot on the right in Figure 4.1

still shows the moderate degree of reproducibility. This corresponds to the biological

fact that while there are tissue-specific eQTLs, the many eQTLs are shared across

tissues.

To quantify the degree of concordance shown in Figure 4.1, we calculated the

empirical MI-KL and KL. The calculated measures are displayed in Table 4.1. The

KLconcordance of two muscle tissues are smaller than KLconcordance of muscle and

blood tissues. Also, the KLnon−concordance of two muscle tissues are greater than

KLnon−concordance of muscle and blood tissues. These KL values confirm the conclu-

sion from Figure 4.1 that the comparison of same tissues show the higher degree of

concordance than that of different tissues.

We find that MI −KLs deliver the mixed conclusions. Both MI −KLconcordance

and MI −KLnon−concordance of muscle tissues are smaller than those of muscle and

blood tissues. We suggest that the interpretation of MI −KL should be carefully

done.
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Studies Deviation from Extreme Concordance Deviation from Extreme non-concordance
MI-KL KL MI-KL KL

FUSION muscle vs GTEx muscle 0.3401 10.5080 1.1580 0.7840
FUSION muscle vs GTEx blood 0.4312 14.2436 1.3897 0.4159

Table 4.1: Empirical mutual information based on Kullback-Leibler divergence(MI-KL) and
Kullback-Leibler divergence(KL), calculated based on gene-level eQTL analyses from FUSION
skeletal muscle, GTEx muscle and GTEx blood tissues. The reference dataset for extreme concor-
dance is drawn from bivariate normal distribution with a correlation coefficient 0.99. The reference
dataset for extreme non-concordance is drawn from independent bivariate normal distribution. The
observed datasets are gene-level Bayes factors.

Figure 4.1: Examples of rank copula plots between studies. The datasets used in these plots are
the results of gene-level eQTL analyses from FUSION skeletal muscle, GTEx muscle and GTEx
blood tissues. Two-dimensional kernel density is estimated and plotted based on transformed ranks
of gene-level Bayes factors.

4.3.2 Measuring Reproducibility with the Direction of Effects

Simulation Study

We conducted a simulation study to assess the performance of the proposed

method on identifying reproducible signals.

Details of Simulation Study For each dataset, we generated 10,000 overlapping

testing units across two studies. The estimated effects of each testing unit are z-scores

drawn from the mixture of two bivariate normal distributions. Specifically, 5,000 z-

scores were drawn from independent bivariate normal distribution and representing
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non-signals. The remaining 5,000 z-scores, representing signals, were drawn from the

following distributions :

(4.12)
zi ∼ N(z̄, φ2), i = 1, 2

z̄ ∼ N(0,M + 1),M > 0

where zi is a z-score drawn for a testing unit in study i. φ is a parameter that

controls the heterogeneity between studies, and M is a non-centrality parameter that

controls the underlying true effect size for each testing unit. The z-scores drawn from

this distribution are signals, and their reproducibility was decided by φ.

We carried out simulations for different combinations of M and φ. M is taken

from {1, 3, 8, 11} and φ from {0.5, 1, 1.5, 2}. We then applied the proposed method

to each simulated dataset.

For each generated dataset, we applied the MeSH (Wen et al., 2014) software to

calculate BF for each grid point (k, ω). Minimum, maximum and the number of

total points of ω are derived from each dataset, following the guide from Stephens

(2016). The grid points of k are selected to cover all three scenarios, including the

threshold defined in Section 4.2.2, 0.43. The weights of each BF were estimated

using the EM algorithm implemented in the software package TORUS (Wen et al.,

2015a). We then performed Bayesian model averaging to calculate PPrep. The FDR

control procedure is performed on the local FDRs derived from PPrep.

Simulated results are displayed in Figures 4.2, 4.3 and 4.4. Figure 4.2 simulta-

neously demonstrates the parameter settings and the reproducibility of each testing

unit in rank copula plots. Figure 4.3 highlights the clear distinction between repro-

ducible signals and other scenarios. Especially in Figure 4.2, we can see that the

proposed method can classify reproducible signals (purple dots) from irreproducible

signals (blue green dots) and non-signals (red dots) in the spectrum of effect sizes.
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Figure 4.3 are scatter plots with the generated z-scores, highlighting the iden-

tified reproducible signals as red dots. These plots depict the signs of simulated

z-scores. These plot also clearly show that our method can identify z-scores showing

the directional consistency as reproducible signals.

As expected, Figure 4.4 demonstrates that with the same underlying effect size,

the heterogeneity between studies (φ) has an influence on the proportion of repro-

ducible signals identified, as the model suggested.

Figure 4.2: Rank copula plots show the result of simulations studies from datasets generated with
various M . Ms are set as 1,3,8 and 11 from the upper left plot to the lower right plot. φ is set
as 1 for all plots. Orange and green color dots represent identified irreproducible and reproducible
signals respectively, when z-scores are generated from the null model. Blue green and purple color
dots represent identified irreproducible and reproducible signals respectively, when z-scores are
generated from the alternative model.
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Figure 4.3: Scatter plots show the result of simulations studies from datasets generated with various
M . Ms are set as being 1,3,8 and 11 from the upper left plot to the lower right plot. φ is set as 1
for all plots. Each black dot represents the pair of z-scores of each testing unit, which is overlaid
by a red dot when the testing unit is categorized as reproducible signals after the FDR control.
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Figure 4.4: Scatter plots show the result of simulations studies from datasets generated with M
being set as 8, when φs are set as 0.5,1,1.5 or 2 from the upper left plot to the lower right plot.
Each black dot represents the pair of z-scores of each testing unit, which is overlaid by a red dot
when the testing unit is categorized as reproducible signals after the FDR control.

Real Data Analysis

We applied the proposed method to single-SNP muscle eQTLs from FUSION

skeletal muscle and the GTEx project (Scott et al., 2016, GTEx Consortium, 2017).

