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Abstract

This dissertation is devoted to questions on long run survival, the optimal

elicitation of private information, and the optimal order of gathering infor-

mation.

In Chapter 2, I consider an infinite horizon risk sharing game in which

players have heterogeneous priors about future endowments, and analyze

asymptotic behavior of efficient allocation depending on whether the players

have commitment power and whether the players are Bayesian or ambiguity

averse (Gilboa and Schmeidler (1989)). As in Blume and Easley (2006), I

show that if the players are expected utility maximizing Bayesian learners

and have commitment power, only survivors are those with the least incor-

rect beliefs. All other players starve in the long run. In other cases, no

player vanishes. When the players are Bayesian and have no commitment

power, no player starves in a Pareto efficient subgame perfect equilibrium.

When the players are ambiguity averse and have commitment power, they

can agree on a stationary allocation, which means that no player vanishes.

When the players are ambiguity averse and have no commitment power, for

sufficiently large discount factors, a stationary Pareto efficient allocation with

commitment is a subgame perfect equilibrium.

In Chapter 3, I consider a principal-agent problem in which a principal

elicits an agent’s information when the quality of information provided by

the agent depends on the agent’s type. We investigate the impact of the

agent’s type dependent outside option on the optimal contract. Under re-

strictive assumptions on the type dependent outside option and the agent’s

vii



information structure, I show that the principal admits bad types and good

types, but reject intermediate types. By further restricting our attention

to a smaller class of decision problems, I show the existence of an optimal

contract and construct how to design an optimal contract. Finally, I provide

an example in which the principal optimally hires bad types to reduce the

expected payment to good types. In the example, the principal actually loses

if the agent draws a bad type.

In Chapter 4, co-authored with Professor Tilman Börgers, we study the

optimal order of experimentation, considering a class of dynamic decision

problems in which two experiments are available and a decision maker in-

curs costs of experimentation. Given the class of two binary experiments,

there is no non-trivial comparison of sequential experiments. The reason

why the decision maker runs a less informative experiment first in some cir-

cumstances is because the less informative experiment triggers the second

experiment less frequently than the more informative experiment does. This

idea allows us to come up with another class of two experiments, for which

there exists non-trivial comparison of experiments. Given the second class

of experiment, informativeness of static decision problems implies informa-

tiveness of dynamic decision problems. That is, it is optimal for the decision

maker to run a more informative experiment first in every decision problem

under study.
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Chapter 1

Introduction

In this dissertation, I address questions on long run survival, the optimal

elicitation of private information, and the optimal order of gathering infor-

mation. Regarding long run survival, the existing literature supports the

idea that when agents have heterogeneous priors in complete markets, the

only survivors are those who know the truth. This result is partially because

every agent in a complete market believes for sure that she eventually wins

and locks herself into a long term contract. However, it would be difficult

to find long run commitment. Agents may not be Bayesian, and may want

to insure themselves against model uncertainty. I investigate the impact of

a lack of commitment and the impact of ambiguity aversion on asymptotic

behaviors of Pareto efficient allocations.

For the optimal elicitation of private information, an agent’s outside op-

tion is crucial in designing the optimal contract. The existing literature has

been focusing on how to induce the agent to truthfully report his private in-

formation, assuming that the agent always participates. However, the agent

may not participate because of his large outside option. I study the impact

of the agent’s type dependent outside option on the optimal contract.

The optimal order of gathering information has been an interesting topic

in economics. When it comes to dynamic decision problems, a decision maker

is interested in not only the optimal action but also the optimal strategy of
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collecting information. When the decision maker collects information today,

she should consider not only the cost of collecting information, but also

impacts of today information on her optimal action and future information.

However, it would be difficult to characterize the optimal order in which the

decision maker collects information for general dynamic decision problems.

Professor Tilman Börgers and I consider a class of decision problems that

have been widely studied in economics, and look for the possibility that

the optimal order in which to collect information is independent of decision

problems under study.

In Chapter 2, I consider an infinite horizon risk sharing game in which

players have heterogeneous priors about future endowments, and analyze

the asymptotic behavior of efficient allocation depending on whether the

players have commitment power and whether the players are Bayesian or

ambiguity averse (Gilboa and Schmeidler (1989)). As in Blume and Easley

(2006), I show that if the players are expected utility maximizing Bayesian

learners and have commitment power, only survivors are those with the least

incorrect beliefs. All other players starve in the long run. In other cases, no

player vanishes. When the players are Bayesian and have no commitment

power, no player starves in a Pareto efficient subgame perfect equilibrium.

When the players are ambiguity averse and have commitment power, they

can agree on a stationary allocation, which means that no player vanishes.

When the players are ambiguity averse and have no commitment power, for

sufficiently large discount factors, a stationary Pareto efficient allocation with

commitment is a subgame perfect equilibrium.

In Chapter 3, I consider a principal-agent problem in which a principal

elicits an agent’s information when the quality of information provided by

the agent depends on the agent’s type. I investigate the impact of the agent’s

type dependent outside option on the optimal contract. Under restrictive as-

sumptions on the type dependent outside option and the agent’s information
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structure, I show that the principal admits bad types and good types, but

reject intermediate types. By further restricting our attention to a smaller

class of decision problems, I show the existence of an optimal contract and

construct how to design an optimal contract. Finally, I provide an example

in which the principal optimally hires bad types to reduce the expected pay-

ment to good types. In the example, the principal actually loses if the agent

draws a bad type.

In Chapter 4, co-authored with Professor Tilman Börgers, we study the

optimal order of experimentation, considering a class of dynamic decision

problems in which two experiments are available and a decision maker incurs

the costs of experimentation. Given the class of two binary experiments,

there is no non-trivial comparison of sequential experiments. The reason

why the decision maker runs a less informative experiment first, in some cir-

cumstances, is because the less informative experiment triggers the second

experiment less frequently than the more informative experiment does. This

idea allows us to come up with another class of two experiments, for which

there exists a non-trivial comparison of experiments. Given the second class

of experiment, informativeness of static decision problems implies informa-

tiveness of dynamic decision problems. That is, it is optimal for the decision

maker to run a more informative experiment first in every decision problem

under study.

3
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Chapter 2

Model Uncertainty, Self-Enforcement, and

Long Run Survival

2.1 Introduction

If we take a look around, we can see that many people have different be-

liefs about the same subject. For instance, we can think of sports betting.

Theories of standard Bayesian expected utility imply that people can expect

some gain from betting when they have different priors. Here, we notice that

commitment and a person’s confidence in the assessment of her prior are nec-

essary for betting to take place. Requirement of commitment is clear because

otherwise an agent can default and not pay her bet. An agent’s confidence

about her prior affects her willingness to bet. We can imagine a person who

hesitates to bet because she has not collected enough information to form a

sharp prior.

Blume and Easley (2006) is a seminal paper regarding the long run behav-

ior of efficient allocations in the presence of heterogeneous beliefs. It shows

that in a stationary exchange economy with the identical discount factors,

when markets are complete and the allocation is Pareto efficient, only agents

with the least incorrect beliefs survive in the long run. All other agents starve

in the long run.1 However, this result seems less intuitive in the sense that it

1The main theorems in Blume and Easley (2006) deal with general stochastic processes.

4



would be difficult to find the long run commitment. It is necessary for com-

plete markets because they require external enforcement of infinite horizon

contracts. Put differently, it would be difficult to imagine that an agent can

commit to transferring most of her future endowment streams to someone.

Focusing on an independently and identically distributed economy with the

identical discount factors, we raise the following question: is it true that the

only survivors are those with the least incorrect beliefs in the absence of

commitment power?

Ambiguity aversion would be another factor that prevents an agent from

vanishing. Billot et al. (2000), Rigotti, Shannon and Strzalecki (2008) and

Ghirardato and Siniscalchi (2016) study efficient allocations when agents be-

have according to the maxmin criterion proposed in Gilboa and Schmeidler

(1989). In those papers, it is shown that in complete markets, if aggregate

endowments are constant and all ambiguity averse agents share a common

prior, Pareto efficiency implies that every agent’s consumption is constant

across states. That is, no agent starves. Condie (2008), Da Silva (2011) and

Guerdjikova and Sciubba (2015) study conditions under which an ambigu-

ity averse player survives in the presence of an expected utility maximizing

Bayesian learner with the correct belief. To depart from Billot el at. (2000)

and related papers, we allow for aggregate uncertainty. In our model, an

ambiguity averse player does not compete against a Bayesian expected util-

ity maximizer who knows the truth. Then, we study the long run behavior

of Pareto efficient allocation with and without commitment when all players

are ambiguity averse.

In this paper, we study the impact of self enforcement and the impact

of ambiguity aversion on the asymptotic behavior of efficient outcomes in

an infinite horizon risk sharing game with finite players. In the risk sharing

game, a player’s endowment in each period is determined by a state, which

is independently and identically distributed across periods. To study the
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impact of self enforcement on efficient allocations, we compare Pareto efficient

allocations under external enforcement and Pareto efficient subgame perfect

equilibriums of the risk sharing game when the players are expected utility

maximizing Bayesian learners. To study the impact of ambiguity aversion,

we analyze the efficient outcomes of complete markets when all players are

Gilboa-Schmeidler (1989) type and aggregate endowment can be different in

different states.

The first step in our analysis is a characterization of Pareto efficient allo-

cations under external enforcement when all players are Bayesian expected

utility maximizers. We say that the player i’s prior is closer to the truth than

player j’s prior is if one of the following conditions is true: 1) player i learns

a true data generating process faster than player j, 2) a true data generat-

ing process is possible under player i’s prior, but is impossible under player

j’s prior, or 3) player i’s asymptotic posterior belief is closer to a true data

generating process then player j’s asymptotic posterior belief is. If player

i’s prior is closer to the truth than player j’s prior is, Schwartz (1965) and

Berk (1965) imply that the ratio of player i’ prior to player j’s prior diverges

almost surely. Pareto efficiency implies that if an event is more likely under

player i’s prior than it is under player j’s prior, player i’s consumption in

that event should be higher than player j’s consumption. Therefore, if player

i’s prior is closer to the truth than player j’s prior is, Pareto efficiency means

that player j’s consumption converges to zero in the long run because the

ratio of player i’ prior to player j’s prior diverges.

The second step in our analysis is a characterization of Pareto efficient

subgame perfect equilibria of the risk sharing game when the players are

Bayesian expected utility maximizers. We show that no player’s consump-

tion can fall below a certain threshold in a Pareto efficient subgame perfect

equilibrium. The intuition behind this result is the following. Suppose that

player i’s current consumption is very small in a Pareto efficient subgame
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perfect equilibrium. Then, player i’s self enforcement condition cannot be

binding with probability one in the next period because otherwise she would

have an incentive to deviate right now. Therefore, in some state s, player i’s

self enforcement condition is not binding. In this case, player i’s consumption

growth is limited.

We explain why player i’s consumption growth is limited when her self

enforcement condition is not binding. Choose player j 6= i. If player j’s

self enforcement condition is not binding in the state s, Pareto efficiency im-

plies that player i’ and j’s consumptions in the state s are determined by

their marginal rate of substitutions between two consecutive histories. Since

player i’s current consumption is small, her consumption in the state s is also

small. If player j’s self enforcement condition is binding in state s, player j’s

consumption is larger than what it would be if her self enforcement condi-

tion was not binding in state s. This is because if player j’s consumption in

state s had been determined by the marginal rate of substitutions, player j’s

self enforcement condition would have been violated. This means that when

player j’s self enforcement condition is binding in state s, player i’s con-

sumption would be lower than what it would be if player j’s self enforcement

condition was not binding in state s. This means that when player i’s self

enforcement condition is not binding, her consumption cannot increase by a

large amount. This argument can continue if player i’s current consumption

is sufficiently small. In other words, once player i’s consumption becomes

very small, she expects low consumptions for long periods, and therefore, she

has an incentive to deviate. Hence, every player’s consumption is bounded

from below in a Pareto efficient subgame perfect equilibrium.

The second step of our analysis implies that if player i’s prior is closer

to the truth than player j’s prior is, no Pareto efficiency allocation under

external enforcement is a Pareto efficient subgame perfect equilibrium of

the risk sharing game even if players are sufficiently patient. If player i’s
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prior is closer to the truth than player j’s prior is, Pareto efficiency under

external enforcement means that player j’s consumption converges to zero.

However, no player’s consumption converges to zero in a Pareto efficient

subgame perfect equilibrium.

The third step of the analysis is a characterization of Pareto efficient allo-

cations when the players are ambiguity averse and have commitment power.

We adopt the Gilboa-Schmeidler (1989) model for ambiguity aversion and

adopt the recursive multiple priors model suggested by Epstein and Schneider

(2003) to take care of dynamic consistency. That is, in our model, a player is

ambiguity averse at every history. We assume that every player has a largest

set of priors, which is the set of almost all stochastic processes. In this case,

Pareto efficiency implies that each player could consume a constant amount

of endowments in a state with a minimum in the state in which aggregate

endowment is the lowest. In other words, if an allocation is Pareto efficient,

each player’s consumption depends only on a state, but is independent of

periods. A player consumes the lowest amount when aggregate endowment

is the lowest. An intuition for this result comes from certainty equivalent.

For a given Pareto efficient allocation, one can find a certain equivalent for

each player. In our model, sum of the players’ certainty equivalents is less

than or equal to present value of the lowest aggregate endowment. Clearly,

the sum of certainty equivalents should be equal to the lowest endowment.

So, when all players are ambiguity averse, one can find a payoff-equivalent

stationary allocation, given a Pareto efficient allocation.

The final step of our analysis is a characterization of a subgame perfect

equilibrium when the players are ambiguity averse. We focus on station-

ary allocations since we can find a stationary allocation given the Pareto

efficient allocation under external enforcement. In our model every player’s

endowment depends only on the state. From this assumption, it is clear

that if the players are sufficiently patient, a stationary allocation, which is
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payoff-equivalent to some Pareto efficient allocation, can be a subgame per-

fect equilibrium.

The rest of this paper is organized as follows. In Section 2, we illustrate an

example to outline the basic structure of our model. In Section 3, we describe

a risk sharing game. In Section 4, we analyze asymptotic behavior of Pareto

efficient allocations under external enforcement, assuming that all players are

expected utility maximizing Bayesian learners. In Section 5, we character-

ize a long run behavior of consumption in Pareto efficient subgame perfect

equilibria when all players are Bayesian. In Section 6, we make some further

comments on Pareto efficient subgame perfect equilibria with Bayesian play-

ers. In Section 7, we characterize Pareto efficient allocation when all players

are ambiguity averse and have commitment power. In Section 8, we partially

characterize a Pareto efficient subgame perfect equilibrium when all players

are ambiguity averse. Section 9 is a conclusion.

2.1.1 Related Literature

Blume and Easley (2006) is closely related to this work. They consider an

infinite horizon endowment economy in which traders have different priors

on the true data generating process, and analyze the asymptotic behavior of

Pareto efficient allocations in complete markets. As an example, Blume and

Easley Section 3.1 (2006) analyzes independently and identically distributed

economies in which traders do not learn over time.2 They show that a trader’s

survival index, which is defined as a function of the trader’s discount factor

and the Kullback-Leibler divergence between the truth and the trader’s prior,

determines whether the trader survives in the long run. In our model, players

can learn. Assuming that players have commitment power, we obtain a

2Blume and Easley (2006) refers to their unpublished manuscript for a complete dis-
cussion of i.i.d. economies. We contacted the authors, and could not have a chance to
look at the manuscript.
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similar result. We define “closeness” between the truth and a player’s prior,

and show that if player i’s prior is “closer” to the truth than player j’s prior

is, player j does not survive in the long run.

In the comparison of the main theorems in Blume and Easley (2006) and

our results, we would like to discuss two issues. The first issue is about

absolute continuity. For instance, Blume and Easley Theorems 1 – 3 (2006)

basically imply that a trader survives if and only if the true data generating

process is absolutely continuous with respect to the trader’s prior. However,

our model covers cases in which the true data generating process is not

absolutely continuous with respect to any player’s prior, and talks about

the long run survival. The second issue is about the analysis of the long run

behavior of Pareto efficient allocations when the true data generating process

is not included in the union of the support of every player’s prior. Blume

and Easley Theorems 1 – 6 apply when at least the support of one player’s

prior contains the true data generating process. In other words, the theorems

are silent when the true data generating process is not included in the union

of the support of all players’ priors. However, in this paper, we analyze a

subgame perfect equilibrium, and thus we need to specify what happens to

every player’s consumption even if the true data generating process is not

an element of the union of the support of all players’ priors. Focusing on

i.i.d. processes with learning, we do not have to rely on absolute continuity

and are able to describe the asymptotic behavior of a player’s consumption,

regardless of whether the true data generating process is included in the

support of some player’s prior.

Another stream of literatures on heterogeneous priors and market selec-

tion is focused on cases in which endowment follows a Geometric Brownian

motion. Kogan et al.’s result (Proposition 2, 2006) states that an agent with

a wrong belief never survives. Yan (2008) defines an agent’s survival index,

and Proposition 2 in the paper states that only those with the lowest survival

10



index survive in the long run. Borovička (2008) uses a recursive utility and

shows that under a certain specification of recursive preferences, an agent

with an incorrect belief can survive. For those literatures, endowment is

unbounded, so that the property of utility function is a determinant of the

long run survival. Like Blume and Easley (2006), we assume that aggregate

endowment is bounded, and as a result, the specification of utility function

has no impact on the long run survival. Kogan et al. (2017) considers an

economy in which there are two agents who have the same utility function

but have different priors, and finds necessary conditions and sufficient con-

ditions under which an agent survives in the long run. Since Kogan et al.

(2017) covers cases in which endowment is unbounded, its results, such as

Theorem 4.1 express conditions in terms of absolute risk aversion and the

ratio of the two agents’ priors.

Literature on model misspecification is also closely related to this paper.

Schwartz (1965) and Berk (1965) study the limiting behavior of a Bayesian

estimator when models are misspecified. They study whether a Bayesian es-

timator converges when the truth is not included in the support of a Bayesian

learner’s prior. It turns out that among all distributions in the support of

the prior, the Bayesian learner asymptotically assigns probability one to the

distribution that is closest to the truth in terms of Kullback-Leibler diver-

gence. This result helps us analyze Pareto efficient allocations under external

enforcement when Bayesian players learn in independently and identically

distributed economies.

Kocherlakota (1996) studies properties of Pareto efficient subgame per-

fect equilibria of a risk sharing game in which two players have a common

prior about an endowment process. Our risk sharing game is an extension

of the Kocherlakota (1996) model in the sense that in our model, players

have heterogeneous priors and learn over time. It is worth mentioning that

the Kocherlakota (1996) arguments used to describe the dynamic paths of
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allocations in a Pareto efficient subgame perfect equilibrium are valid in our

model. Applying similar arguments, we show that no player’s consumption

converges to zero in a Pareto efficient subgame perfect equilibrium.

Regarding ambiguity aversion, we use the maxmin criterion suggested in

Gilboa and Schmeidler (1989). When an agent follows the maxmin crite-

rion, she imagines the worst prior given the action. The expected utility is

calculated using the given action and the worst prior.

Epstein and Schneider (2003) propose the recursive multiple priors model

in order to handle an ambiguity averse agent in dynamic environments. They

show that if an agent has a “rectangular” set of priors, dynamic consistency

is obtained. The idea is that if the set of priors is rectangular, the agent can

be thought of as Bayesian and the corresponding rule of updating the set of

prior is Bayes’ applied prior-by-prior. We adopt the recursive multiple priors

model, and describe a class of Pareto efficient subgame perfect equilibrium

when players are ambiguity averse. Epstein and Schneider (2007) study how

an ambiguity averse decision maker can learn over time using their recursive

multiple priors model. They introduce a way of reevaluating the set of priors.

So, in their (2007) paper, the decision maker not only updates the set of

priors but also selects priors through a “reevaluation process.” Epstein and

Schneider (2007) obtain a result similar to Schwartz (1965) and Berk (1965).

That is, in their set-up, the ambiguity averse decision maker will believe that

the truth is the one that is closest to the true data generating process among

the possible beliefs.

Another stream of literature on ambiguity aversion is smooth ambiguity

aversion, which was introduced in Klibanoff, Marinacci and Mukerji (2005).

Klibanoff, Marinacci and Mukerji (2009) introduces recursive smooth ambi-

guity preferences to take care of dynamic consistency. The difference between

the recursive multiple priors model and the recursive smooth ambiguity aver-
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sion is that an agent with the recursive multiple priors model does not learn

the truth whereas an agent with the recursive smooth ambiguity can learn

the truth. In this paper, we focus on the recursive multiple priors model.

There are several literatures on efficient allocation under ambiguity aver-

sion, including Ghirardato and Siniscalchi (2016), Rigotti, Shannon and

Strzalecki (2008), and Billot et al. (2000). In these papers, it is assumed

that aggregate endowment is constant. The common result is that when all

ambiguity averse agents share a common prior and markets are complete,

Pareto efficiency implies full insurance, i.e., every agent consumes a constant

amount of good in every state. In our model, we do not assume that aggregate

endowment is constant. But, we assume that every player has a rectangular

set of priors (unlike those literatures). This assumption is to minimize the

impact of “closeness” between the truth and a player’s prior. We show that

if all players are ambiguity averse and have the largest rectangular set of

priors, they can agree on a stationary allocation.

Regarding ambiguity aversion and market selection, there is a large vol-

ume of literature. Condie (2008) is closely related to this paper. He uses the

recursive multiple priors model suggested by Epstein and Schneider (2003) to

investigate whether ambiguity averse agents survive in the competitive mar-

ket, assuming the existence of a Bayesian expected utility maximizer who

knows the true data generating process. Condie Theorem 1 (2008) states

that if there is aggregate uncertainty and there exists a Bayesian expected

utility maximizer with the correct prior, any ambiguity averse agent who

satisfies a certain condition vanishes. One difference between Condie (2008)

and this paper is that we do not consider cases in which Bayesian expected

utility maximizers and ambiguity averse players coexist. For Theorem 1 in

Condie (2008), it is crucial to assume the existence of the Bayesian player

who knows the truth. This is because an ambiguity averse agent with a rect-

angular set of priors can be thought of as Bayesian, and she has to compete
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against the Bayesian agent who knows the truth. As we mentioned in the

previous paragraph, in our model, every ambiguity averse player can survive

in the absence of Bayesian players. Da Silva (2011) studies the survival of

an agent with variational preferences in the presence of an expected utility

maximizing Bayesian agent with the correct beliefs, and Proposition 3 in

the paper generalizes Condie’s result (Theorem 1, 2008). Guerdjikova and

Sciubba (2015) adopt the recursive smooth ambiguity aversion proposed by

Klibanoff, Marinacci and Mukerji (2009), and analyze complete markets in

which expected utility maximizing Bayesian learners and smooth ambiguity

averse agents coexist. Guerdjikova and Sciubba’s result (Proposition 5.12,

2015) states a sufficient condition under which a smooth ambiguity averse

agent can survive even if there exists a Bayesian expected utility maximizer

who knows the truth.

2.2 Example

We consider a simple risk sharing game. There are player 1 and player 2,

who live for two periods. At the beginning of each period, Nature chooses a

state from S = {A,B}. Each player believes that states are independently

and identically distributed across periods. Player 1 and player 2 have dif-

ferent priors about states of world. Player 1 believes that state A is chosen

with probability q > 0.5, and player 2 believes that state A is chosen with

probability 1− q.

Each player receives one unit of a perishable good at the beginning of each

period. The players have the same discount factor δ ∈ (0, 1) and the same

utility function u(c) = ln c where c is consumption. In each period, after

observing the state, each player can choose how much of her endowment to

transfer to the other player in that period. Players make these decisions

simultaneously.
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If there was just one period, the unique Nash equilibrium is that both

players make no transfer. Therefore, in the 2-period game, the unique sub-

game perfect equilibrium is to make no transfer in each period. However, the

players can do better if they can agree on transfers, and if this agreement

is enforced by a third party, such as a court. A good example is a com-

plete market. This example can be thought of as a complete market when

the players can commit. The following diagram shows the allocation in the

complete market version of the example.

A B

c1 = 2q
c2 = 2(1− q)

c1 = 2(1− q)
c2 = 2q

AA AB

c1 =
2q2

q2 + (1− q)2

c2 =
2(1− q)2

q2 + (1− q)2

c1 = 1

c2 = 1

BA BB

c1 =
2(1− q)2

q2 + (1− q)2

c2 =
2q2

q2 + (1− q)2

c1 = 1

c2 = 1

Player 2’s expected utility is

E[u2] = (1− q) ln 2(1− q) + q ln 2q

+ δ

[
(1− q)2 ln

(
2(1− q)2

q2 + (1− q)2

)
+ q2 ln

(
2q2

q2 + (1− q)2

)]
> 0.

Since each player’s expected utility is zero in the unique subgame perfect
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equilibrium, player 2 prefers the above allocation. Moreover, because the

example is symmetric, the above allocation also gives player 1 an expected

utility strictly larger than zero. Therefore, the two players would be willing

to commit themselves to the above allocation. This argument means that

existence of external enforcement has an impact on the players’ agreement.

Ambiguity aversion is another factor that would have some impact on

the players’ agreement. If the two players behave according to maxmin cri-

terion (Gilboa and Schmeidler (1989)), they would not agree on the above

allocation. For simple argument, let us assume that every player thinks the

probability of Nature choosing A can be any number in [0, 1]. Given the

above allocation, the worst case from player 1’s perspective is when Nature

chooses B in every period. Since q > 0.5, if Nature always chooses B, player

1’s consumptions in period 1 and period 2 will be lower than his endowment.

Therefore, if player 1 calculates his expected utility according to maxmin

criterion, he would not agree on the above allocation. Similarly, player 2

prefers her endowment to the above allocation.

To sum up, this example illustrates the idea that an allocation that the

two players would agree on depends on whether external enforcement is avail-

able or not, and whether the two players are Bayesian or ambiguity averse.

In this work, we generalize the example and study the impact of model un-

certainty and commitment on outcomes that players would agree on.

2.3 Model: A Risk Sharing Game

Time is discrete, and there are infinitely many periods: t = 1, 2, . . .. There

are I infinitely-lived players who consume a single kind of a perishable and

continuously divisible good. By abusing notation, I is also the set of players.

In each period t, Nature chooses a state st from a finite set S = {1, · · · , K}
of possible states. We postpone the description of the stochastic process
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that governs the selection of states until later in this section. Player i’s

endowment with the consumption good in period t is a function of the state

ei : S −→ [e, e] for some 0 < e < e. e(s) =
∑

i∈I ei(s) is the sum of

the endowments in state s. Without loss of generality, we can assume that

e(1) ≤ · · · ≤ e(K). Thus ei(st) is player i’s endowment in period t, and e(st)

is the aggregate endowment in period t. The history of states up to period t

is denoted by st = (s1, · · · , st).

In each period t, after observing the state st, each player i can choose an

amount τij(st) of the good that he transfers to agent j 6= i. Player i can only

choose non-negative transfers, and, moreover, his transfers have to satisfy:

∑
j 6=i

τij(st) ≤ ei(st).

The players simultaneously make transfers. Player i’s consumption in period

t is then:

ci(st) = ei(st)−
∑
j 6=i

τij(st) +
∑
j 6=i

τji(st).

Player i’s utility from consumption in period t is given by ui(c(st)), where

ui : R+ −→ R is player i’s instantaneous utility function.3 We assume that

for all i ∈ I, ui is monotonically increasing, strictly concave and continuously

differentiable. In addition, we assume that for all i ∈ I, limc→0+ u
′
i(c) = ∞.

Given the infinite sequence of states (s1, s2, · · ·), player i’s overall utility is

then the present discounted value of per period utilities:

∞∑
t=1

δt−1ui(ci(st)).

Note that we assume that all players have the same discount factor. This

is because differences in discount factors could lead to differences in players’

3R+ = [0,∞).
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long-run survival, and we want to isolate the effect of differences in beliefs

on long-run survival.

We now turn to a description of the stochastic process that determines

the state in each period. S is the set of infinite sequences of states.

S = S × S × S × · · · ≡ S∞.

An element ω ∈ S is called a path. An element st = (s1, · · · , st) ∈ St is

called a state history. Clearly, St is the set of all state histories of length

t. Given any state history st ∈ St, we construct a partition Ft of S. For

st = (s̄1, s̄2, . . . , s̄t) ∈ St, we define

S(st) = {(s1, s2, s3, . . .) ∈ S|sτ = s̄τ for all 1 ≤ τ ≤ t}.

The partition Ft is the collection of S(st). That is,

Ft =
⋃
st∈St
{S(st)}.

When t = 0, F0 = {S}, and s0 ∈ F0 is S. Let F∞ ≡ ∪∞t=1Ft. F is the

smallest sigma-algebra that contains F∞. By abusing notation, st also refers

to S(st).

The true data generating process is that states are i.i.d. Let ∆S be the

set of all probability measures on S. For q ∈ ∆S, νq is the induced measure

on (S,F). Nature chooses a state s according to some q ∈ ∆S in every

period. In other words, Nature chooses the path ω ∈ S according to νq.

Players will also have beliefs about the data generating process. These

beliefs will be probability measures on (S,F). Players will evaluate strate-

gies by calculating the expected value of their discounted expected utility as

defined above. Further details of players’ evaluations of consumption plans
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will be specified in subsequent sections.

We now describe players’ strategies. τ(st) denotes the transfer history,

which is the tuple of all players’ past transfers at the state history st =

(s1, s2, · · · , st):

τ(st) =
(

(τij(s1)), · · · , τij(st−1))
)
i∈I,j∈I

Player i’s strategy σi specifies her transfers in every state history st as a

function of the state history st and the transfer history τ(st). σij(s
t, τ(st))

denotes the transfer from player i to player j in period t. Σi is the set of

player i’s strategies, and Σ = Σ1 × · · · × ΣI . An element σ ∈ Σ is called a

strategy profile.

Given the strategy profile σ, we can compute player i’s transfers τσij and

consumption plan cσi . For s1 ∈ F1,

τσij(s
1) = σij(s

0),

τσ(s1) =
(
τσij(s

0)
)
i∈I,j∈I .

For s2 = (s1, s2),

τσij(s
2) = σij

(
s2, τσ(s1)

)
,

τσ(s2) =
(
τσij(s

1), τσij(s
2)
)
i∈I,j∈I .

By induction, we can compute τσij(s
t) for all st ∈ F∞.

Using the transfers τσij, we can compute player i’s consumption in every

state history cσi (st). For computation of cσi , we assume that every player fol-

lows σ. If external enforcement is available, this assumption is automatically

satisfied. In the absence of external enforcement, the assumption would be

meaningful if σ is a subgame perfect equilibrium, and cσi will be player i’s
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consumption along the equilibrium path. Since no player has an incentive to

discard the good, for every st ∈ Ft

cσi (st) = ei(s
t)−

∑
j 6=i

τσij(s
t) +

∑
j 6=i

τσji(s
t).

Player i’s utility given strategy profile σ, and given a sequence of states, is

then:
∞∑
t=1

δt−1ui(c
σ
i (st)).

2.4 Bayesian Players and External Enforcement

In this section, we analyze the asymptotic behavior of Pareto efficient alloca-

tions when all players are Bayesian and external enforcement is available. By

external enforcement, we mean that given the strategy profile σ, the trans-

fers τσij(s
t) are enforced by an external enforcer, such as a court, in every

state history. In other words, external enforcement means that player i must

consume cσi (st) in every state history st.

