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ABSTRACT

Organic photovoltaic cells are approaching commercially-viable levels of perfor-

mance for a variety of applications—particularly those which make use of the unique

transparency, flexibility, and ultra-thin form factor that organic solar cells can achieve.

With state-of-the-art solar to electric power conversion efficiencies now exceeding

15%, operational stability of organic photovoltaics is perhaps their most significant

remaining challenge, as the presence of intrinsic photochemical and morphological

degradation modes have thus far limited device lifetimes to several years or months.

Thermally evaporable fullerenes (C60 and C70), with their remarkable optical and

semiconducting properties, have enabled many of the most efficient and reliable or-

ganic photovoltaic cells over the past 15 years and remain central to state-of-the-art

devices today.

After introducing the fundamentals of organic photovoltaic cell operation and

characterization, this thesis focuses on the discovery and exploration of extremely

long-range electron diffusion currents in fullerene-based organic heterostructures. It is

shown that an energy barrier can be used to confine photogenerated electrons to a thin

channel of C60 or C70, where they can persist for several seconds. During this time,

the electrons can diffuse laterally over centimeters, which allows for unprecedented

study of charge diffusion processes in an organic semiconductor. Organic photovoltaic

cells are demonstrated that make use of these channels to achieve high transparency

by employing a C60 layer to collect and transport electrons to a sparse metal grid in

xvii



place of a conventional continuous metal electrode.

The remainder of this dissertation explores the reliability of fullerene-based organic

solar cells by monitoring their performance during long-term aging, and studying the

stability of the individual layers which comprise the cells. The performance of organic

solar cells with planar C60 layers degrades rapidly under illumination, which is found

to result from photo-oligomerization of adjacent C60 monomers. An analytical model

based on reduced exciton diffusion length in the oligomerized C60 layer is developed

to describe the device degradation, which fits the observed loss. Blending C60 with

a second material and replacing C60 with C70 are both found to effectively stabilize

photovoltaic performance.

The stability of blended tetraphenyldibenzoperiflanthene (DBP):C70-based or-

ganic photovoltaics is found to follow the morphological stability of the device’s

non-photoactive cathode buffer layer. Stable cathode buffer layers based on 2,2’,2”-

(1,3,5-benzenetriyl tris-[1-phenyl-1H-benzimidazole] (TPBi):C70 are developed, which

produce the most robust organic photovoltaics reported to-date. Even under constant

simulated illumination at temperatures up to 130◦C, no performance degradation is

observed over more than 2500 hours. Under exposure to high intensity illumination

(up to 37 suns equivalent), the devices degrade slowly, with an extrapolated outdoor

lifetime of 54± 14 years.
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CHAPTER I

Introduction

Optoelectronic semiconductor devices are now ubiquitous in applications from

computing, lighting, and power generation to medicine and the arts. The active ma-

terials of these technologies are comprised almost entirely of inorganic semiconductors

(Si, GaN, InP, etc.), which are inflexible, brittle, and opaque. Recently however, op-

toelectronic devices based on organic semiconductors have made significant inroads

into commercial markets, and continue to be improved by a thriving global research

community. [1] Unlike their inorganic counterparts, thin films of organic semiconduc-

tors can be deposited at low temperatures on flexible substrates, and can be made

transparent. Owing to these advantages, organic light emitting diodes (OLEDs) are

poised to overtake liquid crystal displays (LCDs) as the dominant information dis-

play technology, and organic photovoltaics (OPVs) are approaching market-viable

levels of power generation performance for smart windows, building integrated pho-

tovoltaics (BIPV), and low-power internet of things (IoT) devices and may eventually

become a cost-competitive technology.

To realize the promise of OPVs however, several key technological challenges re-

main. The three most critical of these are improving their solar-to-electric power

conversion efficiency (PCE ), extending device reliability, and scaling production to

large area photovoltaic modules with high quality encapsulation via roll-to-roll (R2R)
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processing. Thus far, efficiency has garnered significantly greater attention from the

research community, resulting in decades of gradual improvement from PCE ≈ 1%

in 1986, when C.W. Tang (1986) [2] demonstrated the first OPV to PCE > 15% in

2018, [3,4] at the time of this writing. As a result, OPVs now rank among the most ef-

ficient thin-film solar cell technologies, [5] including dye-sensitized solar cells (DSSCs)

(PCE = 13%), [6] quantum dot (QD) solar cells (PCE = 9.9%), [7] amorphous-Si cells

(PCE = 11.4%), [8] perovskite solar cells (PCE > 22%), [9] copper indium galium

selenide (CIGS) solar cells (PCE > 21.7%), [10] and CdTe solar cells (PCE > 21.5%).

Solar cells based on crystalline inorganic semiconductors, such as Si (PCE = 26%) [11]

and GaAs (PCE = 27.6% [5], PCE = 28.9% (Alta Devices)), remain significantly

more efficient but are inflexible or expensive, and cannot be made semi-transparent

like OPVs, which have so-far demonstrated near infrared (NIR) absorbing cells with

PCE s greater than 7% with 43% visible transmittance. [12]

In terms of scalable production, small molecule OPVs have the advantage of lever-

aging the industrial success of OLED displays that require similar fabrication condi-

tions. Indeed, OPVs are much simpler to pattern than OLEDs, which are comprised

of micron-scale pixels. However, OPVs must also occupy much larger device areas

than OLEDs, cost significantly less per unit area, and remain robustly encapsulated

for years under exposure to the elements. In order to fabricate such large area devices

on inexpensive substrates, R2R processing almost certainly must be employed. Fab-

rication of solution-processed R2Rs OPVs has been demonstrated at the laboratory-

scale with modest PCE s [13,14] and by companies including infinityPV and Konarka.

Vacuum-deposited R2R OPVs were recently demonstrated by B. Qu et al. (2018) [15]

and have been commercially produced by Heliatek. Low-cost, reliable encapsulation

of these R2R-fabricated cells remains a significant challenge for the commercialization

of OPVs. [16]

The third pillar of OPV technology—operational stability, will be the focus of the
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last six chapters of this thesis.

1.1 Fundamentals of organic photovoltaics

1.1.1 Organic molecules, solids, and semiconductors

Strictly speaking, an organic molecule is one that contains a chemical bond be-

tween carbon and hydrogen. This class of compounds spans a wide range of com-

plexities as shown in Fig. 1.1, from simple monomers (e.g. tetracene), to polymers

with many repeating units (e.g. poly(3-hexylthiophene-2,5-diyl) (P3HT)) and bio-

logical molecules (e.g. adenosine triphosphate (ATP), proteins, nucleic acids, etc.).

A subset of these monomeric and polymeric compounds have been shown to have

semiconducting electrical and optical properties conducive for integration into active

optoelectronic devices such as OPVs, [2] OLEDs, [17] photodetectors, [18] and lasers. [19]

This thesis will primarily focus on OPV cells comprised of monomers, which are often

called small molecular weight organics or small molecules.

The unique properties of organic solids arise from their bonding. Strong covalent

bonds join the atoms within each molecule, while molecules are bound to one another

only through dipole-dipole and induced dipole (so-called van der Waals) interactions.

Figure 1.1: Organic molecules with increasing complexity | Molecular struc-
tural formulae of tetracene, P3HT, and ATP
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Interaction between the atomic nuclei and valence electrons within each molecule

produce spatially-distributed molecular electron orbitals with discrete energy lev-

els. When the molecule is in its ground state, the highest energy molecular orbital

that contains an electron is called the highest occupied molecular orbital (HOMO)—

analogous to the valence band in inorganic semiconductors. The energy of the HOMO,

EHOMO, is typically referenced to the vacuum energy, Evac, thus EHOMO is equivalent

to the ionization potential (I.P.) of the molecule. The energy level directly above the

HOMO is the lowest unoccupied molecular orbital (LUMO), which contains no elec-

trons when the molecule is in its ground state. The HOMO and LUMO comprise the

frontier energy levels of the molecule, and are separated by a forbidden energy gap,

Eg, as shown in Fig. 1.2.

As a result of these molecular orbitals and weak intermolecular interactions, or-

ganic molecules typically interact strongly with light (absorption coefficients > 105

cm−1), melt/evaporate/sublime at low temperatures (T < 300◦C), are poor charge

conductors (µ < 10 cm2V−1s−1), and can be formed into flexible thin films. Fur-

thermore, organics are often amenable to chemical modification, which allows for

application-specific tuning of their properties.

Figure 1.2: Simplified molecular energy diagram | Frontier energy levels of an
organic molecule referenced to the vacuum energy
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1.1.2 Excitons

An exciton is an excited electron-hole pair that is bound due to the Coulom-

bic interaction between the constituent particles. In organic semiconductors, these

quasiparticles are the primary species of excitation and energy transfer. If the hole is

assumed to be fixed with respect to the electron, the exciton radius (a0) and Coulom-

bic binding energy (EB) can be approximated using the Bohr model of a hydrogen

atom:

a0 =
εrε0~2

q2m∗e
(1.1)

and

EB =
q2

4πεrε0a0
, (1.2)

where εr is the relative dielectric constant of the medium at high frequency, ε0 is

the permittivity of vacuum, ~ is the reduced Planck constant, q is the charge of an

electron, and m∗e is the effective mass of the electron.

Compared with conventional inorganic semiconductors (e.g. Si, GaAs, InP, etc.),

the high-frequency dielectric constant of organic semiconductors is low (εr ≈ 3), and

the effective mass of electrons is high due to poor intermolecular coupling. As a result,

their excitons are typically tightly bound (EB ≈ 0.1-1 eV) and localized on a single

molecule a0 < 1, while the excitons in semiconductors with high polarizabilities and

light effective masses delocalize over many lattice sites, and are typically unstable at

room temperature as EB < kBT = 25.6 meV where kB is Boltzmann’s constant and

T = 300K. The tightly bound excitons found in organics are called Frenkel excitons or

Frenkel states, while loosely bound excitons that delocalize over many lattice sites are

called Wannier-Mott excitons. A third type of exciton called a charge transfer (CT)

exciton is formed when the electron and hole occupy different molecules or lattice

sites. While all excitons are charge neutral quasiparticles, CT excitons have a static

dipole due to the persistent spatial separation of the electron and hole.
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As electrons are fermions, their spin is 1
2

with a projection onto the z-axis of either

↑ or ↓. Due to the Pauli exclusion principle, electrons are disallowed from occupying

the same quantum state simultaneously. Thus the wavefunction, Ψ(r1, r2), of a two-

electron system such as an exciton must be anti-symmetric with respect to exchange

of the particles i.e., Ψ(r1, r2) = −Ψ(r2, r1). This wavefunction can be broken into a

spatial component, ψ, and a spin component, σ. Thus, for the total wavefunction

to remain anti-symmetric, one of these components must be anti-symmetric and the

other must be symmetric. Three of the possible spin states have a total spin of S = 1,

and are symmetric under particle exchange. These states are called triplets:

Triplets (S = 1)


Ψ(r1, r2) = ψanti−sym × σ↑(1)σ↑(2)

Ψ(r1, r2) = ψanti−sym × σ↓(1)σ↓(2)

Ψ(r1, r2) = ψanti−sym × 1√
2
[σ↑(1)σ↓(2) + σ↓(1)σ↑(2)]

. (1.3)

A fourth anti-symmetric spin state with S = 0 is called the singlet:

Singlet (S = 0)

{
Ψ(r1, r2) = ψsymmetric × 1√

2
[σ↑(1)σ↓(2)− σ↓(1)σ↑(2)] . (1.4)

The molecular ground state, denoted S0, is inherently a singlet state as the out-

ermost valence electrons share the HOMO, and must therefore have different spin

projection directions. It follows that optical excitation produces mostly singlet ex-

citons. Optical transitions between S0 and triplet excitons are possible in systems

with strong spin-orbit coupling, [20] but they are not a significant source of excitation

in OPVs. More commonly, triplets are formed by intersystem crossing (ISC) from

singlet excitons with a characteristic rate kISC . Similarly, fluorescent emission from

singlet excitons occurs with a much faster rate, kF , than phosphorescent emission

from triplet excitons, kPH . Efficient phosphorescent emitters therefore require that

kISC > kF . Figure 1.3 shows the transition rates between the first excited singlet
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Figure 1.3: Excitonic state diagram | Transfer rates between the excited singlet
(S1), a higher energy vibronic of the first excited singlet (S∗1), triplet (T1),
and ground states (S0) are shown.

(S1), a higher energy vibronic of the first excited singlet (S∗1), triplet (T1), and S0

including the rate of absorption, kabs, internal conversion, kIC , and the non-radiative

recombination rates of singlets (kNR,S) and triplets (kNR,T ).

To form a more complete picture of the electronic transitions observed in organic

systems, the coupling between electronic states and the vibrational modes of the

molecule must be considered. This interaction creates energetically discrete eigen-

states within each singlet/triplet manifold called vibronic modes, as shown in Fig.

1.4. Electrons in higher energy vibronics rapidly thermalize to the ν = 0 vibronic

through internal conversion with a rate, kIC , as shown in Fig. 1.3). As a result,

electronic transitions originate almost exclusively from the ν = 0 vibronic in accor-

dance with Kasha’s rule. However, transitions into higher energy vibronics can be

strong, even stronger than the 0 → 0 transitions in some cases, which gives rise to

the multiple peaks in the absorption and emission spectra shown in Fig. 1.4. Finally,

electronic transitions are much faster than nuclear reconfiguration, thus the electronic

transitions are vertical in Fig. 1.4. Electronic transitions can therefore only occur if

the initial molecular configuration is also capable of supporting the final state.

In addition to optical generation, excitons can be formed by electron/hole recom-
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Figure 1.4: Vibronic state diagram of a singlet and its ground state | The
first three electronic transitions in absorption (blue) and emission (red)
are shown, along with an illustration of an absorption/emission spectrum
they might form on the left. The first three vibronic levels, ν = 1, 2, 3 are
labeled in each manifold.

bination, as is the case in OLEDs where the two charge species are injected from

opposite contacts. Since the spins of the two charges are random after electrical in-

jection, three triplets are formed for every singlet in accordance wit spin statistics. [21]

Excitons can also be generated thermally and by collision with high energy particles,

such as electrons under high electric field, and by high intensity radiation, such as x-

rays, γ-rays, α particles, and β particles. Organic semiconductors, such as anthracene

and pentacene, have long been employed as scintillators due to their sensitivity to

radiation, strong fluorescence, and robustness. [22]

1.1.3 Exciton transfer

Excitons have several mechanisms by which energy can be transferred from one

molecule, called a donor, to another molecule, called an acceptor. In the near field

(∼ 3−10 nm), an exciton can transfer its energy to an unexcited molecule via dipole-
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dipole coupling, which is called Förster transfer. [23] Förster transfer has a character-

istic Förster radius, R0:

R0 =

[
3ΦPL

4π

∫ (
~c
nE

)4

FD(E)σa(E)dE

]1/6
, (1.5)

and characteristic transfer rate, ΓD→A:

ΓD→A =
1

τD

(
R0

rDA

)6

, (1.6)

where τD is the fluorescence lifetime of the donor, rDA is the separation between the

two molecules, ΦPL is the photoluminescence quantum yield (PLQY) of the donor,

c is the speed of light, n is the refractive index of the medium, E is energy, FD

is the normalized donor fluorescence spectrum, and σA is the normalized acceptor

absorption cross section. Förster transfer is therefore maximized when the donor

emission and acceptor absorption overlap strongly, indicating resonance.

Excitons can also be transferred to neighboring molecules through simultaneous

exchange of electrons between the HOMO and LUMO of the donor and acceptor

molecules, as described by D.L. Dexter (1953). [24] The electron exchange rate depends

on the strength of coupling between the initial and final states, and can thus the

Dexter transfer rate, Γexchange, can be written using Fermi’s Golden Rule:

Γexch =
2π

~
|Vexch|2

∫
FD(E)σa(E)dE, (1.7)

where Vexch is the so-called matrix element for the interaction:

Vexch =
1

4πε0εr

∫
ψD(1)ψ∗A(2)

1

rDA
ψ∗D(2)ψA(1)dν. (1.8)

Here, ψD and ψA are the spatial wavefunctions of an electron on the donor or acceptor
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with * indicating that they are excited, and the spin wave functions are omitted for

simplicity. Since spin of the system must be conserved and the ground state of both

molecules is a singlet, the transferred exciton retains the spin of the original exciton

(e.g., triplet→triplet or singlet→singlet). Dexter exchange is the most prevalent

mechanism for triplet exciton transport and occurs almost entirely between nearest

neighbor molecules as the electron wavefunction overlap falls off exponentially with

distance.

Excitons can also be transferred through photon emission and re-absorption, so-

called trivial transfer. Such transfer can occur over very long distances, and is most

common in systems where a dilute emitter is dispersed in a host matrix with a larger

energy gap. Finally, an exciton can couple to a neighboring molecule in the near-field,

via coherent transfer in the case when the electron-phonon coupling energy, ∆Ee−p, is

much less than the interaction potential, Vint, between the two molecules. Coherent

transfer is known as the strong-coupling limit, and occurs on a timescale faster than

molecular relaxation with a rate, kD→A:

kD→A ≈
4Vint
~

. (1.9)

In reality, coherent transfer rarely occurs in organic systems, because electron-phonon

coupling is strong compared to the interaction between molecules, i.e., ∆Ee−p � Vint.

The aggregate result of these exciton transfer processes is that excitons are able

to diffuse in bulk organic semiconductors until they recombine, either by emitting a

photon or through non-radiative processes. The diffusion behavior of excitons can be

modeled as a function of position, r, and time, t, such that:

∂N(r, t)

∂t
= DO2N(r, t)− N(r, t)

τ
+G(r, t), (1.10)

where N(r, t) is the exciton concentration, D is the exciton diffusivity, and τ is the
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natural recombination lifetime. In steady-state, this equation simplifies to:

N(r)

τ
= DO2N(r) +G(r). (1.11)

It is useful to define the exciton diffusion length (LD):

LD =
√
Dτ, (1.12)

which is the radius of the average spherical volume an exciton will traverse prior to

recombination.

1.1.4 Polarons and mobility

In low electron mobility organic semiconductors, electron motion is slow compared

to intramolecular and intermolecular vibrations. The host molecule and surrounding

lattice therefore have time to adjust to the Coulombic potential of the charge, and

relax to a lower energy configuration before the electron moves. This relaxation

produces a polarization field surrounding the carrier that lowers its energy, thus the

charge is self-trapped. The aggregate quasiparticle formed by the charge and the

polarized region that surrounds it is called a polaron. In organic semiconductors,

hole polarons in the HOMO and electron polarons in the LUMO are analagous holes

and electrons in the valence and conduction bands of conventional semiconductors,

and are the primary conductors of charge.

Since polarons are localized to a single molecule, they must escape the potential

well of their host molecule to be transferred. The height of this energy barrier is

dictated by the shape of the potential wells and distance between the molecules, as

shown in Fig. 1.5. Additionally, the self-trapping potential from the polarization

field lowers the energy by ≈ 100 meV, making electron transfer endothermic (i.e.,

∆G < 0) when no field is applied, as shown in Case 1 in Fig. 1.5. Applying an
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Figure 1.5: Intermolecular charge transfer diagram | Potential energy surfaces,
U1 and U2, of two adjacent molecules with and without an externally
applied electric field, F . The change in Gibbs free energy between the
initial and final state, ∆G, intermolecular distance, r, and energy barrier
for electron transfer, EB, are shown for each.

external electric field significantly lowers EB as shown in Case 2 in Fig. 1.5, and

increases ∆G by qFr, where q is the charge of an electron, F is the magnitude of the

field, and r is the spacing between the molecules. It follows that charge diffusivity,

D, will be thermally activated with an activation energy equal to EB:

D = D0 exp

(
−EB
kBT

)
, (1.13)

where D0 is a constant related to the hopping attempt frequency and width of the

barrier. Using the Einstein relation:

D

µ
=
kBT

q
, (1.14)

the electron mobility, µ, can be written in a similar form:

µ = µ0 exp

(
−EB
kBT

)
, (1.15)
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where µ0 is a constant.

In general though, this mobility expression is too simple as EB and µ are dependent

on the electric field. Barrier lowering, ∆EB, due to the presence of an electric field is

described by the Poole-Frenkel effect:

∆EB =

(
q3F

πεrε0

)1/2

. (1.16)

Thus:

µ(F, T ) = µ0 exp

(
−EB + ∆EB

kBTeff

)
for T > T0, (1.17)

where 1
Teff

= 1
T
− 1
T0

, since W.D. Gill (1972) [25] found experimentally that µ(F, T ) vs. 1
T

curves at different fields intersected each other at a finite temperature, T0. Equation

1.17 breaks down as T → T0, since it incorrectly implies that F effectively increases

the barrier height at low temperatures.

Furthermore, organic semiconductors are typically disordered due to the dynamic

thermal motion and static configurational differences of each molecule in the film.

This disorder can be approximated using the Gaussian disorder model (GDM), which

assumes the density of LUMO/HOMO sites is Gaussian in energy: [26,27]

σ(E) ≈ 1√
2πσ2

D

exp

(
−E2

2σ2
D

)
, (1.18)

where σ(E) is the distribution of site energies and σD is the distribution half-width,

as shown in Fig. 1.6. At low carrier densities, sites in the low energy tail of the

distribution are occupied in accordance with Fermi-Dirac statistics. Since these low

energy sites are sparsely distributed in space, they act as shallow charge traps. The

mobility of disordered systems therefore appears low when only small amounts of

charge are present and increases as the tail states are filled. Under this condition, the

Einstein relation (eq. 1.14) no longer holds, [28] and it is typically found experimentally
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that D > kBT
q
µ.

Figure 1.6: Gaussian disorder model illustration | Depiction of energetic disor-
der in the LUMO of an organic semiconductor, according to the GDM.
The low energy tail of the distribution is filled with a charge density n.

1.1.5 Energy diagrams

Organic semiconductor devices are often comprised of many organic layers with

different functions and energetics. Simplified energy diagrams that show the ap-

proximate relationships between these layers can provide valuable insight into device

operation. Typically, device diagrams consist of vertical rectangles for each com-

pound arranged side by side to show the layer structure. The bottom line of each

rectangle represents the energy of the HOMO with respect to the vacuum energy,

EV ac, and the top line represents the energy of the LUMO. Layers comprised of

two or more compounds blended together are typically shown as overlapping. Con-

ductive contacts, such as metals, are typically shown as a single line that indicates

their Fermi level (EF,M), equal to their work function referenced to EV ac. A sam-

ple energy diagram that demonstrates these elements is shown in Fig. 1.7. The

HOMO energies in such diagrams are typically measured using ultraviolet photoelec-

tron spectroscopy (UPS) unless otherwise noted. The LUMO energies are most often

estimated from the ”optical gap” of the organic, which is taken to be the low energy
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Figure 1.7: Representative organic device energy diagram | Energy levels of a
device with two neat organic layers (Compound 1 and Compound 2), a
blended layer comprising Compounds 1 and 2, and a metal contact.

cutoff of the absorption spectrum. Alternately, LUMO energies are sometimes found

from density functional theory (DFT) simulations and from measurements such as

inverse photoelectron spectroscopy (IPES) and cyclic voltammetry. However, none of

the techniques for measuring LUMO have particularly high resolution (∼500 meV).

In addition, excitons and polarons have significant binding energies and, thus do not

sit at the measured HOMO/LUMO energies.

While energy diagrams are typically drawn using measurements from neat materi-

als, the situation in reality may be quite different. Once in contact with one another,

charges will redistribute and interface dipoles can form between layers. [29] These pro-

cesses can shift the energy levels significantly, particularly in blended systems. [30,31]

Due to the low intrinsic charge densities in organics, they are easily depleted. Placing

contacts with dissimilar work functions on either side of an organic semiconductor, as

shown in Fig. 1.8, will therefore create a uniform internal field, Fint, with magnitude:

Fint =
φM,1 − φM,2

d
(1.19)
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Figure 1.8: Metal-organic energy level diagram | Energy level alignment of two
metals sandwiching an organic layer before and after contact. The differ-
ence in work function of the two metals (φM,1−φM,2) produces an internal
field, Fint, in the organic layer.

where φM,1 and φM,2 are the work functions of the two metals, and d is the thickness of

the organic layer. A similar uniform voltage drop across the organic layers is observed

upon application of an external voltage.

1.1.6 Organic heterojunctions

Manipulating energy transfer and charge flow in organic semiconductor devices can

be achieved by creating an interface between dissimilar materials, called a heterojunction

(HJ). There are three basic types of HJ delineated by the relationship between the

energy levels of the two semiconductors, as shown in Fig. 1.9. One of the materials

in a so-called Type-I HJ is wider bandgap than the other, with a deeper HOMO and

shallower LUMO. Type-I HJs therefore block electron, hole, and exciton transfer into

the wide bandgap material, and can be used to confine those species to a particular

layer of the device. Type-II HJs have staggered energy levels, and thus block elec-

tron transfer in one direction and hole transfer in the other. Excitons that reach a

Type-II HJ see a barrier for one of the charges, and an energetically favorable transfer

for the other. These HJs can therefore be used to dissociate excitons, such that the
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Figure 1.9: Types of organic HJ | Energy diagrams of Type-I (embedded gap),
Type-II (staggered gap), and Type-III (broken gap) heterojunctions.

electron and hole occupy different molecules, which forms a CT state. By conven-

tion, the material with the shallower HOMO and LUMO in a Type-II organic HJ is

called a donor since it preferentially donates electrons to the other molecule, called

an acceptor. Type-II HJs are often called donor-acceptor HJs, abbreviated D/A HJ

if the interface is planar or D:A HJ if the donor and acceptor are blended together.