From these datasets, we used 191,057,404 gene-SNP pairs and 19,037 unique genes

that exist in both studies. In this application, we aim to identify genes that have

at least one causal SNP associated with, i.e. eGenes, that are reproducible in both

studies. To achieve this purpose, we first calculated the posterior probabilities of
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SNP being reproducible signal for each gene-SNP pair. We then summed it over

across all SNPs within the testing windows for each gene, to calculate the posterior

probability of reproducible eGene. The details on the real data analysis can be found

in Section C.1.

After FDR control, we find out that 11,025 genes are identified as reproducible

eGenes among 18,946 tested genes. Figure 4.5 depicts the overall results in forms

of a rank copula plot and a histogram. The left plot is the same rank copula plot

with the left plot of Figure 4.1, overlaid by red dots representing the reproducible

eGenes. Compared with Figure 4.1, the left plot of Figure 4.5 shows that most genes

on the upper right part are identified as eGenes. This confirms the common belief

that most of eGenes with strong signals are reproducible between same tissues.

The right plot of Figure 4.5 strengthens the conclusion. since the most of identified

reproducible eGenes have PPirrs close to 0, as the red bar in the most left side in

the histogram has the highest number of counts.
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Figure 4.5: Left plot shows the rank copula plot of eGene Discoveries from FUSION skeletal
muscle and GTEx muscle tissues. Red-colored dots are identified reproducible eGene in both
studies, after the FDR control. Right plot is a histogram of PPirrs, the posterior probabilities of
being irreproducible. Red bars display reproducible eGenes and green bars display irreproducible
genes.
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4.4 Discussion

In association studies utilizing high-throughput data and assays, it is important

to assess the degree of concordance between studies. Quantifying the degree of

concordance can be utilized for measuring the quality of data processing procedure

in high-throughput assays. It also can provide valuable information on identifying

the evidence of strong and genuine signals from association studies. While there

have been several methods to measure reproducibility between studies, none of the

existing methods utilizes information from the directional consistency of estimated

effects.

In this chapter, we first provide a visualization tool to demonstrate the degree

of concordance between two studies, and quantify it using the empirical KL diver-

gence. After that, we have proposed the method to measure reproducibility between

studies under the Bayesian framework. Unlike the existing rank-based methods, the

proposed method takes account of the direction consistency of estimated effects from

studies. We assume that a strong and genuine signal should have the same direction

of effects across studies, but in practice, there are some heterogeneity due to biolog-

ical variations. By limiting this heterogeneity giving a set of priors, the proposed

method can classify reproducible signals from irreproducible signals or non-signals.

The proposed method can successfully identify reproducible signals, as demon-

strated by simulation studies and real data applications. Especially, the simulation

studies show that the method distinguishes reproducible signals from others in vari-

ous settings of effect sizes and the heterogeneity between studies.

However, there are some limitations utilizing the proposed visualization tool and

method. For example, we find that the computed values of KL and MI −KL are
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sensitive to the choice of reference distributions and the size of bins in calculating

empirical densities. To compare these values between different sets of studies, it is

recommended to use the same reference distributions and the same size of bins.

We also find that the proposed method is sensitive to the choice of grid points of

parameters k and ω and the single best way to set grid points is unknown. Especially,

if we set the maximum value k as a huge value and consider a large number of grid

points, it requires huge computational resources and makes computational infeasible

in practice. While it can be avoided by bounding the limit of k, the better way to

set the grid points should be explored in further study.
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APPENDIX A

Appendix of Chapter 2

A.1 Selection of Priority SNPs in Adaptive DAP

We give a detailed account of the Bayesian conditional analysis procedure for

selecting high-priority SNPs in the adaptive DAP algorithm. For a given locus l, the

procedure starts with model size partition s = 1. Let ~γ∗ denote the model with the

highest posterior probability in the size partition s− 1 in locus l, i.e.,

~γ∗ = argmax{||~γ ||=s−1} Pr(~γ l = ~γ)BF(~γ).

For each SNP i that is not included in the current best model, we compute a Bayes

factor for the expanded model, ~γ†i = ~γ∗ ∪ {γli = 1}. Assuming that there is exactly

one additional QTL and that each candidate SNP i is equally likely to be the addi-

tional causal association a priori, the corresponding conditional posterior probability

for SNP i can be computed by

(A.1.1) PIP∗i =
BF(~γ†i )/BF(~γ∗)∑
j BF(~γ†j)/BF(~γ∗)

=
BF(~γ†i )∑
j BF(~γ†j)

.

The resulting quantity is a well-defined posterior probability and is solely determined

by the relative likelihood values of the expanded models. In particular, it should be



85

noted that (A.1.1) fully accounts for LD between SNPs: e.g., if two SNPs are in

perfect LD, they would possess identical values that correctly reflect the uncertainty

(i.e., they are indistinguishable). The procedure requires p− s evaluations of Bayes

factors that are computationally trivial for small s values. Given the pre-defined

threshold λ, we add the SNP i into the existing set of high-priority SNPs if it is not

already in the set and PIP∗i ≥ λ. For s ≥ 2, we then enumerate all s-combinations

from the resulting set of priority SNPs to compute C∗s . During this enumeration, we

also record the new ~γ∗ for the increased model size.

Intuitively, the threshold parameter λ is related to the precision of the approxi-

mate PIPs. The selection procedure roughly estimates the probability, Pr(γli = 1 |

~y,Gl, ~α, ||~γ l|| = s), for SNP i. Note the relationship

Pr(γlk = 1 | ~yl,Gl, ~α) =

p∑
s=1

Ci
C
· Pr(γlk = 1 | ~yl,Gl, ~α, ||~γ l|| = s).

The following can be concluded:

1. If Pr(γli = 1 | ~yl,Gl, ~α, ||~γ l|| = s) < λ for a given SNP at all s values, then it

must be the case that the overall PIP < λ.

2. The loss of precision of the PIP of SNP i due to the selection screening for a

particular size partition must be < λ.