The main result in this section is that if player i’s prior is closer to the

truth than player j’s prior is, player j’s consumption converges to zero. To

prove this result, we first define a Bayesian player and Pareto efficiency under

external enforcement. Then, we introduce a notion of “closeness” between

the truth and a player’s prior. Applying the limiting behavior of Bayes

estimators, we can establish the main result.

We start with the definition of a Bayesian player.

Definition 2.4.1. Player i is said to be Bayesian if she has a prior belief
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µi, a probability measure defined on (S,F), that is of the form:

µi =

∫
∆S

νqFi(dq).

for some Fi ∈ ∆(∆S) and evaluates consumption plans according to her

expected utility.

Definition 2.4.1 reflects that players believe that the process is i.i.d.

Therefore, their prior is assumed to be the convex combination of i.i.d pro-

cesses. For example, suppose that S = {A,B}. Let q be the probability of

state A, and assume that player i knows that q = 0.3 and q = 0.6 are equally

likely. In this case, Fi(0.3) = Fi(0.6) = 0.5 and Fi is zero otherwise. Player

i’s prior is then:

µi = 0.5ν(0.3) + 0.5ν(0.6).

For technical convenience, we assume that for each i ∈ I, the support

of Fi is a compact subset of the interior of ∆S. This means that no player

believes that the i.i.d process might be such that some state occurs with

zero probability. We also assume that, if for an open set W ⊂ supp(Fi), Fi

conditional on W admits a density fi|W with respect to Lebesgue measure,

fi|W (q) > 0 for all q ∈ W .

Given the consumption plan ci and the prior µi, we use Vi to denote player

i’s expected utility:

Vi(ci, µi) =
∞∑
t=1

∑
st∈Ft

δt−1ui(ci(s
t))µi(s

t).

Now, we turn to define Pareto efficiency under external enforcement.

Definition 2.4.2. A strategy profile σ is Pareto efficient under external en-
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forcement if there is no strategy profile σ′ such that for all i ∈ I,

Vi(c
σ
i , µi) ≤ Vi(c

σ′

i , µi)

and for some i ∈ I, the above relationship holds with strict inequality.

In order to state our results, we need to introduce a notion of closeness

between a true data generating process and a player’s prior. We use the

following notations. For ω ∈ S and t ∈ N define:

q̂t(ω) =
1

t
(n1,t(ω), · · · , nK,t(ω)) ≡ (q̂1,t(ω), · · · , q̂K,t(ω))

where ns,t(ω) is the number of realizations in the first t realizations in ω that

equal state s. For q ∈ ∆S, define

S(q) =
{
ω ∈ S

∣∣∣ lim
t→∞

q̂t(ω) = q
}
.

This is the set of infinite sequences where the frequency q̂ converges to q.

For q, q′ ∈ ∆S, D(q, q′) the Kullback-Leibler divergence is defined as

follows (Kullback p. 6, 1959):

D(q, q′) =
∑
s∈S

q(s) [ln q(s)− ln q′(s)] .

Using S(q) and Kullback-Leibler divergence, we define a comparison of the

true data generating process and two players’ priors as follows.

Definition 2.4.3. For i 6= j, µi is closer to q ∈ ∆S than µj is if:

1. µi(S(q)) > 0 and µj(S(q)) = 0, or

2. minq′∈supp(Fi) D(q, q′) < minq′∈supp(Fj) D(q, q′).
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Let us interpret Definition 2.4.3 and discuss the implication of the con-

ditions in the definition for players’ learning. If the first condition holds,

player i assigns positive probability to S(q) whereas player j assigns zero

probability to S(q). In this case, it is certain that player i’s posterior belief

converges to νq. That is, player i learns the truth in the long run. There are

two cases in which µj(S(q)) = 0: 1) q is not in the support of player j’s prior,

or 2) player j’s prior has some positive density at q, but q is not an atom of

player j’s prior. If player j believes that q is impossible, she does not learn

the truth in the long run, whereas player i learns the truth. If player j has

some positive density at q, she learns the truth in the long run. However,

we will show below in Lemma 2.4.1 that player i’s posterior belief converges

to q faster than player j’s posterior belief does. In words, player i learns the

truth faster than player j does.

Let us look at the second condition. We consider two cases. The first

case is when minq′∈supp(Fi) D(q, q′) = 0 and minq′∈supp(Fj) D(q, q′) > 0. In this

case, the true data generating process is included in the support of player i’s

prior, but the true data generating process is not in the support of player

j’s prior. This means that in the long run, player i learns the true data

generating process whereas player j does not.

The second case is when 0 < minq′∈supp(Fi) D(q, q′) < minq′∈supp(Fj) D(q, q′).

In this case, the true data generating process is in neither the support of

player i’s prior nor the support of player j’s prior. This implies that in the

long run, neither player i nor player j learns the truth. Schwartz (Theorem

6.1, 1965) and Berk (Theorem, p. 54, 1965) establish that the posterior belief

converges to one that is closest to the true data generating process among

possible beliefs in terms of Kullback-Leibler divergence. Therefore, in this

case, the Kullback-Leibler divergence between player i’s asymptotic posterior

belief and the truth is strictly smaller than the Kullback-Leibler divergence

between player j’s asymptotic posterior belief and the truth.
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The following lemma will be useful in characterizing Pareto efficient allo-

cation under external enforcement.

Lemma 2.4.1. Suppose that µi is closer to q ∈ ∆S than µj is. Then, µi
µj

goes to infinity νq-almost surely.

νq

({
(s1, s2, · · ·) ∈ S(q)

∣∣∣ lim
t→∞

µi(s
t)

µj(st)
=∞

})
= 1.

(proof) See the Appendix.

We now write down the expected utility maximization problem that a

Pareto efficient allocation must solve.

max
c2,...,cI

∞∑
t=1

∑
st∈Ft

δt−1u1

(
e(st)−

I∑
i=2

ci(s
t)

)
µ1(st)

subject to

∞∑
t=1

∑
st∈Ft

δt−1ui(ci(s
t))µi(s

t) ≥ vi ∀i = 2, · · · , I.

The first order condition implies that there exists λi > 0 for each i ∈ I such

that for all st,
u′i(ci(s

t))

u′j(cj(s
t))

µi(s
t)

µj(st)
=
λi
λj

for all i, j ∈ I. (2.1)

One way of understanding the first order condition is to think of different

state histories as different “states.” F∞ can be thought of as a “new set of

states.” For player i’s prior µi, one can generate a “new measure” µ̃i in the

following way. For every element st ∈ F∞,

µ̃i(s
t) = (1− δ)δtµi(st).

Note that
∑

st∈F∞ µ̃i(s
t) = 1. Pareto efficiency implies that for every pair
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of “new states” st, s′t
′

and for every pair of i, j, player i’s marginal rate

of substitution between st and s′t
′

is equal to player j’s marginal rate of

substitution between st and s′t
′
. That is,

u′i(ci(s
t))µ̃i(s

t)

u′i(ci(s
′t′))µ̃i(s′

t′)
=

u′j(cj(s
t))µ̃j(s

t)

u′j(cj(s
′t′))µ̃j(s′

t′)
.

This means that for every i, there exist λi > 0 such that for every st ∈ F∞,

u′i(ci(s
t))µ̃i(s

t)

u′j(cj(s
t))µ̃j(st)

=
λi
λj
.

Clearly, the above equation is the same as the first order condition (2.1). The

new equation implies that the ratio of player i and j’s probability weighted

marginal utilities from consumption needs to be the same in all states. If this

were not the case, then a Pareto improvement could be achieved by increasing

player i’s consumption and decreasing player j’s consumption in the state in

which the ratio is higher, and changing consumption in the opposite direction

in the state in which the ratio is lower.

Another way of understanding the first order condition (2.1) is to consider

the dynamics of the consumptions between two consecutive state histories.

Suppose that the players arrived at the state history st, but they do not

consume yet. Choose two players i and j. They are about to consume

ci(s
t) and cj(s

t), respectively. Pareto efficiency means that player i and

player j have no incentive to trade between two consecutive periods. In other

words, Pareto efficiency requires that player i′’s marginal rate of substitution

between st and (st, s) be equal to player j′’s marginal rate of substitution

between st and (st, s). This means that for every s ∈ S,

u′i(ci(s
t))

u′i(ci(s
t, s))µi(st, s|st)

=
u′j(cj(s

t))

u′j(cj(s
t, s))µj(st, s|st)

.
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After rearranging, we obtain

u′i(ci(s
t))

u′j(cj(s
t))

=
u′i(ci(s

t, s))µi(s
t, s|st)

u′j(cj(s
t, s))µj(st, s|st)

. (2.2)

Multiplying both sides by µi(s
t)

µj(st)
results in the first order condition (2.1).

So far, we have explained the first order condition (2.1) relying on the

equalization of marginal rates of substitution that is familiar as a necessary

condition for Pareto efficiency in general equilibrium theory. However, we

will consider the dynamic path of allocations later, and it would be more

useful to use the equation (2.2) because the left hand side depends only

on st and the right hand side depends only on (st, s). We will constantly

use the ratio of two players’ marginal utilities to describe the dynamics of

consumptions. As an exercise, let us explain the implication of the equation

(2.2). Suppose that the equation (2.2) does not hold and that the left hand

side is larger than the right hand side. In this case, we can find a Pareto

improvement. Let us increase ci(s
t) by ε1 and decrease ci(s

t, s) by ε2 such

that player i receives the same expected utility up to the first order. That

is, ε1 and ε2 satisfy the following equation.

u′i(ci(s
t))ε1 − δu′i(ci(st, s))µi(st, s|st)ε2 = 0.

Now, let us look at the change in player j’s expected utility. Her consumption

in the state history decreases by ε1 and her consumption in (st, s) increases
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by ε2.

− u′j(cj(st))ε1 + δu′j(cj(s
t, s))µj(s

t, s|st)ε2

= u′j(cj(s
t))ε1

[
−1 +

δu′j(cj(s
t, s))µj(s

t, s|st)
u′j(cj(s

t))

ε2
ε1

]
= u′j(cj(s

t))ε1

[
−1 +

δu′j(cj(s
t, s))µj(s

t, s|st)
u′j(cj(s

t))

u′i(ci(s
t))

δu′i(ci(s
t, s))µi(st, s|st)

]
= u′j(cj(s

t))ε1

[
−1 +

u′i(ci(s
t))

u′j(cj(s
t))

u′j(cj(s
t, s))µj(s

t, s|st)
u′i(ci(s

t, s))µi(st, s|st)

]
Therefore, if the ratio of two players’ marginal utility from today consump-

tion is larger than the ratio of their probability-weighted-marginal utilities

from tomorrow consumption, the above quantity is positive. This means that

one can find a Pareto improvement if the ratio of two players’ marginal utility

from today consumption is larger than the ratio of their probability-weighted-

marginal utility from tomorrow consumption. Therefore, if an allocation is

Pareto efficient under external enforcement, for every pair of players, the ra-

tio of their marginal utilities from today consumption is equal to the ratio of

their probability-weighted-marginal utilities from tomorrow consumption.

From the first order condition (2.1), we can see that if µi
µj

goes to infinity,
u′i
u′j

converges to zero. That is, player j’s consumption converges to zero when
µi
µj

goes to infinity. This idea is reflected in the following proposition.

Proposition 2.4.1. Suppose that a strategy profile σ is Pareto efficient under

external enforcement. If µi is closer to q than µj is, cj converges to zero νq-

almost surely.

(proof) See the Appendix.

The intuition for Proposition 2.4.1 comes from the combination of Defi-

nition 2.4.3 and Lemma 2.4.1. Suppose q ∈ ∆S is the true data generating

process. Proposition 2.4.1 implies that player j’s asymptotic consumption
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converges to zero with probability 1 in the following cases: 1) player i learns

the truth faster than player j, 2) the true data generating process is possible

under player i’s prior whereas it is impossible under player j’s prior, and

3) neither player i nor player j learns the truth, but player i’s asymptotic

posterior belief is closer to the true data generating process than player j’s

asymptotic posterior belief is. We discuss these cases in the next paragraph.

The first case in the previous paragraph means that learning speed mat-

ters in terms of long run survival. Proposition 2.4.1 implies that in our model,

if player i learns the truth faster than player j, player j’s consumption gets

smaller. The second case means that if player i learns the truth, player j

needs to learn the truth in order to survive in the long run. It does not

matter whether player i survives in the long run. The third case means that

if no player learns the truth, the survivors are the players who have the prior

“closest” to the truth. In other words, it is important for a player to have

the least incorrect belief in order to survive in the long run. It would be

worth mentioning that the third case means that a player being a winner in

the long run does not necessarily mean that she knows the truth.

We illustrate the third case using the Example in Section 2. The example

needs to be modified to deal with the infinite horizon. Suppose that Nature

always chooses state A. For player 1, the probability of observing t A’s in a

row is qt. From player 2’s perspective, the probability of observing t A’s in a

row is (1− q)t. The ratio of those two probabilities is ( q
1−q )

t, which diverges

to infinity as t goes to infinity. Note that neither of the two players learns

the truth because they have point priors. However, Pareto efficiency implies

that player 2’s asymptotic consumption is very small. We can show this using

Kullback-Leibler divergence. For player 1, the Kullback-Leibler divergence

between the truth and her prior is − ln q. For player 2, the Kullback-Leibler

divergence between the truth and his prior is− ln(1−q). Since q > 0.5 > 1−q,
− ln q < − ln(1 − q), this means that player 1’s prior is closer to the truth
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than player 2’s prior.

Finally, we would like to compare Proposition 2.4.1 and the Blume and

Easley results in Section 3.1 (2006). One difference between Blume and

Easley Section 3.1 and our model is that in Blume and Easley (2006), traders

have different discount factors. We can relax the assumption that every

player has same discount factor, and obtain the result similar to Blume and

Easley result. Let δi be player i’s discount factor. The first order condition

(2.1) becomes
δt−1
i

δt−1
j

u′i(ci(s
t))

u′j(cj(s
t))

µi(s
t)

µj(st)
=
λi
λj
.

So, long run survival depends on the ratio of player i’s discount factor to

player j’s discount factor as well.

Another difference between Blume and Easley (2006) Section 3.1 and our

model is that traders in Blume and Easley (2006) do not learn, whereas in our

model players can learn. So, our model can be thought of as a generalization

of their i.i.d. example.

Blume and Easley Theorems 1 – 3 (2006) rely on the notion of absolutely

continuity. However, our model covers cases in which the true data generating

process is not absolutely continuous with respect to some player’s prior, and

talks about the long run survival.

Blume and Easley Theorems 1 – 6 (2006) apply when at least the support

of one player’s prior contains the true data generating process. In other

words, the theorems do not tell much about long run survival when the

true data generating process is not included in the union of the support of

all players’ priors. However, in this paper, we analyze a subgame perfect

equilibrium, and thus we need to specify what happens to every player’s

consumption even if the true data generating process is not included in the

union of the support of all players’ priors. Focusing on i.i.d. processes with

29



learning, we do not rely on absolute continuity. Also, we are able to describe

the asymptotic behavior of a player’s consumption, regardless of whether the

true data generating process is included in the support of some player’s prior.

2.5 Bayesian Players and Self Enforcement

In this section, we analyze a property of Pareto efficient subgame perfect

equilibria of the risk sharing game when the players are Bayesian. Our main

result in this section is that for each player, there exists a lower bound such

that her consumption does not fall below the lower bound in every Pareto

efficient subgame perfect equilibrium. Roughly speaking, no player starves

in the long run if the players implement a Pareto efficient subgame perfect

equilibrium. This implies that even if player i’s prior is closer to the true

data generating process than player j’s prior is, player j’s consumption does

not converge to zero. One implication of the main result is that no Pareto

efficient strategy profile under external enforcement is a Pareto efficient sub-

game perfect equilibrium. In this sense, the value of external enforcement is

positive.

To derive the main result, we first define a subgame perfect equilibrium,

and completely characterize subgame perfect equilibriums. The characteri-

zation of subgame perfect equilibrium is the following. The worst subgame

perfect equilibrium is that every player makes zero transfer to everyone else,

regardless of how other players have played. This is because the unique Nash

equilibrium of the stage game is that every player makes zero transfer, and

every player receives their minimax payoffs in the unique Nash equilibrium.

This property allows us to use a grim trigger strategy to characterize a sub-

game perfect equilibrium.

After the characterization of all subgame perfect equilibria, we define

Pareto efficiency without commitment. To understand properties of the dy-
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namic paths of consumption, we set up a standard expected utility maxi-

mization problem with constraints and derive the first order condition. The

main result in this section is derived from the first order condition.

We begin with defining a subgame perfect equilibrium.

Definition 2.5.1. A strategy profile σ is a subgame perfect equilibrium of

the risk sharing game if it induces a Nash equilibrium of every subgame.

To characterize subgame-perfect equilibria we need to consider a player’s

continuation payoff in the state history st. Given the strategy profile σ and

the prior µi, player i’s continuation payoff at the state history st is denoted

by Vi(c
σ
i , µi|st):

Vi(c
σ
i , µi|st) =

∞∑
r=1

δr−1ui(c
σ
i (st+r))µi(s

t+r|st).

We turn to characterize subgame perfect equilibria. Note that the static

risk sharing game, that is, the risk sharing game with just one period, is

similar to the Prisoner’s dilemma. In the static risk sharing game the players

can expect higher utilities if before observing the state, they commit them-

selves to state contingent transfers. However, the unique Nash equilibrium

of the static risk sharing game is that every player makes zero transfer. This

observation is useful in characterizing a subgame perfect equilibrium.

σ denotes the “no-transfer” strategy profile under which for every i, j, st

and τ(st), τσij(s
t, τ(st)) = 0. Clearly, this means that for every i ∈ I and

every state history st ∈ F∞, cσi (st) = ei(s
t).

Lemma 2.5.1. The “no-transfer” strategy profile σ is a subgame perfect

equilibrium. And, in any subgame perfect equilibrium σ, Vi(c
σ
i , µi|st) ≥

Vi(ei, µi|st) for every i ∈ I and every st ∈ F∞.
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Proof. In the static risk sharing game, the unique Nash equilibrium is that

the I players make zero transfer. Therefore, it is a subgame perfect equi-

librium for the players to make zero transfer regardless of how the players

have played in the past. This argument proves that the no-transfer strategy

profile is a subgame perfect equilibrium.

To prove the second statement, we calculate minimax payoffs first. The

harshest way to punish player i is that all other players make zero transfer

to player i. For player i, the best response to receiving zero transfer is to

make zero transfer to all other players. This means that for each player,

consuming their own endowments is minimax payoff, which in turn implies

that no-transfer strategy profile is the worst subgame perfect equilibrium.

Using Lemma 2.5.1, we can use a grim trigger strategy profile to construct

all subgame perfect equilibria.

Lemma 2.5.2. For an allocation (c1, · · · , cI), there exists a subgame perfect

equilibrium σ with cσi = ci for all i if and only if for all i ∈ I and for st ∈ F∞,

ui(ci(s
t)) + δVi(ci, µi|st) ≥ ui(ei(s

t)) + δVi(ei, µi|st).

(proof) See the Appendix.

Our interest in this section is in Pareto efficient subgame perfect equilib-

ria. To clarify the meaning of Pareto efficiency in the context of subgame

perfect equilibria, we formally define a Pareto efficient subgame perfect equi-

librium first.

Definition 2.5.2. A strategy profile σ is a Pareto efficient subgame perfect

equilibrium if it is a subgame perfect equilibrium and there is no subgame

perfect equilibrium σ′ such that for all i ∈ I,

Vi(c
σ
i , µi) ≤ Vi(c

σ′

i , µi)
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and for some i ∈ I, the above relationship holds with strict inequality.

Note that Definition 2.5.2 is ex-ante Pareto efficiency.

To analyze Pareto efficient subgame perfect equilibria, we are going to

set up an expected utility maximization problem. The problem we need to

solve is the following:

max
c2,···,cI

∞∑
t=1

∑
st∈Ft

δt−1u1

(
e(st)−

I∑
i=2

ci(s
t)

)
µ1(st)

subject to

∞∑
t=1

∑
st∈Ft

δt−1ui(ci(s
t))µi(s

t) ≥ vi, ∀i = 2, · · · , I,

and for all i = 1, 2, · · · , I and all st

ui(ci(s
t)) + δVi(ci, µi|st) ≥ ui(ei(s

t)) + δVi(ei, µi|st) SEC(i)

where SEC(i) is player i’s self enforcement condition.

Using the first order condition equation, we can briefly describe the dy-

namics of players’ consumptions. Choose the state history st = (st−1, s). If

player i and j’s self enforcement conditions are not binding in st, then first

order condition means that

u′i(ci(s
t−1))

u′j(cj(s
t−1))

µi(s
t−1)

µj(st−1)
=
u′i(ci(s

t))

u′j(cj(s
t))

µi(s
t)

µj(st)
.

Equivalently,

u′i(ci(s
t−1))

u′j(cj(s
t−1))

=
u′i(ci(s

t))

u′j(cj(s
t))

µi(s
t|st−1)

µj(st|st−1)
.
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This means that if the two players’ self enforcement conditions are not bind-

ing, then the marginal rate of substitution between st−1 and st should be the

same. Note that this is equivalent to the first order condition (2.2).

If player i’s self enforcement condition is binding and player j’s self en-

forcement condition is not binding in st,

u′i(ci(s
t−1))

u′j(cj(s
t−1))

>
u′i(ci(s

t))

u′j(cj(s
t))

µi(s
t|st−1)

µj(st|st−1)
.

If player i’s self enforcement condition is binding and player j’s self enforce-

ment condition is not binding in st, that means that ci(s
t) is higher than

what it would be if the two self enforcement conditions are not binding in st.

This means that
u′i(ci(s

t))

u′j(cj(s
t))

is lower compared to the case in which SEC(i) and

SEC(j) are not binding in st.

Both cases imply that if player j’s self enforcement condition is not bind-

ing in st, player j’s consumption increase from st−1 to st is limited. Espe-

cially, if cσj (st−1) is very small, and if player j’s self enforcement condition is

not binding in the state history (st−1, s), cσj (st−1, s) is also very small. This

argument is used to prove the following proposition.

Proposition 2.5.1. Fix δ < 1. For each i ∈ I, there exists ci > 0 such

that for every state history st and for every Pareto efficient subgame perfect

equilibrium σ, cσi (st) ≥ ci.

(proof) See the Appendix.

Proposition 2.5.1 implies that every player’s consumption is bounded from

below in a Pareto efficient subgame perfect equilibrium. Proposition 2.5.1

also means that a lower bound for a player’s consumption is independent

of Pareto efficient subgame perfect equilibria. In other words, a player’s

minimum consumption is guaranteed regardless of Pareto efficient subgame

perfect equilibria.
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We discuss how a lower bound for a player’s consumption behaves as the

discount factor δ goes to one. Following the proof of Proposition 2.5.1, one

can construct a lower bound given the discount factor. This lower bound

converges to zero as the discount factor goes to one. However, the proof of

Proposition 2.5.1 does not show that the lower bound is tight. It is an open

question to prove or disprove that a tight lower bound converges to zero as

the discount factor goes to one.

Let us discuss the idea behind Proposition 2.5.1. Suppose not. Then, we

can choose a Pareto efficient subgame perfect equilibrium σ in which cσj (st)

is close to zero for some j ∈ I and some state history st. Since everyone’s

consumption cannot be close to zero at the same time, there must exist player

i whose consumption is large in st. Note that SEC(j) cannot be binding in

period t+ 1 with probability one because otherwise SEC(j) is violated in st.

Therefore, SEC(j) is not binding in some state st+1 in period t + 1. The

first order condition implies that player j’s consumption in st+1 = (st, st+1)

is very small because her consumption in st is very small. Now, we can

repeat this argument. If the state st+1 is realized in period t + 1, player

j’s consumption is very small, which means that SEC(j) cannot be binding

with probability one in period t + 2, which in turn means that if SEC(j)

is not binding in state st+2, player j’s consumption in st+2 = (st+1, st+2) is

low . This logic means that if cσj (st) is sufficiently small, player j expects

low consumption to be persistent in the future when she arrives at the state

history st. However, this would mean that player j’s continuation payoff in

st is lower than her minimax payoff. Therefore, it would be impossible to

choose a Pareto efficient subgame perfect equilibrium in which some player’s

consumption can be arbitrarily close to zero.

Proposition 2.5.1 has an implication on Pareto efficient allocations under

external enforcement. We know from Proposition 2.4.1 that if player i’s prior

is closer to the truth than player j’s prior is, there exists a path ω ∈ S along

35



which player j’s consumption converges to zero. However, Proposition 2.5.1

means that in a Pareto efficient subgame perfect equilibrium, every player’s

consumption is bounded from below in every state history. This implies that

if a strategy profile σ is Pareto efficient under external enforcement, it is not

a Pareto efficient subgame perfect equilibrium. This idea is reflected in the

following corollary.

Corollary 2.5.1. Suppose 1) that all I players are Bayesian, 2) that µi is

closer to q than µj is for some i, j and q ∈ ∆S, and 3) that δ < 1. Then,

no Pareto efficient strategy profile under external enforcement is a Pareto

efficient subgame perfect equilibrium.

Proposition 2.5.1 and Corollary 2.5.1 hold as long as δ is strictly less than

one. There are two interesting questions that I have not been able to address

yet. The first question is whether Proposition 2.5.1 and Corollary 2.5.1 are

true when δ = 1, and the second question is whether the Pareto efficient

frontier of the set of payoff vectors in subgame perfect equilibria converges

to the Pareto efficient frontier of the set of payoff vectors with commitment.

Nonetheless, we can discuss Proposition 2.5.1 and Corollary 2.5.1. If the

answer to the first question is yes, then the answer to the second question

is no. No player starves in the long run even if the discount factor is one.

External enforcement is valuable. If the answer to the first question is no,

some player would starve in the long run. The set of payoff vectors of Pareto

efficient subgame perfect equilibrium would converge to the set of payoff

vectors of Pareto efficient allocations with commitment. However, if every

player does not discount future payoffs at all, the analysis would not be very

interesting.

For some class of repeated games such as some repeated Prisoner’s dilemma

games, there exists δ such that for all δ ≥ δ, a Pareto efficient payoff vector
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with commitment can be achieved in a subgame perfect equilibrium. Propo-

sition 2.5.1 and Corollary 2.5.1 imply that in our model, there is no such δ.

So long as δ < 1, the Pareto efficient frontier of the set of payoff vectors in

subgame perfect equilibria is never equal to the frontier of the set of Pareto

efficient payoff vectors with commitment. To sum up, as long as players

are impatient, no player vanishes and the value of external enforcement is

positive.

2.6 Further Comments on Bayesian Players and Self

Enforcement

Proposition 2.5.1 is meaningful only if we know that a Pareto efficient sub-

game perfect equilibria exist. But this is easily seen, as the following ar-

gument shows. First, suppose we know that the set of subgame-perfect

equilibrium payoffs is non-empty and compact. Then we could maximize

the sum of all players’ payoffs on this set, and the subgame-perfect equi-

librium that corresponds to the argmax would, by construction, be Pareto

efficient. Therefore, it is sufficient to argue that the set of subgame-perfect

equilibrium payoffs is non-empty and compact. To see that it is non-empty,

we have to give an example of a subgame-perfect equilibrium. The strategy

profile in which no player makes any transfers at all, regardless of history, is

such an subgame-perfect equilibrium. The subgame-perfect equilibrium pay-

offs are bounded from below by the payoffs from the no-transfer equilibrium.

They are bounded from above because aggregate endowment is bounded.

Finally, the closeness of the set of subgame-perfect equilibrium payoffs fol-

lows by adapting standard arguments that show the closeness of the set of

subgame-perfect equilibrium payoffs in deterministic repeated games with

perfect monitoring (Proposition 2.5.2 in Mailath and Samuelson (2006)).

One might be interested in further properties of the consumption dynam-
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ics in Pareto efficient subgame perfect equilibria, beyond what is described

in Proposition 2.5.1. This is somewhat orthogonal to the main purpose of

this chapter, and requires moreover either a detailed numerical study, or a

somewhat complicated mathematical study. Therefore, we have not pursued

this topic further.

2.7 Ambiguity Averse Players and External Enforce-

ment

In this section, we analyze Pareto efficient allocations when all I players are

ambiguity averse. The main result of this section is that if every player is

ambiguity averse, they could agree on a stationary allocation and therefore,

no one would starve in the long run.

By an ambiguity averse player, we mean that the player has a set of

priors and chooses the worst prior given the consumption plan. This idea

is originally suggested by Gilboa and Schmeidler (1989). In order to model

a belief-updating-system and address the issue of dynamic consistency, we

adopt the recursive-multiple-priors model proposed by Epstein and Schneider

(2003). The recursive-multiple-priors model imposes the condition “rectan-

gularity” on the set of priors, and Epstein and Schneider (2003) show that

if the set of priors is rectangular, dynamic consistency is obtained. We will

soon introduce the definition of rectangularity in the context of our setting,

and define an ambiguity averse player and ambiguity averse Pareto efficiency.

In order to minimize the impact of the difference between the truth and

a player’s prior on the long run survival, we assume that every player has

the largest rectangular set of priors. The reason is the following. In the

recursive-multiple-priors model, an ambiguity averse player can be thought

of being Bayesian. Therefore, the “distance” between the truth and a player’s

set of priors can be a determinant of the player’s long run survival. This is
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indeed true in the presence of the Bayesian expected utility maximizer with

the correct beliefs. Condie’s result (Theorem 1, 2008) states that if there

exists at least one Bayesian expected utility maximizer who knows the truth,

an ambiguity averse player with a rectangular set of priors vanishes unless

the ambiguity averse player has the prior sufficiently close to the truth. The

argument is similar to Blume and Easley (2006). One Bayesian player knows

the truth, and an ambiguity averse player with a rectangular set of priors

can be thought of as a Bayesian learner. Consequently, if her choice of the

worst prior is far away from the truth, the ambiguity averse player is more

likely to vanish.

To isolate the impact of ambiguity aversion on long run survival, we will

make the assumption that every player has the largest rectangular set of

priors. And, we show that for every Pareto efficient allocation with commit-

ment, there exists a stationary Pareto efficient allocation. This means that if

every player is ambiguity averse, Pareto efficiency with commitment implies

that every player’s consumption could depend on the state only. This, in

turn, implies that no player’s consumption goes to zero.

We define an ambiguity averse player.

Definition 2.7.1. Player i is said to be ambiguity averse

1. if she has a set of priors Pi, and

2. if for every consumption plan c, her expected utility in period 0 is given

by infµi∈Pi
Vi(c, µi).

This definition is ex-ante ambiguity averse. That is, Definition 2.7.1

means that an ambiguity averse player is ambiguity averse before the risk

sharing game begins, and becomes Bayesian after the risk sharing game be-

gins. This raises an issue of dynamic consistency such as Ellsberg paradox.
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For instance, µi ∈ Pi is player i’s worst prior at the outset, however, after

observing the state s1, µi(·|s1) may be no longer player i’s worst prior.

In order to handle dynamic consistency, we adopt recursive multiple priors

model in Epstein and Schneider (2003).4 The important notion in recursive

multiple priors model is rectangularity. We introduce the definition of rect-

angularity below. It is originally introduced in Epstein and Schneider (2003),

and modified in the context of our setting.