Type-III HJs have no energetic overlap between the two materials as shown in Fig.

1.9.

1.1.7 Theory of organic photovoltaic operation

Photocurrent generation in organic photovoltaics occurs in several steps, as shown

in Fig. 1.10. First, photons are absorbed by the photoactive materials in the OPV,

forming a population of excitons in the donor and acceptor. Absorption can be

quantified with an efficiency, ηabs, equal to the number of excitons formed per incident

photon. The excitons then diffuse until they reach the donor-acceptor HJ, with an

efficiency ηdiff . One of the charges in the exciton then transfers to the other molecule,

with an efficiency ηCT . In the case of excitons formed in the donor, the electron will

transfer to the acceptor, while excitons formed in the acceptor will transfer their hole

to the donor. The photogenerated CT states then dissociate into free polarons that
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Figure 1.10: Theory of OPV operation | Illustration of the successive processes
that lead to photocurrent generation in organic photovoltaics.

are no longer Coulombically bound to one another at the HJ. This dissociation has

an efficiency, ηdiss. Finally, the polarons are transported through the organic layers

until the holes reach the anode and the electrons reach the cathode.

The product of all of these efficiencies is called the external quantum efficiency

(EQE ), which is defined as the number of electrons extracted per incident photon:

ηEQE = ηabsηdiffηCTηdissηext. (1.20)

The constituent efficiencies, and thus ηEQE, may vary as a function of intensity,

applied voltage, temperature, and wavelength of the incident light. Most commonly,

however, EQE is reported as a function of wavelength.

In order for a photovoltage to be formed and for the photocurrent to be direc-

tional, the spatial distribution of photogenerated electrons and holes in OPVs must

be different under steady-state. This can be accomplished by using asymmetric con-

tacts or charge blocking layers. Typically, a low work function electrode is used as the
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cathode (electron collecting contact), while a high work function electrode is used as

the anode (hole collecting contact). The work function offset between the electrodes

produces an internal field in the device, as shown in Fig. 1.8 that drives photogen-

erated holes and electrons in opposite directions. Energy barriers, in the form of

charge blocking layers and selective contacts, can also ensure uni-directional currents

by restricting the flow of one charge or the other.

1.1.8 Device architectures

The active materials required to construct an OPV cell can be broadly divided into

four categories as shown in Fig. 1.11: substrates, electrodes, photoactive materials,

and buffers. Substrates are typically glass or plastic and provide mechanical support

for the thin OPV deposited on top. Ideally, substrates are highly transparent to ensure

that the maximum amount of light reaches the photoactive layers, impermeable to

atmospheric H2O and O2, and can be manufactured at low cost.

The electrodes are used to collect charge from the device and produce an inter-

Figure 1.11: Simplified OPV device structure | The basic components of an or-
ganic photovoltaic: the substrate, bottom electrode, top electrode, and
photoactive layers that may or may not be sandwiched by buffer layers
for the purpose of charge manipulation or exciton blocking.
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nal field as discussed in §1.1.7. One of these electrodes (the bottom electrode in

Fig. 1.11), must be as transparent as possible. Most commonly, this electrode is a

transparent conducting oxide (TCO) such as indium tin oxide (ITO), indium zinc ox-

ide (IZO), or flourinated tin oxide (FTO). The thickness of the TCO controls both its

resistance and transparency, and should thus be optimized to achieve the best trade

off for a particular device. Many novel approaches to replace conventional TCOs are

under development, including metal nanowire grids/meshes/composites, [32–34], thin

metal alloys, [35] carbon nanotubes, [36,37] and graphene. [38,39] Since resistive power loss

is proportional to I2R, large area devices are particularly sensitive to the resistivity of

the bottom electrode, and may require metallic busbars or sub-electrodes in conjunc-

tion with the transparent electrode to extract current. [40] Conventionally, the opposite

electrode (the top electrode in Fig. 1.11) is highly reflective, thus light that reaches

the electrode is reflected back into the photoactive layers for absorption. Metals such

as Ag and Al make excellent reflective electrodes due to their low absorption and high

conductivity. However, semi-transparent top electrodes are being increasingly utilized

for semi-transparent OPVs. [12,41,42] In cases where the top contact is the cathode, a

low work function is desirable to maximize the internal field and to efficiently extract

electrons from the LUMO of the acceptor. [43]

The photoactive layers of the OPV are responsible for absorbing light and disso-

ciating the resulting excitons into free polarons. The first successful bilayer OPVs

by C.W. Tang (1986) [2] employed a planar Type-II D/A HJ with copper phthalo-

cyanine (CuPc) as the donor and PTCBI as the acceptor. Planar D/A HJ OPVs

dominated the field until 1995, when G. Yu et al. [44] and J. J. M. Halls et al. [45]

introduced a bulk D:A HJ OPV where the donor and acceptor were mixed together.

Planar HJ OPVs require that excitons diffuse through continuous domains of the

acceptor and donor to reach the HJ for dissociation. The thickness of the donor and

acceptor layers are therefore limited by the exciton LD, such that ηdiff in Eq. 1.20 re-
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mains high. However, once excitons are dissociated at the planar HJ, each charge has

a continuous extraction pathway that is spatially separated from its counter charges.

This limits recombination, and improves the conductivity, thus ηext is high. In con-

trast, the HJ in mixed HJ OPVs is distributed throughout the photoactive region.

Excitons therefore reach the D:A HJ with little or no diffusion (ηdiff ≈ 100%), and

the photoactive region can be made thicker to increase absorption. Unlike the planar

D/A HJ, however, the charges in the blend must traverse interpenetrating donor and

acceptor domains that are not spatially separated. The probability of charges re-

forming CT states and recombining along the D:A interface is therefore higher than

in planar devices. Since the chance of recombination increases with photoactive layer

thickness, HJ OPVs must be optimized to find the ideal trade off between absorption

and charge collection. A hybrid architecture called a planar-mixed HJ (PMHJ) [46] em-

ploys a mixed HJ in contact with neat layers of the donor and/or acceptor. Schematics

of these three photoactive region architectures are shown in Fig. 1.12. Photoactive

regions incorporating more than two components have also been demonstrated, but

are outside the scope of this thesis. [47,48]

Figure 1.12: Two-component OPV HJ architectures.

Here, buffers or buffer layers refer to materials between the electrodes that are not

photoactive. Buffer layers can be organic or inorganic (MoO3, for example) and serve

many different purposes within an OPV, such as electrode work function modification,

charge extraction, charge blocking, charge injection, exciton blocking, and protection

against subsequent depositions. Cathode buffer layers are a critical component in

modern OPVs, as they confine excitons to the photoactive region, prevent the cathode
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metal penetration into the device, and facilitate electron extraction. This can be

accomplished simply with a thin neat layer of a wide energy gap exciton blocking

material, as illustrated in Fig. 1.13. To improve the charge extraction efficiency

and conductivity, some of the acceptor (for example C60 or C70) can be blended

into the wide bandgap material to form an electron-filtering compound buffer layer

(EF-CBL). [49,50] Since electrons experience the internal field of the device, as shown

in Fig. 1.13, they are forced through the buffer. Excitons, on the other hand, are

charge neutral and the density of states they can occupy in the pure acceptor region is

higher than it is in the EF-CBL. So while they may penetrate into the EF-CBL, they

will typically diffuse back into the neat acceptor and, eventually, the HJ to generate

photocurrent. [51]

Figure 1.13: OPV cathode buffer layer architectures | Left: a planar cathode
buffer layer comprised of a wide energy gap exciton blocking material.
Right: an EF-CBL with the exciton blocking material and acceptor
blended together. Electrons are conducted through the acceptor sites in
the blend, while excitons are blocked.
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1.1.9 Current-voltage characteristics

Electrically, OPVs behave similarly to inorganic p-n junction diodes that follow

the ideal diode equation:

J = JS

[
exp

(
qVA
mkBT

)
− 1

]
− Jph. (1.21)

Here, VA is the applied voltage, m is the ideality factor, Jph is the photocurrent, and

JS is the reverse bias saturation current:

JS = q

[
Dpn

2
i

LpND

+
Dnn

2
i

LnNA

]
, (1.22)

where Dp and Dn are the hole and electron diffusivities, Lp and Ln are the minority

carrier diffusion lengths of holes and electrons, and NA and ND are the density of

p-type and n-type dopants. Equation 1.21 can be derived by solving for the properties

of the depletion region and solving for the carrier densities and currents in the quasi-

neutral region of the diode to produce the total current.

While the current density–voltage (J–V ) characteristics of OPVs are superficially

similar to Eq. 1.21, the underlying physics are quite different. N.C. Giebink et al.

(2010) [52,53] developed a theory to predict the J–V characteristics of organic HJs

by considering that CT states across the HJ mediate the transfer between excitons,

polarons, and the unexcited ground state. This treatment recovers the exponential

J–V relationship observed in Eq. 1.21, and can be expressed as:

J = JS,0

[
exp

(
qVA
mkBT

)
− kCT,diss
kCT,diss,eq

]
− q

∫
ηEQE(λ)Φ(λ)dλ, (1.23)

in the absence of traps. Here, m is the ideality factor, kCT,diss and kCT,diss,eq are the

present and equilibrium CT state dissociation rates, ηEQE is the quantum efficiency

from Eq. 1.20, Φ is the photon flux incident on the device, and JS,0 is the dark
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saturation current:

JS,0 = qa0(1− ηdiss)krecNHOMONLUMO exp

(
−∆EHL
kBT

)
(1.24)

where a0 is the effective separation of the electron and hole in a CT state across the

D/A HJ, ηdiss is the CT dissociation efficiency from Eq. 1.20, krec is the free polaron

recombination rate, NHOMO and NLUMO are the densities of states in the HOMO and

LUMO at the HJ interface, and ∆EHL is the energy difference between the HOMO

of the donor and LUMO of the acceptor.

1.1.10 Equivalent circuits

Practical OPVs have two parasitic resistances, as shown in Fig. 1.14. A shunt

resistance, RSH , which is in parallel with the diode, and a series resistor, RS. Shunt

resistance is primarily caused by fabrication defects, such as pinholes, metal pene-

tration into the organic layers, and particles on the substrate. [54] These defects allow

current to bypass the HJ causing so-called leakage current. Series resistance comes

from several sources including the sheet resistance (Rsheet) of the electrodes, resistiv-

ity of the organics (ρorg), and interfacial resistances between the constituent layers

Figure 1.14: OPV equivalent circuit diagram | A photodiode in parallel with a
shunt resistor, RSH , and in series with a series resistor, RS.
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(Rinterfacial):
[40,55]

RS = Rsheet

(
L

W

)
+

∑
(ρorgtorg +Rinterfacial)

A
(1.25)

where L and W are the length and width of the more resistive electrode, torg is the

thickness of the organic layers, A is the area of the device, and the sum encompasses

all organic layers and interfaces. Typical shunt resistances are on the order of kΩ

to GΩ, while series resistances are usually less than 100 Ω. The impact of these

resistances on device performance can be intuited by comparing their magnitude to

the dynamic resistance of the diode as a function of voltage:

Rdiode(VA) =
∂V

∂I

∣∣∣∣
VA

, (1.26)

which is equal to the inverse slope of the J–V characteristic in Eq. 1.23. When VA

is small or negative, Rdiode is at its largest and may therefore be similar to or greater

than RSH . In that case, a significant portion of the total current will flow through

the shunt resistor. However, in this regime, the effective resistance of Rdiode and RSH

in parallel is significantly larger than RS, thus almost none of the voltage will be

dropped across RS and it can be neglected. As the diode begins to exponentially

turn on in forward bias, Rdiode decreases rapidly, thus the portion of current drawn

through RSH will drop until it is also negligible. At sufficient forward bias, Rdiode

will become comparable to and, eventually, less than RS. In this regime, a significant

portion of the applied voltage will be dropped across RS, reducing the potential across

the diode itself by JRSA. For realistic devices, Eq. 1.23 must therefore be modified

to contain the effect of these resistances:

J = JS,0

[
exp

(
q(VA − JRSA)

mkBT

)
− kCT,diss
kCT,diss,eq

]
+

(VA/A)− JRS

RSH

−q
∫
ηEQE(λ)Φ(λ)dλ.

(1.27)
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Simulated J–V characteristics for an OPV in the dark (Φ = 0) with an ideality factor

of m = 1.6 are shown in Fig. 1.15 as a function of RS and RSH .

Figure 1.15: Impact of parasitic resistances on OPV J–V characteristics |
Simulated OPV J–V characteristics with increasing RS (left) and de-
creasing RSH (right).

Under illumination, an OPV will generate a photocurrent equal to q
∫
ηEQE(λ)Φ(λ)dλ

as outlined in §1.1.7. The left panel of Fig. 1.16 shows the measured J–V charac-

teristics of a tandem OPV in the dark, and under several different light intensities,

Φ. Subtracting the dark current from each of the total currents (Jtotal − Jdark) is ap-

proximately equal to the photocurrent, which is plotted in the right panel. In reverse

bias, the magnitude of the photocurrent increases slightly since the resultant field is

additive with the internal field, thus increasing ηext and ηEQE. In forward bias, the

applied field is opposite the internal field, thus the magnitude of the photocurrent

decreases. Above a certain voltage (≈1.7 V for the OPV in Fig. 1.16), the field result-

ing from the applied voltage surpasses the internal field, causing the photogenerated

charges to flow in the opposite polarity.

1.1.11 Photovoltaic efficiency

In general terms, a circuit element that supplies power must generate a current

that opposes its terminal voltage. An OPV operating in quadrant IV of its J–V char-

acteristic on a linear-linear plot is, therefore, generating power equal to the product of
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Figure 1.16: Light intensity and voltage-dependent photocurrent | Left: ab-
solute value of current vs. voltage for a tandem (i.e., 2-junction) OPV
in the dark, and under several different light intensities, Φ. Right: pho-
tocurrent vs. voltage for the same OPV, approximated by subtracting
the dark current Jdark from the total current Jtotal at each intensity.
Note: This method of calculating photocurrent (Jtotal − Jdark) is highly
approximate, since the presence of the photogenerated charges perturbs
the behavior of the thermally generated and electrically injected charges
that constitute Jdark.

its current and voltage, as shown in the right panel of Fig. 1.17. The maximum power

density the OPV can output, Pmax, is found at its maximum power point (MPP),

where V = Vp and J = Jp. The quotient obtained by dividing Pmax by the optical

power incident on the device, Pin, is its PCE .

More commonly, PCE is expressed in terms of JSC (the current density at V = 0),

VOC (the voltage at J = 0), and fill factor (FF ),defined as:

FF =
JpVp

JSCVOC
, (1.28)

which is equal to the ratio of the red-shaded area to the gray-shaded area in Fig.

1.17. Using these quantities, Pmax = JSCVOCFF , and PCE is therefore:

PCE =
JSCVOCFF

Pin
. (1.29)
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Figure 1.17: Output power of an illuminated OPV | Left: J–V characteristics
of an OPV under illumination with key operating points shown: JSC,
VOC, and MPP. Right: output power density vs. voltage for the same
OPV with the maximum output power, Pmax.

1.1.12 Standard solar spectra

In theory, the PCE of a solar cell can be measured in response to an arbitrary il-

luminant by measuring Pin from the source, measuring the J–V characteristics of the

OPV while illuminated, extracting JSC, VOC, and FF , and performing the calculation

in Eq. 1.29. This method can be used to determine the efficacy of a cell for a specific

application—indeed, what matters practically is how much power a particular cell

generates and whether or not that power is sufficient for its intended use. However,

enabling reliable comparison between various photovoltaic technologies and results

from different laboratories requires a more rigorous standardized treatment. An im-

portant component of photovoltaic testing is standardization of the solar spectrum.

Outside of the earth’s atmosphere, spectral irradiance from the sun is quite constant,

varying only slightly (< 1.7%) [56] from day-to-day due to the presence of faculae,

sunspots, and solar flares. Over the years, satellites mounted with spectral radiome-

ters, space shuttles, high altitude spacecraft, and solar telescopes have accurately

measured bands of this broad spectrum, allowing standards organizations to generate

standardized composite spectra. These extraterrestrial spectra, are typically referred
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to as air mass 0 or “AM0” spectra, and have an irradiance of 1366.1 W/m2. The

most widely used AM0 spectra are the “Standard Extraterrestrial Spectrum Reference

E-490-00”, which was compiled by the American Society for Testing and Materials

(ASTM) in 2000, and the “Gueymard synthetic extraterrestrial spectrum” [56].

Standardizing the terrestrial solar spectrum creates a new set of challenges, as

the spectral irradiance of the sun varies significantly as a function of latitude, time

of year, time of day, altitude, local weather conditions, particulate densities, and the

levels of absorptive gasses (H2O, CO2, CH4, O3, NO2, chlorofluorocarbons, etc.) in

the atmosphere. The universally adopted standard, ASTM G-173, [57] is calculated

from AM0, by applying geometric and atmospheric corrections that reasonably ap-

proximate conditions in the contiguous United States, as follows:

� The receiving panel has a 37◦ south-facing tilt from the earth’s surface normal

vector, and sits at sea-level.

� The sun’s rays arrive at the panel perpendicular to its surface. Since the atmo-

sphere refracts the sun’s rays, this corresponds to a solar angle of 48.19◦ from

the earth’s surface normal vector.

� The solar illumination passes through an absolute air mass of 1.5, where air

mass is defined as AM = L/Lnormal. Here, L is the path length through the

atmosphere, and Lnormal is the thickness of the atmosphere normal to earth’s

surface.

� The content of the atmosphere is defined using the 1976 U.S. standard atmo-

sphere. [58]

� The spectrum is “global”, i.e., diffuse light from the sky and reflected light

from the ground are included. The ground reflection is non-lambertian, with a

spectrally-varying albedo as measured by the NASA Jet Propulsion Laboratory

for “light sandy soil.” [57]
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This spectrum is often abbreviated as “AM1.5G”, since it corresponds to an air

mass of 1.5 and includes diffuse and ground-reflected light. The total irradiance of

AM1.5G is 1000 W/m2 or 100 mW/cm2. The referenced AM0 and AM1.5G spectra

are plotted vs. wavelength and photon energy in Fig. 1.18. A properly calibrated

OPV efficiency measurement is one that replicates what the cell’s performance would

be under AM1.5G illumination.

The actual solar flux incident on different regions of the United States has been

constantly measured for decades on panels at various angles, and concentrating solar

collectors. [59] For the sunniest parts of the country, such as Phoenix, AZ, the aver-

age daily solar flux is 6.5 kWhr/m2/day (equivalent to 6.5 hr of AM1.5G per day).

For Detroit, MI, the solar flux is significant lower on average—4.23 kWhr/m2/day,

equivalent to 4.23 hr of AM1.5G per day.

Figure 1.18: AM0 and AM1.5G solar spectra | Spectral irradiance of the stan-
dard AM0 and AM1.5G solar spectra as a function of wavelength (left)
and photon energy (right).

1.1.13 Calibrated photovoltaic efficiency measurements

The lack of a true AM1.5G light source presents a number of challenges for the

calibrated measurement of photovoltaic cells, as even reasonably-well matched labo-

ratory solar simulators and outdoor measurements will inevitably produce variations
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that decrease the accuracy of cell-to-cell and interlaboratory comparisons. Photocur-

rent is particularly susceptible to miscalibration, since it is linearly proportional to

solar intensity and device area. It is therefore critical to measure the wavelength

dependent EQE of the cell, which can then be integrated over the reference AM1.5G

spectrum to produce an exact value of what JPH would be under perfect AM1.5G

illumination (JPH,AM1.5G). A schematic of an EQE experimental measurement setup

is shown in Fig. 1.19.

First, a light source is monochromated and chopped with a certain frequency. This

light can be either focused directly onto the device, or focused into an optical fiber as

shown in Fig. 1.19. A lock-in current amplifier is then used to synchronously detect

the current generated by the solar cell in response to the light at each wavelength.

Current can be converted to units of charges/second by dividing by the charge of an

electron, q. The light intensity at each wavelength is then calibrated using a certified

photodiode with a known responsivity (units of A/W). Measuring the wavelength

Figure 1.19: EQE measurement setup schematic | Basic optical setup and elec-
trical detection circuitry required to measure EQE of an OPV cell.
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dependent photocurrent on the reference diode in the same method as above, and

then dividing by its responsivity, produces the optical power at each wavelength.

Power can be converted to photons/second, by dividing by the photon energy at each

wavelength (E = hc/λ, where h is Planck’s constant). In total, EQE is defined as:

EQE(λ) = Rref (λ)
IOPV (λ)

Iref (λ)

hc

qλ
, (1.30)

where Rref (λ) is the responsivity of the reference cell and IOPV (λ) and Iref (λ) are

the measured photocurrents of the OPV and reference cell as a function of λ. The

theoretical JPH under AM1.5G illumination can be calculated using the equation:

JPH,AM1.5G =
q

hc

∫
EQE(λ)SIAM1.5G(λ)λdλ, (1.31)

where SIAM1.5G(λ) is the spectral irradiance of AM1.5G. In some cases, EQE will

depend on light intensity, thus the OPV may need to be biased with a constant

white light during the EQE measurement. When measured correctly, JPH,AM1.5G is

equivalent to JSC.

To measure the remainder of the J–V characteristics, an illumination source

should be chosen that closely matches the AM1.5G spectrum over the absorption

region of the OPV. Most labs employ a Xe arc lamp with an AM1.5G filter that

provides a reasonably good match for visible wavelengths. Solar simulators are rated

based on their spatial nonuniformity, temporal instability, and spectral match from

class A to class C for each metric. The highest rating, class AAA has spatial nonuni-

formity and temporal instability < ±2%, and its entire spectrum is within 25% of

AM1.5G. [60] During these measurements, it is also critical to know the precise area

of the device, and ensure that no photocurrent contribution is coming from outside

this area. A typical OPV substrate and masking scheme is shown in Fig. 1.20, where

the device area is defined as the intersection of the ITO anode and metal cathode.
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Figure 1.20: Typical OPV device layout and masking scheme.

A precisely-aligned mask can be used between the device and light source during

measurement to ensure that only the device active area is being illuminated.

Calibrating the intensity of the solar simulator is typically performed with a cal-

ibrated Si photodiode with a known “1-sun” current. Ideally the reference cell is

filtered, such that it absorbs in the same range as the cell to be tested. The J–V

characteristics of the OPV under this “1-sun” intensity will be similar to what they

would be under AM1.5G. However, since the spectrum of the simulator is inevitably

mismatched from AM1.5G, this measurement may produce errors—most clearly de-

tected by a mismatch between JPH,AM1.5G (from the integrated EQE ) and the JSC

extracted from the J–V characteristics. This is because certain spectral bands from

the simulator will be more intense (and others less) than AM1.5G. These regions

compensate each other to produce the 1-sun current on the Si photodiode. When

testing the OPV, it is unlikely that such perfect compensation will occur.

The magnitude of this mismatch is quantified using the spectral mismatch factor,
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M : [61–63]

M =

∫ λ2
λ1
SIAM1.5G(λ)Rref (λ)dλ∫ λ2

λ1
SIAM1.5G(λ)ROPV (λ)dλ

∫ λ2
λ1
SIsim(λ)ROPV (λ)dλ∫ λ2

λ1
SIsim(λ)Rref (λ)dλ

. (1.32)

Here, SIAM1.5G and SIsim are the spectral irradiance of AM1.5G and the solar simu-

lator, and ROPV and Rref are the responsivity of the OPV and the reference cell. The

integration range, λ1 to λ2 should extend beyond the absorption of the reference cell

and OPV, to ensure that all of the photocurrent is included. If the solar simulator

intensity is set to produce a current in the reference cell equal to its calibrated 1-sun

current, JSC of the OPV can then be “corrected” for mismatch by dividing by M . [61]

While calibrating simulator intensities with a reference cell and correcting via

mismatch factor is common practice in the OPV community, this can lead to errors.

First, consider that Eq. 1.32 is simply a ratio of four currents:

� the top left term is the calibrated 1-sun current of the reference cell;

� the bottom left term is JPH,AM1.5G of the OPV calculated from its EQE ;

� the top right term is the JSC of the OPV under the simulator; and,

� the bottom right term is the JSC of the reference cell under the simulator.

When the simulator’s intensity is calibrated with the reference cell (i.e., its current

on the simulator is equal to its 1-sun calibrated value), the top left and bottom

right terms in Eq. 1.32 cancel each other by definition. In this case, correcting for

mismatch by dividing JSC of the OPV by M , simply returns JPH,AM1.5G from the

EQE . In addition to JSC, which is known to be inaccurate when M 6= 1 (hence the

mismatch factor correction), FF , and VOC may also be inaccurate, since they depend

weakly on intensity. Solving Eq. 1.23 for VOC at J = 0:

VOC =
mkBT

q
ln

(
q
∫
ηEQE(λ)Φ(λ)dλ

JS,0
+

kCT,diss
kCT,diss,eq

)
. (1.33)
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Instead, OPVs can be measured using a simulator intensity that produces JSC =

JPH,AM1.5G. Under this condition, no spectral correction is required, and the pho-

tocurrent, q
∫
ηEQE(λ)Φ(λ)dλ, is identical to that under AM1.5G. As a result, FF

and VOC will also be accurate with the following caveats.

� Using this scheme, the calibration of the EQE measurement setup is critical, and

should be checked frequently by measuring the EQE of a calibrated Si photo-

diode and integrating over the AM1.5G spectrum to ensure that its JPH,AM1.5G

closely matches its calibrated 1-sun current.

� The spatial distribution of charges generated in an OPV is different for each

wavelength. While JSC will be forced to match JPH,AM1.5G using this method,

the equilibrium charge density under the simulator may differ from that under

AM1.5G. Theoretically, this could perturb FF and VOC. However, using the

common method of Si photodiode intensity calibration does not address this

problem either, since the distribution and density of charge will still be different

than under AM1.5G.