A.2 Stopping Rule and Estimation of the Approximation Error in Adap-
tive DAP

When a non-associated SNP is added to an existing association model, the marginal

likelihood of the model is typically non-increasing. In fact, the marginal likelihood

measured by the corresponding Bayes factor usually decreases slightly due to the

effect of Occam’s razor built into the Bayes factor computation Berger and Pericchi

(1996). We utilize this property to reduce the computation of DAP by eliminating
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unnecessary explicit explorations of the model partitions once the sizes of the models

are considered saturated. To achieve this goal, the DAP starts the exploration with

model size partition s = 1 for increasing s values until a stopping rule is met. The

contribution of the unexplored size partitions (i.e., the approximation error) is then

estimated by an analytic combinatorial approximation.

To explain the stopping rule and the combinatorial approximation, we assume that

there are K detectable true QTNs. In each model size partition where s > K, we can

classify all models into (K+1) mutually exclusive categories according to the number

of true QTNs (0 to K) included in each association model. In the category including

exactly m true QTLs, each member association model also includes (s − m) non-

associated SNPs, and the total number of the association models in the category is

given by
(
p−K
s−m

)(
K
m

)
. We estimate the contribution to

∑
~γ Pr(~γ l = ~γ; ||~γ l|| = s)BF(~γ)

from this particular category by the equation(
p−K
s−m

)(
K

m

)
P̃r(~γ l; ||~γ l|| = s) BF{m},

where P̃r(~γ l; ||~γ l|| = s) represents the average prior value within the category and

BF{m} is the average Bayes factor across models including m out of K detectable

QTNs. The use of BF{m} is mainly based on the assumption that including non-

associated SNPs in an association model does not, on average, increase the marginal

likelihood/Bayes factor. Hence, we obtain

Cs ≈
K∑
m=0

(
p−K
s−m

)(
K

m

)
P̃r(~γ l; ||~γ l|| = s) BF{m}.
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To relate Cs+1 to Cs, we note that

(A.2.1)

Cs+1 ≈
K∑
m=0

(
p−K

s+ 1−m

)(
K

m

)
P̃r(~γ l; ||~γ l|| = s+ 1) BF{m}

=
K∑
m=0

p−K +m− s
s+ 1−m

(
p−K
s−m

)(
K

m

)
P̃r(~γ l; ||~γ l|| = s+ 1) BF{m}

≤ p− s
s+ 1−K

K∑
m=0

[(
p−K
s−m

)(
K

m

)
P̃r(~γ l; ||~γ l|| = s) BF{m}

]
P̃r(~γ l; ||~γ|| = s+ 1)

P̃r(~γ l; ||~γ l|| = s)

≈ p− s
s−K + 1

ω Cs.

In the last step, we approximate the quantities
P̃r(~γ l;||~γ l||=s+1)

P̃r(~γ l;||~γ l||=s)
in all K+ 1 categories

by the average prior odds ω = 1
p

∑p
i=1 exp (α0 +

∑q
l=1 αldil). Similarly, we can derive

an approximate lower bound for Cs+1

(A.2.2)
p− s−K
s+ 1

ω Cs.

Thus, we have shown

(A.2.3)
p− s

s−K + 1
ω Cs & Cs+1 &

p− s−K
s+ 1

ω Cs.

Because K is unknown, we estimate Cs+1 from Cs by the following approximation

(A.2.4) Cs+1 ≈
p− s
s+ 1

ω Cs,

which does not depend on K and lies in the interval
(
p−s−K
s+1

ω Cs,
p−s

s−K+1
ω Cs

)
. Our

numerical experiment shows that this approximation is surprisingly accurate (Figure

S3).

Our stopping rule is built upon the upper bound specified by the inequality

(A.2.3). Specially, the adaptive DAP stops explicit exploration at partition size

s = t if

(A.2.5) C∗t ≤ (p− t+ 1)ω C∗t−1.
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The inequality essentially tests K ≥ t− 1. In addition to utilizing the combinatorial

approximation, the DAP further monitors the increment of the partial sum Sk =∑k
i C
∗
i . To ensure a high accuracy of the approximation, we also add an optional

criterion to the stopping rule on top of (A.2.5), i.e.,

log10

[
St
St−1

]
< κ, κ > 0,

or, equivalently,

C∗t∑t−1
i C∗i

< 10κ − 1.

By default, we set κ = 0.01, which further ensures that the subsequent model size

partitions make no substantial contributions to the normalizing constant. This ad-

ditional criterion provides practical flexibility for running the DAP: as κ → 0, it

enforces the DAP to explore all the model size partitions, whereas when κ is large,

only the stopping rule (A.2.5) is effective.

Once the stopping rule is invoked, we estimate ε by

ε =

p∑
s=t+1

R∗s,

where we define R∗t = C∗t and

R∗s+1 =
p− s
s+ 1

ωR∗s, for s = t, ..., p.

A.3 Derivation of the DAP-1 Algorithm

In this section, we provide a detailed derivation for the DAP-1 algorithm. It

should be noted that the derivation can be generalized to the DAP-K algorithm

with K > 1.

The key assumption of the DAP-1 is that posterior probabilities of single-QTL
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association models dominate the posterior probability space of {~γ}, i.e.,

(A.3.1) C −
∑
||~γ ||≤1

Pr(~γ l = ~γ)BF(~γ)→ 0.

Consequently, it follows that

Pr(~γ l = ~γ | ~yl,Gl, ~α) ≈


Pr(~γ l=~γ |~α)BF(~γ)∑

||~γ
′
||≤1

Pr(~γ l=~γ
′
)BF(~γ

′
)

if ||~γ|| ≤ 1

0 otherwise.

The model space of {~γ : ||~γ|| ≤ 1} contains only the null model, ~γ = 0, and all

single-SNP association models. For the null model, it is clear that BF(~γ = 0) = 1,

and we denote

π0 := Pr(~γ = 0 | ~α) =

p∏
i=1

(
1 + exp(~α′ ~di)

)−1

.

We use ~γ◦j to denote the single-SNP association model where the j-th SNP is the

assumed QTN. Clearly,

Pr(~γ◦j | ~α) = exp(~α′ ~dj)

p∏
i=1

(
1 + exp(~α′ ~di)

)−1

= π0 · exp(~α′ ~dj),

and

BF(~γ◦j) = BFj.