Definition 2.7.2 (Epstein and Schneider). A set of priors P is rectangular

if for every µ(0), µ(1), · · · , µ(s) ∈ P and every st ∈ F∞, there exists µ ∈ P

such that for all E ⊂ S,

µ(E|st) =
∑
s∈S

µ(s)
(
E|(st, s)

)
µ(0)

(
(st, s)|st

)
.

To understand Definition 2.7.2, let us imagine the following situation.

The consumption plan c is given to a player who has a set of priors P. At

the state history st, she believes µ(0) is the worst prior among P. In the

subsequent state history (st, s), the player chooses µ(s) as the worst prior.

If the player were Bayesian, her prior conditional on st is µ(0) and her prior

conditional on (st, s) is µ(s). Rectangularity means that there exists a prior

µ ∈P such that conditional on the state history st, µ(·|st) equals µ(0)(·) and

conditional on the state history (st, s), µ(·|st, s) equals µ(s)(·). Therefore, if

a player has a rectangular set of priors, the player can be thought of as

Bayesian, updating the set of priors by applying Bayes’ rule prior-by-prior.

From the previous paragraph, we can see that rectangularity implies dy-

namic consistency. This is because given the consumption plan c, if µ is the

worst prior in period 0, µ(·|st) is the worst prior conditional on the state

4For other ways of considering dynamic consistency, see Ozdenoren and Peck (2008)
and Siniscalchi (2011)
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history st.5 This means that if player i is ambiguity averse, and if her set of

priors Pi is rectangular, then for every consumption plan c and the state his-

tory st, her expected utility conditional on st is given by infµi∈Pi
Vi(c, µi|st).

It would not be uncommon that a rectangular set of priors is large. For

instance, if a set of priors consists of i.i.d.processes only, it is not rectangular.

We would have to allow for general stochastic processes to have a rectangular

set of priors. This means that in order to achieve dynamic consistency, we

would have to depart from i.i.d. processes. This departure would imply that

the difference between the Bayesian case and the ambiguity aversion case is

partially due to the difference between i.i.d. processes and the general true

data generating processes.

We turn to Pareto efficiency when all players are ambiguity averse.

Definition 2.7.3. A strategy profile σ is ambiguity averse Pareto efficient if

there exists no strategy profile σ′ such that for each i ∈ I,

inf
µ∈Pi

Vi(c
σ
i , µ) ≤ inf

µ∈Pi

Vi(c
σ′

i , µi)

and for some i ∈ I, the above inequality is a strict inequality.

Our analysis will be focused on the case where every ambiguity averse

player has the largest rectangular set P† of priors. P† is the set of proba-

bility measures µ defined on (S,F) such that for all st ∈ F∞, µ(st) > 0.

The reason why we restrict our attention to P† is that we want to isolate

the effect of ambiguity aversion on the long run survival. As we have shown

in Bayesian cases, closeness between the true data generating process and

players’ priors plays a critical role in determining whether a player survives

5For precise statements, see Epstein and Schneider Theorem 3.2 and Theorem B.1
(2003)
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in the long run. So, if we assume a smaller set of priors, whether a player sur-

vives in the long run is affected by not only ambiguity aversion but also how

close her set of prior is to the truth. By assuming the largest rectangular set

of priors, we would be able to eliminate the impact of closeness between the

truth and the player’s prior and single out the impact of ambiguity aversion

on the long run survival. It would be a future project to study what happens

when different players have different sets of priors.

Under the assumption that Pi = P† for all i ∈ I, a stationary strategy

profile, which we define below, turns out to be useful in the characterization

of ambiguity averse Pareto efficiency.

Definition 2.7.4. A strategy profile σ is stationary if for all i ∈ I, cσi depends

only on the state.

When a strategy profile σ is stationary, cσi (s) refers to player i’s con-

sumption in state s ∈ S by abusing notation. The following lemma shows

that given an ambiguity averse Pareto efficient allocation, one can find a

payoff-equivalent, stationary, ambiguity averse Pareto efficient allocation.

Lemma 2.7.1. Suppose that Pi = P† for all i ∈ I and that a strategy

profile σ is ambiguity averse Pareto efficient. Then, there exists a stationary

ambiguity averse Pareto efficient strategy profile σ∗ such that for all i ∈ I,

inf
µ∈P

Vi(c
σ
i , µ) =

1

1− δ
ui(c

σ∗

i (1))

.

(proof) See the Appendix.

Lemma 2.7.1 means that given an ambiguity averse Pareto efficient strat-

egy, one can find a payoff-equivalent, stationary, ambiguity averse Pareto

efficient strategy. There may exist other types of ambiguity averse Pareto
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efficient strategies. However, Lemma 2.7.1 would allow us to focus on sta-

tionary and ambiguity averse Pareto efficient strategies.

We sketch the proof of Lemma 2.7.1. Given the ambiguity averse Pareto

efficient strategy profile σ, we can find a certainty equivalent. Let cσi be a

certainty equivalent for player i. For any νq, player i’s expected utility in

period 0 should be larger than or equal to the utility of receiving cσi in every

state and every period. The concavity of utility functions implies that cσi is

less than or equal to the present value of expected lifetime consumption. This

implies that the sum of the players’ certainty equivalents is less than or equal

to the present value of expected lifetime aggregate endowment. The lowest

value of expected lifetime aggregate endowment is obtained when Nature

always chooses state 1 in every period because the aggregate endowment

is the lowest in state 1. So, we can conclude that
∑

i∈I c
σ
i ≤ e(s1). This

inequality should hold with equality, otherwise σ is not Pareto efficient.

By definition of stationary strategy profiles, the following proposition is

immediate.

Proposition 2.7.1. Suppose σ is a stationary, ambiguity averse Pareto effi-

cient strategy profile. Then, for each i ∈ I, there exists ci such that cσi (st) ≥ ci

for all state history st.

2.8 Ambiguity Averse Players and Self Enforcement

We now discuss Pareto efficient subgame perfect equilibria when all players

are ambiguity averse. Because the concept of subgame perfect equilibrium is

built on the notion of time consistency, it is only well-defined in our setting if

players’ priors ensure that players are time consistent. Therefore, throughout

this section we make the assumption that each player has a rectangular set of

priors. As we discussed earlier, this implies time consistency. It is then imme-
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diate how to define subgame-perfect equilibrium. We make the assumption

of rectangularity throughout this section without explicit mentioning.

We would like to mention that the players are ambiguity averse only

about the true data generating process. We do not assume that the players

are ambiguity averse about other players’ strategies.

In this section, we provide two results. For the first result, we assume that

every player has the largest rectangular set of priors. Under this assumption,

the first result of this section is that a stationary, ambiguity averse Pareto

efficient strategy profile with commitment can be a Pareto efficient subgame

perfect equilibrium for large discount factor, provided that every player’s

continuation payoff is strictly larger than her expected utility of consuming

her own endowment. Since we assume the largest rectangular set of priors, if

the strategy profile is stationary, every player believes that she consumes the

lowest amount in every period. This means that equilibrium consumption is

also stationary, and therefore, for a sufficiently large discount factor, a sta-

tionary, ambiguity averse Pareto efficient strategy profile with commitment

can be a subgame perfect equilibrium.

For the second result, we assume that different players have different rect-

angular sets of priors, but share at least one common prior, and the aggregate

endowment is constant. The second result in this section is that if players are

sufficiently patient, in a Pareto efficient subgame perfect equilibrium, every

player consumes a constant amount of good in every period and every state.

To derive the two results, we first characterize subgame perfect equilibria.

Since rectangularity guarantees dynamic consistency, the characterization of

subgame perfect equilibria when players are ambiguity averse is the same

as the characterization of subgame perfect equilibria when the players are

Bayesian. The no-transfer equilibrium is the worst subgame perfect equilib-

rium, and any subgame perfect equilibrium can be sustained by a grim trigger
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strategy profile. After the characterization of subgame perfect equilibria, we

state the two results.

We turn to characterize subgame perfect equilibria. Since rectangularity

implies dynamic consistency, Lemma 2.5.1 is carried over. The no-transfer

strategy profile is a subgame perfect equilibrium, and it is the worst subgame

perfect equilibrium. Lemma 2.5.2 is also carried over. The unique Nash

equilibrium of the static risk sharing game is that every player makes zero

transfer to everyone else, and every player receives their minimax payoffs

in the unique Nash equilibrium of the stage game. Therefore, we state the

following Lemmas without proofs.

Lemma 2.8.1. The “no-transfer” strategy profile σ is a subgame perfect

equilibrium. And, in any subgame perfect equilibrium σ, infµ∈Pi
Vi(c

σ
i , µ|st) ≥

infµ∈Pi
Vi(ei, µ|st) for every i ∈ I and every st ∈ F∞.

Lemma 2.8.2. For an allocation (c1, · · · , cI), there exists a subgame perfect

equilibrium σ with cσi = ci for all i if and only if for all i ∈ I and for st ∈ F∞,

ui(ci(s
t)) + δ inf

µ∈Pi

Vi(ci, µ|st) ≥ ui(ei(s
t)) + δ inf

µ∈Pi

Vi(ei, µ|st).

We turn to characterize a class of Pareto efficient subgame perfect equi-

librium when the players are ambiguity averse.

Proposition 2.8.1. Suppose that for all i ∈ I, Pi = P†. Let σ be a

stationary, ambiguity averse Pareto efficient strategy profile such that for all

i, cσi (1) > mins∈S ei(s). There exists δ such that for all δ > δ, σ is a Pareto

efficient subgame perfect equilibrium.

Proof. In the Appendix.
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The idea for Proposition 2.8.1 is straightforward. Lemma 2.7.1 allows us

to focus on stationary, ambiguity averse Pareto efficient strategy profiles, and

as a result, we may not have to worry about the existence of a noted strat-

egy profile in Proposition 2.8.1. Once we have a stationary strategy profile,

clearly, for a sufficiently large discount factor, the stationary strategy profile

can be a subgame perfect equilibrium. Pareto efficiency automatically follows

when the stationary strategy profile is Pareto efficient with commitment.

For the following proposition, we consider the conventional environment,

which can be found in Billot et al. (2000), Rigotti, Shannon and Strzalecki

(2008), and Ghirardato and Siniscalchi (2016). The typical assumptions are

1) that different players have different sets of priors but share at least one

prior, and 2) that aggregate endowment is constant across states. A strategy

profile σ is called a full insurance if there exists a constant consumption plan

c = (c1, · · · , cI) such that for all i ∈ I and all st ∈ F∞, cσi (st) = ci.

Proposition 2.8.2. Assume the followings.

1. νq ∈ ∩Pi for some q in the interior of ∆S.

2. e(1) = e(2) = · · · = e(K) ≡ e.

Then, there exist a full insurance σ and δ ∈ (0, 1) such that for all δ ≥ δ, σ

is a Pareto efficient subgame perfect equilibrium.

Note that we do not assume that Pi = P† in Proposition 2.8.2. The

idea for Proposition 2.8.2 is basically the same as Billot et al. (2000). Under

the assumption that every player shares at least one prior and there is no

uncertainty of aggregate endowment, Pareto efficiency implies a full insur-

ance in complete markets. There are two minor differences between Billot et

al. Theorem 1 and Proposition 2.8.2. The first difference is rectangularity.

Since we consider dynamic environments, we added the condition that a set
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of priors is rectangular so as to update the set of priors over time. Rect-

angularity is unnecessary in Billot et al. (2000) as they consider complete

markets.

The second difference is the assumption on the shared prior. The second

condition in Proposition 2.8.2 means that all players share a point prior that

represents an independently and identically distributed process. For Billot

et al.’s result (Theorem 1, 2000), no assumption needs to be made on the

common prior shared by all players. This is partially because Billot et al.

(2000) considers complete markets, which means that external enforcement is

available. In our model, we need to make sure that every player’s continuation

payoff does not converge to their full insurance payoff. If a player’s minimax

payoff converges to her full insurance payoff along a certain path, it would be

impossible to find the lower bound for the discount factor. This means that

the player’s self enforcement condition would be violated at some history. By

requiring that every player share a common i.i.d. process, we can guarantee

that for some full insurance, every player’s minimax payoff at every history

does not converge to their full insurance payoffs. This, in turn, guarantees

the existence of the lower bound for the discount δ.

In Proposition 2.8.1, we assume the largest rectangular set of priors, but

allow for uncertainty of aggregate endowment. In Proposition 2.8.2, we allow

for different rectangular sets of priors, but assume no uncertainty of aggregate

endowments. It would be interesting to analyze the case in which different

players have different sets of priors and there is uncertainty about aggregate

endowments.

2.9 Conclusion

In this section, we summarize our results.

We analyze impacts of self enforcement and ambiguity aversion on the
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long run survival in an infinite horizon risk sharing game. Our first analy-

sis characterizes a Pareto efficient allocation when all players are standard

Bayesian and external enforcement is available. It is shown that player j’s

consumption converges to zero if 1) player i learns a true data generating

process faster than player j, 2) a true data generating process belongs to

the support of player i’s prior, but does not belong to the support of player

j’s prior, or 3) player i’s asymptotic posterior belief is closer to a true data

generating process in terms of Kullback-Leibler divergence. The first con-

dition implies that learning speed matters, especially when more than one

player learn the truth. The second condition is intuitive; if player i learns the

truth while player j does not, player i will be a winner. The third condition

means that even if a player does not learn the truth, she can be a winner

if her asymptotic posterior belief is closer to the truth than everyone else’s

asymptotic posterior belief is.

Another characterization of Pareto efficient allocation under external en-

forcement is that when the true data generating process is closer to someone’s

prior than someone else’s prior, any Pareto efficient allocation under external

enforcement is not a subgame perfect equilibrium of the risk sharing game.

The intuition is because it is difficult to change the players’ beliefs after ob-

serving sufficiently many states. Pareto efficiency determines consumptions

based on ratios of unconditional probabilities. If player i’s prior is closer to

the true data generating process than player j’s prior is, the ratio of player i’s

prior to player j’s prior grows as time goes on. If the players have observed

sufficiently large number of states, the ratio would stay large in the future

regardless of state realizations and player j’s consumption is small for long

periods because of Pareto efficiency. So, player j deviates in such a bad case

if external enforcement is not available.

Our second result is the existence of a lower bound for a player’s con-

sumption in a Pareto efficient subgame perfect equilibrium. An interesting
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feature of the second result is that a player’s consumption can be arbitrarily

close to zero in no Pareto efficient subgame perfect equilibrium. The idea

behind this result is similar to the reason that a Pareto efficient allocation un-

der external enforcement is not a subgame perfect equilibrium. If a player’s

consumption becomes very small, it takes a long time for her consumption to

become large. Therefore, sufficiently small consumption implies a profitable

deviation.

Our third analysis characterizes a Pareto efficient allocation with com-

mitment when all players are Gilboa-Schmeidler type. We first show that

for any ambiguity averse Pareto efficient allocation, there exists a payoff-

equivalent stationary ambiguity averse Pareto efficient allocation. Due to

this, when the players are ambiguity averse, Pareto efficiency implies that

each player’s consumption could depend only on the state. In this sense, am-

biguity averse players insure against model uncertainty and secure a certain

amount of endowments.

Our last analysis is the characterization of Pareto efficient subgame per-

fect equilibrium when players are ambiguity averse. Due to our third analy-

sis, we can focus on stationary Pareto efficient allocations with commitment.

Since every player’s endowment is stationary, it would not surprising that

if the players are sufficiently patient, a stationary Pareto efficient allocation

with commitment can be a Pareto efficient subgame perfect equilibrium.

We would like to mention two possible future projects. The first future

project is to study the dynamic paths of consumptions in a Pareto efficient

subgame perfect equilibrium when Bayesian players have heterogeneous pri-

ors. Pareto efficient allocations with commitment are primarily determined

by the players’ priors and independent of endowments. However, in a sub-

game perfect equilibrium, endowments are important because of self enforce-

ment conditions. If a player has a large endowment today, either her today
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consumption or her continuation payoff must be large in order to prevent

her from deviation. This argument implies that there would be a correlation

between current endowments and current consumption or between current

endowments and future consumptions. If we can theoretically characterize

such a correlation, we can empirically study whether actual data fits into

Pareto efficient allocations with commitment or Pareto efficient subgame

perfect equilibria. The second future project is to consider a risk sharing

game in which whether a player is Bayesian or ambiguity averse is private

information. It is not clear whether a player can learn another player’s type

in the long run because for instance, an ambiguity averse player can pretend

to be Bayesian. It would be interesting to figure out how a Pareto efficient

subgame perfect equilibrium evolves as time passes by.
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Chapter 3

Screening Agents with Different Qualities of

Information

3.1 Introduction

To make an informed decision, people often try to learn information from

others. In many cases, the decision maker, who will here be called the “prin-

cipal,” may not be able to collect information herself for various reasons. For

instance, she may not have enough time to get information, or she may not

have a sufficient skill set to process information. Therefore, she may have an

incentive to hire an agent who can collect information and pass it on to her.

From the principal’s perspective, the problem then becomes now to design a

contract between her and the agent so as to acquire true information without

paying too much.

This question can be found in many areas of life. A company which wants

to extend its business by developing a new product may have to figure out

its customers’ preferences. The company might hire an analyst who learns

customers’ preferences. After the analyst finishes her research, the company

would base its decision on the information provided by the analyst. Another

example would be a candidate for an electoral office. A candidate usually

has a group of people who do research on voters’ preferences. A strategy to

attract voters would be based on what the candidate learns from this group
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of people.

Important problems that might have to be resolved in a principal agent

relationship in which the principal’s objective is to gain information from

the agent are: (i) the agent’s preferences over the action that the principal

will take based on the information might not align with the principal’s pref-

erences, so that the agent has an incentive to distort the information; (ii)

the agent needs to exert effort to obtain the information and might shirk on

this effort. In this paper, we shall abstract from both of these problems: the

information is freely available to the agent. It is exogenous. Also, the agent

has no interest per se in the principal’s action.

Once we have abstracted from the two problems described in the previous

paragraph, only one remains: the principal might compete with other prin-

cipals for the agent’s time. In other words: the agent might have an outside

option, and might require the principal to pay to the agent at least as much

as the outside option. We study a situation in which the outside option de-

pends on the quality of information that the agent can provide: well-informed

agents have better outside options than poorly informed agents. Whereas the

agent knows whether she is well-informed or not, the principal does not.

The main objective of this paper is to study the impact of the agent’s type

dependent outside option on the optimal contract. A stream of literatures

is focused on how to incentivize the agent to truthfully report. McCarthy

(1956) and Savage (1971) study proper scoring rules. Since proper scoring

rules induce the agent to truthfully report only when the agent is risk neu-

tral, Karni (2009) and Qu (2012) describe a direct revelation mechanism for

eliciting the agent’s subjective probabilities when the agent is risk averse.

Hossain and Okui (2013) introduce the binarized scoring rule that works ir-

respective of the agent’s risk preference. Those literatures do not consider

the agent’s participation constraint. In other words, in those papers, it is
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always assumed that the agent participates. However, it is not uncommon

that the agent has a type dependent outside option. We study a characteri-

zation of the optimal contract when the agent has a type dependent option

and as a result, the agent’s participation constraint may not be satisfied in

some cases.

The issue of optimal contracts arises when the agent has an outside op-

tion. If the agent has zero outside option and always accepts the contract

proposed by the principal, optimality would be trivial. Since the agent is only

interested in monetary payments, the principal can always find an incentive

compatible payment scheme to elicit the agent’s posterior belief. Multiplying

the payment scheme by a small number, the principal can learn the agent’s

true posterior belief with little payment. The papers in the previous para-

graph do not assume the agent’s outside option, and therefore they do not

need to consider optimality. However, in this paper, the agent has a type

dependent outside option, and thus, the optimal way of eliciting the agent’s

private information needs to be taken into account.

In the presence of the agent’s type dependent outside option, the principal

may not want to elicit information from every type. It is possible that the

principal can be better off by rejecting some types. Suppose that the principal

lowers the payment to every type by some constant amount so that some

types reject the contract. The principal may not make an informed decision

if the agent rejects the contract, but the principal can make an informed

decision if the agent accepts the contract. From an ex-ante viewpoint, the

decrease in the expected payment could be larger than the decrease in the

expected benefit of the principal. Another point we would like to make is that

Pareto efficiency could imply that the principal rejects some types. This can

happen when the increase in the expected utility of the principal is smaller

than the agent’s outside option. This paper attempts to analyze the impact

of the principal’s utility on the optimal contract.
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The principal in our model will propose a contract to the agent which

specifies monetary transfers conditional on the true state and the agent’s

report. The agent accepts the contract if his expected utility from the con-

tract is at least equal to his outside option. The revelation principle implies

that it is without loss of generality to assume that the contract requires the

agent to report to the principal both the quality of his signal, and the signal

realization. We assume that the true state of the world is observable and

contractable ex post, that is, the agent’s payment is based on his report as

well as the true state. The agent is risk neutral.

In general, of course, the “quality of information” is an ambiguous phrase.

In this paper we call the quality of information the “agent’s type,” and we

impose one assumption on the agent’s type so that the quality of information

is represented by a mean preserving spread of posterior distributions. That

is, the posterior distribution of a higher type is a mean preserving spread of

the posterior distribution of a lower type. This implies Blackwell dominance.

If the agent’ type is higher, and if the agent reports his information truthfully,

then, the principal’s expected utility is higher if the quality of information is

higher.

Our first result is a characterization of incentive compatibility contracts.

First, we show equivalence between incentive compatible contracts and proper

scoring rules. Proper scoring rules are mechanisms that induce the agent to

report the true posterior belief. In our model, the principal’s main interest

is to figure out the true posterior belief. Intuitively, she can ask the agent

to report the posterior belief instead of his type and the signal realization.

Second, we show that for any incentive compatible contract, the expected

payment to the agent is an increasing and convex function of the agent’s

type. Concavity of the outside option means that there exist at most two

threshold agent types such that the principal hires the agent only if his type

is worse than the lower threshold type or better than the higher threshold
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type.

Our second result is a necessary condition for an optimal contract. The

necessary condition is based on the convexity of the expected payment to the

agent and the concavity of the agent’s outside option. There are five cases

concerning which agent type is hired. It can be optimal for the principal to

hire 1) no agent types, 2) all agent types, 3) only high types, 4) only low

types, or 5) only low and high types but no middle types. The fifth case

if of special interest, in which it is optimal for the principal to admit low

and high types and reject intermediate types. Obviously, the participation

constraint for the threshold types is binding. Interestingly, it is shown that

the participation constraint for the uninformed type is not binding. That is,

in the fifth case, it is optimal for the principal to pay the uninformed agent

more than his outside option. The reason is the following. In our model,

the optimal incentive compatible contract is such that the expected payment

can be thought of as a lump sum payment plus a bonus payment that is

proportional to the quality of information. With a large lump sum payment

and a small bonus payment, the principal can lower the expected payments

to higher types, although she would have to admit the uninformed type. In

the fifth case, reduction in the expected payment to high types outweighs

increase in the expected payment to low types, meaning that the principal

optimally hires low and high types only and rejects middle types.

For our third result, we impose one more assumption to prove the exis-

tence of a “linear contract”, the expected payment of which is linear in the

agent’s type. There are two important properties of linear contracts. First,

in our model, if there exists at least one linear incentive compatible contract,

an optimal contract is a linear incentive compatible contract. Suppose a

linear incentive compatible contract exists. Given an incentive compatible

contract, if it is not a linear contract, then the principal can affine-transform

the linear contract so that she admits the same agent types as the incentive
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compatible contract while paying less to every agent type who accepts the

affine-transformed contract.

The second property of linear contracts is that the marginal value of

information can be positive at the zero type. This is incompatible with

Radner and Stiglitz Theorem (1984, p. 36). Obviously, it must be the

case that a linear contract violates some assumptions in Radner and Stiglitz.

Because of equivalence between incentive compatible contracts and proper

scoring rules, a proper scoring rule that corresponds to a linear incentive

compatible contract also violates some assumptions in Radner and Stiglitz.

It turns out that if a proper scoring rule corresponds to a linear incentive

compatible contract, the only violation is that the proper scoring rule is

discontinuous at the prior. If a proper scoring rule is continuous at the prior,

we can use arguments analogous to the envelope theorem. It implies that

for a small change in informativeness, the agent’s optimal report does not

change. In other words, when the increase in informativeness is small, the

agent behaves as if his optimal report is the prior. Clearly, if the agent

continues to report the prior, there is no change in the expected payments

to the agent. In fact, a proper scoring rule does not have to be continuous

at the prior. The theorem due to McCarthy, which we will state in Section

3, means that a proper scoring rule is associated with a convex function of

beliefs. The proper scoring rule being continuous at the prior implies that

the corresponding convex function is differentiable at the prior. However, a

convex function does not have to be differentiable at the prior.

The rest of the paper is organized as follows. In Section 2, we describe

our model and assumptions. In Section 3, we discuss proper scoring rules and

state a theorem that completely characterize proper scoring rules. In Sec-

tion 4, we study the relationship between proper scoring rules and incentive

compatible contracts and show the equivalence between them. In Section 5,

we illustrate additional properties of all incentive compatible contracts. In
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Section 6, we characterize a necessary condition for an optimal contract. In

Section 7, we consider the special case in which the expected payment to the

agent is linear in the agent’s type. In Section 8, we analyze an example using

our results. In Section 9 we discuss the assumptions we make in this paper.

Section 10 is a conclusion. All proofs that are omitted from the main text

are in the Appendix.

3.1.1 Related Literature

Jullien (2000) is related to our model in terms of participation constraint.

His model is an extension of standard uninformed principal-informed agent

models such as Baron and Myerson (1982), Guesnerie and Laffont (1984)

and Maskin and Riley (1984). In these literatures, the agent has a constant

outside option, whereas in Jullien (2000) the agent has a type-dependent

outside option. Assuming that virtual surplus is quasi-concave in the agent

type, Jullien (2007) shows that interior types may be excluded from trade.

This is similar to our setting in the sense that in our model, the agent’s

outside option is concave in the agent type and in some cases, middle types

reject the contract proposed by the principal.

For elicitation of forecasts, there is a large volume of literatures. Mc-

Carthy (1956) and Savage (1971) characterize proper scoring rules. Gneiting

and Raftery (2007) provides a review on proper scoring rules. If the agent is

risk averse, his report can be biased if a proper scoring rule is implemented.

To take care of this issue, Karni (2009), Qu (2012), and Hossain and Okui

(2013) study a method of eliciting the agent’s posterior belief when the agent

is not risk neutral. In our model, the agent is risk neutral. In addition, the

principal is interested in the true posterior belief itself. As a result, it is suf-

ficient to use proper scoring rules. However, for tractability and a technical

issue, we state results in terms of incentive compatibility contracts.
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Regarding the agent’s information structure, Amir and Lazzati (2016)

share a similar assumption with this paper even though their setting is

very different from ours. They study endogenous information acquisition

in Bayesian games whereas in our model, information acquisition is exoge-

nous. Nonetheless, under the assumption that signal distribution is convex in

the quality of information, Amir and Lazzati (2016) show that the expected

utility of a player is convex in the quality of information. In this paper, we

have a similar assumption, and show that if an incentive compatible contract

is proposed, the expected payment to the agent is increasing and convex in

the quality of information.

According to Amir and Lazzati (2016), Arrow (1974) and Radner (2000)

would support our assumption that the agent’s outside option is concave in

the quality of information. In Arrow (1974) and Radner (2000), it is pointed

out that information production often has increasing returns to scale, which

means that the marginal cost of producing higher quality of information is

decreasing. In our model, the agent can be thought of as an information

supplier. Since we interpret the agent’s type as the quality of information,

the decreasing marginal cost of producing a higher quality of information

implies that the agent’s outside option is a concave function of the agent’s

type.

Our model provides a counter-example of Radner and Stiglitz (1984),

in which it is shown that under mild assumptions, the marginal value of

information is zero. It turns out that one of the assumptions in Radner and

Stiglitz (1984) is violated in some circumstances. We analyze an example

in which the marginal value of information is positive when the principal

proposes an optimal contract.
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3.2 Model

There is one principal and one agent. There are n possible states of the world,

and the set of the states is Ω = {ω1, · · · , ωn}. The principal is uncertain about

the state of the world and has a prior belief ~µ0 =
(
µ0(ω1), · · · , µ0(ωn)

)
∈

∆Ω.6 The agent has the same prior belief ~µ0 as the principal. The agent can

run an experiment, and observe a signal realization.

Notations We introduce several notations that we shall use many times.

For ~µ = (µ1, · · · , µn) ∈ Rn, |~µ| denotes Euclidean norm. That is, |~µ|=√∑n
i=1 µ

2
i . And, µ̂ is a corresponding unit vector.

µ̂ =
~µ

|µ|
.

For ~µ, ~ν ∈ Rn, ~µ · ~ν denotes the Euclidean inner product. That is, ~µ · ~ν =∑n
i=1 µiνi.

Integral notation will be simplified. When we denote an integral over

some subset of Rk, dy will mean
∏k

j=1 dyj. For instance, choose a closed unit

disk, Dk in Rk. For an integrable function f : Dk −→ R,∫
f(y1, · · · , yk)dy1 · · · dyk =

∫
f(y)dy.

~1 is the n-dimensional vector (1, 1, . . . , 1), and ~0 = (0, · · · , 0) ∈ Rn.

Timeline Nature chooses a state ω from Ω. The agent learns his type,

which determines the distribution of his posterior beliefs. We will precisely

describe the agent type soon. The principal proposes a contract, which spec-

ifies monetary transfers from the principal to the agent. The agent decides

6For a finite set W , we use ∆W to refer to the set of all measures on W .
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whether to accept the contract or reject the contract. Once the agent ac-

cepts the contract, he observes a signal realization, and decides what to

report. Then the principal takes an action. The true state is realized and

monetary payments are made from the principal to the agent according to

the contract. A true state is observable by the principal and the agent, and

the true state is contractible.

The Principal The principal’s utility depends on the action, the state and

the monetary transfer from the principal to the agent. The principal’s utility

is quasi-linear in monetary transfers. A is the set of actions available to the

principal. We assume that A is a compact and connected subset of Rm for

some m ∈ N. u is the principal’s utility without monetary transfers:

u : Ω× A −→ R

We assume that for every ω ∈ Ω, u(ω, a) is concave in a and differentiable

almost everywhere with respect to a. Given the state ω, the action a and the

monetary transfer t from the principal to the agent, the principal’s utility is

u(ω, a)− t.

Since the principal is interested in the changes to her utility, we assume

that u is normalized to zero when she is uninformed. That is, given the prior

belief vector ~µ0 = (µ0(ω1), · · · , µ0(ωn)),

∑
ω∈Ω

u(ω, a∗(~µ0))µ0(ω) = ~u(a∗(~µ0)) · ~µ0 = 0
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where

~u(a) = (u(ω1, a), · · · , u(ωn, a)), and

a∗(~µ) ∈ arg max
a

∑
ω∈Ω

u(ω, a)µ(ω) = arg max
a

~u(a) · ~µ.

The Agent The agent is risk-neutral, and draws his type from the interval

X = [0, 1]. The agent type x ∈ X determines the distribution of posterior

beliefs, and it can be thought of as the quality of information. We will see

later why x can be thought of as the quality of information. P (x) is a cumula-

tive distribution function of x, and it admits a differentiable density function

p(x) with respect to the Lebesgue measure. We assume that supp(p) = X

and that for all x ∈ X, p(x) > 0. Agent types and states of the world are

independently distributed.