� The proposed scheme is only intended for brief efficiency measurements. Degra-

dation and cell heating may be highly wavelength dependent in OPVs. Thus, for

example, a simulator capable of producing JSC = JPH,AM1.5G on the OPV, but

that does not contain the near-UV photons present in AM1.5G, may therefore

be inadequate for simulated long-term aging experiments.

1.1.14 Device fabrication methods

All materials in this work, including organics, metal oxides, and metals were pur-

chased commercially. The organic compounds were purified using vacuum thermal

gradient sublimation, [64] while the other materials were used as-purchased. A va-

riety of unpatterned substrates were used in this work: glass, quartz, Si, sapphire,
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CaF2, and KBr. The salt substrates were used for Fourier transform infrared (FTIR)

spectroscopy, and were not cleaned prior to thin film growth. All other substrates

were sonicated sequentially for five minutes each in a tergitol/deionized (DI) H2O

solution, DI H2O, acetone (2×), and isopropyl alcohol (2×). Glass substrates with

pre-patterned ITO anodes were used for all photoactive organic devices and cleaned

using the same procedure. After sonication, the substrates were removed from the

isopropyl alcohol and rapidly dried with a stream of N2. Pre-patterned ITO sub-

strates intended for OPV fabrication were then “snow cleaned” on a 100◦C hot plate

with a stream of CO2 for 30 s to remove any remaining particles, [65] and treated with

ultraviolet (UV)-ozone for 10 min to lower the work function of the ITO. [66]

All layers in this work were deposited using vacuum thermal evaporation (VTE)

under high vacuum (< 2 × 10−7 Torr). Deposition rates and film thicknesses were

monitored using a quartz crystal microbalance (QCM), and calibrated by measuring

film thickness via variable angle spectroscopic ellipsometry or profilometry (in the case

of metals). The layers were deposited through shadow masks to confine constituents

to desired regions of the substrate, and device active areas were defined as the overlap

area of the ITO anode and metal cathode as shown in Fig. 1.20. Device areas between

0.09 cm2 and 1 cm2 depended on the requirements of the experiment. Devices were

stored and transported exclusively in vacuum or N2 to avoid exposure to atmospheric

contamination unless otherwise noted.

Many thin films and devices in this work were encapsulated to perform experi-

ments in air or for OPV aging. These were encapsulated in a high purity N2 glovebox

(< 1 ppm H2O and O2) by affixing a glass slide to the substrate by applying a UV-

curable bead of epoxy around its periphery as shown in Fig. 1.20. In many cases, a

BaOx/SrOx desiccant sticker was placed on the inside of the cover glass to scavenge

any residual H2O or O2 and to absorb any H2O or O2 that leak into the package during

aging. A desiccant was not included in the package of devices aged at high intensity,

36



since the stability of the desiccant to elevated temperatures and light intensities was

not known.

1.2 Organization of the thesis

Since the introduction of C60 to OPVs in 2001, [18] fullerenes have been the most

widely used and studied acceptor materials. This thesis will explore several aspects

of photovoltaic devices based on the fullerenes C60 and C70. Chapter II shows how

organic heterostructures can be used to confine electrons to a thin C60 or C70 channel

where they can diffuse laterally over several cm. The implications of this effect will

be demonstrated in OPVs with sparse cathode grids. Future work, and additional

applications that may benefit from this effect will also be proposed. The remainder

of this thesis will focus on the operational stability of OPVs, beginning in Chapter III

that will introduce the metrics, experimental methods, and accelerated aging tech-

niques used to characterize OPV reliability. Chapter IV examines the photochemical

stability of a number of organic thin films used in OPVs, and shows quantitatively

how photo-oligomerization of C60 leads to burn-in of planar HJ OPVs. Chapter V

focuses on the morphological stability of fullerene-based EF-CBLs, and demonstrates

the importance of morphological stability to OPV reliability via thermally-accelerated

aging experiments. In Chapter VI, the temperature and intensity-dependent perfor-

mance of small-molecule OPVs are evaluated with respect to their diurnal operation.

In Chapter VII, extremely stable OPVs based on DBP:C70 with TPBi:C70 EF-CBLs

are aged at high illumination intensities in order to accelerate their degradation and

elucidate their very slow degradation modes. Lastly, Chapter VIII describes how

highly stable OPVs might be practically realized, and outlines future work for OPV

reliability.
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CHAPTER II

Long-range electron diffusion in organic

heterostructures with fullerene channels

As discussed in Chapter I, the area of an OPV that produces photocurrent can

typically be accurately defined by the intersection area of the anode and cathode

contacts. An exception to this rule is the small amount of light (∼ 1%) that may

scatter in from the periphery of this area, thus an aligned shadow mask is typically

placed in front of an OPV during calibrated measurements to ensure that light is only

incident on the intended photoactive area. However, certain devices deviate from this

trend, producing a significantly greater photocurrent when illuminated without a

mask than they do with a mask. [67] The OPVs in question employ a PMHJ structure

with donor–acceptor–acceptor’ (d–a–a’) type donor molecule [68,69] such as DTDCPB

or DTDCTB in the blended HJ with C70, and have a neat layer of fullerene on

top. The photocurrent contribution from outside the overlap area of the electrodes

was particularly pronounced in small area devices. For example, a 4 mm diameter

single junction device with the structure: 150 nm ITO / 10 nm MoO3 / 80 nm

DTDCTB:C70 / 10 nm C60 / 8 nm BPhen / 100 nm Ag, produced a JSC of 11.3

mA/cm2 when illuminated without a mask. A 1 mm diameter circle with the same

structure produced an apparent photocurrent of 12.3 mA/cm2, a 9% increase. Devices

in this section are named following the convention: (donor in the HJ)-(thickness and
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type of neat fullerene)-(type of buffer layer: neat = 8 nm BPhen, EF-CBL = 10 nm

BPhen:C60 1:1 EF-CBL).

2.1 Steady-state line scans

To understand the origin of this anomalous photocurrent contribution and, indeed,

to ensure that its origins were from beyond the overlap area of the electrodes, OPVs

were illuminated continuously from an optical fiber as shown in Fig. 2.1a. The fiber

was then rastered across the surface of the glass and the photocurrent at each position

was recorded, as shown in Fig. 2.1b. For a typical OPV without a neat fullerene layer

or d–a–a’ donor, the photocurrent contribution quickly vanished beyond the edge of

the cathode, with a 0.2-0.3 mm tail corresponding to the width of the fiber and

scattered light. However, devices that included a neat fullerene layer and d–a–a’

donor blended with C70 in the HJ continued to produce an appreciable photocurrent

for several mm outside the edge of the metal cathode, hence called “edge currents.”

Figure 2.1: Position dependence of photocurrent generation | a) Simplified
schematic of the setup employed to measure the positional dependence
of photocurrent in a series of OPVs. b) Normalized position-dependent
photocurrent scans of a DTDCPB-(10 nm C60)-neat OPV compared to a
typical DBP:C70 PMHJ OPV.

39



2.2 Transient line scans

In a photoactive organic heterostructure, three forms of energy transfer are present:

light (e.g., trivial scattering or absorption and re-emission), exciton diffusion, and

charge transport. These three mechanisms have different properties, which make

it possible to determine which of them is primarily responsible for producing edge

currents. Perhaps the clearest difference between these transfer mechanisms is their

transient response. Photons are very fast on the expected timescale for polaron trans-

fer over millimeters (> 1 ms), and the intrinsic lifetime of excitons limits their transit

time to < 1 µs. The response of these energy transfer mechanisms to electric fields

will also be different, given that excitons and photons have no net electric charge.

To study the transient behavior of edge currents, we constructed a transient pho-

tocurrent setup as shown in Fig. 2.2. The measurements were performed under

vacuum in an open-loop liquid N2 cryostat with four feedthroughs for the electrical

probes, optical fiber, and fiber positioning arm pictured in Fig. 2.3. The electrical

probes and fiber positioning arm were controlled with x-y-z positioning stages with

a resolution of 50 µm. The optical fiber was bare, with a 25 µm core diameter and

a numerical aperture of 0.1. A optical micrograph of the cleaved fiber tip is shown

Figure 2.2: Transient photocurrent measurement schematic | Device struc-
ture, substrate design, and measurement schematic used for transient
photocurrent measurements. The distance, L, is the distance between
the position of the optical fiber and the edge of the cathode. Adapted
from Q. Burlingame et al. (2018). [31]

40



Figure 2.3: Photograph of the transient photocurrent measurement setup |
a) Top view of the liquid N2 cryostat used to measure transient photocur-
rent spectra with key components labeled. During operation, a lid with
a quartz window was placed on top of the o-ring, and the cryostat was
evacuated.

in Fig. 2.4a, along with its measured output from a Si CCD beam profiler in Fig.

2.4b. The FWHM of the beam was 47 µm. The stage of the cryostat was coated

with a 99+% optically absorptive black foil to prevent light scattering, as shown in

Fig. 2.3. Diode lasers with wavelengths of either 405 nm or 637 nm were coupled

into the fiber, depending on the measurement. The diodes were driven by a pulse

Figure 2.4: Optical fiber characterization | a) Optical micrograph of the 25 µm
core optical fiber used to illuminate OPV samples during transient pho-
tocurrent measurements. b) Profile of the output beam from the fiber in
a measured using a Si CCD beam profiler. The FWHM of the beam is
46 µm.
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generator with pulse durations of 0.5-2 ms and a period of 1-100 s, depending on how

long the photocurrent transient took to return to its baseline. The current response

from the OPVs was amplified with a low-noise current amplifier at 108 V/A, and

recorded with a digital oscilloscope. Scans were averaged over 10+ pulses to reduce

the noise of the measurement, and filtered with rise time filters between 10 µs and 10

ms. The steady-state dark current was subtracted from all photocurrent transients,

leaving only the light response.

2.2.1 Position and thickness dependence

Figure 2.5a shows the photocurrent transients from a DTDCPB-(10nm C60)-neat

OPV as a function of the illumination position, L. When light from the fiber is

incident directly beneath the Ag, it follows the shape of the pulse with a ∼ 1 ms decay.

Interestingly, as the fiber moves away from the cathode, the current transient becomes

significantly slower, and its magnitude at any given time is reduced substantially.

This slow response to light incident outside the device area is strongly suggestive

Figure 2.5: Position-dependent transient photocurrent | a) Room temperature
photocurrent transients from a DTDCPB-(10nm C60)-neat OPV illumi-
nated with 0.5 ms pulses of 405 nm illumination. b) Photocurrent tran-
sients at L = 1 mm for OPVs with varying thicknesses of neat C60 or C70

layer as noted in the figure.
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that the anomalous photocurrent contribution is resultant of charge transport, rather

than light or excitons. The magnitude and speed of the photocurrent response also

depends on the thickness and type of fullerene in the neat layer, as shown in Fig. 2.5b.

Thicker layers showed no significant change compared with the 10 nm C60 OPV, and

devices with no neat fullerene layer had no response at all. This suggests that the

neat fullerene layer (henceforth called the channel) is responsible for transporting the

current. The proposed theory of device operation is, therefore, as follows.

� Photons incident through the ITO anode but outside the cathode are absorbed

in the HJ and dissociate into free charges.

� While many of these charges recombine with one another, a portion of the holes

reach the ITO, and a portion of the electrons reach the neat fullerene layer.

� These charges diffuse laterally in the neat fullerene channel until they recombine,

or reach the Ag cathode and are collected.

2.2.2 Energy levels and charge confinement

A key challenge for the proposed model is understanding how the fullerene channel

is able to confine charges such that they can diffuse laterally over > 1 cm, rather than

penetrating back into the HJ. In theory, there is little or no energy barrier between

the channel and the fullerene in the HJ since they are comprised of the same materials.

To test this hypothesis, UPS was performed on DTDCPB:C70 HJ thin films with and

without a 5 nm C60 channel grown on top, as shown in Fig. 2.6a. Remarkably, the

I.P. (i.e., HOMO energy) of the C70 in the blend undergoes a massive shift (420±100

meV) compared to the neat C60 layer grown on top. Bilayer films of C60 and C70 had

less than a 100 meV difference, as did the fullerene I.P. in a DBP:C70 blend compared

to a C60 layer grown on top. The result of this energy level shift when blending with

a d–a–a’ donor molecule is an energy barrier between the HJ and channel that acts
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Figure 2.6: UPS spectra and d-a-a’:C70 energy diagram | a) UPS spectra of a
DTDCPB:C70 HJ with and without a 5 nm C60 channel grown on top.
The I.P. energies are extracted from the data by taking the intercept of
linear extrapolations of the peaks and baseline. b) Energy level diagram
extracted from the UPS measurements.

to confine electrons, as illustrated by the energy level diagram in Fig. 2.6b. While

the exact origin of this shift is not currently known, it is likely a polarization effect.

The d–a–a’ donors have large dipole moments (DTDCPB = 12.0 debye, DTDCTB =

14.5 debye), [68,69] and thus significantly shift the ground-state spatial distribution of

charges in C70.

2.2.3 Monte Carlo confinement simulations

The presence of the energy barrier (EB) at the interface of the channel effectively

prevents electrons from re-entering the HJ and recombining with holes or quenching

at the MoO3 interface. To quantify how large the barrier would need to be to produce

lateral electron diffusion on the order we observe in DTDCPB-(10nm C60)-neat OPVs,

we performed Monte Carlo charge hopping simulations. A simplified schematic of

the simulated geometry is shown in Fig. 2.7a, though the actual dimensions of the

simulation were 200× 7× 100 in the x, y, an z dimensions and each site had a lattice

constant, a = 1 nm (approximately the lattice constant of C70). Sites with z > 90a
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Figure 2.7: Monte Carlo charge diffusion simulations | a) Simplified schematic
of the geometry used for Monte Carlo charge hopping simulations. b)
Lateral charge hopping LD as a function the energy barrier (EB) between
the C60 channel and the HJ, with the measured value of EB from UPS
shown.

(the top 10 sites in each column) were designated as channel sites representing neat

C60 molecules. The sites in the blend were randomly generated with 50% donors

and 50% fullerene molecules. The energy to hop onto a donor site was set to ∞,

while the energy to hop into the blend from the channel was EB. Periodic boundary

conditions were used in y, and blocking interfaces were placed at the top of the

channel (z = 100a) and film edge (x = 0). Electrons that reached x = 200a were said

to have been collected, and charges that reached z = 0 were quenched at the interface

with MoO3. Charges originated in the channel, and their motion was simulated by

choosing a random direction for each hop, and apply the Miller-Abrahams hopping

rate with a probability of successful hopping given by:

p = exp(−E/kBT ), (2.1)
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where E is the energy difference between the current and future sites. Using this

approach, the charge diffusion efficiency (ηsim) over 200a is equal to the ratio of

charges collected at the cathode (x = 200a) to those quenched at the MoO3 interface

(z = 0). The charge diffusion efficiency (ηD(x)) across a distance x, is given by:

ηD(x) = (ηsim)x/200a, (2.2)

and the charge diffusion length can be expressed as:

LD = −200a/ ln(ηsim). (2.3)

Calculated values of electron LD as a function of EB are shown in Fig. 2.7b, along

with a line indicating the measured value of EB from the UPS spectra. Even if EB is

at the lower bound of its error bar (EB = 320 meV), the expected LD would still be

greater than 1 cm.

2.2.4 Charge diffusion simulations

The charge confinement simulations suggest that the measured channel barrier

height is sufficient to support charge diffusion on the scale observed in the distance-

dependent transient photocurrent measurements in Fig. 2.5a. To quantitatively con-

firm that charge diffusion caused the transient photocurrent behavior, charge dynam-

ics were simulated from a solution to the 2-dimensional charge diffusion equation:

Ṅ(x, y, t) = DO2N(x, y, t)− kN(x, y, t) +G(x, y, t), (2.4)

subject to blocking boundary conditions at the edges of the organic film, and a quench-

ing boundary condition at the edge of the Ag cathode. In this case, N(x, y, t), is the

electron density as a function of position from the cathode, x, lateral position, y, and
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time, t. The charge diffusivity is D, and k is the total rate of charge recombination

and trapping. The generation term is assumed to be Gaussian in space, with the

form:

G(x, y, t) =
Q

qtpulse

q

2πσ2

[
(x− x0)2 + (y − y0)2

2σ2

]
, (2.5)

where Q is the total charge injected into the channel, tpulse is the length of the pulse,

σ is the width of the beam (46 µm), and (x0,y0) is the incident position. Here, x0 is

equivalent to L from Figs. 2.2 and 2.5. The initial electron density was set to 0, since

the intrinsic carrier density in C60 (typically < 108 cm-3, depending on purity) [70]

is many orders of magnitude smaller than the photogenerated charge density. The

diffusion electron current arriving at the edge of the Ag cathode, was then given by:

I(t) = q

ymax∫
ymin

D
dN(x, y, t)

dx

∣∣∣∣∣∣
x→0

dy. (2.6)

To fit I(t) vs. t to the photocurrent transients, Eqs. 2.4-2.6 were solved numeri-

cally, and values of D, Q, and k were varied to minimize the difference between the fit

and measured data with an optimization algorithm. The value of D is primarily re-

sponsible for determining the arrival time of the current transient, while k controlled

the slope at long times and Q linearly controlled the amplitude. This method was

applied to the position-dependent data in Fig. 2.5a, and produced fits to the data

shown in Fig. 2.8. The values of D, k, and Q used to fit the position-dependent

photocurrent transients of several different device structures are shown in Table 2.1.

The diffusivity was similar for devices with DTDCTB and DTDCPB, and decreased

for thinner fullerene channels. Employing an EF-CBL instead of the neat BPhen

buffer also significantly slowed charge diffusion, presumably as charges can penetrate

temporarily into the C60 of the EF-CBL before returning to the channel. The dif-

fusivity of the OPV with C70 was lower, consistent with its lower reported electron

mobility. [71,72] Nearly all of the data could be fit with k = 0, suggesting that trapping

47



Figure 2.8: Position-dependent charge diffusion model fits | Fits to the pho-
tocurrent transients at L = 1, 5, and 10 mm, using the charge diffusion
model introduced in §2.2.4. Data and fits from Q. Burlingame et al.
(2018). [31]

and recombination were not a significant factor on the timescale of the measurements.

The OPV with a C70 channel was an exception, as its charge loss rate was larger than

even the upper bound of the OPVs with C60 channels.

From the fitted values of D in this work, we apply the Einstein relation (Eq. 1.14)

to calculate the room temperature electron mobilities for C60 and C70 channels, al-

Table 2.1: Charge diffusion model fit parameters | Room temperature fit param-
eters (D, k, and Q) extracted from the position-dependent photocurrent
transient of the devices listed.

Device D (cm2s-1) k (s-1) Q (nC)

DTDCPB-(10 nm C60)-neat 0.83± 0.07 0.9± 0.6 2.2± 0.8

DTDCTB-(10 nm C60)-neat 0.67± 0.06 1± 1 0.38± 0.02

DTDCTB-(5 nm C60)-neat 0.53± 0.03 0.4± 0.4 0.35± 0.02

DTDCTB-(2 nm C60)-neat 0.16± 0.02 0.7± 0.7 0.29± 0.03

DTDCTB-(10 nm C60)-EF-CBL 0.37± 0.08 0.3± 0.2 3.2± 0.8

DTDCTB-(10 nm C70)-neat 0.16± 0.01 2.4± 0.8 0.21± 0.02
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though we note that D/µ is often higher than the Einstein relation predicts in organic

semiconductors due to energetic conduction-site disorder. [28] Using this method, we

find µ = 26±3 for C60 and µ = 6±1 for C70, which are 2-5 times larger than the pre-

viously reported mobilities in fullerene transistors. [73,74] This is not unexpected, since

the channel currents flow through the bulk with high electron densities > 1017 cm-3.

Bulk mobilities in organic semiconductors are generally higher due to the presence

of interfacial traps [75,76] and, as discussed in §1.1.4, the presence of energetic disorder

in the film produces a charge-density dependence that increases µ at high current

densities. [77]

2.2.5 Charge diffusion around physical defects

To examine the robustness of electron diffusion currents to impedance at physical

defects, and to determine whether the “blocking” boundary condition at film edges

is accurate, the transient photocurrent of a DTDCTB-(10 nm C60-EF-CBL device

was measured at L = 3 mm before and after a series of razor blade cuts were made

to the organic layers as shown in Fig. 2.9. Compared to the pristine sample (Fig.

2.9a), cutting a 1 cm line between the illumination position and the Ag cathode edge

(shown in Fig. 2.9b) significantly slowed the photocurrent transient as the current

took time to diffuse around the cut. This geometry was simulated using the charge

diffusion model in 2.2.4 assuming that the interface of the cut was lossless, which fits

the experimental data closely as shown in Fig. 2.9d. This confirms that the edges

of the film were indeed fully charge blocking, and did not introduce any additional

recombination. When the scratch was completed (as shown in Fig. 2.9c) such that no

continuous organic pathway persisted between the illumination position and the Ag

cathode, the diffusion signal vanished except for a small signal from excess scattered

light.
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Figure 2.9: Charge diffusion around film discontinuities | Sample geometry
diagrams for: a) a pristine OPV with the illumination position indicated
by the red dot; b) an OPV after a 1 cm razor blade cut across the
organic layers; and c) an OPV after the cut was extended such that
no continuous organic path remained between the Ag cathode and the
illumination position. d) Room-temperature transient photocurrents on
a DTDCTB-(10 nm C60)-EF-CBL device before and after the cuts shown
in a-c with fits to the charge diffusion model described in §2.2.4. Data
and fits from Q. Burlingame et al. (2018). [31]

2.2.6 Temperature dependence

Temperature-dependent transient photocurrent spectra were obtained in 20◦C in-

tervals from 120K to 300K on OPVs with 10 nm C60 and C70 channels, as shown in

Fig. 2.10a-b. All spectra were fit using the charge diffusion model, as shown in Fig.

2.10c-d, and the values of D and k extracted from the fits are plotted vs. the inverse

thermal energy in Fig. 2.10e-f. We find that the diffusivities of both devices and k

in the C70 device are strongly thermally activated, indicated by the red fit lines in

2.10e-f. The activation energy of D in C60 was 70±8 meV, with activation energies of
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Figure 2.10: Temperature dependence of C60 and C70 channel photocurrents
| Temperature-dependent transient photocurrent data at 20 K incre-
ments from 120 K to 300 K in response to 2 ms pulses of λ = 637 nm
illumination on a a) DTDCTB-(10 nm C60)-neat OPV at L = 2 mm
and b) DTDCTB-(10 nm C70)-neat OPV at L = 1 mm. c,d) Fits to
the transient data using the model in §2.2.4 at select temperatures for
the same devices shown in a and b. e,f) D (black points) and k (blue
points) extracted from the temperature dependent fits vs. 1000/T for
the same devices. Exponential fits are shown as red lines to D and k
where applicable to extract their activation energies. Adapted from Q.
Burlingame et al. (2018). [31]
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36± 3 meV and 50± 11 meV for D and k in C70. The exponential increase in D with

temperature is expected as conduction in the fullerenes is limited by intermolecular

charge hopping. [78] The activation energies of recombination/trapping and diffusivity

are nearly the same in the device with a C70 channel, implying that its electron LD is

approximately the mean free path between sparsely distributed defects in the channel.

To our knowledge, these are the first reported measurements of activation energy for

diffusive transport in a molecular semiconductor.

2.2.7 Voltage dependence

Figure 2.11a shows the transient photocurrent spectra of a DTDCTB-(10 nm C60)-

neat device as a function of applied voltage. Compared with 0 V, forward bias (ITO

voltage > 0) reduces the current amplitude and delays the peak arrival time, while

reverse bias increases the peak height and hastens the arrival of the current peak.

Figure 2.11: Voltage-dependent C60 channel currents and field simulations |
a) Voltage-dependent transient photocurrent spectra at 0.2 V intervals
from -1 V to 0.4 V in response to 2 ms pulses of 637 nm light on a
DTDCTB-(10 nm C60)-neat device at L = 2 mm with charge diffusion
simulation models fits shown as red lines. Normalized model fitting
parameters, D and Q, extracted from the best fits are plotted in the
inset of a. b) Finite element method electric field simulations as a
function of distance from the edge of the Ag device cathode in response
to 1 V applied bias.
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The data were fit using charge diffusion simulations, as indicated by the red lines,

and D and Q are extracted as a function of voltage and plotted in the inset. Both

parameters decreased in forward bias and saturated with sufficient reverse bias. To

understand these dependencies, the electric field parallel and perpendicular to the

channel was simulated for 1 V of applied voltage on the OPV contacts using a finite

element model, as shown in Fig. 2.11b. The geometry was approximated as two

conducting planar electrodes with a 100 nm-thick insulator between them, with a

relative dielectric constant εr = 3. The bottom electrode and insulator extended 1

mm, representing the ITO and organic layers, while the top electrode extended just

50 µm to represent the edge of the Ag cathode. We see that the vertical field is more

than four orders of magnitude larger than the horizontal field, which is too small

(< 0.1 V/cm) to generate an appreciable drift current. The voltage dependence is

therefore likely a result of only the field component perpendicular to the channel and

the asymmetry between the channel top and bottom interfaces. In reverse bias, the

applied field acts to help electrons dissociate and reach the channel (increasing Q),

then preferentially pulls them toward the buffer and away from the HJ once in the

channel (increasing D).