We recall that BFj denotes the Bayes factor based on the single-SNP analysis of SNP

j. The computation of BFj has been detailed by many authors Servin and Stephens

(2007), Wakefield (2009), Wen et al. (2014). It typically requires only summary-level

statistics, e.g., the estimated genetic effect of the target SNP and its standard error

Wakefield (2009), Wen et al. (2014), and it is computationally trivial.

Finally, we note that given the restrained model space, the PIP of SNP j, Pr(γj |

~y,G, ~α), coincides with Pr(~γ◦j | ~α). Given all of the above, it follows from simple
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algebra that

(A.3.2)

Pr(γi = 1 | ~y,G, ~α) =

∑p
k=1 e

α0+
∑q

l=1 αldkl BFk

1 +
∑p

k=1 e
α0+

∑q
l=1 αldkl BFk

· e
∑q

l=1 αldil BFi∑p
k=1 e

∑q
l=1 αldkl BFk

=
[
1− Pr(~γ l = 0 | ~y,G, ~α)

]
· e

∑q
l=1 αldil BFi∑p

k=1 e
∑q

l=1 αldkl BFk
,

where the first term assesses the probability that the p-SNP locus contains a QTL

and the second term is the conditional probability that the i-th SNP is the sole QTL.

The expression (A.3.2) bears great similarity to the previously proposed Bayesian

approaches Veyrieras et al. (2008), Flutre et al. (2013), Pickrell (2014), which also

impose the “single QTL per locus” assumption. However, all the aforementioned

approaches formulate it as a prior assumption, which results in a very different

parametrization. More specifically, they use a locus-level quantity, π0, to denote the

probability that a locus does not contain a QTL. Conditioning on the case that the

locus does contain a QTL, the prior for SNP i being the causal SNP is assigned

(A.3.3) Pr(γi = 1 | ~γ l 6= 0,~δ) =
e
∑q

l=1 δldil∑p
k=1 e

∑q
l=1 δldkl

,

where the parameter ~δ is similar to our enrichment parameter. As a result, this

parametrization yields a similar expression for the PIP of SNP i,

(A.3.4) Pr(γi = 1 | ~y,Gl, π0,~δ) =
[
1−Pr(~γ l = 0 | ~y,Gl, π0)

]
· e

∑q
l=1 δldil BFi∑p

k=1 e
∑q

l=1 δldkl BFk
.

Despite the algebraic similarity, the parameters (π0 and ~δ) in (A.3.4) cannot be di-

rectly interpreted as ~α in our logistic priors, partly due to the conditional nature of

the prior specification (A.3.3). Furthermore, in enrichment analysis, the M-step of

the EM algorithm becomes much more involved for optimizing the objective func-

tion jointly with respect to (π0,~δ). In comparison, we have shown that under the

parametrization of DAP-1, the maximization in the M-step is equivalent to fitting a

logistic regression model for which the solutions are well known.
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A.4 Factorization of the posterior probability by LD blocks

For integrative association analysis for loci spanning very large genomic regions,

especially in GWAS settings, we recommend an additional approximate factorization,

Pr(~γ | ~y,G, ~α) ≈
∑L

k=1 Pr(~γ [k] | ~y,G, ~α), before applying the DAP to each genomic

region independently. We provide the necessary mathematical justification for this

factorization.

It is sufficient to show that

Pr(~γ | ~α) BF(~γ) ≈
L∏
k=1

Pr(~γ [k] | ~α) ·
L∏
k=1

BF(~γ [k]).

Recall that {~γ [k] : k = 1, 2, 3...} are non-overlapping segments of the vector ~γ.

Because the prior probabilities are assumed to be independent across SNPs, it follows

trivially that Pr(~γ | ~α) =
∏L

k=1 Pr(~γ [k] | ~α).

To show that

BF(~γ) ≈
L∏
k=1

BF(~γ [k]),

we note the previous result on the Bayes factorsWen (2014),

BF(~γ) =

∫
P (~β | ~γ) BF(~β) d~β,

where the probability P (~β | ~γ) defines the prior effect size given association status

~γ. Furthermore, note the independent relationship of the prior effect sizes across

SNPs,

P (~β | ~γ) =

p∏
i=1

P (βi | γi).

If γi = 1, βi is assigned a normal prior, whereas if γi = 0, βi = 0 with probability 1

(or is represented by a degenerated normal distribution, βi ∼ N(0, 0)). Equivalently,

we write

~β | ~γ ∼ N(0,W ),
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where W is a diagonal prior variance-covariance matrix, and for ~γ 6= 1, W is

singular.

Without loss of generality, we assume that both the phenotype vector ~y and the

genotype vectors ~g1, ...,~gp are centered, i.e., the intercept term in the association

model is exactly 0. Furthermore, we also assume that the residual error variance

parameter τ is known. It then follows from the result of WenWen (2014) that

(A.4.1) BF(~β;W ) = |I + τG′GW |−
1
2 · exp

(
1

2
~y′G

[
W (I + τG′GW )−1

]
G′~y

)
.

This expression provides the theoretical basis for the factorization. In particular, the

p× p sample covariance matrix 1
n
G′G is a well-known estimate of Var(G). In other

words, G′G can be viewed as a noisy observation of nVar(G). Using population

genetic theory, Wen and Stephens Wen and Stephens (2010) show that Var(G) is

extremely banded. Based on this result, Berisa and Pickrell Berisa and Pickrell

(2016) recently provided an algorithm to segment the genome into L non-overlapping

loci utilizing the population parameter of the recombination rate, i.e.,

G = (G[1], . . . ,G[L]),

and we approximate G′G by a block diagonal matrix

(A.4.2) Ĝ′G = G′[1]G[1] ⊕ · · · ⊕G′[L]G[L],

where “⊕” denotes the direct sum of the matrices. It is important to note that

(A.4.2) should be viewed as a de-noised version of G′G with non-zero entries outside

the LD blocks shrunk to exactly 0. By plugging (A.4.2) into (A.4.1), it follows that

(A.4.3) BF(~β;W ) =
L∏
k=1

BF[k],
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where

(A.4.4)

BF[k] = |I + τG′[k]G[k]W [k]|−
1
2 · exp

(
1

2
~y′G[k]

[
W [k](I + τG′[k]G[k]W [k])

−1
]
G′[k]~y

)
.

