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ABSTRACT 

Cataract and Glaucoma are two leading causes of visual impairment and blindness, 

showing an increasing prevalence with age. However, in spite of this significance, the etiology of 

age-related cataract (ARC) or glaucoma is still unclear. Previous studies implied that although 

genes play a role in the development of ARC and glaucoma, knowledge regarding the influence of 

environmental factors is also emerging. Much evidence suggests that oxidative stress increases the 

risk of ARC and glaucoma, while heavy metal exposure, a well-known source of increased 

oxidative stress, may be linked to the risk of disease. However, for glaucoma, previous 

epidemiological studies on heavy metals were mainly conducted in Asian populations and were 

cross-sectional, raising concerns related to causal inferences and problems of reverse causality. 

Furthermore, lead exposure measurements were based on blood or hair lead levels, reflecting 

relatively recent doses, which limits inferences regarding chronic effects of cumulative exposure. 

For cataract, studies on the association of environmental pollutants other than heavy metals with 

ARC were very limited.  

We thus examined the following three aims: 1) the association between bone lead levels 

measured via K x-ray fluorescence and incident primary open-angle glaucoma (POAG); 2) effect 

modification by dietary patterns and dietary vitamin intake in the association between bone lead 

levels and incident POAG; and 3) a two-stage environment-wide association study (EWAS) to 

discover potential environmental risk factors for cataract surgery. Aims 1 and 2 were conducted 

using data from the Normative Aging Study, a prospective cohort study established by the United 
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States Department of Veterans Affairs. Aim 3 utilized data from the National Health and 

Nutrition Examination Survey (NHANES), a national population-based public dataset 

established by the United States Centers for Disease Control and Prevention.  

We found that bone lead may be an important risk factor of POAG. A 10-fold increase in 

patella lead level was associated with more than 5-fold higher risk of POAG during 15 years of 

follow-up. Further analysis on effect modification by dietary pattern suggests that people who 

had high adherence to prudent dietary pattern, which contains plentiful legumes, vegetables, 

seafood, onions, tomatoes, fruits and poultry, were less susceptible to the toxicity of patella lead 

on the risk of POAG. For cataract, we found that urinary heavy metals (cadmium, cobalt and 

tungsten), and serum PCBs 44 and 49, were positively associated with cataract surgery by using 

the conventional EWAS approach. We further identified urinary mono-(3-carboxypropyl) 

phthalate and two VOCs (urinary N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine and 

urinary N-acetyl-S- (3-hydroxypropyl)-L-cysteine) as potential risk factors for cataract via 

weighted EWAS approach accounting for biological half-lives of pollutants.  

This dissertation revealed the effects of multiple unrecognized environmental risk factors 

for glaucoma and cataract. Our research can help better understand the role of environmental risk 

factors in the pathogenesis of ARC and POAG, providing new ideas for interventions regarding 

these two important ocular diseases, and ultimately decrease the global burden of visual 

impairment and blindness effectively. 
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CHAPTER I 

Introduction 

1. Epidemiology of Cataract and Glaucoma 

Cataract and Glaucoma are two leading causes of visual impairment and blindness, and 

show an increasing prevalence with age (Pascolini and Mariotti 2011). Previous meta-analysis 

reported that approximately 13.4 million (3.3 million to 31.6 million) people would be estimated 

to be blind because of cataract by year 2020 (Flaxman et al. 2017). The prevalence of cataract in 

the United States (U.S.) in 2010 was 17% in people aged 40 years or older and more than 50% in 

people aged 70 years or older (Friedman et al. 2012). Surgery, which removes the patient’s cataract 

and replaces it with an artificial lens, is currently the only effective treatment for visually 

significant cataract, and approximately 23.1% of cataract patients in the U.S. underwent at least 

one surgery in a cross-sectional study collected from year 2001 to 2011 (Kauh et al. 2016). 

Although cataract surgery rates are increasing worldwide, developing countries still face numerous 

challenges in access to surgical care, including high cost, low population awareness, lack of trained 

specialists, and post-surgical side-effects (Khanna et al. 2011; Rao et al. 2011; Tabin et al. 2008). 