The agent can observe a signal realization y ∈ Y . Y is the k-dimensional

sphere with radius r centered at the origin. We assume that r is appropriately

chosen so that Y has volume of 1 with respect to the Lebesgue measure.

For each x ∈ X and ω ∈ Ω, F (·|x, ω) is a probability measure on sigma

algebra on Y , and F admits a differentiable density function f(·|x, ω) with

respect to the Lebesgue measure. We assume that for all x ∈ X, f(y|x) =∑
ω∈Ω f(y|x, ω)µ0(ω) = 1.7 Also, we assume that for all ω ∈ Ω and x ∈ X,

f(·|x, ω) has the full support. Finally, the agent type x has the outside option

z(x).

Given the agent type x and the signal realization y, µ(ω|x, y) denotes the

probability of ω conditional on (x, y). That is,

µ(ω|x, y) =
f(y|x, ω)µ0(ω)p(x)∑
ω∈Ω f(y|x, ω)µ0(ω)p(x)

.

7This is without loss of generality. One can always satisfy this assumption by redefining
y.
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The posterior belief conditional on (x, y) is oftentimes expressed as a vector.

~µ(x, y) =
(
µ(ω1|x, y), · · · , µ(ωn|x, y)

)
.

Assumptions We impose the following assumption on f .

Assumption 1. There exist η1 : X × Y −→ [0,∞) and η2 : Ω× Y −→ R such

that for all ω, x, y,

f(y|x, ω) = 1 + η1(x, y)η2(ω, y).

In addition, η1(x, y) is increasing and convex in x for every y ∈ Y , and

η1(0, y) = 0 for all y ∈ Y .

The functions η1(x, y) and η2(ω, y) have the following interpretation: η2

indicates the direction into which the likelihood of signal realization y is

changed when the true state is ω, and η1 indicates the extent to which it is

shifted into this direction when the agent’s type is x. The more the likelihood

is shifted, the more informative the signal is. Therefore, the assumption that

η1 is increasing in x means that the informativeness of the signal increases in

the agent’s type. The assumption that η1 is convex means that the “marginal

increase in informativeness” is the larger the larger x is. In some cases,

this assumption is without loss of generality, because one can re-define x

appropriately, but in general, the assumption is restrictive, and it becomes

more restrictive in combination with Assumption 2 below. We postpone a

discussion of these assumptions until Assumption 2 has also been introduced.

For f(y|x, ω) to be a well-defined density, η1 and η2 have to satisfy some

conditions. Since f is a density function, it must be true that for all x and

ω, f(y|ω, x) is non-negative. That is, η1(x, y)η2(ω, y) ≥ −1. And, it must be
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also true that ∫
η1(x, y)η2(ω, y)dy = 0.

This means that
∫
f(y|x, ω)dy = 1 for all ω and x. For technical convenience,

we assume that η1(x, y) is bounded and differentiable everywhere and that

for every ω ∈ Ω, η2(ω, y) is bounded and differentiable with respect to y.

We provide one example of a function f . η1(x, y) has spherical symmetry

in y for every x. That is, for every x ∈ X and y ∈ Y , η1(x, y) = η1(x,−y).

η2(ω, y) is anti-symmetric in y given ω. That is, for every ω ∈ Ω and y ∈
Y , η2(ω, y) = −η2(ω,−y). And, there exists m ∈ (0, 1) such that −m ≤
η1(x, y)η2(ω, y) ≤ m for every ω, x and y. Since m ∈ (0, 1), f(y|x, ω) > 0 for

all x, all y and ω. Also, since η1(x, y)η2(ω, y) is anti-symmetric in y for every

x and every ω,
∫
η1(x, y)η2(ω, y)dy = 0 for all x and ω.

It is instructive and useful to describe the implications of Assumption

1 for posterior beliefs. Let us calculate the posterior belief conditional on

(x, y). Since
∑

ω∈Ω f(y|x, ω)µ0(ω) = 1,

µ(ω|x, y) = f(y|x, ω)µ0(ω) = µ0(ω)(1 + η1(x, y)η2(ω, y)).

Define for each ω,

λ(ω, y) = µ0(ω)η2(ω, y).

Using vector notation,

~λ(y) =
(
µ0(ω1)η2(ω1, y), · · · , µ0(ωn)η2(ωn, y)

)
.

Then, ~µ(x, y) = ~µ0 + η1(x, y)~λ(y). Define

ξ(x, y) = η1(x, y)
∣∣∣~λ(y)

∣∣∣ .
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Using ξ and λ̂,

~µ(x, y)− ~µ0 = ξ(x, y)λ̂(y).

Recall that λ̂(y) is the normalized vector λy. Therefore:

|~µ(x, y)− ~µ0|= ξ(x, y)|λ̂(y)|= ξ(x, y),

i.e. ξ(x, y) is the Euclidean distance between the prior and the posterior.

Note that ξ has the same property as η1. ξ(x, y) is increasing and convex

in x for every y. Also, ξ(0, y) = 0 for every y. Finally, ξ is differentiable.

Figure 3.1 shows an example when there are three states and Y is similar to

a circle.

~µ0

λ̂(y)

ξ(x, y)
ξ(x′, y)

Figure 3.1: Geometric presentation of ξ and λ̂

In Figure 3.1, the triangle is ∆Ω. The inner circle is the set of possible

posterior beliefs that the agent of type x have. The outer circle is the set

of possible posterior beliefs that the agent of type x′ > x have. λ̂(y) is

the direction in which the posterior belief conditional on (x, y) changes as x

increases. Given y, ξ(x, y) the Euclidean distance between the prior belief
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and the posterior belief conditional on (x, y).

Figure 3.1 helps us to illustrate two points. The first point is that As-

sumption 1 implies the mean preserving spread of the posterior distribution.

In other words, the posterior distribution of a higher type is a mean preserv-

ing spread of the posterior distribution of a lower type. The second point is

that the principal would be able to back out the agent’s type and the signal

realization from the agent’s posterior belief. That is, reporting the posterior

belief is equivalent to reporting the agent’s type and the signal realization.

We would like to discuss ξ and λ̂ because we will use them many times

instead of η1 and η2 in this paper. ξ(x, y) determines the Euclidean distance

between the prior belief and the posterior belief conditional on (x, y). Since

λ̂(y) is a vector with a unit Euclidean norm, it determines a change in di-

rection from the prior belief vector to the posterior belief vector given (x, y).

The assumed monotonicity of η1 in x implies that if the agent type is low, the

corresponding posterior beliefs are closer to the prior belief. When x = 0,

the agent is uninformed since his posterior belief is always ~µ0.

We impose the following assumption on the outside option z(x).

Assumption 2. The outside option z(x) is differentiable, strictly increas-

ing, and strictly concave in x.

If the agent has zero outside option, then the principal can elicit the

agent’s posterior belief with arbitrarily small costs. Sharing the principal’s

profit is one way to elicit the agent’s posterior belief without having to incur

large costs. The principal can sell an arbitrarily small fraction of her utility.

Clearly, the agent has no incentive to report a false posterior belief, and the

principal pays little amount of money to the agent. In this sense, a non-zero

outside option is necessary to make the model non-trivial.

The combination of Assumptions 1 and 2 is quite restrictive. Those two
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assumptions basically mean that there exists a parameterization such that for

every y ∈ Y , ξ(x, y) is increasing convex in x and z(x) is concave in x. That

is, the better informed the agent is, the larger is the “informational value”

of being slightly better informed in the environment described in our model,

but the smaller is the increase in the outside option that results from being

slightly better informed. This might be plausible in a situation in which

the agent has a skill in information acquisition that is particularly useful for

the principal for whom the agent works, but that is less useful outside of

the relation. The analysis in this paper without Assumption 2 would require

significant additional work, but some of the ideas and techniques in the paper

also apply if Assumption 2 is not made.

We discuss the two assumptions in the first subsection of the Appendix

because we would like to describe what happens to results if the two assump-

tions are violated.

The Principal’s Objective The principal offers a contract to the agent.

We restrict our attention to a direct mechanism. A contract h will depend

on the realized state ω and the agent’s report (x, y). That is,

h : Ω×X × Y −→ R.

In this work, we assume that for every ω ∈ Ω, a contract h(ω, x, y) is differ-

entiable almost everywhere with respect to (x, y).

The principal’s objective is to design an optimal contract in order to to

maximize her net benefits. Given a contract h, let X̃(h) be the set of agent

types who accept the contract h. Let

~h(x, y) = (h(ω1, x, y), · · · , h(ωn, x, y)).
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The principal chooses a contract h and a set X̃(h) of the agent’s types who

accept h to maximize:∫
X̃(h)

p(x)dx

∫
Y

dy
[
~u(a∗(~µ(x, y)))− ~h(x, y)

]
· ~µ(x, y)

subject to the incentive compatibility condition

~h(x, y) · ~µ(x, y) ≥ ~h(x′, y′) · ~µ(x, y) ∀x ∈ X, ∀x′ ∈ X, ∀y ∈ Y, ∀y′ ∈ Y

and the agent’s participation constraint∫
~h(x, y) · ~µ(x, y)dy ≥ z(x) if and only if x ∈ X̃(h).

A contract h is said to be incentive compatible if it satisfies the incentive

compatibility condition.

The Agent’s Objective After learning his type, the agent determines

whether to accept or reject the contract proposed by the principal. Since the

agent is risk neutral, he would accept the contract if the expected payments

are higher than his outside option. Otherwise, the agent would reject the

contract.

3.3 Proper Scoring Rules

There is a close connection between incentive compatible contracts and what

is known in the statistics literature as “proper scoring rules.” Proper scoring

rules are incentive schemes that are designed to provide agents with incentives

to correctly reveal their beliefs. Since in our setting for the principal it

is sufficient to learn the agent’s posterior beliefs, one can re-formulate the

problem of designing an incentive compatible contract as the problem of
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designing a proper scoring rule. It turns out that some details complicate

this at first sight straightforward connection between proper scoring rules and

incentive compatible contracts. In this section, we describe proper scoring

rules and introduce a theorem that completely characterizes proper scoring

rules. In the next section we then discuss the connection between proper

scoring rules and incentive compatible contracts.

We build on the definitions and terminology used in Gneiting and Raftery

(2007), and modify them for the context of our setting. In this section, P is

a convex subset of ∆Ω and R = R ∪ {−∞,∞}.

Definition 3.3.1. A scoring rule S is an extended real-valued function:

S : Ω× P −→ R.

According to Definition 3.3.1, a scoring rule S takes a state and a posterior

belief, and returns a “score.” Given a scoring rule S, ~S denotes the vector

version of S. That is,

~S(~µ) =
(
S(ω1, ~µ), · · · , S(ωn, ~µ)

)
.

Definition 3.3.2. A scoring rule S is regular relative to P if ~S(~µ) · ~µ′ is

real-valued for all ~µ, ~µ′ ∈ P, except possibly that ~S(~µ) · ~µ′ = −∞ if ~µ 6= ~µ′.

Definition 3.3.2 implies that given a regular scoring rule, the expected

score is finite when the true posterior belief is reported. And, it is possible

that for some posterior belief, the agent expects the negative infinity score if

he reports a false posterior belief.

Definition 3.3.3. A scoring rule S is proper relative to P if for all ~µ, ~µ′ ∈ P,

~S(~µ) · ~µ ≥ ~S(~µ′) · ~µ.

68



Regarding Definition 3.3.3, there is the implicit assumption that the agent

prefers a higher expected score to a lower expected score. Under this assump-

tion, Definition 3.3.3 means that when a proper scoring rule is proposed, the

agent has no incentive to report a false posterior belief. This property cor-

responds to the incentive compatibility condition.

Now, we introduce a useful theorem. The theorem below is originally

due to McCarthy (1956). We state the version provided in Gneiting and

Raftery (2007, Theorem 1, p. 361). That version uses the concept of a

“subgradient”. For a convex function φ : P −→ R, a function ~G : P −→ Rn

is called a subgradient of φ if for all ~µ0, ~µ ∈ P :

φ(~µ)− φ(~µ0) ≥ ~G(~µ0) · (~µ− ~µ0).

If a convex function φ is differentiable in the interior of P , ~G = ∇φ.

Theorem (McCarthy). A regular scoring rule S is proper relative to P
if and only if there is a convex function φ : P −→ R with subgradient ~G such

that for every ~µ ∈ P:

~S(~µ) =
(
φ(~µ)− ~G(~µ) · ~µ

)
~1 + ~G(~µ).

The theorem is the complete characterization of proper scoring rules. Let

us briefly discuss the theorem. If S is a proper scoring rule relative to P ,

the expected score ~S(~µ) · ~µ equals φ(~µ), as one can easily calculate, and is

therefore a convex function from P to R. Conversely, if φ is a convex function

from P to R, then one can construct a proper scoring rule relative to P using

φ and a subgradient of φ.
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3.4 Relationship Between Proper Scoring Rules and

Incentive Compatible Contracts

In this section, we study the relationship between proper scoring rules and

incentive compatible contracts. Let M = {~µ(x, y) ∈ ∆Ω|(x, y) ∈ X × Y }
and M co be the convex hull of M .

We raise two questions. The first question is: given a proper scoring

rule, is there a corresponding incentive compatible contract? The second

question is: given an incentive compatible contract, is there a corresponding

proper scoring rule? The answer to the first question is clear since a proper

scoring rule can be an incentive compatible contract. However, the answer

to the second question is not obvious because incentive compatible contracts

and proper scoring rules are defined on different domains. Fortunately, the

answer to the second question is “yes”.

Proposition 3.4.1. The followings hold.

1. Given a proper scoring rule S relative to M co, there exists an incentive

compatible contract h such that (x, y) ∈ X × Y :

~h(x, y) = ~S(~µ(x, y)).

2. Given an incentive compatible contract h, there exists a proper scoring

rule S relative to M co such that for all (x, y) ∈ X × Y :

~S(~µ(x, y)) · ~µ(x, y) = ~h(x, y) · ~µ(x, y).

Part 1 in the proposition means that given a proper scoring rule S, there

exists an incentive compatible contract h that specifies the same ex-post

transfers, i.e. transfers conditional on the true state, to the agent as the
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proper scoring rule S assigns to the agent’s posterior belief. In contract,

part 2 in Proposition 3.4.1 does not necessarily mean that given an incentive

compatible contract h, one can always find a proper scoring rule S that

specifies the same ex-port transfers to the agent. Rather, part 2 means that

given an incentive compatible contract, one can find a proper scoring rule that

specifies the same “interim” expected payment to the agent as the incentive

compatible contract. Since the principal designs a contract at the outset, she

is indifferent between an incentive compatible contract and a proper scoring

rule if she incurs the same expected costs. Part 1 and Part 2 together imply

that Proposition 3.4.1 is a complete characterization of incentive compatible

contracts at the “interim” stage.

Proof. (Part 1) Suppose S is a proper scoring rule relative to M co. For each

(x, y) ∈ X × Y , define ~h(x, y) = ~S(~µ(x, y)). We need to show that h is

incentive compatible. For all x, y, x′, y′,

~h(x, y) · ~µ(x, y) = ~S(~µ(x, y)) · ~µ(x, y)

≥ ~S(~µ(x′, y′)) · ~µ(x, y)

= ~h(x′, y′) · ~µ(x, y).

(Part 2) Suppose h is an incentive compatible contract. We first note

that expected payments to the agent can be a function of posterior beliefs

only. The reason is the following. Suppose that ~µ(x, y) = ~µ(x′, y′) for some

x, y, x′, y′. If ~h(x, y) · ~µ(x, y) > ~h(x′, y′) · ~µ(x′, y′), then the agent would not

report (x′, y′). So, it should be the case that ~h(x, y) · ~µ(x, y) = ~h(x′, y′) ·
~µ(x′, y′) if ~µ(x, y) = ~µ(x′, y′). It is possible that ~h(x, y) 6= ~h(x′, y′). However,

the principal can safely replace ~h(x′, y′) with ~h(x, y), and that replacement

has no impact on the incentive compatibility condition and the expected
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payments to the agent.

The above paragraph implies that given an incentive compatible contract

h, one can find a function Sh : Ω×M −→ R such that for all (x, y) ∈ X×Y ,

~Sh(~µ(x, y)) · ~µ(x, y) = ~h(x, y) · ~µ(x, y).

This also means that there exists φh : M −→ R such that φh(~µ(x, y)) =

~h(x, y) · ~µ(x, y) for every (x, y) ∈ X×Y . The following claim is the first step

to prove Proposition 3.4.1.

Claim. φh is bounded and convex.

Here, we need a different notion of convexity since M does not have to be

a convex subset of ∆Ω. The following definition of convexity is taken from

Peters and Wakker (1987).

Definition 3.4.1. A function φ : M −→ R is convex if for all convex

combinations
∑J

j=1 αj~µj of elements of ~µj of M , whenever
∑J

j=1 αj~µj is in

M , we have
J∑
j=1

αjφ(~µj) ≥ φ

(
J∑
j=1

αj~µj

)
.

Note that this is the standard definition of convexity, except it has been

modified by inserting the “whenever ...” phrase, so that it can be applied to

functions without convex domains.

Now we prove the Claim. Boundedness is clear. Suppose φh(~µ) =∞ for

some ~µ ∈ M . This means that for some ω, x and y, h(ω, x, y) = ∞. There-

fore, whenever the agent believes ω occurs with some positive probability,

he would report (x, y), which is a violation of the incentive compatibility

condition. If φh(~µ) = −∞ for some ~µ(x, y) ∈ M , then (x, y) would not be
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reported.

Convexity is a direct result of the incentive compatibility condition. Sup-

pose that ~µ(x, y) =
∑J

j=1 αj~µ(xj, yj) with (xj, yj) ∈ X × Y .

φh

(
J∑
j=1

αj~µ(xj, yj)

)
=

J∑
j=1

αj~h(x, y) · ~µ(xj, yj)

≤
J∑
j=1

αj~h(xj, yj) · ~µ(xj, yj)

=
J∑
j=1

αjφh(~µ(xj, yj))

This completes the proof of the Claim, and now we are ready to prove

Proposition 3.4.1. Claim shows that φh is a convex function defined on M .

So, φh satisfies the assumption in Theorem 1, Peters and Wakker (1987).

Therefore, Peters and Wakker (1987) Theorem 1 implies that there exists a

convex function φ̃h : M co −→ R that extends φh. Their construction is the

following:

φ̃h(~µ) = inf

{
J∑
j=1

αjφh(~µ(xj, yj))
∣∣∣~µ =

J∑
j=1

αj~µ(xj, yj)

}
.

Since φh is bounded, φ̃h is bounded. The theorem due to McCarthy that we

cited in Section 3 implies that there exists a proper scoring rule S relative

to M co such that ~S(~µ) · ~µ = φ̃h(~µ) for all ~µ ∈ M co. Since φ̃h|M= φh, for all

(x, y) ∈ X × Y , ~S(~µ(x, y)) · ~µ(x, y) = φ̃h(~µ(x, y)) = φh(~µ(x, y)) = ~h(x, y) ·
~µ(x, y).

We summarize the arguments above as follows: Instead of writing a con-

tract ~h(x, y) that asks the agent to report x and y, and that promises a

reward conditional on x, y, and the observed true state ω, the principal
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could equivalently write a contract that asks the agent to report the poste-

rior belief ~µ(x, y), and that promises a reward conditional on this posterior

belief and the true state ω. This is because in our model for the principal

only the posterior probabilities of the true state matter, the principal is not

interested in the agent’s type x and the signal realization y per se.

3.5 Further Properties of Incentive Compatible Con-

tracts

In this section, we introduce some further properties that incentive compat-

ible contracts have to have in our setting. We would like to mention that

the proof of Proposition 3.4.1 does not rely on Assumption 1 and Assump-

tion 2, whereas the results presented in this section need Assumption 1 and

Assumption 2.

We study two properties of all incentive compatible contracts.

Lemma 3.5.1. Suppose a contract h is incentive compatible. Then the ex-

pected payment to the agent of type x,

E[h|x] =

∫
~h(x, y) · ~µ(x, y)dy

is increasing and convex in x.

The proof of this result is in the Appendix.

One particular incentive compatible contract is that the principal “sells

the project to the agent,” i.e. makes payments to the agent that exactly

equal her own utility from the decision problem. Therefore, Lemma 3.5.1

also implies that the principal’s utility would be increasing and convex in

x if she made zero payments to the agent, yet the agent reported his type
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truthfully. In this sense, a higher type can provide the principal with a better

quality of information.

Using Lemma 3.5.1, we can derive the following lemma.

Lemma 3.5.2. Suppose that a contract h is incentive compatible. Then,

there exist at most two types x and x with x ≤ x such that all agent types

between x and x reject the contract and other types accept the contract.

Figure 3.2 illustrates the idea behind Lemma 3.5.2. In Figure 3.2 , h is

an incentive compatible contract. Lemma 3.5.1 implies that the expected

payment to the agent of type x, E[h|x] is a convex function of x. z(x) is the

outside option, and it is a concave function of x by Assumption 2.

As we can see from Figure 3.2 , the expected payments are higher than

the outside option only if the agent type is either below x or above x. Since

the agent is risk neutral, he accepts the contract only if his type is lower than

x or higher than x.

3.6 Optimal Contracts

In this section, we provide a necessary condition for an optimal contract.

The idea on which this necessary condition is based is that a positive affine

transformation of an incentive compatible contract results in another incen-

tive compatible contract, i.e. that for b > 0 and c ∈ R, if a contract h is

incentive compatible, then bh + c is also an incentive compatible contract.

This is obvious. The necessary condition in this section is derived from the

observation that if h is optimal, then the expected utility of the principal

should not change when h is subjected to an “infinitesimally small” positive

affine transformation.

Given an incentive compatible contract h, a choice of b and c pins down

the threshold types x and x mentioned in Lemma 3.5.2 for acceptance of the
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x

expected payments

E[h|x]

z(x)

x x

Figure 3.2: Graphical illustration of Lemma 3.5.2

contract bh + c. Therefore, it is possible to express the necessary condition

that is based on the idea in the previous paragraph in terms of x and x. This

is what we do in the following lemma.

Proposition 3.6.1. Suppose an incentive compatible contract h is optimal.

Then h satisfies one of following cases.

1. No agent accepts h and E[h|x] < z(x) for all x ∈ X.

2. All agents accept h, and there exists a unique agent type x∗ who is indif-

ferent between accepting and rejecting. In this case z(x∗) = E[h|x∗] =

E[h].
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3. There is a type x < 1 such that only types in the interval [x, 1] accept h.

In this case the threshold type and the zero type are indifferent between

accepting and rejecting the contract, that is:

E[h|x = x] = z(x) and E[h|x = 0] = z(0),

and the threshold x satisfies the equation below:

z(x)− z(0)
d
dx
E[h|x]− dz(x)

dx

(E[u|x]− z(x))p(x) = E[h− z(0)|x ≥ x](1− P (x)).

4. There is a type x > 0 such that only types in the interval [0, x] accept

h. In this case the the threshold type and the highest type x = 1 are

indifferent between accepting and rejecting the contract, that is:

E[h|x = x] = z(x) and E[h|x = 1] = z(1),

and the threshold x satisfies the equation below:

z(x)− z(1)
d
dx
E[h|x]− dz(x)

dx

(E[u|x]− z(x))p(x) = E[h− z(1)|x ≤ x]P (x).

5. There are types 0 < x < x < 1 such that only types in the intervals

[0, x] and [x, 1] accept h. In this case the threshold types indifferent

between accepting and rejecting the contract, that is:

E[h|x = x] = z(x) and E[h|x = x] = z(x),

and the two thresholds satisfy the equations below:
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(3.1 )
z(x)− z(x)

d
dx
E[h|x]− dz(x)

dx

(E[u|x]− z(x))p(x)

=E[h−z(x)|x≤ x]P (x)+E[h−z(x)|x≥ x](1−P (x))

(3.2 )− z(x)− z(x)
d
dx
E[h|x]− dz(x)

dx

(E[u|x]− z(x))p(x)

=E[h−z(x)|x≤ x]P (x)+E[h−z(x)|x≥ x](1−P (x))

The first case is the case in which the principal’s outside option is optimal.

In the second case a contract that is accepted by all types is optimal. But

a contract in which E[h|x] is always strictly larger than z(x) is suboptimal.

The principal can subtract a constant amount from the payment until the

expected payment becomes tangent to the outside option curve. Thus, if a

contract is optimal that all types accept, then there must be a type that is

indifferent between accepting and rejecting. Note that, unlike in standard

incentive problems, this need not be the lowest or highest type.

In the third case, it is optimal for the principal to hire the agent if his

type is at least as good as x. For this case, Proposition 3.6.1 provides two

necessary conditions for an optimal contract. The first condition indicates

which participation constraints have to be binding. It is not surprising that

the threshold type’s participation constraint has to be binding. It is some-

what more surprising that also the zero type’s participation constraint has

to be binding. To see why the uninformed type is indifferent, let us imagine

that E[h|x = 0] < z(0). The principal can lower the expected payment by

subjecting E[h|x] to an affine transformation that leaves the threshold type x

unchanged, and she can do this until E[h|x = 0] = z(0). Figure 3.3 illustrates

this affine transformation. The expected payment conditional on the type
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in the original contract is shown as an unbroken line, and expected payment

conditional on the type in the transformed contract is shown as a dashed line.

As the above graph illustrates, the principal can pay less without changing

the interval of participating types.

0
x

expected payments

E[h|x]

z(x)

x

z(x)

z(0)

E[h̃|x]

Figure 3.3: Affine transformation that makes the participation constraint of
the uninformed type binding.

The second condition in the third case is a first order condition for the

threshold type. Consider an incentive compatible contract h with E[h|x =

0] = z(0), and choose a small ε > 0. The principal can increase the payment

by ε percent and subtract εz(0) from the payment. That is, a new contract

h′ = (1 + ε)h − εz(0) = h + ε(h − z(0)). This affine transformation does
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not affect the zero type’s participation constraint, that is: E[h′|x = 0] =

0. However, that affine transformation will lead to a change in x. The

necessary condition in the third case reflects that an “ε-affine transformation”

that leads to an “infinitesimally small” change in x must not increase the

expected benefit of the principal. Figure 3.4 shows the affine transformation

we described in this paragraph.

0
x

expected payments

z(x)

x

z(x)

z(0)

E[h|x]

E[h̃|x]

x− δx

z(x− δx)

Figure 3.4: A small affine transformation while the uninformed type remains
indifferent between accept and rejecting

When the threshold x changes due to the affine transformation, there

are two effects. First, the principal pays more to agent types who already
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accept h, and this corresponds to the marginal cost. Second, new types

accept the affine-transformed contract. This enables the principal to make

better decisions, and therefore this corresponds to the marginal benefit. The

necessary condition in Proposition 3.6.1 says that marginal cost has to equal

marginal benefit.

Let us explain the marginal cost first. Up to the first order, the marginal

cost is the increase in the payment times the probability of the agent ac-

cepting the contract h. Since the increase in the payment is ε(h − z(0))

and all types higher than or equal to x accept h, the marginal cost is

εE[h− z(0)|x ≥ x](1− P (x)). This is the right hand side of the equation in

the third case, except ε.

Let us turn to the marginal benefit. Up to the first order, the marginal

benefit is the increase in the principal’s expected net benefits times the prob-

ability of new agent types who accept h′. Since the expected payment to the

agent of type x is z(x), the increase in the expected net benefits to the prin-

cipal is E[u|x] − z(x). To calculate the probability of new agent types who

accept h′, we need to figure out new types first. Suppose all types between

x− δx and x accept h’. That means,

z(x− δx) = (1 + ε)E[h|x− δx]− εz(0).

Up to the first order,

δx = ε
z(x)− z(0)

d
dx
E[h|x]− d

dx
z(x)

.

The probability of new agent types accepting h′ is ε z(x)−z(0)
d
dx

E[h|x]− d
dx
z(x)

p(x), and
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therefore the marginal benefit is

ε
z(x)− z(0)

d
dx
E[h|x]− d

dx
z(x)

p(x) (E[u|x]− z(x))

This expression is the left hand side of the equation in the third case except

ε.

The fourth case describes circumstances in which it is optimal for the

principal to admit only lower types. Using similar arguments as in the third

case, we show that not only the threshold type but also the highest type must

be indifferent between accepting and rejecting when the principal minimizes

expected payments. The second equation in the fourth case is a first order

condition for the threshold type, and has an analogous meaning as the second

equation in the third case.

The fifth case is when the principal optimally admits lower types and

higher types and rejects middle types. Then, unsurprisingly, the participation

constraints of the two threshold types have to be binding. The remaining

two equations are the first order conditions for the threshold types.

Two equations can be derived using the argument we used in the third

case. The equation (3.1) in the fifth case means that given x, the principal

has no incentive to change x via affine transformations. The equation (3.2)

in the fifth case implies that given x, the principal has no incentive to change

x via affine transformations.

Let us briefly talk about the equation (3.1). Suppose that the principal

increases the payment slightly without changing x. See Figure 3.5. Like

before, the left hand side of the equation (3.1) is the marginal benefit to the

principal due to new agent types who accept the contract h. The second

term in the right hand side of the equation (3.1) is the marginal increase in

the payment because the principal pays more to higher types. The first term
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0
x

expected payments

z(x)

E[h|x]
E[h̃|x]

xx− δx

x

Figure 3.5: Affine transformation that does not alter the lower threshold

in the right hand side of the equation (3.1) is new and corresponds to the

marginal reduction of the expected payments. In order to keep x unchanged

through an affine transformation, the principal necessarily pays less to lower

types who accept the contract h. Note that E[h|x] ≤ z(x) for all x ≥ x.

Consequently, the right hand side of the equation (3.1) is the net change of

the expected costs. Optimality requires that the marginal change of expected

benefits and the marginal change of expected payments be the same.
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3.7 Linear Contracts

In this section, we consider the special case in which the optimal contract

makes the expected payment to the agent a linear function of the agent’s

type x.

Definition 3.7.1. A contract h is linear if E[h|x] is linear in x.

Lemma 3.7.1. If at least one incentive compatible contract that is linear

exists, then there is an optimal incentive compatible contract that is linear.

The idea for the proof of Lemma 3.7.1 is shown in Figure 3.6. It shows

that, if there is at least one incentive compatible contract, then every in-

centive compatible contract there is a linear contract that yields at least as

high expected benefit to the principal as the original contract. Suppose g is

an arbitrary incentive compatible contract. Due to Lemma 3.5.1, E[g|x] is

increasing and convex in x. Now, consider the linear incentive compatible

contract the existence of which is assumed in the Lemma 3.7.1. Obviously,

there exists an affine transformation of this contract so that it has the same

participation thresholds as g. This new contract, say h, is obviously also lin-

ear. Moreover, because g is convex, it involves payments that are not higher

than the expected payments under g for every agent type who accepts the

contract. Therefore, the affine transformation of the given linear contract

weakly raises the principal’s expected benefits.

The next question is: “When does a linear incentive compatible contract

exist?” The following definition helps us to find a sufficient condition under

which a linear contract exists.

Definition 3.7.2. The quality of information is separable if ξ(x, y) = xξY (y).