In particular, (W [1], . . . ,W [[L]) is a decomposition of the diagonal matrix W com-

patible with the decomposition of G.

Finally, we integrate out the residual error variance parameter τ for each BF[k] by

applying the Laplace approximation Wen (2014). This step results in plugging in a

point estimate of τ (e.g., based on ~y and G[k] for each block k) into the expression

(A.4.4). Taken together, we have shown that

BF(~γ) ≈
L∏
k=1

∫
P (~β[k] | ~γ [k]) BF[k] d~β[k],

and consequently,

Pr(~γ | ~y,G, ~α) ≈
L∏
k=1

Pr(~γ [k] | ~yl,Gl, ~α).

A.5 Average Accuracy of PIP Estimates using DAP-1

In this section, we provide some mathematical arguments to justify that DAP-1 (or

adaptive DAP with less stringent threshold values) algorithm can provide on average

accurate estimate. Specifically, we write the expression for the exact calculation of

the PIP for SNP k at locus l as

(A.5.1) Pr(γlk = 1 | ~yl,Gl, ~α) =

p∑
s=1

Ci
C
· Pr(γlk = 1 | ~yl,Gl, ~α, ||~γ l|| = s).

In the case of DAP-1, we essentially use the following expression to approximate the

PIP,

(A.5.2) Pr(γlk = 1 | ~yl,Gl, ~α) ≈ C1

C0 + C1

· Pr(γlk = 1 | ~yl,Gl, ~α, ||~γ l|| = 1).
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Note that in genetic association analysis, the vast majority of SNPs have overall

PIPs → 0 within any given locus; hence, it must be the case that for such a SNP k,

Pr(γlk = 1 | ~yl,Gl, ~α, ||~γ l|| = s)→ 0, for all s.

Therefore, even C1 + C0 approximates C poorly, and (A.5.2) still provides an ade-

quately accurate PIP estimation for the majority of SNPs that are not QTNs. The

same argument can also be applied to candidate QTNs with very strong evidence

for associations, especially when the “primary” association signals have strengths of

associations that are orders of magnitude higher than the remaining candidate SNPs

within a locus (e.g., Pr(γlk = 1 | ~yl,Gl, ~α, ||~γ l|| = s) → 1 for all s). Therefore, the

only SNPs whose PIPs are poorly approximated by DAP-1 are those secondary QTL

signals (if there are any), but in most practical cases, it can be assured that such

SNPs are small in number.
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APPENDIX B

Appendix of Chapter 3

B.1 Details on Bayesian hierarchical linear model

Recall that we assume the linear model (3.1),

~y =

p∑
i=1

βi~gi + ~e, ~e ∼ N(0, τ−1I),

and define γi = 1(βi 6= 0). The γi’s are assumed independent a priori with the

following prior distribution,

(B.1.1) γi ∼ Bernoulli (ηi).

In case that an m-dimensional annotation, ~δi, is available for each SNP i, we incor-

porate this quantitative information into the prior specification through a logistic

function, i.e.,

(B.1.2) logit(ηi) = α0 + ~α′~δi.

We estimate the enrichment parameters (α0, ~α) from the observed data using an EM

algorithm detailed in Wen (2016). In the absence of the annotation data, the logistic
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prior reduces to a single intercept term. The prior for the effect size parameter βi is

assumed the following form

(B.1.3) βi | γi = 1 ∼
K∑
k=1

πkN(0, φ2
k).

By including a grid of values for φk, this mixture prior attempts to capture a spectrum

of genetic effect sizes ranging from modest to strong. By default, πk is set to 1/K.

It is also possible to estimate individual πk values by an EM algorithm (e.g., the one

implemented in TORUS). The marginal priors on βi’s are known as spike-and-slab

in the statistical literature.

Finally, we assume a Γ prior for the parameter τ that controls residual error

variance in the linear model, i.e.,

(B.1.4) τ ∼ Γ(κ/2, λ/2).

For inference, we assume the limiting form of this prior as κ, λ→ 0.

B.2 Inference using summary statistics

B.2.1 Sufficient statistics for likelihood computation

Our result is derived from the analytic expression of Bayes factors and their ap-

proximations in a general complex linear model system reported in Wen (2014),

where the multiple linear regression model discussed in this paper is a trivial special

case. Assuming for a given ~γ value, the linear regression model (3.1) is reduced to q

assumed associated SNPs (i.e., q entries of the ~γ vector are 1) and we adjust G to

denote the q × q design matrix specific to the value of ~γ. Let the q-vector ~β denote

the genetic effect sizes of the q SNPs. We assume a general prior distribution for ~β,

(B.2.1) ~β ∼ N(0,W ),
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where W is a q × q positive semi-definite matrix. In this case, the Bayes factor can

be computed by

(B.2.2) BF(W ) = |I + V −1W |−
1
2 exp

(
1

2
~̂β′V −1

[
W (I + V −1W )−1

]
V −1 ~̂β

)
,

For multiple linear regression model, we note that

(B.2.3)

~̂β = (G′G)−1G′~y,

V −1 = τG′G,

and (B.2.2) can be simplified to

(B.2.4) BF(W ) = |I + τG′GW |−
1
2 exp

(
τ 2

2
~y′G

[
W (I + τG′GW )−1

]
G′~y

)
.

If τ is known, the above expression is exact, and the computation relies on the

observed data only through the summary statistics (G′~y,G′G).