Glaucoma is the second leading cause of blindness in the world, after cataract, and the 

leading cause of irreversible loss of vision (Prum et al. 2016). Approximately 8% of blindness is 

caused by glaucoma, according to the 2010 WHO report (Pascolini and Mariotti 2012). A previous 

meta-analysis showed that the global prevalence of glaucoma in the population aged 40–80 years 
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was 3.54% (95% CI, 2.09–5.82) (Tham et al. 2014). In the U.S., the National Eye Institute reported 

that approximately 1.9% of the population aged 40 years and older were suffering from primary 

open-angled glaucoma (POAG, a major subtype of age-related glaucoma in the U.S.) in 2010, with 

the number of cases rising from 2.22 million to 2.72 million since the year 2000. Primary angle-

closure glaucoma (PACG, the second major subtype), only accounted for approximately 0.1% of 

all prevalent glaucoma cases in the U.S. population (Prum et al. 2016; Glaucoma, Open-angle | 

National Eye Institute; Glaucoma Prevalence Rates by State). Since glaucoma is a 

neurodegenerative disease, the loss of visual function is irreversible once symptomatic, and there 

is no cure (Prum et al. 2016). Hence, the goal of clinical treatment is only to prevent further damage 

to the optic nerve. 

 

2. Risk Factors for Age-related Cataract (ARC) and glaucoma 

Despite their high prevalence and severe consequences, the etiologies of both age-related 

cataract (ARC) and glaucoma are still unclear. It is believed that the pathogenesis of ARC and 

glaucoma is affected by both genetic and environmental factors.  

2.1. Risk Factors for Glaucoma 

2.1.1. Definition and Etiology of Glaucoma 

Glaucoma is commonly defined as a disease where characteristic optic neuropathy results 

in visual field loss (Prum et al. 2016). Glaucoma can be diagnosed by evaluating the health of the 

optic nerve head via ophthalmoscopy. Clinically significant features include the cup-to-disc ratio 

(CDR is the ratio of the optic nerve cup to the optic disc, and glaucomatous optic neuropathy 
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usually results in a characteristically enlarged or asymmetric CDR), the shape/color or presence of 

hemorrhages on the cup and disc and their rims, and the distribution of retinal vessels (Prum et al. 

2016). More than half of glaucoma cases are caused by increased intraocular pressure (>21 mmHg), 

which may compress axonal fibers of the optic nerve, and thus induce neuropathy through 

decreased nerve head perfusion and/or disrupt the autoregulation of retinal veins (Prum et al. 2016). 

Furthermore, dysfunctions of the aqueous humor drainage system in the anterior chamber, such as 

due to abnormalities of cell function or anatomical obstruction of the trabecular meshwork or 

Schlemm’s canal, can disrupt the outflow of aqueous humor from the eye, and result in the increase 

of intraocular pressure (Babizhayev 2012; Prum et al. 2016). Newer concepts about the 

translaminar pressure differential between intraocular pressure and intracranial pressure have 

emerged as important factors for this disease (Roy Chowdhury and P Fautsch 2015; Zhao et al. 

2016). For those glaucoma patients whose intraocular pressure is within a normal range, suffering 

from so-called normal-tension glaucoma (NTG), their etiology is even less understood.  

2.1.2. Genetic Risk factors for Glaucoma Development 

POAG is a complex disease affected by both environmental and genetic factors. Genetic 

risk related to glaucoma is mainly polygenic and genes have incomplete penetrance (Prum et al. 

2016). In addition to traditional familial linkage studies, the National Eye Institute (NEI) has 

established the NEI Glaucoma Human genetic collaBORation (NEIGHBOR) consortium to 

conduct genome-wide association studies (GWAS) to identify genetic variants related to POAG 

development (Wiggs et al. 2013). Current known genes associated with POAG includes Myocilin 

(MYOC), Atonal BHLH transcription Factor 7 (ATOH7), Transmembrane And Coiled-Coil 

Domains 1 (TMCO1), SIX Homeobox 1/SIX Homeobox 6 (SIX1/SIX6), Growth Arrest Specific 7 

(GAS7), (Abu-Amero et al. 2015) etc. While multiple genes were already found to be associated 
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with POAG, those mutations only cover part of all POAG variance (Mabuchi et al. 2015). Previous 

twin study conducted in 1987 reported that the heritability of POAG was 0.13 (Teikari 1987), 

while recent GWAS reported that the genetic attribution on the total phenotype variation of POAG 

ranged from 24% to 42% (Cuellar-Partida et al. 2016; Ge et al. 2017). The remaining portion of 

glaucoma variants should thus be influenced by environmental risk factors (Mabuchi et al. 2015). 

