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Abstract 

This dissertation helps to integrate bacteria into the broader field of ecology by investigating 

bacterial community composition and diversity as it relates to ecosystem function in 

microhabitats within freshwater systems of the Great Lakes Region. Here, I combine field- and 

laboratory-based measurements of observational data collected from three major types of lake 

ecosystems: inland lakes, a freshwater estuary (Muskegon Lake), and a Great Lake (Lake 

Michigan). First, to determine the primary controls on lake bacterial community composition, I 

assessed the influence of lake layer (i.e. stratification), lake productivity, and particle-association 

on the bacterial community across 11 inland lakes with varying productivity in Southwestern 

Michigan. I found that particle-association very strongly structures freshwater bacterial 

community composition. Second, I studied a freshwater estuarine lake, Muskegon Lake, which 

has a large spatio-temporal variation in bacterial heterotrophic productivity, to test whether there 

was an association between heterotrophic production and bacterial biodiversity (defined as the 

number of taxa and taxon abundance). I specifically focused on two co-occurring freshwater 

habitats that my first chapter showed to be populated by very distinct communities: particle-

associated and free-living. Positive biodiversity-heterotrophic productivity relationships were 

found only in particles. Third, I performed a genome-based analysis of free-living specialists, 

particle-associated bacterial specialists, and generalists to characterize the genomic architecture 

and genetic traits that are associated with adaptations to these specific habitats. The genomes of 

particle-associated specialist bacteria were about twice the size of the genomes of free-living 

specialists and generalists, which had streamlined genomes. Fourth, to identify the bacterial taxa 

driving heterotrophic productivity across the large set of lake samples, I found that high nucleic 

acid (i.e., HNA) functional groups identified by flow cytometry can serve as a proxy for 

freshwater bacterial heterotrophic productivity, whereas low nucleic acid (i.e., LNA) functional 

groups cannot. Then, I used a machine learning approach to identify bacterial taxa associated 

with HNA and LNA. This allowed me to identify the bacterial taxa, which were often members 
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of the Phylum Bacteroidetes, that are associated heterotrophic productivity. Finally, I 

investigated patterns of lake specificity and phylogenetic conservation of taxonomic groups. 

Throughout my dissertation, I found that there was very deep (Class to Phylum-level) 

phylogenetic conservation of which bacteria lived in which habitats, but not of what bacterial 

taxa contributed to HNA and LNA functional groups, and thus heterotrophic productivity. 

Positive biodiversity-heterotrophic productivity relationships only existed in particle-associated, 

and not free-living communities, and communities composed of more phylogenetically related 

organisms were more productive per-capita. These differences in biodiversity-ecosystem 

function relationships may in part be explained by particle-associated bacteria having larger 

genomes, higher nitrogen content, and more unique genes that provide the potential for niche 

complementarity. The taxa that drove HNA and LNA cell numbers, and by proxy heterotrophic 

productivity, were lake and time-specific and indicated that taxa could switch between the two 

functional groups. Overall, my dissertation elucidates the ecological and evolutionary effects of 

microhabitat structure on bacterial communities and genomes in natural systems. 
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Chapter I:  

Introduction 

 

Bacteria play a fundamental role in shaping the ecosystems of our planet. Due to the diversity of 

their metabolism, their large abundances, and the ubiquity of microbial cells across all 

ecosystems, microbes pump the global biogeochemical cycles of elements (Falkowski et al. 

2008) and influence the Earth’s climate (Singh et al. 2010). And yet, we still lack an 

understanding of many fundamental aspects of bacterial ecology.  

 

Over the last few decades, new sequencing technologies have opened up a window with novel 

views into the bacterial world. While initial research efforts were designed to answer basic 

questions, such as “who is there?” and “what are they doing?” (Figure 1.1A), basic community 

ecology relationships still remain poorly understood in bacterial systems. Therefore, there is a 

current focus in the fields of microbiology and ecology to more thoroughly integrate the two 

fields. There are many questions that remain to be answered in microbial community ecology, 

specifically by breaking down the community into different aspects (Figure 1.1B), such as 

abundance, diversity, and composition. For example, some important questions include: What 

are the effects of microbial abundance, diversity, and composition on function? What genomic 

characteristics allow bacteria to thrive in where they do? What are the environmental and 

ecological drivers to patterns of bacterial diversity? The work in this thesis helps to answer some 

of these questions. While there are many ways to approach these relevant questions, one of the 

initial steps is to determine the best ways to identify and measure bacterial taxa from the 

environment. 
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Methods to measure bacterial taxa  

Traditionally, bacteria were cultivated and physiologically characterized, or later on, used to 

perform molecular cloning, Sanger sequencing of the complete 16S rRNA gene, and placed into 

the tree of life. However, these approaches are impeded by the fact that most bacteria are 

currently unable to be cultured in the lab (Stewart 2012). Therefore, culture-independent 

techniques have been more commonly used recently to measure bacterial diversity in 

environmental samples. The most widespread approach is to perform DNA extraction of a 

sample and then do high-throughput sequencing of the 16S rRNA gene in a sample of interest 

where universal primers are used to amplify a section of a universal marker, the 16S rRNA gene, 

and more specifically (typically) the V4 hypervariable region (Kozich et al. 2013). Next, the 

sequences can be matched up with a database (e.g., the SILVA database (Quast et al. 2013a) or 

an ecosystem specific database (e.g., the freshwater bacterial database (Rohwer et al. 2017a)) 

and the taxonomy of the organism can be associated with the sequence. The major benefit of this 

method is that the relative abundance of each organism can be calculated assuming or using a 

copy number value of the 16S rRNA gene from a database (Stoddard et al. 2015). [The problem 

of correcting based on 16S rRNA gene copy is still debated as some show that it improves 

estimates of microbial diversity (Kembel et al. 2012) while others maintain that it is an 

unresolved issue (Louca et al. 2018).] Relative shifts of the same OTU across samples are 

however not influenced by this copy number variation.  

 

Beyond 16s rRNA copy number variation, there are other important drawbacks of this 

molecular-based approach. For example, the 16S rRNA gene is unable to resolve ecologically 

relevant units of taxonomy. This method also requires a relatively large sample, preservation in 

the field, DNA extraction in the lab, library preparation and sequencing, and data analysis. This 

leads to a relatively long turnaround time between sample collection and results. Alternative 

methods have instead applied single cell approaches to assess community diversity. This ranges 

from microscopic imaging, including the use of taxon-specific fluorescently-labeled DNA probes 

(Amann et al. 1990, Amann and Fuchs 2008) to methods combining such taxonomic 

identification with functional assays like nano-scale secondary ion mass spectrometry (i.e., 

NanoSIMS, Herrmann et al. 2007). While these methods provide a high-resolution view into 

bacterial community structure and function, which has important implications for scaling up 
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biogeochemical processes fueled by microbes (Popa et al. 2007, Dekas et al. 2009, 2016, Finzi-

Hart et al. 2009), these single-cell, microscopy-based methods are time consuming and have low-

throughput. Recently, another high-throughput single-cell based diversity assessment method has 

been developed using flow cytometry, a method that I use to define broad functional groups in 

Chapter V. This method uses flow cytometry measurements of several dimensions of 

phenotypic attributes of cells which are provided within minutes and require only 1 mL of 

sample. These data can then be processed through a pipeline that fits bivariate kernel density 

functions to phenotypic parameter combinations of an entire community (Props et al. 2016). This 

method has been shown to correlate with the 16S rRNA gene survey approaches mentioned 

above (Props et al. 2017a, 2017b) and can therefore be used as a quick method to measure 

microbial community diversity but not composition. 

 

Some methods have been developed to connect 16S rRNA gene-based taxa to ecological, 

functional or phylogenetically relevant information. Some examples include Oligotyping (Eren 

et al. 2013), PICRUSt (Langille et al. 2013), operational ecological units (Preheim et al. 2013), 

and ecotypes (Koeppel and Wu 2014). These methods (including the measure of phenotypic 

diversity) are essentially limited to measuring overall shifts in diversity and cannot directly 

connect to metabolic or functional meanings, like nanoSIMS. Therefore, to allow the assessment 

of how taxonomic and phenotypic diversity shifts translate into shifts in functional diversity, 

microbial ecologists are increasingly turning to whole genome-based (i.e., “genome centric”) 

approaches. This is inspired by both the difficulty of measuring traditional traits of bacteria in 

situ, and the relative ease to deeply sample the genomic makeup of natural communities. 

Therefore, microbial ecologists often use the method of metagenomics (and its derivatives 

metatranscriptomics (RNA), metaproteomics (protein), and metametabolomics (metabolites)) to 

look deeper into the genetic underpinnings of changes in microbial abundance and predict the 

metabolic potential of organisms in the environment. In metagenomics, all of the DNA from an 

environmental sample is extracted and then sequenced using high-throughput sequencing. Next, 

bioinformatic assembly tools piece these small DNA sequences into larger contiguous DNA 

sequences (i.e., “contigs”). The contigs are then clustered together to “bin” the samples into 

similar units based on tetra-nucleotide signatures and abundance measures (Alneberg et al. 2014, 

Wu et al. 2014, Kang et al. 2015, Laczny et al. 2015, Sczyrba et al. 2017). After quality control 
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(e.g., removal of bins that are composed of fragments originating from multiple populations), 

these bins can be considered as “metagenome assembled genomes” (a.k.a. MAGs). Importantly, 

a MAG is a population-level measure of a genome as each sequencing fragment likely originated 

from a different cell. A MAG thus reflects the average genome of a population, although it is 

often incomplete and can be contaminated by genomes from other populations. Thanks to recent 

developments in binning and curation tools (Eren et al. 2015, Parks et al. 2015, Olm et al. 2017, 

Sieber et al. 2018) the quality of bins can be more readily addressed and after appropriate quality 

filtering, a MAG can then be used for taxonomic and functional annotation of the organisms. 

Thus, MAGs can be used for more specific questions about why an organism lives where it was 

found and what its metabolic potential might be. This allows a further integration of a 

community diversity metric to ecologically relevant functions. 

 

Biodiversity impacts community function 

The number of species on our planet is dramatically decreasing (Thomas et al. 2004, Wake and 

Vredenburg 2008) and a major question in biology is: What is the impact of this reduction in 

species on ecosystem functioning (Loreau et al. 2001, Hooper et al. 2005)? In response to this 

question, there has been a large body of work in the field of biodiversity-ecosystem function 

(BEF) relationships. This research has found many trends showing that primary production 

increases as the number of unique plant species are added to a community (e.g., as plant species 

richness increases; Tilman et al. 2014, Grace et al. 2016, Liang et al. 2016, Emmett Duffy et al. 

2017). BEF relationships are generally positive and asymptotic. Therefore, biodiversity loss 

causes a small change in ecosystem function at first and then, at some tipping point, there is a 

dramatic decrease in function (Cardinale et al. 2012, Hooper et al. 2012, Tilman et al. 2014). 

Such trends have largely been observed in plant communities specifically focused on plant 

richness and plant biomass (used as a proxy for primary production) as the ecosystem function of 

interest. However, studies in other systems have shown a positive diversity-function relationship 

(Hillebrand and Cardinale 2004, Tylianakis et al. 2008, Duffy et al. 2016, Zeppilli et al. 2016) 

indicating that this trend extends across many ecosystem types. 
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Bacterial biodiversity 

“While the first rationale for concern over biodiversity should apply to microbes, 

they lack charisma”    ~ J. Schimel (1995) 

 

Microbial ecologists are interested in whether these BEF relationships developed in the broader 

field of ecology apply to bacterial communities? Trying to answer this question poses a few 

challenges: First, there is a lack of a consensus regarding a bacterial species concept (Koeppel 

and Wu 2014). Second, typical bacterial communities have a larger range of diversity (hundreds 

to thousands of species) compared to macro-organismal communities (tens to hundreds of 

species) and the observed diversity depends on the methodology used. Third, microbes, 

especially bacteria, arguably have a broader range of ecosystem contributions than 

macroorganisms do, as their functioning is closely intertwined with all biogeochemical 

transformations (e.g., sulfate reduction, heterotrophic respiration, iron reduction, manganese 

oxidation, etc; Falkowski et al. 2008) and it is undetermined if BEF theory is universal to these 

various bacterial functions. The same reasons that make addressing the question challenging, 

make it important to tackle research on BEF theory in bacterial and other microbial systems. 

Doing so explores how universal and generalizable these patterns are in the field of ecology 

across the tree of life. Yet, relative to eukaryotic organisms, fewer studies have tackled this 

question in a bacterial context, although some have done so across various experimental and 

observational ecosystems (Schimel 1995, Griffiths et al. 2000, Wohl et al. 2004, Bell et al. 2005, 

Fierer et al. 2007, Langenheder et al. 2010, Delgado-Baquerizo et al. 2016). 

 

The lack of a bacterial species concept  

While there are many ways to delineate species, the most common definition is the biological 

species concept, which defines species as organisms that have the ability to interbreed in nature 

and create fertile offspring (Mayr 1942). However, this concept has tenuous applications to 

bacteria and archaea that reproduce asexually. While homologous recombination between 

lineages could serve as a proxy for a microbial species (Eppley et al. 2007) and appears to 

decline with increasing genetic distance (Didelot and Maiden 2010), there are a few complicating 

factors. Recombination rates can be difficult to measure in situ and are variable across a genome 

leading to irregular rates of ‘sexual’ isolation across a genome (Retchless and Lawrence 2007, 
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2010). The rampant non-homologous recombination rates (Fraser et al. 2007) further complicate 

species definitions and, thus, a universal bacterial biological species concept has been difficult to 

attain. Instead, bacterial and archaeal species have traditionally been defined using operational 

definitions such as  a 70% cut-off of pairwise genomic DNA-DNA hybridization (Stackebrandt 

and Goebel 1994). With the advent of sequencing of marker genes, particularly the 16S rRNA 

gene, microbial ecologists converged on the use of an operational taxonomic unit (OTU) based 

on 97% sequence similarity of the 16S rRNA gene. While this approach tends to group 

organisms with broad functional similarities, it often combines ecologically distinct populations 

into one OTU (Acinas et al. 2004, Hunt et al. 2008a, Denef et al. 2010b, Sharon et al. 2013). 

This has become increasingly clear through the application of genomics where individuals that 

are originally grouped as one OTU actually have highly divergent gene content (Acinas et al. 

2004, Denef et al. 2010b, Morowitz et al. 2011, Shapiro et al. 2012, Shapiro and Polz 2014). 

Nonetheless, broad correspondence between 16S rRNA gene divergence and genomic 

divergence is the norm (Konstantinidis and Tiedje 2005). While the concept of a bacterial 

species (Fraser et al. 2007, Shapiro and Polz 2014) and the appropriate operational units to be 

used remain in flux (Berry et al. 2017, Callahan et al. 2017), OTUs defined by >97% 16S rRNA 

gene sequence identity remains the most commonly used metric in microbial ecology and will be 

used extensively throughout this dissertation (Chapter II, Chapter III, & Chapter V). 

However, for investigation of more detailed traits I use a genome-centric approach in Chapter 

IV.  

 

Freshwater systems 

Role of microorganisms in freshwater systems 

Bacteria are the major engines that drive earth’s biogeochemical cycles (Falkowski et al. 2008), 

and specifically in freshwater systems bacteria play a pivotal role in biogeochemical cycling of 

nutrients (Cotner and Biddanda 2002) and are an important source of food for organisms of 

higher trophic levels (Azam and Graf 1983, Azam and Malfatti 2007, Pomero et al. 2007). There 

are many habitats both vertically and horizontally within a lake in which different bacteria can 

make a living (Shade et al. 2008, Jones et al. 2012a). Specifically, the work within this 

dissertation analyzes the impact of three general habitat classifications on bacterial community 

composition: different lake layers, nutrient levels, and particulate matter (Chapter II), with a 
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major focus on bacteria attached to particulate matter compared to free-living bacteria (Chapters 

II, III, IV). 

 

Environmental forces in freshwater lakes  

In many lakes, seasonal thermal stratification leads to the formation of a discrete layer in the 

surface, called the epilimnion, and a layer near the bottom, called the hypolimnion, which harbor 

contrasting bacterial communities (Garcia et al. 2013, Köllner et al. 2013). The environmental 

differences between the epilimnion and hypolimnion occur very rapidly in high-nutrient lakes 

where waters of the hypolimnion can be dramatically lower in pH and dissolved oxygen 

concentrations due both to microbial and physical processes. On the other hand, environmental 

conditions in the epilimnion and hypolimnion of low-nutrient lakes change more gradually and 

often light can penetrate deep into the hypolimnion. Additionally, suspended particulate matter 

from both abiotic (i.e., terrestrial sediment via run-off or littoral-zone clastics mixed up by wave 

action) and biotic (i.e., phytoplankton, zooplankton, other organisms and their detritus) sources 

create unique habitats for bacteria to inhabit and help to maintain bacterial diversity within 

freshwater lakes (Grossart 2010, Stocker 2012). Work in marine and freshwater particle-

associated bacterial communities, including work presented in this dissertation, has indicated that 

these communities are taxonomically and functionally distinct from free-living bacteria (Zeigler 

Allen et al. 2012, Rösel et al. 2012, Parveen et al. 2013, Smith et al. 2013a, Bižić-Ionescu et al. 

2014, Ganesh et al. 2014a, Jackson et al. 2014, Simon et al. 2014).  

 

Particles in aquatic ecosystems have been called “hotspots of microbial activity” (Azam 1998) 

and “hotbeds for genome reshuffling” (Ganesh et al. 2014a) and may provide microheterogeneity 

in the water column that helps sustain high levels of taxonomic and metabolic diversity in 

aquatic microbial communities (Hunt et al. 2008a, Grossart 2010, Stocker 2012, Salcher 2014). 

While outnumbered by free-living bacteria (Caron et al. 1982), particle-associated bacteria are 

disproportionately active in organic matter mineralization, as particulate organic carbon is more 

readily bioavailable than the dissolved organic carbon pool on which free-living bacteria rely 

(Crump et al. 1998, Lemarchand et al. 2006, Ghiglione et al. 2009, Grossart 2010, Schmidt et al. 

2017). Input of terrestrial runoff to aquatic ecosystems, and the formation and removal of 

particulate matter in aquatic ecosystems have been changing dramatically due to human 
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activities, particularly land use change, eutrophication, and the introduction of invasive species. 

These human-induced changes may influence the nature, abundance or the relative importance of 

particles in aquatic ecosystems. As bacteria are the first biological organisms to respond to 

disturbances, the vulnerability of lake ecosystems to environmental change particularly depends 

on the bacterial community (Paerl et al. 2003). My dissertation analyzes how particle-

associated and free-living bacterial community composition and diversity varies and its 

corresponding effect on bacterial heterotrophic production. 

 

Overview of dissertation 

In Chapter II, I determine some of the primary environmental controls on lake bacterial 

community composition. I assess the influence of lake layer (i.e. stratification), lake productivity, 

and particle-association on the patterns of bacterial community composition across 11 inland 

lakes with varying productivity in Southwestern Michigan. Next in Chapter III, I analyze data 

from a freshwater estuarine lake, Muskegon Lake, which has large spatio-temporal variation in 

bacterial heterotrophic productivity, to test whether there was an association between 

heterotrophic production and biodiversity (defined as the number of taxa and taxon abundance). I 

specifically focus on two co-occurring freshwater habitats, particle-associated and free-living, 

that chapter II shows to be populated by very distinct communities. In Chapter IV, I perform a 

genome-centric analysis of free-living and particle-associated bacterial specialists and generalists 

to see which genomic traits were associated with adaptations to these specific habitats. Finally, in 

Chapter V, I identified the bacterial taxa driving two aquatic function groups (one of which is 

important for heterotrophic productivity) across the large set of lake samples I collected 

throughout my dissertation. These assessments of aquatic bacterial diversity, and their genomic 

underpinnings, will help provide a mechanistic view into drivers of aquatic bacterial community 

diversity and composition and their influence on metabolic function. 
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Figure 1.1.  Conceptual overview of this dissertation. 
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Chapter II:  

Phylogenetic conservation of freshwater lake habitat preference varies between abundant 

bacterioplankton1 

 

ABSTRACT 

Despite their homogeneous appearance, aquatic systems harbor heterogeneous habitats resulting 

from nutrient gradients, suspended particulate matter, and stratification. Recent reports suggest 

phylogenetically conserved habitat preferences among bacterioplankton, particularly for particle-

associated (PA) and free-living (FL) habitats. Here, we show that independent of lake nutrient 

level and layer, PA and FL abundance-weighted bacterial community composition (BCC) 

differed and that inter-lake BCC varied more for PA than FL fractions. In low-nutrient lakes, 

BCC differences between PA and FL fractions were larger than between lake layers. The reverse 

was true for high-nutrient lakes. Nutrient level affected BCC more in hypolimnia than in 

epilimnia, likely due to hypolimnetic hypoxia in high-nutrient lakes. In line with previous 

reports, we observed within-phylum OTU habitat preference conservation, though not for all 

phyla, including the phylum with the highest average relative abundance across all habitats 

(Bacteroidetes). Consistent phylum level habitat preferences may indicate that the functional 

traits that underpin ecological adaptation of freshwater bacteria to lake habitats can be 

phylogenetically conserved, though levels of conservation are phylum-dependent. Resolving taxa 

preferences for freshwater habitats sets the stage for identification of traits that underpin habitat 

specialization and associated functional traits that influence differences in biogeochemical 

cycling across freshwater lake habitats.  

                                                 
1 Published as: Schmidt ML, White JD, Denef VJ. Phylogenetic conservation of freshwater lake 

habitat preference varies between abundant bacterioplankton phyla. Environ Microbiol 

2016; 18: 1212–1226.  
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Introduction 

In freshwater lakes, bacteria are key players in organic carbon processing, nutrient 

remineralization, and form the base of the microbial food web (Wetzel 2001). While the pelagic 

zone of lakes may appear to be uniform and unstructured and is often sampled as if it were 

(Grossart 2010), bacterial community composition (BCC) varies both horizontally and vertically 

within a lake (Shade et al. 2008, Jones et al. 2012b). In temperate lakes, seasonal thermal 

stratification lead to the formation of discrete water masses (i.e., epilimnion and hypolimnion) 

that harbor contrasting bacterial communities (Garcia et al. 2013, Köllner et al. 2013, Paganin et 

al. 2013). Lake nutrient levels and resulting productivity strongly impact the environmental 

conditions within lake layers, especially in the hypolimnia of more productive lakes where the 

accumulation of organic matter can lead to oxygen depletion and decreasing pH by bacteria and 

changes in the BCC (Lindström 2000, Yannarell et al. 2003, Jankowski et al. 2014).  

 

Within these large spatial habitats (lakes with different nutrient levels and lake layers), 

particulate matter provides additional habitat heterogeneity in the water column and thus, helps 

sustain high levels of diversity in aquatic microbial communities (Hunt et al. 2008a, Grossart 

2010, Salcher 2014). Studies in marine and freshwater systems indicate that these communities 

are taxonomically and functionally distinct from free-living bacteria (Grossart 2010, Zeigler 

Allen et al. 2012, Smith et al. 2013a, Ganesh et al. 2014b, Mohit et al. 2014, Simon et al. 2014). 

Moreover, recent observations in bathypelagic marine systems suggest that the preference of 

bacteria between a particle-associated (particulate organic matter) and free-living (dissolved 

organic matter) habitats is highly phylogenetically conserved, up to the class to phylum level 

(Salazar et al. 2015). 

 

In this study, we investigated two main questions.  First, how is freshwater bacterioplankton 

community composition simultaneously shaped by three habitat types: filter fraction [free-living 

(FL; 0.22-3 μm) or particle-associated (PA; 3-20 μm], lake layer (epilimnion or hypolimnion), 

and nutrient level (high- or low-nutrient, based on total phosphorus)? Second, are habitat 

preferences phylogenetically conserved? Using a dataset from 11 north-temperate freshwater 
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lakes varying widely in productivity, we characterized BCC in these habitats at one time point 

during the summer-stratified period via high throughput Illumina sequencing of the V4 hyper-

variable region of the 16S rRNA gene. Our findings contribute to a growing understanding of the 

importance of the habitat heterogeneity encountered within the freshwater pelagic environment 

(Salcher 2014) and expands recent efforts to determine the extent to which habitat specialization 

is a phylogenetically conserved trait among aquatic bacteria. 

 

Results 

Limnological Data 

Based on epilimnetic total phosphorus (TP) concentrations (range: 7.6 - 47.8 µg/L), we 

categorized our lakes as four low-nutrient (TP ≤ 10 µg/L) and seven high-nutrient (TP > 10 

µg/L) lakes (Table 2.1). This is slightly lower than the cutoff proposed between oligotrophic and 

eutrophic lakes (12 µg/L; Carlson 1977), though corresponds to the distinction between lakes 

with and without significant hypolimnetic hypoxia in our dataset (Figure SI 2.6). Ten of the 

lakes exhibited mid-summer stratification. At the time of sampling, Sherman Lake was 

isothermal due to artificial de-stratification by aerators, so we treated it separately, classifying it 

as “Mixed”. Vertical profiles of the stratified lakes indicated summer gradients of temperature, 

pH, and dissolved oxygen (DO) typical of their respective nutrient levels (Wetzel 2001; Table 

2.1 & Figure SI 2.6). In all of the stratified high-nutrient lakes, DO concentrations were 

depleted (0 - 1 mg/L) throughout the hypolimnion, whereas DO concentrations were always ≥ 5 

mg/L at the sampling depths in the four low-nutrient lakes (Figure SI 2.6).   

 

Differences in Bacterial Community Composition 

We calculated how many OTUs were unique to each habitat and shared between habitat types.  

The highest number of unique OTUs was in high-nutrient lakes, which was significantly greater 

than in low-nutrient lakes (Chi-sq, p < 2.2 x 10-16; Figure 2.1).  Hypolimnia harbored 

significantly more unique OTUs than epilimnia (Chi-sq, p < 2.2 x 10-16). The FL fraction had 

significantly more unique OTUs than compared with the PA fraction (Chi-sq, p < 2 x 10-6; 

Figure 2.1 left panel).  The number of shared OTUs was significantly higher in PA and FL 

communities as compared to the other two comparisons (Chi-sq, p < 2.2 x 10-16). 
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While the majority of the OTUs in each habitat were unique, they were quite rare in terms of 

their abundance (Figure 2.1, right panel).  OTUs that were shared between sample types 

represented 98% of reads in the free-living (2,741 single and doubletons) and particle-associated 

samples (2,252 single and doubletons), 96% of reads in low-nutrient lakes (1,625 single or 

doubletons), 91% of reads in high-nutrient lakes (3,500 single and doubletons), 97% of reads in 

the epilimnion (2,315 single and doubletons), and 93% of reads in the hypolimnion (2,829 single 

and doubletons).   

 

To discover the habitat that was the most important determinant of the BCC, we created a non-

metric multidimensional scaling (NMDS) plot and performed nested PERMANOVA tests with 

the Sørensen and Bray-Curtis dissimilarity metrics.  When considering OTU presence or absence 

based on Sørensen dissimilarity (Figure 2.1A), samples clustered primarily by lake layer 

(NMDS1, 13.3% PERMANOVA, p < 0.001, Table 2.2) and secondarily by nutrient level 

(NMDS2, 11.4% PERMANOVA, p < 0.001). However, when considering the relative 

abundance of taxa based on Bray-Curtis dissimilarity (Figure 2.2B), samples clustered primarily 

by lake layer (NMDS1, 15.8% PERMANOVA, p <0.001) and secondarily by PA and FL filter 

fractions (NMDS2, 12.7% PERMANOVA, p < 0.001). In terms of the relative abundance of 

OTUs, lake layer and PA and FL fractions explained similar and independent amounts of 

variation (12.7 – 15.8%, Table 2.2) of the community composition. In contrast, when 

considering OTU presence or absence only, lake layer explained 13.3% while PA and FL 

fractions only explained 4.5% of the variation.  Lake layer explained a higher proportion of BCC 

variation in high-nutrient (30.1% PERMANOVA, p < 0.001) lakes as compared to low-nutrient 

lakes (14.7% PERMANOVA, p < 0.001), primarily due to differences in the presence or absence 

of OTUs (Table 2.2). Similarly, nutrient level explained a higher proportion of variation between 

lake hypolimnia (32.4% PERMANOVA, p < 0.001) than between lake epilimnia (11.2 % 

PERMANOVA, p < 0.001) due to the presence or absence of OTUs (Table 2.2). In the 

hypolimnion and in high-nutrient lakes, filter fraction significantly differed based on OTU 

relative abundance (16.8% and 13.8%, repectively, PERMANOVA, p < 0.001) but was not as 

strongly influenced by OTU presence or absence (Table 2.2). Dissolved oxygen, temperature, 

and pH all co-varied with our defined habitats and each only explained an additional 2.6 – 9.9% 

of BCC variation between all samples and was usually insignificant (Table 2.2). 
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We assessed whether lake-to-lake variability in BCC differed depending on lake habitat. In terms 

of OTU presence or absence (Figure 2.3, top), lake-to-lake variability was significantly lower in 

the high-nutrient hypolimnion PA and FL samples (KW; p = 2.4 x 10-7).  In terms of relative 

abundance of OTUs (Figure 2.3, bottom), lake-to-lake variability was higher for PA than for FL 

BCC, however this difference was only significant in low-nutrient lakes within the hypolimnion 

(KW; p = 3.5 x 10-5).  