2.3 Further implications of edge currents

Thus far, this chapter has demonstrated photoactive organic heterostructures with

fullerene channels that can confine electrons for several seconds, and allow them to

diffuse laterally over more than 1 cm. These timescales and distances are some-

what unprecedented for charge transport in organic semiconductors, suggesting that

traps and recombination centers are nearly absent in the channels and along their

interfaces. The device geometry allows for unprecedented characterization of organic

semiconductor charge diffusion processes, but may also enable several promising fu-

ture applications for organic semiconductor devices. The remainder of this section
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speculates and details preliminary findings on the feasibility of three possible appli-

cations: phototransistors, CCDs, and OPVs with sparse grid contacts.

2.3.1 Phototransistors

As this chapter has shown, the application of light to organic heterostructures

with a d–a–a’ donor and a fullerene channel can significantly alter the charge density

in the channel. It is therefore possible to fabricate a transistor where the current

between two electrodes (a drain and a source) is modulated by light incident on the

organic layers. A large area phototransistor based on this concept was fabricated

with the structure shown in Fig. 2.12, where the channel length was 1 cm, defined

as the separation between the ITO / MoO3 (source) and Ag (drain) electrodes. The

organic structure was 80 nm DTDCPB:C70 / 10 nm C60 / 8 nm BPhen. A continuous-

wave (CW) HeNe laser was incident on the organic heterostructure above the ITO and

the J–V characteristics were measured as a function of calibrated output intensity

from the laser. The device shows a transistor-like saturation at high applied voltages

Figure 2.12: Phototransistor schematic and performance characterization |
a) Schematic of an organic phototransistor employing a PMHJ with
a d–a–a’ donor and C60 channel. b) Performance characteristics of a
phototransistor as a function of applied voltage and calibrated intensity
from a CW HeNe laser.
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as all the photogenerated charges are swept out. While the speed and responsivity

of the devices are not high, they could serve as simple large-area detectors of room

brightness or beam incidence.

2.3.2 Organic charge-coupled devices

In a CCD, many voltage-controlled pixels are connected to each other in long lines.

When light is applied to a CCD, the pixels generate charges that remain stored within

each pixel—isolated from neighboring pixels with potential energy barriers. To form

an image, the pixels are “read” one-at-a-time, by applying a train of voltage pulses

that pass each pixel’s charges to its nearest neighbor. When a charge packet reaches

the end of the pixel chain, a readout circuit converts it to a digital value, which

is stored into memory. This bucket-brigade process continues until all of the pixels

have been read and stored. Given their tendency to be trap-filled and slow, organic

semiconductors have never been employed in a CCD, to our knowledge. However,

given the charge lifetimes (> 1 s) we observed in the OPVs in this chapter, a fully

organic CCD may indeed be possible. To realize such a device, several proofs-of-

concept must be realized. First, it must be shown that an electric field incident

perpendicular to the channel can be used to confine electrons to a pixel. Once this

has been demonstrated than a simple 1× n CCD can be fabricated to test for packet

transfer fidelity. The total time needed for readout must also be substantially faster

than the decay time of the charge packets. While such organic devices would be

inherently slower than conventional semiconductor CCDs, they could be made flexible

and large area. This would allow them to conformally coat large optical elements,

and potentially simplify complex optical systems such as telescopes.
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2.3.3 Semi-transparent solar cells with grid electrodes

As described in the beginning of this chapter, the presence of edge currents can

lead to OPVs efficiency measurement errors, as areas outside the intended active areas

contribute current. [67] However, edge currents could also provide a useful benefit—

allowing an OPV to collect photocurrent from areas where no metal cathode exists.

Given proper optimization, this could lead to OPVs with a sparse metal grid contact

that remain largely transparent while efficiently generating photocurrent from the

non-metallized regions of the device. To test the viability of this concept, a series

of 3mm × 3 mm OPVs were fabricated with varying top contact densities as shown

Figure 2.13: OPVs with grid electrodes of varying densities | a) Device photo-
graph of an OPV containing four subcells: control (top left), dense grid
(top right), medium grid (bottom right), and loose grid (bottom left).
b) Responsivity vs. incident light intensity for the four OPVs shown
in a. The dotted lines indicate the geometric expectation if only the
organic area beneath the electrodes are contributing photocurrent. c)
Schematic diagrams of the four electrode geometries showing the inter-
section of the 3 mm ITO strip (purple) and Al cathodes with varying
shapes (gray).
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in the photograph in Fig. 2.13a and schematic in Fig. 2.13b. The structure of

the devices was 150 nm ITO / 10 nm MoO3 / 120 nm DTDCPB:C70 1:1 / 20 nm

C60 / 8 nm BPhen / 100 nm Al. Figure 2.13c shows the responsivity (JSC/Pin) as a

function of Pin under simulated AM1.5G illumination, with dotted lines indicating the

expected responsivity if only the area coated with Al was contributing. Compared to

the device with full metal coverage (control), the responsivity of the grid devices rolls

off strongly with intensity, such that the benefit of edge currents nearly vanishes at

100 mW/cm2. The operational photovoltaic parameters are shown for each structure

in Table 2.2, along with the operational parameters for the loose-grid device at 0.01

sun intensity. Despite losing a significant portion of its VOC (0.904→ 0.72 V) and FF

(58→ 48%), the PCE of the loose grid OPV is higher under 1 mW/cm2 illumination

than it is under 100 mW/cm2, as its responsivity more than doubles.

A similar intensity roll-off was observed in the standard edge current devices. [31]

Illuminating a DTDCTB-(10 nm C60)-neat OPV 2 mm away from the edge of its

Table 2.2: Performance of OPVs with grid electrodes | Photovoltaic perfor-
mance characteristics of OPVs with top-grid electrodes of varying densi-
ties under 100 mW/cm2 simulated AM1.5G illumination. Characteristics
of the loose grid device is also listed under 1 mW/cm2 to show its intensity-
dependent performance roll-off.

100 mW/cm2 performance

Device JSC

(mA/cm2)
VOC

(V)
FF
(%)

PCE
(%)

Control 13.2 0.911 64 7.7

Dense 6.8 0.908 58 3.6

Medium 4.4 0.907 58 2.3

Loose 3.1 0.904 58 1.6

1 mW/cm2 performance

Loose 0.074 0.72 48 2.6
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cathode, the EQE decreased from 30% to 15% as the energy of the 500 ms pulse was

increased from 0.11 nJ to 1.7 nJ at a wavelength of 637 nm. Increasing the duration

of the pulse from 0.1 ms to 100 ms also produced a dramatic 72% drop in EQE (i.e.,

edge current charges collected per incident photon). This roll-off may simply be a

function of the photogenerated charge densities that become large after long or intense

pulses are absorbed. This results since the field produced by the photogenerated

charges opposes further diffusion of electrons and holes to the channel and anode,

respectively. For semi-transparent OPVs with reasonably efficiencies based on this

technology to be realized, this problem must be addressed. However, the impact of

intensity-dependent roll-off would be diminished on vertically-installed solar windows,

since the solar power incident on vertical surfaces is lower than that on conventional

solar cells.

The wavelength-dependent EQE was measured for the full-coverage control device

and on the medium-grid device while illuminating under and outside the electrode,

as shown in Fig. 2.14. The shape of the spectrum for the control device and medium-

Figure 2.14: Position-dependent EQE of grid electrode OPVs | a)
Wavelength-dependent EQE spectra for a control OPV with full cathode
coverage, and a medium-grid OPV as defined in Fig. 2.13 illuminated
beneath and outside of its grid electrode, as shown in the photographs
in b and c.
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grid device illuminated beneath its electrode were similar, with a small loss due to

transmitted light that can be seen in the photograph (Fig. 2.14). However, when illu-

minating away from the metal grid, the shape of the EQE spectrum changes signifi-

cantly due to the lack of secondary reflections. In addition to the intensity-dependent

roll-off, the reduced EQE is responsible for the remaining efficiency difference between

the control and grid-electrode devices.
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CHAPTER III

Operational stability of organic photovoltaics

Over the past 15 years, innovations in materials, deposition technology, device

architecture and encapsulation have increased device operational lifetimes of OPVs

from minutes to years, enabled by a continually deepening understanding of the intrin-

sic and extrinsic degradation modes OPVs experience. [79–82] However, OPVs remain

far less stable than established inorganic photovoltaic technologies such as Si and

CdTe, which can operate reliably for > 25 years. [83] The development of highly stable

OPV cells remains a critical challenge on the path to their widespread commercial

deployment.

Among OPVs, thermally evaporated small molecular weight devices are perhaps

the most promising from a reliability perspective [81,84] as they are comprised of pure

materials [85,86] with controllable morphology [84,87] and high materials densities, [84] and

can be readily integrated into multi-junction devices. [88,89] When encapsulated, the

intrinsic lifetimes of state-of-the-art small-molecule OPVs can be greater than 50

years as this thesis will show. The gradual improvement that led to such lifetimes

has resulted primarily from moving away from planar HJ devices, [81,90–93] while con-

tinued progress is required as fullerenes [94–102] are replaced with higher efficiency non-

fullerene acceptors (NFAs) [48,103–107] and as multi-junction architectures are increas-

ingly utilized. [88,89]
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Degradation can be divided into two broad categories—extrinsic and intrinsic.

Intrinsic degradation cannot be avoided under standard operation and, therefore, sets

a theoretical maximum on device lifetime. Extrinsic degradation on the other hand

can result from poor encapsulation, oxidation of electrical contacts, and stressors that

may be present during a particular test but are not present in standard operation (e.g.,

high temperatures induced by accelerated aging experiments). As of yet, OPVs with

a sufficient intrinsic lifetime for commercial applications have not been demonstrated,

thus understanding intrinsic degradation is currently of greater scientific interest.

3.1 Metrics of stability

Figures of merit (FoMs) that describe device reliability enable comparison between

devices and laboratories. The most commonly used FoM is T80, defined as the time

required for the PCE of the OPV to degrade to 80% of its starting value, as shown

in Fig. 3.1. In general though, OPVs require a combination of high PCE and long

lifetime to be commercially viable, thus it is useful to define FoMs that place impor-

Figure 3.1: Representative lifetime plot of an OPV | PCE as a function of
time normalized to its value at t = 0. The shaded area is approximately
proportional to E80.
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tance on both. One such metric, called E80
[81] or Lifetime Energy Yield (LEY ) [82],

is defined as the energy a device can generate while operating at its MPP until it

reaches T80:

E80 =

t=T80∫
t=0

PCE(t)Pin(t)dt (3.1)

These simple metrics can also be modified to apply to devices that experience a

rapid loss of efficiency during early aging (so-called “burn-in”), before stabilizing. In

this case, a stabilization time (TS) and stabilized efficiency (PCE(t = TS)) can be

defined at the end of burn-in, and a stabilized lifetime (TS,80) can be defined as the

time elapsed between TS and when the device degrades to 80% of PCE(t = TS),

as shown in Fig. 3.2. [80,82,108] An E80 can similarly be defined for OPVs with a

stabilization time:

ES,80 =

t=TS+TS,80∫
t=TS

PCE(t)Pin(t)dt. (3.2)

While these energy generation metrics gives weight to both PCE and lifetime, compar-

isons between devices using this FoM are susceptible to being dominated by lifetime,

Figure 3.2: Representative lifetime plot of an OPV with a burn-in period |
PCE as a function of time. The stabilized lifetime is the time between
TS and when PCE reaches 80% of its stabilized value. The shaded area
is approximately proportional to ES,80.
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Table 3.1: Lifetime, efficiency, and figures of merit for select OPVs | FoMs
and testing conditions of small-molecule OPVs with reported efficiencies
and lifetimes are shown. Select polymer cells are included for reference.
*SM = thermally evaporated small molecule. †Measured to 9,000 hr with
8% PCE loss. ‡Extrapolated from high intensity aging data in Chapter
VII.

Year
Published

Cell Type*
PCE
(%)

T80, TS,80, or
Tfinal (hr)

E80

(kWhr/m2)
ELP Illuminant

2006 [109] Polymer 1.4 1 0.014 0 Xe arc

2008 [89] SM
Tandem

4.1 1,600 66.7 13.1 Halogen

2010 [96] SM 0.5 25 0.12 0.7 Blue LED

2011 [110] Polymer 4.2 4,400 186 15.3 S plasma

2011 [111] SM 2 1,000 6.7 6 Metal Halide

2012 [112] SM 2.1 1,800 38.9 6.8 Metal Halide

2012 [97] SM 2.2 1,500 33.3 7 White LED

2013 [100] SM 3.2 1,700 55.6 10.3 Xe arc

2013 [113] Polymer 5.1 250 12.8 12.2 Metal Halide

2014 [114] Polymer 2.7 12,000 333 11 S plasma

2014 [115] SM 2.3 700 16.1 6.5 N/A

2017 [105] Polymer 6.1 1,900 105.6 20 White LED

This work SM 6.6 9,000† 528 26.1 Xe arc

This work SM 6.6 99,000‡ 4,167 33.0 Xe arc/LED

as PCE has historically spanned just over one order of magnitude (1%→ 17%) while

T80 has spanned at least seven (seconds→years). Hence, a FoM called efficiency log-

lifetime product (ELP) can be used, which gives comparable weight to advances in

PCE and reliability:

ELP = PCE · log10(T80[hr]). (3.3)

Literature data from small molecular weight OPVs that report both a lifetime and
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PCE can be seen in Table 3.1, along with their E80 (or ES,80) and ELP calculated

using Eqs. 3.1, 3.2, and 3.3. Several state-of-the-art polymer devices are also shown

for reference, including the current best result for an OPV with a solution-processed

NFA. For reference, a 15% PCE photovoltaic cell with a 25-year T80 (the approximate

requirements for commercial applications) would have an E80 > 2 × 1010 J/m2 and

an ELP of 80.

3.2 Reliability testing methods

Due to their potential sensitivity to light, electrical bias, elevated temperature,

and atmospheric O2 and H2O, disentangling the contributions of various stressors re-

quires carefully targeted testing. Proper testing and consistent reliability data report-

ing have therefore been a source of significant discussion over the past several years

in the OPV community with several publications outlining consensus OPV stability

testing protocols and reporting metrics. [80,82,108] In addition, many techniques have

been employed to characterize individual materials for their thermal/morphological

stability (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA),

atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray diffrac-

tometry (XRD)) and photochemical stability (ultraviolet-visible (UV-vis) absorption

spectroscopy, laser desorption ionization time-of-flight (LDI-TOF) mass spectrom-

etry, FTIR spectroscopy, nuclear magnetic resonance (NMR), x-ray photoelectron

spectrosopy (XPS), time-of-flight secondary ion mass spectroscopy (TOF-SIMS)),

which can be predictive of their stability when integrated into OPVs.

The most common way to measure the intrinsic stability of an OPV is by sub-

jecting it to continuous illumination at its MPP in a pure N2 atmosphere while pe-

riodically measuring its J–V characteristics. This method has the advantage of be-

ing controllable, since the temperature and illumination conditions can be precisely

known, and continuous illumination accelerates test duration by ∼ 5× compared
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with outdoor testing that is limited to several hours of sun per day. To perform such

experiments during this work, we constructed an automated testing environment ca-

pable of simultaneously testing 72 OPVs, with integrated temperature control and

automated data collection and analysis software. Firstly, all devices are hermetically

sealed with two glass slides and a UV-curable epoxy, to ensure that the ingress of O2

and H2O is minimized. Here, the epoxy seal is positioned around the periphery of

the substrate as shown in Fig. 1.20 where a small gap is left in the metal contacts,

since they do not adhere strongly enough to the substrate to create a mechanically

sound seal. A 1.5 kW, AM1.5G-filtered Xe arc lamp was used for solar aging, which

supplies approximately 1 kW/m2 illumination over a 10”× 10” area.

In addition to the light source, automated testing of many cells simultaneously

requires a current/voltage source measurement unit (SMU), a multiplexing circuit

that connects one device to the SMU at a time, substrate holders with reliable contacts

to the OPV, load resistors for each device, a calibrated photodiode to track the

intensity of the simulator, and a software package to control the system. The basic

circuit employed is shown in Fig. 3.3. Nominally, all relays are in the horizontal

position, thus the OPVs are in a series-parallel configuration with a load resistor,

Rload, chosen to hold the OPV at its MPP. To measure the J–V characteristics of

an OPV, its associated relay was closed into the vertical position in Fig. 3.3, thereby

Figure 3.3: OPV lifetime testing circuit diagram | Schematic of the circuit em-
ployed to age OPVs while connected to an electrical load, and periodically
connect them to the SMU for measurement.
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connecting it to the SMU. The timing of the relays and SMU measurement sweeps

was controlled by the software.

Making mechanically robust and electrically stable contacts to the OPVs is critical

for lifetime testing, and is non-trivial since soldering to the ultra-thin Al/Ag OPV

electrodes is difficult, and Ag paste does not adhere to thermally evaporated Ag

or Al. In this work, custom printed circuit boards (PCBs) (as shown in Fig. 3.4)

were used to mount and contact the OPVs. A recessed pocket was designed to fit the

OPV substrates with contacts bridging between the OPV electrodes and the Cu PCB

contacts using Cu tape as shown in Fig. 3.4 (right). On the OPV side, a conductive

Ni paint was used to adhere to the electrode, which was then connected to the Cu

tape using Ag paste. The Cu tape was directly soldered to the Cu contacts on the

PCB to carry the current out to connection pins. During operation, the PCB was

inverted such that the OPVs were illuminated through the hole in the PCB and the

contacts were facing away from the light.

Figure 3.4: OPV lifetime mounting and contact schematic | Diagram of the
PCB (left) and compound electrical contact (right) used to mount and
contact OPVs during lifetime testing.

For testing, the PCBs were mounted to an optics table under illumination from

the Xe arc lamp using screws and four teflon standoffs at the corner of the OPVs,

as shown in Fig. 3.5. Optionally, a resistive heater and Cu heat spreading plate
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Figure 3.5: OPV lifetime measurement setup photographs | Left: Photograph
of the 8-channel relay boards, and PCBs that were used to connect the
OPVs to the SMU and load resistors. Right: Photograph of OPVs under
lifetime testing with key elements of the setup labeled.

could be mounted between the PCB and the standoffs to heat the OPV substrate.

Teflon standoffs were chosen for this reason, since they thermally insulate the Cu

heat spreader from the bench, allowing the system to reach higher temperatures

(> 130◦C). To prevent the heaters from melting the ribbon connector cables, clips

are placed under each substrate holder for cable routing, as shown in Fig. 3.5. Each

substrate was assigned an 8-channel relay board (Fig. 3.5 (left)) that implemented

the circuit diagrammed in Fig. 3.3. Power for the relays and resistive heaters was

supplied by an external DC power supply.

Finally, the relay boards and SMU were interfaced to a computer using USB and

GPIB connectors, respectively. A control software package was written to automate

OPV testing, and log and analyze the performance data (PCE , JSC, VOC, FF , RS, and

RSH) of each OPV vs. time. Screen captures of the graphical user interfaces (GUIs)

used to control the tests and compile data are shown in Fig. 3.6. The output power

of the Xe lamp was measured continuously with a calibrated Si photodiode as shown

in Fig. 3.5.
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Figure 3.6: OPV lifetime testing software GUIs | Screen captures of the GUIs
used to control lifetime testing of OPVs (left) and compile their perfor-
mance data (right).

The measurement circuitry and contacts using this method were able to maintain

reliable performance for several thousand hours under test, including at elevated

temperatures up to 130◦C. The most significant instability was in the spectrum of

the Xe lamp, which continuously red-shifts over its lifetime, as shown in Fig. 3.7.

Due to its strong near-IR absorption, the Si photodiode used to calibrate the lamp

intensity produced a constant photocurrent despite this red shift, while the OPVs,

which absorb strongly from 400-700 nm, collected less photons. This creates the false

appearance of JSC loss in the OPVs, as shown in Fig. 3.7. [81] As a result, constant

monitoring of the Xe spectrum and cross-calibration of the OPV performance during

measurement is required to accurately determine JSC. Alternative light sources such

as sulfur plasma lamps, Hg arc lamps, metal halide lamps, and white light emitting

diodes (LEDs) can also be used for continuous OPV aging experiments. [108] However,
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Figure 3.7: Effects of Xe arc lamp instability | a) (left-axis) Intensity of the Xe
arc lamp used for OPV aging before and after running for 2000 hr. (right
axis) EQE of a typical OPV and the Si photodiode used to calibrate the
intensity of the Xe arc lamp. b) Trend in apparent JSC of the OPV as
the Xe lamp red-shifts, from Q. Burlingame et al. (2016). [81]

the spectral match of sulfur plasma and Hg arc lamps with AM1.5G is poor, and large

area white LED sources are not yet commercially available at low cost. Once they

become cost competitive, LED simulators are likely the best available source for solar

aging studies due to their excellent stability, high efficiency, and spectral tunability.

While continuous aging experiments provide a controlled environment for eval-

uating intrinsic stability, outdoor lifetime measurements expose cells to a broader

range of conditions are experienced during practical operation, including light and

thermal cycling, variations in humidity, and weather. Several outdoor aging stud-

ies have been performed on solution-processed polymer solar cells, [116–119] while few

reports exist describing small-molecule OPV outdoor lifetimes. [81] The outdoor life-

time measurements in this work were performed in Sede Boqer, Israel, using a 30◦

fixed-angle testing station with a reference Si detector, as shown in Fig. 3.8. The

OPVs were mounted and contacted using the same PCBs and methods described for

continuous illumination aging. Compared with indoor tests, outdoor tests show a

higher incidence of catastrophic failure, due to the additional stress placed on the

encapsulation materials during outdoor measurements. Outdoor measurements also
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Figure 3.8: Outdoor OPV reliability measurement setup | Photograph of two
OPV substrates aging outdoors in Sede Boqer, Israel on a fixed angle
(30◦) platform with a reference Si photodiode.

introduce potential uncertainty, due to the high variance in conditions at different

locations, and provide no acceleration (unlike continuous aging and accelerated aging

experiments).

3.3 Accelerated aging

Over the past several years, reports of OPVs with lifetimes greater than several

months have become frequent. [81,105,110,114] As this trend continues, and perhaps accel-

erates, assessing device operational lifetimes via continuous illumination and outdoor

testing will no longer be feasible on a practical timescale. Accelerated aging methods

are therefore required, with an ideal accelerated test simply speeding up the intrinsic

failure modes that exist under normal outdoor operation, rather than inducing new

extrinsic degradation.
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3.3.1 Theory and acceleration factor

Two possible stressors for accelerating OPV aging are temperature and light in-

tensity. Thermally accelerated aging seeks to accelerate the rate of change of a device

parameter, p, which degrades over time, t, as a function of temperature, T , as fol-

lows: [120]

p(t) = α exp (−kdeg(T )t) + β, (3.4)

where α and β are constants. Here, kdeg(T ) is a thermally activated degradation rate

with an Arrhenius temperature dependence:

kdeg(T ) = A exp

(
−EA
kBT

)
, (3.5)

where A is a constant and EA is the activation energy of the degradation process.

High intensity aging can potentially provide valuable information about what

mechanisms drive performance loss since it can increase the rate of photochemi-

cal reactions and produce large densities of electrons, polarons, and phonons. The

rate of photochemical degradation, for example, will increase linearly with inten-

sity, [102,121,122] while the rate of degradation due to multiple particle interactions

(e.g., exciton–exciton, polaron–polaron, and exciton–polaron) will increase quadrat-

ically. [123–125] When aging under high intensities and temperatures, it is useful to

define an acceleration factor, γ, linking the accelerated degradation rate, kacc, to the

degradation rate, kref , under standard operating conditions: [120]

γ =
kacc
kref

=

(
Iacc
Iref

)ξ
exp

(
EA
kB

[
1

Tacc
− 1

Tref

])
, (3.6)

where Iacc is the intensity during the accelerated test, Iref is the intensity under

standard operation, EA is the Arrhenius activation energy, and Tacc and Tref are

the operating temperatures during accelerated and standard aging. The exponen-
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tial factor, ξ, can be fit empirically, and will depend on the relative contribution of

photochemical (ξ = 1) and multiple particle (ξ = 2) degradation modes.

3.3.2 Experimental methods

In this work, both thermal and high intensity acceleration are used, depending on

the device architecture and its active failure modes. For thermal testing, devices were

aged using the continuous illumination setup described in §3.2. The temperature of

each device was monitored with a thermocouple attached to the front surface of the

OPV and was modulated by controlling the current to a resistive heater attached to

the Cu heat spreader on each device. The temperature was maintained within 1◦C

of the desired temperature by a computer integrated proportional–integral–derivative

(PID) controller.

High intensity illumination was applied to OPVs using two sources: concentrated

sunlight, and high intensity white LEDs. Concentrated sunlight was collected using

a 2-axis solar tracker in Sede Boqer, Israel, and was focused into a 1 mm diameter

quartz optical fiber with a parabolic reflector. [126] A multimode quartz block was

placed between the fiber and the OPV to distribute the illumination over the entire

device area. Intensity was calibrated using a calibrated pyranometer, and controlled

with a shutter/iris. [127,128] Experiments were limited to several hours around mid-

day, and could only be performed during clear skies where the spectrum was nearly

time invariant and similar to AM1.5G. [129] The OPVs were actively cooled with a

thermoelectric cooler during aging.

To conduct high intensity aging experiments at the University of Michigan, we

constructed a system with white LEDs and integrated water cooling as shown in Fig.

3.9. The four LEDs in the system were controlled by independent power ballasts,

with adjustable output power. Light from the LEDs was collimated onto the OPVs

with Ag-coated high-temperature polycarbonate (PC) tubes, as shown in the right
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Figure 3.9: High intensity LED aging setup photographs.

photograph in Fig. 3.9. Chilled H2O flowed through Al blocks beneath each OPV’s

substrate to cool them. The LEDs were mounted to Al heat sinks attached to cooling

fans. These heat sinks were connected to hollow Al blocks with chilled H2O flowing

through them for additional LED cooling.