2.1.3. Oxidative Stress and Glaucoma Development 

The commonly known non-genetic risk factors for glaucoma include increasing age, 

intraocular hypertension, thin central corneas, racial background, optic nerve susceptibility, and 

positive family history (Prum et al. 2016). Other risk factors, such as various systemic diseases 

(diabetes, hypertension, ischemic vascular diseases, etc.) and unhealthy behaviors (smoking, 

alcohol consumption), remain inconsistent among different studies (Doshi et al. 2008; Fan et al. 

2004; Ko et al. 2016; Prum et al. 2016; Renard et al. 2013). 

A large body of evidence implies that oxidative stress may be associated with glaucoma. 

For example, oxidative stress and vascular damage are two major factors that affect the function 

of the trabecular meshwork and aqueous humor drainage system, which is the target tissue of 

glaucoma in the anterior chamber (Saccà et al. 2015; Zhao et al. 2016). Excessive oxidative stress 

and lipid peroxidation may lead to the accumulation of free radicals and their derivatives (reactive 

oxygen species, ROS), overwhelming the antioxidant defense system, and thus affecting the 

extracellular matrix (ECM) structure and inducing ECM accumulation. This in turn can cause the 

loss of cell adhesion and changes in the cytoskeletal structure of trabecular meshwork cells, 

affecting their membrane permeability, and thus resulting in dysfunction of the trabecular 

meshwork and Schlemm’s canal (Babizhayev 2012; Saccà et al. 2016; Zhao et al. 2016). ROS 

accumulation may also induce apoptosis via mitochondrial damage, cell inflammation, endothelial 
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dysregulation and hypoxia, and corresponding cellular changes were also observed in experiments 

in vitro (Zhao et al. 2016). Such damage to the aqueous humor drainage system can increase 

intraocular pressure, and cause glaucoma (Babizhayev 2012). Elevated biomarkers of oxidative 

stress, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) 

levels, have been measured in the aqueous humor of POAG/PACG patients (Babizhayev 2012; 

Goyal et al. 2014; Majsterek et al. 2011). Significantly higher mitochondrial DNA damage and 

lipid peroxidation products were also observed in the trabecular meshwork of glaucoma patients  

(Izzotti et al. 2003; Zanon-Moreno et al. 2008; Zhao et al. 2016). Mouse models lacking the 

glutamate transporter genes, which are critical to the generation of major antioxidant glutathione 

in the retina, exhibit typical retinal ganglion cell death and optic neuropathy (Harada et al. 2007; 

Kimura et al. 2017). Western blot analysis using specific antibodies also detected a significant 

increase in 4-hydroxy-2-nonenal (HNE) adducts, which are generated by free-radical attack in the 

glaucomatous retina, implying that oxidative stress may also directly harm the optic nerve or retina 

(Tezel et al. 2010).  

Consistent with these findings, antioxidants may protect against glaucoma. Higher intake 

of antioxidants such as vitamin A/retinol and its equivalents (carotenoids), as well as vitamin C, 

vitamin E and glutathione was associated with decreased likelihood of glaucoma (Giaconi et al. 

2012; Ramdas et al. 2012; Veach 2004; Wang et al. 2013). Other visual-function-related nutritional 

factors such as dietary omega-3 fatty acids and nitrate intake were also reported to be negatively 

associated with intraocular pressure or POAG (Kang et al. 2016; Renard et al. 2013). A potential 

protective effect of vitamin D against glaucoma was also observed in multiple studies (Goncalves 

et al. 2015; Yoo et al. 2014). 
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2.1.4. Lead Exposure and Glaucoma Development 