 

Significant Changes in BCC at the Phylum Level 

On average, Bacteroidetes was the most abundant phylum across all samples (Figure 2.4; 

Figure SI 2.10; Figure SI 2.11, right panel) and showed limited differential abundance 

between the three types of habitat comparisons (filter fraction, lake layer, and nutrient level). 

(See Figure 2.4 for a general overview of differences in phylum relative abundance between 

habitat types, e.g., all FL vs all PA samples; Figure SI 2.10 for differences in phylum relative 

abundance between all specific comparisons that control for variation in the other habitat types, 

e.g., FL vs. PA in the epilimnion of low nutrient lakes; and Figure SI 2.11 for the statistical 

evaluation between specific comparisons within Figure SI 2.10). Actinobacteria was the most 

frequently differentially abundant phylum with significant differences in 8 of the 13 comparisons 

(across the x-axis of Figure SI 2.11). They were consistently more prevalent in FL fractions 

compared to PA fractions, low-nutrient relative to high-nutrient lakes, and in lake epilimnia 

relative to hypolimnia (Figure 2.4).  

 

In line with the significant BCC differences between PA and FL communities (Figure 2.3; 

Table 2.2) differentially abundant phyla were found between PA and FL fractions.  

Cyanobacteria and Planctomycetes were differentially abundant in PA relative to FL fractions, 

while the reverse was true for Actinobacteria and Betaproteobacteria (Figure 2.4; DEseq2 p < 

0.01). When refining our analysis by comparing PA and FL fractions in each combination of lake 

layer and nutrient level, additional differentially represented phyla were identified (Figure SI 

2.11).  For example, Chloroflexi was differentially abundant in the particle-associated fractions 

in the hypolimnion of high-nutrient lakes and Candidate Division OD1 was differentially 

abundant in the free-living fractions in the epi- and hypolimnion of high-nutrient lakes and the 
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hypolimnion of low-nutrient lakes.  Interestingly, there were no differentially abundant phyla 

within either filter fraction of the epilimnion of low-nutrient lakes.   

 

Differential abundance between high- and low-nutrient lakes as well as between hypolimnia and 

epilimnia was mainly detected for phyla with low average relative abundance across the entire 

dataset.  For example, Lentisphaerae was differentially abundant within the high-nutrient 

(relative to low-nutrient) and hypolimnion (relative to epilimnion) lake habitats while 

Armatimonadetes was differentially abundant within low-nutrient (relative to high-nutrient) and 

hypolimnion (relative to epilimnion) lake habitats (Figure 2.4). When refining our analyses by 

controlling for variation within the specific habitat types, the more abundant phyla were found to 

be differentially abundant as well (Figure SI 2.10; Figure SI 2.11).  For example, 

Actinobacteria and Alphaproteobacteria were differentially abundant in low-nutrient 

hypolimnion samples (both PA and FL) and within the epilimnion of high nutrient lakes (both 

PA and FL). Many of the same phyla that were differentially abundant between high-nutrient 

lake layers were also differentially abundant between high- and low-nutrient hypolimnia. Most 

notable, Verrucomicrobia and Armatimonadetes were significantly over-represented in low-

nutrient (relative to high-nutrient) hypolimninia while many phyla such as Lentisphaerae, 

Chlorobi, Firmicutes, Spirochaetae, NPL-UPA2, Deinococcus-Thermus, Candidate Division 

OP3 and Candidate Division SR1 were over-represented in all high-nutrient relative to low-

nutrient hypolimnia (Figure SI 2.8; Figure SI 2.9).  

 

Significant Changes in BCC at the OTU-Level 

We calculated the fraction of OTUs that showed significant preference for specific habitats (e.g., 

PA vs. FL fraction of low-nutrient epilimnia) and summed these for the three types of habitat 

comparisons (e.g., all PA vs. all FL; Figure 2.5, left panel). OTUs with habitat preference 

accounted for 0.2 – 27% of all OTUs within a specific phylum (Figure 2.5, left panel; Genus-

level differential abundance for each specific habitat comparison is presented in Figure SI 2.12). 

When weighing these fractions with the relative abundance of the OTUs, OTUs with habitat 

preference accounted for up to 97% of the relative abundance of a phylum in a lake habitat 

(Figure 2.5, right panel). For example, Armatimonadetes had 1 significant OTU of 16 total 
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OTUs in the low-nutrient lakes, however, this significant OTU accounted for 95% of 

Armatimonadetes in low-nutrient lakes.  

 

In most cases, if a phylum contained OTUs with habitat preference, the habitat that was preferred 

was consistent for all differentially abundant OTUs within that phylum (Figure 2.5). For 

example, Chloroflexi had significant OTUs in the PA (6%), high nutrient (15.6%) and 

hypolimnion (24.4%) samples.  When including the relative abundance of the OTUs, the 

proportion of OTUs that showed significant habitat preferences was variable depending on the 

phylum and the habitat comparison that was made.  For example, most Actinobacteria OTUs 

showed preference for the FL fraction, though very little preference between lake layers and 

nutrient levels; Figure 2.5).  

   

It is important to note that there was a very large overlap between the lake layer and nutrient 

comparisons. There were 258 significant OTUs that were differentially abundant in the high-

relative to low-nutrient samples and all except 8 of these OTUs were also differentially abundant 

in hypolimnion relative to epilimnion samples (486 significant OTUs total). In addition, the most 

differentially abundant OTU in the high- relative to low-nutrient samples, which belonged to the 

Betaproteobacteria tribe betI-A, was also the most differentially abundant OTU in the 

hypolimnion samples (Table 2.3).  Therefore, many of the OTUs that were differentially 

abundant in high-nutrient lakes were only differentially abundant within the hypolimnion of 

these lakes. 

 

 

Discussion 

Spatial variation is one of the factors that help explain the “paradox of the plankton,” i.e., why 

there are so many co-existing plankton species despite a limited range of resources in the water 

column (Hutchinson 1961, Chesson 2000). However, when studying drivers of bacterioplankton 

diversity in freshwater lakes, sampling strategies generally do not differentiate between the 

spatial habitats existing within a lake (Grossart 2010). In addition to spatial lake habitats shaping 

BCC, large changes in BCC have been reported between aquatic habitats defined by in-line filter 

pore sizes in marine and freshwater systems (Rösel and Grossart 2012, Rösel et al. 2012, Parveen 
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et al. 2013, Smith et al. 2013, D'Ambrosio et al. 2014, Bižić-Ionescu et al. 2014, Ganesh et al. 

2014, 2015, Simon et al. 2014). In this study, we determined habitat preferences of bacterial taxa 

between free-living (FL; 0.22-3 μm) and particle-associated (PA; 3-20 μm) filter fractions within 

the epi- and hypolimnion of north-temperate lakes spanning a large nutrient gradient. Our results 

help integrate previous studies that focused on comparing one of these habitat pairs (Allgaier and 

Grossart 2006, Shade et al. 2008, Kolmonen et al. 2011, Rösel and Grossart 2012, Rösel et al. 

2012, Garcia et al. 2013). The existence of a series of OTUs that are significantly differentially 

abundant between these spatial habitats indicates taxon-specific habitat preferences that help 

explain the high numbers of coexisting bacteria in the pelagic zones of freshwater lakes.   

 

For differentially abundant OTUs, we showed that OTU level habitat preferences of abundant 

OTUs between lake layers, filter fractions, and nutrient levels was highly conserved at the 

phylum level for a majority of phyla. This is counter to what is predicted based on the 

polyphyletic distribution of most bacterial traits (Martiny et al. 2012) and the metabolic 

versatility that occurs even below the OTU level (Hunt et al. 2008a, Hoefman et al. 2014). 

However, phylum to class level conservation of habitat preference between particle-associated 

and free-living fractions has been recently reported for multiple phyla in marine bacterioplankton 

(Salazar et al. 2015). Complex traits tend to be more phylogenetically conserved, suggesting that 

some traits underpinning habitat partitioning are complex, i.e., encoded by multiple 

interdependent genes (Martiny et al. 2012). It also has to be noted that most OTUs did not show 

differential abundance between habitats, either because we lacked the statistical power to show 

differential abundance (as most of these OTUs were rare for most phyla) or because these OTUs 

are generalists across habitats as we defined them. 

 

For the large number of phyla differentially abundant in the oxygen-depleted hypolimnia of 

high-nutrient lakes, the most important shared trait is likely their ability to grow anaerobically, 

which can be considered a complex trait (Martiny et al. 2012). Many cultured representatives of 

the phyla enriched in this habitat have indeed been shown to be capable of anaerobic metabolism 

(Krieg et al. 2012). The differential abundance in low-nutrient hypolimnia of six of the seven 

most abundant phyla (Bacteriodetes, Cyanobacteria, Verrucomicrobia, Actinobacteria, 

Planctomycetes, and Alphaproteobacteria; middle column; Figure SI 2.11) could be attributed 
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to the absence of taxa enriched in high-nutrient hypolimnia, thus increasing the relative 

abundance of these ubiquitous and mostly aerobic freshwater lineages (Newton et al. 2011a).  

 

The similarity of epilimnetic BCC between lakes with varying nutrient levels is consistent with 

the environmental similarity of surface waters of the high- and low-nutrient lakes we sampled, 

and has been observed in previous studies (Allgaier and Grossart 2006). The greater dissimilarity 

between epilimnetic and hypolimnetic communities in high-nutrient lakes (Figure 2.2; Figure 

2.3) in turn reflects the fact that the hypolimnia of high-nutrient lakes are typically more 

environmentally distinct from their epilimnia as compared to low-nutrient lakes due to 

pronounced vertical gradients in dissolved oxygen, pH, and photosynthetically active radiation. 

The distinct environmental conditions in nutrient-enriched hypolimnia also translated into 

significantly higher observed richness (Figure SI 2.8), which has been suggested to be due to 

nutrient accumulation in the hypolimnion (Kara et al. 2013) and higher habitat heterogeneity 

(Shade et al. 2008, Jankowski et al. 2014). The presence or absence of OTUs detected in high-

nutrient hypolimnia between lakes was more similar than compared to any other inter-lake 

comparison of habitats (Figure 2.3, top), which may indicate strong species sorting at the local 

scale due to hypoxia and lower pH and photosynthetically active radiation (Van der Gucht et al. 

2007).   

 

The mixed lake offered an interesting opportunity to observe the impact of a press disturbance on 

a lake ecosystem, i.e., the continuous aeration and de-stratification of lake layers. Previous 

studies have investigated the impact of short-term water column mixing pulse disturbances on 

bacterial communities (Shade et al. 2010, 2012). They found that communities were rapidly 

altered, leading to more similar communities across the water column, increased richness in the 

surface waters and the appearance of unique OTUs after artificial mixing (Shade et al. 2012).  

However, the BCC reverted to the pre-disturbance state within 7 (epilimnion) and 11 

(hypolimnion) days following the return of stratification (Shade et al. 2012). While we only 

sampled a single artificially mixed high-nutrient lake, we also found that mixing increased OTU 

richness relative to high-nutrient lake epilimnia and vertically homogenized the BCC (Figure SI 

2.8). The mixed lake had higher deep-water temperatures and lower near-surface dissolved 
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oxygen concentrations than the other lakes (Figure SI 2.6), which may contribute to the increase 

in observed richness.  

 

Both technical and biological factors affect the extensive OTU overlap observed between PA and 

FL fractions in this and previous studies (Figure 2.1; Bižić-Ionescu et al. 2014). The inline 

filtration method used to physically discriminate PA from FL fractions may be only a crude 

indicator of microbial habitat preferences.  This may be due to (1) the filter pore size used affects 

the results, and (2) PA bacteria can dislodge from particles during sample filtration, and 

inversely FL bacteria can be trapped on higher pore size filters (Hunt et al. 2008a, Simon et al. 

2014). While the pore size to discriminate PA and FL bacteria varies, the 3 μm cutoff is 

frequently used (Bidle and Fletcher 1995, Crump et al. 1998, Acinas et al. 1999, Besemer et al. 

2005, Eloe et al. 2011, Jackson et al. 2014), including in the recent worldwide Tara Oceans 

survey of marine microbial communities, on which our sampling procedures were based (Pesant 

et al. 2015, Sunagawa et al. 2015). The OTU overlap can be explained by biological factors as 

well. The release of hydrolytic enzymes from PA bacteria can help liberate small molecules from 

particles and in turn, stimulate the growth of their FL counterparts on these newly dissolved 

nutrients (Long and Azam 2001, Ghiglione et al. 2009). However, it would not enable 

maintenance of large population sizes for species requiring nutrients only available on particles. 

The FL fraction may also capture cells migrating between the ephemeral habitats provided by 

particulate matter (Fraser et al. 2009) or cells that have a generalist behavior and alternate 

between the FL and PA habitats. 

 

Despite the overlapping presence of many OTUs, a series of OTUs were found to be 

differentially abundant between PA and FL fractions. One trait determining differential 

abundance between FL and PA fractions is cell size.  For example, ubiquitous freshwater 

bacteria such as AcI (Actinobacteria) and Polynucleobacter (Betaproteobacteria) were 

consistently overrepresented in FL habitats and are both reported ultramicrobacteria that are 

rarely larger than 1 μm (Pernthaler 2013). Cell size and morphology are dependent on a small 

number of genes and both traits are phylogenetically dispersed (Margolin 2009). Cell size is also 

a phenotypically plastic trait (Margolin 2009). Thus, other traits such as the presence of genes 

enabling extracellular digestion of particulate matter may be more important than size for 



 28 

explaining the relatively high differential abundance between PA and FL fractions. The presence 

of excreted enzymes such as glycoside hydrolases and proteases have indeed been observed for 

PA bacteria (Grossart et al. 2006). Excreted enzymes are relatively simple traits and thus are not 

predicted to be highly phylogenetically conserved.  Yet, a recent study has shown specific 

classes of glycoside hydrolases to be phylogenetically conserved (Amend et al. 2015). 

Planctomycetes likely have larger cell sizes due to the presence of unique intracellular structures 

(nucleoid, anammoxosome) and budding cell division (Lee et al. 2009, Fuerst and Sagulenko 

2011).  Filamentous forms of Cyanobacteria such as Anabaena, Planktothrix, and 

Pseudoanabaena, as well as grouped- or paired-cells or microcolonies like Snowella and 

Synechococcus (Callieri 2010) most likely would not pass through the 3 μm filter.  

 

Our observation that inter-lake variability is greater for PA bacteria than for FL bacteria, 

especially within the hypolimnion, (Figure 2.3, bottom) suggests that PA bacteria may be 

important determinants of differences in bacterially mediated ecosystem processes between 

lakes. While PA bacteria are typically outnumbered by FL bacteria  (Caron et al. 1982), in 

certain systems PA bacteria can be disproportionally active (Azam 1998, Crump et al. 1998, 

Grossart et al. 2006, Lemarchand et al. 2006, Ghiglione et al. 2007). Further insights into the 

functional potential of PA bacteria and their activity relative to FL bacteria will be needed to 

assess their contributions to freshwater biogeochemical cycling. Application of metagenomic 

analyses, as has been recently applied to PA and FL communities in marine systems (Smith et al. 

2013b, Ganesh et al. 2014b, Simon et al. 2014) are a logical next step in freshwater lake systems.  

 

Particle-associated bacterial communities may also be more sensitive to global change stressors 

(land use change, species invasions, changes in geochemical cycles (Chapin et al. 2000). First, 

the changes in runoff patterns due to urban and agricultural land development and climate 

change could alter the nature and amount of suspended solids delivered to freshwater lakes 

(Adrian et al. 2009, Nõges et al. 2011, Michalak et al. 2013). Second, an invasive dreissenid 

mussel that has major impacts on aquatic systems in North America and Eastern Europe (Dame 

and Olenin 2005, Ruesink et al. 2006, Higgins and Zanden 2010) was recently shown to 

preferentially remove PA bacteria from freshwater systems through size-selective filter feeding 

(Cotner et al. 1995, Denef et al. 2017). The fact that the specific taxa that are differentially 
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abundant between PA and FL fractions are dependent on lake layer and nutrient level indicates 

that (1) global change could significantly alter PA communities and (2) the impacts on BCC, and 

potentially community functioning, could be large and strongly ecosystem-dependent.  

 

In this study, we documented how freshwater lake bacterioplankton communities differ between 

free-living and particle-associated fractions, lake layers, and nutrient levels. Our results 

differentiated taxa that are generalists across these habitats from more specialized taxa. OTU-

level habitat partitioning for specialized taxa was highly conserved at the phylum level for 

multiple phyla, indicating that complex multi-gene traits may underpin ecological adaptation to 

these distinct habitats. Our findings contribute to a growing understanding of how habitat 

heterogeneity helps sustain high bacterial diversity. Importantly, our data identified taxa to 

pursue with genomic approaches to help identify traits that underpin habitat specialization and 

co-occurring functional traits that determine the unique characteristics of bacterially mediated 

ecosystem processes in these different freshwater habitats.  

 

 

Methods 

Lake Sampling and Sample Processing 

Samples were collected on 5-8 August 2013 from 11 lakes across a productivity gradient (7.6 - 

47.8 μg/L total phosphorus, TP) in southwestern Michigan (Table 2.1). Sampling was conducted 

over the deepest basin of each lake.  A vertical lake profile was taken from the surface to the 

bottom at 1-2 m intervals for temperature, pH, and dissolved oxygen (mg/L) with a mutli-

parameter Hydrolab sonde (Hach Hydromet). The epilimnion and hypolimnion (if present) were 

identified from the temperature profile and duplicate water samples were collected with a 3.2 L 

horizontal Van Dorn bottle from the middle of each lake layer, except for Gull Lake which was 

sampled towards the top of the hypolimnion. Water samples were immediately pre-filtered 

through a 210 and 20 μm nitex cloth (WildCo.) to remove large phyto- and zooplankton and 

stored in a cooler until processed in the lab within 6 hours. An additional sample of lake water 

was collected from the epilimnion without filtration for TP. For our analyses, we only used 

epilimnetic data for Wintergreen Lake as the thermocline extended to the bottom. At the time of 
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sampling, Sherman Lake was artificially de-stratified (“mixed”, Table 2.1) with aerators 

installed by a local watershed association (www.shermanlakemi.com).  

 

Lakes were categorized as “low-nutrient” (TP ≤ 10 μg/L) or “high-nutrient (TP > 10 μg/L) based 

on total phosphorus (TP). This cutoff corresponds to the depth of the thermocline, the distinction 

between lakes with and without significant hypolimnetic hypoxia in our dataset (Figure SI 2.6), 

and is similar to the 12 µg/L cutoff proposed by Carlson (1977).  Subsamples of unfiltered lake 

water were poured off after thorough mixing and frozen for later analysis of TP, which was 

performed using standard colorimetric techniques (molybdenum-blue method) and long 

pathlength spectrophotometry following persulfate digestion of organic matter in an autoclave 

(Murphy J and Riley JP 1962, Menzel and Corwin 1965).   

 

Microbial biomass for particle-associated (3-20 μm fraction) and free-living (0.22-3 μm fraction) 

bacterial communities were collected by sequential in-line filtration of 20 μm pre-filtered lake 

water samples (350 mL - 2 L) through a 3 μm isopore polycarbonate membrane filter (TSTP, 47 

mm diameter, Millipore, Billerica, MA, USA) and a 0.22 μm Express Plus polyethersulfone 

membrane filter (47 mm diameter, Millipore, Billerica, MA, USA) held in line with a 47 mm 

polycarbonate in-line filter holder (Pall Corporation, Ann Arbor, MI, USA).  Filtration was 

performed using an E/S portable peristaltic pump with an easy-load L/S peristaltic pump head 

(Masterflex®, Cole Parmer Instrument Company, Vernon Hills, IL, USA).  Filters were then 

submersed in RNAlater (Ambion) in 2 mL cryovials, frozen in liquid nitrogen and transferred to 

a -80 oC freezer until DNA extraction. 

 

DNA Extraction  

DNA extractions were performed using an optimized method based on the AllPrep 

DNA/RNA/miRNA Universal kit (Qiagen; McCarthy et al. 2015). In summary, filters were first 

washed with phosphate buffered saline (PBS; pH 7.4) while folded (cell-side in) to prevent 

against cell-loss and to remove RNAlater, which inhibits DNA yields.  Then filters were placed 

in a 2 mL tube with 125 μL of lysozyme (8 mg/L; Sigma) and incubated for 5 minutes at 37 oC.  

Next, 600 μL of buffer RLT plus (Qiagen) and 6 μL of β-mercaptoethanol was added to each 

tube and incubated for 90 minutes at room temperature using a rotisserie motor.  After 

http://www.shermanlakemi.com/
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incubation, tubes were vortexed on high for 10 minutes.  The lysate was transferred to a 

QiaShredder column (Qiagen), 300 μL of 100% ethanol was added to the lysate and then 

transferred to a DNA column (DNeasy Blood and Tissue Kit, Qiagen) and washed with 350 μL 

of buffer AW1 (Qiagen).  Next, 80 μL of proteinase K solution was added to the DNA column 

and incubated at room temperature for 5 minutes.  The DNA column was washed with buffer 

AW1 and buffer AW2.  DNA was eluted using 2 x 30 μL elution buffer (buffer EB, Qiagen) into 

a fresh 1.5 mL centrifuge tube and stored at 4 oC until processed for sequencing. 

 

DNA Sequencing and Processing 

Extracted DNA was sequenced using Illumina MiSeq v2 chemistry 2x250 (500 cycles) of dual 

index-labeled primers that targeted the V4 hypervariable region of the 16S rRNA gene 

(515F/806R; (Caporaso et al. 2012, Kozich et al. 2013) at the University of Michigan Medical 

School on December 20th, 2013. RTA v1.17.28 and MCS v2.2.0 software were used to generate 

data. Fastq files were submitted to NCBI sequence read archive under BioProject 

PRJNA304344, SRA accession number SRP066777. We analyzed the sequence data using 

mothur v.1.36.1 (Schloss et al. 2009a) based on the MiSeq standard operating procedure 

accessed on November 3rd, 2015.  We used the cluster.split command in mothur to assign 

sequences to OTUs at 97% similarity using the average neighbor algorithm and classify.seqs 

command in mothur using the Wang method implemented in the RDP classifier to assign the 

taxonomy of the OTUs with a combination of the Silva Database (release 119) and the 

freshwater 16S rRNA database (Newton et al. 2011; available at https://github.com/mcmahon-

uw/FWMFG) for taxonomic classification (Pruesse et al. 2012).   

 

Statistical Analyses 

Further analysis of sequence data was performed in R version 3.2.2 (August 2015) using the 

phyloseq (McMurdie and Holmes 2013) and vegan (Oksanen et al. 2013) R-packages.  All 

figures were made using the ggplot2 R-package (Wickham 2009). All input files and code are 

available at https://github.com/DenefLab/Final_PAFL_Trophicstate. OTU- and taxonomy tables 

produced in mothur along with categorical and measured environmental variables were imported 

into phyloseq. We pruned out all non-bacterial and chloroplast sequences and then merged 

replicate samples by summing using the merge_samples function in phyloseq.    

https://github.com/mcmahon-uw/FWMFG
https://github.com/mcmahon-uw/FWMFG
https://github.com/DenefLab/Final_PAFL_Trophicstate
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Differences in Bacterial Community Composition 

We transformed the sequence read depth of each of the summed replicate samples by taking the 

proportion of each OTU and scaling it to the minimum sequence read depth in the data set 

(14,925 sequences), and then rounding to the nearest integer (McMurdie and Holmes 2014). We 

determined the number of shared OTUs between filter fractions, nutrient levels and lake layers 

using the anti_join and semi_join functions in the dplyr R-package (Wickham et al. 2018). We 

used the chisq.test function within the stats R-package (R Core Team 2018) to perform a Chi 

squared test to test whether there was a significant difference in the number of unique OTUs 

detected in each environment. 

 

We calculated two non-metric multidimensional scaling (NMDS) ordinations based on (1) 

Sørensen (unweighted; OTU presence or absence) and (2) Bray-Curtis (abundance-weighted; 

OTU relative abundance) dissimilarity using the metaMDS function (vegan) with 2 dimensions 

(k = 2), a square root transformation, and Wisconsin double standardization.  To test if filter 

fraction, nutrient level, lake layer, DO, temperature, and pH could significantly explain variation 

in the bacterial community composition, we used adonis (vegan) to run a permutational ANOVA 

(PERMANOVA; Anderson 2001).  We tested our variables nested within each other to account 

for co-variation.  To test for significant differences in the variance of the Sørensen and Bray-

Cutis dissimilarities between lakes, a Kruskall-Wallis test was performed using the kruskal.test 

function within the stats package (R Core Team 2018) along with the post-hoc tests using the 

kruskalmc function (pgirmess R-package; Giraudoux 2018). Significant differences were visually 

added using the multcompLetters function within the mutlcompView R-package (Fig 3; (Graves 

et al. 2015).  

 

Differentially abundant phyla and OTUs  

We identified significantly differentially abundant phyla and OTUs between habitats by 

calculating the log2-fold ratio using the negative binomial generalized linear model framework of 

the DESeq function in the DESeq2 R-package (Love et al. 2014, McMurdie and Holmes 2014).  

P-values were adjusted for multiple tests with a Benjamini-Hochberg false discovery rate-

correction and a threshold p-value of 0.01 was used to prevent the likelihood of false-positives.  
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We used the log2-fold ratio of the relative abundance (log2 of odds ratio) to create a heatmap 

representing differentially abundant taxa between PA and FL fractions, high- and low-nutrient 

lakes, and between hypolimnia and epilimnia (Figure 2.3, Figure SI 2.11, & Figure SI 2.12).  

 

To determine how phylogenetically conserved habitat preference of each phylum was at the 

OTU level, we counted the number of significant OTUs from the DESeq output using the 

group_by  and summarize functions (dplyr R-package; Wickham 2011) and combined this data 

with the total number of OTUs within each of the habitats. We also calculated the within phylum 

relative abundance of each of the OTUs in order to detect what proportion of the phylum 

abundance was made up by the significant OTUs.  

 

 

Acknowledgements 

Work by MLS was supported by the National Science Foundation Graduate Research 

Fellowship. O. Sarnelle (Michigan State University) and staff at the W.K. Kellogg Biological 

Station, especially A. Fogiel and T. Brownell, provided tremendous logistical support and lent 

equipment. The Gull Lake Quality Organization contributed additional funds to support the lake 

sampling. We are grateful to members of the Denef, Dick, and Duhaime laboratories (University 

of Michigan) as well as the three anonymous reviewers for help with improving previous drafts 

of this manuscript. 

 

  



 34 

References 

Acinas, S. G., J. Antón, and F. Rodríguez-Valera. 1999. Diversity of Free-Living and Attached 

Bacteria in Offshore Western Mediterranean Waters as Depicted by Analysis of Genes 

Encoding 16S rRNA. Applied and Environmental Microbiology 65:514–522. 

Adrian, R., C. M. O. Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. 

Livingstone, R. Sommaruga, D. Straile, E. Van Donk, G. A. Weyhenmeyer, and M. Winder. 

2009. Lakes as sentinels of climate change. Limnology and Oceanography 54:2283–2297. 

Allen, L. Z., E. E. Allen, J. H. Badger, J. P. McCrow, I. T. Paulsen, L. D. Elbourne, M. 

Thiagarajan, D. B. Rusch, K. H. Nealson, S. J. Williamson, J. C. Venter, and A. E. Allen. 

2012. Influence of nutrients and currents on the genomic composition of microbes across an 

upwelling mosaic. ISME Journal 6:1403–1414. 

Allgaier, M., and H. P. Grossart. 2006. Seasonal dynamics and phylogenetic diversity of free-

living and particle-associated bacterial communities in four lakes in northeastern Germany. 

Aquatic Microbial Ecology 45:115–128. 

Ambrosio, L. D., K. Ziervogel, B. Macgregor, A. Teske, and C. Arnosti. 2014. Composition and 

enzymatic function of particle-associated and free-living bacteria : a coastal / offshore 

comparison:2167–2179. 

Amend, A. S., A. C. Martiny, S. D. Allison, R. Berlemont, M. L. Goulden, Y. Lu, K. K. 

Treseder, C. Weihe, and J. B. H. Martiny. 2015. Microbial response to simulated global 

change is phylogenetically conserved and linked with functional potential. The ISME 

Journal:1–10. 

Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. 

Austral Ecology 26:32–46. 

Azam, F. 1998. Microbial Control of Oceanic Carbon Flux: The Plot Thickens. Science 

280:694–696. 

Besemer, K., M. Moeseneder, J. Arrieta, G. Herndl, and P. Peduzzi. 2005. Complexity of 

bacterial communities in a river-floodplain system edited by foxit reader. Applied and 

environmental microbiology 71:609–620. 

Bidle, K. D., and M. Fletcher. 1995. Comparison of free-living and particle-associated bacterial 

communities in the chesapeake bay by stable low-molecular-weight RNA analysis. Applied 

and Environmental Microbiology 61:944–952. 

Bižić-Ionescu, M., M. Zeder, D. Ionescu, S. Orlić, B. M. Fuchs, H.-P. Grossart, and R. Amann. 

2014. Comparison of bacterial communities on limnic versus coastal marine particles 

reveals profound differences in colonization. Environmental microbiology:1–36. 

Callieri, C. 2010. Single cells and microcolonies of freshwater picocyanobacteria: A common 

ecology. Journal of Limnology 69:257–277. 

Caporaso, J. G., C. L. Lauber, W. A. Walters, D. Berg-Lyons, J. Huntley, N. Fierer, S. M. 