Note that ξ(x, y) = ξX(x)ξY (y) can be a functional form such that quality

of information is separable. We can redefine ξX(x) to be a new agent type,
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x

expected payments

E[g|x]

z(x)

E[h|x]

x x

Figure 3.6: Optimal linear contract

and if that re-parametrization does not violate Assumption 1 and Assumption

2, then quality of information becomes separable.

Recall that ξ(x, y) is the Euclidean distance between the prior belief and

the posterior belief conditional on (x, y). So, the first order derivative of

ξ(x, y) with respect to x, ∂
∂x
ξ(x, y) is the rate at which the posterior belief

moves away from the prior belief as x increases. Therefore, the quality of

information is separable in the sense of the above definition if and only if the

posterior belief moves away from the prior belief at a constant speed as the

measure of the quality of information increases. We can now state our result.

Proposition 3.7.1. If the quality of information is separable, then there

exists a linear incentive compatible contract.

Now that we have established that linear incentive compatible contracts

are of special interest in our model, we note the following surprising feature

85



of linear contracts. The following proposition holds regardless of whether

the linear incentive compatible contract considered in the result is optimal

or not.

Proposition 3.7.2. If h is a linear incentive compatible contract, and if S

is a corresponding proper scoring rule, then S is discontinuous at the prior

µ0, that is, there is at least one sequence of posteriors (~µn)n∈N that converges

to the prior belief ~µ0, and a state ω ∈ Ω such that:

lim
n→∞

S(ω, ~µn) 6= S(ω, ~µ0).

The proof of Proposition 3.7.2 is indirect. The proof shows that, if the

scoring rule were continuous at the prior belief, then the agent’s expected

payoff, as a function of the quality x of the agent’s information, would have

slope zero at x = 0. But for a linear contract, this slope has to be strictly

positive. Therefore, we obtain a contradiction. The reason why continuity

at the prior implies zero slope of expected payments at at x = 0 is that

continuity of the scoring rule would allow us to apply the envelope theorem.

Because reporting ~µ0 is optimal at x = 0, when exploring the effect of a

change in x on the expected payoff, the effects of the change in reporting

strategy are locally of second order. We might as well assume that the agent

continues to report the prior even if x increases slightly. But if the agent

continues to report the prior, then his expected payment is not going to

change.

One can view the agent’s decision problem in our model as a special

case of the model in Radner and Stiglitz (1984). The agent in our model

corresponds to a decision maker in Radner and Stiglitz (1984). The proper

scoring rule indicates the agent’s utility. The agent’s action set consists of

all possible posterior beliefs. The agent’s type corresponds to the parameter
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that indexes a family of information structure in Radner and Stiglitz (1984).8

Radner and Stiglitz’s famous Theorem (Radner and Stiglitz (1984, p. 36))

says that in their model, the marginal value of information is zero if we start

with a totally uninformative information structure. The proof of their result

is based on the envelope theorem argument that we sketched in the previous

paragraph. Their result cannot apply to our model because, in a linear

contract, the marginal value of information at x = 0 is positive. Therefore,

one of Radner and Stiglitz’s assumptions must be violated. Proposition 3.7.2

identifies the assumption that is violated.9

Proposition 3.7.2 is phrased in terms of scoring rules, but it is also inter-

esting to understand why Radner and Stiglitz’s theorem cannot be applied

to the agent’s decision problem when we adopt the alternative perspective

where the pair (x, y) is the agent’s choice variable, and the agent’s payoff is

determined by the contract h directly. It turns out that, from this perspec-

tive, the assumptions of Radner and Stiglitz’s theorem are violated for every

incentive compatible contract, not just for linear incentive compatible con-

tracts. This is a somewhat trivial observation that follows from the definition

of incentive compatibility. We explain the argument in the next paragraph.

But first, let us clarify the logical connection between the observations just

made. Radner and Stiglitz’s theorem provides a sufficient condition for the

marginal value of information to be zero. For linear contracts, we know that

this sufficient condition must be violated, because the conclusion of the the-

orem is violated. This is not interesting if we treat the pair (x, y) as the

agent’s choice variable, because in that case the sufficient condition is always

8Radner and Stiglitz’s parameter θ.
9In Radner and Stiglitz’s notation: they assume that for every state s the function

us(·, ·) is continuous on the Cartesian product of action and type space. In our setting, us
corresponds to the scoring rule. It does not depend on the agent’s type, and is therefore
trivially continuous in its second argument. Because our model satisfies all other assump-
tions of Radner and Stiglitz, for some s continuity of us in the first argument must be
violated.
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violated, regardless of whether the contract is linear or not. By contrast, if

we consider the scoring rule, the sufficient condition is not always violated,

and therefore the conclusion of Proposition 3.7.2 is non-trivial.

It remains to explain why, for incentive compatible contracts h, if we

treat the pair (x, y) as the decision variable, the assumptions of Radner

and Stiglitz’s theorem are automatically violated, regardless of whether the

contract is linear or not. The reason is that Radner and Stiglitz’s theorem

assumes that the agent’s choice function, that maps agent type and observed

signal into an action, is continuous in both arguments, and “flat” at x = 0.

In our case, for an incentive compatible contract, the choice function is the

identity mapping. Of course, it is continuous, but it is not “flat” at x = 0.

Radner and Stiglitz mean by “flat” that the choice is independent of the

signal. But, for an incentive compatible contract, even if x = 0, the agent

reports the signal y truthfully, and therefore the decision function is not flat.

One might see this as an artificiality. We might as well assume that, when

the agent tells the principal that he does not have an informative signal,

i.e. reports x = 0, he reports the same signal realization regardless of which

realization he has actually observed. But, if we make that assumption, the

decision function is not continuous, because, for x > 0, it matters that the

agent does report the signal correctly.

We conclude by mentioning an interesting implication of Proposition

3.7.2. In Radner and Stiglitz’s environment, an uninformed decision maker

has no incentive to buy a small piece of information if the information is

priced linearly in the quality of that information. However, if the contract is

linear, an uninformed agent will have an incentive to buy even a small piece

of information, provided that the price of the quality of information is low

enough.
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3.8 Example

We present a simple example and analyze it. There are two states, ω1 and

ω2. The set of agent types is the same as before: X = [0, 1]. The agent’s

signal has only two realizations: y1 and y2. The agent’s outside option is

z(x) = 1
2

√
x. The table below shows the probabilities of receiving a signal

realization conditional on the state and the agent type. Initially, the two

states are equally probable.

ω1 ω2

y1
1
2
(1 + x) 1

2
(1− x)

y2
1
2
(1− x) 1

2
(1 + x)

Conditional on (x, y1),

µ(ω1|x, y1) =
1

2
(1 + x),

µ(ω2|x, y1) =
1

2
(1− x).

Conditional on (x, y2),

µ(ω1|x, y2) =
1

2
(1− x),

µ(ω2|x, y2) =
1

2
(1 + x).

The principal’s utility is given below:

u(ω1, a) = −4a2 + 1,

u(ω2, a) = −4(1− a)2 + 1,

where a ∈ [0, 1]. Given the probability q that the true state is ω1, the prin-

cipal’s optimal action a∗(q) = 1 − q. Therefore, if the principal chooses
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optimally given q, E[u|q] = −4q(1− q) + 1. The principal’s utility is normal-

ized such that at the prior q = 0.5, E[u|q = 0.5] = 0. We need to describe

the principal’s expected utility in terms of x. With probability 0.5, y1 is

observed, and the posterior belief is 1
2
(1 + x). With probability 0.5, y2 is

observed, and the posterior belief is 1
2
(1 − x). Substituting these posteriors

into the formula for E[u|q] and taking expected values, we obtain that the

principal’s expected utility, conditional on x, is: E[u|x] = x2.

It is easy to check that the posterior beliefs satisfy Definition 3.7.2, i.e.,

the quality of the information is separable. So, Proposition 3.7.1 implies that

a linear incentive compatible contract exists, and Lemma 3.7.1 means that

an optimal contract can be obtained through an affine transformation of a

linear incentive compatible contract.

We characterize an optimal contract using the following contract g.

g ω1 ω2

y1 1 −1

y2 −1 1

First, we show that g is incentive compatible. Consider (x, y1). Note

that we do not have to worry about cases in which the agent reports (x′, y1)

because g is independent of x. When the agent truthfully reports (x, y1), his

expected utility is

g(ω1, x, y1)µ(ω1|x, y1) + g(ω2, x, y1)µ(ω2|x, y1)

=
1

2
(1 + x)− 1

2
(1− x)

= x.
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If the agent reports (x′, y2),

g(ω1, x
′, y2)µ(ω1|x, y1) + g(ω2, x

′, y2)µ(ω2|x, y1)

= −1

2
(1 + x) +

1

2
(1− x)

= −x.

So, the agent has a weak incentive to report (x, y1). Due to the symmetry

of the example, the agent also has an incentive to truthfully report when his

type is x and observes y2. Therefore, g is incentive compatible.

Second, we show that under g, the expected payment to the agent is linear

in x. The above calculation shows that the expected payment to the agent

of type x is x. That is, E[g|x] = x.

Third, we numerically solve for the two optimal thresholds. The numer-

ical solution tells us that x ≈ 0.017 and x ≈ 0.706. The corresponding

optimal contract, that is, the optimal affine transformation of g, is shown in

the following table.

g̃ ω1 ω2

y1 1.08 0.05

y2 0.05 1.08

Figure 3.7 shows the principal’s expected utility, the expected payment

to the agent, and the agent’s outside option as functions of x.

Interestingly, Figure 3.7 implies that the principal admits lower types and

pays the agent more than his outside option. In fact, the principal actually

loses in case the agent turns out to be a bad forecaster. Also, note that the

principal does not hire types between [x†, x], for which she is able to pay the

agent more than his outside option and benefit from the agent’s information.

This is because the principal wants to reduce the expected payment to higher
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x

E[u|x]

z(x)

E[g̃|x]

x xx†

Figure 3.7: Comparison of the principal’s expected utility, the expected pay-
ment to the agent and the agent’s outside option: g̃ is the best affine trans-
formation of g.

types. By rejecting mediocre types and admitting extremely low types, the

principal can reduce the payment to higher types as well as ex-ante expected

costs. In this example, the reduction in overall costs outweighs the loss in

the utility of the principal. Figure 3.8 shows the expected net benefits to the

principal.

We show the shape of a proper scoring rule S that corresponds to g. Since

there are only two states, a posterior belief can be represented by q ∈ [0, 1],

probability of ω1. That is, a proper scoring rule can be a function from

Ω × [0, 1] to the extended real line. We use this definition to draw S. Note

that when the agent receives y1, the probability q of state ω1 is larger than
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x

E[u|x]− E[g̃|x]

x x 1

Figure 3.8: Expected net benefits to the principal under g̃

0.5, and he receives 1 if ω1 materializes. If the agent observes y2, q is less

than 0.5. If ω1 is realized, the agent pays 1 to the principal. If the agent is

uninformed, he is indifferent between -1 and 1. This is depicted in Figure

3.9. One can obtain the graph of S(ω2, ·) by reflecting S(ω1, ·) across the

horizontal axis. As Proposition 3.7.2 suggests, S(ω, q) is discontinuous at

q = 0.5 for all ω ∈ Ω.

q0

0.5 1

S(ω1, q)

-1

1

Figure 3.9: Proper scoring rule that corresponds to g
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We close this section, providing a complete characterization of proper

scoring rules in this example. The theorem due to McCarthy in Section 3 in-

directly means that for any convex function φ : [0, 1] −→ R and a subgradient

φ′ of φ, the following scoring rule S is proper:10

S(ω1, q) = φ(q) + (1− q)φ′(q),

S(ω2, q) = φ(q)− qφ′(q).

Note that this characterization works for all decision problems with two states

and two signal realizations. Information structure does not matter. It is

possible that a convex function φ is not differentiable at the prior. In this

case, the right limit of φ′(q) and the left limit of φ′(q) are different at the

prior, and the above two equations mean that the proper scoring rule derived

from φ is discontinuous at the prior.

3.9 Discussion of Assumptions 1 and 2

In this section, we discuss Assumptions 1 and 2. At first glance, they look

restrictive. An easy way of relaxing Assumption 1 is to discard it, i.e., to

impose no assumption on the agent’s type. However, if there is no structure

on the agent’s type, the agent’s type cannot be interpreted as the quality

of information. In this case, it would be difficult to interpret results and

understand intuitions.

Blackwell dominance would be a good candidate that can replace As-

sumption 1. That is, a higher type Blackwell-dominates a lower type. By

imposing Blackwell dominance, the agent’s type can be thought of as the

quality of information. Also, Blackwell dominance is a weaker assumption

in the sense that it implies that the expected utility increases in the agent’s

10According to the original definition we use in Section 3, φ takes two arguments. This
is why we use the word “indirectly”.
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type whereas Assumption 1 implies that the expected utility increases in the

agent’s type at increasing rate (Lemma 3.5.1). However, without further

assumptions, it would be more complicated to analyze the agent’s partici-

pation constraint. Even if we maintain Assumption 2, increasing expected

utility does not necessarily mean that there are at most two thresholds. If we

only assume Blackwell dominance, there could be more than two thresholds,

and characterizing thresholds would require a mathematically cumbersome

calculation of the model.

Another possibility is to assume Blackwell dominance and other assump-

tions so that the marginal benefit of higher quality of information is decreas-

ing. In other words, assumptions can be made such that the expected pay-

ment to the agent is increasing in the agent’s type at decreasing rate. Also,

instead of Assumption 2, one can assume that the agent’s outside option is

convex in the agent’s type. This corresponds to the increasing marginal cost

of producing information. If we imagine the typical behavior of marginal

benefits and marginal costs, those assumptions are reasonable. However, we

need to address one issue, which is that it is not easy to make the marginal

benefit of information increasing everywhere. This is because of Radner and

Stiglitz’s result, which implies that the marginal value of information is zero

at zero type. So, if we want to work with conventional marginal benefits and

marginal costs, we need to resolve the issue. Especially, we need to find an

“inflection” type, before which the marginal value of information is increas-

ing and after which the marginal value of information is decreasing. In case

we can successfully characterize such an inflection type, we would be able to

characterize the agent’s participation constraint.

With the assumptions made in the previous paragraph, it is possible that

the principal hires intermediate types only. For instance, an inflection type

can be very small. In this case, our analysis remains valid. When the quality

of information is separable, an optimal contract is a linear contract. The

95



existence of a linear contract is independent of Assumptions 1 and 2. Figure

3.10 clearly shows that if a linear contract exists, the optimal contract is a

linear contract. In Figure 3.10, z is the agent’s outside option, g is a linear

contract, and h is an incentive compatible contract. Only types between x

and x accept h. g is obviously better than h because any type who accepts

h also accepts g and the principal pays less to the agent conditional on the

acceptance.

Assuming that an inflection type is small enough, we describe how Propo-

sition 3.6.1 needs to be changed. If it is optimal for the principal to admit

no types, the first part in Proposition 3.6.1 remains true. If it is optimal

for the principal to hire all types, the participation constraint for the lowest

type and the highest type should be binding. Otherwise, the principal can

lower transfers to the agent until the participation constraints for the low-

est and the highest types are binding. For the third case, the participation

constraints for the threshold type and the highest types are binding. For

the fourth case, the participation constraints for the threshold type and the

lowest types are binding. For the fifth case, the two threshold types are

indifferent between accepting and rejecting. Regarding the equations that

thresholds satisfy, one can derive new equations using the new participation

constraint and the equalization of marginal benefit and marginal cost.

3.10 Conclusion

In this section, we summarize our finding and its implications. Our result

characterizes optimal contracts for the principal under the following two as-

sumptions. The marginal benefit of higher quality of information is increasing

and the marginal cost of producing higher quality of information is decreas-

ing.

First, we characterize a relationship between incentive compatible con-
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expected payments

z(x)

E[h|x]

E[g|x]

x x

Figure 3.10: Optimal linear contract under different assumptions

tracts and proper scoring rules. We show that given an incentive compatible

contract, one can find a corresponding proper scoring rule and that given a

proper scoring rule, one can find an incentive compatible contract.

Second, we provide a necessary condition for an optimal contract. Under

our assumptions, there are at most two threshold types (x and x) such that it

is optimal for the principal to not hire types between the two threshold types.

Since the agent type is related to the quality of information, the principal

hires bad forecasters and good forecasters, but are unwilling to hire mediocre

forecasters.

Third, we show that if the quality of information is separable, a linear

contract exists and an optimal contract can be obtained through an affine

transformation of a linear contract. The existence of a linear contract means

the violation of Radner and Stiglitz’s result (1984).
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By definition of a linear contract, the marginal value of information is

positive when a decision maker is uninformed. The reason that the marginal

value of information is positive is because the assumption that a decision

function is continuous at the prior is violated. One can show that a proper

scoring rule that corresponds to a linear contract must be discontinuous at

the prior. In a Radner and Stiglitz setting, the decision maker is not willing

to buy an infinitesimal amount of information, regardless of the information

price. However, in our model, if a linear contract exists, the marginal value

of information is positive. As a result, the decision maker would be willing

to buy a small amount of information provided that the price is not too high.

In this work, we make a special assumption on the quality of information

to simplify the analysis of the agent’s participation constraint. In order

to make our model more convincing, one necessary extension is to relax

Assumption 1 and come up with a less restrictive assumption on the quality

of information. Also, it would be important to find sufficient conditions for

the optimal contract. Another extension of this paper is to consider a risk

averse agent. If the agent is risk averse, proper scoring rules do not induce the

agent to truthfully report, which means that a characterization of incentive

compatible contracts would be more difficult. In addition, the agent’s risk

preference may have some impact on the participation constraint. So, one

future project is to investigate the impact of the agent’s risk preference on

the optimal contract.

98



1

Chapter 4

On The Optimal Order of Experiments

This chapter is joint work with Professor Tilman Börgers.

4.1 Introduction

Consider a decision maker who wants to make a decision under uncertainty,

but, before choosing, has the option of observing the realization of two sig-

nals. Observing the realization of a signal is costly. Thus, if it is optimal

to observe both signals, it may be a cost saving strategy for the decision

maker to observe one signal first, and to make the decision whether or not to

observe the second signal depending on the realization of the first signal. In

which order should the decision maker observe the two signals? For example,

if one signal is unambiguously more informative than the other, should the

decision maker observe the more informative signal first?

At first sight the answer to this question seems to necessarily be: “it

depends.” It seems unlikely that any results can be obtained that don’t

depend on the the details of the distributions of the two signals, as well

as the nature of the decision problem. A formal statement of the claim

that nothing much can be said in general is a theorem due to Greenshtein.

Greenshtein used the terminology of the statistics literature and referred to

signals as “experiments.” Greenshtein (1996, Theorem 3.2) then says that

for two independent experiments F and G one can say that F should be
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run before G regardless of what the underlying decision problem is if and

only if F is essentially equivalent to running G and some other experiment

that is independent of G. Thus, cases in which the order in which F and G

should be conducted is independent of the underlying decision problem are

very rare.

Greenshtein illustrates his result with two examples. In the first example

both F and G are binary. Then nothing can be said about the optimal

order of F and G independent of the decision problem (except in the trivial

case in which F = G, in which the order does not matter). The second

example is the case in which F and G are normally distributed. In this case,

Greenshtein’s theorem implies that the decision maker always wants to run

the experiment with the smaller variance first.

In this paper, we revisit Greenshtein’s result and investigate whether

more can be said about the optimal order of experiments when the class of

decision problems that is considered is not quite as large as in Greenshtein’s

paper. Specifically, Greenshtein allowed decision problems in which the de-

cision maker takes actions twice, after observing the first signal, and after

observing the second signal, and action spaces and payoff functions were

essentially unrestricted. In our paper, we assume that the information gath-

ering process precedes any decision making. Moreover, we restrict attention

to the case that the underlying state space as well as the set of available

actions are binary. The leading example that we have in mind is the “jury

problem” that has been much studied in economics: a defendant is either

guilty or not guilty, and the jury has to find the defendant either guilty or

not guilty.

If the class of decision problems is restricted, one can hope to find that

the optimal order in which to conduct experiments can be determined more

often than when the class of decision problems is unrestricted. In this paper
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we investigate this in detail. For the case of binary signals we find that

Greenshtein’s result continues to be true. We offer a detailed investigation

that clarifies the intuition for this result. If a signal has more than two

realizations, by contrast, Greenshtein’s result is no longer true. We display a

class of experiments for which we can determine the optimal order in which

experiments can be conducted regardless of the nature of the underlying

decision problem, as long as it belongs to the class of decision problems to

which we have restricted our attention.

The results described so far assume that each experiment has some fixed

cost. Moreover, in order to make the problem interesting, we assume that

the cost of the two experiments are identical, so that the optimal order of

experiments is not driven by cost differences. In a second part to the paper,

we investigate the case in which the cost of information gathering is due to

discounting, that is, the more information the decision maker gathers, the

longer it takes until a decision is made, and postponing the decision is costly.

We show that when discounting is the cost of waiting, the basic structure of

the results remains the same as in the cost of fixed cost, except that we can

obtain slightly stronger positive results, that is, results that permit decision

problem independent results on the optimal order of experiments.

One may view the relation between this paper and Greenshtein (1996)

as analogous to the relation between Athey and Levin’s (2018) analysis of

the informativeness of signals in a specific class of decision problems, and

Blackwell’s (1953) paper.11 In fact, there is a close formal connection between

Greenshtein’s and Blackwell’s result, although there is no formal connection

between our and Athey and Levin’s results.

In addition to revisiting Greenshtein’s result in a more restricted class

of decision problems, we also go beyond his analysis by providing a detailed

11On this relation, see Greenshtein (1996) and also Oliveira (2018).

101



analysis that illuminates how negative or positive results arise. To explain

the intuition for our results, let us focus first for the moment on the case

that experiments have only two realizations. Suppose that the two experi-

ments are unambiguously ordered in terms of (static) informativeness: one of

the experiments Blackwell dominates the other. It is easy to provide exam-

ples of decision problems in which it is optimal to run the more informative

experiment first. The intuition is that this experiment often settles the ques-

tion of what to do, and therefore no cost of running a second experiment

needs to be incurred. The more interesting point is that we show that even

if the class of decision problems is restricted, there are cases in which the

decision maker prefers running the less informative experiment first. This

implies that no statement can be made that is independent of the underlying

decision problem.

To understand the intuition why one might run the less informative exper-

iment first, let us think of a venture capitalist who is about to decide whether

to invest seeding funds into a startup company. The venture capitalist be-

lieves that the startup company will be successful with low probability, but

conditional on the success, it will generate large income flows. The ven-

ture capitalist has two sources of information: her friend and a professional

analyst. Assume that the analyst is more informative than the venture capi-

talist’s friend. Suppose that if the venture capitalist collects no information,

her optimal action is to invest, and that the venture capitalist does not in-

vest only if her friend and the analyst recommend her to not invest. In other

words, if either the friend or the analyst recommends the investment, the

venture capitalist’s optimal choice is to invest seeding funds into the startup

company. Given the venture capitalist’s belief, if she asks the analyst about

what to do first, the analyst recommends to her to not invest with high prob-

ability, which means that with high probability, the venture capitalist also

asks her friend. However, if the venture capitalist talks to her friend first,
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her friend recommends her to invest with high probability. As a result, there

is only a small chance that after talking to her friend, the venture capitalist

also visits the analyst. In this circumstance, if the venture capitalist incurs

fixed costs, she can save costs by asking her friend first. If discounting is

the cost of experimentation, the venture capitalist can take the right action

earlier by talking to her friend first.

The above situation illustrates the following idea: in some cases, a more

informative experiment triggers the second experimentation more often than

a less informative experiment does. Therefore, one might find it desirable to

run the more informative experiment first. It turns out that in the case that

experiments have only two realizations, it is always the case that the problem

described in the previous example arises, and therefore the decision maker

wants to run the less informative experiment first. But this is somewhat

artificial. If experiments have more than two realizations, then it is possible

to construct classes of examples in which it is unambiguously better to run

the more informative experiment first. This is the intuitive basis of our

second result.

The paper is organized as follows. We present our model in Section 2.

In Section 3, we discuss a normalization of payoffs that will simplify the

later derivation of results, and argue that fixed costs and discounting have

different impacts on the decision maker’s incentive to run an experiment. In

Section 4, we investigate in detail a particular case of binary experiments

when the decision maker incurs fixed costs of experimentation and does not

discount future payoffs. The purpose of this section is to develop intuition for

the optimal order of experiments. In Section 5, we prove that, if experiments

have fixed costs, then Greenshtein’s Theorem 3.2 remains valid in our set-up.

In Section 6, we provide a class of examples in which one signal has three

rather than two realizations, and in which Greenshtein’s Theorem 3.2 is no

longer valid. In Sections 7, 8 and 9, we consider the case that the cost of
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experimentation is due to discounting, and not to fixed costs. Because of the

difference between fixed costs and discounting, new calculations are required

to analyze the optimal order of experiments when discounting is the only cost

of experimentation. In Section 9, we obtain slightly more positive results.

Section 10 is a conclusion.

4.1.1 Related Literature

Our model is related to dynamic information acquisition. DeGroot (1962)

studies the optimal sequence of experimentation, and showed if one experi-

ment Blackwell-dominates all other experiments, the optimal sequence is to

repeat the “best” experiment in each period. Aghion et al. (1991) considers

a decision maker who is uncertain about her payoff function and investigate

whether she can asymptotically learn her payoff function. Che and Mieren-

dorff (2017) and Mayskaya (2018) consider a situation in which a decision

maker with a limited amount of attention has several sources of information

and characterize optimal policies that assign the amount of attention to each

source of information at every point of time. Liang et al. (2018) study Gaus-

sian experiments with arbitrary correlation and characterize conditions under

which “myopic” information acquisition is optimal. In these papers, the de-

cision maker can run the same experiment in every period. In our model, the

decision maker cannot run the same experiment unless the set of available

experiments contains two identical experiments. In other words, the set of

available experiments becomes smaller whenever the decision maker runs an

experiment.

This paper is also related to the comparison of experiments. Blackwell

(1953) proposes the notion of informativeness in static decision problems and

provides the partial ordering among experiments. Blackwell’s notion can be

naturally extended to the comparison of deterministic sequences of experi-

ments, and Greenshtein (1996) and Oliveira (2018) show that one sequence
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of experiments is better than another sequence of experiments regardless of

decision problems if and only if the second sequence of experiments can be

sequentially reproduced from the first sequence of experiments.12 In this pa-

per, we consider a class of decision problems, and as a result, Greenshtein’s

results (Theorem 1.1a and Theorem 3.2, 1996) do not have to hold. We find

a class of experiments that violates Greenshtein Theorem 3.2, and for which

there exists a non-trivial comparison of experiments.

There are several papers that extend the Blackwell’s partial order of ex-

periments by considering a class of decision problems. Lehmann (1988) stud-

ies monotone decision problems and obtains an informativeness ordering for

the class of monotone decision problems. Athey and Levin (2018) extends

Lehmann’s work. Cabrales, Gossner and Serrano (2013) considers an agent

who has weakly increasing relative risk aversion, and shows that the value

of an experiment is equivalent to the reduction in entropy due to the experi-

ment. This means that they obtain the complete ordering because reduction

in entropy is a number. Ganuza and Penalva (2010) introduce two definitions

of informativeness that are different from Blackwell’s definition of informa-

tiveness. Our model shares a similar spirit with those papers in the sense

that we restrict our attention to a class of decision problems.

4.2 Model

Environment Nature chooses a state ω ∈ Ω = {A,B} at the outset. This

choice is not revealed to the decision maker, but she knows µ0 ∈ (0, 1), the

initial probability that the true state is A. The decision maker can only run

at most two experiments, but she can run one experiment at a time.

In period 0, she chooses between taking an action and running an exper-

iment. Once the decision maker takes an action, the decision process is over.

12Oliveira (2018) proves Greenshtein (1996) Theorem 1.1a using a different approach.
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The true state is revealed and the decision maker receives utility based on

her action and the true state. If the decision maker runs an experiment, she

moves to period 1. The decision maker observes the experiment outcome,

and chooses between an action and the remaining experiment. If the deci-

sion maker runs the remaining experiment, she moves to period 2, observes

a realization, and chooses an action.

The decision maker incurs fixed costs c whenever she conducts an exper-

iment. Future payoffs are discounted by δ.

Experiments An experiment F is represented by 3-tuple (X, fA, fB). X

is a finite set of outcomes. For each ω ∈ Ω, fω is a probability measure

on sigma field of X. Two experiments F and G are available, and they are

independent conditional on the state. We assume that for all ω ∈ Ω, all

x ∈ X and y ∈ Y , fω(x)gω(y) > 0.

Binary Decision Problems The decision maker can choose an action

α ∈ A = {a, b}. Her payoff matrix u can be represented by 2× 2 matrix:

u A B

a uA(a) uB(a)

b uA(b) uB(b)

We assume that uA(a) > uA(b) and uB(a) < uB(b) so that the decision maker

wants to choose the action to match the state. Also, we assume that uA(a)

and uB(b) are positive. A binary decision problem D is the tuple (u, c, δ).

Note that a binary decision problem does not include the decision maker’s

prior belief.

A Sequence of Experiments We use FG to denote a sequence of experi-

ments. FG means that if the decision maker runs an experiment, she runs F

first. Similarly, GF means that, if she runs an experiment, she runs G first.
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The Set of Utility Vectors We construct the set of utility vectors given

the sequence of experiments FG. Let σ0
FG be the decision maker’s strategy

in period 0:

σ0
FG : A ∪ {F} −→ [0, 1]

where
∑

α∈A∪{F} σ
0
FG(α) = 1. Σ0

FG is the set of all strategies σ0
FG in period

0.

Let σ1
FG be the decision maker’s strategy in period 1:

σ1
FG : (A ∪ {G})×X −→ [0, 1]

where for each x ∈ X,
∑

α∈A∪{G} σ
1
FG(α, x) = 1. That is, σ1

FG(·, x) assigns

probability to the action in A or G given the outcome x of F . Σ1
FG is the set

of all strategies σ1
FG in period 1.

σ2
FG is a strategy in period 2:

σ2
FG : A×X × Y −→ [0, 1]

where for each (x, y) ∈ X × Y ,
∑

α∈A σ
2
FG(α, x, y) = 1. Let Σ2

FG be the set

of all strategies σ2
FG in period 2, and ΣFG = Σ0

FG × Σ1
FG × Σ2

FG.

Given the strategy σFG ∈ ΣFG, we define a utility vector. For each state

ω ∈ Ω,

vω(σFG) =
∑
α∈A

uω(α)σ0
FG(α) + σ0

FG(F )

−c+ δ
∑
α∈A,
x∈X

uω(α)σ1
FG(α, x)fω(x)



+ σ0
FG(F )δ

∑
x∈X

σ1
FG(G, x)fω(x)

−c+ δ
∑
α∈A,
y∈Y

uω(α)σ2
FG(α, x, y)gω(y)
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This is the ex-ante expected utility when the true state is ω and the strategy

σFG is chosen.

Given the strategies σFG, the utility vector is

v(σFG) = (vA(σFG), vB(σFG)).

Given a binary decision problem D = (u, c, δ), the set of utility vectors for

FG is denoted by VFG.

VFG(D) = {v(σFG)|σFG ∈ ΣFG} .

Now, we define a notion of informativeness for a sequence of experiments

in our model. Since we are going to consider a subclass of binary decision

problems and look for the comparison of sequential experiments, the following

definition is tailored to the class of binary decision problems.