Heavy metals are an environmental source of oxidative stress which may result in 

glaucoma. As early as 1990, a study reported higher copper levels in the aqueous humor of 

glaucoma patients versus controls (Akyol et al. 1990), and a number of more recent studies have 

noticed a significant association between heavy metal biomarkers and glaucoma. An analysis of 

the Korean general population found that higher blood mercury and lower blood manganese levels 

were associated with higher prevalence of glaucoma (Lin et al. 2015). The authors also found that 

higher blood cadmium levels were associated with higher glaucoma risk, particularly in men with 

NTG (baseline intraocular pressure <15 mmHg) (Lee et al. 2016; Lin et al. 2015). A case-control 

study conducted in Japan reported that higher hair lead levels were associated with POAG in 

females, especially in NTG (Yuki et al. 2009). Furthermore, elevated lead levels were found to be 

associated with a higher risk of other ocular diseases such as ARC and age-related macular disease 

(AMD), and may increase the blood-retina permeability, which itself is a risk factor for retinal 

vascular diseases (Erie et al. 2009; Hwang et al. 2015; Mosad et al. 2010; Schaumberg et al. 2004; 

Shen et al. 2016). However, previous epidemiological studies on heavy metals and glaucoma were 

mainly conducted in Asian populations and were cross-sectional, raising concerns related to causal 

inferences and problems of reverse causality. Moreover, lead exposure measures were based on 

blood or hair lead levels, reflecting relatively recent doses, which limits inferences regarding 

chronic effects of cumulative exposure, since lead has a relatively short half-life of about only 1 

month in the blood (Hu et al. 1995, 2007). The hair lead levels utilized in the Japanese case-control 

study are not a good indicator of cumulative lead exposure either, since they can be greatly affected 

by the frequency of hair washing and cutting. 
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2.2. Risk Factors for Age-related Cataract (ARC) 

The detailed etiology of ARC has been better investigated compared with glaucoma. 

However, it is still incompletely understood.  

2.2.1. Definition and Etiology of ARC 

Cataract is defined as any opacification or clouding of lens tissue which affects vision 

(Bobrow et al. 2015; Cataracts | National Eye Institute). Most cataracts are age-related, since the 

accumulation of protein and lipid aggregations in the lens increases with age. Nuclear sclerotic, 

cortical and posterior subcapsular cataracts are three major subtypes of ARC and are believed to 

have distinct but overlapping etiologies. Nuclear sclerosis, which starts from the middle of the lens, 

is likely primarily induced by the aging process (Bobrow et al. 2015). On the other hand, systemic 

diseases such as diabetes may significantly increase the risk of cortical and posterior subcapsular 

cataracts, which are caused by the opacification of peripheral lens fibers and the posterior cortical 

layer (Delcourt et al. 2000; Hennis et al. 2004).  In contrasts with ARC, secondary cataracts can 

develop following other ocular diseases, surgeries, or trauma. Congenital cataracts are inherited or 

attributed to an infection during pregnancy/infancy/childhood (Bobrow et al. 2015). 

Oxidative stress may promote cataract formation through the modification of lens cell 

function. For example, the excessive generation of reactive oxygen species (ROS) can disrupt the 

synthesis of UV filter compounds in the lens (those compounds serve to protect the lens from 

photo-oxidation), overwhelm the antioxidant defense system (superoxide dismutase, catalase, lipid 

peroxidases), impair the DNA repair mechanisms or directly cause oxidative damage to functional 

DNA, enhance apoptosis of epithelial cells of the lens, and induce protein and lipid aggregation in 

the lens (Babizhayev 2012; Bobrow et al. 2015; Spector 1995; Truscott 2005; Tweeddale et al. 
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2016). Previous epidemiological studies have reported protective effects of dietary or 

supplemental intake of antioxidants, such as vitamins A, C and E, on ARC (Beebe et al. 2010; 

Chang et al. 2013; Cui et al. 2013; Thiagarajan and Manikandan 2013; Zoric et al. 2008). 