Owens, J. Betley, L. Fraser, M. Bauer, N. Gormley, J. A. Gilbert, G. Smith, and R. Knight. 

2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and 

MiSeq platforms. The ISME Journal 6:1621–1624. 



 35 

Carlson, R. E. 1977. A trophic state index for lakes. Limnology and Oceanography 22:361–369. 

Caron, D. A., P. G. Davis, L. P. Madin, and J. M. Sieburth. 1982. Heterotrophic bacteria and 

bacterivorous protozoa in oceanic macroaggregates. Science 218:795–797. 

Chapin, F. S., E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. 

Hooper, S. Lavorel, O. E. Sala, S. E. Hobbie, M. C. Mack, and S. Díaz. 2000. 

Consequences of changing biodiversity. Nature 405:234–42. 

Chesson, P. L. 2000. Mechanisms of maintenance of species diversity. Annual Review of 

Ecological Systematics 31:343–366. 

Cotner, J. B., W. S. Gardner, J. R. Johnson, R. H. Sada, J. F. Cavaletto, and R. T. Heath. 1995. 

Effects of Zebra Mussels (Dreissena polymorpha) on Bacterioplankton: Evidence for Both 

Size-Selective Consumption and Growth Stimulation. Journal of Great Lakes Research 

21:517–528. 

Crump, B. C., J. A. Baross, and C. A. Simenstad. 1998. Dominance of particle-attached bacteria 

in the Columbia River estuary, USA. Aquatic Microbial Ecology 14:7–18. 

Dame, R. F., and S. Olenin. 2005. The comparative roles of suspension-feeders in ecosystems: 

proceedings of the NATO advanced research workshop on the comparative roles of 

suspension-feeders in ecosystems. Springer Science and Business Media, Nida, Lithuania. 

Denef, V. J., H. J. Carrick, J. Cavaletto, E. Chiang, T. H. Johengen, and H. A. Vanderploeg. 

2017. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance 

Caused by an Invasive Filter Feeder. mSphere 2:e00189-17. 

Eloe, E. A., C. N. Shulse, D. W. Fadrosh, S. J. Williamson, E. E. Allen, and D. H. Bartlett. 2011. 

Compositional differences in particle-associated and free-living microbial assemblages from 

an extreme deep-ocean environment. Environmental Microbiology Reports 3:449–458. 

Fraser, C., E. J. Alm, M. F. Polz, B. G. Spratt, W. P. Hanage, and T. Bacteria. 2009. The 

Bacterial Species Challenge : Ecological Diversity:741–746. 

Fuerst, J. a, and E. Sagulenko. 2011. Beyond the bacterium: planctomycetes challenge our 

concepts of microbial structure and function. Nature Reviews Microbiology 9:403–413. 

Ganesh, S., L. a Bristow, M. Larsen, N. Sarode, B. Thamdrup, and F. J. Stewart. 2015. Size-

fraction partitioning of community gene transcription and nitrogen metabolism in a marine 

oxygen minimum zone. The ISME Journal 9:2682–2696. 

Ganesh, S., D. J. Parris, E. F. DeLong, and F. J. Stewart. 2014. Metagenomic analysis of size-

fractionated picoplankton in a marine oxygen minimum zone. The ISME journal 8:187–

211. 

Garcia, S. L., I. Salka, H. P. Grossart, and F. Warnecke. 2013. Depth-discrete profiles of 

bacterial communities reveal pronounced spatio-temporal dynamics related to lake 

stratification. Environmental Microbiology Reports 5:549–555. 

Ghiglione, J. F., P. Conan, and M. Pujo-Pay. 2009. Diversity of total and active free-living vs. 

particle-attached bacteria in the euphotic zone of the NW Mediterranean Sea. FEMS 

Microbiology Letters 299:9–21. 



 36 

Ghiglione, J. F., G. Mevel, M. Pujo-Pay, L. Mousseau, P. Lebaron, and M. Goutx. 2007. Diel 

and seasonal variations in abundance, activity, and community structure of particle-attached 

and free-living bacteria in NW Mediterranean Sea. Microbial Ecology 54:217–231. 

Giraudoux, P. 2018. pgirmess: Spatial Analysis and Data Mining for Field Ecologists. 

Graves, S., H.-P. Piepho, and L. S. with help from Sundar Dorai-Raj. 2015. multcompView: 

Visualizations of Paired Comparisons. 

Grossart, H. P. 2010. Ecological consequences of bacterioplankton lifestyles: Changes in 

concepts are needed. Environmental Microbiology Reports 2:706–714. 

Grossart, H. P., T. Kiorboe, K. W. Tang, M. Allgaier, E. M. Yam, and H. Ploug. 2006. 

Interactions between marine snow and heterotrophic bacteria: aggregate formation and 

microbial dynamics. Aquatic Microbial Ecology 42:19–26. 

Van der Gucht, K., K. Cottenie, K. Muylaert, N. Vloemans, S. Cousin, S. Declerck, E. Jeppesen, 

J.-M. Conde-Porcuna, K. Schwenk, G. Zwart, H. Degans, W. Vyverman, and L. De 

Meester. 2007. The power of species sorting: local factors drive bacterial community 

composition over a wide range of spatial scales. Proceedings of the National Academy of 

Sciences of the United States of America 104:20404–20409. 

Higgins, S., and M. Zanden. 2010. What a difference a species makes: a meta-analysis of 

dreissenid mussel impacts on freshwater ecosystems. Ecological monographs 80:179–196. 

Hoefman, S., D. van der Ha, N. Boon, P. Vandamme, P. De Vos, and K. Heylen. 2014. Niche 

differentiation in nitrogen metabolism among methanotrophs within an operational 

taxonomic unit. BMC microbiology 14:83. 

Hunt, D. E., L. A. David, D. Gevers, S. P. Preheim, E. J. Alm, and M. F. Polz. 2008. Resource 

partitioning and sympatric differentiation among closely related bacterioplankton. Science 

320:1081–1085. 

Hutchinson, G. 1961. The paradox of the plankton. American Naturalist 95:137–145. 

Jackson, C. R., J. J. Millar, J. T. Payne, and C. A. Ochs. 2014. Free-Living and Particle-

Associated Bacterioplankton in Large Rivers of the Mississippi River Basin Demonstrate 

Biogeographic Patterns. Applied and Environmental Microbiology 80:7186–7195. 

Jankowski, K., D. E. Schindler, and M. C. Horner-Devine. 2014. Resource availability and 

spatial heterogeneity control bacterial community response to nutrient enrichment in lakes. 

PLoS ONE 9. 

Jones, S. E., T. a. Cadkin, R. J. Newton, and K. D. McMahon. 2012. Spatial and temporal scales 

of aquatic bacterial beta diversity. Frontiers in Microbiology 3:1–10. 

Kara, E. L., P. C. Hanson, Y. H. Hu, L. Winslow, and K. D. McMahon. 2013. A decade of 

seasonal dynamics and co-occurrences within freshwater bacterioplankton communities 

from eutrophic Lake Mendota, WI, USA. The ISME journal 7:680–684. 

Köllner, K., D. Carstens, C. Schubert, J. Zeyer, and H. Bürgmann. 2013. Impact of particulate 

organic matter composition and degradation state on the vertical structure of particle-

associated and planktonic lacustrine bacteria. Aquatic Microbial Ecology 69:81–92. 



 37 

Kolmonen, E., K. Haukka, A. Rantala-Ylinen, P. Rajaniemi-Wacklin, L. Lepistö, and K. 

Sivonen. 2011. Bacterioplankton community composition in 67 Finnish lakes differs 

according to trophic status. Aquatic Microbial Ecology 62:241–250. 

Kozich, J. J., S. L. Westcott, N. T. Baxter, S. K. Highlander, and P. D. Schloss. 2013. 

Development of a dual-index sequencing strategy and curation pipeline for analyzing 

amplicon sequence data on the miseq illumina sequencing platform. Applied and 

Environmental Microbiology 79:5112–5120. 

Krieg, N. R., J. T. Staley, D. R. Brown, B. P. Hedlund, B. J. Paster, N. L. Ward, W. Ludwig, and 

W. B. Whitman. 2012. Bergey’s Manual of Systematic Bacteriology. Springer, New York, 

NY. 

Lee, K.-C., R. I. Webb, and J. a Fuerst. 2009. The cell cycle of the planctomycete Gemmata 

obscuriglobus with respect to cell compartmentalization. BMC cell biology 10. 

Lemarchand, C., L. Jardillier, J. F. Carrias, M. Richardot, D. Debroas, T. Sime-Ngando, and C. 

Amblard. 2006. Community composition and activity of prokaryotes associated to detrital 

particles in two contrasting lake ecosystems. FEMS Microbiology Ecology 57:442–451. 

Lindström, E. 2000. Bacterioplankton Community Composition in Five Lakes Differing in 

Trophic Status and Humic Content. Microbial ecology 40:104–113. 

Long, R. A., and F. Azam. 2001. Antagonistic interactions among marine pelagic bacteria. 

Applied and Environmental Microbiology 67:4975–4983. 

Love, M. I., W. Huber, and S. Anders. 2014. Moderated estimation of fold change and dispersion 

for RNA-seq data with DESeq2. Genome Biology 15:1–21. 

Margolin, W. 2009. Sculpting the Bacterial Cell. Current Biology 19:R812–R822. 

Martiny, A. C., K. K. Treseder, and G. Pusch. 2012. Phylogenetic conservatism of functional 

traits in microorganisms. The ISME journal 7:830–838. 

McCarthy, A., E. Chiang, M. L. Schmidt, and V. J. Denef. 2015. RNA Preservation Agents and 

Nucleic Acid Extraction Method Bias Perceived Bacterial Community Composition. Plos 

One 10:e0121659. 

McMurdie, P. J., and S. Holmes. 2013. phyloseq: An R Package for Reproducible Interactive 

Analysis and Graphics of Microbiome Census Data. PLoS ONE 8:e61217. 

McMurdie, P. J., and S. Holmes. 2014. Waste Not, Want Not: Why Rarefying Microbiome Data 

Is Inadmissible. PLoS Computational Biology 10:e1003531. 

Menzel, D. W., and N. Corwin. 1965. The measurement of total phosphorus in seawater based on 

liberation of organically bound fractions by persulfate oxidation. Limnology & 

Oceanography 10:280–282. 

Michalak, A. M., E. J. Anderson, D. Beletsky, S. Boland, N. S. Bosch, T. B. Bridgeman, J. D. 

Chaffin, K. Cho, R. Confesor, I. Daloglu, J. V. DePinto, M. A. Evans, G. L. Fahnenstiel, L. 

He, J. C. Ho, L. Jenkins, T. H. Johengen, K. C. Kuo, E. LaPorte, X. Liu, M. R. McWilliams, 

M. R. Moore, D. J. Posselt, R. P. Richards, D. Scavia, A. L. Steiner, E. Verhamme, D. M. 

Wright, and M. A. Zagorski. 2013. Record-setting algal bloom in Lake Erie caused by 



 38 

agricultural and meteorological trends consistent with expected future conditions. 

Proceedings of the National Academy of Sciences 110:6448–6452. 

Mohit, V., P. Archambault, N. Toupoint, and C. Lovejoy. 2014. Phylogenetic differences in 

attached and free-living bacterial communities in a temperate coastal lagoon during 

summer, revealed via high-throughput 16S rRNA gene sequencing. Applied and 

Environmental Microbiology 80:2071–2083. 

Murphy J, and Riley JP. 1962. A modified single solution method for the determination of 

phosphate in natural waters. Analytica Chimica Acta 27:31–36. 

Newton, R. J., S. E. Jones, A. Eiler, K. D. McMahon, and S. Bertilsson. 2011. A guide to the 

natural history of freshwater lake bacteria. Page Microbiology and molecular biology 

reviews. 

Nõges, P., T. Nõges, M. Ghiani, F. Sena, R. Fresner, M. Friedl, and J. Mildner. 2011. Increased 

nutrient loading and rapid changes in phytoplankton expected with climate change in 

stratified South European lakes: Sensitivity of lakes with different trophic state and 

catchment properties. Hydrobiologia 667:255–270. 

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. 

B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, and H. Wagner. 2013. 

vegan: Community Ecology Package. 

Paganin, P., L. Chiarini, A. Bevivino, C. Dalmastri, A. Farcomeni, G. Izzo, A. Signorini, C. 

Varrone, and S. Tabacchioni. 2013. Vertical distribution of bacterioplankton in Lake 

Averno in relation to water chemistry. FEMS Microbiology Ecology 84:176–188. 

Parveen, B., I. Mary, A. Vellet, V. Ravet, and D. Debroas. 2013. Temporal dynamics and 

phylogenetic diversity of free-living and particle-associated Verrucomicrobia communities 

in relation to environmental variables in a mesotrophic lake. FEMS Microbiology Ecology 

83:189–201. 

Pernthaler, J. 2013. Freshwater Microbial Communities. Pages 97–112 in E. Rosenberg, E. F. 

DeLong, S. Lory, E. Stackebrandt, and F. Thompson, editors. The Prokaryotes - Prokaryotic 

Communities and Ecophysiology. Berlin, Germany. 

Pesant, S., F. Not, M. Picheral, S. Kandels-Lewis, N. Le Bescot, G. Gorsky, D. Iudicone, E. 

Karsenti, S. Speich, R. Troublé, C. Dimier, S. Searson, S. G. Acinas, P. Bork, E. Boss, C. 

Bowler, C. De Vargas, M. Follows, G. Gorsky, N. Grimsley, P. Hingamp, D. Iudicone, O. 

Jaillon, S. Kandels-Lewis, L. Karp-Boss, E. Karsenti, U. Krzic, F. Not, H. Ogata, S. Pesant, 

J. Raes, E. G. Reynaud, C. Sardet, M. Sieracki, S. Speich, L. Stemmann, M. B. Sullivan, S. 

Sunagawa, D. Velayoudon, J. Weissenbach, and P. Wincker. 2015. Open science resources 

for the discovery and analysis of Tara Oceans data. Scientific Data 2:150023. 

Pruesse, E., J. Peplies, and F. O. Glöckner. 2012. SINA: Accurate high-throughput multiple 

sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829. 

R Core Team. 2015. R: A Language and Environment for Statistical Computing. Vienna, 

Austria. 

Rösel, S., M. Allgaier, and H.-P. Grossart. 2012. Long-term characterization of free-living and 



 39 

particle-associated bacterial communities in Lake Tiefwaren reveals distinct seasonal 

patterns. Microbial ecology 64:571–583. 

Rösel, S., and H. P. Grossart. 2012. Contrasting dynamics in activity and community 

composition of free-living and particle-associated bacteria in spring. Aquatic Microbial 

Ecology 66:169–181. 

Ruesink, J. L., B. E. Feist, C. J. Harvey, J. S. Hong, A. C. Trimble, and L. M. Wisehart. 2006. 

Changes in productivity associated with four introduced species: Ecosystem transformation 

of a “pristine” estuary. Marine Ecology Progress Series 311:203–215. 

Salazar, G., F. M. Cornejo-Castillo, E. Borrull, C. Díez, E. Lara, D. Vaqué, J. M. Gasol, and S. 

G. Acinas. 2015. Particle-association lifestyle is a phylogenetically conserved trait in 

bathypelagic prokaryotes. Molecular Ecology:doi: 10.1111/mec.13419. 

Salcher, M. M. 2014. Same same but different: Ecological niche partitioning of planktonic 

freshwater prokaryotes. Journal of Limnology 73:74–87. 

Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. a. 

Lesniewski, B. B. Oakley, D. H. Parks, C. J. Robinson, J. W. Sahl, B. Stres, G. G. 

Thallinger, D. J. Van Horn, and C. F. Weber. 2009. Introducing mothur: Open-source, 

platform-independent, community-supported software for describing and comparing 

microbial communities. Applied and Environmental Microbiology 75:7537–7541. 

Shade, A., C. Y. Chiu, and K. D. McMahon. 2010. Seasonal and episodic lake mixing stimulate 

differential planktonic bacterial dynamics. Microbial Ecology 59:546–554. 

Shade, A., S. E. Jones, and K. D. McMahon. 2008. The influence of habitat heterogeneity on 

freshwater bacterial community composition and dynamics. Environmental Microbiology 

10:1057–1067. 

Shade, A., J. S. Read, N. D. Youngblut, N. Fierer, R. Knight, T. K. Kratz, N. R. Lottig, E. E. 

Roden, E. H. Stanley, J. Stombaugh, R. J. Whitaker, C. H. Wu, and K. D. McMahon. 2012. 

Lake microbial communities are resilient after a whole-ecosystem disturbance. The ISME 

journal 6:2153–2167. 

Simon, H. M., M. W. Smith, and L. Herfort. 2014. Metagenomic insights into particles and their 

associated microbiota in a coastal margin ecosystem. Frontiers in Microbiology 5:466. 

Smith, M. W., L. Z. Allen, A. E. Allen, L. Herfort, and H. M. Simon. 2013a. Contrasting 

genomic properties of free-living and particle-attached microbial assemblages within a 

coastal ecosystem. Frontiers in Microbiology 4:1–20. 

Smith, M. W., L. Zeigler Allen, A. E. Allen, L. Herfort, and H. M. Simon. 2013b. Contrasting 

genomic properties of free-living and particle-attached microbial assemblages within a 

coastal ecosystem. Frontiers in microbiology 4:120. 

Sunagawa, S., L. P. Coelho, S. Chaffron, J. R. Kultima, K. Labadie, G. Salazar, B. Djahanschiri, 

G. Zeller, D. R. Mende, A. Alberti, F. M. Cornejo-Castillo, P. I. Costea, C. Cruaud, F. 

D’Ovidio, S. Engelen, I. Ferrera, J. M. Gasol, L. Guidi, F. Hildebrand, F. Kokoszka, C. 

Lepoivre, G. Lima-Mendez, J. Poulain, B. T. Poulos, M. Royo-Llonch, H. Sarmento, S. 

Vieira-Silva, C. Dimier, M. Picheral, S. Searson, S. Kandels-Lewis, C. Bowler, C. de 



 40 

Vargas, G. Gorsky, N. Grimsley, P. Hingamp, D. Iudicone, O. Jaillon, F. Not, H. Ogata, S. 

Pesant, S. Speich, L. Stemmann, M. B. Sullivan, J. Weissenbach, P. Wincker, E. Karsenti, J. 

Raes, S. G. Acinas, P. Bork, E. Boss, C. Bowler, M. Follows, L. Karp-Boss, U. Krzic, E. G. 

Reynaud, C. Sardet, M. Sieracki, and D. Velayoudon. 2015. Structure and function of the 

global ocean microbiome. Science 348:1261359. 

Wetzel, R. G. 2001. Limnology: Lake and River Ecosystems. Page Journal of Phycology. 

Wickham, H. 2009. ggplot2: elegant graphics for data analysis. Springer New York. 

Wickham, H. 2011. The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical 

Software 40:1–29. 

Wickham, H., R. François, L. Henry, and K. Müller. 2018. dplyr: A Grammar of Data 

Manipulation. 

Yannarell,  a C.,  a D. Kent, G. H. Lauster, T. K. Kratz, and E. W. Triplett. 2003. Temporal 

patterns in bacterial communities in three temperate lakes of different trophic status. 

Microbial ecology 46:391–405. 

 



 41 

 Table 2.1.  Limnological data for the lakes and 

samples included in this study. 
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Table 2.2.  R2 values and P-values from PERMANOVA on the entire and sub-setted data sets.   

The mixed lake is omitted from all analyses. BC = Bray-Curtis dissimilarity; S = Sørenson 

dissimilarity. * = p < 0.05; ** = p < 0.01; *** = p < 0.001, NS = not significant. 
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Table 2.3.  Top 5 most differentially abundant OTUs within each habitat, sorted by rank. 

SEE NEXT PAGE 
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PHYLUM GENUS OTU LOG2-FOLD 
RATIO 

HABITAT PREFERENCE 
(SPECIFIC HABITAT WHERE OTU 
IS DIFFERENTIALLY ABUNDANT) 

FREE-LIVING 

VERRUCOMICROBIA unclassified Otu00303 5.4 FL (Epilimnion Low-Nutrient) 

ACTINOBACTERIA acIV-A Otu00094 4.4 FL (Epilimnion Low-Nutrient) 

ACTINOBACTERIA acTH1-A Otu00046 3.9 FL (Epilimnion Low-Nutrient) 

BETAPROTEOBACTERIA Pnec Otu00013 3.9 FL (Epilimnion Low-Nutrient) 

BETAPROTEOBACTERIA betIII-A Otu00189 3.8 FL (Epilimnion Low-Nutrient) 

PARTICLE-ASSOCIATED 

CHLOROFLEXI Anaerolinea Otu00454 2.3 PA (Epilimnion Low-Nutrient) 

CHLOROFLEXI unclassified Otu00551 2.5 PA (Epilimnion Low-Nutrient) 

UNCLASSIFIED unclassified Otu00375 2.5 PA (Epilimnion Low-Nutrient) 

ACTINOBACTERIA Myco Otu00313 2.6 PA (Epilimnion High-Nutrient) 

CHLOROFLEXI unclassified Otu00114 2.6 PA (Epilimnion Low-Nutrient) 

LOW-NUTRIENT 

BACTEROIDETES unclassified Otu00188 10.6 Low-Nutrient (FL Epilimnion) 

BACTEROIDETES unclassified Otu00185 9.4 Low-Nutrient (FL Epilimnion) 

DELTAPROTEOBACTERIA OM27_clade Otu00187 9.2 Low-Nutrient (PA Hypolimnion) 

UNCLASSIFIED unclassified Otu00382 9.1 Low-Nutrient (FL Epilimnion) 

CYANOBACTERIA unclassified Otu00270 9.0 Low-Nutrient (PA Epilimnion) 

HIGH-NUTRIENT 

BETAPROTEOBACTERIA betI-A Otu00004 2.5 High-Nutrient (PA Hypolimnion) 

VERRUCOMICROBIA unclassified Otu00005 3.0 High-Nutrient (PA Hypolimnion) 

BACTEROIDETES unclassified Otu00118 3.5 High-Nutrient (FL Hypolimnion) 

BETAPROTEOBACTERIA Dechloromonas Otu00123 3.9 High-Nutrient (PA Hypolimnion) 

BACTEROIDETES unclassified Otu00120 3.9 High-Nutrient (PA Hypolimnion) 

EPILIMNION 

BACTEROIDETES unclassified Otu00188 10.0 Epilimnion (Low-Nutrient FL) 

BACTEROIDETES unclassified Otu00492 8.6 Epilimnion (Low-Nutrient FL) 

VERRUCOMICROBIA 

Candidatus 

Xiphinematobacter 
Otu00521 8.3 Epilimnion (Low-Nutrient FL) 

BACTEROIDETES unclassified Otu00334 8.2 Epilimnion (Low-Nutrient FL) 

BETAPROTEOBACTERIA unclassified Otu00087 8.1 Epilimnion (Low-Nutrient PA) 

HYPOLIMNION 
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BETAPROTEOBACTERIA betI-A Otu00004 2.1 Hypolimnion (High-Nutrient FL) 

ACTINOBACTERIA acI-C Otu00239 3.1 Hypolimnion (High-Nutrient FL) 

CHLOROFLEXI unclassified Otu00097 3.1 Hypolimnion (High-Nutrient FL) 

NPL-UPA2 unclassified Otu00843 3.4 Hypolimnion (High-Nutrient FL) 

BETAPROTEOBACTERIA betI-A Otu00282 3.7 Hypolimnion (High-Nutrient PA) 
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Figure 2.1.  Unique and shared OTUs between lake habitats 

(Left) Cumulative number of unique and shared OTUs detected across all lake habitats after 

transformation of the sequence depth to 14,925 sequences based on the scaling method 

mentioned in the methods.  (Right) The relative abundance of the unique and shared OTUs 

based on their abundance within each habitat.  *** Indicates a significant difference in the 

proportion of unique OTUs based on a Chi-squared test (p < 0.0001). Numbers in parentheses 

along the x-axis represent sample sizes of each lake habitat.     
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Figure 2.2.  NMDS Ordinations of lake habitat influence on bacterial community composition. 

 

Non-Metric Multidimensional Scaling (NMDS) Ordinations visualizing differences in bacterial 

community composition based on (A) Sørensen dissimilarity (OTU presence or absence) and (B) 

Bray-Curtis dissimilarity (OTU relative abundance). Data points are colored by filter fraction, 

shaped by lake layer, and filled in by the nutrient level of each sample.   
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Figure 2.3.  Box and whisker plots of the variance in the Sørensen and Bray-Curtis dissimilarity 

metrics between lakes.  

 

(Top) Sørensen dissimilarity (OTU presence or absence; KW: p =  2.4 x 10-7) and (Bottom) 

Bray-Curtis dissimilarity (OTU relative abundance; KW: p = 3.5 x 10-5) between samples within 

the same habitat in different lakes. Letter(s) next to data points indicate groups of samples that 

are significantly different in their degree of lake-to-lake dissimilarity.  Numbers in parentheses 

along the x-axis represent sample sizes of each lake habitat. 
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Figure 2.4.  Phylum abundance of the six lake habitats of the 17 most abundant phyla and 

classes of Proteobacteria. 

 

Box and whisker plots of the phylum abundance across all samples grouped based on (top) filter 

fraction, (middle) nutrient level, or (bottom) lake layer. Numbers in parentheses within the 

legend represent sample sizes of each lake habitat.  Red stars represent significant differentially 

abundant phyla between filter fraction, productivity level, or lake layers as calculated by DESeq.  
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Figure 2.5.  Significant differentially abundant OTUs in the 17 most abundant phyla and classes 

of Proteobacteria. 

 

(Left) Proportion of the total number of OTUs that were significantly differentially abundant 

divided by the total number of OTUs present within each phylum and habitat. (Right) Within-

phylum relative abundance of the significant OTUs within each phylum and habitat.  Numbers in 

parentheses within the legend represent sample sizes of each lake habitat. 
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Supporting Information 2.A.  Measuring Within Sample Diversity 

 

Experimental Procedures 

 

Within-sample diversity 

We measured the within-sample diversity in two ways.  First, each sample was randomly sub-

sampled to 14,924 sequences without replacement 100 times using the rarefy_even_depth 

function in phyloseq. Second, the sequencing read counts were transformed by taking the 

proportion of each OTU in the samples and scaling it to the minimum sequence depth in the data 

set (14,925 sequences), and then rounding to the nearest integer (McMurdie & Holmes, 2014). 

As the sequencing read counts were transformed by scaling for all the between-sample diversity 

comparisons, a within-sample diversity figure that was directly comparable to the rest of the 

results was created. As the total range of sequencing reads after scaling was 521 sequences 

(Figure SI.2.2), I thought it was appropriate for this data, however, caution should be taken when 

applying this method to other datasets as scaling is not the standard method for calculating 

within-sample diversity metrics. 

 

The inverse Simpson index and observed OTU richness were calculated using the 

estimate_richness function in phyloseq. To remove the impact of richness, the inverse Simpson 

index was divided by the observed richness to obtain Simpson’s measure of evenness (Magurran, 

2004), which is not sensitive to species richness and ranges from 0 (uneven) to 1 (even). 

 

Results 

Within Sample Diversity  

For the sub-sampled data the mean Inverse Simpson value ranged from 8.62 to 81.0 (Fig. S3, 

top-left panel), Simpson’s measure of evenness ranged from 0.0135 to 0.0917 (Fig. S3, middle-

left panel), observed bacterial richness ranged from 276 to 1,219 OTUs and (Fig. S3, bottom-left 

panel. For the scaled data (range was 521 sequencing reads; Fig. S2), the mean Inverse Simpson 

value ranged from 8.44 to 81.2 (Fig. S3, top-right panel), Simpson’s measure of evenness ranged 

from 0.0124 to 0.0918 (Fig. S3, middle-right panel), and observed bacterial richness ranged from 

2746 to 1,377 OTUs (Fig. S3, bottom-right panel). In both types of sample transformations the 

community evenness as measured by the Inverse Simpson reflected a very similar pattern as the 
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observed richness where the values were greatest in the hypolimnia of high-nutrient lakes (both 

PA and FL communities).  Therefore, the Simpson measure of evenness, which showed a pattern 

not skewed by richness, was also calculated.  Based on Simpson’s evenness the high-nutrient, 

particle-associated epilimnion samples were the most uneven communities and the low-nutrient 

particle-associated samples were the most variable between lakes.  The particle-associated and 

free-living communities of the mixed lake samples did not differ from each other in any diversity 

metric.   
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Figure SI. 2.6.  Full lake profiles for each lake.    

 

(Top) High-nutrient and (Bottom) low-nutrient lake profiles. Colored points represent the raw 

value at each depth. Lines connect the discrete points within each lake. Sherman Lake was the 

mixed lake.   
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Figure SI. 2.7.  Histogram of the total number of sequencing reads per sample.    