When τ is unknown, Wen (2014) shows the above analytic form becomes an

approximation via Laplace’s method, i.e.,

(B.2.5)

BF(W ) = |I+τ̌G′GW |−
1
2 exp

(
τ̌ 2

2
~y′G

[
W (I + τ̌G′GW )−1

]
G′~y

)
·
[
1 + o

(
1

n

)]
.

In particular, the point estimate τ̌ is an affine combination of the MLEs of τ estimated

under the null model (denoted by τ̃) and the full model (denoted by τ̂). More

specifically,

(B.2.6)

τ̃ =
n

~y′~y

τ̂ =
n

(~y −G~̂β)′(~y −G~̂β)
=

n

~y′~y − ~y′G (G′G)−1G′~y

τ̌ = ατ̃ + (1− α)τ̂ , 0 ≤ α ≤ 1.

In other words, plugging in any value between τ̂ and τ̃ for τ corresponds to a valid

Laplace approximation of BF(W ). Note that this result is essential for the justifica-

tion of the use of single-SNP testing z-scores when τ is unknown.
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In addition to G′~y and G′G, estimating τ̃ and/or τ̂ requires two more summary

statistics, sample size n and SST = ~y′~y, when τ is unknown. Thus, we conclude that

the sufficient statistics required to compute the Bayes factors are (G′~y,G′G, n, SST).

B.2.2 Recovering sufficient statistics

When τ is known, single SNP testing z-statistics along withR and Λ are sufficient

to recover the required sufficient statistics for Bayes factor computation, i.e.,

(B.2.7)
G′G = ΛRΛ

G′~y = τ−
1
2 ΛZ.

Here we focus our discussion on recovering the sufficient statistics in a realistic

setting where τ is not known. In particular, we assume that for each SNP i, the

effect size estimate

(B.2.8) b̂i =
~g′i~y

~g′i~g
,

and its standard error, ŝi = se(b̂i). Additionally, we only assume the knowledge of

R (but not Λ), n and SST .

We show the following procedure can recover required sufficient statistics assuming

R is accurate. For each SNP i,

1. Compute zi = b̂i/ŝi

2. Compute R2 for the corresponding simple linear regression model by

R2
i =

z2
i

z2
i + n− 2

3. Find the estimated residual error variance from the corresponding simple linear

regression model by

σ̂2
i = SST (1−R2

i )/(n− 2)

.
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4. Compute ~g′i~gi = (1/ŝi)
2 σ̂2

i

5. Compute ~g′i~y = b̂i · ~g′i~g

Subsequently, we obtain that

(B.2.9) G′~y =


~g′1~y

...

~g′q~y

 ,

(B.2.10) Λ = diag(
√
~g′1~g1, ...,

√
~g′q~gq),

and

G′G = ΛRΛ.

Consequently, any appropriate form of τ estimate can be obtained.

B.2.3 Connection to previous results

In this section, we show that our results are connected to the existing literature,

assuming τ is known.

Result for known τ Assume that W is full-rank, it follows that

(B.2.11) BF(W ) = |I + τG′GW |−
1
2 exp

(
τ 2

2
~y′G

(
W−1 + τG′G

)−1
G′~y

)
.

Plugging in Equation (B.2.7) results in

(B.2.12) BF(W ) = |I + τG′GW |−
1
2 exp

(
1

2
Z ′
[
(τΛWΛ)−1 +R

]−1
~̂z

)
.

In particular, Chen et al. (2015) uses a specific form of prior, which scales the

effect size of each SNP by its genotype variance and τ , namely,

(B.2.13) W =
nφ2

τ
Λ−2.



100

It follows from the Sylvester’s determinant theorem that

(B.2.14) |I + τG′GW | = |I + (nφ2)ΛRΛ−1| = |I + (nφ2)R|,

and

(B.2.15) BF(φ2) = |I + (nφ2)R|−
1
2 exp

(
1

2
~z′
[
(nφ2)−1I +R

]−1
~z

)
,

which only requires (R,~z) and is exactly the same result presented by Chen et al.

(2015).

Result for unknown τ Here we justify the use of the analytic form of Equation

(B.2.15) when τ is not known. With the specific prior (B.2.13), the Bayes factor for

a given τ value is

(B.2.16) BF(φ2; τ) = |I+(nφ2)R|−
1
2 exp

( τ
2
~y′GΛ−1

[
(nφ2)−1I +R

]−1
Λ−1G′~y

)
.

Wen (2014) shows that the desired Bayes factor with respect to arbitrary prior den-

sity p(τ) can be approximated by the Laplace’s method. The resulting approximation

is given by

(B.2.17) BF(φ2) = BF(φ2; τ̌) ·
[
1 + o

(
1

n

)]
,

where τ̌ can be any affine combination of τ̃ (the MLE of τ from the null model) and

τ̂ (the MLE of τ from the full model). Note that the quadratic form,

~y′GΛ−1
[
(nφ2)−1I +R

]−1
Λ−1G′~y,

is positive definite, the approximate Bayes factor (ABF) is monotonically increasing

with respect to the value of τ̌ . More specifically, all valid ABFs justified by this

approximation satisfy

(B.2.18) BF(φ2; τ̃) ≤ BF(φ2; τ̌) ≤ BF(φ2; τ̂).
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Alternatively, we can represent the ABF result as a function of multi-dimensional

z-scores. First, we define a p-vector ~τ := (τ1, τ2, ..., τp), and denote

(B.2.19)
~̂τ = (τ̂ , ..., τ̂)

~̃τ = (τ̂ , ..., τ̃)

Let T (~τ ) := diag(~τ ), ~z(~τ ) := T (~τ )
1
2 ΛG′~y, and we define

(B.2.20) BF~z(φ2;~τ ) = |I + (nφ2)R|−
1
2 exp

(
1

2
~z(~τ )′

[
(nφ2)−1I +R

]−1
~z(~τ )

)
.

Here we attempt to link the analytic expression, BF~z(φ2; ~̌τ), to the well-defined

approximate Bayes factor BF(φ2; τ̌).

Let f(~z) = ~z′ [(nφ2)−1I +R]
−1
~z = ~z′A~z, it follows that

(B.2.21)
∂f

∂|zi|
=
∂f

∂~z

∂|~z|
∂zi

= 2Aii|zi|, i = 1, 2, ..., p.