The LED spectrum extended from 420 nm to 700 nm with a correlated color

temperature (CCT) of 5000K as shown in Fig. 3.10. The equivalent solar intensity

of the LEDs was calibrated by measuring the JSC of a fresh OPV in response to

Figure 3.10: Performance characterization of the LED aging setup | Left:
Normalized spectra of the high intensity white and UV LEDs used to
accelerate OPV aging compared to the normalized AM1.5G spectrum.
Right: Equivalent solar intensity vs. OPV surface temperature under
high intensity LED illumination.
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the LED illumination incident through a neutral density (ND) filter. The ND filter

had an optical density (OD) of 1, thus an LED intensity that produced an OPV

photocurrent equal to 10% of the OPV’s 1-sun JSC under AM1.5G was said to be 1

sun of equivalent intensity. The ND filter was used during calibration to keep the

OPV current and temperature low during calibration as JSC becomes non-linear at

higher intensities and changes as a function of temperature. [130] The Al heat sinks

had a base temperature of 12◦C, though the temperature of the OPVs increased

almost linearly with intensity as shown in Fig. 3.10. The maximum equivalent solar

intensity the system could produce was > 60 suns. A removable UV LED source

capable of delivering > 100 suns of UV illumination was also included in the system,

with the spectrum shown in Fig. 3.10. The intensity of the UV LED was calibrated

by measuring its irradiance and dividing it by the total irradiance of AM1.5G at

λ < 400 nm, which is approximately 4.6 mW/cm2.
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CHAPTER IV

Photostability of organic thin films and

photovoltaic cells

4.1 Optical and Fourier transform infrared spectroscopy

The photostability of the individual materials and thin films that comprise an OPV

can be predictive of the stability of the OPV itself—particularly if the stability of the

constituents is poor. [81,101,102] A simple method to screen for stability is to age thin

films under various conditions, and measure the change in their UV-vis absorption or

FTIR spectra. These optical techniques are useful for detecting large changes, where

a significant portion of the molecules (& 1%) in the film have degraded. Infrared

spectroscopy is particularly useful, since certain regions of the spectrum correspond

to specific bonds, functional groups, and vibrational modes, and can thus be used to

identify how molecules change with time. In this work, 13 common OPV materials

were screened for stability by measuring the FTIR absorption spectra of 100 nm

thick films on KBr before and after aging for 1 week under different atmospheric and

illumination conditions: in the dark in N2; in the dark in air; under simulated 1-sun

illumination in N2; and under simulated 1-sun illumination in air. The study included

donor materials (DBP, DTDCPB, DTDCTB, and SubPc), acceptor materials (C60

and C70), buffer materials (3TPYMB, Alq3, BAlq, BP4mPy, BPhen, and TPBi), and
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PTCBI that has been used previously as both an acceptor and an exciton blocker.

Structural formulae of each of these compounds are shown in Fig. 4.1, and their full

chemical names are included in the List of Chemicals.

The full FTIR spectra are shown in Appendix A and the results are qualitatively

summarized in Table 4.1. Interestingly, none of the spectra showed any change after

aging in the dark either in N2 or air, except for BPhen which had visibly crystal-

lized after aging. Under illumination in air, the polar molecules (3TPYMB, Alq3,

BAlq, DTDCPB, DTDCTB, SubPc, and TPBi) were hygroscopic, while thin films of

BP4mPy, BPhen, C60, C70, DBP, and PTCBI showed no evidence of H2O ingress.

Almost all materials showed some level of oxidation after aging under illumination

in air, as evidenced by the formation of an FTIR absorption peak around 1750 cm-1

(associated with the stretching mode of the C–O double bond), with the exception

of BP4mPy that remained totally stable under all aging conditions.

Figure 4.1: Structural formulae of OPV materials.
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Table 4.1: Summary of thin film stability from FTIR absorption spectra |
Full spectra are shown in Appendix A. Thin films of each material were
aged for 1 week at the stated conditions: Dark/N2, Dark/air, 1-sun/N2,
1-sun/air. Ingress of H2O and oxidation were inferred from the presence
of an increased H2O background and the formation of modes around 1750
cm-1, respectively.

Material
Dark/N2

stability
Dark/air
stability

1-sun/N2

stability
1-sun/air
stability

C–O
formation

H2O
ingress

3TPYMB good good good poor weak strong

Alq3 good good good poor strong strong

BAlq good good good poor strong strong

BP4mPy good good good good none none

BPhen ok ok ok poor strong none

C60 good good poor poor strong none

C70 good good good ok weak none

DBP good good good poor strong none

DTDCPB good good good poor weak strong

DTDCTB good good good poor weak strong

PTCBI good good good ok weak none

SubPc good good good poor strong strong

TPBi good good good poor poor strong

4.1.1 Oligomerization in C60 films and heterojunctions

Without the presence of H2O and O2, the organic thin films aged in N2 un-

der illumination were stable with the exception of C60, which underwent significant

chemical changes. The vibrational spectrum of C60 has been explored both com-

putationally and experimentally, [102,121,131,132] with four of its 174 vibrational modes

satisfying the condition: dµ/dr 6= 0, where µ is the dipole moment and r is the nu-

clear displacement during the vibration. These four modes can therefore couple to
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IR radiation, and appear at 526, 575, 1182, and 1429 cm-1 in Fig. A.6. These peaks

are significantly reduced after aging under illumination in N2, and a number of new

peaks emerge between 550 and 800 cm-1. These changes are consistent with fullerene

photo-oligomerization—where light-induced chemical bonds are formed between ad-

jacent C60 molecules, thus creating C120, C180, and longer oligomers as evidenced by

LDI-TOF mass spectrometry studies. [121,131] The new infrared (IR) absorption peaks

that emerge betwen 550 and 800 cm-1 are associated with new vibrational modes of

the oligomers. Since the formation of oligomers breaks the symmetry responsible for

C60’s long exciton lifetime (τ > 1 µs), [133] solution-based exciton lifetime measure-

ments have found that the recombination rate is significantly faster than that of the

monomer. [134–136]

Using the four characteristic C60 FTIR modes as a fingerprint, in situ time-

dependent FTIR absorption spectra were measured on planar and blended SubPc:C60

HJs over a 24 hour period, as shown in Fig. 4.2. [102] Over the course of the measure-

ment, light from a Xe arc lamp was focused into a broadband liquid light guide to

soak the C60 film inside the FTIR tool, which was continuously purged with N2. The

FTIR absorption spectra of 100 nm thick films of SubPc and C60 are plotted for

reference, and scaled to represent the amount of each material in the HJ. As we can

see, the FTIR spectra of the as-grown HJs are linear superpositions of the as-grown

neat C60 and SubPc spectra. Over time, the four characteristic C60 peaks (529, 575,

1182, and 1429 cm-1) become smaller in both HJs, while the oligomer peaks between

550 and 800 cm-1 become more pronounced.

To more quantitatively assess the formation of C60 oligomers from these spectra,

the peak heights from the four C60 FTIR peaks were extracted as a function of time

and normalized to their initial values as shown in Fig. 4.3. [102] In the planar HJ,

the decrease was relatively rapid and continued to decrease throughout the 24 hr

measurement. After 24 hr, the peak heights degraded to 29% to 53% of their starting
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Figure 4.2: In situ FTIR spectra on SubPc:C60 HJs | Time-resolved FTIR
spectra of a a) planar 50 nm C60/11 nm SubPc HJ and b) blended 72
nm SubPc:C60 1:4 HJ grown on KBr while being exposed to Xe arc lamp
illumination. Neat SubPc and C60 spectra are shown for reference, and
scaled to match the amount of each compound in the HJs.

values. In the blended HJ, the peak heights decreased more slowly, and appeared

to saturate after about 10 hr—maintaining between 63% and 79% of their initial

intensity after 24 hr.

Finally, the photochemical instability of C60 is apparent from its UV-vis absorption

spectra, as shown in Fig. 4.4. After aging for 1 week in N2 under 100 mW/cm2 Xe arc

lamp illumination, the absorbance of the film broadens significantly. [101,102,122] Under

the same treatment, a 100 nm thin film of SubPc shows no change. [101,102]
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Figure 4.3: Time-resolved C60 FTIR peak heights in HJs | Normalized magni-
tude of the four C60 FTIR absorption peaks extracted from Fig. 4.2 as
a function of time for the a) planar SubPc/C60 HJ and the b) blended
SubPc:C60. Adapted from Q. Burlingame et al. (2015). [102]

4.2 Burn-in of planar C60 organic photovoltaic cells

As we have shown, C60 thin films rapidly oligomerize when exposed to light which

changes their photophysical, electrical, and optical properties in several ways that

are relevant to photovoltaic performance. Unsurprisingly, thermally evaporated pla-

Figure 4.4: Absorbance of C60 and SubPc after solar aging | Wavelength-
dependent absorbance of 100 nm thin films of SubPc and C60 before
and after aging for 1 week under simulated solar illumination in N2. No
change was observed in the absorbance of the SubPc film. Adapted from
Q. Burlingame et al. (2015). [102]
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nar HJ OPVs [96,98,100,102,115,122] and their solution-processed counterparts containing

PC61BM [99] are largely unstable. Planar SubPc/C60 HJ OPVs, with the structure

shown in Fig. 4.5a, experience a rapid burn-in period during the first several hours

under illumination, where > 30% of the initial JSC is lost. [100] The loss in photocur-

rent during aging in these devices occurs disproportionately where C60 absorbs more

light than the SubPc donor (as shown in Fig. 4.5b, confirming that the photocurrent

contribution from the C60 layer diminishes over time and is therefore responsible for

the degradation. Furthermore, burn-in was shown by X. Tong et al. (2013) [100] to

proceed linearly with the number of absorbed photons, independent of wavelength,

suggesting that excitons drive burn-in that is consistent with previous studies on C60

oligomerization. [121] Interestingly, blending C60 and SubPc was found to totally elim-

inate burn-in by X. Tong et al. (2013), [100] despite the fact that here we observed

evidence of significant C60 oligomerization in the FTIR spectra of blended SubPc:C60

HJs, as shown in Figs. 4.2 and 4.3.

Figure 4.5: Time-resolved EQE of a planar HJ SubPc/C60 OPV | a) Structure
of a planar HJ SubPc/C60 OPV with a PTCBI cathode buffer layer. b)
Time-resolved EQE spectra of the device shown in a) while aging under
100 mW/cm2 simulated solar illumination. Adapted from Q. Burlingame
et al. (2015). [102]
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4.2.1 Theory and exciton diffusion modeling

From §1.1.8, recall that a key advantage of blended donor-acceptor HJs is their

lack of dependence on the exciton LD of the constituents since the HJ is distributed

everywhere. If the LD of C60 decreased during oligomerization, it would therefore

degrade the performance of a planar HJ OPV, without affecting the performance of

blended HJ devices. To quantify this effect, consider the steady-state exciton diffusion

equation (Eq. 1.11) in one spatial dimension, x, which is the distance from the HJ:

D
∂2N(x)

∂x2
− klossN(x) +G(x) = 0, (4.1)

where kloss = 1/τ is the exciton recombination rate. The transfer matrix method can

be used to calculate the light-induced exciton profile, [137] and Eq. 4.1 can be solved

to find the exciton flux to the HJ, which is proportional to EQE and therefore JSC.

In the planar C60 HJ case, the formation rate of oligomers should be proportional

to the exciton density, and the presence of oligomers effectively increases krec. The

C60 monomer fraction remaining as a function of time and position, Γ(x, t), can be

expressed as:

Γ(x, t) =
M(x, t)

M0

= (1− Γ∞) exp[−kFN(x, t)] + Γ∞, (4.2)

where M(x, t) is the monomer density, M0 is the initial monomer density, kF is the

oligomer formation rate, and Γ∞ is the percentage of monomers remaining at t =∞.

If we include the impact of monomer formation and recombination, Eq. 4.1 on the

C60 side of the HJ becomes dependent on the aging time, t:

D
∂2N(x, t)

∂x2
− [(k1 + kF )Γ(x, t) + k2+(1− Γ(x, t))]N(x, t) +G(x, t) = 0, (4.3)
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where k1 and k2+ are the recombination rates on C60 monomers and oligomers respec-

tively. Since literature reports show that the lifetime of oligomers does not continue

to decrease for longer chains (i.e., C120≈C180, etc.), only one rate, k2+, is required to

represent all non-monomers.

In order to use Eq. 4.3 to simulate EQE as a function of degradation, the dif-

fusivities of SubPc and C60 excitons and their recombination rates were taken from

the literature (SubPc: D = 3.2 × 10−4 cm2s-1, [138] krec = 5 × 108 s-1 [139] and C60:

D = 1.6 × 10−5 cm2s-1, [18] k1 = 1 × 106 s-1) [133]. While exciton recombination rates

have been measured for C120 and C180 in solution via transient absorption spec-

troscopy, [134–136] no measurements of k2+ or kF have been reported for thin films. To

fit these parameters, it is useful to find a portion of the EQE spectrum that has no

contribution from SubPc, and where C60’s absorption is constant. From the absorp-

tion spectra in Fig. 4.4, we can see that λ = 450 nm meets these requirements. This

can also be inferred from the aged EQE spectra (Fig. 4.5b) as EQE loss is maximized

near λ = 450 nm.

As t → ∞, the JSC loss saturates as the oligomer density reaches its maximum,

Γ∞. Even so, a significant portion of the photocurrent contribution from the C60

layer remains, as evidenced by the remaining EQE contribution at λ = 450 nm.

This, therefore, implies a certain exciton LD in the oligomerized C60 layer, which is

a function of k2+ and Γ∞, and is lower than the LD in the as-grown acceptor layer.

However, these paramaters cannot be determined independently since many (k2+,Γ∞)

pairs can produce the same LD. As a starting point, we therefore assume that Γ∞ = 0,

and solve Eq. 4.3 at t → ∞ with respect to the boundary conditions: 1) complete

quenching at the SubPc/C60 interface, i.e., N(x) = 0; and 2) ideal exciton blocking at

the C60/PTCBI interface, i.e., ∂N(x)/∂x = 0. The value of k2+ was then varied until

the value of the simulated EQE and measured EQE at λ = 450 nm was minimized

as shown in Fig. 4.6, which occurred at k2+ = 5.8 ± 0.4 × 106 s-1. Using this value
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Figure 4.6: Time-resolved SubPc/C60 EQE | Normalized EQE at λ = 450 nm
as a function of time for a planar HJ SubPc/C60 OPV aging under
100 mW/cm2 simulated solar illumination, fitted using Eq. 4.3 and the
method described in §4.2. Adapted from Q. Burlingame et al. (2015). [102]

of k2+, the value of kF can then be fit by simulating the EQE at λ = 450 nm with

Eq. 4.3 as a function of time, and varying KF to match the measured EQE trend as

shown in Fig. 4.6. This method produces a value of KF = 80 s-1.

Returning to the inseparability of k2+ and Γ∞, the fully transformed C60 film

(containing both monomers and oligomers) will have an effective exciton lifetime,

τeff :

τeff = [k1Γ∞ + k2+(1− Γ∞)]−1 , (4.4)

with a corresponding exciton LD:

LD =
√
Dτeff . (4.5)

Plugging in k2+ = 5.8 ± 0.4 × 106 at Γinfty = 0 produces an LD = 16.6 ± 0.1 nm,

compared with LD = 40 nm in the fresh layer. Therefore, any (k2+,Γ∞) pair that

produces an LD = 16.6 ± 0.1 nm would have an identical effect on photocurrent

generation from the C60 layer. To illustrate this effect, several 1/k2+ vs. Γ curves

are plotted in Fig. 4.7 with each line representing a distinct LD as noted. A vertical
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Figure 4.7: C60 film exciton lifetime vs. monomer density | Exciton lifetime
of C60 oligomers (k2+) vs. remaining monomer concentration (Γ), show-
ing several curves that respresent constant exciton LD’s in films contain-
ing both monomers and oligomers. Adapted from Q. Burlingame et al.
(2015). [102]

path downward on the plot in Fig. 4.7 corresponds to device aging, where LD and Γ

decrease until reaching the final LD = 16.6± 0.1 nm.

4.2.2 Mass spectrometry on aged C60 heterojunctions

To attempt to experimentally determine the values of k2+ and Γ∞, LDI-TOF

mass spectra were collected from a 50 nm C60/11 nm SubPc HJ before and after

aging for 1 week under 100 mW/cm2 simulated solar illumination to ensure that

burn-in had saturated. To prepare the samples for measurement, they were dissolved

in toluene and pipetted onto the mass spectrometry measurement puck. The fresh

HJ dissolved completely within seconds. While soaking the aged HJ, its SubPc layer

rapidly dissolved, while the C60 layer partially remained even after soaking for >

1 hr—indicative of the presence of oligomers. [121] The remaining film was scraped

into the toluene to ensure that any monomers present in the film were dissolved.

Given their densities and thicknesses (SubPc = 11 nm, 1.53 g/cm3 and C60 = 50

nm, 1.65 g/cm3), the expected ratio of C60 molecules to SubPc molecules, assuming
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their desorption and ionization rates are comparable, is 2.93. Dividing the measured

counts of C60 at 720 m/z by the measured counts of SubPc at 431 m/z produced

a ratio of 3.27 in the fresh sample. In the aged sample, this ratio was reduced to

just 0.34 despite the magnitude of the SubPc peak remaining constant, suggesting

that a majority of the C60 monomers were oligomerized. Taking the ratio of the final

and initial C60/SubPc ratios, Γ∞ is found to be 10.4 ± 0.2%. Plugging this value

into Eq. 4.5 at LD = 16.6 ± 0.2 nm produces a corresponding oligomer lifetime of

1/k2+ = 156 ± 2 ns—nearly 6.5 times shorter than the measured exciton lifetime of

pristine C60.
[133]

4.2.3 Comparison to previous reports

Beyond this work, several hypotheses have been advanced to explain burn-in phe-

nomena in planar HJ C60-based OPVs. H. Zhang et al. (2014) [122] proposed that

burn-in may result from reduced charge extraction efficiency if the mobility of aged

C60 films was less than that of pristine C60. However, such an effect would be appar-

ent in the RS of the OPV and would primarily degrade FF instead of JSC. Indeed,

X. Tong et al. (2013) [100] shows almost no loss in FF during burn-in. Similarly, VOC

is also stable compared to JSC during early aging, which implies that the loss is not

due to recombination of generated charges, but rather the loss precedes the charge

generation process.

The analysis contained here also differs from that of X. Tong et al., which modeled

burn-in as the result of a sparse population of exciton quenching sites forming during

early aging. While such a model can also fit the data—and indeed is one extreme

of the diffusion length model proposed here (where k2+ → ∞ and Γ∞ → 0)—it

does not account for the significant changes observed in the FTIR absorption, UV-vis

absorption, and mass spectra of aged C60 thin films. Additionally, the models differ

in their interpretation of the self-limiting saturation observed in burn-in and the lack
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of burn-in in mixed HJ SubPc:C60 OPVs, as X. Tong et al. implies that saturation

may result from the large capture radius of the quenching sites, which thus eliminates

the excitons needed to create additional defects. However, such an effect would also

quench all excitons and drive the photocurrent contribution of the C60 layer to 0—an

effect clearly not observed from the EQE spectra. Finally, X. Tong et al. hypothesizes

that burn-in is not observed in blended HJs because the long-lived excitons required to

form defect sites are quenched by the donor/acceptor HJ. In this work, we find direct

chemical evidence for the presence of C60 photochemical transformations via FTIR

even in blended HJs. Thus, only the exciton LD model described here is consistent

with the entire set of observations associated with burn-in.
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CHAPTER V

Morphological stability in exciton-blocking,

electron-filtering compound buffer layers

Under the stress of continually varying temperatures and light intensities during

the operation, OPVs may undergo morphological changes with time. [81,87,98,140–142]

Most commonly, morphological changes are due to crystallization when the device

is operating at or near the glass-transition temperature (TG) of one of the con-

stituent molecules. Such processes are associated with large changes in dark current,

degradation of FF and Voc, and even catastrophic failure via short-circuiting of the

OPV. [87,140] Developing OPVs that maintain a stable morphology throughout their

operational lifetime is therefore essential to realizing long-lifetime devices.

5.1 Structural phases and crystal growth theory

In general, thermally evaporated small molecule films grow in either an amorphous

or semi-crystalline phase, which sits at a higher enthalpy than the crystalline phase

(if such a phase exists), as shown in Fig. 5.1a. Since the crystal is energetically

preferred to the amorphous phase (with a Gibb’s free energy difference, ∆Gv), crystal

nucleation and growth will naturally proceed if the molecules are sufficiently free to

re-orient and move—which occurs as the temperature approaches the TG, as shown
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Figure 5.1: Structural phases of small molecules | a) Simplified phase diagram
of a small molecular weight compound as a function of enthalpy, H. The
activation energy for crystallization, EA, and free energy difference, ∆Gv,
between the amorphous and crystalline phases are shown. b) Idealized
temperature-enthalpy diagram showing TG, Tm, and ∆Hf . Adapted from
J. Hoffman (1958). [145]

in Fig. 5.1a. [143–145] The rate of crystal growth, U , can be approximated by: [143]

U ∝ Tw

η

[
1− exp

(
−∆Gv

kBT

)]
(5.1)

where T is temperature, w is a constant depending on the growth mode, and η is the

molecular mobility. The Gibb’s free energy difference, ∆Gv, is proportional to the

enthalpy of fusion of the crystal phase, ∆Hf , as shown in Fig. 5.1b, and the degree

of super cooling: Tm − T , where Tm is the crystal melting temperature: [145]

∆Gv ∝
∆Hf (Tm − T )T

T 2
m

. (5.2)

Compounds with stable amorphous/semi-crystalline morphologies therefore have three

characteristic traits: a high TG indicating that molecules require a large amount of

thermal energy to become mobile, a high Tm, and a low ∆Hf indicating that the

energetic driving force between the amorphous and crystalline phases is small.
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5.2 Morphological stability of exciton blocking layers

Perhaps the most widely reported morphological instabilities are found within

wide energy gap OPV cathode buffer layers. [81,87,141,142] In 2007, H. Wu et al. [141]

found that replacing BCP buffers with TPBi significantly improved the lifetime of

CuPc/C60 OPVs. In 2010, N. Wang et al. [142] saw a similar improvement when

comparing TPBi to BPhen and BCP buffers.

5.2.1 Differential scanning calorimetry and x-ray spectra

Here, we study the structural phases of BPhen, BP4mPy, and TPBi using a

combination of DSC and temperature resolved XRD. First, DSC is used to identify

the phase transition temperatures of each exciton blocking material. Each powder

sample (0.1-2 mg) was hermetically sealed in an Al pan, and heat flow was measured in

comparison to a calibrated reference pan as a function of temperature. Samples were

measured during heating at 10◦Cmin-1 from 25◦C to slightly below each material’s

evaporation temperature to prevent decomposition, then measured during cooling,

and a 2nd heating ramp. Since the powders typically begin as crystalline and become

amorphous after cooling from the melt, this heat-cool-heat cycle allows us to see the

transitions beginning with a crystal (1st heating) and glass (2nd heating). All DSC

data are plotted with exothermic reactions in the positive direction. To obtain the

temperature-dependent XRD spectra, organic powder samples were heated on a N2-

purged XRD stage, and then cooled back to room temperature. Diffraction spectra

were taken from 2θ = 5 − 30◦ at each temperature identified as a phase transition

from DSC measurements. The background of the stage itself was measured before

loading the organic powder to identify any features not associated with the sample.

During the 1st heating ramp, the BPhen powder showed only one transition: a

melt at 218◦C, as shown in Fig. 5.2a. After cooling from the melt, a large glass

transition is observed beginning at 61◦C, which is also clearly observed in the 2nd
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Figure 5.2: BPhen DSC and powder XRD spectra | a) Differential scanning
calorimetry on a BPhen powder sample, with the melt and glass transi-
tions indicated. b) Powder x-ray diffraction spectra of a BPhen powder
at several temperatures: room temperature, 200◦C = just before the melt,
and 235◦C = just after melting.

heating ramp as well. Melting and cooling produced a fully amorphous BPhen phase,

since during the 2nd heating, only TG is observed with no melt. From the XRD

spectra in Fig. 5.2b, BPhen shows several crystal peaks at room temperature prior

to heating. After heating to 200◦C (just below the melting temperature), additional

crystallization was observed, particularly at the 2θ = 7.8-8.2◦, suggesting the BPhen

morphology shifted during heating. At 235◦C, the powder melts and no peaks are

visible.

Comparatively, BP4mPy has a very different structure (shown in Fig. 5.3), as

even the powder shows no evidence of crystallinity. During the 1st DSC heating

cycle, the glass transition is visible at 105◦C, and can also be seen during cooling

and the 2nd heating ramp. Another feature visible at high temperatures in all three

scans at 245◦C corresponds to a weak crystallization event, such as a meta stable high

enthalpy crystal. However, no x-ray features were observed at higher temperatures

(not-shown), thus the origin of this feature is unknown. From the x-ray spectra, a

very broad hump is visible at room temperature with no crystal features. The hump

disappears at 225◦C, suggesting that BP4mPy can flow like a liquid when heated past
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Figure 5.3: BP4mPy DSC and powder XRD spectra | a) Differential scanning
calorimetry on a BP4mPy powder sample, with the glass transition indi-
cated. The origin of the exothermic peak at 245◦C in both heating cycles
is unknown, but may correspond to a meta stable crystallization, in which
case the endothermic peak during cooling is the meta stable crystal re-
turning to the amorphous phase. b) Powder x-ray diffraction spectra
of a B4mPy powder at room temperature and 225◦C (approaching the
exothermic DSC peak at 245◦C).

its TG. The lack of crystallinity in BP4mPy is consistent with its bulky non-planar

structure, as was shown in Fig. 4.1.