 

(Left) Sequencing reads per sample after summing the raw number of sequencing reads between 

replicate samples. (Right) Sequencing reads per sample after transforming the sequence depth of 

each of the summed replicate samples by taking the proportion of each OTU in samples and 

scaling it to the minimum sequence depth in the data set (14,925 sequences), and then rounding 

to the nearest integer.  Dotted vertical lines represent the mean sequencing read depth of the free-

living (orange) and particle-associated samples.  The bin-width represents the number of 

sequencing reads that are binned within each bar within the histogram 
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Figure SI. 2.8.  Within-sample OTU richness and evenness  

 

Next Page: Within-sample OTU richness and evenness impacted by (Left panel) sub-sampling 

(rarefy-ing) the data 100 times without replacement at 14,924 sequencing reads and (right 

panel) by scaling the reads to 14,925 sequencing reads as describe within the methods and 

Figure S2, right panel legend (sequencing depth range is 521 sequences).  As the scaling method 

(right panel) is not the standard method for alpha diversity metrics, caution must be taken when 

interpreting the plot. Raw (gray points), mean (black tilde) and median (black horizontal bar) 

values and standard deviation (error bars) for (Top panel) the Inverse Simpson (Middle panel) 

Simpson’s measure of evenness and (Bottom panel) OTU richness within each lake habitat 

sampled.   
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Figure SI. 2.9.  Phylum abundance of the 3 lake layer habitats. 

 

Including the mixed lake, of the 17 most abundant phyla and classes of Proteobacteria.  Box and 

whisker plots of the phylum abundance across the epilimnion, hypolimnion and mixed lake 

samples. Numbers in parentheses within the legend represent sample sizes of each lake habitat. 
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Figure SI. 2.10.  Mean percent relative abundance of each taxonomic group. 

 

Mean abundance of each phylum or class is plotted with error bars representing the standard 

error of the mean. 
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Figure SI. 2.11.  Differentially abundant phyla across all specific lake habitats.  

 

(Left) Heat map of the significantly differentially abundant (based on log2-ratios of relative 

abundance data) bacterial phyla and classes of the Proteobacteria between filter fractions, 

nutrient levels, and lake layers (titles). Blue represents a significant differential abundance of a 

phylum or class in the particle-associated fraction, high-nutrient lakes, or hypolimnion. Yellow 

represents a significant differential abundance of a phylum or class in the free-living fraction, 

low-nutrient lakes, or epilimnion. Only significant phyla identified were included. (Right) Bar 

graph of the mean relative abundance of the bacterial phylum or class of the Proteobacteria 

across the entire data set sorted from high to low relative abundance. Error bars represent the 

standard error of the mean. 
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Figure SI. 2.12.  Differentially abundant Genera or Freshwater Tribes.  

 

Next Page: Based on the average Log2-ratio of significant OTUs, across lake habitats. Heat 

map of the significantly differentially abundant (based on log2-ratios of relative abundance data 

within each genera) bacterial OTUs within each genera between filter fractions, nutrient levels, 

and lake layers (titles). Blue represents a significant differential abundance of a genus or 

freshwater tribe in the particle-associated fraction, high-nutrient lakes, or hypolimnion. Yellow 

represents a significant differential abundance of a genus in the free-living fraction, low-nutrient 

lakes, or epilimnion. Only habitats with significant differentially abundant OTUs identified were 

included.  Only genera or freshwater tribes with significant differentially abundant OTUs within 

the dataset are included. 
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Figure SI. 2.13.  Significant differentially abundant OTUs. 

 

OTUs within the 17 most abundant phyla and classes of Proteobacteria. Total number of 

OTUs that were significantly differentially abundant between filter fractions, nutrient levels, and 

lake layers. For each comparison, the number of differentially abundant OTUs in each habitat 

combination was summed. 
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Chapter III: 

Microhabitats shape diversity-productivity relationships in freshwater bacterial 

communities2 

 

Abstract 

Eukaryotic communities commonly display a positive relationship between biodiversity and 

ecosystem function (BEF). Based on current studies, it remains uncertain to what extent these 

findings extend to bacterial communities. An extrapolation from eukaryotic relationships would 

predict there to be no BEF relationships for bacterial communities because they are generally 

composed of an order of magnitude more taxa than the communities in most eukaryotic BEF 

studies. Here, we sampled surface water of a freshwater, estuarine lake to evaluate BEF 

relationships in bacterial communities across a natural productivity gradient. We assessed the 

impact of habitat heterogeneity - an important factor influencing eukaryotic BEFs - on the 

relationship between species richness, evenness, phylogenetic diversity, and heterotrophic 

productivity by sampling co-occurring free-living (more homogenous) and particle-associated 

(more heterogeneous) bacterial habitats. Diversity measures, and not environmental variables, 

were the best predictors of particle-associated heterotrophic production. There was a strong, 

positive, linear relationship between particle-associated bacterial richness and heterotrophic 

productivity that was strengthened when considering evenness. There were no observable BEF 

trends in free-living bacterial communities. In contrast, per-capita but not community-wide 

heterotrophic productivity increased across both habitats as communities were composed of taxa 

that were more phylogenetically clustered. This association indicates that communities with 

                                                 

2 Available on bioRxiv: Schmidt ML, Biddanda BA, Weinke AD, Chiang E, Januska F, Props R, 

Denef VJ. Microhabitats shape diversity-productivity relationships in freshwater bacterial 

communities. http://dx.doi.org/10.1101/231688.  

 

http://dx.doi.org/10.1101/231688
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more phylogenetically related taxa have higher per-capita heterotrophic production than 

communities of phylogenetically distantly related taxa. Our findings show that lake heterotrophic 

bacterial productivity can be positively affected by evenness and richness, negatively by 

phylogenetic diversity, and that BEF relationships are contingent on microhabitats. These results 

provide a stepping stone for comparison of bacterial biodiversity-productivity relationships to 

theory developed for Eukarya to bacterial communities.   

  

 

Introduction 

Our planet is currently experiencing an extreme species extinction event (Thomas et al., 2004; 

Wake & Vredenburg, 2008).  Concern about such declines in biodiversity has resulted in 

hundreds of studies evaluating the relationship between biodiversity and ecosystem functions 

(BEF), with a large focus on terrestrial plant ecosystems. BEF relationships are generally 

positive and asymptotic and thus biodiversity loss causes a small change in ecosystem function at 

first and then, at some tipping point, a dramatic decrease in function (Cardinale et al., 2012, 

2012; Tilman et al., 2014). While the focus of local and global diversity loss is typically on 

eukaryotic organisms, bacterial biodiversity has also been shown to be decreasing at local scales 

within the human gut (Blaser, 2014) and terrestrial ecosystems (Singh et al., 2014). Of particular 

concern is the loss of diversity of bacterial guilds responsible for key geochemical 

transformations, such as methane oxidation (Levine et al., 2011) that controls rates of methane 

emissions. Yet, the study of BEF relationships has been more limited for Bacteria and Archaea. 

 

Based on the asymptotic BEF relationships observed for eukaryotic communities of up to 20 

species, the large range of species richness observed in natural bacterial communities (hundreds 

to thousands) may suggest an absence of bacterial BEF relationships.  While some  studies have 

not found a BEF relationship for broad processes, such as heterotrophic respiration or biomass 

production, that are performed by many taxa (Levine et al., 2011), positive relationships have 

been shown for narrow processes performed by few taxa such as denitrification (Philippot et al., 

2013), methanotrophy (Levine et al., 2011), and the degradation of triclosan and microcystin 

(Delgado-Baquerizo et al., 2016). Yet, studies have shown evidence of the contrary where 

positive BEF relationships exist even for processes performed by large numbers of taxa, such as 
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carbon substrate oxidation (Langenheder et al., 2010) and bacterial respiration (Bell et al., 2005; 

Delgado-Baquerizo et al., 2016). These positive relationships with bacterial respiration have 

been maintained, though with a weaker slope, for up to a month-long experiment (Bell et al., 

2005). 

 

Beyond the impact of the number of species, phylogenetic relatedness is predicted to influence 

BEF relationships based on the phylogenetic limiting similarity hypothesis. The phylogenetic 

limiting similarity hypothesis posits that distantly related organisms will have more dissimilar 

niches and therefore reduced competition and a higher likelihood of coexistence (Violle et al., 

2011). Therefore, it predicts that communities will have high phylogenetic diversity due to 

competitive exclusion of closely related species. Indeed, some papers show relationships across 

different ecosystems between phylogenetic diversity and ecosystem functions (Cadotte et al., 

2008; Jiang et al., 2010; Violle et al., 2011). However, studies with freshwater green algae 

(Fritschie et al., 2014; Venail et al., 2014) did not find this relationship. A recent study found the 

opposite result by showing that closely related green algal species had weaker competition and 

more facilitation than distantly related species (Narwani et al., 2017). While relationships 

between phylogenetic relatedness among community members and ecosystem function have 

been assessed in bacterial systems (Tan et al., 2012; Galand et al., 2015; Roger et al., 2016), 

most work has focused on low-diversity, experimentally-assembled communities with bacteria 

that can be grown in culture. We need to expand these findings to communities with richness 

levels typically found in natural communities. 

 

The nature of BEF relationships and the mechanism(s) that underpins them may depend on 

habitat structure or heterogeneity. Increasing habitat heterogeneity or environmental complexity 

has been found to enhance the strength of BEF relationships (Tylianakis et al. 2008; Replansky 

and Bell, 2009; Langenheder et al., 2010) presumably due to a greater role for niche 

complementarity effects in heterogeneous environments (Tiunov and Scheu, 2005; Cardinale 

2011). While habitat heterogeneity contributes to increased diversity within bacterial populations 

and communities (Zhou et al., 2008; Shade et al., 2008), the influence of habitat heterogeneity on 

BEF relationships remains poorly studied for bacterial systems. One exception is a study by 

Langenheder et al. (2010) which found that in manipulated bacterial communities with up to six 
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species environmental complexity (i.e., resource richness variation with up to 3 substrates), in 

addition to bacterial species richness, positively impacted bacterial function but that species and 

resource richness did not interact with each other. 

 

In this study, we hypothesized that bacterial diversity would be positively correlated with 

bacterial heterotrophic production, and that this relationship would be stronger in more 

heterogeneous environments. We simultaneously surveyed free-living and particle-associated 

surface water bacterial communities. Particulate matter comprises a variety of types and sizes of 

particles with each particle also harboring physicochemical gradients (Simon et al., 2002), and 

hence represents a more heterogeneous habitat than the surrounding water. While many previous 

studies have focused on the community composition (e.g., Bižić-Ionescu et al., 2014, Schmidt et 

al., 2016) or productivity (e.g., Crump et al., 1998) of these two microhabitats, here we 

specifically test whether there are BEF relationships within these co-occurring habitats. We 

tested BEF relationships using a variety of diversity metrics including observed richness, species 

dominance, and phylogenetic diversity. We focused on heterotrophic bacterial production as our 

measure of ecosystem function, as it is a key process affecting freshwater bacterial growth that in 

turn fuels the macroscopic food web through their recycling of nutrients bound in organic matter 

(Cotner & Biddanda, 2002).   

 

Methods 

Lake sampling and sample processing 

Surface water samples were collected at 1 meter depth from 4 long-term sampling stations 

(Steinman et al., 2008) in mesotrophic Muskegon Lake (Figure S1. 3.4), which is a freshwater 

estuarine lake connecting the Muskegon River and Lake Michigan. These stations included the 

mouth of the Muskegon River (43.250133,-86.2557), the channel to Bear Lake (43.238717,-

86.299283; a hypereutrophic lake), the channel to Lake Michigan (43.2333,-86.3229; 

oligotrophic lake), and the deepest basin of Muskegon Lake (43.223917,-86.2972; max depth = 

24 m).   

 

Samples were collected during the morning to early afternoon of 3 days in 2015 (May 12, July 

21, & September 30) aboard the R/V W.G. Jackson.  All water samples were collected with 
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vertical Van Dorn samplers. Additionally, a vertical profile of temperature (T), pH, specific 

conductivity (SPC), oxidation-reduction potential (ORP), chlorophyll (Chla), total dissolved 

solids (TDS), and dissolved oxygen (DO) was constructed at each station to characterize the 

water column using a calibrated YSI 6600 V2-4 multiparameter water quality sonde (Yellow 

Springs Instruments Inc.).  Total Kjeldahl nitrogen (TKN), ammonia (NH3), total phosphorus 

(TP), and alkalinity (Alk) were processed from whole water while nitrate (NO3), phosphate 

(PO4), and chloride (Cl-) were hand filtered using a 60 mL syringe fitted with a Sweeny filter 

holder with a 13 mm diameter 0.45 µm pore size nitrocellulose filters (Millipore) and were 

determined by standard wet chemistry methods in the laboratory (EPA, 1993).   

 

Bacterial abundance by epifluorescence microscopy 

Lake surface water samples were processed within 2-6 hours of their collection for determination 

of heterotrophic bacterial abundance. Samples (5 mL) were preserved with 2% formalin and 1 

mL subsamples were stained with acridine orange stain and filtered onto black 25 mm 0.2 μm 

pore size polycarbonate filters (Millipore) at a maximum pressure of 0.1 Bar or 1.5 PSI.  

Prepared slides were stored frozen until enumeration by standard epifluorescence microscopy at 

1000x magnification under blue light excitation (Hobbie et al. 1977). Bacteria within the field of 

view (100 µm x 100 µm) that were not associated with any particles were counted as free-living 

bacteria, whereas bacteria that were on particles were counted as particle-associated.  Sample 

filtration may bias counts due to free-living or particle-associated cells being hidden on the 

underside of particles, free-living bacteria settling on top of particles, or particle-associated cells 

dislodging.  In the absence of any quantitative studies that have rigorously addressed this issue, 

we have assumed the net effect of these opposing methodological biases to be negligible in the 

present study.   

 

Heterotrophic bacterial community production measurements 

Community-wide heterotrophic bacterial production was measured using [3H] leucine 

incorporation into bacterial protein (Kirchman et al. 1985; Simon and Azam, 1989). 

Quadruplicate 1m water samples were incubated in the dark under in situ temperatures for 1 hour 

(hr) with a 20 nM final concentration of [3H]-leucine. One 50% trichloroacetic acid (TCA)-killed 

control was run for every three live incubations of the same sample. At the end of the incubation 
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with [3H]-leucine, cold TCA-extracted samples were filtered onto 3 µm filters that represented 

the leucine incorporation by particle-associated bacteria (>3.0 µm).  Each filtrate was collected 

and filtered onto 0.2 µm filters and the activity therein represented incorporation of leucine by 

free-living bacteria (>0.2 µm-<3 µm).  The rate of uptake was linear over a 2 hr incubation 

period and the controls accounted for 0.5-6% of the 3H label found in live treatments. On the 

basis of such repeatable linear uptake measurements over the representative period of the 

incubations, we presumed there was no measurable recirculation of incorporated 3H back into 

solution. The timeline for our incubations (1 hr) as well as the sensitivity of the 3H method were 

insufficient to distinguish between the production rates of r- versus k-selected taxa. However, 

longer incubations would have likely led to problems of non-linear uptake and recirculation of 

the incorporated 3H (Kirchman et al., 1985). Thus, we chose to run the incubations over the short 

time of 1 hr where bacterial community production measurements were more reliable.  Measured 

leucine incorporation during the incubation was converted to bacterial carbon production rate 

using a standard theoretical conversion factor of 2.3 kg C per mole of leucine (Simon and Azam, 

1989). Per-capita heterotrophic production was estimated by dividing heterotrophic production 

by the cell counts measured in each fraction.  

 

Preservation of bacterial filters in the field 

Microbial biomass for the particle-associated (> 3 μm) fraction and the free-living (3–0.22 μm 

fraction) bacterial fraction was collected by sequential in-line filtration on 3 μm isopore 

polycarbonate (TSTP, 47 mm diameter, Millipore, Billerica, MA, USA) and 0.22 μm Express 

Plus polyethersulfone membrane filters (47 mm diameter, Millipore, MA, USA). We used  47 

mm polycarbonate in-line filter holders (Pall Corporation, Ann Arbor, MI, USA) and an E/S 

portable peristaltic pump with an easy-load L/S pump head (Masterflex®, Cole Parmer 

Instrument Company, Vernon Hills, IL, USA). The total volume filtered varied from 0.8–2.2 L 

with a maximum filtration time of 16 minutes per sample. Filters were submerged in RNAlater 

(Ambion) in 2 mL cryovials, frozen in liquid nitrogen, and transferred to a −80°C freezer until 

DNA extraction.  
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DNA extraction, sequencing and processing   

DNA extractions were performed using an optimized method based on the AllPrep 

DNA/RNA/miRNA Universal kit (Qiagen; McCarthy et al., 2015; details in supplementary 

methods). Extracted DNA was sequenced using Illumina MiSeq V2 chemistry 2 × 250 (500 

cycles) of dual index-labelled primers that targeted the V4 hypervariable region of the 16S rRNA 

gene (515F/806R) (Caporaso et al., 2012; Kozich et al., 2013) at the Microbial Systems 

Laboratories at the University of Michigan Medical School in July 2016. RTA V1.17.28 and 

MCS V2.2.0 software were used to generate data. Fastq files were submitted to NCBI sequence 

read archive under BioProject accession number PRJNA412984. We analyzed the sequence data 

using MOTHUR V.1.38.0 (seed = 777; Schloss et al., 2009) based on the MiSeq standard 

operating procedure accessed on 3 November 2015 and modified with time (see data 

accessibility and supplemental methods). We used a combination of the Silva Database (release 

123; Quast et al., 2013) and the freshwater TaxAss 16S rRNA database and pipeline (Rohwer et 

al., 2017, accessed 18 August 2016) for classification of operational taxonomic units (OTUs). 

All non-bacterial and chloroplast sequences were pruned out of the dataset and replicate samples 

were merged by summing sample sequencing read counts using the merge_samples function 

(phyloseq). A batch script for our protocol can be found in this project’s GitHub page in 

https://github.com/DenefLab/Diversity_Productivity/blob/master/data/mothur/mothur.batch.taxa

ss.  

 

Estimating Diversity 

We focused our diversity analyses on observed richness and the inverse Simpson’s index. We 

report the number of OTUs in our samples (i.e., observed richness) to best compare with the 

broader BEF literature. We also describe the inverse Simpson’s metric, which is a measure of 

species dominance, representing the proportional abundance of taxa in the community, a 

property that is a major difference in eukaryotic and prokaryotic communities. A higher inverse 

Simpson’s value indicates that there are more dominant members in the community and that the 

community has higher evenness. More specifically, it is one over the probability that two 

randomly selected individuals (with replacement) will belong to the same OTU (Tuomisto, 

2012). In addition, to be consistent with other literature in microbial ecology, we also report the 

Shannon entropy, which accounts for both abundance and evenness of species present. Finally, 

https://github.com/DenefLab/Diversity_Productivity/blob/master/data/mothur/mothur.batch.taxass
https://github.com/DenefLab/Diversity_Productivity/blob/master/data/mothur/mothur.batch.taxass
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we describe a pure measure of evenness known as Simpson’s evenness that removes any 

potential effect of observed richness (Magurran, 2004; see below). To get the best estimate of 

each diversity metric, each sample was subsampled to 6,664 sequences (the smallest library size) 

with replacement and was averaged over 100 trials. Observed richness, Shannon entropy, and 

inverse Simpson’s index were calculated using the diversity function within the vegan (Oksanen 

et al., 2013) R package via the estimate_richness function in the phyloseq (McMurdie and 

Holmes, 2013) R package. Simpson’s Evenness was calculated by dividing the inverse 

Simpson’s index by the observed richness (Magurran, 2004).  To calculate phylogenetic 

diversity, we first removed OTUs that had a count of 2 sequences or less throughout the entire 

dataset, as these are more prone to be artefacts originating from sequencing errors or the OTU 

clustering algorithm. Representative sequences of each of the 1,891 remaining OTUs were 

collected from the aligned fasta file produced within mothur, and header names in the mothur 

output fasta file were modified using bbmap (Bushnell, 2016) to only include the OTU name. A 

phylogenetic tree was created with FastTree using the GTR+CAT (general time reversible) 

model (Price et al., 2010). Mismatches between the species community data matrix and the 

phylogenetic tree were checked with the match.phylo.comm command (picante).  Finally, both 

abundance-unweighted and -weighted phylogenetic diversity was estimated using specifications 

described in the next paragraph with the picante R package. 

 

The most common phylogenetic diversity (PD) measure is Faith’s PD (Faith, 1992), however, 

this metric is very strongly correlated with species richness (Figure SI 3.5). Instead, the mean 

pairwise phylogenetic distance (or MPD) was calculated (ses.mpd function in the Picante R 

package (Kembell et al., 2010), null.model = “independentswap”). The MPD measures the 

average phylogenetic distance between all combinations of two taxa pulled from the observed 

community and compares it with a null community of equal richness pulled from the gamma 

diversity of all the samples (see supplemental methods for more details). Values higher than zero 

indicate phylogenetic evenness or overdispersion (higher phylogenetic diversity) while values 

less than zero indicate phylogenetic clustering (lower diversity) or that species are more closely 

related than expected according to the null community (Kembel, 2009). Thus, this phylogenetic 

metric is relative. Here we refer to the SESMPD as the “phylogenetic diversity” for simplicity and 

clarity.  
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Statistical analysis   

Further analysis of sequence data was performed in R version 3.4.2 (R Core Team 2017; see 

supplemental methods for more details). To test which variable(s) were the best predictors of 

community and per-capita heterotrophic production, we performed variable selection via a lasso 

regression (using the glmnet R package, alpha = 1, and lambda.1se as the tuning parameter 

(Friedman et al., 2010)) on all of the environmental, biodiversity, and principal component 

variables. To further validate the lasso regression results, we performed ordinary least squares 

(OLS) regressions on all variables, including the principal components (PCA) of the euclidean 

distances of the environmental data. We used the Akaike information criterion (AIC) (accessed 

with the broom::glance() command) to select the best performing OLS regression model. 

 

Data and code availability  

Original fastq files can be found on the NCBI sequence read archive under BioProject accession 

number PRJNA412984. Processed data and code can be found on the GitHub page for this 

project at https://deneflab.github.io/Diversity_Productivity/ with the main analysis at 

https://deneflab.github.io/Diversity_Productivity/Final_Analysis.html 

 

 

Results 

Free-living communities had more cells and higher community-wide heterotrophic 

production, but particle-associated communities had higher per-capita heterotrophic 

production 

We observed an order of magnitude more cells per milliliter (p = 1 x 10-6, Figure 3.1A) and ~2.5 

times more community-wide heterotrophic production in the free-living fraction (p = 0.024, 

Figure 3.1B). However, when calculated per-capita, particle-associated bacteria were on average 

an order of magnitude more productive than free-living bacteria (p = 7 x 10-5, Figure 3.1C). 

Particle-associated and free-living cell abundances in samples taken from the same water sample 

did not correlate (Figure SI 3.6A). Heterotrophic production between corresponding free-living 

and particle-associated fractions from the same water sample were positively correlated for both 

https://deneflab.github.io/Diversity_Productivity/
https://deneflab.github.io/Diversity_Productivity/Final_Analysis.html
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community (Adjusted R2 = 0.40, p = 0.017; Figure SI 3.6B) and per-capita production rates 

(Adjusted R2 = 0.60, p = 0.003; Figure SI 3.6C). 

 

Particle-associated communities are more diverse in terms of observed richness and Shannon 

Entropy while free-living communities are more phylogenetically diverse 

Across all samples, particle-associated bacterial communities were more diverse than free-living 

communities when considering richness and Shannon entropy (Figures 3.2A & SI 3.7), but 

similar in the inverse Simpson’s index and Simpson’s evenness (Figure 3.2B & SI 3.7B).   

 

Particle-associated bacterial community richness was always higher than in free-living 

communities and was maintained across the four sampling stations in the lake (Figure SI 3.8A). 

Particle-associated samples at the river and Bear lake stations were on average more OTU-rich 

than the outlet to Lake Michigan and the Deep stations. Additionally, the river station had almost 

twice the inverse Simpson’s value as compared with all other lake stations (Mean inverse 

Simpson Indices: Outlet = 23.6; Deep = 23.7; Bear = 35.3; River = 59.1; Figure SI 3.8A).  

 

Particle-associated communities were more phylogenetically clustered than free-living 

communities based on unweighted phylogenetic diversity (p = 0.01, Figure 3.3A). Compared to 

other particle-associated samples, the outlet station that connects to oligotrophic Lake Michigan 

had a much larger unweighted phylogenetic diversity, indicating phylogenetic overdispersion 

(Figure SI 3.8A).  Nevertheless, no sample across the entire dataset differed significantly in their 

unweighted phylogenetic diversity from the null model with a significance threshold p-value of 

0.05.  There was no difference between weighted phylogenetic diversity in particle-associated 

versus free-living communities (Figure SI 3.8A).   

 

Diversity-Productivity relationships are only observed in particle-associated communities 

There was a strong, positive, linear BEF relationship between community-wide (Figures 3.2C-D 

& SI 3.7 C-D) and per-capita (Figures 3.2E-F & SI 3.7 E-F) heterotrophic productivity and all 

richness and evenness diversity metrics in the particle-associated communities, while no BEF 

relationships were observed for the free-living communities.  The inverse Simpson’s index 

explained the most variation in community-wide (Figure 3.2D; Adjusted R2 = 0.69, p = 5 x 10-4) 
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and per-capita (Figure 3.2F; Adjusted R2 = 0.69, p = 0.001) heterotrophic production. These 

results are robust across a range of minimum OTU abundance filtering thresholds (see Sensitivity 

Analysis of Rare Taxa in the supplemental methods and Figure SI 3.9) and hold up for all 

threshold levels in Inverse Simpson and for richness until removal of 25 counts (community-

wide heterotrophic production) and 15 counts (per-capita heterotrophic production). When the 

particle-associated and free-living samples were combined together into one linear model to test 

an overall relationship between diversity and community-wide heterotrophic production, there 

was no relationship (richness: p = 0.86; Shannon: p = 0.99; Inverse Simpson: p = 0.36), with the 

exception of a weak correlation for Simpson’s Evenness (Adjusted R2 = 0.12, p = 0.054). 

However, when particle-associated and free-living samples were combined together into one 

linear model to test an overall relationship between diversity and per-capita heterotrophic 

production, there was a strong relationship with observed richness (Adjusted R2 = 0.63, p = 3 x 

10-6), which broke down as evenness was weighted more (Figure SI 3.11: Shannon: Adjusted R2 

= 0.52, 6 x 10-5; Inverse Simpson: Adjusted R2 = 0.48, p = 2 x 10-4; Simpson’s Evenness: p = 

0.48). 

 

Phylogenetic diversity correlated with per-capita heterotrophic production but not with 

community-wide production 

Abundance-weighted phylogenetic diversity was not correlated with community or per-capita 

heterotrophic production (Figure SI 3.12 C-D) and therefore no further analyses were performed 

with this diversity metric.   

 

There was a moderate, negative, linear relationship when particle-associated and free-living 

samples were combined together into one linear model to test an overall relationship between 

unweighted phylogenetic diversity and observed richness (Figure 3.3B; Adjusted R2 = 0.35, p = 

0.001). To further validate this trend, randomized communities were generated with an equal 

richness as the samples but with OTUs randomly picked across the dataset. The unweighted 

phylogenetic diversity was then calculated and regressed against each randomized richness and 

there was no relationship (Figure SI 3.13; Adjusted R2 = -0.02, p = 0.44), verifying the negative 

relationship in the actual samples. When particle-associated and free-living samples were 

individually run in separate linear models to test for habitat-specific relationships between 



 74 

unweighted phylogenetic diversity and observed richness, no trend was found in either particle-

associated or free-living models (Figure 3.3B; Particle: Adjusted R2 = 0.14, p = 0.12; Free = 

Adjusted R2 = -0.10, p = 0.97). In other words, particle-associated and free-living diversities did 

not have individual effects on community-wide or per-capita heterotrophic production but rather, 

all samples were necessary for a correlation between per-capita heterotrophic production and 

unweighted phylogenetic diversity.  

 

There was no correlation between phylogenetic diversity and community-wide heterotrophic 

production (Figure 3.3C). However, a negative correlation was found when particle-associated 

and free-living samples were combined into one linear model to test an overall relationship 

between unweighted phylogenetic diversity and per-capita heterotrophic production (Figure 

3.3D; R2 = 0.42, p = 5 x 10-4). Therefore, these two results in combination indicated that 

communities composed of more phylogenetically similar OTUs had a higher per-capita 

heterotrophic production rate.   

 

Diversity, not environmental variation, is the best predictor of particle-associated 

heterotrophic production  

To identify variables that best predicted community-wide and per-capita heterotrophic 

production (i.e., remove variables that were correlated with each other and/or uninformative 

variables), we performed lasso regression with all samples and individually with particle-

associated and free-living samples. For prediction of community-wide heterotrophic production, 

only the inverse Simpson’s index was selected for particle-associated samples whereas pH and 

PC5 were selected for free-living samples, and no variables were selected when all samples were 

included in the lasso regression.  In contrast, for per-capita heterotrophic production, temperature 

and the inverse Simpson’s index were selected for particle-associated samples whereas pH was 

the only predictor for free-living samples, and observed richness was the only predictor for all 

samples (plotted in Figure SI 3.11A). Therefore, the best model for particle-associated 

microhabitats always included inverse Simpson’s index whereas free-living samples only 

included environmental variables, such as pH. 
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To further verify that there were no confounding impacts of seasonal and environmental 

variables on community-wide and per-capita heterotrophic production, we performed ordinary 

least square (OLS) regressions and a dimension-reduction analysis of the environmental 

variables through a principal component analysis (Table SI 3.1 & 3.2; Figure SI 3.14). 