Because matrix A is positive definite, it follows that Aii = ~e′iA~ei > 0, ∀i, where

~ei denotes the unit vector with the i-th entry being set to 1. Equation (B.2.21)

indicates that f(~z) is monotonically increasing with respect to each individual |zi|.

In practice, ~̌z := ~z(~̌τ) = T
1
2 Λ−1G′~y is used to evaluate BF~z(φ2; ~̌τ), where

T = diag(τ̌1, . . . , τ̌p) and each τ̌i represents the MLE of τ estimated from the simple

regression model testing the association of SNP i. It should be clear that

(B.2.22) τ̂ ≥ τ̌i ≥ τ̃ , ∀i.

Let ~̂z := ~z(~̂τ) and ~̃z := ~z(~̃τ), it follows that

(B.2.23) |ẑi| ≥ |ži| ≥ |z̃i|, ∀i,

Consequently, it implies that

(B.2.24) BF(φ2; τ̂) ≡ BF~z(φ2; ~̂τ) ≥ BF~z(φ2; ~̌τ) ≥ BF~z(φ2; ~̃τ) ≡ BF(φ2; τ̃).
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By the intermediate value theorem, there must exists 0 ≤ α ≤ 1, and

(B.2.25) τ̌ = ατ̃ + (1− α)τ̂ ,

such that

(B.2.26) BF(φ2; τ̌) = BF~z(φ2; ~̌τ).

Therefore, BF~z(φ2; ~̌τ) is valid approximation of Bayes factor under the prior (B.2.13)

by the argument of Laplace’s method.

Numerical Illustration

If the association model under consideration (i.e., ~γ) contains no true association

signal, or the genetic effects of the suspected associations are small, we expect that

τ̂ ≈ τ̌ ≈ τ̃ . As a result, we also expect

(B.2.27) BF(φ2; τ̂) ≈ BF~z(φ2; ~̌τ) ≈ BF(φ2; τ̃).

To illustrate, we simulate a quantitative traits for 343 individuals with 3 independent

genetic variants, i.e.,

(B.2.28) yi = 0.05x1 + 0.05x2 + 0.05x3 + ei, ei ∼ N(0, 1).

Assuming φ2 = 1, the comparison of the three approximate Bayes factors is shown

in Table A2.

In an alternative scenario where the data contain multiple modest to strong associ-

ation signals, directly applying the z-score approximation can result in an equivalent

τ̌ value that severely over-estimates residual error, hence under-estimate the Bayes

factor. To illustrate, we use the same simulated genotype data and the following

linear model,

(B.2.29) yi = 0.25x1 + 0.25x2 + 0.25x3 + ei, ei ∼ N(0, 1).
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As expected, the resulting approximate Bayes factors shows difference in order of

magnitude (Table A3), albeit all approximations show overwhelming evidence of

association.

B.2.4 Figure Legends
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Figure A1: Power comparison in simulation studies. We examined the performance of 4 different
methods in identifying the LD blocks that harbor true association signals. The methods compared
include DAP-G using sufficient summary statistics (brown line), DAP-G using single SNP testing
z-scores (dark green line), FINEMAP using single SNP testing z-score (navy blue line) and the
single-SNP testing approach (magenta line). Each plotted point represents the number of true
positive findings (of LD blocks) versus the false positives obtained by a given method at a specific
threshold.
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Figure A2: Calibration of SNP PIPs in the simulation study. PIPs from three Bayesian multi-SNP
analysis methods (DAP-G with sufficient summary statistics, DAP-G with z-scores and FINEMAP
with z-scores) are examined. PIPs from each method are classified into 10 equal-length frequency
bins, the average PIP versus the corresponding true proportion (i.e., frequency) of causal SNPs for
each bin is then plotted for each bin. If the PIPs are calibrated, we expect all points are aligned
in the diagonal line. Points deviating from the diagonal line indicate that the PIPs may not be
calibrated. More specifically, points below the diagonal line imply that the corresponding PIPs are
conservative and points above the diagonal line suggest the PIPs are anti-conservative.
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Figure A3: Relationship between estimated cis-eQTL priors and the SNP distances to transcription
start sites (DTSS). All cis candidate SNPs are classified into 21 unequal-length bins according to
their DTSS values. An EM algorithm implemented in the software package TORUS is used to
estimate the prior inclusion probability for SNPs in each bin. Note that the quantitative distance
information for the distance bins is not used by the EM algorithm. Each point on the plot represents
the middle point of a distance bin, and its corresponding estimated prior. The result displays a
clear pattern of fast decay of the abundance of eQTLs away from transcription start sites.
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Figure A4: Histogram of posterior expected number of cis-eQTLs for 22,749 protein-coding and
lincRNA genes analyzed in the GTEx whole blood data.
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Figure A5: Histogram of the size of 95% credible sets constructed for 6,328 independent whole
blood cis-eQTLs using GTEx samples.
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Figure A6: cis-eQTLs identified for gene TMTC1. The left panel shows 4 independent association
signals are confidently identified in the cis-region of gene TMTC1 (all SPIPS → 1). Each colored
point represents a member SNP in the corresponding 95% credible set. The size of the credible sets
differs according to different LD patterns. The right panel plots the LD pattern (R2) between the
plotted SNPs. There is high LD within each signal cluster and very weak LD between the clusters.
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Figure A7: Comparison of PIPs computed from individual-level data versus summary statistics.
The PIPs for 863 cis candidate SNPs for gene TMTC1 are plotted. All PIPs are computed by
DAP-G. The left panel shows the PIPs computed from sufficient summary statistics, and they
are identical to the PIPs computed from individual-level data. The right panel shows the PIPs
computed from z-scores, which are noticeably conservative, for most cases, in comparison to the
PIPs computed from the individual-level data.