During its 1st heating, no TG is observed in TPBi, as shown in Fig. 5.4, suggesting

that the powder is almost entirely crystalline. Slightly above 200◦C, an exothermic

peak is observed, suggesting that TPBi recrystallizes. Comparing the XRD spec-

trum at room temperature to the spectra just beyond this transition at 220◦C, the

crystal structure changes, indicating that this exothermic feature corresponds to a

polymorphic transition. At 245◦C, there is an endothermic transition that appears to

be the polymorphic phase melting. The x-ray spectra taken just above this transition

at 260◦C has elements of both of the lower temperature spectra. At 274◦C, TPBi

melts, thus no features are visible in the XRD spectra at 280◦C. After cooling, TPBi

forms an amorphous phase, which has a glass transition at 120◦C—visible in both the

cooling and 2nd heating DSC ramps.

Recall from §5.1 that three parameters are indicative of morphologically stable

92



Figure 5.4: TPBi DSC and powder XRD spectra | a) Differential scanning
calorimetry on a TPBi powder sample, with the glass transition and
melt indicated. In addition to these features, polymorph crystallization
and melting features are observed between 150 and 250◦C. b) Powder x-
ray diffraction spectra of a TPBi powder at several temperatures: room
temperature, 220◦C = just beyond the polymorph recrystallization fea-
ture, 220◦C = just beyond the endothermic polymorph feature (possibly
a melt), and 280◦C = just after melting.

amorphous phases: high TG, high Tm, and low ∆Hf . For the three exciton blocking

compounds shown, the glass transitions are evident, as are the melting temperatures

of BPhen and TPBi, reproduced in Table 5.1. To calculate ∆Hf , the DSC melting

peaks were integrated over temperature and converted to kJ/mol using the molecular

weights and masses of each sample. Using this method, the ∆Hf of BPhen was

found to be significantly higher than that of TPBi (∆Hf = 79.9 to 46.6 kJ/mol).

This low TG, Tm, and large ∆Hf all suggest that BPhen crystallizes, while TPBi

and BP4mPy are significantly more stable. In addition to these three compounds,

literature values of TG for BCP and 3TPYMB are also shown in Table 5.1, along

with the approximate sublimation/evaporation temperatures of BPhen, BP4mPy,

TPBi, and 3TPYMB measured with a thermocouple at 10-6 Torr in a vacuum thermal

evaporator at the onset of deposition.
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Table 5.1: Thermal properties of OPV cathode buffer compounds.

TG

(◦C)
Tm

(◦C)
∆Hf

(kJ/mol)
Tevap/sub

(◦C)

3TPYMB [81] 106 - - 240

BCP [146] 89 - - -

BP4mPy [81] 105 - - 350

BPhen [81] 61 218 79.9 230

TPBi [81] 120 274 46.6 320

5.3 Stability of DBP:C70 organic photovoltaics

In 2013, X. Xiao et al. [147] demonstrated a PMHJ OPV cell based on the DBP/C70

HJ with a neat BPhen buffer layer, which achieved a PCE of 6.4%. The lifetime of

these cells was found to be poor due to crystallization of the BPhen layer—reaching

T80 in less than 10 hr, and degrading by 50% within 125 hr. [87] To improve the

efficiency of these devices, X. Xiao et al. (2014) [50] replaced the neat BPhen cathode

buffer layer with BPhen:C60 EF-CBLs, which had been developed the previous year by

A. Bartynski et al. (2013). [49] The EF-CBLs dramatically improved charge extraction

efficiency, particularly at high intensities, leading to a PCE of 8.1% under simulated

AM1.5G illumination. When we studied the lifetime of these devices using the setup

described in §3.2, we found that blending C60 into the BPhen buffer also significantly

improved the operational stability of the devices, as shown in Fig. 5.5. Compared

to devices with neat BPhen buffers, the EF-CBL devices had T80’s greater than 800

hr—especially considering that the JSC degradation observed in Fig. 5.5 is primarily

due to the spectral instability of the Xe aging lamp, as discussed in §3.2.
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Figure 5.5: Lifetime of DBP:C70 OPVs with BPhen:C60 EF-CBLs | a) Device
structure of a PMHJ DBP:C70 OPV with a BPhen:C60 EF-CBL. b)
Evolution of the normalized photovoltaic characteristics: JSC, VOC, FF ,
and PCE as a function of time under 100 mW/cm2 simulated AM1.5G
illumination for the OPV shown in a. The observed loss in JSC is primarily
associated with the spectral instability of the Xe aging source rather than
degradation of the OPV itself. Lifetime data from Q. Burlingame et al.
(2016). [81]

5.3.1 Electron-filtering compound buffer layers

To further improve the lifetime of PMHJ DBP:C70 OPVs with EF-CBLs, we re-

placed the morphologically unstable BPhen layers with the alternative exciton block-

ing materials discussed in §5.2, as shown in Fig. 5.6. The C60 in the EF-CBL of one de-

vice was also replaced with C70 to avoid any possible long-term effects of C60 oligomer-

ization (discussed in Chapter IV). Compared with the BPhen:C60 EF-CBL devices,

the FF ’s and VOC’s of the stabilized devices were significantly more robust, following

the lifetime trend: TPBi:C70>BP4mPy:C60≈TPBi:C60>3TPYMB:C60. The PCE s

of all of the devices were lower than the original BPhen:C60 EF-CBL OPV (PCE =

6.9%) as shown in each panel of Fig. 5.6, but only the BP4mPy:C60 device was sig-

nificantly lower (PCE = 6.1%). The devices demonstrated here are less efficient than

those originally published by X. Xiao et al. (2014), [50] due to their larger areas (0.11

cm2 compared with 0.008 cm2), and their cathodes, which are Al instead of Ag for
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Figure 5.6: Lifetime of DBP:C70 OPVs with various EF-CBLs | Evolution of
the normalized photovoltaic characteristics: JSC, VOC, FF , and PCE as
a function of time under 100 mW/cm2 simulated AM1.5G illumination
for OPV with the EF-CBL structure indicated in the bottom corner of
each graph: a) TPBi:C60; b) BP4mPy:C60; c) 3TPYMB:C60; and d)
TPBi:C70. The fresh photovoltaic performance parameters are shown in
each panel. The observed loss in JSC is primarily associated with the
spectral instability of the Xe aging source rather than degradation of the
OPV itself. Adapted from Q. Burlingame et al. (2016). [81]

increased stability and device yield. The primary difference between the performance

of the BPhen:C60 EF-CBL devices and the stabilized devices shown here is their lower

FF , due to reduced conductivity and charge extraction efficiency.

The stability of these devices is consistent with the theoretical morphological

stability of the exciton blocking layers themselves, with TPBi and BP4mPy de-

vices having better stability than 3TPYMB:C60 OPVs, which are more stable than

BPhen:C60 EF-CBL OPVs. However, as noted previously, the reliability of OPVs
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with blended EF-CBLs is significantly higher than those with neat BPhen buffers

due to the presence of the fullerene that pins the morphology of the other exciton

blocking component. To assess the morphological stability of the exciton blocking

materials when blended with fullerene, x-ray diffraction spectra were collected on 200

nm 1:1 blended films before and after aging for 1 week under simulated AM1.5G illu-

mination, as shown in Fig. 5.7. As expected, the EF-CBLs with TPBi:C60, TPBi:C70,

and BP4mPy:C60 show no evidence of crystallization or morphological change, except

for perhaps BP4mPy:C60 which shows a change in the slope of the background. After

aging, the background intensity at 2θ < 10◦ of the 3TPYMB:C60 film (Fig. 5.7a)

was reduced, revealing a broad feature between 2θ = 9 and 12◦. The least stable of

the films was BPhen:C60, which showed a diffraction peak at 2θ = 13.7◦ after aging,

consistent with its relatively poor lifetime.

The most stable of all the devices studied (TPBi:C70) saw its FF and VOC improve

slightly over its measured lifetime. However, its JSC does appear to degrade by 20%

over the 2500 hr measurement due to the spectral instability of the Xe arc lamp, as

discussed previously. To determine the magnitude of the JSC loss, a fresh TPBi:C70

device was aged for more than 1 year under continuous illumination, and its EQE was

measured periodically, as shown in Fig. 5.8. After aging for 5000 hr, no discernible

degradation in JSC was observed—and FF and VOC remained unchanged, consistent

with the data in Fig. 5.6d. However, between 5000 and 7300 hr a 3% JSC loss

was observed, with an additional 2% JSC loss and 3% relative FF loss between 7300

and 9000 hr leading to a total of 8% relative PCE loss after 9000 hr. The delayed

onset of degradation observed after 5000 hr suggests that the loss may be due to

extrinsic factors, such as permeation of O2 or H2O through the epoxy seal. [148] To

convert the lifetimes from these continuous aging experiments to outdoor lifetime

projections, we assume an average of 5 kWhr/m2 of sunlight per day (equivalent to

5 hr of equivalent AM1.5G radiation as discussed in §1.1.12). The data at 9000 hr
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Figure 5.7: XRD spectra of 200 nm thick blended organic films | Powder
x-ray spectra from 200 nm thick blended films of a) 3TPYMB:C60; b)
BP4mPy:C60; c) BPhen:C60; d) TPBi:C60; and e) TPBi:C70 before and
after aging for 1 week under 100 mW/cm2 simulated AM1.5G illumination
in N2. The spectra were offset from each other along the y-axis for clarity.
Partially adapted from Q. Burlingame et al. (2016); [81] the BP4mPy:C60

and TPBi:C60 data were not published previously.
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Figure 5.8: Lifetime of DBP:C70 OPVs with TPBi:C70 EF-CBLs | EQE spec-
tra of a DBP:C70 PMHJ OPV with a TPBi:C70 EF-CBL before and during
aging under 100 mW/cm2 of simulated AM1.5G illumination for 9000 hr.
Inset: JSC calculated by integrating the EQE spectra over AM1.5G vs.
time.

are therefore equivalent to 4.9 years outdoors. If package failure is indeed responsible

for the loss observed after 5000 hr, then the intrinsic lifetime of the cells is very long,

since the slope of performance loss prior to 5000 hr was nearly 0.

5.3.2 High temperature accelerated aging

As we have seen in §5.3.1, the morphological stability of the EF-CBL is predic-

tive of the the overall stability of the OPVs. Additionally, no intrinsic degradation

was observed in OPVs with TPBi:C70 EF-CBLs over 5000 hr, suggesting that their

morphology was totally stable under the conditions measured. To accelerate aging,

and to understand how morphological changes degrade PCE , populations of the most

and least stable OPVs (TPBi:C70 and BPhen:C60) were aged at elevated tempera-

tures under simulated AM1.5G illumination using the setup described in §3.2 and

§3.3. Due to the relatively low TG of BPhen (61◦C), BPhen:C60 devices were aged

at 50, 60, 70, and 80◦C while TPBi:C70 OPVs were aged at 55, 80, 105, and 130◦C

(the maximum temperature the aging apparatus could sustain). The elevated tem-

peratures produced no systematic changes in JSC or VOC, thus only the FF ’s of the
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two populations of devices are shown in Fig. 5.9. The FF of devices with BPhen:C60

show a clear trend with increasing temperature, which can be fit by a biexponential

function of the form:

FF (t) = α1 exp(−kfastt) + α2 exp(−kslowt) + β (5.3)

where α1, α2, and β are constants, and kfast and kslow are degradation rates that

follow the Arrhenius temperature relationship in Eq. 3.5. Remarkably, the OPVs

with TPBi:C70 EF-CBLs show no trend with aging temperature other than a rapid

annealing that occurs during the first 100 hr under test. Thus, even when operating

well above its measured TG, the low crystallization driving force (∆Gv) of TPBi

results in a stable morphology.

Figure 5.9: Thermally accelerated aging of OPVs | Normalized FF vs. time
for a population of PMHJ DBP:C70 OPVs with a) BPhen:C60 EF-CBLs
and b) TPBi:C70 EF-CBLs. Biexponential fits to the BPhen:C60 data are
shown in a. Data from Q. Burlingame et al. (2016). [81]
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5.3.3 Activation energies of thermally-induced degradation

Rearranging Eq. 3.5, the activation energy of the degradation rates, kfast and

kslow in this case, are equivalent to the slope:

EA = −∂ ln (kdeg)

∂
(

1
kBT

) . (5.4)

The temperature-dependent degradation rates are therefore plotted in Fig. 5.10, and

fit with Eq. 5.4. Interestingly, despite kfast being significantly larger than kslow, their

activation energies are almost identical: 0.56±0.06 eV and 0.53±0.13 eV, respectively.

This suggests that BPhen crystallization is degrading the FF in two decoupled ways.

Figure 5.10: Arrhenius plot of BPhen:C60 OPV degradation rates | Loga-
rithm of FF degradation rates extracted from the biexponential fits
shown in Fig. 5.9 vs. inverse thermal energy at the aging tempera-
ture for BPhen:C60 EF-CBL devices. Adapted from Q. Burlingame et
al. (2016). [81]

5.3.4 Dark current analysis

To understand the origin of FF degradation, device dark currents were mea-

sured after aging under illumination at elevated temperatures for 800 and 2500 hr
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for BPhen:C60 and TPBi:C70 EF-CBL devices, respectively, as shown in Fig. 5.11.

The magnitude of the dark current at < 0.8 V was considerably larger after aging in

BPhen:C60 EF-CBL OPVs, and as a function of aging temperature, while the dark

current of the TPBi:C70 OPVs aged at 130◦C was almost identical to the as-grown

J–V characteristics. Previously, we showed that BPhen crystallization could pene-

trate into the active layer of OPVs, carrying metal from the cathode. [87] This process

is also likely responsible for the significant temperature-dependent decrease in shunt

resistance, RSH , with time—evident from the dark current increase in OPVs with

BPhen:C60 EF-CBL layers.

In quadrant IV of the J–V characteristics, the increase in dark current counter-

acts the photocurrent, shifting the curve toward the origin, thus reducing FF and

PCE . Interestingly, the increase in the dark current magnitude is not symmetric

about V = 0 as would be expected if it were only due to a decreasing RSH . The J–V

characteristics in this region also depend strongly on charge recombination [149] which

can be quantified by the diode ideality factor, m, from Eq. 1.27. To disentangle

the factors degrading FF , we split the dark current contribution to the J–V char-

Figure 5.11: Dark currents of OPVs aged at high temperature | Dark cur-
rent density vs. voltage for OPVs with a) BPhen:C60 EF-CBLs and
b) TPBi:C70 EF-CBLs before and after aging under simulated 1-sun
illumination at the elevated temperatures noted for 800 and 2500 hr
respectively. Adapted from Q. Burlingame et al. (2016). [81]
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acteristics into two components: JSH , which is symmetric about V = 0; and JREC ,

which is non-linear with voltage, presumably due to charge recombination. The first

component, JSH , is extracted from the illuminated J–V characteristics during aging

by extrapolating the current near 0V in weak reverse bias. The non-symmetric com-

ponent, JREC , is taken to be the difference between the total current and JSH at the

MPP voltage (Vp). Plotting these currents at Vp and normalizing them to JSC, as

shown in Fig. 5.12, allows us to directly see the impact on FF —e.g., a 1% increase

in JSH/JSC or JREC/JREC corresponds to a 1% loss in FF . Furthermore, we find

that JSH/JSC and JREC/JSC can be well fit at all temperatures with exponential or

biexponential functions using the rates kfast and kslow extracted from the fits in Fig.

5.9, as shown in Fig. 5.12. This confirms that thermally activated crystallization of

BPhen drives both a temperature-dependent shunting of the OPVs with aging and

an increased charge recombination, which degrades FF at different rates. These two

Figure 5.12: Shunt and recombination currents during OPV aging | a)
JSH/JSC and b) JREC/JSC extracted from the J–V characteristics under
illumination for OPVs with BPhen:C60 EF-CBLs aged at the temper-
atures indicated. The data are fit (lines) with biexponential functions
using the rates kfast and kslow extracted from fits to FF vs. time in Fig.
5.9. Adapted from Q. Burlingame et al. (2016). [81]
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processes account for a majority of the FF degradation observed in Fig. 5.9, with

an additional 5% to 9% (depending on aging temperature) FF loss coming from a

reduction in Vp during aging.

As can be seen from Fig. 5.12, the FF loss due to JREC is generally greater than

the loss due to shunting of the diode. It is therefore expected that the ideality factor

of the diodes, m, should change significantly as a function of aging. To determine m

experimentally, V oc can be plotted vs. the logarithm of JSC as a function of intensity,

as shown in Fig. 5.13. The slope of the curves using this method is proportional to

m, as follows:

∂VOC
∂ ln(JSC)

∝ mkBT

q
, (5.5)

The slope (and, therefore, m) of aged devices with BPhen:C60 EF-CBLs increases

dramatically over time, consistent with the observed increase in JREC and loss in

FF . The devices with TPBi:C70 EF-CBLs show almost no change despite aging at

significantly higher temperatures. In both populations of fresh devices, m = 2.06

Figure 5.13: Diode ideality factor extraction in aged OPVs | Intensity-
dependent VOC vs. ln(JSC) from 0.1 mW/cm2 to 100 mW/cm2 incident
simulated solar illumination for a) BPhen:C60 EF-CBL OPVs before
and after aging for 800 hr and b) TPBi:C70 EF-CBL OPVs before and
after aging for 2500 hr at the stated temperatures under 100 mW/cm2

simulated AM1.5G illumination.
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under 1 sun. After aging, m actually slightly decreased in TPBi:C70 EF-CBL OPVs,

while increasing to m = 2.33 − 2.61 in BPhen:C60 OPVs depending on the aging

temperature.

5.3.5 Outdoor aging measurements

The time-dependent performance characteristics of a population of four PMHJ

DBP:C70 OPVs with TPBi:C70 EF-CBLs placed outdoors in Sede Boqer, Israel (30◦51’

N, 34◦46’ E) are shown in Fig. 5.14. The devices were mounted on a fixed-angle (30◦,

Figure 5.14: Outdoor lifetime measurements of OPVs | Normalized photo-
voltaic operational parameters: a) responsivity = JSC/Pin; b) VOC; c)
FF ; and d) PCE vs. time for four PMHJ DBP:C70 OPVs with TPBi:C70

EF-CBLs aged outdoors for 120 hr. The catastrophic failure observed
after 100 days is due to failure of the encapsulation materials, and the
resultant photooxidation of the organic materials.
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as described in §3.2) from November 8th, 2015 to February 21st, 2016 (120 days),

and their J–V characteristics were measured twice per hour during times when the

solar irradiance exceeded 30 mW/cm2. Cell temperatures and solar irradiance were

monitored with a thermistor and calibrated Si photodiode, respectively, during the

measurement. Prior to catastrophic failure at day 106, no intrinsic degradation was

observed in their performance—consistent with their high stability under continuous

illumination. The catastrophic failure was a result of package failure and primarily

affected JSC (responsivity = JSC/Pin). Recall from §4.1, the photoactive materials

(DBP and C70) are both susceptible to photooxidation, as is TPBi, thus the organics

likely photobleached rapidly when exposed to atmosphere.

5.3.6 Unencapsulated cells with BP4mPy:C60 buffers

While extrinsic OPV stability is generally outside of the scope of this thesis, recall

from §4.1 that BP4mPy is an outlier among the materials studied in this work, as it

showed no change in FTIR spectra even aging under 1-sun simulated illumination in

atmosphere. As a result of BP4mPy’s inert nature, it may be a promising thin film

encapsulation material and may provide added resilience to atmospheric H2O and O2

that may permeate encapsulation materials during aging. A test of this concept is

shown in Fig. 5.15, where OPVs with the BP4mPy:C60 EF-CBLs were aged for one

month under 1-sun illumination in air with no encapsulation. After this test, the

devices retained 73% of their starting efficiency, which is better than or comparable

to the dark shelf life of many unencapsulated polymer OPVs. [104,150] The devices were

also significantly more stable than the OPVs with TPBi:C70 EF-CBLs aged outdoors

that lost more than 50% of their PCE within 10 days of package failure.
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Figure 5.15: Unencapsulated OPV stability with BP4mPy:C60 buffer layers
| a) J–V characteristics of a PMHJ DBP:C70 OPV with a BP4mPy:C60

EF-CBL before and after aging for 30 days under simulated 1-sun il-
lumination with no encapsulation. inset: Table of photovoltaic perfor-
mance metrics for the fresh (top row) and aged (bottom row) device.
b) Wavelength-dependent EQE at the same conditions. After aging,
the device had an intensity-dependent roll-off in EQE , as shown by the
inset: responsivity = JSC/Pin vs. Pin. The EQE spectra is taken at low
intensity, and the photovoltaic performance metrics are reported under
Pin =100 mW/cm2.

5.3.7 Design rules for morphological stability

In addition to demonstrating the most stable OPVs reported to date (PMHJ

DBP:C70 OPVs with TPBi:C70 EF-CBLs, this section suggests two general principles

that can be applied to an OPV materials system to enhance its morphological stabil-

ity. Blending organic materials can result in a morphology that is more stable than the

separate constituents, consistent with previous reports on OLEDs. [151,152] The pres-

ence of the fullerene in BPhen:C60 EF-CBLs, for example, disrupts the π-stacking of

BPhen molecules and limits their aggregation, which can rapidly degrade OPVs. [87]

Nevertheless, degradation is still observed in these devices as a result of thermally

activated BPhen morphological rearrangement, showing that blending alone is insuf-

ficient to ensure stability. To produce truly stable amorphous phases, TG and Tm

should be maximized, while ∆Gv is minimized for each of the constituents. These
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properties can be measured outside of devices using thermal and structural charac-

terization techniques, but can still be predictive of OPV stability as this work has

shown.

Among OPVs with morphologically unstable EF-CBLs, we find that FF is the

quantity that is most sensitive to degradation. Crystallization of the EF-CBL pro-

duced low resistance shunt pathways through the diodes, and caused a significant

increase in charge recombination. These degradation mechanisms were each ther-

mally activated with activation energies within error of each other, EA = 0.56± 0.06

eV and 0.53± 0.13 eV, confirming that they are caused by the same failure process.

Due to their thermal stability, elevated temperature was not found to be an effective

accelerated aging stressor for OPVs with TPBiC70 EF-CBLs, as no long-term change

in degradation rate was produced despite operating at up to 130◦C for 2500 hr. How-

ever, this makes DBP:C70 OPVs with TPBi:C70 EF-CBLs excellent model systems

for the study of OPV performance under extreme conditions such as high tempera-

tures and light intensities, which will be shown in Chapters VI and VII. The results

are promising for the future of OPV technology as they indicate that OPVs with

commercially viable lifetimes are possible with the appropriate selection of materials

and device architectures.
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CHAPTER VI

Outdoor operation of organic photovoltaic cells

The efficiency of an OPV varies as a function of temperature and intensity due to

the complex dependencies of bimolecular recombination, exciton dissociation, polaron

mobility, resistive power loss, electron–phonon coupling, and absorption on these vari-

ables. [129,130,149,153–157] These dependencies have direct practical ramifications for the

operation of OPVs outdoors, as cell temperatures and the intensity, angle, and spec-

trum of the incident sunlight vary dynamically throughout the day. Understanding

the diurnal performance of OPVs (i.e., how their performance changes throughout

the day) is therefore essential to evaluate their potential efficacy as a practical source

of electrical power. Such studies are common for inorganic photovoltaics [158,159] as

they have already been widely commercially deployed, while few studies exist for

polymer OPVs [118,153] and this work contains the only known report of the diurnal

behavior of small molecule OPVs. [130] The OPVs described in Chapter V of this work

are uniquely suited to such studies due to their remarkable tolerance to high tem-

perature, [81] which allows them to be studied across a broad range of intensities and

temperatures without irreversibly degrading.
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6.1 Diurnal performance characterization

To measure their diurnal performance, OPVs were placed oudoors in Sede Bo-

qer, Israel on a fixed angle platform. At the beginning of each each hour, the J–V

characteristics of the cells were measured five times and averaged to account for

fluctuations in solar irradiance. The temperature of the cell was measured with a

surface-mounted thermocouple and the incident solar intensity was measured with a

calibrated Si photodiode as described in §3.2. Diurnal performance data from a clear

sky day (November 8, 2015) are shown in Fig. 6.1. As expected, the solar irradi-

ance follows a cosine dependence as the angle of the sun progresses throughout the

day. The temperature of the cell increased until 1:00 pm, reaching a peak of 38◦C.

The photovoltaic efficiency parameters of the OPV, shown in Fig. 6.1b-c, were rela-

Figure 6.1: Diurnal OPV performance | a) Solar irradiance (left axis), OPV sur-
face temperature (right axis); b) responsivity = JSC/Pin (left axis), VOC

(right axis); c) FF (left axis), and PCE (right axis) measured outdoors
on a PMHJ DBP:C70 OPV cell with a TPBi:C70 EF-CBL from 9:00 am to
3:00 pm on November 8, 2015 in Sede Boqer Israel. From Q. Burlingame
et al. (2017). [130]
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tively stable throughout the day with responsivity and, thus, PCE increasing slightly

throughout the day. In the morning, the PCE of the OPV was 6.8± 0.3%, increasing

to a maximum of 7.7± 0.3% at 2:00 pm.