Specifically, the first 2 environmental axes explained ~70% of the environmental variation in 

heterotrophic production among the sampling sites (Figure SI 3.14).  Next, we predicted 

community-wide and per-capita heterotrophic production with all environmental variables and 

the first six principal components as predictor variables with individual particle-associated and 

free-living samples, and combined (i.e., all samples) models (Table SI 3.1 & 3.2). The best 

single predictor of community-wide heterotrophic production was Inverse Simpson for particle-

associated samples (AIC = 74.34; R2 = 0.69), pH for the free-living samples (AIC =98.43; R2 = 

0.49, p = 0.006), and pH for all samples (AIC = 192.16; R2 = 0.35) (Table S1). The best single 

predictor of per-capita heterotrophic production was Inverse Simpson for particle-associated 

samples (AIC = 8.29; R2 = 0.69), pH for the free-living samples (AIC = -2.39; R2 = 0.78), and 

observed richness for all samples (AIC = 24.72; R2 = 0.63) (Table SI 3.2). Thus, the OLS 

regressions are in agreement with the lasso regressions. 

 

 

Discussion 

We examined bacterial biodiversity-ecosystem function (BEF) relationships in relation to two 

microhabitats within freshwater lakes: particulate matter and the surrounding water. First, we 

found that community-wide and per-capita heterotrophic productivity of particle-associated but 

not free-living bacterial communities showed a positive, linear BEF relationship with both 

richness and evenness contributing.  Second, particle-associated heterotrophic production was 

better explained by diversity (i.e., inverse Simpson’s index) than by environmental parameters. 

Third, across both particle-associated and free-living communities, higher richness was 

associated with lower phylogenetic diversity which, in turn, was associated with higher per-

capita heterotrophic bacterial production but not associated with community-wide heterotrophic 

production.  
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Microbes have a large diversity of metabolisms and the choice of which to focus on may 

inherently affect the BEF relationship.  Indeed, “narrow” metabolic processes that are catalyzed 

by a small subset of taxa within bacterial communities, such as nitrogen and sulfur cycling, have 

been found to display BEF relationships (Levine et al., 2011; Delgado-Baquerizo et al., 2016). In 

contrast, for “broad” processes that are performed by the majority of taxa within a bacterial 

community, such as heterotrophic production (focus of the present study) and respiration, 

functional redundancy appears to weaken or remove the presence of BEF relationships (Griffiths 

et al., 2000; Wertz et al., 2006; Levine et al., 2011; Peter et al., 2011, Galand et al, 2015).  These 

findings are in line with the absence of a BEF relationship for free-living bacterial communities 

in our study.  

 

However, the above results and hypotheses surrounding narrow and broad processes are in 

conflict with the strong BEF relationship we observed in particle-associated bacterial 

communities. As such, our study shows that microhabitats or habitat heterogeneity can influence 

bacterial BEF relationships, in agreement with previous research in eukaryotic systems across a 

variety of ecosystems (Tylianakis et al., 2008; Cardinale 2011; Zeppilli et al., 2016).  A study 

using controlled stream mesocosms by Cardinale (2011) found that niche complementarity 

effects are particularly important in more heterogeneous environments. In more heterogeneous 

streams, algal populations used different nutrients and avoided direct competition for resources, 

resulting in unique species occupying distinct and local microhabitats. 

 

Our observational study could not directly test the role of niche complementarity effects. 

However, support for niche complementarity alone or in combination with species selection as 

the mechanism underlying the BEF relationship in particle-associated habitats is provided by the 

inverse Simpson’s index being the strongest predictor of community-wide heterotrophic 

production. As the inverse Simpson’s index represents a measure of species dominance, it is 

strongly affected by the evenness of abundant species. Communities that are more even have an 

increased likelihood for complementary species to be neighbors. However, it is interesting that 

the inverse Simpson’s metric explains more variation (R2 = 0.69, Figure 3.2D & F) compared to 

Shannon entropy (R2 = 0.52-0.55, Figure SI 3.7 C & E), which may indicate that dominant 
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members of the community have more of an influence on heterotrophic production than does 

overall community evenness.  

 

In our study, there are three main reasons why heterogeneity of particulate matter may allow for 

niche complementarity effects to occur and result in BEF relationships.  First, particles have a 

two-fold layer of heterogeneity as they (A) may be composed of different substrates such as 

organic matter from terrestrial or aquatic environments and either heterotrophically or 

photosynthetically derived (Grossart, 2010), and (B) each particle may comprise 

physicochemical gradients as well (Simon et al., 2002). Second, particle-associated bacteria are 

typically more active per capita than compared to their free-living counterparts (Figure 3.1C; 

Harvey & Young, 1980; Crump et al., 1998; Riemann et al., 2000). Third, microbial interactions 

are more likely to occur between cells aggregated on particles as the interaction distances are 

usually much shorter (Cordero & Datta, 2016) compared to free-living bacterial cells. In fact, 

genes mediating social interactions, such as motility, adhesion, cell-to-cell transfer, antibiotic 

resistance, mobile element activity, and transposases, have been found to be more abundant in 

marine particles than compared to the surrounding water (Ganesh et al., 2014).   

 

The importance of niche complementarity in microbial communities can also be deduced from 

recent findings in the field of microbiology, which have shown widespread metabolic 

interdependence among bacterial community members.  First, a 2016 study that reconstructed 

2,540 draft genomes of microbes found that most bacteria specialize in one particular step in 

sulfur and nitrogen pathways and “hand-off” their metabolic byproducts to nearby organisms 

(Anantharaman et al., 2016). It is likely that metabolic hand-offs, also known as cross-feeding, is 

a specific form of bacterial facilitation that will occur more in particle-associated compared to 

free-living communities. Indeed, Datta and Cordero’s (2016) work on model marine particles 

found that taxa that are incapable of breaking down particles and instead rely on carbon 

produced by primary degraders thrive in later phases of particle degradation. Second, Lilja and 

Johnson (2016) demonstrated that different microbial cell types eliminate inter-enzyme 

competition by cross feeding, which increases substrate consumption by allowing intracellular 

resources to go towards a single enzyme, rather than having two enzymes that perform two 

separate reactions compete for nutrients within a cell.  Third, some bacteria are unable to grow in 
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laboratory cultures unless they are in co-culture with other organisms, which may be due to 

metabolic hand-offs or to growth factors such as siderophores or catalases (Stewart, 2012). 

Indeed, Bell and coauthors (2005) discussed that the positive relationship between bacterial 

respiration and species richness were due to “synergistic interactions among bacterial species of 

which complementarity is one possibility, had an important role in functioning.” 

 

Taking into account that (i) closely related taxa share more genes and metabolic pathways than 

distantly related bacterial taxa (Konstantinidis & Tiedje, 2005; Kim et al., 2014) and (ii) bacteria 

commonly have incomplete metabolic pathways, we propose that closely related bacteria may be 

most likely to hand-off their metabolic byproducts. This may be why we found that new taxa 

added to the community represented taxonomic clades similar to or already present in the 

community, and that these communities with lower phylogenetic diversity (relative to expected) 

had higher productivities. This result is in line with a recent study using freshwater algae and 

vascular plants that rejects predictions from the phylogenetic limiting similarity hypothesis 

(Narwani et al., 2017). However, recent bacteria-focused studies from Russel et al. (2017) and 

Venail and Vives (2013) found higher levels of antagonism (Russel et al., 2017) or more 

bacterial productivity (measured through colony forming units per mL;Venail and Vives, 2013) 

with more distantly related taxa. Both of these studies were performed in the lab with r-selected 

(i.e., copiotrophic) species grown in stable, warm, aerobic, agar plate conditions. Thus, Venail 

and Vives (2013) and Russel et al. (2017) inherently break up potential interdependent 

relationships between bacteria either by creating artificial communities or evaluating pairwise 

interactions and remove the natural effect of spatial heterogeneity, environmental fluctuations, 

and the rest of the bacterial community. As a result, future studies on bacterial interactions and 

the role of phylogenetic diversity will need to maintain natural structure and complexity in 

bacterial communities.  

 

Previous studies on bacterial BEF relationships have used three approaches to manipulate 

bacterial diversity (Krause et al., 2014): (1) dilution to extinction in which complex communities 

are diluted to more simple communities (Wertz et al., 2006; Peter et al., 2011; Philippot et al., 

2013; see Roger et al., 2016 for a review of this approach),  (2) manually assembled 

communities in culture (Tan et al., 2012; Salles et al., 2009), or (3) natural or manipulated 
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environmental communities (Griffiths et al., 2000; Levine et al., 2011; Galand et al., 2015).  In 

this study, we took the latter approach. In contrast to the other two approaches, this had the 

benefit of (1) maintaining high diversity with both abundant and rare taxa, (2) including both r- 

and k-selected organisms, (3) allowing natural environmental and ecological forcings to shape 

the community, and (4) evaluating BEF relationships in diversity and productivity ranges that 

reflect natural communities. Specifically, Langenheder et al. (2010) discussed that metabolic 

cross-feeding may have not been important in their experimental communities because their 

chosen substrates could have been completely degraded and unlikely to have produced metabolic 

byproducts that could be used by other taxa. In an observational system, these types of 

complexities should remain in the system. Admittedly, three inherent weaknesses to our 

approach were that (1) we cannot measure all the potential variables that influence heterotrophic 

productivity, (2) we only have 24 samples for a 12 versus 12 study, and (3) our analysis is 

correlational and we cannot manipulate the system to unequivocally separate causes and 

consequences of bacterial production. For example, strong correlations with heterotrophic 

production and pH in the free-living samples (Table S1 & S2) may point to pH being a 

consequence of rather than a cause of varying production levels. This is because bacterial 

production and bacterial respiration are positively correlated (del Giorgio & Cole, 1998) and 

with increased respiration and CO2 production, pH may decrease due to CO2 dissolution into the 

water.  

 

Finally, we acknowledge that the typical sampling of bacterial communities and analysis using 

DNA sequencing reflects all bacteria present in the community and not necessarily only the 

active members of the community contributing to a given ecosystem function. In freshwater 

systems, up to 40% of cells from the total community have been shown to be inactive or dormant 

(Jones and Lennon, 2010).  If one were to sample plant communities in an analogous way to 

bacterial systems, one would measure the diversity of all the above- and below-ground plant 

biomass including seeds, pollen, and detrital biomass. In this context, it is interesting to reflect 

on the richness in absence of function (i.e., x-intercept) of the observed BEF relationship which 

is 295 OTUs (Figure 3.2C). This could be interpreted as a baseline level of 295 inactive (either 

dead, dormant, or not utilizing the leucine substrate used in our methods) bacterial OTUs and in 

the case of particulate material, environmental DNA adhered to the substrate, in the community. 
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The value of 295 OTUs value represents 35-85% of the total OTU richness of particle-associated 

communities and may obscure the actual diversity (and BEF relationship) of the bacterial 

community (Carini et al., 2016). In other words, the BEF relationships are driven by the fraction 

of cells that are active relative to dormant. While heterotrophic productivity (Figure SI 3.6 B & 

C) of particle-associated and free-living communities are correlated, the fact that a BEF 

relationship was only observed for particle-associated communities suggests that differences may 

exist in the relationship between total diversity and the fraction of dormant cells in free-living 

and particle associated microhabitats. However, we did not measure the extent of dormancy in 

each sample and can only make the above inferences based on the model in Figure 3.2C.  

 

In conclusion, we show that increased bacterial diversity, especially when measured by the 

inverse Simpson’s index, leads to increased total and per-capita bacterial heterotrophic 

production in particle-associated but not in free-living communities. As such, we extend the 

validity of principles of the impact of microhabitat on BEF relationships from Eukarya to 

Bacteria, contributing to current efforts to integrate ecological theories into the field of 

microbiology (Barberán et al., 2014). Additionally, we show that communities with low 

phylogenetic diversity have higher per-capita heterotrophic production rates, which we 

hypothesize to be related to genome evolutionary patterns specific to bacteria that result in the 

dependence on metabolic hand-offs. Differences between Bacteria and Eukarya in patterns of 

genome evolution and its ecological consequences, as well as in how active and dormant 

fractions of the community are measured, need to be considered when trying to integrate BEF 

studies across all domains of life.  
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Figure 3.1.  Bacterial counts, community-wide and per-capita heterotrophic production differ 

between microhabitats. 

 

Particle-associated and free-living samples were taken from four stations within Muskegon Lake 

during 2015 in May, July, and September.  (A) Free-living bacteria were an order of magnitude 

(106 cells/mL) more abundant compared to particle-associated bacteria. (B) Free-living bacteria 

were more heterotrophically productive compared to particle-associated bacteria. (C) Particle-

associated bacteria were disproportionately heterotrophically productive per cell compared to 

free-living bacteria. 
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Figure 3.2.  Richness and Inverse Simpson correlate with heterotrophic productivity. 

 

Top panel: Differences in (A) the observed richness and (B) the inverse Simpson diversity 

metrics between particle-associated (orange) and free-living (blue) habitats. Middle panel: 

Biodiversity and community-wide heterotrophic production (µgC/L/day) relationships. The y-

axis between (C) and (D) is the same, however, the x-axis represents (C) richness and (D) 

Inverse Simpson.  Bottom panel: Biodiversity and log10(per-capita heterotrophic production) 

(µgC/cell/day) relationships.  The y-axis between (E) and (F) is the same, however, the x-axis 

represents (E) richness and (F) Inverse Simpson’s index. Solid lines represent ordinary least 

squares models for the free-living (blue) and particle associated (orange) communities. All R2 

values represent the adjusted R2 from an ordinary least squares model. 
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Figure 3.3.  The relationship 

between heterotrophic productivity 

and unweighted phylogenetic 

diversity. 

 

(SESMPD; ses.mpd function in 

picante with null.model = 

“independentswap”).  

Positive phylogenetic diversity 

values represent communities that 

are phylogenetically diverse (i.e., 

overdispersed) while negative 

phylogenetic diversity values 

represent communities that are 

phylogenetically less diverse (i.e., 

clustered) compared to a null 

community with equal species 

richness. (A) Phylogenetic 

diversity was higher in free-living 

communities compared to particle-

associated communities. (B) 

Negative relationship between 

observed richness and 

phylogenetic diversity.  (C) 

Absence of phylogenetic diversity 

and community bulk heterotrophic 

production (µgC/L/day) 

relationships. (D) Negative 

phylogenetic diversity and per-

capita heterotrophic production 

(µgC/cell/day) relationship. Linear 

models in figure B and D represent 

trends over all samples. 
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Supporting Information 3.A.  Supplemental Methods for Chapter III 

 

Supplemental Methods 

Map of Muskegon Lake  

The Muskegon Lake map (Figure S1) was created by using the pre-existing 2006 National 

Hydrography Dataset (NHD) GIS feature data for the Muskegon Lake shoreline was adjusted to 

an updated 2008 format using ESRI™ ArcGIS software and high resolution (6” pixel) leaf-off 

aerial orthophotography. Historic mean water level for Lake Michigan was then used to estimate 

Muskegon Lake water level for April 2008 at 176.4 meters. This water level was used as the base 

elevation and adjustment point for correcting all relevant lake bathymetric data, taken from the 

recently, published February 2008 NOAA electronic bathymetric chart for Muskegon Lake. The 

corrected GIS shoreline boundary and the supplemental NOAA bathymetric point data were used 

to generate a new bathymetric grid (raster) feature for Muskegon Lake from which, contours 

were created at 2m depth intervals. This bathymetric map was then laid under a Google Earth 

image of Muskegon Lake and the immediately surrounding area. 

 

DNA Extraction 

In summary, the filters were first washed with phosphate-buffered saline (pH 7.4) and folded 

(cell-side in) to minimize cell loss and to remove RNAlater, which inhibits DNA yields. Then 

the filters were placed in a 2 mL tube with 600 μL of buffer RLT plus (Qiagen) and incubated for 

90 min at room temperature using a vortex on medium setting (5 of 10). After incubation, tubes 

were vortexed on high for 10 min. The lysate was transferred to a QiaShredder column (Qiagen), 

300 μL of 100% ethanol was added to the lysate and then transferred to a DNA column (DNeasy 

Blood and Tissue Kit, Qiagen) and washed with 350 μL of buffer AW1 (Qiagen). Next, 80 μL of 

proteinase K solution was added to the DNA column and incubated at room temperature for 5 

min. The DNA column was washed with buffer AW1 and buffer AW2. DNA was eluted using 2 

× 30 μL elution buffer (buffer EB, Qiagen) into two separate fresh 1.5 mL centrifuge tubes for 

temporary storage at 4°C until processed for sequencing or in −80°C freezer for sample 

archiving. 
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Sequence Processing 

We analyzed the sequence data using MOTHUR V.1.38.0 (seed = 777; Schloss et al., 2009) 

based on the MiSeq standard operating procedure accessed on 3 November 2015 and modified 

with time (see data accessibility and supplemental methods). Briefly, paired-end reads were 

merged into contigs based on the Phred quality score heuristic with make.contigs (Kozich et al., 

2013). Contigs were filtered based on ambiguous bases, more than 8 homopolymers, a length 

outside of 240-275. Next, sequences were de-replicated and representative sequences were 

aligned with the Silva database and those not corresponding to the V4 region were removed. 

After the sequences were de-replicated and filtered, sequencing errors were removed using 

pre.cluster and chimeras were removed with UCHIME (Edgar et al., 2011). We then clustered 

representative sequences into OTUs at 97% similarity using the average neighbor algorithm 

(cluster.split command) and assigned the taxonomy of the OTUs using the Wang method 

implemented in the Ribosomal Database Project classifier (classify.seqs command).  

 

Sensitivity Analysis of Rare Taxa 

Due to the long tails within microbial rank-abundance curves (i.e., many rare taxa), we 

performed a sensitivity analysis to see the impact of rare taxa on the BEF relationships we 

observed (Figure S6). We removed OTUs that had a count of 1, 5, 10, 20, 30, 60, 90, 150, 225, 

and 300 sequences throughout the entire dataset and then checked the relationship with diversity 

versus community-wide and per-capita heterotrophic production (Figure S6). For example, 

removing 10-tons will be removing any OTUs that have a count of less than 10 sequences 

throughout the entire dataset. All code is for this supplementary analysis is available at: 

https://deneflab.github.io/Diversity_Productivity/analysis/OTU_Removal_Analysis.html 

 

Calculating Phylogenetic Diversity 

Instead of using Faith’s phylogenetic diversity (Faith, 1992), we used the mean pairwise 

phylogenetic distance (or MPD), which measures the average phylogenetic distance between all 

combinations of two taxa pulled from the observed community. The MPD of the observed 

community was compared to the MPD of a null community with the same OTU richness and 

abundances randomized across OTUs pulled from all of the samples in the dataset. The 

difference between the observed MPD metric and randomized MPD metric were compared to 

https://deneflab.github.io/Diversity_Productivity/analysis/OTU_Removal_Analysis.html
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each other while dividing by the standard deviation of the null community, known as the 

standardized effect size or SES (Gurevitch et al., 1993) of the MPD, or SESMPD, (ses.mpd 

function in picante using null.model = “independentswap”; equation 1). We calculated both the 

abundance-unweighted and -weighted metrics of SESMPD (Webb et al., 2002). The SESMPD of 

each local community was calculated as follows:  

𝑆𝐸𝑆𝑀𝑃𝐷 =  
𝑀𝑃𝐷𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑− 𝑀𝑒𝑎𝑛(𝑀𝑃𝐷𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑)

𝑆𝐷(𝑀𝑃𝐷𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑)
                (1) (Kembel, 2009) 

Specifically, this model tests whether the mean SESMPD across samples differs from the null 

community (randomly generated from all samples to generate a randomized regional species 

pool) with an SES value of zero. Therefore, values higher than zero indicate phylogenetic 

evenness or overdispersion (higher phylogenetic diversity) while values less than zero indicate 

phylogenetic clustering (lower diversity) or that species are more closely related than expected 

according to the null community (Kembel, 2009).  

 

Standard Statistical Testing 

Data analysis was performed using R version 3.4.2 (R Core Team 2017), specifically with the 

phyloseq (McMurdie and Holmes, 2013), stats (R Core Team 2017), and broom (Robinson, 

2017) R packages. All main figures were made using the ggplot2 R package (Wickham, 2009).  

 

To assess a statistical difference in particle-associated and free-living cell abundances, 

community production rates, per-capita production rates, and biodiversity metrics, a Wilcoxon 

rank sum test (wilcox.test function) was performed. We evaluated whether diversity metrics or 

environmental variables predicted heterotrophic production rates using ordinary least squares 

linear regression (lm function) and accessed specific variables with broom::glance() (i.e., AIC, 

adjusted R2). P-values were corrected using the false discovery rate method using the 

p.adjust(method = “fdr”) function in the stats package.  
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Table SI 3.1.  Results from linear regression for predicting community-wide heterotrophic 

production. 

All diversity and environmental variables with a FDR-corrected p-value of less than 0.05, sorted 

by AIC. 

 
FRACTION INDEPENDENT 

VARIABLE 
AIC ADJUSTED R 

SQUARED 
FDR-CORRECTED 

P-VALUE 

PARTICLE Inverse Simpson 74.34 0.69 0.0019 
PARTICLE Richness 78.68 0.56 0.0063 
PARTICLE Shannon Entropy 79.61 0.52 0.0063 
PARTICLE Simpsons Evenness 80.85 0.47 0.0082 

ALL SAMPLES pH 192.16 0.35 0.0329 
 

 

 

 

 

Table SI 3.2.  Results from regressions of per-capita heterotrophic production. 

Ordinary least squares linear regressions predicting per-capita heterotrophic production from 

all diversity and environmental variables with a FDR-corrected p-value of less than 0.05, sorted 

by AIC. 

 
FRACTION INDEPENDENT 

VARIABLE 
AIC ADJUSTED R 

SQUARED 
FDR-CORRECTED 

P-VALUE 

FREE pH -2.39 0.78 0.0025 
PARTICLE Inverse Simpson 8.29 0.69 0.0038 
PARTICLE Richness 11.95 0.57 0.0075 
PARTICLE Shannon Entropy 12.43 0.55 0.0075 
PARTICLE Simpsons Evenness 13.65 0.49 0.0096 

ALL SAMPLES Richness 24.72 0.63 0 
ALL SAMPLES Shannon Entropy 30.87 0.52 0.0001 
ALL SAMPLES Inverse Simpson 33.42 0.46 0.0003 
ALL SAMPLES Unweighted PD 35.21 0.42 0.0124 
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Figure SI 3.4.  Bathymetric map of Muskegon Lake. 

 

Bathymetric map of Muskegon Lake with locations of the Muskegon Lake Observatory Buoy 

(MLO) and the four sampling locations used in this study. Bathymetric iso-lines represent 

approximately 2m changes in water depth. 
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Figure SI 3.5.  Faith’s phylogenetic correlates with species richness. 

 

Faith’s phylogenetic diversity is highly correlated with species richness and thus, it is important 

to compare standardized effect sizes that are measured when actual samples are compared to a 

randomized null model.  
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Figure SI 3.6.  Correlation between corresponding particle-associated and free-living samples. 

 

(A) cell abundances in log10(cells/mL), (B) community-wide heterotrophic production (µg 

C/L/day), (C) log10(per-capita production) in µgC/cell/day. 
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Figure SI 3.7.  Correlation between corresponding particle-associated and free-living samples. 

 

(A) cell abundances in log10(cells/mL), (B) community-wide heterotrophic production (µg 

C/L/day), (C) log10(per-capita production) in µgC/cell/day. 
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Figure SI 3.8.  Diversity analysis with Shannon entropy and Simpson’s Evenness. 

 

Top Panel: (A) Shannon entropy and (B) Simpson’s evenness diversity metric between free-

living (blue) and particle-associated (orange) habitats. Middle panel: The relationship between 

bacterial diversity and community-wide heterotrophic production (µgC/L/day). The y-axis is the 

same however, the x-axis represents (C) Shannon entropy and (D) Simpson’s evenness. Bottom 

panel: The relationship between bacterial diversity and log10(heterotrophic production/cell) 

(µgC/cell/day). The y-axis is the same however, the x-axis represents (E) Shannon entropy and 

(F) Simpson’s evenness. R2 and p-values represented in the figures are outcomes of an ordinary 

least squares regression for the particle associated (orange) samples. 
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Figure SI 3.9.  The six diversity metrics assessed in this study across station and seasons. 

 

Top: Particle-associated (orange) and free-living (blue) diversity values across the estuarine 

gradient in Muskegon Lake by station (from west to east). All diversity metrics calculated in this 

study are included. Bottom: Diversity values by season.    
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Figure SI 3.10.  Sensitivity analysis of rare taxa on biodiversity-ecosystem function 

relationships. 

 

OTU removal analysis of particle-associated communities of singletons, doubletons, up to 300-

tons. (A) and (B) represent the diversity-productivity patterns of observed richness while (C) and 

(D) represent the diversity-productivity relationship with the inverse Simpson’s index. Plots (A) 

and (C) are community-wide heterotrophic production, while plots (B) and (D) are the log10(Per-

capita heterotrophic production). 
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Figure SI 3.11.  The relationship between bacterial diversity and log10(per-capita heterotrophic 

production) (µgC/cell/day) across all samples in the dataset. 

 

Diversity metrics on the x-axis are: (A) Observed richness, (B) Shannon entropy, (C) inverse 

Simpson’s and (D) Simpson’s evenness. Adjusted R2 and p-values represent were calculated 

from an ordinary least squares linear regression model. 
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Figure SI 3.12.  Abundance-weighted phylogenetic diversity analysis. 

 

 (A) between particle-associated and free-living communities. (B) Absence of a correlation 

between abundance-weighted phylogenetic diversity and inverse Simpson’s index, (C) 

community-wide heterotrophic production, and (D) per-capita production. 
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Figure SI 3.13.  The relationship between randomized richness and standardized effect size. 

 

The richness values were the same value as actual samples, however, the OTUs across the 

samples were randomized across the gamma diversity of the entire dataset.   
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Figure SI 3.14.  Principal components analysis of the Euclidean distances of the environmental 

variables with a biplot (vectors) of the environmental drivers of stations in ordination space.  
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Chapter IV:  

The genomic basis of three aquatic bacterial lifestyles 

Introduction 

Particles play an important role in shaping aquatic bacterial community composition. First, 

aquatic particle-associated bacterial communities are generally taxonomically distinct from free-

living bacteria (Smith et al. 2013b, Mohit et al. 2014, Simon et al. 2014, Bižić-Ionescu et al. 

2015, Satinsky et al. 2016, Schmidt et al. 2016, 2017). Second, particles can shape aquatic 

microbial communities by acting as connective conduits between surface and deep-water 

microbial communities (Mestre et al. 2018). Finally, particles also provide microheterogeneity in 

the water column that helps sustain high levels of taxonomic and metabolic diversity in aquatic 

microbial communities (Hunt et al. 2008a, Grossart 2010, Stocker 2012, Salcher 2014). 

 

These differences in composition appear to have functional consequences. Cells attached to 

particulate matter have been shown to be disproportionately active, especially during the 

nighttime (Ghiglione et al. 2007), showing higher rates of proteolytic activities (Lemarchand et 

al. 2006) and a larger spectrum of polysaccharide hydrolase activities (Balmonte et al. 2018). 

Also, we have recently show that particles, and not their free-living counterparts, display positive 

biodiversity-ecosystem function relationships (Schmidt et al. 2017). Metagenomic analysis of 

particle-attached bacterial communities has also indicated a higher potential for gene exchange 

than in free-living bacteria, thus highlighting the potential role of particles in mediating bacterial 

genome evolution. For example, a study of bacteria living on the surface of green macroalgae 

possess more genes for DNA transfer than planktonic organisms (Burke et al. 2011), and the 

particle-associated bacterial communities in an oxygen minimum zone have shown a similar 

trend (Ganesh et al. 2014b). This latter study, as well as a study conducted on the California 

coast (Zeigler Allen et al. 2012), also found that genes originating from viruses were more 
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abundant in the particle-associated fractions. Therefore, it is likely that bacteria attached to 

particulate matter have unique genomic signatures compared with those living sympatrically as 

planktonic cells in the water.  

 

Recent research, particularly in marine systems, has found that the predominant free-living 

surface water bacterioplankton have streamlined genomes (Lauro et al. 2009, Swan et al. 2013). 

These “streamlined” organisms are categorized as living an oligotrophic lifestyle with small 

genomes, fewer gene duplications, lower GC content, and fewer non-coding regions (García-

Fernandez et al. 2004, Swan et al. 2013, Giovannoni et al. 2014). In contrast, particle-associated 

bacteria are likely to be copiotrophic (Lauro et al. 2009, Zeigler Allen et al. 2012, Allen et al. 

2013, Polz and Cordero 2016), although empirical data supporting this remains scarce (Zeigler 

Allen et al. 2012). Copiotrophic bacteria grow optimally at high nutrient concentrations, have 

larger cell and genome sizes, and higher maximum growth rates (Lauro et al. 2009). In addition, 

the increased prevalence of transposable elements and phage integration genes in particle-

associated bacterial communities likely has important implications for the genomes of particle-

associated bacteria (Shapiro et al. 2012).  Therefore, I hypothesize that particle-associated 

bacteria do not carry signatures of genome streamlining, such as reduced genome size, low GC 

percentage, and fewer non-coding regions (Swan et al. 2013, Giovannoni et al. 2014), while 

genomes of free-living bacteria do. 