Definition 4.2.1. Let D be a set of binary decision problems. FG is more

informative than GF with respect to D if VGF (D) ⊆ VFG(D) for all D ∈ D .

This definition is the same definition of informativeness as in Blackwell

(1953). Therefore, the following statement is true due to Blackwell’s result.

FG is more informative than GF with respect to D if and only if the optimal

strategy for the decision maker is either to run F first or to take the right

action without experimentation in every binary decision problem in D .

4.3 Normalization of Payoffs and the Cost of Experi-

mentation

In this section, we first show that if fixed costs are the only cost of conducting

an experiment, we can restrict our attention to a simple subclass of binary

decision problems. This will be done by normalizing the payoff matrix. Then,
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we discuss why we cannot focus on the subclass of binary decision problems

when the decision maker discounts future payoffs.

To normalize the payoff matrix, we need to understand optimal strategies.

In our model, the optimal strategy is simple. If the benefit of running an

experiment is greater than cost of running the experiment, then the decision

maker chooses to run the experiment. Otherwise, the decision maker choose

the right action. Since there are only finite periods, we can find an optimal

strategy by applying the argument backwards.

To state the result, we need notations. u is the same as in Model section.

For given u, define β:

β =
uB(b)− uB(a)

uA(a)− uA(b)

and a new payoff matrix uβ:

uβ A B

a 1 0

b 0 β

.

Let c̃ = c
uA(a)−uA(b)

. Given D = (u, c, 1), let D̃ = (uβ, c̃, 1). Define D(u,c) =

{(u, c, 1)}. We denote by σ∗(µ,D) the optimal strategy for the decision maker

given her prior µ0 and the binary decision problem D.

Lemma 4.3.1. For every prior µ and every binary decision problem D ∈
D(u,c), σ

∗(µ,D) = σ∗(µ, D̃).

(proof) In the Appendix.

Lemma 4.3.1 is a special type of normalization of payoff matrices. To

understand Lemma 4.3.1, we need to understand the optimal strategy for

the decision maker. An optimal strategy is simple. If it is not beneficial

for the decision maker to run an experiment, the decision maker chooses the

right action as a function of the posterior belief. If running an experiment is
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beneficial, the decision maker should run the experiment. Lemma 4.3.1 means

that such a normalization does not change both of the decision maker’s right

action and the incentive to run an experiment.

Let us first look at the right action. Let

µ∗ =
β

1 + β
.

In both binary decision problems D and D̃, the decision maker’s right action

depends only on whether her posterior belief is larger than or less than µ∗.

Assuming the decision maker chooses a when she is indifferent between the

two actions a and b, if the posterior belief is larger than or equal to µ∗, the

right action is a. If the posterior belief is less than µ∗, the decision maker is

supposed to choose b.

Now, let us move onto the decision maker’s incentive to run an experi-

ment. In order to normalize u to uβ, we need to subtract the state-dependent

payoff v from u and multiply u − v by a positive number. That is, for each

ω ∈ Ω,

uβ,ω(a) = γ(uω(a)− vω).

Since v is independent of the action and the signal realization, the impact of

experimentation on uβ is only through u. This means that if an experiment

increases the expected utility by 1 in the original binary decision problem D,

the experiment increases the expected utility by γ in the new binary decision

problem D̃. Therefore, if we multiply c by γ, the incentive for the principal

to run an experiment is preserved under the normalization.

Note that the argument is not unilateral. We can construct u from uβ.

So, the optimal strategy in the binary decision problem D is the optimal

strategy in the binary decision problem D̃, and vice versa.

We turn to explain why we need to assume that δ = 1. This is because for
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dynamic information acquisition, fixed costs and discounting have different

impacts on the decision maker’s incentive to run an experiment. To illustrate

this, we consider the following example.

u A B

a 1 + v v

b v 1 + v

F A B

xA p 1− p
xB 1− p p

where v > 0 and p ∈ (0.5, 1). u is the decision maker’s utility, F is an

experiment, and µ0 is 0.5.

Suppose the fixed cost c > 0 is the only cost of running the experiment F .

The decision maker will choose to run F if running F increases her expected

utility. If the decision maker runs F and observes xA, the right action is

a. Similarly, if the decision maker observes xB, the right action is b. After

simple calculation, the condition for the decision maker to conduct F is:

p− 1

2
≥ c.

As the above inequality indicates, v has no impact on the decision maker’s

choice concerning whether she runs F or not. When the utility is quasi-linear

in fixed costs, the decision maker is interested in the change of her expected

utility.

Now, let us think about what happens if the discount factor δ is the only

cost of waiting. That is, the decision maker does not incur c when running

F . In this case, the condition under which the decision maker chooses F is:

δ (p+ v) ≥ 1

2
+ v.

Equivalently,

δp− 1

2
≥ (1− δ)v.
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Clearly, the decision maker is not willing to conduct the experiment if v

is very large. In fact, given δ, there exists v such that the decision maker

chooses not to conduct the experiment F . If the decision maker discounts

the total amount of utility, there are cases in which she is more interested in

the magnitude of expected utility, rather than the changes in her expected

utility. For instance, suppose that the payoff matrix u represents monetary

values and that v is one billion dollars. Then, the decision maker would

choose to take the right action immediately even if she can know the true

state in the next period. The decision maker does not choose to run the

experiment to receive one more dollar.

The above example shows that if discounting is the cost of experimen-

tation, a constant number cannot be added to or subtracted from a payoff

matrix without affecting the decision maker’s incentive to conduct an experi-

ment. This leaves us with a trivial normalization of payoffs when discounting

is the only cost of experimentation. We can always divide payoffs by some

positive number. This normalization barely simplifies analyses. So, if the

discounting is the only cost of experimentation, we will consider the class of

binary decision problem. However, we will rule out pathological cases. For

instance, suppose that all entries of a payoff matrix are negative. In this

case, the decision maker is certainly willing to run an experiment even if the

experiment is completely uninformative. The motivation of experimentation

is not to make an informed decision, but to receive negative utilities later.

This is not an interesting case, and we do not analyze such cases.

To sum it up, if fixed cost is the only cost of experimentation, we will rely

on Lemma 4.3.1, and analyses will be focused on a subclass of binary decision

problems. If discounting is the only cost of experiment, Lemma 4.3.1 cannot

be applied, and we will consider the whole class of binary decision problems

except uninteresting cases. Clearly, if the decision maker incurs the fixed

cost of experimentation and discount future payoffs, we cannot use Lemma
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4.3.1.

4.4 Fixed Cost of Experimentation: First Class of Ex-

amples

In this section, we assume that δ = 1. That is, we restrict our attention

to D(u,c) = {(u, c, 1)}, the set of binary decision problems with δ = 1. We

consider the set of experiments below:

F A B

xA p 1− p
xB 1− p p

G A B

yA q 1− q
yB 1− q q

where 0.5 < q < p < 1.

Since δ = 1, Lemma 4.3.1 allows us to safely focus on the following payoff

matrices:

uβ A B

a 1 0

b 0 β

where β > 0.

For the class of experiments described above and the set of all binary

decision problems, we analyze optimal strategies. The first step is to under-

stand the criterion for choosing the right action given a belief. When the

decision maker has a belief µ and has to take an action, her right action is a

if and only if13

µ ≥ (1− µ)β.

In other words, the decision maker chooses a if and only if her posterior belief

is greater than or equal to the threshold belief µ∗ = β
1+β

.

13We assume that the decision maker chooses a if she is indifferent between a and b.
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Let µ(·) the posterior belief. For the class of experiments that we consider

in this section, the posterior belief is ordered in the following way:

µ(xB, yB) < µ(xB, yA) < µ(xA, yB) < µ(xA, yA).

Also, the prior µ0 is between µ(xB, yA) and µ(xA, yB). Note that the magni-

tude of the posterior belief is implied by the prior µ0 and that µ∗ is determined

by β. So, the relationship between µ0 and β can be replaced by the relation-

ship between the posterior beliefs and µ∗. We are going to analyze optimal

strategies using µ∗ and the posterior beliefs.

Proposition 4.4.1. In the following cases, the optimal strategy for the de-

cision maker is to take the right action immediately for all c > 0.

1. If µ∗ ≤ µ(xB, yB), the right action is a.

2. If µ(xA, yA) ≤ µ∗, the right action is b.

Proposition 4.4.1 describes cases in which the decision maker has an ex-

treme prior. In this case, her belief will not change enough to change the

optimal action, regardless of experiment outcomes.

Proposition 4.4.2. Suppose µ(xB, yA) ≤ µ∗ ≤ µ(xA, yB).

1. Suppose µ0 ≤ µ∗ ≤ µ(xA, yB).

• If c ≤ µ0p − (1 − µ0)β(1 − p), the optimal strategy is to run F .

Choose a if xA is observed and b if xB is observed.

• If c > µ0p− (1−µ0)β(1−p), the optimal strategy is to take action

b.

2. Suppose µ(xB, yA) ≤ µ∗ < µ0.
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• If c ≤ −µ0(1− p) + (1− µ0)βp, the optimal strategy is to run F .

Choose a if xA is observed and b if xB is observed.

• If c > −µ0(1 − p) + (1 − µ0)βp, the optimal strategy is to take

action a.

Proposition 4.4.2 applies when the outcome of F pins down the right

action. If µ∗ is between µ(xB, yA) and µ(xA, yB), the outcome of G has

no impact on the decision maker’s action. For instance, suppose that the

decision maker observed xA. Even if she runs G, she will choose a regardless

of the outcome of G. Put differently, if she runs G first and F later, she will

ignore the realization of G. Therefore, the decision maker has no incentive to

run G. That is, the optimal strategy is to run F if and only if the marginal

expected payoffs are greater than the fixed costs.

Two cases are remaining. For those cases, we partially analyze optimal

strategies. Let us consider the case in which µ(xA, yB) < µ∗ < µ(xA, yA).

Proposition 4.4.3. Suppose µ(xA, yB) < µ∗ < µ(xA, yA).

1. Given µ0 >
1
2
, there exists c such that for all c ∈ (0, c), the optimal

strategy is:

• to run G first. If yA is observed, run F . If yB is observed, choose

b.

• If (yA, xA) is observed, choose a. If (yA, xB) is observed, choose b.

2. Given µ0 ≤ 1
2
, there exists c such that for all c ∈ (0, c), the optimal

strategy is:

• to run F first. If xA is observed, run G. If xB is observed, choose

b.

• If (xA, yA) is observed, choose a. If (xA, yB) is observed, choose b.
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The reason that Proposition 4.4.3 is a partial characterization is because

we do not explicitly compute c. The exact computation of c would be inter-

esting, but we would like to focus on cases in which the decision maker runs

the two experiments.

The assumption that µ(xA, yB) < µ∗ < µ(xA, yA) means that the impact

of β on the right action dominates the impact of µ0 on the right action. The

assumption means that the decision maker’s current right action is b, and she

changes her action only if she observes xA and yA. Given sufficiently small

costs c, the decision maker is willing to run a second experiment, regardless

of whether she run F first or G first. In this case, the decision maker will

choose a with the probability of observing xA and yA and choose b with the

complementary probability. Clearly, if we forget costs, the expected payoffs

are the same, regardless of the order in which to run experiments. This in

turn means that maximizing expected payoffs are equivalent to minimizing

costs. Since the expected costs are proportional to the probability of running

a second experiment, the decision maker wants to runG first if the probability

of observing yA is lower than the probability of observing xA. When µ0 >
1
2
,

the decision maker can save costs by running G first because q < p. However,

if µ0 <
1
2
, the decision maker needs to run F first to reduce the expected

costs.

The analysis for the last case is similar to Proposition 4.4.3.

Proposition 4.4.4. Suppose µ(xB, yB) < µ∗ < µ(xB, yA).

1. Given µ0 <
1
2
, there exists c such that for all c ∈ (0, c), the optimal

strategy is:

• to run G first. If yB is observed, run F . If yA is observed, choose

a.

• If (yB, xA) is observed, choose a. If (yB, xB) is observed, choose

b.
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2. Given µ0 ≥ 1
2
, there exists c such that for all c ∈ (0, c), the optimal

strategy is:

• to run F first. If xB is observed, run F . If xA is observed, choose

a.

• If (xB, yA) is observed, choose a. If (xB, yB) is observed, choose

b.

Proof. Omitted.

Propositions 4.4.3 and 4.4.4 mean that the decision maker does not always

prefer FG to GF . Depending on the binary decision problem, the decision

maker is willing to conduct G first in order to save costs. Our analysis fails

if p = q. So, the following corollary is immediate.

Corollary 4.4.1. FG is more informative than GF with respect to D(u,c) if

and only if p = q.

We believe that this phenomena can be seen in real life. One example

would be a doctor and a patient. Suppose the patient visits the hospital

to know whether he has a brain tumor. The doctor has run several tests,

and believes that the patient is less likely to have a brain tumor. However,

the doctor is a bit uncertain and wants to run two more tests, an MRI scan

and an X-ray. Suppose that the doctor is convinced that the patient has a

brain tumor only if the MRI scan and the X-ray picture indicate that the

patient has a brain tumor. Assuming that the MRI scan is more informative

than the X-ray, the doctor takes an X-ray picture of the patient because the

doctor believes that the patient is healthy and there is a higher chance that

the X-ray picture of the patient shows no brain tumor.

Before we close this section, we would like to mention that the analysis

in this section can be applied to general binary experiments. In fact, F and
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G do not have to have symmetric information structure. Furthermore, nei-

ther of F nor G needs to be more informative than the other. As readers

may notice, the argument for optimal strategies does not rely on symmetric

information structure and informativeness. In this section, we use the sym-

metric information for two reasons. First, computation is relatively easy and

presentation is compact. Second, we would like to emphasize the fact that

one experiment being more informative than the other experiment in static

decision problems is not sufficient to guarantee that the more informative

experiment is run first in dynamic decision problems.

4.5 Fixed Cost of Experiments: Comparison of FG and

GF

In the previous section, we focused on the optimal order in which the decision

maker runs experiments, and obtained the negative result, Corollary 4.4.1,

that there is no non-trivial comparison of sequential experiments. In this

section, we continue to restrict our attention to D(u,c) and focus on the factors

that drive the negative result.

Unlike the previous section, an experiment can have more than two re-

alizations. For F = (X, fA, fB), X = {x1, · · · , xm}, and for G = (Y, gA, gB),

Y = {y1, · · · , yl}. We assume that the xi’s and yj’s are ordered in the follow-

ing way:
fA(x1)

fB(x1)
< · · · < fA(xm)

fB(xm)

and
gA(y1)

gB(y1)
< · · · < gA(yl)

gB(yl)
.

This ordering is always possible by relabeling realizations. The ordering

means that the posterior belief decreases in the index. For instance, µ(xi) is

decreasing in i.
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To state our result, decisive experiments are a useful notion. Roughly

speaking, a decisive experiment determines the decision maker’s right action

with positive probability in some cases. For some prior µ0 and β, if F is

decisive, the decision maker does not need to run G, regardless of how small

c is. This means that F being decisive is a necessary condition for FG to be

more informative than GF .

As in Section 4, µ∗(β) is the threshold belief, which is given by:

µ∗(β) =
β

1 + β
.

Recall that if the belief is larger than or equal to µ∗(β), then action a is

optimal. If the belief is smaller than or equal to µ∗(β), then action b is

optimal. We define a decisive experiment.

Definition 4.5.1. F is decisive for the binary decision problem D and the

prior µ0 if there exist xa and xb in X such that

µ(xa, y) ≥ µ∗(β) ∀y ∈ Y,

and

µ(xb, y) < µ∗(β) ∀y ∈ Y.

In words, if the decision maker observes xa, then she does not have an

incentive to run G since no outcome of G will change her action. Similarly,

if the decision maker receives xb, her right action should be b, regardless of

outcomes of G.

It turns out that if there are only two experiments, one experiment is

decisive for some binary decision problem, whereas the other experiment

cannot be decisive for any binary decision problem.
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Lemma 4.5.1. Suppose fA(x1)
fB(x1)

gA(yl)
gB(yl)

> fA(xm)
fB(xm)

gA(y1)
gB(y1)

. Then, F is decisive for

some binary decision problem D and some prior µ0, whereas G cannot be

decisive for any binary decision problem and any prior.

Let us discuss Lemma 4.5.1 and forget the possibility that fA(x1)
fB(x1)

gA(yl)
gB(yl)

=
fA(xm)
fB(xm)

gA(y1)
gB(y1)

for a while. If the inequality in Lemma 4.5.1 is flipped, we

can relabel two experiments so that the inequality is satisfied. Suppose the

inequality is met. Then, we can imagine a circumstance in which for some

binary decision problem D and some prior µ0,

µ(x1, y1) ≥ . . . ≥ µ(x1, yl) ≥ . . .

. . . ≥ µ∗(β) ≥ . . .

. . . µ(xm, y1) ≥ . . . ≥ µ(xm, yl).

This expression means that a is the right action for the decision maker when

she observes x1. Also, upon receiving x1, the decision maker has no incentive

to run G. Similarly, b is the right action for the decision maker when she

observes xm. This argument show that F is decisive for this binary decision

problem.

Let us think about why G cannot be decisive. If G is decisive for some

binary decision problem D and some prior µ0, then it should be true that

at least y1 and yl determine the right actions. That is, when the decision

maker observes y1 or yl, she should have no incentive to run F , no matter

how small c is. However, this is impossible. If G is decisive for D and

µ0, then it must be true that µ∗(β) ∈ (µ(xm, yl), µ(x1, y1)). Otherwise, the

decision maker’s right action is either a or b, regardless of realizations. If

µ∗(β) ∈ (µ(xm, y1), µ(x1, y1), y1 alone does not pin down the right action.

Clearly, if the decision maker runs F and observes x1, the right action is a,

and if she observes xm, the right action is b. If µ∗(β) ∈ (µ(xm, yl), µ(xm, y1),
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yl alone does not determine the right action. If the decision maker runs F

and observes x1, the right action is a, whereas if she observes xm, the right

action is yl. Therefore, if F is decisive for some binary decision problem and

some prior, there is no binary decision problem and no prior for which G is

decisive.

One more note about a decisive experiment is that the decisive experiment

does not have to be more informative than the other experiment. Look at

the following experiments.

F A B

xA p 1− q
xB 1− p q

G A B

yA r 1− r
yB 1− r r

where 0.5 < q < p < 1 and 0.5 < r < 1. Suppose
(

r
1−r

)2
< p

1−p
q

1−q . One can

show that F is decisive for some binary decision problem and that F is not

more informative than G in static decision problems.

Let us turn to the possibility that

fA(x1)

fB(x1)

gA(yl)

gB(yl)
=
fA(xm)

fB(xm)

gA(y1)

gB(y1)
.

However, the set of experiments where the inequality in Lemma 4.5.1 be-

comes an equality has Lebesgue measure zero. Therefore, we may ignore the

possibility that the condition in Lemma 4.5.1 is an equality. In other words,

we may safely assume that F is decisive for some binary decision problem.

This means that when we compare FG and GF , the relationship should be

such thatWGF (D) ⊆ WFG(D) with respect to D for all D ∈ D . This is obvi-

ous because if F is decisive for some binary decision problem D, the decision

maker does not have to run G for D.

Using the notion of decisive experiments, we state the result on compar-

ison of FG and GF .
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Proposition 4.5.1. Suppose that F is decisive for some binary decision

problem and that X = {x1, x2}. Then, FG is more informative than GF

with respect to D(u,c) if and only if F = G.

Proposition 4.5.1 is compatible with Corollary 4.4.1. Proposition 4.4.2

implies that F is decisive for some binary decision problem. In Section 4, F

has two realizations. Therefore, Proposition 4.5.1 means that FG is better

than GF if and only if F and G are identical.

The idea for the proof of Proposition 4.5.1 is the same as the characteri-

zation of optimal strategies in Section 4. For some parameters, the decision

maker’s right action is a if she does not run any experiment, and she changes

her action only if she observes x2 and yl. If c is very small, the decision maker

will run a second experiment whenever the second experiment increases the

expected utility. This implies that the decision maker wants to save costs.

Interestingly, this circumstance also occurs when the prior belief is extreme.

This means that there are cases in which µA is close to either 0 or 1 and the

decision maker wants to minimize the expected costs. Since minimizing costs

is to choose the lower between the probability of x2 and the probability of

yl, in order for FG to be better than GF , the probability of yl is lower than

or equal to the probability of x2 when the prior is close to zero or one. That

is, fA(x2) ≤ gA(yl) and fB(x2) ≤ gB(yl).

For some other parameters, the decision maker’s right action is b with no

experiment, and she changes her action only if she observes x1 and y1. By

the symmetry, we find that fA(x1) ≤ gA(y1) and fB(x1) ≤ gB(y1). However,

those inequalities cannot be strict inequalities because otherwise 1 = fA(x1)+

fA(x2) < gA(y1) + gA(yl) ≤ 1. Therefore, if F is decisive and has two

realizations, and FG is better than GF , F and G must be the identical

experiment.
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4.6 Fixed Cost of Experimentation: Second Class of

Examples

In this section, we continue to focus on D(u,c) and look for possibilities of posi-

tive results. There are two assumptions in Proposition 4.5.1. Since a decisive

experiment generically exists due to Lemma 4.5.1, the only way of obtaining

a positive result is to relax the assumption that a decisive experiment has

two realizations.

We consider a class of the following experiments.

F A B

x1 (1− r)p (1− r)(1− p)
x2 r r

x3 (1− r)(1− p) (1− r)p

G A B

y1 q 1− q
y2 1− q q

where 0.5 < q < p < 1 and r > 0.

For a subclass of the above experiments, we can obtain a positive result.

That is, for some parameters, FG is better than GF . Let us state the result

first, and then explain.

Proposition 4.6.1. Suppose that p
1−p >

(
q

1−q

)2

and r ∈
(
p−q
p
,max

{
1− q, p−q

p−0.5

})
.

Then, FG is more informative than GF with respect to D(u,c).

Proof. In the Appendix.

We discuss the conditions in Proposition 4.6.1. The first condition that
p

1−p >
(

q
1−q

)2

has two implications. The first implication is that the poste-

rior beliefs are ordered in a way that F is decisive for some binary decision

problems. The second implication is that F is not a combination of G and

another independent experiment H. The second implication is important

because it implies the violation of Greenshtein Theorem 3.2.
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We first show that F is decisive in some binary decision problems. See

Lemma below.

Lemma 4.6.1. Suppose p
1−p >

(
q

1−q

)2

. Then, the posterior beliefs are or-

dered in the following way:

µ(x3, y2) < µ(x3, y1) < µ(x2, y2) < µ(x2, y1) < µ(x1, y2) < µ(x1, y1).

Lemma 4.6.1 clearly means that F is decisive for some binary decision

problems. For instance, if µ∗ is between µ(x2, y1) and µ(x1, y2), the outcome

of F pins down the right action. Therefore, we state this as corollary without

the proof.

Corollary 4.6.1. Suppose p
1−p >

(
q

1−q

)2

. Then, F is decisive for some

binary decision problems.

We prove that F is not a combination of G and another experiment

H. For given two experiments G = (Y, gA, gB) and H = (Z, hA, hB), the

combination of G and H, G×H is defined to be (Y × Z, gAhA, gBhB).

Proposition 4.6.2. Suppose p
1−p >

(
q

1−q

)2

. There is no experiment H =

(Z, hA, hB) such that F is a combination of G and H.

Proposition 4.6.2 is important because if F is a combination of G and

another independent experiment, then Greenshtein Theorem 3.2 applies and

our analysis will be meaningless. Proposition 4.6.2 has a positive implication

that if we restrict our attention to a class of decision problems, the compari-

son of sequential experiments can be made for a larger class of experiments.

We now turn to the second condition in Proposition 4.6.1 that r > p−q
p

.

This means that in order for FG to be better than GF , r should not be close

to zero. If r is very small, then F looks like a binary experiment, and we will

obtain the same result as in Section 4.
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The third condition we look at is that r < p−q
p−0.5

. This condition means

that F is more informative than G in static decision problems. In fact, we

need this condition in case the decision maker runs at most one experiment

because of large costs. In those cases, if F is more informative than G, the

decision maker chooses F . The Lemma below characterizes a necessary and

sufficient condition under which F is more informative than G.

Lemma 4.6.2. F is more informative than G if and only if r ∈
[
0, p−q

p− 1
2

]
.

The remaining condition is that r < max
{

1− q, p−q
p−0.5

}
. Intuitively, r

cannot be very large because it is uninformative. In case p is large and q is

close to 0.5, r can be close to one and F is still more informative than G.

However, if r is very large, then the decision maker receives the uninformative

signal realization with high probability. This means that if the decision maker

runs F first, there would be a higher chance of running G. So, r should not

be very large. In other words, r needs to be bounded from above in order

to prevent the decision maker from running a second experiment with large

probability.

The intuition for the proof of Proposition 4.6.1 is the following. For the

first class of examples, a more informative experiment F frequently induces

the decision maker to run the other experiment G. In order to alleviate this,

a more informative experiment F now has three realizations. So, because

the decision maker receive extreme outcomes x1 and x3 with lower proba-

bilities, the more informative experiment F does not frequently trigger the

second experimentation. This is good news. However, the new realization x2

is uninformative, and clearly, the uninformative realization also induces the

decision maker to run the other experiment. The uninformative realization

should not occur with high probability, otherwise it also often triggers the

second experimentation. Therefore, if the decision maker receives the unin-
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formative signal with some low probability, then she would prefer FG to GF

in every binary decision problem.

4.7 Delay by Experimentation: First Class of Exam-

ples

In this section, we revisit the first class of examples, assuming that c = 0

and δ ∈ [0, 1]. For experiments, we use the same notation as in the first class

of examples.

Since δ is not fixed at 1, we cannot use Lemma 4.3.1 to normalize a payoff

matrix. Therefore, we use a generic payoff matrix u:

u A B

a uA(a) uB(a)

b uA(b) uB(b)

Recall that uA(a) > uA(b) and uB(a) < uB(b). We also impose one more

assumption that all entries of the payoff matrix are non-negative. This is

because we want to eliminate cases in which the decision maker conducts an

experiment in order to take an action later. For instance, suppose all entries

of the payoff matrix are negative. Even if an experiment is uninformative,

the decision maker is willing to run the experiment because the discounted

expected payoff is larger than the current expected payoff.

We define another class of binary decision problems: D(u,δ) = {(u, 0, δ)}
where all entries of u are non-negative. The analysis of this section is focused

on D(u,δ).

As in Section 4, we analyze optimal strategies. Since the arguments

used in Propositions 4.4.1 and 4.4.2 are independent of whether the decision

maker incurs fixed costs or discounts the future payoffs, Propositions 4.4.1
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and 4.4.2 apply here, too. Therefore, we move onto cases that correspond to

Propositions 4.4.3 and 4.4.4. µ∗ is the threshold belief:

µ∗ =
uB(b)− uB(a)

uA(a)− uA(b)
.

Proposition 4.7.1. Suppose µ(xA, yB) < µ∗ < µ(xA, yA).

1. Given µ0 ≤ 1
1+uA(b)/uB(b)

, there exists δ such that for all δ ∈ [δ, 1), the

optimal strategy is:

• to run F first. If xA is observed, run G. If yB is observed, choose

b.

• If (xA, yA) is observed, choose a. If (xA, yB) is observed, choose b.

2. Given µ0 >
1

1+uA(b)/uB(b)
, there exists δ such that for all δ ∈ [δ, 1), the

optimal strategy is:

• to run G first. If yA is observed, run F . If yB is observed, choose

b.

• If (xA, yA) is observed, choose a. If (xA, yB) is observed, choose b.

Proposition 4.7.1 has the same implication as Proposition 4.4.3. Let us

consider the second case in Proposition 4.7.1. The assumptions in the second

case of Proposition 4.7.1 are satisfied when µ∗ is large and µ0 is large. In this

case, the decision maker believes that the true state is almost A but the right

action is b. If the decision maker runs F first, then there will be a higher

chance that she runs G. However, if the decision maker runs G first, she can

take the action b “earlier.”

Proposition 4.7.2. Suppose µ(xB, yB) < µ∗ < µ(xB, yA).

1. Given µ0 <
1

1+uA(a)/uA(b)
, there exists δ such that for all δ ∈ [δ, 1), the

optimal strategy is:
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• to run G first. If yB is observed, run F . If yA is observed, choose

a.

• If (yB, xA) is observed, choose a. If (yB, xB) is observed, choose

b.

2. Given µ0 ≥ 1
1+uA(a)/uA(b)

, there exists δ such that for all δ ∈ [δ, 1), the

optimal strategy is:

• to run F first. If xB is observed, run F . If xA is observed, choose

a.

• If (xB, yA) is observed, choose a. If (xB, yB) is observed, choose

b.

Like Propositions 4.4.3 and 4.4.4, the above two Propositions mean that

the decision maker does not always prefer FG to GF . Depending on the

binary decision problem, the decision maker is willing to conduct G first in

order to take the right action earlier. By the same reason as in Section 4,

the following corollary is immediate.

Corollary 4.7.1. FG is more informative than GF with respect to D(u,δ) if

and only if p = q.

However, if we further restrict our attention to a subclass of binary de-

cision problems, we obtain a positive result. Let D(uβ ,δ) = {(uβ, 0, δ)}. The

following corollary is immediate from Propositions 4.7.1 and 4.7.2.

Corollary 4.7.2. FG is more informative than GF with respect to D(uβ ,δ).

Note that when uβ is used, uβ,A(b) = uβ,B(a) = 0. In this case, the second

part of Proposition 4.7.1 implies that running G first is optimal if µ0 > 1.

However, µ0 cannot be larger than one. Also, the first part of Proposition

4.7.2 means that if µ0 < 0, running G first is optimal. Clearly, µ0 cannot be
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negative. Therefore, if uβ,A(b) = uβ,B(a) = 0, the informativeness of static

decision problems is carried over in dynamic decision problems.

Finally, the analysis in this section can be applied to general binary ex-

periments. Let us consider the following binary experiments.

F A B

xA p 1− q
xB 1− p q

G A B

yA r 1− s
yB 1− r s

Propositions 4.7.1 and 4.7.2 still hold under appropriate revision. Corol-

lary 4.7.1 needs to be changed a bit and says that FG is more informative

than GF with respect to D(u,δ) if and only if F = G. Corollary 4.7.2 also

needs to be changed and states that FG is more informative than GF with

respect to D(uβ ,δ) if and only if p ≥ p and q ≥ s.

We close this section by discussing the discontinuity in comparison of se-

quential experiments. For simple argument, let us restrict our attention to

a symmetric information structure. Corollary 4.4.1 states that when δ = 1.

there is no non-trivial comparison of sequential experiments. However, Corol-

lary 4.7.2 implies that there exists a subclass of binary decision problems for

which informativeness of static decision problems implies informativeness of

dynamic decision problems, i.e., a more informative experiment in static

decision problems should be conducted first. This clearly indicates a dis-

continuity in comparison of sequential experiments. More precisely, we can

imagine two sequences of binary decision problems. The first sequence of

binary decision problems is (uβ, cn, 1)n∈N with cn > 0 converging to zero,

and the second sequence of binary decision problems is (uβ, 0, δn)n∈N with

δn ∈ (0, 1) converging to one. Clearly, the two sequences of binary deci-

sion problems converge to the following binary decision problem (uβ, 0, 1).