6.1.1 Intensity dependent performance

Intensity dependent performance of the OPVs was measured from 0.2-27 suns

indoors using the solar concentrating scheme described in §3.2, with the results shown

in Fig. 6.2. The J–V characteristics show a linear increase in JSC with intensity up to

∼ 20 suns, before rolling off. The VOC increases logarithmically, as shown by the fit

Figure 6.2: Intensity-dependent OPV performance | a) Select intensity-
dependent J–V characteristics for a DBP:C70 PMHJ OPV under con-
centrated solar illumination. b) JSC; c) VOC; d) FF (left axis); and PCE
(right axis) of the same cell as a function of incident irradiance. Adapted
from Q. Burlingame et al. (2017). [130]
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line in Fig. 6.2c, before rolling off at high intensities, while FF continuously decreases

as intensity increases—dominating the trend in PCE . As intensity increases, FF is

the first parameter to decrease due to resistive power losses that follow Ploss = I2R.

Considering the equivalent circuit for an OPV as was shown in Fig. 1.14, the voltage

drop over RS resulting from the photocurrent effectively forward biases the diode,

which becomes significant at high intensities. [160] If we assume RS = 1Ω (typical of

these devices), the photocurrent generated by the 0.11 cm2 OPV at 27 suns is nearly 30

mA, which creates a voltage drop of 30 mV over RS. As a result, the exponential turn-

on of the diode J–V appears to shift to the left in Fig. 6.2a. In addition, bimolecular

recombination scales as the square of intensity, [161] which eventually causes the roll-off

observed in JSC at high intensities. Finally, the deviation in VOC from its logarithmic

trend at high intensities may be a result of increased charge recombination, although

it is more likely due to heating during the high intensity measurements.

6.1.2 Temperature dependent performance

To measure their temperature dependence, OPVs were mounted on an automatic

two-axis solar tracking panel outdoors. A copper heat spreader and thermoelectric

heater/cooler were affixed to the back of the OPV, and its temperature was measured

at the surface. The J–V characteristics of the cell were measured at 1-2◦C intervals

from 15-140◦ near solar noon, when the incident irradiance and spectrum were near to

AM1.5G. Several representative quadrant IV J–V characteristics are plotted in Fig.

6.3a, and the photovoltaic performance parameters were extracted at all temperatures

and plotted in Figs. 6.3b-d. The photocurrent generated by the OPV increased

linearly, while VOC linearly decreased. Fill factor increases with temperature up to ∼

50◦c, before remaining flat until ∼ 100◦, and then decreasing at higher temperatures.

At T < 40◦C, the temperature-induced increases in JSC and FF outweigh the loss in

VOC, producing a slight positive slope of 0.02%/◦C. As the slope of FF (t) flattens
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Figure 6.3: Temperature dependent OPV performance | a) Temperature de-
pendent J–V characteristics for a DBP:C70 PMHJ OPV at the stated
temperatures. b) Responsivity=JSC/Pin; c) VOC; d) FF (left axis); and
PCE (right axis) of the same cell as a function of temperature. Adapted
from Q. Burlingame et al. (2017). [130]

out, temperature-induced VOC loss dominates PCE above 40◦ causing it to decrease

linearly at higher temperatures.

The measured linear decrease in VOC is consistent with theoretical expectations

from Eq. 1.33. The temperature-dependence of FF is primarily determined by the

resistance of the organic layers, which decreases with temperature as shown in §1.1.4.

By fitting the linear region of the forward bias J–V characteristics, we find that RS

decreases from 1.05 ± 0.04 Ω at T = 15◦C to 0.73 ± 0.03 Ω at T = 50◦C. However,

beyond T = 50◦C the change in RS is small (RS = 0.71 ± 0.03 Ω at T = 140◦C),

presumably since the contribution of the organic resistances becomes small compared
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to the contacts and interfaces. The FF therefore saturates beyond T = 50◦C, and

eventually decreases above 100◦C, possibly due to recombination.

6.2 Temperature dependent absorption broadening

While no known reports of temperature dependent EQE exist for OPVs, several

reports have shown that JSC increases with temperature in both polymer [129,153,162]

and small molecule cells [163], as shown in Fig. 6.3b. This has been attributed to

thermally activated mobility of polarons, which increases with temperature. [27,164] To

investigate this phenomena further, the EQE spectra of the OPV were measured as

a function of temperature as shown in Fig. 6.4a, and the ratio of these spectra to the

EQE at T = 30◦C are plotted in Fig. 6.4b. The spectra show a strong wavelength de-

pendence, suggesting that the increase in JSC with temperature comes from a change

in charge generation rather than an increase in charge mobility. [130] To confirm this,

the reflectance of the OPV was measured as a function of temperature using a beam

6◦ from normal incidence using a calibrated UV-vis spectrometer. Decreases in re-

flectance (due to increased absorption) are clearly observed at wavelengths where the

EQE spectra increased: λ = 540 nm, 590 nm, 700 nm, and > 800 nm—confirming

that charge generation is responsible for the temperature dependence of JSC.

6.2.1 Electron-phonon coupling

Previously, phonon-electron coupling has been shown to cause broadening and red-

shifting in the absorption of optical materials. [165–168] Spectral linewidth broadening

and the energy shift follow semi-empirical relationships based on the Bose-Einstein

distribution:

Γ(T ) = Γ0

(
1 +

2

exp(Θ/T )− 1

)
+ ΓHB (6.1)
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Figure 6.4: Temperature dependence of EQE spectra | a) Temperature depen-
dent EQE spectra for a DBP:C70 PMHJ OPV. b) Wavelength-dependent
ratio of the EQE at the stated temperature to the EQE at 30◦C. c)
Change in reflectance (∆R) of the OPV at the stated temperature com-
pared with its reflectance at 25◦C. Adapted from Q. Burlingame et al.
(2017). [130]

and

E(T ) = E0 − α
(

1 +
2

exp(Θ/T )− 1

)
(6.2)

where Γ(T ) is the spectral linewidth, E(T ) is the energy of the absorption peak,

ΓHB is the absorption linewidth due to homogeneous broadening and configurational

disorder, E0 is the peak position at T = 0K, Θ is the average phonon temperature,

and Γ0 and α are constants related to the strength of electron-phonon coupling. The

low-energy tail of the EQE spectra can be closely fit using a sum of three Gaussians

(two for monomer absorption, and one for absorption of the DBP:C70 CT state), as

shown in Fig. 6.5a for T = 30◦C, from which the FWHMs and peak energies were
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Figure 6.5: Electron-phonon coupling EQE model fits | a) EQE spectra vs.
energy at 30◦C fitted with a sum of three gaussians: two for monomeric
DBP or C70 absorption, and a CT state absorption gaussian (green). b)
FWHM and peak energy extracted from the Gaussians in a with fits to
Eqs. 6.2 and 6.1. From Q. Burlingame et al. (2017). [130]

extracted. Plotting these parameters as a function of temperature, as shown in Fig.

6.5b, we find that they qualitatively agree with fits to Eqs. 6.1 and 6.2, suggesting

that phonon-electron coupling is indeed responsible for the temperature dependent

increase in JSC. We note however, that E(T ) and Γ(T ) are expected to be nearly

linear with temperature at the temperature range explored here, [167,168] thus the high

quality of the fits is suggestive of phonon-electron coupling, but not conclusive.

6.2.2 Implications for practical operation

Overall, we find that the diurnal dependence of the OPVs is an aggregate effect of

their intensity and temperature dependence. The FF and VOC have opposing depen-

dencies on temperature and intensity, i.e., FF decreases with intensity and increases

with temperature below T = 50◦C, while VOC decreases with temperature and in-

creases with intensity. Over the course of the day, cell temperature follows a similar

shape to the irradiance in Fig. 6.1a, thus the effects of intensity and temperature

counteract each other, and FF and VOC are flat. The slight increase in responsiv-

ity throughout the day leads to a maximum PCE at 2:00 pm, which is unexpected
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since responsivity should decrease past solar noon as the cell cools. This unexplained

increase at dusk may therefore be due to the change in solar spectrum as the sun

sets. [169] The intensity and temperature dependencies of the OPVs studied are ideal

for outdoor operation, since PCE is maximized near 40◦C at intensities slightly below

100 mW/cm2 intensity—identical to the measured outdoor operating conditions.
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CHAPTER VII

Accelerated aging of organic photovoltaic cells

under high intensity illumination

As discussed in §3.3, accelerated aging methods are critical for the assessment

of device operational lifetimes on a practical timescale, particularly for devices such

as the PMHJ DBP:C70 OPVs described in Chapters V and VI, which show little

or no degradation after > 1 year of continuous aging. As Chapter V showed, tem-

perature was ineffective in accelerating the degradation of these OPVs, due to the

morphological stability of the active layers and TPBi:C70 EF-CBL. In this chapter,

we employ high intensity illumination from two sources to accelerate the degradation

of OPVs: concentrated solar illumination and high intensity white light LEDs. In

general, decoupling the impact of light intensity and temperature on degradation can

be a challenge. [127] However, in the devices studied here, their remarkable thermal

stability ensures that the irreversible performance degradation observed is purely a

result of high intensity light.

7.1 Concentrated solar aging

Encapsulated 54 nm DBP:C70 1:8 HJs and OPVs were exposed to concentrated

solar illumination in Sede Boqer, Israel, using the two-axis solar tracking panel, solar
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concentrator, and thermoelectric cooling stage described in §3.3. The calibrated J–V

characteristics of the OPV under AM1.5G simulated illumination were measured

before and after aging for 5 hr under 100 suns of equivalent intensity and are shown in

Fig. 7.1a. The VOC showed no change, while JSC decreased by 2% and FF degraded

by 5%. The EQE spectra of the cell were also measured before and after this test,

as shown in Fig. 7.1b (right axis). A small loss was observed across all wavelengths

corresponding to a 2% decrease in JSC calculated from the EQE spectrum using Eq.

1.31. The absorbance of the 54 nm DBPC70 1:8 HJ thin-film showed no change after

aging, as shown in Fig. 7.1b (left axis), suggesting that the loss in JSC is a result

of decreased charge extraction rather than charge generation. A decreased charge

extraction efficiency is consistent with the 5% loss in FF that was also observed.

Figure 7.1: 100-sun concentrated solar OPV aging | a) J–V characteristics of a
PMHJ DBP:C70 OPV under 100 mW/cm2 simulated AM1.5G illumina-
tion before and after aging for 5 hr under 100 suns of concentrated solar
illumination. b) Optical absorbance (left-axis) of a 54 nm DBP:C70 1:8
thin film aged under the same condition as a, and EQE (right axis) of the
device in a before and after aging. From Q. Burlingame et al. (2016). [81]

7.2 Aging under high intensity white light emitting diodes

Several populations of PMHJ DBP:C70 OPVs with TPBi:C70 EF-CBLs were aged

under high intensity illumination from LEDs while being water cooled as described
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in §3.3. The first population of devices was tested at several intensities, with devices

under two different electrical load conditions: open-circuit, and in series/parallel with

a 100 Ω resistor to bias the OPV near the MPP. The results of these experiments

showed no difference in degradation rate between electrical load conditions, thus going

forward all devices were aged at VOC. In addition, two undesired degradation modes

were observed during aging: the epoxy seal around the periphery of the encapsulated

OPV became over-exposed—yellowing with time and, between measurements at 20

days and 50 days, the encapsulation of all devices failed catastrophically. The data

shown in this chapter were therefore taken more densely during early times when

rapid changes were observed, but still maintained a reasonably close spacing (3 days

between points) during longer times to monitor for catastrophic failure. Additionally,

the epoxy was covered with a reflective Al foil during aging to protect it from the

high intensity illumination, and to ensure that all degradation was confined to the

OPV itself.

The OPVs were aged under equivalent solar intensities of 9.5 ± 1.4, 20 ± 3.0,

and 37 ± 5.5 suns and periodically removed from the aging setup for measurement.

The photovoltaic performance parameters for devices at each intensity were measured

under simulated AM1.5G illumination after light soaking intervals and averaged as

shown in Fig. 7.2. All devices showed a PCE drop of 2−4% within the first 100 hr of

aging depending on the intensity. The majority of the total degradation occurred in

JSC and FF , with FF accounting for a majority of the loss at t > 100 hr. Nevertheless,

all of the devices maintained > 87% of their initial PCE after 1056 hr (44 days)

of testing. If we assume an average of 5 kWhr/m2 of sunlight per day (e.g., 5 hr

of equivalent AM1.5G radiation), the 1056 hr of testing at 9.5, 20, and 37 suns

corresponds to 5.5, 11.6, and 21.4 years outdoors respectively. Each PCE vs. time
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Figure 7.2: Accelerated OPV aging with high intensity LEDs | Normalized a)
PCE , b) JSC, c) VOC, and d) FF vs. aging time under 9.5, 20, and 37
suns of equivalent illumination from white LEDs. The PCE data are each
fit with a stretched exponential function. The inset in a shows the PCE
of an OPV aged for 117 hr under 20 suns of equivalent UV radiation.

curve was fit to a stretched exponential function with the form:

PCE(t) = P0 exp

[(
− t
τ

)β]
, (7.1)

as shown in Fig. 7.2a. A potential flaw with the white LED accelerated aging

experiments is the lack of UV radiation in their spectra. To test the UV stability

of the OPVs, a device was placed under 20 suns of equivalent UV illumination and

periodically measured as shown in the inset of Fig. 7.2. No degradation was observed

over the 117 hr duration of the experiment, equivalent to the UV dose an OPV would

experience after 1.3 years outdoors.

7.2.1 Extrapolated lifetimes and acceleration factor

The implicit goal of accelerated aging is to reliably predict the lifetime of a device

under its intended operation conditions and to understand its active degradation

modes. To determine the acceleration factor of the devices tested here, we employ

Eq. 3.6. As discussed in Chapter V, temperature did not noticably accelerate aging,
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thus we ignore the thermally activated term, leaving only:

γ =
kacc
kref

=

(
Iacc
Iref

)ξ
. (7.2)

The high intensity degradation rate, kacc, is taken from the stretched exponential

PCE fits to be 1/T80. The exponential factor ξ can then be determined by fitting

1/T80 vs. intensity to a simplified function:

1

T80
= AIξacc, (7.3)

as shown in Fig. 7.3. Here A is a fitted parameter equal to kref/I
ξ
ref . Due to the

significant error on the intensity dependent T80 fits, both ξ = 1 and ξ = 2 are within

the fitting bounds, making it difficult to precisely determine the acceleration factor.

This can also be seen from Fig. 7.4, where the PCE data from all intensities are

plotted on a time × intensity x-axis and a time × intensity2 x-axis, corresponding to

ξ = 1 and ξ = 2, respectively. The fact that both plots appear to reasonably represent

the trend in the data, and can be well fit with a stretched exponential, is consistent

Figure 7.3: High intensity aging acceleration factor | 1/T80 extracted from the
stretched exponential fits to PCE vs. time in Fig. 7.2a vs. intensity.
Best fits to Eq. 7.3 with ξ = 1 and ξ = 2 are shown.
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Figure 7.4: Extrapolated OPV lifetimes from high intensity aging | a) Irradi-
ation dose (defined as the product of time on test in hr and test intensity
(Φ in suns) vs. normalized PCE and b) intensity2 × time vs. normalized
PCE under 9.5, 20, or 37 suns of equivalent illumination from white LEDs
with stretched exponential fits.

with the lack of a well-defined acceleration factor. To extrapolate the lower-bound

of lifetime under 1-sun intensity, we therefore assume ξ = 1, and extrpolate T80 from

the stretched exponential fit in Fig. 7.4a. Even this lower bound produces a T80

equivalent to 54± 14 years outdoors, assuming 5 hr of AM1.5G illumination per day,

which far exceeds the longest reported OPV lifetimes to date.

7.2.2 Wavelength-dependent losses

In addition to the illuminated J–V characteristics, the EQE of the OPV were

measured after each aging interval. The spectra after 44 days of aging are plotted in

Fig. 7.5a, along with the change in EQE compared to the as-grown device (inset).

As we can see, the EQE trend has a strong spectral dependence, degrading more

at longer wavelengths and increasing slightly at λ < 450 nm. The direct CT state

absorption feature (beyond λ = 700 nm) is the most strongly affected region of the

spectrum, though its contribution to JSC is small. Encapsulated 50 nm thin films of

C70, DBP, and a DBP:C70 1:8 blend were also aged for 48 hr under 37 suns on quartz.

Transmission of the C70 and DBP films remained within 0.5% of their starting values
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Figure 7.5: EQE and absorption loss after high intensity aging | a) EQE
spectra of DBP:C70 OPVs before and after aging for 44 days under the
stated equivalent solar intensity. Inset: percentage change in EQE com-
pared to the as-grown result. b) Transmission difference spectra of 50 nm
thin films of DBP, C70, and DBP:C70 1:8 on quartz before and after aging
for 48 hr at 37 suns. c) Transmission difference spectra of ITO-coated
substrates with 10 nm of MoO3 aged under 9.5, 20, and 37 suns equivalent
intensity for 48 hr.

across the visible spectrum, as shown in Fig. 7.5b, which is below the 1% resolution of

the spectrometer. The DBP:C70 HJ thin film showed slightly increased transmission,

mirroring the EQE loss observed in Fig. 7.5a. While the proximate cause of this

absorption loss is not known, AFM micrographs on the films showed that the root-

mean-square (RMS) roughness of the aged DBP:C70 HJ film was slightly increased

after aging (0.8 nm to 1.3 nm), suggesting that morphology shifted slightly. A change

in DBP:C70 interface area could account for part of the observed loss. However, the

124



change in absorption is significantly smaller than the change in EQE in this region. In

addition to the change in absorption of the OPV photoactive materials, the absorption

of the anode contact materials (ITO and MoO3) changed significantly after aging for

48 hr at high intensity as shown in Fig. 7.5c. The MoO3 appears to be particularly

susceptible to degradation, consistent with previous observations by H. Zhang et al.

(2014). [122] The spectral shape of the transmission change is reflected in the EQE

spectrum, producing the EQE loss at long wavelengths and EQE increase at short

wavelengths. Interestingly, the losses observed in these inorganic anode materials is

significantly larger than the change in transmission of the organics.

7.2.3 Charge extraction efficiency

Applying reverse bias to an OPV assists in charge extraction by reducing the

residence time of charges within the device, and liberating charges from shallow traps.

However, this effect diminishes with the application of larger voltage since only a

certain number of charges are photogenerated, eventually saturating at Jphoto,sat. The

voltage-dependent photocurrent of an OPV can therefore be used to determine its

Jphoto,sat and therefore its charge extraction efficiency at JSC, by taking the ratio of

Jphoto(V = 0) to Jphoto,sat. Since the OPVs in this work have relatively thin organic

active layers (< 100 nm), we found that they can be easily damaged at sufficiently

large reverse bias (∼ 2 − 3 V). Since the OPVs were intended to be tested many

times over a period of months, their photocurrent generation was only measured to

-1.5 V reverse bias to avoid damage, and an exponential fitting function was used to

determine their Jphoto,sat:

Jphoto(V ) = Jphoto,sat + c1 exp(V/c2), (7.4)
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where c1 and c2 are constants. Voltage-dependent photocurrent was measured on

each device in response to chopped 500 nm illumination using a current amplifier and

lock-in amplifier between high intensity aging periods. Data from an as-grown cell

and an OPV after aging for 44 days at high intensity are shown in Fig. 7.6a. The

data from all aging times and intensities were fit to Eq. 7.4 to calculate the charge

extraction efficiency at JSC as shown in Fig. 7.6b. This voltage-dependent loss in

charge extraction efficiency produces a JSC loss, and an even more severe FF loss, as

the slope of the J–V curves is increasing with time despite the dark RSH remaining

almost constant.

Figure 7.6: Reverse bias photocurrent generation of aged OPVs | a) Voltage-
dependent photocurrent scans on OPVs aged for 20 days at 9.5, 20, and
37 suns equivalent intensity. All photocurrents were normalized to their
value at V = 0. b) Charge extraction efficiencies as a function of time
calculated from the voltage-dependent photocurrent spectra using Eq.
7.4.

The theoretical JSC loss due to the change in ITO/MoO3 transmission and OPV

charge extraction efficiency was simulated as shown in Fig. 7.7. This prediction

follows the measured trend in JSC within error, suggesting that these two mechanisms

account for a significant majority of the total loss.
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Figure 7.7: Predicted JSC loss vs. time | Measured trend in JSC compared to the
predicted loss in JSC resulting from the change in ITO/MoO3 transmission
and decrease in charge extraction efficiency vs. time.

7.2.4 Charge-transfer state characterization

The donor-acceptor CT state plays a critical role across many facets of OPV

operation, as it typically mediates charge generation from excitons, bimolecular re-

combination, and can directly absorb and emit photons. In an OPV, CT states can

be lost via three mechanisms: dissociation into free charge (with rate, kdiss), radia-

tive recombination (with a rate, krad), and non-radiative recombination (with a rate,

kNR). The efficiency of CT state dissociation, ηdiss from Eq. 1.20, should be as high

as possible for efficient OPV operation, and can be expressed as a function of the

rates above:

ηdiss =
kdiss

kdiss + krad + kNR
. (7.5)

When operating near open circuit, electrons and holes are forced to recombine—

primarily through the CT state. The relationship between radiative and non-radiative

recombination can therefore be quantified by measuring electroluminescence quantum

efficiency (ηEL), defined as the number of photons emitted per charge injected into

the device. Between high intensity aging periods, the EL spectra were collected from

all OPVs in response to a forward bias current density of 4 mA/cm2. The spectra
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for OPVs aged at 9.5, 20, and 37 suns were normalized to the intensity of the as-

grown EL, and are plotted in Fig. 7.8a-c. The peak heights were extracted from

these spectra and are plotted as functions of time in Fig. 7.8d. The data show an

intensity-dependent burn-in period that saturates within 1-2 days, before stabilizing

to a slower degradation rate over the remainder of the 44 day measurement. Only

emission from the DBP:C70 CT state is observed, [170] and the shape of the spectra

are identical regardless of the aging time. This suggests that the emissive species

is unchanged with time, while non-radiative recombination competes more favorably

with CT emission as the devices age. The emission from the CT states was very dim

Figure 7.8: CT state EL spectra vs. time | EL spectra collected from DBP:C70 CT
state emission in response to 4 mA/cm2 forward-bias current as a function
of aging under a) 9.5 suns, b) 20 suns, and c) 37 suns. The spectra are
normalized to the peak intensity of the as-grown EL spectrum. d) Peak
heights extracted from these spectra as a function of time.
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with an ηEL of 7× 10−4% in the fresh device.

Despite losing> 40% of their starting EL intensity, the VOC of the OPVs (as shown

in Fig. 7.2) was comparatively stable. From the principal of detailed balance, a solar

cell operating at open circuit must radiate a power equivalent to what it absorbs in

equilibrium. Since the voltage of a cell increases with its charge density, solar cells

that build up a large steady-state charge density before reaching equilibrium will

produce a larger VOC. The upper limit of the time required to reach this equilibrium

is set by the intrinsic radiative lifetime of each material system, except in cases where

photons can be trapped in the device and recycled. [171,172] Any recombination which

occurs in addition to intrinsic radiative decay reduces the equilibrium charge density

at open circuit and therefore reduces VOC. As a result, it has been shown many times

both in theory and practice that VOC is approximately proportional to ln(ηEL). [171–175]

Here, we quantify the expected change in VOC due to the change in ηEL using the

equation:

∆VOC(t) =
kBT

q
A ln

(
ηEL(t = 0)

ηEL(t)

)
, (7.6)

where A is a fitting prefactor related to JSC, the injection current at the measurement

condition, and the equilibrium charge density generated in the OPV from black body

absorption. The ∆VOC using this approach and the measured ∆VOC are plotted in

Fig. 7.9, with A = 0.41. While the overall change in VOC with time is very small

(< 20 mV at all intensities), its trend is closely matched by this analysis, confirming

that increased non-radiative recombination is likely responsible.

7.2.5 Probes of chemical degradation

As we observed in Fig. 7.5b, the transmission spectra of DBP and C70 films

are stable after high intensity aging. However, such measurements are ineffective at

resolving chemical changes that affect < 1% of molecules in the film. To look with

higher sensitivity, we employ two additional techniques to evaluate 50 nm thin films on
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Figure 7.9: VOC degradation under high intensity | Measured change in VOC as
a function of time compared to its predicted value from the change in ηEL
using Eq. 7.6.

quartz after high intensity aging: photoluminescence (PL) lifetime measurements and

LDI-TOF mass spectrometry, as shown in Fig. 7.10. Time-resolved PL measurements

were performed using a time-correlated single photon counter coupled to a Si single

photon avalanche detector. The excitation wavelength was 500 nm, applied in 150 fs

pulses with a 1 kHz repetition rate from a Ti:sapphire laser pumped optical parametric

amplifier (OPA). Light from the laser was blocked from the detector with a 550 nm

long-pass filter. The PL lifetime of C70 was 413 ± 6 ps and showed no change after

aging as shown in Fig. 7.10a, while the lifetime of DBP PL emission decreased

significantly from 893 ± 8 to 599 ± 6 ps. The chemical origins of this PL lifetime

decrease are clear from the mass spectra shown in Fig. 7.10b, where a significant

increase in peak heights at 727 m/z and 649 m/z was observed relative to the DBP

monomer peak at 805 m/z. These peaks correspond to the mass of DBP with 1 or

2 of its peripheral phenyl groups removed. No changes were observed in the mass

spectra of the C70 film, consistent with its unchanged PL lifetime.
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Figure 7.10: Aged film transient PL and mass spectrometry | a) Transient PL
from 50 nm films of DBP and C70 on quartz after aging for 48 hr at
37 suns of equivalent intensity from white LEDs. b) Normalized mass
spectra from a DBP thin film before and after aging under the same
conditions. Inset: chemical structure of DBP.