 

The higher cell density and the difficulty in accessing nutrients in particles may lead to particle-

associated bacteria relying on each other to obtain nutrients. For example, particle-associated 

bacteria mutually benefit when they excrete extracellular enzymes, such as chitinases and 

collagenases, a known trait of copiotrophs (Lauro et al. 2009). Since the newly dissolved 

nutrients liberated from the enzymes randomly dissolve into the environment and become a 

public good, such dependencies among community members could allow for the evolution of 

different nutrient acquisition strategies (Cordero et al. 2012). On the other hand, free-living 

bacteria are often non-motile (Newton et al. 2011b) and are less likely to be physically in contact 

with each other or their metabolites. I hypothesize that free-living bacteria will have less 

potential for niche complementarity as they may not have as many unique functions that could 

allow for facilitation between nearby organisms.  
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Beyond examining the overall differences in genomic architecture, there is a need to identify the 

genetic traits that determine differences in bacterial composition between particle-associated and 

free-living habitats and whether these (or linked) genetic traits also determine the potential for 

distinct functional capacities between habitats. Assessing the genetic traits that allow bacteria to 

live in specific environments and catalyze certain ecosystem functions also relates to the broader 

question of how much of an organism’s ecology is reflected in, and thus can be predicted from, 

its genome? Here, particles and the surrounding free-water were used to test two hypotheses 

regarding the genomic traits that are signatures of specialist and generalist bacteria. First, that 

particle-associated bacteria do not carry signatures of genome streamlining, such as reduced 

genome size, low GC percentage, and fewer non-coding regions (Swan et al. 2013, Giovannoni 

et al. 2014), while genomes of free-living bacteria do. Second, that particle-associated bacteria 

have more unique metabolic functions per genome compared to free-living bacteria, which leads 

to a higher likelihood of particle-associated bacteria having complementary niches. This would 

help explain the higher diversity in particle-associated relative to free-living communities and 

provide a mechanistic explanation for the presence of a biodiversity-ecosystem function 

relationship in particle-associated bacterial communities (Schmidt et al. 2017). Specifically, we 

reconstructed genomes from 16 paired metagenomic surveys taken from two consecutive years 

and two nearby stations in a freshwater estuarine lake, Muskegon Lake, in Michigan USA. This 

lake is a hotspot for geochemical transformations and characterized by a stark gradient and broad 

range in both primary and secondary productivity across space and time (Weinke et al. 2014, 

Defore et al. 2016). I previously used this system to show BEF relationships particle-associated 

but not in in free-living communities in Chapter III.  

 

 

Methods   

DNA Extraction and metagenome sequencing 

The 16 samples used in this study were taken from 2 meters depth from two locations in the 

western part of Muskegon Lake, the deepest site of the lake and adjacent to the Lake Michigan 

channel during July and September of 2014 and 2015 as described in Chiang et al. (2018).  DNA 

was extracted following the protocol in McCarthy et al. (2015) as previously described in Chiang 
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et al. (2018). Sequencing of the 16 samples was multiplexed across 5 lanes and was performed at 

the University of Michigan DNA sequencing core using Illumina HiSeq 2500. Libraries were 

prepared with a mean insert size of 530 bp.  

 

Summary of quality control of sequencing reads 

Original quality evaluation of the raw sequences was performed with FastQC (Andrew, 2010) 

and summarized per sample with MultiQC (Ewels et al. 2016). Next, sequencing files were 

deduplicated using FastUniq (Xu et al. 2012) and bbmerge (Bushnell et al. 2017) was used to 

find adapter contamination in the deduplicated reads. Adapters and all bases to the right were 

removed based on pair overlap detection and both of the reads were trimmed to the same length 

with bbduk (also from bbmap). Trimmomatic (version 0.36; Bolger et al. 2014) was used for 

quality trimming of poor bases at the beginning and ends of reads with a quality score threshold 

of 20, a sliding window of 4:20, and minimum length requirement of 40 bp. Finally, FastQC 

(Andrew, 2010) and MultiQC (Ewels et al. 2016) were used as a sanity check to make sure 

quality control worked. 

 

Assembly and non-competitive coverage estimation   

Quality controlled sequences from each sample were assembled separately with MEGAHIT 

v1.0.6 (Li et al. 2015) with the meta-sensitive parameters of a kmer size ranging from 21 to 99 

with a k-step of 10. The coverage of resulting contigs across all quality-controlled sequences 

from each sample (via non-competitive mapping) was performed by indexing and mapping with 

BWA (index and mem functions; Li and Durbin 2009). Coverage files to inform binning were 

created using the bbmap function pileup.sh (Bushnell et al. 2017).  

 

Binning, and bin refinement 

Multiple binners were used to create bins, also known as metagenome-assembled genomes 

(MAGs), with contigs larger than 2,000 bp from the assembly. Binners that were used to create 

MAGs include MetaBAT 0.32.4 (Kang et al. 2015), MaxBin 2.2.4 (Wu et al. 2014; with idba 

1.1.3; bowtie2 2.1.0; hmmer 3.1b2), CONCOCT (SpeedUP_mp version; 

https://github.com/BinPro/CONCOCT/tree/SpeedUp_Mp; Alneberg et al. 2014), and VizBin 

(kmer length of 5; in which 2,500 bp and larger contigs were used; Laczny et al. 2015). A 

https://github.com/BinPro/CONCOCT/tree/SpeedUp_Mp
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custom python script (that will be available on this project’s GitHub repository) was used to 

parse VizBin’s points.txt output with differing levels of data classified as noise (min_samples 

argument; with values of 10, 15, 25, 50, 75, 100) by using a hierarchical density-based spatial 

clustering of applications with noise (HDBScan; McInnes et al. 2017). Next, bin refinement was 

performed with DAS Tool (Sieber et al. 2018) with a score threshold of 0.0 in two steps. First, 

DAS Tool was run with MAGs that varied in levels of noise from HDBScan to select the optimal 

MAGs from VizBin. Second, the MAGs from the first DAS Tool step with VizBin were used in 

addition to the output from CONCOCT, MaxBin, and MetaBAT.  

 

Dereplication and quality control of Metagenome Assembled Genomes (MAGs) 

The MAGs from the second DAS Tool run (total of 2,774 MAGs) were renamed based on their 

original sample and then de-replicated with dRep (Olm et al. 2017) with a primary cluster 

average nucleotide identity (ANI) threshold of 0.9, a secondary ANI threshold of 0.98, and a 

minimum genome completeness of 50%, which used completeness values estimated from 

CheckM (Parks et al. 2015). Only genomes that had a genome completeness higher than 50% 

were maintained (544 MAGs; Figure 1A). Next, genomes were removed using a genome quality 

score cutoff proposed in Parks et al. (2017) where quality was defined as completeness - 5 x 

contamination and only genomes with a quality equal to or greater than 50 were retained (325 

MAGs, Figure 1B). The quality was divided into three groups including “Near Complete” 

(completeness greater than or equal to 90% with contamination equal to or less than 5%), 

“Medium Quality” (completeness greater than or equal to 70% with contamination equal to or 

less than 10%), and “Partial Quality” (completeness greater than or equal to 50% with 

contamination equal to or less than 4%; Parks et al. 2017). Finally, because the chosen threshold 

value in dRep was not stringent enough, pyani (average_nucleotide_identity.py; Pritchard et al. 

2016) was used to calculate the ANI using blast (i.e., ANIb) of each of the pairwise comparison. 

All genomes that had another genome that was 99% similar were removed and only the genome 

with the highest quality and lowest contamination value was kept (175 MAGs; Figure 1C). 

 

MAG abundance estimation 

Contigs within recovered and de-replicated MAGs were compiled into one fasta file and used to 

index and perform competitive mapping of quality controlled sequencing reads to the compiled 
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fasta file with BWA (Li and Durbin 2009). Sam files from BWA were used to calculate the 

coverage estimates of each bin across all samples with pileup.sh from BBMap (Bushnell et al. 

2017). The abundance of each MAG per sample was calculated by summing the Plus_reads and 

Minus_reads output from pileup.sh per bin and per lane.  

 

Classification  

Classification of MAGs was performed with GraftM (Boyd et al. 2018), which uses hidden 

Markov models to search for genes within each MAG and then places each MAG into pre-

constructed gene trees. Here, 15 different ribosomal gene families were used to classify each 

MAG. Only classifications that were present at least 80% of the time were used for final 

classification. With the data from the 15 ribosomal datasets, a taxonomy table with a 

corresponding certainty table was constructed by checking all 15 classifications at each level, 

starting with the domain. If more than one classification was selected at the domain level, then 

the most frequent was selected. However, if there was a tie the domain was set to “unknown” 

along with all other lower taxonomic levels. Next, this process was performed at each taxonomic 

level. The certainty table included the percentage of the 15 datasets where the entire 

classification (i.e., with all levels) appeared.  

 

Annotation 

Genes and their associated predicted proteins were called within each MAG using Prodigal 

(Hyatt et al. 2010). Predicted protein sequences were used to search for orthologous protein 

clusters using the reciprocal best alignment heuristic within proteinortho (Lechner et al. 2011). 

Next, the longest sequence within each orthologous cluster was chosen as a representative of 

each group for annotation. Finally, representative sequences were compared against the Pfam 

database release (version 31) for annotation using HMMER3 (Eddy 2011).  

 

Statistical analysis 

Further analysis of sequence data was performed in R version 3.5.1 (R Core Team 2018) using 

the phyloseq (McMurdie and Holmes 2013) and vegan (Oksanen et al. 2013) R packages. All 

figures were made using the ggplot2 R package (Wickham 2009). All code for the analyses will 

be available on GitHub when the study is complete.  



 112 

 

Calculating microhabitat specialists and generalists 

Particle-associated and free-living specialist bacteria were identified by using significantly 

differentially abundant MAGs between microhabitats by calculating the log2-ratio using the 

negative binomial generalized linear model framework of the DESeq function within the 

DESeq2 R package (McMurdie and Holmes 2013, Love et al. 2014). P-values were adjusted for 

multiple tests with a Benjamini-Hochberg false discovery rate correction and MAGs with a 

threshold P-value of less than 0.05 were retained in the dataset.  

 

We also assess the genome coverage, estimated genome size, percent coding region, GC content, 

and the carbon to nitrogen ratio per MAG. The genome coverage (from the original sample) was 

calculated by multiplying the average sequence read length (117-119 bps) and the total number 

of sequences that mapped divided by the bin length. The estimated genome size of each MAG 

was measured by dividing the bin length by the completeness value from CheckM (Parks et al. 

2015). The GC content was determined by concatenating all of the contigs from a MAG and 

inputting it into the gc content calculator for sequence objects from biopython (Cock et al. 2009). 

The average element (i.e., carbon and nitrogen) composition of each gene was calculated by 

calling genes with Prodigal (Hyatt et al. 2010), measuring the number of elements for each 

amino acid in each gene, summing the count of elements over all amino acids in each gene, and 

dividing the sum by the length of the gene. The nutrient requirement for protein synthesis for 

each genome was expressed as the C:N ratio per amino acid. 

 

Differences between free-living specialists, particle-associated specialists, and generalists were 

tested using a Kruskal-Wallis test (kruskal.test() function, stats R package, R Core Team 2018) 

along with a multiple comparison post-hoc test using the kruskalmc function (pgirmess R 

Package; Giraudoux 2018). To obtain more specific p-values for plotting, pairwise Wilcoxon 

tests were performed using the wilcox.test function (stats R package, R Core Team 2018). 

Correlational tests were performed using the lm function (stats R package, , R Core Team 2018). 

Rarefaction curves of gene-level (i.e., pfam) diversity were plotted using the ggrare function, a 

phyloseq-extension wrapper (https://github.com/mahendra-mariadassou/phyloseq-extended). 

 

https://github.com/mahendra-mariadassou/phyloseq-extended
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Results  

Of the original 2,774 metagenome assembled genomes (MAGs), only MAGs that had a genome 

completeness higher than 50% were maintained (544 MAGs; Figure 4.1A). Next, MAGs with a 

quality threshold (as defined in the methods) of 50 were retained (325 MAGs, Figure 4.1B). 

Finally, all MAGs that had another MAG that was at least 99% similar (based on the ANIb) was 

removed to obtain a final dataset of 175 MAGs (Figure 4.1C).  

 

The number of total reads was similar between free-living (147.3 million sequencing reads) and 

particle-associated samples (144.4 million sequencing reads; 2-way ANOVA p = 0.82; Figure SI 

4.5A). However, a higher percentage of reads mapped to free-living samples (46.6%) compared 

to particle-associated samples (28.1%; 2-way ANOVA p = 1 x 10-5; Figure SI 4.5B). In the free-

living, a higher percentage of reads mapped in 2014 (an average of 50%) compared to 2015 (an 

average of 43.2%; T-test: p = 0.048).  

 

Specialization of free-living and particle-associated habitats 

Of the 175 total MAGs, there were 88 MAGs (50.3%) were differentially abundant in either the 

free-living (i.e., “free-living specialists”, 50 MAGs) or particle-associated (i.e., “particle-

associated specialists”, 38 MAGs) habitats, whereas 87 MAGs did not show a significant habitat 

preference and were deemed “generalist”. Particle-associated specialists were dominated by 

phyla such as the Planctomycetes, Alphaproteobacteria, Gammaproteobacteria, and 

Armatimonadetes whereas the free-living specialists were dominated the Actinobacteria and 

Betaproteobacteria (Figure SI 4.6).  

 

Genome coverage estimates were higher in particle-associated specialists than free-living 

specialists and generalists (KW: p = 4 x 10-6; Figure SI 4.7A). However, free-living specialists 

had lower genome completeness estimates than generalists (Wilcoxon: p = 0.04, Figure SI 4.7B) 

but not particle-associated specialists (Kruskal-Wallis (KW): p = 0.11). 
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Particle-Associated specialists have larger genomes with less coding DNA 

Particle-associated specialists had larger estimated genome sizes than both generalists and free-

living specialists (KW: p = 2 x 10-16; Figure 4.2A) and more variance. On average, particle-

associated specialist genomes were 4.75 Mbp, which were about two-times the size of generalists 

(2.69 Mbp average) and free-living specialists (2.12 Mbp average). This pattern was also 

reflected within members of the same Phylum (Figure SI 4.8A). In addition, particle-associated 

specialists had lower percent coding regions in their genomes compared to both free-living 

specialists and generalists (KW: p = 3 x 10-12; Figure 4.2B). Therefore, even though particle-

associated bacteria have larger estimated genomes, the organisms represented by these MAGs 

have a lower percent of their genome dedicated to protein coding genes. To support this point, 

there was a moderate negative relationship between the estimated genome size and percent 

coding region of the genome across all MAGs (R2 = 0.42, p = 2 x 10-22). However, the 

relationships for each of the individual three groups had less explanatory power, with the free-

living having the strongest relationship (R2 = 0.38, p = 1 x 10-6), followed by generalists (R2 = 

0.19, p = 2 x 10-5), and the weakest relationship in the particle-associated specialists (R2 = 0.16, p 

= 0.008; Figure 4.2C).  

 

Particle-Associated specialists have higher %GC and a larger nitrogen demand 

Particle-associated specialists had a higher GC content compared with free-living specialists and 

generalists (KW: p = 0.005; Figure 4.3A). Particle-associated specialists had an average GC 

content of 58.3% whereas generalists had an average of 51.9% and free-living specialists had an 

average of 51.7%. In addition, the predicted protein sequences of particle-associated specialists 

had significantly lower carbon to nitrogen ratios per amino acid (KW: p = 0.001; Figure 4.3BA), 

indicating that they have a higher nitrogen content per amino acid than both generalist 

(Wilcoxon: p = 0.003) and free-living specialists (Wilcoxon: p = 1 x 10-4; Figure 4.3B). The C:N 

ratio was negatively associated with estimated genome size with a more severe slope in free-

living specialists and generalists (R2 = 0.28, p = 5 x 10-5 and R2 = 0.28, p = 7 x 10-8, respectively) 

compared with particle-associated specialists (R2 = 0.11, p = 0.026; Figure 4.3C). 
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Particle-Associated specialists have fewer total and unique genes per region of the genome 

Particle-associated specialists had more total (KW: p = 8.9 x 10-9) and unique (KW: p = 6.8 x 10-

8) genes in their genomes compared to generalists and free-living specialists (Figure SI 4.9A 

and Figure SI 4.9B). However, larger genomes tended to have more total and unique genes 

within each group as there was a strong to moderate, positive and linear relationship between 

estimated genome size and the number of genes and unique genes in free-living specialists (R2 = 

0.63, p = 6 x 10-12), generalists (R2 = 0.43, p = 3 x 10-12), and particle-associated specialists (R2 = 

0.36, p = 4 x 10-5; Figure SI 4.9B). Therefore, to make meaningful ecological conclusions 

regarding the number of total and unique genes, the data must be normalized by genome size. 

 

After normalizing by genome size, particle-associated specialists had fewer total genes per 

region of the genome compared to generalists (Wilcoxon: p = 1.2 x 10-11) and free-living 

specialists (Wilcoxon: p = 6.5 x 10-20; Figure 4.4, x-axis and top). Additionally, particle-

associated specialists had fewer unique genes per region of their genome than generalists 

(Wilcoxon: p = 2.2 x 10-10) and free-living specialists (Wilcoxon: p = 3.3 x 10-16; Figure 4.4, y-

axis and right). There was a very strong positive, linear relationship between the normalized 

total and unique genes per region of the genome (R2 = 0.83; p = 5 x 10-66; Figure 4.4). When 

normalized using the coding length of each MAG, the relationship was comparable (R2 = 0.80; p 

= 5.8 x 10-62). These results indicate that free-living specialists, and to a lesser extent generalists, 

pack more genes and more unique genes into their genomes per region than do particle-

associated bacteria.  

 

 

Discussion    

I present data testing two hypotheses regarding the genomic characteristics of free-living and 

particle-associated bacterial specialist and generalist taxa. First, I found that particle-associated 

bacteria have larger genomes (Figure 4.2A), a high proportion of non-coding regions (Figure 

4.2B), and higher GC content (Figure 4.3A). In contrast, free-living specialists, and to a lesser 

extent generalists, had signatures of genome streamlining in all tested characteristics. The 

average ratio of carbon to nitrogen for predicted protein sequences of particle-associated 

specialist genomes was lower (Figure 4.3B), suggesting that particle-associated bacteria have a 
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higher nitrogen content than generalists and free-living bacteria, which depending on the 

turnover time may lead to higher or lower nitrogen demand for the cell. Second, I showed that 

while particle-associated bacteria have more unique predicted gene functions in their genome, 

they have fewer genes and less diverse genes per region in the genome compared to generalists 

and particle-associated bacteria.  

 

I showed that particle-associated bacteria have larger genomes (Figure 4.2A). Large 

genomes may give organisms a competitive advantage during times of higher nutrient 

concentrations (Giovannoni 2005). One correlate of prokaryotic genome size is temporal 

environmental variability because large fluctuations in conditions select for larger genomes that 

have more genes (Bentkowski et al. 2015). Consistent with this control is the indication that 

prokaryotes that have evolved in more stable environmental conditions have a smaller genome 

and are more constrained in their ability to adjust to new environmental conditions (Bentkowski 

et al. 2015). Aquatic particles are known to contain environmental gradients, especially of 

dissolved organic matter and oxygen (Alldredge and Cohen 1987, Stocker 2012). Due to this, 

previous studies have proposed (Allen et al. 2013) and reported (Zeigler Allen et al. 2012) that 

particle-associated bacteria have on average larger genomes, however, Zeigler Allen et al. (2012) 

used gene-centric metagenomics which estimated the genome size across the entire sample 

instead of creating metagenome assembled genomes (MAGs). Therefore, I extend these initial 

findings from Zeigler Allen et al. (2012) by performing genome-centric analyses in our samples.  

 

On the other hand, predominate free-living bacterial communities are often dominated by 

abundant oligotrophic taxa with streamlined genomes. Some examples include the marine 

alphaproteobacterial SAR11 clade (Giovannoni 2005), the marine cyanobacterium 

Prochlorococcus in oligotrophic surface oceans (García-Fernandez et al. 2004), and freshwater 

Actinobacteria (Neuenschwander et al. 2018). While some particle-associated bacteria are better 

suited to quickly take advantage of transient bursts in nutrients, free-living bacteria with 

streamlined genomes have been thought to make efficient use of ambient environmental 

conditions (Giovannoni 2005, Lauro et al. 2009). For example, the ubiquitous and abundant 

marine Alphaproteobacterial SAR11 clade (Morris et al. 2002) is one of the most abundant 

marine organisms, however, out of the organisms that replicate on their own in nature it also has 
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one of the smallest genomes (1.3 Mbps; Giovannoni 2005, Luo 2015). Recently, an abundant 

freshwater SAR11 clade with an even smaller genome of 1.16 Mbps was found that also had an 

extremely low GC content of 29% (Henson et al. 2018). In freshwater lakes, Actinobacteria also 

have small genomes (1.16-1.47 Mbps) with low GC content (40-48%; Ghai et al. 2013, 2014, 

Neuenschwander et al. 2018) and are numerically dominant members of freshwater bacterial 

communities (Allgaier and Grossart 2006).  

 

Selection for small cell size and efficient use of nutrients in oligotrophic environments is 

typically viewed as the major ecological reason for genome streamlining in free-living aquatic 

bacteria (Giovannoni et al. 2014). This is highlighted in the fact that marine bacteria have a bias 

for A and T usage, which decreases the GC content, and reduces the nitrogen budget of a cell by 

3-10% (Grzymski and Dussaq 2012). Free-living bacteria in the current study had a lower GC 

content compared to particle-associated bacteria; however, there appeared to be a bimodal 

distribution in the generalists (Figure 4.3A). The C:N ratio was higher for free-living bacteria 

indicating that they have a lower nitrogen amino acid content than particle-associated bacteria 

(but not compared to generalists; Figure 4.3B). Recently, a genomic transition zone in GC 

content was found in Hawaii at station ALOHA where bacteria living in the ultra-oligotrophic 

surface waters had much lower GC content compared to all organisms living beneath the deep 

chlorophyll maximum (Mende et al. 2017). While a genomic transition zone cannot be explored 

in this dataset (as all samples were taken at 1 m), it does posit the question of whether there are 

similar ecological drivers for changes in GC and C:N ratios for particle-associated and free-

living genomes in this dataset as there is for marine surface and deep-water bacterial genomes 

from Mende et al. (2017). 

 

While it is known that the number of genes scale with genome size (Mira et al. 2001, Giovannoni 

2005), we show that: 1) particle-associated specialists have higher absolute diversity in their 

gene capabilities (Figure SI 4.9), and 2) after normalizing for genome size, generalists, and to an 

even larger extent free-living specialists, pack more genes and more unique genes into their 

genomes per region than particle-associated bacteria. This may be partially explained by fewer 

intergenic spacers in streamlined genomes (Giovannoni et al. 2014). It may also be consistent 

with ecological interdependencies in bacterial communities, which recent findings in 
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metagenomics have revealed is commonplace (Zelezniak et al. 2015, Anantharaman et al. 2016). 

Interdependence and metabolic “handouts” occur when microbes produce beneficial compounds 

that stimulate the growth of other organisms in the population and community and are public 

goods (West et al. 2007, Hug and Co 2018, Zengler and Zaramela 2018). In a metagenomic 

assessment of particle-associated and free-living habitats, Ganesh et al. (2014) found that genes 

for different steps of denitrification were more abundant in particles compared to the open water, 

indicating the potential of metabolic handoffs for nitrogen cycling, which has been reported in 

other systems (Anantharaman et al. 2016). Another example of handouts in particles is the 

production of siderophores, which has been shown to stimulate the growth and promote the 

evolution of diverse iron acquisition methods, such as production or cheating, which increases 

with association with particles (Cordero et al. 2012).  

 

In oligotrophic aquatic conditions, free-living bacterial communities have vast population-level 

diversity (Kashtan et al. 2014, Garcia et al. 2018b) and, with use of network analysis, have been 

shown to be highly connected and correlated (Milici et al. 2016). These aspects of free-living 

communities hint at the potential for metabolic interdependence. For example, a recent study 

using environmental enrichments of abundant and streamlined freshwater free-living 

Actinobacteria showed that cells depended on “handouts” from other organisms in the poly-

culture (i.e., vitamins, amino acids, reduced sulfur; (Garcia et al. 2018a)). The handouts were 

from a variety of cells that they randomly encountered, rather than from specific cells or taxa 

within the community (Garcia et al. 2018a). This is in contrast to genome streamlining patterns 

of obligate symbionts where the symbiont relies so heavily on their host species that large 

sections of the genome are removed (McCutcheon and Moran 2012). However, because 

interdependence requires cooperation in microbial communities, free-living organisms in the 

environment may become dependent on complementary species (OTUs) that may not be reliably 

encountered and therefore selection often acts to limit cooperation because it is inefficient 

(Oliveira et al. 2014). Finally, it is currently undetermined whether the connectedness and 

correlations between free-living bacteria are due to the fact that free-living bacteria experience 

similar bulk environmental forces or whether these correlations are driven by actual community 

interactions (e.g., interdependence and metabolic handouts) between free-living bacteria. Future 
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work on metabolic connectedness could focus on testing the potential limitations of selection 

limiting cooperation and the environmental co-variation on free-living communities. 

 

In this study, we confirm that freshwater free-living bacteria have streamlined genomes whereas 

particle-associated bacteria have larger genomes with higher GC content, more non-coding 

regions, higher nitrogen content for protein synthesis, and lower per-capita diversity in genes. A 

deeper look into the genes that are differentially abundant between specialist and generalist taxa 

will provide a more thorough view of their ecological adaptations.  
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Figure 4.1.  Quality assessment of metagenome assembled genomes used in this study. 

 

Assessment of genome quality using three levels of quality control thresholds of “Near 

Complete” (dark teal), “Medium Quality” (green), and “Partial Quality” (tan) based on values 

from (Parks et al., 2017) as described in the methods. A: 544 genomes were constructed with 

completeness values of 50% and higher. B: 325 genomes were left after using a quality cutoff of 

50. C: 175 genomes were maintained after removal of genomes with 99% ANIb values. 
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Figure 4.2.  Estimated genome size, percent coding region, and their relationship. 

 

Estimated genome size (A), percent coding region of genome (B) and the relationship between 

the two (C) for free-living specialists (blue), generalists (grey), and particle-associated specialists 

(orange). Significance values in A and B represent p-values from pairwise Wilcoxon tests. R2 

and p-values in (C) represent the individual linear regressions between percent coding region and 

estimated genome size per each of the three groups. 
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Figure 4.3.  Percent GC content, average carbon to nitrogen (C:N) ratio per amino acid, and the 

relationship of C:N ratio to genome size. 

 

Percent GC content of MAGs (A), average carbon to nitrogen ratio per amino acid (B) and the 

relationship between the average carbon to nitrogen ratio per amino acid and estimated genome 

size (C) for generalists (grey) and free-living (blue) and particle-associated (orange) specialists. 
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Figure 4.4.  Normalized unique genes per Mbps versus normalized total genes per Mbps. 

 

Normalized total gene abundance (by MAG length in bps; x-axis) versus normalized unique gene 

count (by MAG length in bps; y-axis). Top: Distribution of points along the x-axis (KW: p = 1.2 

x 10-22). Right: Distribution of points along the y-axis (KW: p = 5.2 x 10-17). 
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Figure SI 4.5.  Total number of sequencing reads and percent of reads mapped. 

 

The total number of sequencing reads (A) and the percentage of competitively mapped to total 

reads (B) across the 8 free-living (blue) and 8 particle-associated (orange) samples. 

 

 

 
 

 

 

  



 131 

 

Figure SI 4.6.  Phylogeny of the 175 genomes with their phylum (inner circle) and microhabitat 

specialization (outer circle). 
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Figure SI 4.7.  Genome coverage and completeness of MAGs in this study. 

 

Genome coverage in percent (A) and completeness in percent (B) of free-living (blue), generalist 

(grey), and particle-associated (orange). 
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Figure SI 4.8.  The estimated genome sizes of bacterial phyla that have at least 20 MAGs 

separated by microhabitat specialization. 
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Figure SI 4.9. The number of unique genes per MAG and its relationship with genome size. 

 

The number of unique genes within each MAG by habitat specialization (i.e., free-living 

specialists (blue), generalists (grey), and particle-associated specialists (orange)) visualized with 

a rarefaction curve (A), boxplot (B), and the association between the number of unique genes 

and estimated genome size (C). 
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Chapter V:  

Using machine learning to associate bacterial taxa with functional groups through flow 

cytometry, 16S rRNA gene sequencing, and productivity data3 

 

 

ABSTRACT 

High- (HNA) and low-nucleic acid (LNA) bacteria are two separated flow cytometry (FCM) 

groups that are ubiquitous across aquatic systems. HNA cell density often correlates strongly 

with heterotrophic production. However, the taxonomic composition of bacterial taxa within 

HNA and LNA groups remains mostly unresolved. Here, we associated freshwater bacterial taxa 

with HNA and LNA groups by integrating FCM and 16S rRNA gene sequencing using a 

machine learning-based variable selection approach. There was a strong association between 

bacterial heterotrophic production and HNA cell abundances (R2 = 0.65), but not with more 

abundant LNA cells, suggesting that the smaller pool of HNA bacteria may play a 

disproportionately large role in the freshwater carbon flux. Variables selected by the models 

were able to predict HNA and LNA cell abundances at all taxonomic levels, with highest 

accuracy at the OTU level. There was high system specificity as the selected OTUs were mostly 

unique to each lake ecosystem and some OTUs were selected for both groups or were rare. Our 

approach allows for the association of OTUs with FCM functional groups and thus the 

                                                 
3 Available on bioRxiv and currently in review: 

Rubbens P*, Schmidt ML*, Props R, Biddanda BA, Boon N, Waegeman W, Denef VJ. Using 

machine learning to associate bacterial taxa with functional groups through flow cytometry, 16S 

rRNA gene sequencing, and productivity data. https://doi.org/10.1101/392852 

 

* Indicates equal contribution of authors 
 

https://doi.org/10.1101/392852
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identification of putative indicators of heterotrophic activity in aquatic systems, an approach that 

can be generalized to other ecosystems and functions of interest.  