B.2.5 Tables

DAP-G (z-scores) DAP-G (sufficient summary stats)
FDR control level FDP power FDP power

0.01 0.009 0.452 0.002 0.529
0.05 0.013 0.501 0.010 0.576
0.10 0.021 0.535 0.030 0.605
0.15 0.040 0.560 0.064 0.623
0.20 0.067 0.580 0.107 0.634
0.25 0.100 0.598 0.148 0.646

Table A1: Realized signal-level false discovery proportion (FDP) and power in simulation studies.
In all cases, the actual FDP values are below the target FDR control levels. As expected, the
powers of DAP-G using sufficient summary statistics are consistently higher than the using the
z-score based summary statistics.

log10 BF(φ2 = 1; τ̂) log10 BF~z(φ2 = 1; ~̌τ) log10 BF(φ2 = 1; τ̃)

−0.776 −0.822 −0.870

Table A2: Comparison of different approximate Bayes factors under weak association

log10 BF(φ2 = 1; τ̂) log10 BF~z(φ2 = 1; ~̌τ) log10 BF(φ2 = 1; τ̃)

16.244 13.247 12.09

Table A3: Comparison of different approximate Bayes factors under modest association
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B.2.6 Supplemental Figures
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Figure A8: LD structures from 8 randomly selected blocks in the simulation study. R2 values are
plotted for 88 SNPs from 8 artificially constructed blocks. The 8 blocks are randomly selected from
a total of 91 blocks used in the simulations. All genotype data are real and from GUEVADIS study.
By our construction, LD patterns within each block vary but the LD between blocks is consistently
weak.
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Figure A9: Comparison of single SNP z-scores between simulated data and GTEx whole blood
eQTL data. The effect size parameters in the simulation studies are chosen to mimic the observed
cis-eQTL data. The density of z-scores computed from the simulated data overlay almost entirely
with the observed z-score distribution from the GTEx whole blood data.
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APPENDIX C

Appendix of Chapter 4

C.1 Identifying Reproducible eGenes

We assume that each eGene has one causal SNP associated with. In this setting,

the posterior probability that gene o being reproducible eGene can be measured as

follows: First, the probability of a gene-SNP pair s being reproducible is calculated

as follows:

(C.1.1)
Pr(βs ∈ L and βs 6= 0|Data) =

Pr(βs 6= 0|Data)× Pr(βs ∈ Lr|Data, βs 6= 0),

where Lr is a set of grid points that represent of reproducible scenarios.

C.1.1 Computation of the Probability of being Signal

The probability of a gene-SNP pair s being a genuine signal, Pr(βs 6= 0|Data),

can be estimated using the probabilistic hierarchical model discussed in Wen (2016).

Specifically, for S SNPs within a testing window for a gene, genotype-phenotype

association is:
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(C.1.2) ~y = µ1 +
S∑
s=1

βs~gs + ~e, ~e ∼ N(0, σ2I),

where ~gs and βs are genotype and an effect size for SNP s.

In this model, we set a binary variable explaining the status of βs, γs as follows :

γs =


1 βs 6= 0

0 βs = 0.

(C.1.3)

With the definition of γs, a causal SNP as a SNP with γs = 1. Also, ~γ := (γ1, ..., γS).

For the above model, the log prior odds on γs is set as follows:

log

[
Pr(γs = 1)

Pr(γs = 0)

]
= α0 +

Q∑
q=1

αqdsq,(C.1.4)

where ~ds := (ds1, . . . , dsQ) are Q genomic annotations and α0, . . . , αQ are enrich-

ment parameters for SNP s. Assuming there is only one SNP being QTL in a testing

window and no annotation is available, the only enrichment parameter in the model

is α0 and the model space of {~γ : ||~γ|| ≤ 1} contains only the null model, ~γ = 0,

and all single-SNP association models.

With these notations and the genotype G := (~g1, ...,~gQ), Consequently, it follows

that

(C.1.5) Pr(~γ l = ~γ | ~yl,Gl, α0) ≈ Pr(~γ l = ~γ | α0)BF(~γ)∑
||~γ
′
||≤1

Pr(~γ l = ~γ ′ | α0)BF(~γ ′)
,

where

(C.1.6) Pr(~γ = 0 | α0) = π0 =

(
1

1 + exp(α0)

)Q
,
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and for a single-SNP association models that is not null,

Pr(~γ◦j | α0) = exp(α0)

Q∏
q=1

(
1

1 + exp(α0)
)

)−1

= π0 exp(α0).

P r(βs 6= 0|Data) can be calculated as follows:

(C.1.7)

Pr(γs = 1 | ~y,G, α0) =

∑Q
q=1 e

α0 BFq

1 +
∑Q

q=1 e
α0 BFq

· BFs∑Q
q=1 BFq

=
[
1− Pr(~γ l = 0 | ~y,G, α0)

]
· BFs∑Q

q=1 BFq
,

where the Bayes factor for each SNP s, BFs is calculated as

(C.1.8) BFs =
M∑
m=1

pmBFs,m,

where BFs,m is the estimated Bayes factor for grid point lm = (km, ωm) in SNP s

and the MLE of pm is estimated using TORUS (Wen, 2017).

C.1.2 Computation of the Probability of being Reproducible

We define a set of grid points that describes ”reproducible” situation as Lr. In

this setting, the probability of being a reproducible pair given data and a signal,

Pr(βs ∈ Lr|Data, βs 6= 0), can be calculated as follows for a gene-SNP pair s:

(C.1.9) Pr(βs ∈ Lr|Data, βs 6= 0) =

∑
lm∈Lr

pmBFs,m∑
l∗m:k∗m 6=0&ω∗m 6=0 p

∗
mBFs,m∗

,

where

p∗lm =


(1− π0)× pm lm 6= (0, 0)

π0 lm = (0, 0)

(C.1.10)
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C.1.3 Probability of Reproducible eGENE

The posterior probability of being reproducible eGene can be calculated by sum-

ming over C.1.1 across S SNP within the testing windows of each gene:

(C.1.11) Pr(βo 6= 0|Data) =
S∑
s=1

Pr(βs ∈ L and βs 6= 0|Data).
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