However, for every (uβ, cn, 1), there is no non-trivial comparison of sequen-

tial experiments whereas for every (uβ, 0, δn), a more informative experiment
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should be run first provided that doing so is beneficial to the decision maker.

4.8 Delay by Experimentation: Comparison of FG and

GF

We investigate whether Proposition 4.5.1 holds when fixed costs are replaced

by discounting. That is, we ask ourselves whether Proposition 4.5.1 remains

true if we replace D(u,c) with D(u,δ). Not surprisingly, we obtain the same

result. We use the same notations as in Section 4.5 to state the following

proposition.

Proposition 4.8.1. Suppose that F is decisive for some binary decision

problem and that X = {x1, x2}. Then, FG is more informative than GF

with respect to D(u,δ) if and only if F = G.

Proposition 4.8.1 is basically the same as Proposition 4.5.1, and states

that if we consider all binary decision problems, there is no non-trivial com-

parison of sequential experiments. Propositions 4.8.1 and 4.5.1 together im-

ply that if we consider all binary decision problems, there is little difference

between fixed costs and discounting in terms of comparison of sequential

experiments.

4.9 Delay by Experimentation: Second Class of Exam-

ples

We continue to restrict ourselves to D(u,δ) That is, we replace fixed costs

with discounting and look for the counterpart of Proposition 4.6.1. The

same notations are used as in Section 4.6.

Lemma 4.6.1 is necessary for F to be decisive in some binary decision

problems. Also, Lemma 4.6.2 is necessary to guarantee that F is more in-
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formative than G. We need to change the lower bound for r in Proposition

4.6.1 and characterize the range of δ as to whether the decision maker runs

an experiment or not.

Proposition 4.9.1. Suppose that p
1−p >

(
q

1−q

)2

and r ∈
(
p−q
p
,max

{
1− q, p−q

p−0.5

})
.

Then, FG is more informative than GF with respect to D(u,δ).

The conditions in Proposition 4.6.1 are sufficient conditions for FG to be

better than GF when the decision maker incurs fixed costs. It turns out that

the conditions in Proposition 4.6.1 are also sufficient conditions for FG to

be better than GF when discounting is the cost of experimentation.

Note that Propositions 4.6.1 and 4.9.1 share the same assumptions. So,

one could think that if the assumptions are satisfied, for the second class of

examples, FG is more informative than GF . However, this is not straight-

forward. Proposition 4.6.1 may not be true if the discount factor δ is strictly

less than one. Proposition 4.9.1 may not be true if the fixed cost c of ex-

perimentation is strictly larger than zero. Fortunately, we obtain a positive

result.

Since discounting is under consideration, we need to maintain the assump-

tion that all entries of a payoff matrix are non-negative. This will be the only

restriction on the set of binary decision problems. Let D+ = {(u, c, δ)} where

all entries of u are non-negative.

Proposition 4.9.2. Suppose that p
1−p >

(
q

1−q

)2

and r ∈
(
p−q
p
,max

{
1− q, p−q

p−0.5

})
.

Then, FG is more informative than GF with respect to D+.

The reason why Propositions 4.6.1 and 4.9.1 imply Proposition 4.9.2 is

the following. Under the maintained assumptions, the proof of Proposition

4.6.1 implies that the decision maker always minimizes the expected costs

by running F first. The proof of Proposition 4.9.1 implies that under the
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assumption, the decision maker always takes the right action earlier by run-

ning F first. Therefore, if the decision maker runs F first, she can not only

take the right action earlier but also incur lower expected costs.

There is an important implication of Proposition 4.9.2. By restricting

our attention to the class of binary decision problems, we have found a class

of experiments for which there exists a non-trivial comparison of sequential

experiments in Blackwell sense. In addition, for the second class of experi-

ment, informativeness of static decision problems implies informativeness of

dynamic decision problems.

4.10 Conclusion

We summarize our analysis. We consider a class of dynamic decision prob-

lems in which the decision maker can run at most two experiments and

information acquisition is costly. Then, we investigate the optimal order of

experimentation, and look for a partial order of sequential experiments. The

first half of our analysis is focused on the case where the decision incurs fixed

costs and does not discount the future payoffs. The second half of our anal-

ysis is focused on the case where the decision does not incur fixed costs but

experimentation delays the decision making process.

The first half of our analysis mainly consists of two parts. For the first

part, we consider a class of experiments, and show that even though we

restrict our attention to a class of decision problems, there is no non-trivial

comparison of sequential experiments. Especially, even if one experiment is

more informative than the other experiment, there are decision problems in

which it is optimal for the decision maker to conduct the less informative

experiment first. The idea for this is mainly driven by cost minimization.

One example in which the decision maker is willing to run the less informative

experiment first is when the cost of experimentation is small, the decision
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maker’s belief is biased, and she changes her action only if both of the two

experiments indicates that she needs to change the action. In such situations,

the more informative experiment triggers a second experimentation more

often than the less informative experiment does.

The second part deals with another class of experiments. For this class

of experiments, we show that for some parameters, informativeness in static

decision problems also implies informativeness in dynamic decision problems.

That is, it is always optimal for the decision maker to run a more informative

experiment first unless experimentation is too costly. The main idea for this

positive result is that in this case, a more informative experiment triggers

less frequently the second experimentation than a less informative experiment

does. Unlike the first part, the decision maker incurs smaller expected costs

in dynamic decision problems under consideration.

For the second half of our analysis, we replace fixed costs with discounting.

Like the first half of the analysis, there are mainly two parts. We use the

same class of experiments as in the first part of the first half of the analysis,

and obtain the same result. There is no non-trivial comparison of sequential

experiments. However, we find that if we restrict our attention of a subclass

of the dynamic decision problems, the decision maker always prefers running

a more informative experiment.

In the second part of the second half of the analysis, we use the same class

of experiments that we use in the second part of the first half of the analysis.

We obtain the same result. For the same parameters as in the second part

of the first half of the analysis, the decision makers always prefers running a

more informative experiment. This also implies that given the parameters,

the decision maker’s optimal strategy is to run a more informative experiment

even when she incurs fixed costs and experimentation delays the decision

making process.
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In this paper, we consider two independent experiments and analyze the

optimal order in which to run the experiments. One way of extending this

paper is to study correlated experiments. If two experiments are indepen-

dent, then no outcome of one experiment is an indicator of how informative

the other experiment is. However, if two experiments are correlated, some

outcome of one experiment can be informative about how informative the

other experiment is. For instance, as mentioned in Börgers et al. (2013), the

complementarity of experiments may have some impact on the optimal or-

der of experimentation. Also, the complementarity of experiments may have

some implication on the comparison of sequential experiments. Another way

of extending this work is to consider more than two experiments. If there are

more than two experiments, analysis of the optimal order in which to run

experiments would be more difficult, but more interesting.
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Appendix A. Omitted Proofs in Chapter 2

Proof of Lemma 2.4.1: Choose ω ∈ S(q). The ratio of µi(s
t) to µj(s

t) is

given by

µi(s
t)

µj(st)
=

∫ ∏
s∈S q

′(s)tq̂s,t(ω)Fi(dq
′)∫ ∏

s∈S q
′(s)tq̂s,t(ω)Fj(dq′)

=

∫
exp
(
− tD(q̂t(ω), q′)

)
Fi(dq

′)∫
exp
(
− tD(q̂t(ω), q′)

)
Fj(dq′)

Note that for all ω ∈ S(q), q̂t(ω) converges to q. Suppose µi is closer to q

than µj is. If µi(S(q)) > 0 and µj(S(q)) = 0,

µi(s
t)

µj(st)
=
µi(S(q))exp

(
− tD(q̂t(ω), q)

)
+
∫

exp
(
− tD(q̂t(ω), q′)

)
Fi(dq

′)∫
exp
(
− tD(q̂t(ω), q′)

)
Fj(dq′)

=
µi(S(q)) +

∫
supp(Fi)\{q} exp

(
− tD(q̂t(ω), q′) + tD(q̂t(ω), q)

)
Fi(dq

′)∫
supp(Fj)\{q} exp

(
− tD(q̂t(ω), q′) + tD(q̂t(ω), q)

)
Fj(dq′)

.

For every q′ 6= q, there exists T such that for all t ≥ T , D(q̂t(ω), q′) −
D(q̂t(ω), q) > 0. Therefore, as t goes to infinity, denominator converges to

zero whereas numerator does not.

Let us consider the second condition in the definition of closeness. Sup-

pose µi(S(q)) = 0 and µj(S(q)) = 0. Let

εi = inf
q′∈supp(Fi)

D(q, q′),

εj = inf
q′∈supp(Fj)

D(q, q′).

If the second condition is satisfied, 0 ≤ εi < εj. In this case, there exists
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b > 0 such that

lim
t→∞

µi(s
t)

µj(st)
= lim

t→∞

∫
exp
(
− tD(q̂t(ω), q′)

)
Fi(dq

′)∫
exp
(
− tD(q̂t(ω), q′)

)
Fj(dq′)

≥ lim
t→∞

b

∫
exp
(
− tD(q̂t(ω), q′)

)
Fi(dq

′)∫
e−tεjFj(dq′)

= lim
t→∞

betεj
∫

exp
(
− tD(q̂t(ω), q′)

)
Fi(dq

′)

Since q̂t(ω) converges to q, D(q̂t(ω), q′) converges to D(q, q′). Choose ε <

min{εi, εj − εi}. For ω ∈ S(q), define

B(ω) =
{
q′ ∈ ∆S

∣∣∣εi − ε ≤ lim
t→∞

D(q̂t(ω), q′) ≤ εi + ε
}
.

Then, there exists b′ > 0 such that

lim
t→∞

µi(s
t)

µj(st)
≥ lim

t→∞
betεj

∫
exp
(
− tD(q̂t(ω), q′)

)
Fi(dq

′)

≥ lim
t→∞

betεj
∫
B(ω)∩supp(Fi)

exp
(
− tD(q̂t(ω), q′)

)
Fi(dq

′)

≥ lim
t→∞

bb′et(εj−εi−ε)Fi

(
B(ω)

⋂
supp(f1)

)
=∞.

This completes the proof.

Proof of Proposition 2.4.1: First order condition is

µi(s
t)

µj(st)

u′i(c
σ
i (st))

u′j(c
σ
j (st))

= λ.
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Suppose µi is closer to q ∈ ∆S than µj is. Lemma 2.4.1 implies that µi(s
t)

µi(st)

diverges νq-almost surely. Therefore,
u′i(ci(s

t))

u′j(cj(s
t))

converges to zero νq-almost

surely, which means that u′j(c
σ
j (st)) goes to infinity νq-almost surely, which

means that cσj (st) converges to zero νq-almost surely.

Proof of Lemma 2.5.2: (⇒) Choose an allocation (c1, · · · , cI). Suppose

there exists a subgame perfect equilibrium σ such that for all i ∈ I, cσi = ci.

Suppose that player i deviates at the state history st ∈ F∞. Note that the

best deviation for player i is to make zero transfer to all other players. Let σ̃

be the strategy profile when player i makes zero transfer in the state history

st.

ui(c
σ
i (st)) + δVi(c

σ
i , µi|st) ≥ ui(c

σ̃
i (st)) + δVi(c

σ̃
i , µi|st)

≥ ui(ei(s
t)) + δVi(ei, µi|st).

The first inequality is because σ is a subgame perfect equilibrium. Clearly,

cσ̃i (st) ≥ ei(s
t). Lemma 2.5.1 means that Vi(c

σ̃
i , µi|st) ≥ Vi(ei, µi|st). This

completes the proof of the “only if” part.

(⇐) Suppose such an allocation exists. We can construct a subgame

perfect equilibrium. First, let τi(s
t) be player i’s net transfer in st.

τi(s
t) = ei(s

t)− ci(st).

Let I+(st) be the set of players whose net transfer is strictly positive and

I−(st) be the set of players whose net transfer is strictly negative. One can

choose a transfer scheme under which for i ∈ I+(st),
∑

j∈I− τij(s
t) = τi(s

t)

and for j ∈ I−(st),
∑

i∈I+ τji(s
t) = −τj(st).

Based on such a transfer scheme, we construct the following strategy

profile σ. If no player has deviated in the past, all players follow the transfer
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scheme. If player i has deviated, then all other players make zero transfer

to everyone in the future. Then, player i’s best response is to make zero

transfer to all other players. Since

ui(ci(s
t)) + δVi(ci, µi|st) ≥ ui(ei(s

t)) + δVi(ei, µi|st),

player i has no incentive to deviate. Therefore, this strategy profile is a

subgame perfect equilibrium and for all i, cσi = ci.

Proof of Proposition 2.5.1: Suppose not. Then, we can choose a se-

quence (σn, in, s
tn) such that cσnin (stn) converges to zero.

Choose 0 < ε < mini∈I mins∈S ei(s). Then, there exists T such that for

every i ∈ I,

(1− δT )ui(ε) + δT+1ui(e(K)) < min
s∈S

ui(ei(s)).

Let α = mini∈I mins∈S minq∈supp(Fi) q(s).

Since cσnin (stn) converges to zero as n increases, there exist player i and n

such that

u′i(c
σn
i (stn))

u′in(cσnin (stn))
=
λin + Λin(stn)

λi + Λi(stn)

µin(stn)

µi(stn)
≤ αT min

i′∈I

u′i′(e(K)− ε)
u′in(ε)

.

This means that player in’s consumption in stn is lower than ε. To simplify

notations, we suppress n for discussion below and replace in with j.

Now, we are going to show that player j’s expected utility in st is lower

than her minimax payoffs. This consists of several claims.

Claim 1. It is impossible that SEC(j) is binding in every state history

(st, s). Otherwise, player j’s expected utility is lower than her minimax

139



payoffs in st. Therefore, SEC(j) is not binding in some state s in period

t+ 1.

Claim 2. If SEC(j) is not binding in some (st, s), then cσj (st, s) ≤ ε. If

SEC(i) is binding and SEC(j) is not binding in (st, s),

λj + Λj(s
t, s)

λi + Λi(st, s)
<
λj + Λj(s

t)

λi + Λi(st)
.

If both SEC(i) and SEC(j) are not binding in (st, s),

λj + Λj(s
t, s)

λi + Λi(st, s)
=
λj + Λj(s

t)

λi + Λi(st)
.

The first order condition implies that

u′i(c
σ
i (st, s))

u′j(c
σ
j (st, s))

=
λj + Λj(s

t, s)

λi + Λi(st, s)

µj(s
t, s)

µi(st, s)

≤ λj + Λj(s
t)

λi + Λi(st)

µj(s
t, s)

µi(st, s)

= αT
µi(s

t)

µj(st)

µj(s
t, s)

µi(st, s)
min
i′∈I

u′i′(e(K)− ε)
u′j(ε)

≤ αT−1 min
i′∈I

u′i′(e(K)− ε)
u′j(ε)

.

This shows that cσj (st, s) is lower than ε.

Claim 3. For every t′ = 1, · · · , T and every s̃t
′ ∈ Ft′ , SEC(j) is binding

in st, s̃t
′

or cσj (st, s̃t
′
) ≤ ε.

This can be proven by induction. Suppose SEC(j) is not binding in

(st, s). Then, Claim 2 implies that cσj (st, s) ≤ ε. Then, due to Claim 1,

SEC(j) cannot be binding in period t + 2 with probability one. That is,
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SEC(j) is not binding in some st, s̃2. The first order condition implies that

u′i(c
σ
i (st, s̃2))

u′j(c
σ
j (st, s̃2))

=
λj + Λj(s

t, s̃2)

λi + Λi(st, s̃2)

µj(s
t, s̃2)

µi(st, s̃2)

≤ λj + Λj(s
t)

λi + Λi(st)

µj(s
t, s̃2)

µi(st, s̃2)

≤ αT−2 min
i′∈I

u′i′(e(K)− ε)
u′j(ε)

.

This means that cσj (st, s̃2) ≤ ε.

Combining these claims, we can prove that SEC(j) is violated in st. Con-

sider a path that starts from st. Due to Claims 1 – 3, cσj is less than or

equal to ε until SEC(j) is binding. If SEC(j) is not binding along the path

until t + T period, the choice of α and T implies that player j’s expected

utility in st conditional on that path is lower than her minimax payoffs. This

implies that arriving at st, player j’s expected utility conditional on every

future path is lower than her minimax payoffs, which means that player j’s

expected utility in st is lower than her minimax payoffs.

Proof of Lemma 2.7.1: Suppose σ is ambiguity averse Pareto efficient.

For i ∈ I, let

vi = inf
µ∈P†

Vi(c
σ
i , µ).

Let cσi be a certainty equivalent. That is,

1

1− δ
ui(cσi) = vi.
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Note that (1 − δ)δt−1µ can be thought of as a measure on (S,F). For any

µ ∈P† and for each i ∈ I,

inf
µ′∈P†

Vi(c
σ
i , µ

′) ≤ Vi(c
σ
i , µ)

=
1

1− δ
∑
st∈F∞

(1− δ)δt−1ui(c
σ
i (st))µ(st)

≤ 1

1− δ
ui

( ∑
st∈F∞

(1− δ)δt−1µ(st)cσi (st)

)
.

This means that

cσi ≤
∑
st∈F∞

(1− δ)δt−1µ(st)cσi (st).

Hence, ∑
i∈I

cσi ≤
∑
st∈F∞

(1− δ)δt−1µ(st)e(st)

for all µ ∈P†. The infimum of the right hand side is obtained when µ = νq1

where q1 = (1, 0, · · · , 0) ∈ ∆S. That is,
∑

i∈I c
σ
i ≤ e(1). If the inequality

is a strict inequality, we can increase every player’s utility without violating

the feasibility condition. Therefore,
∑

i∈I c
σ
i = e(1). Now, we can construct

a stationary strategy profile σ∗. For i ∈ I, there exists xi : S −→ R+ such

that xi(1) = 0 and for all s ∈ S,

cσ
∗

i (s) = cσi + xi(s),∑
i∈I

cσ
∗

i (s) = e(s).

By construction, σ∗ is ambiguity averse Pareto efficient. Since cσ
∗
i (1) is the

lowest consumption of player i,

inf
µ∈P†

Vi(c
σ∗

i , µ) =
1

1− δ
ui(cσi) = vi = inf

µ∈P†
Vi(c

σ
i , µ).
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Proof of Proposition 2.8.1: Lemmas 2.7.1 means that for every i,

inf
µ∈P

Vi(c
σ, µ) =

1

1− δ
ui(c

σ
i (1))

because cσi (1) = mins∈S c
σ
i (s). Since for all i ∈ I,

inf
µ∈P

Vi(ei, µ) =
1

1− δ
min
s∈S

ei(s),

there exists δ such that for all i ∈ I and st ∈ F∞,

ui(c
σ
i (st)) +

δ

1− δ
ui(c

σ
i (1)) ≥ ui(ei(s

t)) +
δ

1− δ
min
s∈S

ei(s).

Clearly, for all δ > δ, the above inequality holds.

Proof of Proposition 2.8.2: Since every player has a rectangular set of

priors, the set of priors at the state history st is obtained by applying Bayes’

rule prior-by-prior. We first show that a full insurance is ambiguity averse

Pareto efficient at every state history. Choose a strategy profile σ. Let

CEi(σ, s
t) be the certainty equivalent consumption to player i at the state

history st. At the state history st,

1

1− δ
ui(CEi(σ, s

t)) = inf
µi∈Pi

Vi(c
σ
i , µi|st)

≤ Vi(c
σ
i , νq|st)

≤ 1

1− δ
ui
(
Eνq [cσi |st]

)
.
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Summing up, we have

∑
i∈I

CEi(σ, s
t) ≤

∑
i∈I

Eνq [cσi |st] = e.

Clearly, if the inequality holds strictly at some state history, a full insurance

Pareto dominates σ. Therefore, the inequality must be an equality at every

state history, which means that a full insurance is ambiguity averse Pareto

efficient at every state history.

When σ is the “no-transfer” strategy profile, the above inequality strictly

holds. (This is not true if every player receives constant endowment in every

state. However, this case is already a full insurance.) That means that one

can find a full insurance σ such that for every i,

inf
µi∈Pi

Vi(ei, µi|st) ≤ Vi(ei, νq|st)

< inf
µi∈Pi

Vi(c
σ
i , µi)

=
1

1− δ
ui(c

σ
i ).

Given the full insurance σ, there exists δ such that for all i ∈ I and st,

ui(c
σ
i ) +

δ

1− δ
ui(c

σ
i ) ≥ ui(ei(s

t)) + δ inf
µi∈Pi

Vi(ei, µi|st).

This completes the proof.
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Appendix B. Omitted Proofs in Chapter 3

Proof of Lemma 3.5.1: Define a new function ψ : Ω × T → R using h.

Let

~ψ(x, y) = ~h(x, y)− ~h(0, 0).

So, ~ψ differs from ~h by a constant vector. Note that ~ψ satisfies incentive

compatibility since

~ψ(x, y) · ~µ(x, y) = ~h(x, y) · ~µ(x, y)− ~h(0, 0) · ~µ(x, y)

≥ ~h(x′, y′) · ~µ(x, y)− ~h(0, 0) · ~µ(x, y)

= ~ψ(x′, y′) · ~µ(x, y).

For (x, y) and (x′, y′), incentive compatibility condition says

~ψ(x, y) · ~µ(x, y) ≥ ~ψ(x′, y′) · ~µ(x, y),

~ψ(x′, y′) · ~µ(x′, y′) ≥ ~ψ(x, y) · ~µ(x′, y′),

which results in the following inequality.

[~ψ(x, y)− ~ψ(x′, y′)] · [~µ(x, y)− ~µ(x′, y′)] ≥ 0.

When (x′, y′) = (0, 0), we have ~ψ(x, y)·(~µ(x, y)−~µ0) ≥ 0. By the assumption,

the inequality implies ~ψ(x, y) · λ̂(y) ≥ 0 for all x, y.

Let us consider an infinitesimal change in x. That is, x′ = x + dx and

y′ = y. First order approximation tells us

∂ ~ψ(x, y)

∂x
· ∂~µ(x, y)

∂x
≥ 0.
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Now, we are ready to show the claim.

d

dx
E[ψ|x] =

∫
~ψ(x, y) · ∂

∂x
~µ(x, y)dy

=

∫
∂ξ(x, y)

∂x
~ψ(x, y) · λ̂(y)dy

≥ 0.

It is straightforward to show that the second order derivative is non-negative.

d2

dx2
E[ψ|x] =

∫
∂

∂x
~ψ(x, y) · ∂

∂x
~µ(x, y) + ~ψ(x, y) · ∂

2

∂x2
~µ(x, y)dy

=

∫
∂

∂x
~ψ(x, y) · ∂

∂x
~µ(x, y) +

∂2ξ(x, y)

∂x2
~ψ(x, y) · λ̂(y)dy

≥ 0.

The final step is to realize that

E[ψ|x] = E[h|x]− ~h(0, 0) · E[~µ(x, y)|x]

= E[h|x]− ~h(0, 0) · µ0.

Since E[h|x] is E[ψ|x] plus some constant, it is clear that d
dx
E[h|x] ≥ 0 and

d2

dx2
E[h|x] ≥ 0.

�

Proof of Lemma 3.5.2: Since E[h|x] is convex in x and z(x) is strictly

concave in x, a function η(x) = E[h|x] − z(x) is also convex in x. Since

E[h|x] = z(x) and E[h|x] = z(x), the number of points where E[h|x] and

z(x) intersect is equal to the number of roots of η(x). Since η′′ > 0, if η

crosses the horizontal axis from below, it never crosses horizontal axis again.

Since the sign of η′ changes at most once, η has at most two roots.
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Proof of Proposition 3.6.1:

1. This is the principal’s outside option. If agents’ outside options are

always greater than the principal’s utility, she is not willing to hire an

agent.

2. When the principal admits all types, then E[h|x] should be tangent to

z(x) at some point. Define

g =
z′(x∗)
d
dx
E[h|x∗]

(h− E[h|x∗]) + z(x∗).

Note that

E[g|x∗] = z(x∗),

d

dx
E[g|x∗] = z′(x∗).

Therefore, g is tangent to z at point x∗. We want to find an optimal

x∗. Let

α(x∗) =
z′(x∗)
d
dx
E[h|x∗]

.

Let us calculate the first order condition w.r.t. x∗.

d

dx∗
E[g] = α′(x∗)(E[h]− E[h|x∗])− α(x∗)

d

dx∗
E[h|x∗] + z′(x∗)

= α′(x∗)(E[h]− E[h|x∗]).

Note that α′ < 0. Therefore, if E[h] > E[h|x∗], we can lower the

expected payment by choosing a higher x∗. Similarly, if E[h] < E[h|x∗],
we can lower the expected payment by choosing a lower x∗. Hence,

if x∗ is already optimal, E[h|x∗] = E[h] = z(x∗). This means that

x∗ = z−1(E[h]).

147



3. When the principal wants to admit only types higher than x, E[h|x =

0] = z(0). If E[h|x = 0] < z(0), then the principal can find a better

contract by rotating h around x so that she can pay less to those who

accept a contract without changing x. The equation can be derived

from case 5, and we will discuss it at the end of the proof.

4. The argument is symmetric.

5. In this case, types lower than x and higher than x accept a contract. If

this is optimal, the principal should have no incentive to change those

thresholds. Expected benefit to the principal is

E[u− h] =

∫ x

0

dxdy[~u(a∗(~µ(x, y)))− ~h(x, y)] · ~µ(x, y)p(x, y)

+

∫ 1

x

dxdy[~u(a∗(~µ(x, y)))− ~h(x, y)] · ~µ(x, y)p(x, y).

Let

H1(h, x) =

∫ x

0

dxdy[~u(a∗(~µ(x, y)))− ~h(x, y)] · ~µ(x, y)p(x, y),

H2(h, x) =

∫ 1

x

dxdy[~u(a∗(~µ(x, y)))− ~h(x, y)] · ~µ(x, y)p(x, y).

Calculus of variation will be used. When h changes to h+δh, x changes

to x+ δx and x changes to x+ δx. First, we calculate how H1 changes.

H1(h+ δh, x+ δx)−H1(h, x)

=

∫ x+δx

0

[~u− ~h−
−→
δh] · ~µp(x)dxdy −

∫ x

0

[~u− ~h] · ~µp(x)dxdy

= −
∫ x+δx

0

−→
δh · ~µp(x)dxdy +

∫ x+δx

x

[~u− ~h] · ~µp(x)dxdy

≈ −E[δh|x ≤ x]P (x) + δxE[u− h|x]p(x).
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Note that

E[h+ δh|x+ δx] = z(x+ δx).

Up to the first order,

E[h|x] +
d

dx
E[h|x]δx+ E[δh|x] = z(x) +

dz(x)

dx
δx,

which results in

δx = − E[δh|x]
d
dx
E[h|x]− dz(x)

dx

.

So, change in H1 is

H1(h+ δh, x+ δx)−H1(h, x)

= −E[δh|x ≤ x]F (x)− E[δh|x]
d
dx
E[h|x]− dz(x)

dx

E[u− h|x]p(x).

Change in H2 is similar.

H2(h+ δh, x+ δx)−H2(h, x)

=

∫ 1

x+δx

[~u− ~h−
−→
δh] · ~µp(x)dxdy −

∫ 1

x

[~u− ~h] · ~µp(x)dxdy

= −
∫ 1

x+δx

−→
δh · ~µp(x)dxdy −

∫ x+δx

x

[~u− ~h] · ~µp(x)dxdy

≈ −E[δh|x ≥ x] (1− P (x))− δxE[u− h|x]p(x).

Calculation of δx is similar to that of δx, and we have

δx = − E[δh|x]
d
dx
E[h|x]− dz(x)

dx

.

149



So, change in H2 is

H2(h+ δh, x+ δx)−H2(h, x)

≈ −E[δh|x ≥ x] (1− P (x)) +
E[δh|x]

d
dx
E[h|x]− dz(x)

dx

E[u− h|x]p(x).

Hence,

E[u− (h+ δh)]− E[u− h]

= −E[δh|x ≤ x]P (x)− E[δh|x]
d
dx
E[h|x]− dz(x)

dx

E[u− h|x]p(x)

− E[δh|x ≥ x](1− P (x)) +
E[δh|x]

d
dx
E[h|x]− dz(x)

dx

E[u− h|x]p(x).

Suppose h is optimal. A deviation should not be profitable. First

deviation we consider is (1± ε)h∓ εz(x). That is, δh = ±ε(h− z(x)).

Since E[δh|x] = 0,

E[h− z(x)|x]
d
dx
E[h|x]− dz(x)

dx

E[u− h|x]p(x)

= E[h− z(x)|x ≤ x]P (x) + E[h− z(x)|x ≥ x](1− P (x))

Second deviation will be ±ε(h− z(x)). This corresponds to h′ = (1 ±
ε)h∓ εz(x). The second deviation results in

− E[h− z(x)|x]
d
dx
E[h|x]− dz(x)

dx

E[u− h|x]p(x)

= E[h− z(x)|x ≤ x]P (x) + E[h− z(x)|x ≥ x](1− P (x))

Finally, we obtain the result by replacing E[h|x] with z(x) and E[h|x]

with z(x).
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For case 3, we use the first equation to find an optimal x with x = 0. For

case 4, we use the second equation and plug x = 1 in x.

Proof of Lemma 3.7.1: Choose an incentive compatible contract g. Let

x and x be the corresponding two thresholds. Through an affine transfor-

mation, we can make E[h|x] pass through x and x. This contract costs the

principal less than g. A similar argument can be applied when E[g|x] is

tangent to z(x).

Proof of Proposition 3.7.1: Recall that the expected payment is convex

in x. So, if expected payment is linear in x, then it is a best contract.

Let h be an incentive compatible contract. Since ξX(x) can replace x via

re-parameterization, we can assume that ξX(x) = x. Then,

d

dx
E[h|x] =

∫
ξY (y)~h(x, y) · λ̂(y)dy.

If ~h(x, y) is independent of x, then the above derivative is constant, and

E[h|x] linearly increases in x. We will construct an incentive compatible

contract.

Define

~v(y) = λ̂(y)− (λ̂(y) · µ̂0)µ̂0.

Choose ~h(y) = v̂(y). We need to show that ~h(y) satisfies the incentive

compatibility condition. If an agent with a type (x, y) reports truthfully, he
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expects to receive the amount below.

~h(y) · ~µ(x, y) = v̂(y) · (~µ0 + xξY (y)λ̂(y))

= xξY (y)v̂(y) · λ̂(y)

= xξY (y)v̂(y) · ~v(y)

= xξY (y)|~v(y)|.

When he reports (x′, y′), expected payment to him is

~h(y′) · ~µ(x, y) = v̂(y′) · (~µ0 + xξY (y)λ̂(y))

= xξY (y)v̂(y′) · λ̂(y)

= xξY (y)v̂(y′) · ~v(y)

= xξY (y)|~v(y)|(v̂(y′) · v̂(y)).

Since v̂(y′) · v̂(y) ≤ 1, h is incentive-compatible.

However, ~h = v̂(y) does not rule out the possibility that an agent reports

a different agent type x′ since h does not depend on x. In order to have have

a strong incentive compatibility condition, we can add ε(µ̂(x, y) − µ̂0) to ~h.

Then,

E[h|x] = x

∫
ξY (y)|v(y)|dy + εE[µ̂− µ̂0|x].

As ε goes to zero, E[h|x] converges to a linear function of x.