 

 

Introduction 

A key goal in the field of microbial ecology is to understand the relationship between microbial 

diversity and ecosystem functions. However, it is challenging to associate bacterial taxa to 

specific ecosystem processes. Marker gene surveys have shown that natural bacterial 

communities are extremely diverse; however, the presence of a taxon does not imply its activity. 

Taxa present in these surveys may have low metabolic potential, be dormant, or have recently 

died (Lennon and Jones 2011, Carini et al. 2016). Therefore, new methodologies that integrate 

different data types are needed to associate bacterial taxa with ecosystem functions in order to 

ultimately model and predict them (Widder et al. 2016). 

  

One such advance is the use of flow cytometry (FCM), which has been used extensively to study 

aquatic microbial communities (Gasol and Del Giorgio 2000, Vives-Rego et al. 2000, Wang et 

al. 2010). This single-cell technology partitions individual microbial cells into phenotypic groups 

based on their observable optical characteristics. Most commonly, cells are stained with a nucleic 

acid stain (e.g., SYBR Green I) and upon analysis assigned to either a low nucleic acid (LNA) or 

a high nucleic acid (HNA) group (Gasol et al. 1999, Lebaron et al. 2001, Bouvier et al. 2007, 

Wang et al. 2009). HNA cells differ from LNA cells in both a considerable increase in 

fluorescence due to cellular nucleic acid content and scatter intensity due to cell morphology. 

The HNA group is thought to correspond to  the ‘active’ fraction, whereas the LNA population 

has been considered as the ‘dormant’ or ‘inactive’ group of a microbial community (Gasol and 

Del Giorgio 2000, Lebaron et al. 2002, Servais et al. 2003, Morán et al. 2007). This is based on 

positive linear relationships between HNA abundance and (a) bacterial heterotrophic production 

(BP) (Servais et al. 1999, 2003, Lebaron et al. 2001, Morán et al. 2007, Bowman et al. 2017), (b) 

bacterial activity measured using the dye 5-cyano-2,3-ditolyl tetrazolium chloride (Morán et al. 

2011, Read et al. 2015), and (c) phytoplankton abundance (Sherr et al. 2006). Additionally, 

growth rates are higher for HNA than LNA cells (Servais et al. 1999, Lebaron et al. 2002, 

Jochem et al. 2004) and HNA cells accrue cell damage significantly faster than the LNA cells 
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under stress from temperature (Arnoldini et al. 2013) and chemical oxidants (Ramseier et al. 

2011).  

 

However, it is still unclear whether HNA and LNA groups are composed of unique taxa or if 

they are different physiological states of the same taxa. Bouvier et al. (2007) proposed four 

possible scenarios: (1) bacteria start their life cycle in the HNA group and move to the LNA 

group upon death or inactivity; (2) cells in the HNA group originate from LNA cells undergoing 

cell division; (3) HNA and LNA consist of different non-overlapping taxa; (4) bacteria switch 

between groups from time to time in addition to having part of the community that is unique to 

each fraction. The view that HNA cells are more active is in line with scenario 1 and 2. On the 

other hand, several studies have found distinct groups with little taxonomic overlap and proposed 

scenario 3 (Schattenhofer et al. 2011, Proctor et al. 2018) or 3 and 4 (Vila-Costa et al. 2012). In 

this case, HNA and LNA groups have been associated with different life strategies in 

bacterioplankton communities, such as large cell size (HNA) versus small cell size (LNA) 

(Morán et al. 2007, Proctor et al. 2018), genome size (Bowman et al. 2017) and ploidy 

(Schattenhofer et al. 2011). By combining FCM with taxonomic identification of bacterial 

communities, one can associate individual taxa with population dynamics and functioning.   

 

In this study, we developed a novel approach to associate the dynamics of individual taxa with 

those of the LNA and HNA groups in freshwater lakes by using a machine learning variable 

selection strategy. We applied two variable selection methods, the Randomized Lasso 

(Meinshausen and Bühlmann 2010) and the Boruta algorithm (Kursa and Rudnicki 2010) to 

associate individual taxa with HNA and LNA cell abundances. This approach allowed us to 

associate specific taxa to FCM functional groups, and via the observed HNA-productivity 

relationship, to functioning. In addition, this approach enabled us to test the influence of rare taxa 

on these two groups as recent research has found that rare taxa may have a strong impact on 

community structure and functioning (Shade et al. 2014, Herren and McMahon 2018). To 

validate the RL-based association with the HNA or LNA group, we correlated taxon abundances 

with specific regions in the FCM fingerprint without prior knowledge of the HNA/LNA group. 

Furthermore, we tested for phylogenetic conservation of HNA and LNA functional groups and 

for the association between the selected taxa and productivity. The combination of FCM and 16S 
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rRNA gene sequencing allows for the inference and assessment of the taxonomic structure of 

HNA and LNA groups, therefore advancing our ability to link bacterial taxa to their functionality 

in nature. This knowledge will help identify the taxa that drive carbon fluxes in freshwater 

ecosystems, which are disproportionately large relative to the global freshwater surface area 

(Biddanda 2017).  

 

 

Results 

In this study, we developed a machine learning variable selection strategy to integrate FCM and 

16S rRNA gene sequencing with the aim of inferring the bacterial drivers of functional groups in 

freshwater lake systems. We studied a set of oligo- to eutrophic small inland lakes, a short 

residence time mesotrophic freshwater estuary lake (Muskegon Lake), and a large oligotrophic 

Great Lake (Lake Michigan), all located in Michigan, USA. We showed that abundance variation 

of these FCM functional groups is predicted by a small subset of all taxa that are present in the 

environment. Selected taxa were mostly FCM groups and lake system specific, and across 

systems association with HNA or LNA was not phylogenetically conserved. The relationship 

between selected taxa and productivity measurements was assessed for one of the lake systems 

(Muskegon Lake), thereby showing that HNA cells (and their putative bacterial taxa) likely turn 

over faster and disproportionately contribute to the freshwater carbon flux. 

 

Study lakes are dominated by LNA cells 

The inland lakes (6.3 x 106 cells/mL) and Muskegon Lake (6.0 x 106 cells/mL) had significantly 

higher total cell abundances than Lake Michigan (1.7 x 106 cells/mL; p = 2.7 x 10-14). Across all 

lakes, the mean proportion of HNA cell counts (HNAcc) to total cell counts was much lower 

(29-33%) compared to the mean proportion of LNA cell counts (LNAcc; 67-71%). Ordinary 

least squares regression showed a strong correlation between HNAcc and LNAcc across all data 

(R2 = 0.45, P = 2 x 10-24; Figure 5.1A); however, only Lake Michigan (R2 = 0.59, p = 5 x 10-11) 

and Muskegon Lake (R2 = 0.44, p = 2 x 10-9) had significant correlations when the three 

ecosystems were considered separately.  
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HNA cell counts and heterotrophic bacterial production are strongly correlated 

For mesotrophic Muskegon Lake, there was a strong correlation between total bacterial 

heterotrophic production and HNAcc (R2 = 0.65, p = 1 x 10-5; Figure 5.1B), no correlation 

between BP and LNAcc (R2 = 0.005, p = 0.31; Figure 5.1C), and a weak correlation between 

heterotrophic production and total cell counts (R2 = 0.18, p = 0.03; Figure 5.1D). There was a 

positive (HNA) and negative (LNA) correlation between the fraction of HNA or LNA to total 

cells and productivity, but the relationship was weak and not significant (R2 = 0.14, p = 0.057). 

 

Association of OTUs to functional groups by Randomized Lasso regression 

The relevance of specific OTUs for predicting freshwater FCM functional group abundance was 

assessed using the Randomized Lasso (RL) approach, which assigns a score between 0 

(unimportant) to 1 (highly important) to each taxon in function of the target variable: HNAcc or 

LNAcc. This score can be interpreted as the probability that an OTU will be included in the 

Lasso model to predict HNA or LNA cell abundances. Variations of HNAcc and LNAcc were 

modelled in function of relative changes of OTUs. To address the negative correlation bias 

intrinsic to compositional data, compositions were first transformed using a centered log-ratio 

(CLR) transformation.  

 

The RL score was used to implement a recursive variable elimination scheme. Specifically, we 

iteratively removed the lowest-ranked OTUs based on the RL score (i.e., OTUs were ranked 

according to the score from high to low) and the Lasso was fitted to the data to predict HNAcc 

and LNAcc based on the corresponding subset of OTUs. The performance was expressed in 

terms of the , the  between predicted and true values of HNAcc and LNAcc of samples 

that were held-out using a leave-one-group-out cross-validation scheme, in which samples were 

grouped according to year and location of measurement. If  equals 1, predictions were equal 

to the true values, a value of 0 is equivalent to random guessing.  

 

There was taxonomic dependency for both HNAcc and LNAcc across lake systems (Figure 5.2). 

 increased when lower-ranked OTUs were removed (moving from right to left on Figure 

5.2), which was gradual for the inland lakes (Figure 5.2A) and Muskegon Lake (Figure 5.2C) 

but was abrupt for Lake Michigan (Figure 5.2B). The number of taxa that resulted in the highest 
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 contained less than a quarter of the total amount of taxa that were present (see solid (HNA) 

and dotted (LNA) lines in Figure 5.2), being 10.2% HNA and 15.3% LNA for the inland lakes, 

4.0% HNA and 3.0% LNA for Lake Michigan, and 25.0% for both HNA and LNA in Muskegon 

Lake. This behavior was consistent for each lake system and FCM population. The Lake 

Michigan results differed the most from other lake systems, having the lowest , a sharp 

instead of gradual increase in , and a considerably lower minimal amount of OTUs (13 for 

HNAcc, 10 for LNAcc). No relationship could be established between rankings of variable 

selection methods and the relative abundance of individual OTUs (Figure SI 5.7). Multiple taxa 

with low average abundance were included in the minimal set of predictive variables, whereas 

few highly abundant OTUs were included. HNAcc and LNAcc could be predicted with 

equivalent performance to relative HNA and LNA proportions, yet the increase between initial 

and optimal performance was bigger (Figure SI 5.8). The final predictive performance was 

lower when compositional data was not transformed using the CLR-transformation (Figure SI 

5.9).  

 

Identification on different taxonomic levels: OTUs outperform all other taxonomic levels 

To assess whether HNA and LNA groups were taxonomically conserved, compositional data 

was analyzed on all possible taxonomic levels for Muskegon Lake (Figure 5.3), using the same 

strategy as outlined in previous paragraph. The resulting  values were considerably higher 

than zero on all taxonomic levels, meaning that at all levels individual taxonomic changes can be 

related to changes in HNAcc and LNAcc. Even though the OTU level resulted in the best 

prediction of HNAcc and LNAcc (Figure 5.3), each individual OTU has a lower RL score 

compared to other taxonomic levels, which on average became lower as the taxonomic level 

decreased (Figure SI 5.10). The fraction of variables (taxa) that could be removed to reach the 

maximum  decreased as the taxonomic level became less resolved.  

 

Validation of OTU selection results with the Boruta algorithm 

The OTU results were validated with an additional variable selection strategy, called the Boruta 

algorithm. This approach allowed the further generalization of the findings presented above. In 

addition, it connects with Random Forest results from other studies, which have been described 

recently in microbiome studies of other systems (see (Ma et al. 2014) and (Chen et al. 2016)). 
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The Boruta algorithm selects relevant variables based on statistical hypothesis testing between 

the importance of an original variable and the importance of the most important permuted 

variable (see materials and methods), as retrieved from multiple Random Forest models. 

Selected variables are ranked as ‘1’, tentative variables as ‘2’, and all other variables get lower 

ranks, depending on the stage in which they were eliminated. The Boruta algorithm was applied 

for all three lake systems at the OTU-level, selected OTUs are visualized in Figure SI 5.11. The 

fraction of selected OTUs was always smaller than 1% across lake systems and functional groups 

(Figure SI 5.12). The top scored OTU according to the RL was also selected according to the 

Boruta algorithm for HNAcc for all lake systems; for LNAcc both methods only agreed for Lake 

Michigan (Table 5.1). OTU060 (Proteobacteria; Sphingomonadales; alfIV_unclassified) was the 

only OTU selected in function of LNAcc across all lake systems, whereas no OTUs were 

selected across lake systems for HNAcc. As Random Forest regressions are the base method of 

the Boruta algorithm, we compared the predictive power of Boruta selected OTUs to those of all 

OTUs using Random Forest regression. For all lake systems and functional groups, performance 

increased when only selected OTUs were included in the model (Table SI 5.2).  Lasso 

predictions, in which OTUs were selected according to the RL, were better as opposed to 

Random Forest predictions in which OTUs were selected according to the Boruta algorithm 

(Figure SI 13). The fraction of selected OTUs according to the Boruta algorithm was lower than 

the optimal amount of OTUs according to the RL.  

 

In this way, a number of findings could be generalized independent of a specific method: 1) 

Selected OTUs were mostly lake system specific, 2) a small fraction of OTUs was needed to 

predict changes in community composition, 3) selected OTUs are often rare and do not show a 

relationship with abundance, and 4) top RL-ranked HNA OTUs were also selected according to 

the Boruta algorithm, suggesting closer inspection of more closely the phylogeny of these taxa.  

 

HNA- and LNA-associated OTUs differed across lake systems  

Selected OTUs were mostly assigned to either the HNA or LNA groups and there was limited 

correspondence across lake systems between the selected OTUs (Figure 5.4). In Muskegon 

Lake, OTU173 (Bacteroidetes;Flavobacteriales;bacII-A) was selected as the major HNA-

associated taxon while OTU29 (Bacteroidetes; Cytophagales; bacIII-B) had the highest RL score 
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for LNA OTUs. In Lake Michigan, OTU25 (Bacteroidetes; Cytophagales; bacIII-A), was 

selected as the major HNA-associated  taxon while OTU168 (Alphaproteobacteria: Rhizobiales: 

alfVII) was selected as a major LNA-associated  taxon. For the inland lakes, OTU369 

(Alphaproteobacterial; Rhodospirillales; alfVIII) was the major HNA-associated  OTU while the 

OTU555 (Deltaproteobacteria;Bdellovibrionaceae;OM27) was the major LNA-associated  taxon. 

Many more OTUs were selected in Muskegon Lake (197 OTUs; compared to 134 OTUs from 

the  Inland Lakes and 21 OTUs from Lake Michigan) and these OTUs were often associated  

with both HNA and LNA groups.  

 

RL scores were correlated for HNAcc and LNA within each lake system (Inland r = 0.25, P < 

0.001; Michigan r = 0.59, P < 0.001, Muskegon r = 0.59, P < 0.001).  Only OTUs that were 

present in all three freshwater environments were considered to calculate correlations between 

lake systems (190 in total, Figure SI 5.14). RL scores were lake ecosystem specific, with only a 

significant similarity between the Inland lakes and Muskegon lake using the RL for HNAcc (r = 

0.21, P = 0.0042). Note that the correlation within a lake system therefore differs from 

previously reported values (as not all OTUs were considered), yet differences were small and 

results were comparable. The Boruta algorithm selected mostly OTUs which were unique both 

for the lake system and functional population (Figure SI 5.11).  

 

Selected HNA and LNA OTUs do not have a phylogenetic signal 

While many of the 258 OTUs selected by the RL were one of a few members of their phylum 

(e.g., Firmicutes; Epsilonproteobacteria; OTU717 in Lentisphaerae; OTU267 in Omnitrophica; 

etc), the Bacteroidetes (60 OTUs), Betaproteobacteria (36 OTUs), Alphaproteobacteria (22 

OTUs), and Verrucomicrobia (21 OTUs) were a total of 54% of the selected OTUs (Figure 5.1). 

Of these top four phyla, the majority of their membership were within the LNA group (41-52% 

of selected OTUs), with the minority of OTUs within the HNA group (14-30% of selected 

OTUs), and a quarter to a third of the OTUs were selected as members of both the LNA and 

HNA groups (23-36% of selected OTUs).  

 

To evaluate how much phylogenetic history explains whether a selected taxon was associated 

with the HNA or LNA group(s), we calculated the phylogenetic signal, which is a measure of the 
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dependence among species’ trait values on their phylogenetic history (Revell et al. 2008). If the 

phylogenetic signal is very strong, taxa belonging to similar phylogenetic groups (e.g., a 

Phylum) will share the same trait (i.e., association with HNAcc or LNAcc). Alternatively, if the 

phylogenetic signal is weak, taxa within a similar phylogenetic group will have different traits. 

Pagel’s lambda was used (Pagel 1999) to test for phylogenetic signal where lambda varies 

between 0 and 1. A lambda value of 1 indicates complete phylogenetic patterning whereas a 

lambda of 0 indicates no phylogenetic patterning and leads to a tree collapsing into a single 

polytomy. There was no phylogenetic signal with FCM functional group used as a discrete 

character (i.e. HNA, LNA, or Both) or as a continuous character using the RL scores for HNA 

(Figure SI 5.15; lambda = 0.16; P = 1). There was a significant LNA signal (p = 0.003) but the 

lambda value was 0.66, suggesting weak phylogenetic structuring in the LNA group. However, 

this significant result in the LNA was not replicated with other measures of phylogenetic signal 

(Blomberg’s K (HNA: p = 0.63; LNA: p = 0.54), and Moran’s I (HNA: p = 0.88; LNA: p = 

0.12)) indicating that there is likely no phylogenetic signal in the taxa that drive the dynamics in 

either the HNA or the LNA group.  

 

Flow cytometry fingerprints confirm associated taxa and reveal complex relationships between 

taxonomy and flow cytometric fingerprints 

To confirm the association of the final selected OTUs with the HNA and LNA groups, we 

calculated the correlation between the density of individual regions (i.e., “bins”) in the flow 

cytometry data with the relative abundances of the OTUs. The Kendall rank correlation 

coefficient between OTU abundances and counts in the flow cytometry fingerprint was 

calculated for each of the top HNA OTUs selected by the RL within each of the three systems. 

The correlation coefficient was visualized for each bin in the flow cytometry fingerprint (Figure 

5.6). As these values denote correlations, they do not indicate actual presence. OTU25 correlated 

with almost the entire HNA region, whereas OTU173 was limited to the lower part of the HNA 

region. In contrast, OTU369 was positively correlated to both the LNA and HNA regions of the 

cytometric fingerprint, highlighting results from Figure 5.4 where OTU369 was selected in 

function of both HNA and an LNA. The threshold that was used to define HNAcc and LNAcc 

lies very close to the actual corresponding regions.  
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Proteobacteria and rare taxa correlate with productivity measurements 

The Kendall rank correlation coefficient was calculated between CLR-transformed abundances 

of individual OTUs and productivity measurements. OTU481 was significantly correlated after 

correction for multiple hypothesis testing using the Benjamini-Hochberg procedure (P < 0.001, 

P_adj = 0.016). This OTU had however a low RL score (0.022) and was not selected according 

to the Boruta algorithm. Of the top 10 OTUs according to the RL, three still had significant P-

values (OTU614: P = 0.0064; OTU412, P = 0.044; OTU487, P = 0.014). Some OTUs that had a 

high RL score also had a positive correlation with productivity measurements (Figure SI 5.16). 

At the phylum level, only Proteobacteria were significantly correlated to productivity 

measurements after Benjamini-Hochberg correction (P < 0.001, P_adj = 0.010).  

 

 

Discussion 

Our study introduces a novel computational workflow to investigate relationships between 

microbial diversity and ecosystem functioning. Specifically, studied the ecology of flow 

cytometric functional groups (i.e., HNA and LNA) by associating their dynamics with those of 

bacterial taxa (i.e., OTUs). We simultaneously collected flow cytometry and 16S rRNA gene 

sequencing data from three types of freshwater lake systems in the Great Lakes region, and 

bacterial heterotrophic productivity from one lake ecosystem, and used a machine learning based 

variable selection strategy, known as the Randomized Lasso, to associate one with the other. Our 

results showed that (1) there was a strong correlation between bacterial heterotrophic 

productivity and HNA cell abundances, (2) HNA and LNA cell abundances were best predicted 

by a small subset of OTUs that were unique to each lake type, (3) some OTUs were included in 

the best model for both HNA and LNA abundance, (4) there was no phylogenetic conservation 

of HNA and LNA group association, and (5) freshwater FCM fingerprints display more complex 

patterns related to OTUs and productivity compared to the traditional dichotomy of HNA and 

LNA. While HNA and LNA groups are universal across aquatic ecosystems, our data suggest 

that some bacterial taxa contribute to both HNA and LNA groups and that the taxa driving HNA 

and LNA abundance are unique to each lake system, supporting the fourth scenario in Bouvier et 

al. (2007).  



 145 

 

Although high-nucleic acid cell counts (HNAcc) and low-nucleic acid cell counts (LNAcc) were 

correlated with each other, only the association between bacterial heterotrophic production (BP) 

and HNAcc was strong and significant. This correlation between BP and HNA is higher than 

previously reported values, although previous reports have focused on the proportion of HNA 

rather than absolute cell abundances with the majority of data collected from marine systems. 

For example, Bouvier et al. (2007) found a correlation between the fraction of HNA cells and BP 

within a large dataset of 640 samples across various freshwater to marine samples (r  = 0.49), 

whereas a study off the coast of the Antarctic Peninsula found a moderate correlation (R2  = 0.36; 

(Bowman et al. 2017)). Another study in the Bay of Biscay also found this association (R2 = 

0.16; (Morán et al. 2007)); however, the authors attributed this difference to be related to cell 

size and not due to the activity of HNA. Notably, these studies were predominantly testing the 

association of marine HNA and the reason for the stronger correlation in our study may be due to 

the nature of the freshwater samples. As such, future studies in freshwater environments should 

test the hypothesis of HNA taxa as driving forces of productivity, which is especially important 

for understanding the broader influence that HNA bacteria may have in the context of the 

disproportionately large role that freshwater systems play as hotspots in the global carbon cycle 

(Biddanda 2017). Finally, as our correlations with proportional HNA abundance also indicated 

less strong correlations than with absolute HNAcc, we suggest absolute HNAcc should be used 

to best predict heterotrophic bacterial production with FCM data.  

    

The use of machine learning methods, such as the Lasso and Random Forest, are becoming more 

common in microbiome literature as these approaches are able to deal with multi-dimensional 

data and test the predictive power of a combined set of variables ((Baxter et al. 2014, Lin et al. 

2014, Schubert et al. 2014). Although the Lasso already uses an intrinsic variable selection 

strategy, it has been noted that the Lasso method is not suited for compositional data because the 

regression coefficients have an unclear interpretation, and single variables may be selected when 

correlated to other variables (Li 2015). When performing variable selection with Random 

Forests, traditional variable importance measures such as the mean decrease in accuracy can be 

biased towards correlated variables (Strobl et al. 2008). Our approach included algorithms that 

extended these traditional machine learning algorithms, i.e., the Randomized Lasso or Boruta 
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algorithm (Kursa and Rudnicki 2010, Meinshausen and Bühlmann 2010). These methods make 

use of resampling and randomization that allow either assigning a probability of selection (RL) 

or statistically deciding which OTU to select (Boruta). Both the RL and Boruta algorithm have 

been applied to microbiome studies before. Examples for RL include the selection of genera in 

the gut microbiome inrelation to BMI (Lin et al. 2014) or the selection of OTUs from the oral 

microbiome in function of salivary pH and lysozyme activity (Zaura et al. 2017). The Boruta 

algorithm has been applied to select relevant genera, for example in the gut microbiome in 

relation to multiple sclerosis (Chen et al. 2016) or in the function of different diets during 

pregnancy of primates (Ma et al. 2014). Moreover, the Boruta algorithm has been recently 

proposed as one of the top-performing variable selection methods that make use of Random 

Forests (Degenhardt et al. 2017). The ability of our approach to identify unique sets of OTUs 

predictive of HNAcc and LNAcc despite the correlation between HNAcc and LNAcc (Figure 

5.1A) illustrates the power of the machine learning based-variable selection methods. However, 

there is still room for improvement when attempting to integrate taxonomic and flow cytometry 

data. For example, 16S rRNA gene sequencing still faces the hurdles of DNA extraction 

(McCarthy et al. 2015) and 16S copy number bias (Louca et al. 2018). Moreover, detection 

limits are different for FCM (expressed in the number of cells) and 16S rRNA gene sequencing 

(expressed in the number of gene counts or relative abundance), which create data that may be 

different in resolution. Future work may focus on developing ways around these shortcomings to 

further improve the integration of FCM with 16S rRNA gene sequencing.  

 

In our study, only a minority of OTUs was needed to predict specific flow cytometric group 

abundances. While each OTU individually had low predictive power, the selected group of 

OTUs was generally a strong predictor of HNAcc and LNAcc. In addition, the selected OTUs 

were often rare and thus no relationship could be established between the RL score and the 

abundance of an OTU (Figure SI 5.9). These results are in line with recent findings of Herren & 

McMahon (2018), who reported that a minority of low abundance taxa explained temporal 

compositional changes of microbial communities. The selection of different sets of HNA and 

LNA OTUs across the three freshwater systems indicates that different taxa underlie the 

universally observed HNA and LNA functional groups across aquatic systems. This is in line 

with strong species sorting in lake systems (Van der Gucht et al. 2007, Adams et al. 2014), 
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shaping community composition through diverging environmental conditions between the lake 

systems presented here (Chiang et al. 2018). This high system specificity also explains the low 

RL scores for individual OTUs, as the spatial dynamics of an OTU diverged strongly across 

systems. (For example, an OTU that has an RL score of 0.5 implies that on average it will only 

be chosen one out of two times in a Lasso model). 

 

Based on the high correlation of BP with HNAcc and low correlation of BP and LNAcc, the high 

proportion of LNA cells across all lake systems might indicate that the majority of cells in the 

bacterial community are dormant or have very low activity. This agrees with previous research 

showing that up to 40% (Jones and Lennon 2010) or even 64-95% (Zimmerman et al. 1978) of 

cells in freshwater systems are inactive or dormant. In fact, up to 60-80% of the OTUs in 

freshwater lakes have been reported to be dormant (Aanderud et al. 2016). Based on variable 

environmental conditions sampled across our dataset, some of the taxa that are predominantly 

dormant in one sample may contribute to activity in another sample. If this differing contribution 

to activity also covaries with a taxon’s abundance, these taxa may be considered to be 

‘conditionally rare taxa’ (Jia et al. 2018) and previously 1-2% of freshwater lake OTUs have 

been reported to be conditionally rare (Shade et al. 2014). It has also been shown that marine 

heterotrophic bacteria can survive for at least 8 months (maximum tested length) in a starved 

state (Amy and Morita 1983). These factors may explain why some OTUs were included in both 

the HNAcc and LNAcc models and is in line with scenario 1 from Bouvier et al (2007) (i.e., the 

transitioning of cells from active growth to death or inactivity). Alternatively, the same OTU 

may occur in both HNA and LNA groups due to phenotypic plasticity. Phenotypic plasticity has 

been shown for bacterial morphology and size, for example during predation and carbon 

starvation (Corno and Jürgens 2006). The fact that HNA and LNA groups have been suggested 

to correspond to cells of differing size, with HNA harboring larger cell sizes (Wang et al. 2009, 

Proctor et al. 2018), is in line with this hypothesis. Finally, the OTU level grouping of bacterial 

taxa can disguise genomic and phenotypic heterogeneity (Coleman et al. 2006, Hunt et al. 2008b, 

Denef et al. 2010a, Shapiro and Polz 2014), which may be an explanation for inconsistent 

associations between OTUs and FCM functional groups.   
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While all taxonomic levels resulted in a model with predictive power, the best model was at the 

most resolved taxonomy (i.e., OTU) indicating that it is unlikely that OTUs within the HNA and 

LNA groups are phylogenetically conserved. Indeed, when analyzing the data at an OTU level, 

very little phylogenetic conservation was found between selected OTUs for HNA and LNA 

groups. This is in contrast to a recent study that found a clear phylogenetic signal at the phylum 

level (Proctor et al. 2018). Proctor et al. (Proctor et al. 2018) showed separate bacterial clusters 

between HNA and LNA groups across different aquatic systems. However, this was not the case 

for lake water samples. It is notable that Proctor et al. (Proctor et al. 2018) separated HNA and 

LNA cells based on cell size (where HNA cells were >0.4 um and LNA cells were 0.2-0.4 um, 

based on 50-90% removal of HNA cells after filtering), while our study separated these FCM 

functional groups on the basis of fluorescence intensity alone. Moreover, our study assessed 

associations between OTUs and population dynamics, while Proctor et al. (Proctor et al. 2018) 

assessed actual presence.  

 

The Boruta algorithm and RL scores agreed on the top-ranked HNA OTU for all lake systems, 

which motivates further investigation of the ecology of these taxonomic groups. While little 

information on the identities of HNA and LNA freshwater lake bacterial taxa exists, several 

studies identified Bacteroidetes among the most prominent HNA taxa and this finding is in line 

with our results. Vila-Costa et al. (Vila-Costa et al. 2012) found that the HNA group was 

dominated by Bacteroidetes in summer samples from the Mediterranean Sea, Read et al. (Read et 

al. 2015) showed that HNA abundances correlated with Bacteroidetes, and Schattenhofer et al. 