2.2.2. Genetic Risk Factors for ARC Development 

Genetic variants related to congenital cataract are comparatively likely to be highly 

penetrant Mendelian traits that can cause severe disruptions of the homeostasis of lens cells (Shiels 

and Hejtmancik 2013, 2007). Conversely, relatively mild mutations in the same genes can 

contribute to ARC, and those variants usually have low penetrance (Shiels and Hejtmancik 2013, 

2007). Linkage studies and GWAS have identified multiple genes and loci that may be associated 

with ARC, such as galactokinase (GALK1) and Eph-receptor type-A2 (EPHA2) (Liao et al. 2014; 

Shiels and Hejtmancik 2013). Furthermore, the contribution of genetic factors to ARC risk varies 

from 35% to 74%, with cortical cataracts more heritable than nuclear types (Shiels and Hejtmancik 

2013). However, a recent study suggested that genetic factors might only explain about one-third 

of the variation in the progression of nuclear cataracts in a longitudinal sample, indicating that the 

very large remaining variance may to be explained by environmental risk factors (Yonova-Doing 

et al. 2016). 

2.2.3. Environmental and Other Non-Genetic Risk Factors for ARC Development 

Commonly known risk factors for ARC other than genetic factors include increasing age, 

smoking, obesity, hyperglycemia, UV light/radiation exposure, and intake of specific 

pharmaceuticals (such as corticosteroids) (Bobrow et al. 2015). Alcohol intake and physical 

activities may affect the progression of ARC, but these findings were inconsistent across studies 

(Shiels and Hejtmancik 2013). 
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Although oxidative stress in the lens may be largely due to photo-oxidation caused by UV 

radiation, heavy metal exposure can also lead to oxidative stress through the depletion of the 

glutathione and thiol pools, disrupting the antioxidant defense system (Ercal et al. 2001; Jomova 

and Valko 2011; Valko et al. 2016). Previous studies have reported that lead exposure may be 

associated with ARC (Schaumberg et al. 2004). Elevated levels of lead and cadmium were also 

observed in cataractous lens tissues, especially among smokers (Cekic 1998; Harding 1995; Mosad 

et al. 2010; Rácz and Erdöhelyi 1988; Ramakrishnan et al. 1995). I conducted a cross-sectional 

study of cadmium and lead in relation to cataract surgery using data from NHANES, and found 

that urinary cadmium is positively associated with the risk of cataract surgery (Wang et al. 2016). 

My study also found that more than 50% of the effect of cigarette consumption on the prevalence 

of cataract surgery may be due to cadmium exposure (Wang et al. 2016). The remaining portion 

of the detrimental effect of smoking may be mediated by other toxicants present in cigarettes. 

Nicotine exposure may also exacerbate the development of cataracts, according to rat models 

(Evereklioglu et al. 2004; Tirgan et al. 2012). 

Several case-control and population-based cross-sectional studies have reported that indoor 

smoke generated from household usage of cooking fuels can increase the risk of cataract (Mishra 

et al. 1999; Mohan et al. 1989; Pokhrel et al. 2005; Ravilla et al. 2016; Smith et al. 2014). Indoor 

cooking smoke may play a similar role in cataract development as tobacco/cigarette smoking, 

whereby exposure to toxicants increases the accumulation of superoxide radicals in lens epithelial 

cells (Pokhrel et al. 2005). Several animal studies and clinical observations have also suggested an 

association between cataract and exposure to polycyclic aromatic hydrocarbons (PAH) such as 

naphthalene and formaldehyde, which can be released in large amounts during the burning of 

biofuels (Hayasaka et al. 2001; Pokhrel et al. 2005; Xu et al. 1992). 
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In summary, few studies have evaluated environmental factors other than radiation, heavy 

metals, and indoor smoke from biomass fuel as risk factors for ARC.  

 

3. Specific Aims and Hypothesis 

The goal of this dissertation was thus to better understand the role of environmental 

factors in the pathogenesis of age-related cataract and glaucoma. We 1) examined the 

association between bone lead levels, as measured using K x-ray fluorescence in the bones, and 

incident primary open-angle glaucoma; 2) evaluated the effect modification in the association 

between bone lead level and incident primary open-angle glaucoma by dietary patterns and dietary 

vitamin intake; 3) conducted an Environment-Wide Association Study (EWAS) to identify 

potential environmental risk factors for ARC. Aims 1 and 2 were conducted using data from the 

Normative Aging Study, a prospective cohort study established by the United States Department 

of Veterans Affairs. For Aim 3, we took advantage of large sample sizes as well as a large number 

of biomarkers of environmental pollutants using data from the National Health and Nutrition 

Examination Survey (NHANES).  