Proof of Proposition 3.7.2: We are going to rely on Radner and Stiglitz

(1984) result (Theorem 1, p. 36), and we need to convert our environment

to Radner and Stiglitz’s environment.

Let h be a linear incentive compatible contract, and S be the corre-

sponding proper scoring rule. The agent in our model corresponds to a

decision maker in Radner and Stiglitz environment. The set of actions is
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M = {~µ(x, y)|(x, y) ∈ X × Y }, and the agent chooses a belief in M . S(ω, ~µ)

is the agent’s utility when he reports ~µ ∈ M and ω ∈ Ω is realized. x ∈ X
corresponds to the parameter that index a family of information structure in

Radner and Stiglitz (1984).

Since S is associated with a linear incentive compatible contract, d
dx
E[S|x] >

0 for all x ∈ X. This is incompatible with Radner and Stiglitz (1984) result,

and therefore, some assumptions made in Radner and Stiglitz (1984) must

be violated.

There are five assumptions used in Radner and Stiglitz (1984). We list

the assumptions.

1. For every ω ∈ Ω and x ∈ X, f(·|x, ω) is differentiable at x = 0.

2. For every ω ∈ Ω and ~µ ∈M , S(ω, ~µ) is monotone non-increasing in x.

3. For every ω ∈ Ω and ~µ ∈M , g(~µ, x) is monotone non-increasing in x.

4. For every ω ∈ Ω, S(ω, ·) is continuous on M ×X.

5. A decision function is flat and continuous at x = 0.

The first assumption is satisfied because of Assumption 1. The second

assumption is automatically satisfied because S is independent of x. This

is because the principal cannot observe the agent type and the signal real-

ization. The function g in the third assumption is a restriction on actions

available to the agent. In our model, the agent’s report is not restricted by

his type. So, the third assumption is satisfied. Let us postpone the fourth

assumption and jump to the fifth assumption.

In Radner and Stiglitz (1984), a decision function is said to be flat if it

results in the same action regardless of signal realizations. In our model, the

agent’s action is to report the true posterior belief. That is, when the agent
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draws the type x and observes the signal realization y, the optimal action is

to report ~µ(x, y). Recall that ~µ(0, y) = ~µ0 for all y ∈ Y . Therefore, ~µ(·, y) is

flat at x = 0. Due to Assumption 1, ~µ(·, y) is continuous at x = 0. Therefore,

~µ(·, ·) is flat and continuous at x = 0, which means that the fifth assumption

is satisfied.

The above arguments implies that the fourth assumption has to be vi-

olated. That is, for some ω ∈ Ω, S(ω, ·) is discontinuous at some ~µ ∈ M .

We need to show that the prior is one of points at which S is discontinu-

ous. Suppose not. Proposition 1 implies that there exist a convex function

φ : M co −→ R and a subgradient of φ, ~G : M co −→ Rn such that

~S(~µ) = φ(~µ)− ~G(~µ) · ~µ+ ~G(~µ).

If ~S is continuous at ~µ0, that means that a gradient of φ exists at ~µ0. In

other words, φ is differentiable at ~µ0. So, we can use Taylor expansion to

calculate the expected score near x = 0. Choose a small ε. Up to the first

order,

E[S|x = ε] =

∫
φ(~µ(ε, y))dy

≈
∫
φ(~µ0) +∇φ(~µ0) · (~µ(ε, y)− ~µ0) dy

= 0.

The second term vanishes because the expectation of the posterior beliefs

must be the prior. Therefore,

d

dx
E[S|x]

∣∣∣
x=0

.

However, this is a contradiction, which completes the proof.
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Appendix C. Omitted Proofs in Chapter 4

Proof of Lemma 4.3.1: (⇒) Suppose σ is optimal in D. Let σFG be

the optimal strategy in ΣFG. Let ~v = (uA(b), uB(a)). For α ∈ A, ~u(α) =

(uA(α), uB(α)), and ~µ = (µA, µB). Note that

~uβ(a) =
1

uA(a)− uA(b)
(~u(a)− ~v),

~uβ(b) =
1

uA(a)− uA(b)
(~u(b)− ~v).

Given the sequence FG, the optimal strategy is simple. If running G

is beneficial, the decision maker runs G in period 2. Otherwise, choose the

right action. Let us figure out the right action first. Given the binary decision

problem D, the decision maker chooses a if and only if

µAuA(a) + (1− µA)uB(a) ≥ µAuA(b) + (1− µA)uB(b).

Rearranging the expression, we have

µA
1− µA

≥ uB(b)− uB(a)

uA(a)− uA(b)
= β.

When the decision maker faces D̃, she chooses action a if and only if

µA ≥ (1− µA)β.

So, if running G is suboptimal, the decision maker chooses the same action

in D and D̃.

In D, the decision maker runs G if and only if the expected utility is

larger than costs c. Suppose ~µ is the posterior belief, and let α∗(~µ) be the
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optimal action given the posterior belief ~µ.

E[u|~µ, σFG]− c ≥ ~u(α∗(~µ)) · ~µ.

Let us investigate whether the same condition holds when the decision maker

faces D̃. That is, we need to show that given D̃, the decision maker runs G

if and only if

E[uβ|~µ, σFG]− c′ ≥ ~uβ(α∗(~µ)) · ~µ.

After some calculation, one can show that the left hand side is:

1

uA(a)− uA(b)
(E[u|~µ, σFG]− c)− 1

uA(a)− uA(b)
~v · ~µ.

The right hand side is:

1

uA(a)− uA(b)
~u(α∗(~µ)) · ~µ− 1

uA(a)− uA(b)
~v · ~µ.

Hence,

E[u|~µ, σFG]− c ≥ ~u(α∗(~µ)) · ~µ

⇐⇒ E[uβ|~µ, σFG]− c ≥ ~uβ(α∗(~µ)) · ~µ.

Now, we need to calculate the ex-ante expected utility. Let ~µ(·) be the
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posterior belief. In D̃,

E[uβ|σFG]

=
∑

x∈X,α∈A

~uβ(α) · ~µ(x)σ1
FG(α, x)f(x)

+
∑
x∈X

σ1
FG(G, x)f(x)

(
−c+

∑
y∈Y,α∈A

~uβ(α) · ~µ(x, y)σ2
FG(α, x, y)g(y)

)
.

Plug ~uβ(α) = 1
uA(a)−uA(b)

(~u(α)− ~v) into the above equation. Then,

E[uβ|σFG] =
1

uA(a)− uA(b)
E[u|σFG]− 1

uA(a)− uA(b)
~v · ~µ0.

Let σGF be the optimal strategy in ΣGF . The above calculation shows that

E[u|σFG] ≷ E[u|σGF ]⇐⇒ E[uβ|σFG] ≷ E[uβ|σGF ]

(⇐) The above argument also proves this direction, too. Therefore, if σ

is optimal in D if and only if it is optimal in D̃.

Proof of Proposition 4.4.1: Let us explain the first case. In this case,

the lowest posterior belief is higher than or equal to the threshold belief.

This means that even if the decision maker had run the two experiments, she

would have chosen action a. However, the decision maker can always choose

a without running an experiment. Since the decision maker does not want

to incur costs, she should not run an experiment and take the right action.

The same argument can be made for the second case.

Proof of Proposition 4.4.2: In this case, the decision maker has no in-

centive to run G at all. This is because if the decision maker observes either

xA or xB, no outcome of G will change the decision maker’s right action. So,

157



what matters is whether the decision maker runs F or not.

If µ0 ≤ µ∗ ≤ µ(xA, yB), the current right action is b. The decision maker

wants to run F only if the expected payoffs increase. That is, running F is

optimal only if

µ0p+ (1− µ0)pβ − c ≥ (1− µ0)β.

This is the proof of the first part. The argument for the second part is

similar.

Proof of Proposition 4.4.3: If c = 0, the decision maker will run the two

experiments. Since the expected payoffs are continuous in c, there exists c

such that as long as costs are smaller than c, the decision maker is willing to

run the two experiments.

Let us calculate utility vectors. Suppose the decision maker runs F first,

and let σFG be the optimal strategy.

vA(σFG) = p(−c+ q),

vB(σFG) = βp+ (1− p)(−c+ βq).

Let σGF be the optimal strategy when the decision maker runs G first.

vA(σGF ) = q(−c+ p),

vB(σGF ) = βq + (1− q)(−c+ βp).

Let ∆v be the difference between the above two vectors. That is, ∆v =

v(σFG)− v(σGF ).

∆v = c(p− q)(−1, 1).

If µ0 > 0.5, ∆v · (µ0, 1− µ0) is weakly negative. This means that running G

first is optimal. If µ0 ≤ 0.5, ∆v · (µ0, 1− µ0) is positive, and it is optimal for
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the decision maker to run F first.

Proof of Lemma 4.5.1: We can order signal realizations in the following

way. For F ,
fA(x1)

fB(x1)
≥ · · · ≥ fA(xm)

fB(xm)

and for G,
gA(y1)

gB(y1)
≥ · · · ≥ gA(yl)

gB(yl)
.

The posterior belief given x, y can be written as

µ(A|x, y) =
1

1 +
1− µA
µA

fB(x)

fA(x)

gB(y)

gA(y)

.

Let us define two sets. For µA and x ∈ X,

Ya(µA, x) = {y ∈ Y |µ(A|x, y) ≥ µ∗(β)}.

For µA and y ∈ Y ,

Xa(µA, y) = {x ∈ X|µ(A|x, y) ≥ µ∗(β)}.

Since µ(A|·) is increasing in µA, for µA < µ′A, Ya(µA, x) ⊂ Ya(µ
′
A, x) and

Xa(µA, y) ⊂ Xa(µ
′
A, y). Also, if i > i′, Ya(µA, xi) ⊂ Ya(µA, xi′) because

µ(A|xi, y) ≤ µ(A|xi′ , y). Similarly, if j > j′, Xa(µA, yj) ⊂ Xa(µA, yj′).

Let νx1 be the smallest belief such that Ya(νx1 , x1) = Y . Similarly, let

νy1 be the smallest belief such that Xa(νy1 , y1) = X. Generically, we can

assume that νx1 < νy1 . If they are the same, we can change the informa-

tion structure so that the strict inequality holds while the new information

structure remains arbitrarily close to the original structure. This means that

when µA = νx1 , µ(A|x1, y) ≥ µ∗(β) for all y ∈ Y . Since Xa(νx1 , y1) 6= X, it
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must be true that xm /∈ Xa(νx1 , y1), which means that µ(A|xm, y1) < µ∗(β).

Therefore, when µA = νx1 , µ(A|xm, y) < µ∗(β) for all y ∈ Y .

Clearly, the experiment G cannot be decisive for priors higher than νx1

because the decision maker chooses an action a when receiving x1. Therefore,

for G to be decisive for some prior, her right action should be a for all y,

which means that no outcome of G can induce the decision maker to choose

an action b. Similarly, G can never be decisive for priors below νx1 since for

any µA < νx1 , Ya(µA, xm) = ∅.

Proof of Proposition 4.5.1: We use the same notations as in the proof

of Lemma 4.5.1.

First, we assume that δ = 1. Choose ν1.

ν1(β) =
βfB(x1)gB(y1)

fA(x1)gA(y1) + βfB(x1)gB(y1)
.

This ν1 satisfies the following equation

ν1fA(x1)gA(y1) = (1− ν1)βfB(x1)gB(y1),

which means that if µA = ν1, the decision maker is indifferent between a and

b when she observes x1, y1. Choose another belief ν2.

ν2(β) = min

{
βfB(x2)gB(y1)

fA(x2)gA(y1) + βfB(x2)gB(y1)
,

βfB(x1)gB(y2)

fA(x1)gA(y2) + βfB(x1)gB(y2)

}
.

For µA ∈ (ν1(β), ν2(β)), the decision maker has an incentive to choose an

experiment at the end of period 1 when she observes x1 or y1, and costs c is

small.

Let us choose a sequence βi > 0 such that limi→∞ βi = 0. For each i, we

can choose νi ∈ (ν1(βi), ν2(βi)) and ci > 0 so that the decision maker has
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an incentive to choose a remaining experiment when she observes x1 or y1.

Then, for each i, the expected payoffs are independent of sequences because

she chooses a only if she observes x1, y1. Therefore, she wants to minimize

expected costs. Let zi(FG) and zi(GF ) be expected costs under FG and

GF , respectively.

zi(FG) = ci(νifA(x1) + (1− νi)fB(x1)),

zi(GF ) = ci(νigA(y1) + (1− νi)gB(y1)).

Since νi converges to zero, fB(x1) ≤ gB(y1) for FG to be better than GF .

Now, let us consider another case. Let

ν3(β) = max

{
βfB(x1)gB(yl)

fA(x1)gA(yl) + βfB(x1)gB(yl)
,

βfB(x2)gB(yl−1)

fA(x2)gA(yl−1) + βfB(x2)gB(yl−1)

}
.

and

ν4(β) =
βfB(x2)gB(yl)

fA(x2)gA(yl) + βfB(x2)gB(yl)
.

For the same sequence of βi’s, we can choose ν ′i ∈ (ν3(βi), ν3(βi)) and c′i so

that the decision maker has an incentive to choose an experiment when she

observes x2 or yl. In this case, expected costs, which will be denoted by z′i,

are the following.

z′i(FG) = c′i(ν
′
ifA(x2) + (1− ν ′i)fB(x2)),

z′i(GF ) = c′i(ν
′
igA(yl) + (1− ν ′i)gB(yl)).

Since ν ′i also converges to zero, it should be the case that fB(x2) ≤ gB(yl).

Combining the two conditions we have gotten, we come to the conclusion

that

1 = fB(x1) + fB(x2) ≤ gB(y1) + gB(yl) ≤ 1.
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Therefore, fB(x1) = gB(y1) and fB(x2) = gB(yl), which means that for all

j = 2, · · · , j − 1, gB(yj) = 0. One can prove that fA(x1) = gA(y1) and

fA(x2) = gA(yl) by choosing a divergent sequence β′i > 0. Finally, we do not

worry about a discounting factor since it is sufficient to consider fixed costs

to prove the proposition.

Proof of Lemma 4.6.1: Simple calculations will prove the Lemma. µ(x2, y1) <

µ(x1, y2) only if
Prob(x2, y1|A)

Prob(x2, y1|B)
<
Prob(x1, y2|A)

Prob(x1, y2|B)
.

Plug the parameters into the above inequality.

rq

r(1− q)
<

(1− r)p(1− q)
(1− r)(1− p)q

.

The assumption means that the above inequality is true. We need to show

that µ(x3, y1) < µ(x2, y2). A similar calculation shows that under the as-

sumption, µ(x3, y1) < µ(x2, y2).

Proof of Proposition 4.6.2: Suppose not. Since F has finite realizations,

H must have finite realizations. Assume that Z = {z1, · · · , zm}. Without

loss of generality, we can assume that

hA(z1)

hB(z1)
> · · · > hA(zm)

hB(zm)
.

If F is a combination of G and H, then x1 must correspond to (y1, z1) and

x3 must correspond to (y2, zm). This means that

(1− r)p = qhA(z1),

(1− r)(1− p) = (1− q)hA(zm).
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From this, we can see
p

1− p
=

q

1− q
hA(z1)

hA(zm)
.

In addition, (y1, zm) and (y2, z1) must correspond to x2.

r = qhA(zm) = (1− q)hA(z1).

This means that
hA(z1)

hA(zm)
=

q

1− q
.

Then,
p

1− p
=

q

1− q
hA(z1)

hA(zm)
=

(
q

1− q

)2

.

This is a contradiction.

Proof of Lemma 4.6.2: The set of utility vectors are determined by (1, 0),

(0, β), and the following two vectors:

v1 = ((1− r)p, (r + (1− r)p)β),

v2 = ((1− r)p+ r, (1− r)pβ).

F is more informative than G if and only if (q, qβ) is a convex combination

of v1 and v2. Simple algebra shows that (q, qβ) is a convex combination of

v1 and v2 if and only if r ∈
[
0, p−q

p− 1
2

]
.

Proof of Proposition 4.6.1: We consider all cases in terms of µ∗ and the

posterior beliefs.

Case 1. µ(x1y1) ≤ µ∗(β). In this case, all posterior beliefs are lower than or

equal to the threshold belief. The decision maker should run no experiment,

and choose action b.
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Case 2. µ(x1y2) < µ∗(β) < µ(x1y1). The decision maker could have an

incentive to run a second experiment only if she receives x1 or y1. Consider

the strategy under which the decision maker runs G, and take an action based

on the realization of G. Since F is more informative than G, the decision

maker can do better by running F first and taking an action.

Consider the strategy σGF under which the decision maker runs G first,

and runs F if she observes y1. This strategy is dominated by the following

strategy σFG: the decision maker runs F first and runs G when x1 is observed.

Under the both strategies, the decision maker chooses a only if she observes

x1 and y1. This means that under both strategies, the decision maker will

choose action a with probability of receiving (x1, y1) and choose action b

with the complementary probability. Therefore, the expected payoffs are the

same, regardless of whether the decision maker follows σGF or σFG. What

matters is the expected costs.

E[c|σGF ] = µ0q + (1− µ0)(1− q),

E[c|σFG] = µ0(1− r)p+ (1− µ0)(1− r)(1− p).

Since r > p−q
p

, 1− r < q
p
. The maximum of E[c|σFG] is

E[c|σFG] ≤ µ0q + (1− µ0)q
1− p
p

.

Since p > q, q 1−p
p
< 1− q. Therefore, E[c|σFG] < E[c|σGF ].

Case 3. µ(x2y1) ≤ µ∗(β) ≤ µ(x1y2). The decision maker does not need to

run G. Suppose the decision maker observes x1. The right action is a, and

no outcomes of G will change the right action. If the decision maker observes

x2 or x3, the right action is b, and no outcomes of G will change the right

action.
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Case 4. µ(A|x2y2) < µ∗(β) < µ(A|x2y1). By the same argument as in

Case 2, we do not have to consider the case in which the decision maker runs

G first, and take the right action without running F .

Suppose the decision maker runs G first, and then runs F based on the

realization. If the decision maker runs F in period 2, expected costs are

either (µ0q + (1 − µ0)(1 − q))c or (µ0(1 − q) + (1 − µ0)q)c or any convex

combination of the two. Note that the expected costs cannot be smaller

than (1− q)c. However, the decision maker can do better by running F first.

When the decision maker runs F and observes x1 or x3, she does not run

G. So, the decision maker has an incentive to run G only if she observes x2,

in which case she incurs the expected costs of rc. Also, under this strategy,

the expected payoffs are the largest. Therefore, if the decision maker runs F

first, she receives larger expected payoffs and incurs smaller expected costs.

Therefore, the decision maker prefers FG to GF .

Case 5. µ(A|x3y1) ≤ µ∗(β) ≤ µ(A|x2y2). This case is the same as Case 3.

The optimal strategy is to conduct F first and take the right action.

Case 6. µ(A|x3y2) < µ∗(β) < µ(A|x3y1). This case is similar to Case 2.

The decision maker has an incentive to run a second experiment only if she

observes x3 or y2. If the decision maker chooses GF , the expected costs are

E[c|GF ] = µ0(1− q) + (1− µ0)q.

If the decision maker chooses FG, the expected costs are

E[c|FG] = µ0(1− r)(1− p) + (1− µ0)(1− r)p.

As in Case 2, the expected payoffs are the same regardless of the sequence

of experiment. Since the expected cost under FG are smaller that what it is
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under GF , the decision maker prefers FG to GF .

Case 7. µ∗(β) ≤ µ(A|x3y2). The best choice for the decision maker is to

choose action a. She has no incentive to run an experiment.

As we have shown, in every case, the optimal strategy for the decision

maker is either to run F first or to take the right action. This completes the

proof.

Proof of Proposition 4.7.1: The structure of the proof is the same as in

the proof of Proposition 4.4.3. If δ = 1, the decision maker will run the two

experiments, so there exists δ such that for all δ ∈ [δ, 1), the decision maker

is willing to sequentially run the two experiments if necessary.

We calculate utility vectors. Let σFG be the optimal strategy in ΣFG.

vA(σFG) = (1− p)uA(b) + δp (quA(a) + (1− q)uA(b)) ,

vB(σFG) = puB(b) + δ(1− p) ((1− q)uB(a) + quB(b)) .

Let σGF be the optimal strategy in ΣGF .

vA(σGF ) = (1− q)uA(b) + δq (puA(a) + (1− p)uA(b)) ,

vB(σGF ) = quB(b) + δ(1− q) ((1− p)uB(a) + puB(b)) .

∆v = v(σFG)− v(σGF ) is the difference between the two utility vectors.

∆v = (1− δ)(p− q)(−uA(b), uB(b)).

If ∆v · (µ0, 1− µ0) ≥ 0, FG is better than GF . Simple calculation yields

µ0 ≤
uA(b)

uA(b) + uB(b)
.
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This completes the proof of the first part. The argument for the second part

is symmetric, and hence omitted.

Proof of Proposition 4.8.1: Choose an increasing sequence (βn, µ0,n)

such that the decision maker’s current action is b and she changes her action

only if she observes x1 and y1. Choose an increasing sequence (δn) so that

the decision maker runs the second experiment if she observes x1 or y1.

We first construct the utility vector for sequential experiment FG.

vFGA = (1− fA(x1))uA(b) + fA(x1)δ(gA(y1)uA(a) + (1− gA(y1))uA(b)),

vFGB = (1− fB(x1))uB(b) + fB(x1)δ(gB(y1)uB(a) + (1− gB(y1))uA(b)).

For the sequence of experiments GF ,

vGFA = (1− gA(y1))uA(b) + gA(y1)δ(fA(x1)uA(a) + (1− fA(x1))uA(b)),

vGFB = (1− gB(y1))uB(b) + gB(y1)δ(fB(x1)uB(a) + (1− fB(x1))uB(b)).

Let ∆ = vFG − vGF be the difference between two utility vectors.

∆A = uA(b) [(1− fA(x1))(1− δgA(y1))− (1− gA(y1))(1− δfA(x1))] ,

∆B = uB(b) [(1− fB(x1))(1− δgB(y1))− (1− gB(y1))(1− δfB(x1))]

We need both arguments to be non-negative. After manipulating ∆A ≥ 0

and ∆B ≥ 0, we obtain

gA(y1) ≥ fA(x1),

gB(y1) ≥ fB(x1).

We can also imagine another situation in which the decision maker’s cur-

rent action is a and she changes her action only if she observes x2 or yl.
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Similar calculation yields

gA(yl) ≥ fA(x2),

gB(yl) ≥ fB(x2).

Therefore, gA(y1) + gA(yl) ≥ fA(x1) + fA(x2) = 1. Also, gB(y1) + gB(yl) ≥
fB(x1) + fB(x2) = 1. This means that for every ω ∈ {A,B}, gω(y1) = fω(x1)

and gω(yl) = fω(x2). For l′ = 2, · · · , l − 1, gω(yl′) = 0. This means that if

FG is better than GF , F = G. This completes the proof.

Proof of Proposition 4.9.1: The proof is similar to the proof of Propo-

sition 4.6.1.

Case 1. µ(x1y1) ≤ µ∗(β). In this case, all posterior beliefs are lower than or

equal to the threshold belief. The decision maker should run no experiment,

and should choose action b.

Case 2. µ(x1y2) < µ∗(β) < µ(x1y1). The decision maker could have an

incentive to run a second experiment only if she receives x1 or y1. Consider

the strategy under which the decision maker runs G, and take the right action

based on the realization of G without running F . Since F is more informative

than G, the decision maker can do better by running F first and taking the

right action.

Consider the strategy σGF under which the decision maker runs G first,

and runs F if she observes y1. We compare σGF with another strategy σFG,

under which the decision maker runs F first, and runs G when x1 is observed.
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We calculate utility vectors. For the sequence GF ,

vGFA = (1− q)uA(b) + qδ((1− r)puA(a) + (1− (1− r)p)uA(b)),

vGFB = quB(b) + (1− q)δ((1− r)(1− p)uB(a) + (r + (1− r)p)uB(b)).

For the sequence FG,

vFGA = (1− (1− r)p)uA(b) + (1− r)pδ(quA(a) + (1− q)uA(b)),

vFGB = (r + (1− r)p)uB(b) + (1− r)(1− p)δ((1− q)uB(a) + quB(b)).

The difference is:

∆A = uA(b) [(1− p(1− r))(1− δq)− (1− q)(1− δp(1− r))] ,

∆B = uB(b) [(r + (1− r)p)(1− δ(1− q))− q(1− δ(1− r)(1− p))] .

Simplifying the above two equations,

∆A = uA(b)(1− δ)(q − (1− r)q),

∆B = uB(b)(1− δ)(1− q − (1− r)(1− p)).

The condition that r > p−q
p

means that ∆A is always non-negative. Since

1− q > 1− p and r < 1, ∆B is always non-negative, too. Therefore, σFG is

better than σGF .

Case 3. µ(x2y1) ≤ µ∗(β) ≤ µ(x1y2). The decision maker does not need to

run G. Suppose the decision maker observes x1. The right action is a, and

no outcomes of G will change the right action. If the decision maker observes

x2 or x3, the right action is b, and no outcomes of G will change the right

action.
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Case 4. µ(A|x2y2) < µ∗(β) < µ(A|x2y1). By the same argument as in

Case 2, we do not have to consider the case in which the decision maker runs

G first, and take the right action without running F .

Also, we can rule out the case in which the decision maker runs G first,

and then runs F with probability one. In this case, the decision maker

can be better off if she runs F first, and runs G when receiving x2. The

expected utility is the same under both strategies, however if the decision

maker chooses the latter strategy, she has a higher chance of taking the right

action earlier.

Only remaining cases are when the decision maker runs G first, and then

runs F based on either y1 or y2, but not both. For these cases, we will show

that the following strategy dominates them. Let σFG be the strategy under

which the decision maker runs F first, and runs G if she observes x2.

Let us analyze the case when the decision maker runs G first, and runs F

when she observes y1. In this case, the decision maker chooses action a only

if she observes (x1, y1) or (x2, y1). We calculate utility vectors.

vGFA = uA(a)qδ
[
(1− r)p+ r

]
+ uA(b)

[
1− q + qδ(1− r)(1− p)

]
,

vGFB = uB(a)(1− q)δ
[
(1− r)(1− p) + r

]
+ uB(b)

[
q + (1− q)δ(1− r)p

]
.

When the decision maker follows σFG,

vFGA = uA(a)
[
(1− r)p+ δrq

]
+ uA(b)

[
(1− r)(1− p) + δr(1− q)

]
,

vFGB = uB(a)
[
(1− r)(1− p) + δr(1− q)

]
+ uB(b)

[
(1− r)p+ δrq

]
.
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The difference is

∆A = uA(a)(1− r)p(1− δq) + uA(b)
[
(1− r)(1− p)(1− δq)− (1− q)(1− δr)

]
,

∆B = uB(a)(1− r)(1− p)(1− δ(1− q)) + uB(b)
[
(1− r)p(1− δ(1− q))− q(1− δr)

]
.

Given uA(a), the infimum of ∆A occurs when uA(b) = uA(a).

inf ∆A = uA(a)
[
(1− r)(1− δq)− (1− q)(1− δr)

]
= uA(a)(1− δ)(q − r)

≥ 0.

Given uB(b), the infimum of ∆B occurs when uB(a) = uB(b).

inf ∆B = uB(b)
[
(1− r)(1− δ(1− q))− q(1− δr)

]
= uA(b)(1− δ)(1− q − r)

≥ 0.

Therefore, σFG is better. The analysis for the other case is symmetric,

and thus omitted.

Case 5. µ(A|x3y1) ≤ µ∗(β) ≤ µ(A|x2y2). This case is the same as Case 3.

The optimal strategy is to conduct F first and take the right action.

Case 6. µ(A|x3y2) < µ∗(β) < µ(A|x3y1). This case is similar to Case 2.

The decision maker has an incentive to run a second experiment only if she

observes x3 or y2. If the decision maker chooses GF ,

vGFA = uA(a)
[
q + (1− q)δ(1− (1− r)(1− p))

]
+ uA(b)(1− q)δ(1− r)(1− p),

vGFB = uB(a)
[
1− q + qδ(1− (1− r)p)

]
+ uB(b)qδ(1− r)p,
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For the sequence FG,

vFGA = uA(a)
[
1− (1− r)(1− p) + δ(1− r)(1− p)q

]
+ uA(b)δ(1− r)(1− p)(1− q),

vFGB = uB(a)
[
1− (1− r)p+ δ(1− r)p(1− q)

]
+ uB(b)δ(1− r)pq.

The difference is:

∆A = uA(b) [(1− (1− r)(1− p))(1− δ(1− q))− q(1− δ(1− r)(1− p))] ,

∆B = uB(a) [(1− (1− r)p)(1− δq)− (1− q)(1− δ(1− r)p)] .

After some calculation,

∆A = uA(b)(1− δ)(1− q − (1− r)(1− p)),

∆B = uB(b)(1− δ)(q − (1− r)p).

Since 1 − q > 1 − p and r < 1, ∆A is always non-negative. The condition

that r > p−q
p

means that ∆B is always non-negative, too. Therefore, σFG is

better than σGF .

Case 7. µ∗(β) ≤ µ(A|x3y2). The best choice for the decision maker is to

choose action a. She has no incentive to run an experiment.

So far, we have analyzed the optimal strategy in every binary decision

problem, and have shown that the optimal strategy always indicates that the

decision maker runs F first. Therefore, FG is better than GF .

172



Proof of Proposition 4.9.2: Recall that

vω(σFG) =
∑
α∈A

uω(α)σ0
FG(α) + σ0

FG(F )

−c+ δ
∑
α∈A,
x∈X

uω(α)σ1
FG(α, x)fω(x)



+ σ0
FG(F )δ

∑
x∈X

σ1
FG(G, x)fω(x)

−c+ δ
∑
α∈A,
y∈Y

uω(α)σ2
FG(α, x, y)gω(y)


We can decompose the expected utility into two terms. The first term is due

to discounting and the second term is the expected cost.

ζω(σFG) =
∑
α∈A

uω(α)σ0
FG(α) + σ0

FG(F )δ
∑
α∈A,
x∈X

uω(α)σ1
FG(α, x)fω(x)

+ σ0
FG(F )

∑
x∈X

σ1
FG(G, x)fω(x)δ2

∑
α∈A,
y∈Y

uω(α)σ2
FG(α, x, y)gω(y),

ξω(σFG) = c

[
σ0
FG(F ) + σ0

FG(F )δ
∑
x∈X

σ1
FG(G, x)fω(x)

]
.

Let ~ζ(σFG) = (ζA(σFG), ζB(σFG)), ~ξ(σFG) = (ξA(σFG), ξB(σFG)) and ~µ =

(µ, 1− µ). Then, the expected utility is:

E[u|σFG] = ~ζ(σFG) · ~µ− ~ξ(σFG) · ~µ.

The proof of Proposition 4.6.1 means that ~ξ(σFG) · ~µ ≤ ~ξ(σGF ) · ~µ given that

σFG is the best among ΣFG and σGF is the best among ΣGF . Similarly, the

proof of Proposition 4.9.1 means that ~ζ(σFG) · ~µ ≥ ~ζ(σGF ) · ~µ given that

σFG is the best among ΣFG and σGF is the best among ΣGF . Therefore,

E[u|σFG] ≥ E[u|σGF ] for every binary decision problem.
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