(Schattenhofer et al. 2011) reported that the Bacteroidetes accounted for the majority of HNA 

cells in the North Atlantic Ocean. In Muskegon Lake, OTU173 was the dominant HNA taxon 

and is a member of the Order Flavobacteriales (bacII-A). The bacII group is a very abundant 

freshwater bacterial group and has been associated with senescence and decline of an intense 

algal bloom (Newton et al. 2011c). BacII-A has also made up ~10% of the total microbial 

community during cyanobacterial blooms, reaching its maximum density immediately following 

the bloom (Woodhouse et al. 2016). In Lake Michigan, OTU25, a member of the Bacteroidetes 

Order Cytophagales known as bacIII-A, was the top HNA OTU. However, much less is known 

about this specific group of Bacteroidetes. Though, the bacII-A/bacIII-A group has been strongly 

associated with more heterotrophically productive headwater sites (compared to higher order 
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streams) from the River Thames, showing a negative correlation in rivers with dendritic distance 

from the headwaters, indicating that these taxa may contribute more to productivity (Read et al. 

2015). In the inland lakes, OTU369 was the major HNA taxon and is associated with the 

Alphaproteobacteria Order Rhodospirillales (alfVIII), which to our knowledge is a group with 

very little information available in the literature. In contrast to our findings of Bacteroidetes and 

Alphaproteobacterial HNA selected OTUs, Tada & Suzuki (Tada and Suzuki 2016) found that 

the major HNA taxon from an oceanic algal culture was from the Betaproteobacteria whereas 

LNA OTUs were within the Actinobacteria phylum. 

 

 

Conclusions 

Our results indicate that there are taxonomic differences between HNA and LNA groups in 

freshwater lake systems, although these differences are lake system specific. This result may be 

due to taxa switching between these groups, potentially due to genomic or phenotypic plasticity. 

The difference between selected taxa is larger between lake systems as opposed to differences 

between HNA and LNA groups, which were not conserved phylogenetically. Thus, our results 

correspond most with research presented by Vila-Costa et al. (Vila-Costa et al. 2012), in which a 

taxonomic division was found between HNA and LNA groups, yet this was not rigid and 

followed seasonal trends. Overall, our results support scenario 4 proposed by Bouvier et al. 

(Bouvier et al. 2007), where HNA and LNA exhibit a different taxonomy, but this taxonomy 

changes over time and space and may overlap. With this study, we show that different types of 

microbial ecological data can be integrated with machine learning to learn about the composition 

and functioning of bacterial populations in aquatic systems. Future studies on HNA and LNA 

bacterial groups should use genome-resolved metagenomics, metatranscriptomics, or single-cell 

genomics to decipher whether the traits that underpin the association of a taxon with a FCM 

group are related to genomic or phenotypic plasticity.  
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Methods 

Data collection and DNA extraction, sequencing and processing  

In this study, we used a total of 173 samples collected from three types of lake systems described 

previously (Chiang et al. 2018), including: (1) 49 samples from Lake Michigan (2013 & 2015), 

(2) 62 samples from Muskegon Lake (2013-2015; one of Lake Michigan’s estuaries), and (3) 62 

samples from twelve inland lakes in Southeastern Michigan (2014-2015). For more details on 

sampling, please see Figure 5.1 and  the Field Sampling, DNA extraction, and DNA sequencing 

and processing sections within Chiang et al. (Chiang et al. 2018). In all cases, water for 

microbial biomass samples were collected and poured through a 210 μm and 20 μm bleach 

sterilized nitex mesh and sequential in-line filtration was performed using 47 mm polycarbonate 

in-line filter holders (Pall Corporation, Ann Arbor, MI, USA) and an E/S portable peristaltic 

pump with an easy-load L/S pump head (Masterflex®, Cole Parmer Instrument Company, 

Vernon Hills, IL, USA) to filter first through a 3 μm isopore polycarbonate (TSTP, 47 mm 

diameter, Millipore, Billerica, MA, USA) and second through a 0.22 μm Express Plus 

polyethersulfone membrane filters (47 mm diameter, Millipore, MA, USA). The current study 

only utilized the 3 - 0.22 μm fraction for analyses.  

 

DNA extractions and sequencing were performed as described in Chiang et al. (Chiang et al. 

2018). Fastq files were submitted to NCBI sequence read archive under BioProject accession 

number PRJNA412984 and PRJNA414423. We analyzed the sequence data using MOTHUR 

V.1.38.0 (seed = 777; (Schloss et al. 2009b) based on the MiSeq standard operating procedure 

and put together at the following link: https://github.com/rprops/Mothur_oligo_batch. A 

combination of the Silva Database (release 123; (Quast et al. 2013b)) and the freshwater TaxAss 

16S rRNA database and pipeline (Rohwer et al. 2017b) was used for classification of operational 

taxonomic units (OTUs).  

 

For the taxonomic analysis, each of the three lake datasets were analyzed separately and treated 

with an OTU abundance threshold cutoff of at least 5 sequences in 10% of the samples in the 

dataset (similar strategy to (Weiss et al. 2016)). For comparison of taxonomic abundances across 

samples, each of the three datasets were then rarefied to an even sequencing depth, which was 

4,491 sequences for Muskegon Lake samples, 5,724 sequences for the Lake Michigan samples, 

https://github.com/rprops/Mothur_oligo_batch
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and 9,037 sequences for the inland lake samples. Next, the relative abundance at the OTU level 

was calculated using the transform_sample_counts() function in the phyloseq R package 

(McMurdie and Holmes 2013) by taking the count value and dividing it by the sequencing depth 

of the sample. For all other taxonomic levels, the taxonomy was merged at certain taxonomic 

ranks using the tax_glom() function in phyloseq (McMurdie and Holmes 2013) and the relative 

abundance was re-calculated.  

 

Heterotrophic bacterial production measurements 

Muskegon Lake samples from 2014 and 2015 were processed for heterotrophic bacterial 

production using the [3H] leucine incorporation into bacterial protein in the dark method 

(Kirchman et al. 1985, Simon and Azam 1989). At the end of the incubation with [3H]-leucine, 

cold trichloroacetic acid-extracted samples were filtered onto 0.2 µm filters that represented the 

leucine incorporation by the bacterial community.  Measured leucine incorporation during the 

incubation was converted to bacterial carbon production rate using a standard theoretical 

conversion factor of 2.3 kg C per mole of leucine (Simon and Azam 1989).  

 

Flow cytometry, measuring HNA and LNA 

In the field, a total of 1 mL of 20 μm filtered lake water were fixed with 5 μL of glutaraldehyde 

(20% vol/vol stock), incubated for 10 minutes on the bench (covered with aluminum foil to 

protect from light degradation), and then flash frozen in liquid nitrogen to later be stored in -

80°C freezer until later processing with a flow cytometer. Flow cytometry procedures followed 

the protocol laid out in Props et al. (Props et al. 2017b), which also uses the samples presented in 

the current study. Samples were stained with SYBR Green I and measured in triplicate. The 

lowest number of cells collected after denoising was 2342. HNA and LNA groups were selected 

using the fixed gates introduced in Prest et al. (Prest et al. 2013) and plotted in Figure SI 5.17.  

Cell counts were determined per HNA and LNA group and averaged over the three replicates 

(giving rise to HNAcc and LNAcc).  

 

Data analysis 

Processed data and analysis code for the following analyses can be found on the GitHub page for 

this project at https://deneflab.github.io/HNA_LNA_productivity/. 

https://deneflab.github.io/HNA_LNA_productivity/
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HNA-LNA and HNA-Productivity Statistics and Regressions 

We tested the difference in absolute number of cells within HNA and LNA functional groups 

across running analysis of variance with a post-hoc Tukey HSD test (aov() and TukeyHSD(); 

stats R package; (R Core Team 2018)). In addition, we tested the association of HNA and LNA 

to each other and with productivity by running ordinary least squares regression with the lm() 

(stats R package; (R Core Team 2018)).  

 

Ranking correlation  

Ranking correlation between variables was calculated using the Kendall rank correlation 

coefficient, using the kendalltau() function in Scipy (v1.0.0) or cor() in R (v3.2). The ‘tau-b’ 

implementation was used, which is able to deal with ties. Values range from -1 (strong 

disagreement) to 1 (strong agreement). The same statistic was used to assess the similarity 

between rankings of variable selection methods.  

 

Centered-log ratio transform  

First, following guidelines from Paliy & Shanker, Gloor et al. and Quinn et al.(Paliy and Shankar 

2016, Gloor et al. 2017, Quinn et al. 2018), relative abundances of OTUs were transformed using 

a centered log-ratio (CLR) transformation before variable selection was applied. This means that 

the relative abundance 𝑥𝑖of a taxa was transformed according to the geometric mean of that 

sample, in which there are  taxa present:  

.   

Zero values were replaced by . This was done using the scikit-bio package 

(www.scikit-bio.org, v0.4.1).  

 

Lasso & stability selection 

Scores were assigned to taxa based on an extension of the Lasso estimator, which is called 

stability selection (Meinshausen and Bühlmann 2010). In the case of 𝑛samples, the Lasso 

estimator fits the following regression model:  

http://www.scikit-bio.org/
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  ,   

in which  denotes the abundance table,  the target to predict, which either is HNA cell 

abundances (HNAcc) or LNA cell abundances (LNAcc), and  is a regularization parameter 

which controls the complexity of the model and prevents overfitting. The Lasso performs an 

intrinsic form of variable selection, as the weights of certain variables will be put to zero.  

 

Stability selection, when applied to the Lasso, is in essence an extension of the Lasso regression. 

It implements two types of randomizations to assign a score to the variables, and is therefore also 

called the Randomized Lasso (RL). The resulting RL score can be seen as the probability that a 

certain variable will be included in a Lasso regression model (i.e., its weight will be non-zero 

when fitted). When performing stability selection, the Lasso is fitted to  different subsamples of 

the data of fraction , denoted as  and corresponding . A second randomization is added by 

introducing a weakness parameter . In each model, the penalty  changes to a randomly chosen 

value in the set , which means that a higher penalty will be assigned to a random subset 

of the total amount of variables. The Randomized Lasso therefore becomes:  

  ,   

where  is a random variable which is either  or 1. Next, the Randomized Lasso score (RL 

score) is determined  by counting the number of times the weight of a variable was non-zero for 

each of the  models and divided by . Meinshausen and Bühlmann show that, under stringent 

conditions, the number of falsely selected variables is controlled for the Randomized Lasso when 

the RL score is higher than 0.5.  If  is varied, one can determine the stability path, which is the 

relationship between  and  for every variable. For our implementation, ,  and 

the highest score was selected in the stability path for which  ranged from  until , 

logarithmically divided in 100 intervals. The RandomizedLasso() function from the scikit-learn 

machine learning library was used (Pedregosa et al. 2011), v0.19.1).  

 

Random Forests & Boruta 

The Boruta algorithm is a wrapper algorithm that makes use of Random Forests as a base 

classification or regression method in order to select all relevant variables in function of a 
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response variable (Kursa and Rudnicki 2010). Similar to stability selection, the method uses an 

additional form of randomness in order to perform variable selection. Random Forests are fitted 

to the data multiple times. To remove the correlation to the response variable, each variable gets 

per iteration a so-called shadow variable, which is a permuted copy of the original variable. 

Next, the Random Forest algorithm is run with the extended set of variables, after which variable 

importances are calculated for both original and shadow variables. The shadow variable that has 

the highest importance score is used as reference, and every variable with significantly lower 

importance, as determined by a Bonferroni corrected t-test, is removed. Likewise, variables 

containing an importance score that is significantly higher are included in the final list of 

selected variables. This procedure can be repeated until all original variables are either discarded 

or included in the final set; variables that remain get the label ‘tentative’ (i.e., after all repetitions 

it is still not possible to either select or discard a certain variable). We used the boruta_py 

package to implement the Boruta algorithm (https://github.com/scikit-learn-contrib/boruta_py). 

Random Forests were implemented using RandomForestRegressor() function from scikit-learn 

(Pedregosa et al. 2011), v0.19.1). Random Forests were run with 200 trees, the number of 

variables considered at every split of a decision tree was  and the minimal number of samples 

per leaf was set to five. The latter were based on default values for Random Forests in a 

regression setting (Probst et al. 2018). The Boruta algorithm was run for 300 iterations, variables 

were selected or discarded at  after performing Bonferroni correction.   

 

Recursive variable elimination  

Scores of the Randomized Lasso were evaluated using a recursive variable elimination strategy 

(Guyon et al. 2002). Variables were ranked according to the RL score. Next, the lowest-ranked 

variables were eliminated from the dataset, after which the Lasso was applied to predict HNAcc 

and LNAcc respectively. This process was repeated until only the highest-scored taxa remained. 

In this way, performance of the Randomized Lasso was assessed from a minimal-optimal 

evaluation perspective (Nilsson et al. 2007). In other words, the fewest variables that resulted in 

the highest predictive performance was determined.  
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Performance evaluation 

In order to account for the spatiotemporal structure of the data, a blocked cross-validation 

scheme was implemented (Roberts et al. 2017). Samples were grouped according the site and 

year that they were collected. This results in 5, 10 and 16 distinctive groups for the Michigan, 

Muskegon and Inland lake systems respectively. Predictive models were optimized in function of 

the  between predicted and true values of held-out groups using a leave-one-group-out cross-

validation scheme with the LeaveOneGroupOut() function. This results in a cross-validated  

value. For the Lasso,  was determined using the lassoCV() function, with setting eps=  and 

n_alphas=400. The Random Forest object was optimized using a grid search where max_features 

was chosen in the interval  (all variables) or  (Boruta selected variables) 

and  min_samples_leaf in the interval , using the GridSearchCV() function. The number 

of decision trees (n_trees) was set to 200. All functions are part of scikit-learn ((Pedregosa et al. 

2011); v0.19.1) 

 

Stability of the Randomized Lasso 

Similarity of RL scores between lake systems and functional groups was quantified using the 

Pearson correlation. This was done using the pearsonr() function in Scipy (v1.0.0).  

 

Patterns of HNA and LNA OTUs across ecosystems and phylogeny 

To visualize patterns of selected HNA and LNA OTUs across the three ecosystems, a heatmap 

was created with the RL scores of each OTU from the Randomized Lasso regression that were 

higher than specified threshold values. The heatmap was created with the heatmap.2() function 

(gplots R package) using the euclidean distances of the RL scores and a complete linkage 

hierarchical clustering algorithm (Figure 5.4).  

 

Correlations between taxa and productivity measurements 

Kendall tau ranking correlations between productivity measurements and individual abundances 

were calculated on the phylum and OTU level using the kendalltau() function from Scipy 

(v1.0.0). P-values were corrected using Benjamini-Hochberg correction, reported as P_adj. This 

was done using the multitest() function from the Python module Statsmodels ((Seabold and 

Perktold 2010); v0.5.0).  
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Phylogenetic tree construction and signal calculation  

We calculated the best performing maximum likelihood tree using the GTR-CAT model (-gtr -

fastest) model of nucleotide substitution with fasttree (version 2.1.9 No SSE3; (Price et al. 

2010)). Phylogenetic signal with both discrete (i.e., HNA, LNA, or both) and continuous traits 

(i.e. the RL score) using the newick tree from FastTree was then used to model phylogenetic 

signal using Pagel’s lambda (discrete trait: fitDiscrete() from the geiger R package (Harmon et 

al. 2008); continuous trait: phylosig() from the phytools R (Revell 2012)), Blomberg’s K 

(phylosig() function from the phytools R package (Revell 2012)), and Moran’s I 

(abouheif.moran() function from the adephylo R package (Jombart et al. 2010)).  
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Table 5.1.  Top-scoring OTUs according to the randomized lasso.  

 

Top-scoring OTUs according to the RL per functional population and lake ecosystem. Selection 

according to the Boruta algorithm is given in addition to the RL score. Descriptive statistics by 

means of the Kendall rank correlation coefficient (KRCC) have been added with level of 

significance in function of the HNA/LNA population. Full taxonomy of the OTUs is given in 

Table SI 5.3. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lake 

system 

Functional 

group 

OTU RL 

score 

Boruta 

selected 

Kendall's 

tau 

(HNA) 

P-value 

(HNA) 

Kendall's 

tau 

(LNA) 

P-value 

(LNA) 

Inland HNA OTU369 0.382 yes -0.43 <0.001 -0.28 0.0012  
LNA OTU555 0.384 no 0.089 N.S. 0.22 0.011 

Michigan HNA OTU025 0.362 yes 0.46 <0.001 0.41 <0.001  
LNA OTU168 0.428 yes 0.26 0.0092 0.4 <0.001 

Muskegon HNA OTU173 0.462 yes 0.5 <0.001 0.2 0.019  
LNA OTU029 0.568 no 0.26 0.0029 0.49 <0.001 
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Figure 5.1.  Association of flow cytometry functional groups with each other and productivity. 

 

(A) Correlation between HNA cell counts and LNA cell counts across the three freshwater lake 

ecosystems. (B-D) Muskegon Lake bacterial heterotrophic production and its correlation with 

(B) HNA cell counts, (C) LNA cell counts, and (D) total cell counts. The grey area in plots A, B, 

and D represents the 95% confidence intervals. 
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Figure 5.2.   in function of the number of OTUs, which were iteratively removed based on 

the RL score and evaluated using the Lasso at every step.  

 

The solid (HNA) and dashed (LNA) vertical lines corresponds to the threshold (i.e., number of 

OTUs) which resulted in a maximal . (A) Inland system ( ), HNAcc; (B) Lake 

Michigan ( ), HNAcc; (C) Muskegon lake, HNAcc ( ); (D) Inland 

system, LNAcc ( ); (E) Lake Michigan, LNAcc ( ); (F) Muskegon 

lake, LNAcc ( ).   
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Figure 5.3.  Evaluation of HNAcc and LNAcc predictions using the Lasso at all taxonomic 

levels. 

 

Evaluation of HNAcc and LNAcc predictions using the Lasso at all taxonomic levels. 

for Muskegon lake, expressed in terms of , using different subsets of taxonomic variables. 

Subsets were determined by iteratively eliminating the lowest-ranked taxonomic variables based 

on the RL score.   
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Figure 5.4.  Hierarchical clustering of the RL scores.  

 

Hierarchical clustering of the RL score for the top 10 selected OTUs within each lake system and 

FCM functional groups with the selected OTU (rows) across HNA and LNA groups within the 

three lake systems (columns). 
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Figure 5.5.  Phylogenetic tree with all HNA and LNA selected OTUs  

 

Phylogenetic tree with all HNA and LNA selected OTUs from each of the three lake systems 

with their phylum level taxonomic classification and association with HNA, LNA or to both 

groups based on the RL score threshold values. 
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Figure 5.6.  Correlation of the relative abundances of the top three OTUs selected by the RL and 

flow cytometry space. 

 

Correlation (Kendall’s tau-b) between the relative abundances of the top three OTUs selected by 

the RL and the densities in the cytometric fingerprint. The fluorescence threshold used to define 

HNA and LNA populations is indicated by the dotted line.  
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Table SI 5.2.  Evaluation of Random Forest (RF) predictions. 

Expressed in  for all OTUs versus those selected (i.e., sel) by the Boruta algorithm.     

 

 

 

 

 

 

 

  

Lake system Functional group RF(all) RF(sel) 

Inland HNAcc 0.53 0.71 

Inland LNAcc 0.21 0.48 

Michigan HNAcc 0.28 0.42 

Michigan LNAcc 0.40 0.59 

Muskegon HNAcc 0.45 0.59 

Muskegon LNAcc 0.66 0.77 
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Table SI 5.3.  Full taxonomy of top-ranked OTUs  

according to the Randomized Lasso. 
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Figure SI 5.7.  Relationship between the RL score and relative abundance per OTU. 

 

Scatter plot of RL score versus the average relative abundance of every OTU for HNAcc (blue 

points, A, B, and C) and LNA (orange points, D, E, and F) for each lake system: Inland Lakes 

(A and D), Lake Michigan (B and E), and Muskegon Lake (C and F). 
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Figure SI 5.8. Comparison of predictions of HNAcc and LNAcc versus relative fractions.  

 

Performed for Muskegon Lake at the OUT level expressed in terms of . The subset of 

taxonomic variables was iteratively reduced using a recursive variable elimination strategy, 

based on the RL score. Lowest-scored variables were removed at every step, after which the base 

model (i.e., the Lasso) was used to model and predict cell counts or relative abundances. 

Predictions for HNA and LNA relative abundances overlap (red and green dots).  
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Figure SI 5.9. The  of HNA and LNA OTUs selected by the RL. 

 

Prediction of HNAcc (A) and LNAcc (B) for Muskegon Lake at the OTU level expressed in 

terms of  using relative abundances (i.e., “compositional”) and CLR transformed (i.e., “CLR 

transformed”). The subset of taxonomic variables was iteratively reduced using a recursive 

variable elimination strategy, based on the RL score. Lowest-scored variables were removed at 

every step, after which the base model (i.e., Lasso) were used to model and predict HNAcc and 

LNAcc. 
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Figure SI 5.10.  Distribution of the RL score for all three lake systems. 

 

Inland Lakes (A), Lake Michigan (B), and Muskegon Lake (C) and all taxonomic levels in 

function of HNAcc. 
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Figure SI 5.11.  Selected OTUs in red according to the Boruta algorithm for each lake system 

and functional group. 
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Figure SI 5.12.  Fraction of selected OTUs using the Boruta algorithm for HNA and LNA.  

 

Relative fraction of selected OTUs using the Boruta algorithm for HNAcc (blue points, A, B, and 

C) and LNAcc (orange points, D, E, and F) for each lake system: : Inland Lakes (A and D), Lake 

Michigan (B and E), and Muskegon Lake (C and F). 
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Figure SI 5.13.  Comparison of Random Forest predictions using Boruta selected and the 

Randomized Lasso.  

 

Comparison of Random Forest predictions (grey dashed line) using Boruta selected OTUs versus 

predictions using the Lasso and RL score for HNAcc (blue points, A, B, and C) and LNAcc 

(orange points, D, E, and F) for each lake system: Inland Lakes (A and D), Lake Michigan (B 

and E), and Muskegon Lake (C and F). 
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Figure SI 5.14.  Pearson correlations between HNAcc and LNAcc RL scores. 

 

Pearson correlations between RL scores assigned to OTUs in function of HNAcc and LNAcc 

between lake systems. Only those OTUs were considered that were present in all lake systems, 

which were 190 in total. Values are bolded if P < 0.05. 
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Figure SI 5.15.  Phylogenetic tree with RL-selected OTUs and their HNA and LNA RL scores. 

 

Phylogenetic tree with all HNA and LNA selected OTUs from each of the three lake systems 

with their phylum level taxonomic classification (first row) and association with HNA, LNA, or 

both groups based on the RL score threshold values (las row. Second (HNA) and third rows 

(LNA) display the RL scores. 
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Figure SI 5.16.  Kendall’s tau of individual OTU abundances and productivity measurements 

versus the RL score determined in function of HNAcc. 
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Figure SI 5.17.  Visualization of the flow cytometry gating strategy. 

 

Examples of the gating strategy to determine HNAcc and LNAcc for the three lake systems. The 

gating strategy is performed in the arcsinh(x) transformed bivariate space of the FL1-H and FL3-

H channel, following guidelines of Preset et al., 2013. 
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Chapter VI:  

Conclusions 

Reflection 

In my dissertation, I used an observational approach to investigate the patterns of bacterial 

community diversity, composition, and genomic structure as they relate heterotrophic production 

which is an important ecosystem function in freshwater lakes. The goal of my dissertation was to 

connect major ideas in the broader field of community ecology to a microbiological context 

using freshwater lakes as the testing grounds. 

 

In Chapter II, I sampled the particle-associated and free-living bacterial community 

composition of surface and bottom lake layers within 11 lakes that had high- and low-

productivity. I found that independent of lake nutrient level and surface or bottom lake layer, 

particle-associated and free-living bacterial community composition differed and there were 

larger inter-lake differences in the particle-associated communities than for free-living 

communities. These community differences were consistent in all comparisons at the phylum-

level, emphasizing that large changes in community composition are likely the result of deeply 

conserved traits within specific phylogenetic groups.  

 

In Chapter III, I collected samples taken from a freshwater, estuarine lake with a large, natural 

productivity gradient to assess whether microhabitat played a role in shaping bacterial 

biodiversity-ecosystem function relationships. I found that particle-associated communities were 

more diverse (i.e., higher species richness) and displayed a positive, linear relationship between 

diversity and heterotrophic production, whereas no relationship was found in the free-living 

communities. The relationship for particle-associated communities strengthened when evenness 

was accounted for, indicating that bacterial abundance matters for productivity. Additionally, I 

found that there was a negative relationship between phylogenetic diversity and per-capita 
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heterotrophic production, suggesting that communities with more closely related species have 

higher per-capita production. This highlights that specific ecological processes may occur on 

particulate matter that do not occur in the open water, which I suggest arise due to closely related 

taxa in particles complementing each other’s metabolic functions. 

 

In Chapter IV, I used the samples from Chapter III to further investigate the potential genomic 

characteristics that underpin differences in the diversity, community composition, and ecosystem 

functioning of particle-associated and free-living habitats. I found that bacteria which 

specializing in particle-associated microhabitats have larger genome sizes, a lower proportion of 

coding DNA, higher GC content, and higher nitrogen content. I also found that the number of 

unique genes was higher in particle-associated genomes. However, per region of the genome, the 

particle-associated bacteria had both fewer genes and lower gene diversity compared to free-

living bacteria who “packed more in” to their genomes. This major difference in genome 

structure based on microhabitat suggests that an organism’s ecology is strongly linked to 

evolutionary processes that occur within their genomes.  

 

Finally in Chapter V, with samples taken from three types of freshwater lake systems, I 

associated bacterial composition using machine learning with two important flow cytometry 

groups that are ubiquitous across all aquatic systems: high- (HNA) and low-nucleic acid (LNA) 

functional groups. Even though HNA bacteria were only half as abundant as LNA bacteria in my 

samples, they were very strongly correlated with heterotrophic production. This implies that the 

smaller pool of HNA bacteria may play a disproportionately large role in the freshwater carbon 

flux. In addition, I found that very few taxa specialized in either the HNA or LNA groups but 

were instead highly system specific. This suggests that it is unlikely that there are universal 

bacterial taxa within the HNA or LNA groups across aquatic systems. Rather, HNA functional 

groups likely represent the subset of the community that are actively contributing to ecosystem 

functioning at the time of sample collection.  

 

Some unknowns and potential limitations  

Here, I have defined the spatial niche of bacteria using sequential in-line filtering with filters of 

two different pore sizes (3 um and 0.22 um) to define the particle-associated and free-living 
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microhabitats in my studies. This is a very common method used in the aquatic sciences to study 

bacteria (Bidle and Fletcher 1995, Crump et al. 1998, Acinas et al. 1999, Besemer et al. 2005, 

Eloe et al. 2011, Jackson et al. 2014, Sunagawa et al. 2015). This approach assumes that larger 

pore size filters collect detrital particles, microeukaryotes, and (potentially) chemotactic 

organisms whereas the plankton are captured on the smaller filter. However, there are 

fundamental drawbacks to this approach. Because the filters are usually used to destructively 

collect DNA or RNA, information about the material collected on the filter is typically ignored 

and not analyzed for particle source, type, or density of particles per liter. A lack of knowledge 

of the source and density of particles has important ecological ramifications. For example, 

particle-associated bacteria on a detrital particle likely have different ecological and evolutionary 

strategies compared to bacteria that are facultative or obligate symbionts with algal cells. Finally, 

information on particle source and load will help provide more accurate scaling up of bacterial 

processes for ecosystem models.  

 

Future work on social and community interactions within bacterial communities attached to 

particulate matter will also be important for understanding ecological relationships. For example, 

in an experimental study on model marine particles, Datta et al. (2016) found that there was rapid 

community succession from primary particle degraders to secondary consumers. The secondary 

consumers may decrease the particle degradation rate while increasing the bacterial biomass 

attached to particulate matter. This detail influences the ecological interpretations (and therefore 

assumptions) that researchers make about an organism's niche and metabolic function. In 

addition, future work on bacterial social interactions may have relevant implications for bacterial 

community dynamics. Ganesh et al. (2014) found that genes mediating social interactions (i.e., 

cell-to-cell transfer, antibiotic resistance, genetic mobile elements, viruses, adhesion, and 

motility) were upregulated on particulate matter in an oxygen minimum zone. These types of 

social and community interactions will also have large impacts on scaling up microbial 

processes.   
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Synthesis 

My dissertation works to step beyond the traditional descriptive approach in microbial ecology, 

which asks “who’s there?” and “what are they doing?” (Figure 1.1A). Rather, I work to integrate 

theories and ideas from the broader field of community ecology into bacterial systems (Figure 

1.1B). The work presented here shows that bacterial systems fit into a community ecology 

framework. For example, niche theory and biodiversity-ecosystem function relationships, which 

were originally developed in plant and animal systems, are indeed relevant to the bacterial realm. 

Asking community ecology questions about bacterial systems does have its advantages. Bacterial 

communities are a useful system for developing ideas regarding the interplay between ecology 

and evolution. This is not only because bacterial ecology and evolution can work on similar time 

scales but also due to the way bacterial communities are sampled (i.e., through molecular 

approaches), which allows for evolutionary interpretations of ecological patterns. As an example, 

my future research will focus on the ecological role of horizontal gene transfer and determine the 

impact that nutrient concentration and particle-association have on the dynamics of gene transfer.  
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