7.2.6 Transient DBP:C70 photoluminescence

Transient PL spectra were also collected from CT emission from an aged DBP:C70

1:8 HJ film, using the same setup described above. Due to the weak emission of the

CT state, the signal was integrated for > 3 hr and plotted for the fresh and aged

film as shown in Fig. 7.11. While the signal is noisy, no change was observed in PL

lifetime. Thus blending DBP into C70 either reduces its tendency to photochemically

degrade, or the degraded DBP fragments do not affect the lifetime of CT states.

7.2.7 Summary of high intensity aging

The high intensity aging results in this chapter show the remarkable potential of

OPVs to be a highly reliable source of electricity after optimization with the right

chemicals and device architecture. Indeed, the least stable component of the PMHJ

DBP:C70 OPVs with TPBi:C70 EF-CBLs explored here were the inorganic anode

materials: ITO and MoO3.

Unlike temperature in Chapter V, intensity was found to be effective at acceler-

ating OPV degradation. Both JSC and VOC decreased monotonically with intensity,
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Figure 7.11: Transient PL from aged HJ films | CT state transient PL collected
from a 50 nm DBP:C70 thin film aged for 48 hr under 37 suns on quartz.

which was due to a combination of decreased charge extraction efficiency, parasitic

absorption of the anode materials, and increased non-radiative recombination as ev-

idenced by the decrease in electroluminescence with time. The FF was primarily

responsible for long-term degradation, as charge extraction became increasingly volt-

age dependent with time due to the increase in recombination. The acceleration factor

of degradation could not be precisely resolved due to the spread of the data, thus to

extrapolate lifetime we employed the most conservative approach with ξ = 1 in Eq.

7.2. The T80 from this analysis was found to be 54± 14 years, by far the longest re-

ported for any OPV. However, unlike some reports, [176] the measured data here cover

a significant range of the extrapolation (nearly 1/2), since aging continuously for 44

days at 37 suns gives a photon dose equivalent to what an OPV would absorb in 21.4

years outdoors. The fact that OPVs aged under such conditions retain nearly 90%

of their initial PCE , suggests that this extrapolation of intrinsic lifetime is indeed

reliable.
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CHAPTER VIII

Outlook for highly stable organic photovoltaic cells

and future work

Table 8.1 shows the number of publications utilizing several small molecule pho-

toactive materials and HJ architectures since 2005. As we can see, a number of trends

are present: Pc-based donors are being gradually replaced with novel donor materi-

als; C70, PC71BM, and NFAs are increasingly dominating over C60 and PC61BM; and

blended HJs have become increasingly popular over planar HJs. Not shown in Table

8.1 are the results from polymer OPVs with solution-processed NFAs, which have gar-

nered perhaps the most attention from the OPV lifetime community over the past 2-3

years. In general, though, the real driver of trends in OPV material and architecture

choices is efficiency. Each of the trends listed above also correlates with improved

efficiency. This is an encouraging sign for the viability of OPVs, as there appears

to be a generally positive correlation between efficiency and reliability. However, the

PCE gap between the most efficient OPVs (PCE > 15%) and OPVs with a published

lifetime (PCE = 7 − 8%) has never been larger. Reports of device lifetime seem to

lag several months or years behind the publication of a new device architecture with

improved efficiency. Given that literature reports have demonstrated that OPVs are

capable of commercially-viable efficiencies [3,4] and semi-transparent performance, [12]

and that this thesis has established the potential for OPVs to be extremely robust—
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Table 8.1: Trends in the small molecule OPV literature | Number of pub-
lished results utilizing various monomeric materials and HJ architec-
tures. [41,81,84,87,89–96,98–100,102,103,111,115,140–142,177–184] Compiled from Clari-
vate Analytics Web of Science in September, 2018, using the search terms:
“Organic photovoltaic small molecule,” and “reliability,” “stability,” “life-
time,” or “degradation,” References that included data or references to
shelf-life, thermal aging, or illuminated aging of OPV devices were in-
cluded. Data from unique material systems that were included in the
same reference are counted individually. *S.P.=solution-processed.

Publication Year (20xx)

‘05 - - - - ‘10 - - - - ‘15 - - ‘18

Donor CuPc 1 1 1 3 2 1 2 1

ZnPc 1 1 2 2 1 1

SubPc 1 1 2 3

Other Pc 1 2

S.P.* 1 2 5 6 2

DTDCPB 1

cHBC 2

DBP 1 1 1

Acceptor C60 1 1 1 1 4 3 3 1 6 4 1 1

C70 1 1 2 3 1 1 1

PC61BM 1 4 2

PC71BM 1 2 4 4 2

NFA 1 1

cHBC 1 1

HJ Arch. Planar 1 1 1 4 1 2 1 4 3 1 2

Mixed 1 3 1 1 5 5 6 7 3

Tandem 1

closing the efficiency-stability gap is the key to the commercialization of OPVs. This

chapter will discuss the design considerations that have led to the observed increase
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in OPV lifetimes, and how these may be integrated into high efficiency devices. In

addition, this chapter will speculate about the potential lifetime of novel materials

and architectures, and propose future work that has not yet been addressed by the

OPV community.

8.1 General design principles for stability

As Chapters IV, V, and VII have shown, the photochemical and morphological

stabilities of the materials that comprise OPVs play a critical role in determining

device reliability. Surprisingly, the data from Appendix A (summarized in Table 4.1)

indicate that most thermally-evaporated small molecule films are stable under con-

tinuous solar illumination within the ∼ 1% resolution of FTIR and optical absorption

measurements. Morphological stability is much more variant, with some (e.g., TPBi

and BP4mPy) demonstrating high stability, and others (e.g., BPhen, DTDCPB, and

DTDCTB) readily crystallizing under standard operating conditions. The most mor-

phologically stable molecules share particular traits, such as their bulky, non-planar

structure, and high transition temperatures (TG and Tm) that reduce π-stacking and

molecular motion in thin films. Blending of dissimilar materials also appears to

provide a substantial benefit to device stability—limiting the size of crystalline do-

main growth, and impeding molecular diffusion. [81,98] While each material must be

evaluated on a case-by-case basis, morphological and photochemical stability can be

assessed prior to device fabrication, and are predictive of operational stability.

Based on optical simulations, [18] the PMHJ DBP:C70 OPVs in this work absorb

approximately 30% of the incident solar power. A majority of this is absorbed by

the photoactive layers, with a small percentage absorbed by the contacts, transport

layers, and substrate. [130] Of the absorbed energy, only 22% is converted into usable

electricity; thus 78% is dissipated through other means, primarily through heat gen-

eration and re-radiation. Under 1-sun intensity, the excess energy amounts to 26
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mW/cm2 that can drive degradation. The key to extending OPV reliability there-

fore, is management of this excess energy and rapidly converting it into forms that are

non-destructive to the device. By far the most beneficial way to do this is by increas-

ing the PCE of the OPV, as this limits the excess energy available for degradation.

While there will always be excess energy converted to heat in an OPV, this can be

overcome through morphological stabilization of the organic materials as discussed

above.

The most potentially destructive form of energy is therefore “hot” excitations,

which can be generated by absorption of blue/UV photons, or through Auger annihi-

lation processes (e.g., exciton–exciton, polaron–polaron, or exciton–polaron). These

excitations can significantly exceed the requisite energy to break chemical bonds and

dissociate molecules, which will proceed with a rate: kdestructionNx, where kdestruction is

the rate at which high energy excitations cleave bonds, and Nx is the density of high

energy excitations. If such states are found to be a primary driver of OPV degrada-

tion, two strategies are available to limit their impact: reducing Nx by filtering high

energy light or rapidly quenching the excitations; and ensuring that non-destructive

relaxation pathways are available to compete favorably with kdestruction. Blended HJ

architectures are suited to this purpose, as they significantly reduce the lifetime of

excited states by quenching them through charge transfer processes. Another ap-

proach proposed by J. S. Lee et al. (2017) [185] for use in OLEDs is to mix a sacrificial

“manager” molecule into the active layer. The manager is designed to collect high

energy excitations and prevent them from dissociating materials in the active layer.

Finally, diluting the populations of excitons and charges over a larger area is also

beneficial. Thus, increasing active layer thicknesses, and utilizing multi-junction cells

can provide additional benefits to OPV lifetime.
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8.1.1 Diagnosing failure mechanisms

Fully characterizing OPV degradation requires understanding three distinct as-

pects: what component within the device is degrading and how; the energy source

driving the degradation; and how the underlying degradation process couples to de-

vice performance. As this thesis has shown, characterization of individual thin films

that comprise an OPV can help isolate weak points in the device. In addition to

these measurements, studying the wavelength-dependent EQE of the OPV as it ages

can be instructive. Degradation that disproportionately affects some wavelengths is

likely due to a loss in charge generation (e.g., absorption or exciton diffusion), and

may appear predominately where the acceptor or donor absorb, thus implicating that

element. Degradation that occurs equally across all wavelengths is more likely a re-

sult of decreased charge extraction, due perhaps to the appearance of charge traps

or interfacial energy barriers. Determining the energy source responsible for degra-

dation requires a series of controlled experiments that test the OPV’s stability under

different stressors, such as elevated temperatures, various electrical load conditions,

or light sources with different spectral content (e.g., with or without UV filtering).

The aging acceleration factor from Eq. 3.6 under high intensity can help to disen-

tangle the contributions of photons, excitons, and charges on device lifetime, with

photochemical processes accelerating linearly with photon flux and Auger processes

proceeding quadratically.

8.2 Outlook for next generation organic solar cells

Next generation non-transparent OPVs with > 20% PCE and semi-transparent

OPVs with high PCE and intense absorption in the UV and IR portions of the solar

spectrum are sure to appear within the next several years, given the rapid progress

in these areas over the past several years. Based on current trends in the technology,

137



series-connected multi-junction OPVs and semi-transparent, near-IR/UV absorbing

cells will almost surely be utilized toward these goals. This section will speculate on

the possible challenges each of these classes of device will face in terms of its stability,

and how these challenges might be overcome.

8.2.1 Multi-junctions

The fundamental nature of semiconductors absorbing light from a spectrally broad

source imposes a theoretical limit on the efficiency of a solar cell. This is because

photons below the energy gap cannot be absorbed, and photons absorbed with en-

ergies larger than the semiconductor’s energy gap will dissipate their excess energy

into phonons. For a given illuminant, there will therefore be a single ideal energy

gap to produce the best tradeoff between lost low-energy absorption and high-energy

thermalization. Using detailed balance, W. Shockley and H.J. Queisser (1960) [186]

calculated this limit for a blackbody illuminant with a CCT of 6000 K (similar to

that of the sun), finding a maximum PCE of 30% at EG = 1.1 eV. If instead, the

standard AM1.5G spectrum is used as the illuminant, a peak PCE of 33.16% can

be achieved at an energy gap of 1.34 eV, [187] which is typically referred to as the

Shockley-Queisser or SQ limit. For an OPV with an exciton binding energy and de-

creased free energy at the HJ, the SQ limit becomes 27% according to N.C. Giebink

et al. (2011). [188]

To overcome this fundamental limit, multiple junctions can make more efficient

use of photons in several spectral bands. For example, a tandem with two junctions

can absorb green/blue photons using a junction with an energy gap of 1.6 eV, and

can absorb red/near-IR photons in a second junction with an energy gap of 0.8 eV. In

this case, photons absorbed by the green/blue cell retain twice the energy that would

have thermalized otherwise if absorbed by the red/near-IR cell, while the red/near-IR

subcell significantly expands the absorption of the cell. Part of the appeal of organ-
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ics for solar cell applications is how readily they can be integrated into monolithic

multi-junction cells with series connections between subcells, allowing them to reduce

thermalization losses while maintaining a high optical absorption. When optimized,

each subcell generates the same photocurrent under illumination, and thus the effi-

ciency of the tandem is proportional to the sum of the voltages from each cell. As

was discussed in the previous section, spreading the charge and exciton populations

more broadly throughout an OPV and making more efficient use of absorbed energy

should provide a significant benefit to reliability.

To test this hypothesis, the lifetime of a series of subcells and multi-junction cells

were tested as shown in Fig. 8.1. The green-absorbing subcell was a modified PMHJ

DBP:C70 cell with the structure: 6 nm MoO3 / 30 nm DBP:C70 1:10 / 7 nm C70 / 10

nm TPBi:C70, and the red-absorbing cell had the structure: 10 nm MoO3 / 60 nm

DTDCTB:C60 / 6 nm TPBi:C70 / 2nm PTCBI. The lifetime of each of these subcells

was measured with a 100 nm Al cathode as shown in Fig. 8.1a-b, and tandem cells

were fabricated by growing the green-absorbing subcell directly on top of the red-

absorbing subcell with a 0.1 nm layer of Ag between them and a 100 nm Al cathode

on top as shown in Fig. 8.1c. The 3-junction cell shown in Fig. 8.1d used two

green-absorbing cells sandwiching a red-absorbing cell with a 100 nm Al cathode on

top and 0.1 nm Ag layers between each subcell. The green-absorbing DBP:C70 cell is

highly stable as discussed in Chapters V and VII, with the JSC loss coming entirely

from the spectral shift of the Xe lamp. The red-absorbing subcell is considerably

less stable, with all three paramaters degrading by 12-21% of their starting values

by 1500 hr. When integrating these subcells into the tandem and 3-junction OPVs,

the lifetime significantly improves. This suggests that multi-junction structures can

be employed (even with slightly unstable subcells) to stabilize their performance for

long-term operation.
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Figure 8.1: Tandem and 3-junction OPV lifetimes | Evolution of the normalized
photovoltaic characteristics: JSC, VOC, FF , and PCE as a function of
time under 100 mW/cm2 simulated AM1.5G illumination for a a) green-
absorbing DBPC70 subcell, b) red-absorbing DTDCTB:C60 subcell, c)
tandem cell employing one of each subcell, and textbfd) 3-junction OPV
with two green-absorbing cells sandwiching a red-absorbing cell.

8.2.2 Semi-transparent organic photovoltaic cells

Unlike conventional semiconductor solar cells, organic molecules are almost in-

finitely tunable, and can be made to absorb (and transmit) light in different portions

of the spectrum. One of the most promising applications for this unique property is

integration into windows that generate electrical power while remaining aesthetically

pleasing and semi-transparent. In terms of energy generation, the vertical orientation

of windows is a drawback, since (in the continental U.S.) the incidence angle of the

sun is around 65◦ in the winter and only around 18◦ in the summer when the solar
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flux is highest. This corresponds to a 9% − 69% incident power loss compared to a

panel oriented normal to the sun’s irradiance. In addition, adjacent structures and

trees can potentially shade vertical panels further reducing the flux they receive. A

significant portion of their power is therefore generated from diffuse light. However,

the reduced solar flux on vertical panels is potentially a beneficial property for device

lifetimes—particularly if the degradation is accelerated by high intensity, as was the

case for the OPVs shown in this thesis.

The near-infrared portion of the solar spectrum contains a large share of its pho-

tons, thus OPVs that only absorb wavelengths beyond 650 nm can still easily surpass

10% PCE , while remaining almost completely transparent to visible light. Prelimi-

nary results in our group on the lifetimes of such cells with solution-processed NFAs

have thus far been disappointing: typically T80 < 300 hr, as shown in Fig. 8.2. One

possible reason for this is the presence of thiophene (C4H4S) groups in the near-IR

absorbing active materials. The carbon–sulfur bond is relative weak compared to

carbon–carbon and carbon–hydrogen bonds, which may introduce photochemical in-

stability in these systems. Filtering out high energy light may be a partial solution to

Figure 8.2: Semi-transparent OPV lifetime | Evolution of the normalized photo-
voltaic characteristics: JSC, VOC, FF , and PCE for a solution-processed
semi-transparent OPV with polymer PCE-10 as the donor and NFA BT-
CIC as the acceptor.
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this problem, [48,105,176,189] but it is likely that further chemical modification will also

be required. Additionally, solution-processed small molecules are difficult to purify,

and thus likely introduce unintended impurities on the order of 0.01-1%, which may

also negatively impact lifetime. [190] Making thermally-evaporable, near-IR absorbing

molecules and eliminating sulfur would likely improve their stability, but this may be

a challenge as the molecules are typically quite large and have relatively low molecular

dissociation temperatures.

An alternative approach to near-IR absorbing semi-transparent cells is to generate

power from the near-UV portion of the solar spectrum. While there are far fewer

photons in this spectral region, each has a much higher energy that can produce

a large output voltage in devices. The molecules that absorb in this region can

also be made thermally-evaporable and almost entirely from hydrocarbons, which is

favorable for photochemical stability. Lifetime reports on near-UV absorbing OPVs

with contorted hexabenzocoronene (cHBC) derivative active regions show a strong

burn-in during the first 30 hr of illumination, where ∼ 27% of the initial efficiency

is lost before stabilizing. [41] However, those devices include a planar BCP cathode

buffer layer, which is likely to morphologically degrade over time as has been shown in

conventional non-transparent OPVs. [141] Semi-transparent, near-UV absorbing OPVs

may therefore offer a longer intrinsic lifetime compared to near-IR absorbing OPVs,

although their power output is limited by the low photon flux in the near-UV portion

of the solar spectrum. Semi-transparent, series-connected tandems that include both

near-IR and near-UV subcells are somewhat impractical, as the current mismatch is

extremely large.

8.3 Proposed future work

The core challenge remaining for OPV research is to unify high efficiency and high

reliability into a single device architecture and materials system. One approach to this
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challenge is to study and optimize the lifetime of existing OPVs with a high reported

efficiency. However, the impact of such studies beyond the particular materials system

used is difficult to gauge, as each material system and device architecture undergo a

unique combination of failure mechanisms. The primary aim of the work in Chapters

IV, V, and VII was to develop models, methodologies, and principles that can be

applied to an arbitrary materials system and inform the design of high stability OPVs.

The remainder of this chapter will propose several potential routes for the stabilization

of future OPV materials and devices.

8.3.1 Low free energy organic thin film growth

The primary causes of morphological degradation, as discussed in Chapter V,

are molecular mobility and a large free energy difference between the as-grown and

crystalline phases of a film. Consider a material with a TG that is comparable to the

operating temperature of an OPV. If grown into an amorphous film, and the driving

force, ∆Gv, is sufficiently large, then molecules will become mobile at temperatures

near TG and will reorient to minimize their potential energy. Other than changing the

material itself, or blending it with a dissimilar molecule, morphological rearrangement

of the amorphous film is inevitable. One possible solution to this problem is to grow

the initial film in a more stable semi-crystalline morphology. In 2015, B. Song et al. [87]

demonstrated that growth using organic vapor phase deposition (OVPD) produces

increased crystallinity in a co-deposited DBP:C70. In that work, the roughened active

layer was used to pin the morphology of a BPhen cathode buffer layer grown on top

of it. Given that DBP:C70 films appear to be morphologically stable even when

grown by VTE, no increase in active layer stability was noted in that work. However,

if this technique were applied to a different materials system that does suffer from

morphological instability (for example OPVs with DTDCTB or DTDCPB as the

donor), then the increased crystallinity of the HJ film could stabilize its long-term
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morphology. In principle, this method could be applied to any thermally-evaporable

materials system, and may allow for materials systems that would be impractical

from a reliability standpoint when grown by standard VTE to be sufficiently stable

when grown in a less unstable phase.

8.3.2 Morphological stabilization with a ternary element

Solution-processed ternary OPVs have recently produced some of the highest

recorded solar cell efficiencies, [47,48] which is often attributed to the morphological

benefit and tunability that the third element provides. [191] However, such results have

not yet been reported in vacuum-deposited OPVs, particularly with respect to their

lifetime. It may therefore be possible to add a third component to the photoactive HJ

of an OPV that contributes a small amount of photocurrent by acting as a 2nd donor

or acceptor, while favorably stabilizing the as-grown morphology of the blend. From

a morphological perspective, co-depositing a third element that is not photoactive yet

highly dissimilar to the existing donor and acceptor, may stabilize the morphology

of the blend without disrupting photogeneration and charge transfer, comparable to

what was observed in Chapter V when blending a fullerene into BPhen to form an

EF-CBL. The best candidates for this purpose are likely bulky molecules with a

highly stable amorphous phase such as BP4mPy.

8.3.3 Design of sterically hindered buffer materials

Where possible, chemical modification of particular chemicals in an OPV structure

may provide a significant benefit to reliability without significantly reducing perfor-

mance. One such modification is to develop molecules that are sterically inhibited

from crystallization. Such modifications may be difficult within the photoactive and

transport materials, as close coupling between nearest-neighbor molecules is essential

to high electrical conductivity. However, buffer layers, such as exciton blockers may
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be candidates for modification—particularly since several of these compounds have

been shown to have significant morphological instabilities. Here, we propose a de-

planarized exciton blocking molecule based on BPhen that includes two peripheral

fluorene (C13H10) groups, which will orient themselves perpendicular to the plane of

the backbone of the molecule. This proposed compound is called 9,9’-spirobifluorenyl-

bathophenanthroline (sF-BPhen), and is shown in Fig. 8.3 alongside BPhen. The

bulky structure of sF-BPhen should significantly impede its crystallization, leading

to a stabilized thin-film morphology compared to BPhen.

Figure 8.3: Proposed structure of 9,9’-spirobifluorenyl-BPhen | Chemical
structural formulae of BPhen, and a proposed modified version 9,9’-
spirobifluorenyl-BPhen (sF-BPhen) with two added fluorene groups to
deplanarize its structure and impede crystallization.

8.3.4 Reliable cold-weld bonded laminate encapsulation

While this dissertation has focused on the intrinsic failure of OPVs, robust pack-

aging is equally important for the long-term viability of OPV technology. Rigid

glass-glass packages sealed with epoxy can achieve the robustness required for OPV

encapsulation. However, the cost, weight, and inflexibility of these packages is not

compatible with the desired form factor of many OPVs applications that look to make

use of their light weight and flexibility. The ideal encapsulant is therefore flexible and

low cost, without sacrificing robustness. The most common proposed materials for

this application are multi-layer composite films, with alternating flexible polymer and
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thin inorganic barrier layers, such as SiNx. To join such a barrier layer to an OPV

module, direct lamination with a tacky adhesive could be used to align the substrate

and encapsulation film, as shown in Fig. 8.4. However, the edge seal using such a

barrier would have high water vapor transmission rate (WVTR). To seal the edge, a

thin layer of metal (such as Au) could be deposited around the periphery of both the

substrate and encapsulation film. Maintaining a clean interface between these mate-

rials, the cap and substrate could be bonded by passing the roll through a cold-weld

bonding press. [192] A cold-weld bond joins the two metal surfaces together as if they

were one continuous metal, under sufficent pressure, heat, and time. Such a bond

could provide an excellent hermetic seal to the edge of the OPV package.

Figure 8.4: Roll-to-roll encapsulation scheme | The barrier film (pre-coated with
an adhesive) is rolled and pressed into contact with the OPV module
substrate.
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APPENDIX A

FTIR spectra of aged organic thin films

Thin films of each of the organic compounds used in this work were aged for 1

week under the following conditions: in N2 in the dark; in air in the dark; in N2

under 100 mW/cm2 Xe arc lamp illumination; and in air under 100 mW/cm2 Xe arc

lamp illumination. In addition to these conditions, C60 thin films were aged under

1-sun in air through a PC window to filter out the UV portion of the Xe arc lamp

spectrum and in the dark in air on a hotplate at 65◦C. Infrared absorption spectra were

collected before and after aging as shown in Figs. A.1-A.13. The FTIR spectrometer

was purged with N2 during the measurement to limit the atmosphere O2, CO2, and

H2O. The spectra were manually baseline corrected after the measurement. The CO2

absorption band from ∼ 600 to ∼ 700 cm-1 is omitted from all spectra for clarity.

These results are also summarized in Table 4.1.
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Figure A.1: 3TPYMB FTIR spectra | FTIR absorption spectra of 100 nm
3TPYMB thin films before and after aging for 1 week at the stated
conditions.

Figure A.2: Alq3 FTIR spectra | FTIR absorption spectra of 100 nm Alq3 thin
films before and after aging for 1 week at the stated conditions.
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Figure A.3: BAlq FTIR spectra | FTIR absorption spectra of 100 nm BAlq thin
films before and after aging for 1 week at the stated conditions.

Figure A.4: BP4mPy FTIR spectra | FTIR absorption spectra of 100 nm BP4mPy
thin films before and after aging for 1 week at the stated conditions.
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Figure A.5: BPhen FTIR spectra | FTIR absorption spectra of 100 nm BPhen
thin films before and after aging for 1 week at the stated conditions.

Figure A.6: C60 FTIR spectra | FTIR absorption spectra of 100 nm C60 thin films
before and after aging for 1 week at the stated conditions.
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Figure A.7: C70 FTIR spectra | FTIR absorption spectra of 100 nm C70 thin films
before and after aging for 1 week at the stated conditions.

Figure A.8: DBP FTIR spectra | FTIR absorption spectra of 100 nm DBP thin
films before and after aging for 1 week at the stated conditions.
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Figure A.9: DTDCPB FTIR spectra | FTIR absorption spectra of 100 nm
DTDCPB thin films before and after aging for 1 week at the stated
conditions.

Figure A.10: DTDCTB FTIR spectra | FTIR absorption spectra of 100 nm
DTDCTB thin films before and after aging for 1 week at the stated
conditions.
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Figure A.11: PTCBI FTIR spectra | FTIR absorption spectra of 100 nm PTCBI
thin films before and after aging for 1 week at the stated conditions.

Figure A.12: SubPc FTIR spectra | FTIR absorption spectra of 100 nm SubPc
thin films before and after aging for 1 week at the stated conditions.
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Figure A.13: TPBi FTIR spectra | FTIR absorption spectra of 100 nm TPBi thin
films before and after aging for 1 week at the stated conditions.
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