 

The following three aims were examined: 

Aim 1: Examine the association between bone lead levels and incident primary open-angle 

glaucoma, using data from the Normative Aging Study. 

Hypothesis: higher bone lead is associated with higher risk of incident glaucoma, after adjustment 

for covariates including age, educational level, job types, BMI, systemic hypertension, ocular 
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hypertension, diabetes mellitus, and smoking.  

 

Aim 2: Evaluate the potential effect modification caused by dietary patterns and dietary intake of 

vitamins (vitamins A, C, D and E) in the association between bone lead levels and incident 

glaucoma as stipulated in Aim 1. 

Hypothesis: after adjustment for covariates, individuals with higher adherence to prudent dietary 

pattern, which is abundant for vegetables and fruits and antioxidant vitamins, may have a less 

pronounced association between bone lead levels and incident glaucoma.  

 

Aim 3: Develop a two-stage EWAS to discover potential environmental pollutants for cataract 

surgery in U.S. adults using NHANES 1999-2008. 

Hypothesis 1: higher exposure to environmental pollutants is associated with a higher prevalence 

of cataract surgery, after adjustment for conventional risk factors. 

Hypothesis 2: Those pollutants with longer half-lives in human body are more likely to be selected 

by conventional EWAS. 

Hypothesis 3: After corrected by weights based on half-life of the pollutants in EWAS, those 

chemicals with shorter half-live can be identified.  
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1. Abstract  

Background:  Oxidative stress may play an important role in the etiology of primary open-angle 

glaucoma (POAG). The association between risk of POAG and lead exposure, which is an 

environmental source of oxidative stress, has not been fully investigated yet. 

Objective: To determine the association between bone lead—a biomarker of cumulative lead 

dose (tibia lead) or an endogenous source of stored lead (patella lead)—and incident POAG. 

Methods:  We examined a prospective cohort of 634 POAG free males (mean baseline age=66.8 

years (SD=6.7)) from the Normative Aging Study (NAS) who had tibia and patella K X-ray 

fluorescence lead measurements between January 1, 1991 and December 31, 1999. They also 

had standard ocular evaluations by NAS optometrists until December 31, 2014. POAG cases 

were identified by consistent reports of enlarged or asymmetric cup-to-disc ratio together with 

visual field defect or existence of disc hemorrhage. We used Cox proportional hazards 

regressions to estimate hazard ratios (HRs) of incident POAG and adjusted survival curves to 

examine changes in the risk of POAG during follow-up according to bone lead quartiles.  

Results: We identified 44 incident POAG by the end of follow-up (incidence rate=74 per 10,000 

person-years; median follow-up=10.6 years). In fully adjusted models, 10-fold increases in 

patella lead and tibia lead were associated with HRs of 5.06 (95% CI: 1.61, 15.88, p=0.005) and 

3.07 (95% CI: 0.94, 10.0, p=0.06), respectively. The HRs comparing participants in the third and 

fourth quartiles with the lowest quartile were 3.41 (95% CI: 1.34, 8.66) and 3.24 (95% CI: 1.22, 

8.62) for patella lead (p-for-trend=0.01), and 3.84 (95% CI: 1.54, 9.55) and 2.61 (95% CI: 0.95, 

7.21) for tibia lead (p-for-trend=0.02).  
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Conclusions: Our study provided longitudinal evidence that bone lead may be an important risk 

factor of POAG in the U.S. population.   
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2. Introduction 

Glaucoma accounts for approximately 8% of global blindness according to the 2010 

World Health Organization report (Pascolini and Mariotti 2012). It is the second leading cause of 

blindness in the world after cataract, and the leading cause of irreversible loss of vision 

(Pascolini and Mariotti 2012). Despite the large patient population and severe consequences, the 

exact etiology of glaucoma is still unclear. Based on glaucoma clinical trials, the established risk 

factors for glaucoma include older age, intraocular pressure, race, myopia, optic nerve 

susceptibility, and positive family history (Jonas et al. 2017). Other clinical risk factors, such as 

various systemic diseases (diabetes, hypertension, ischemic vascular diseases, etc.) and 

unhealthy behaviors (smoking, alcohol consumption), remain inconsistent among different 

studies (Doshi et al. 2008; Fan et al. 2004; Ko et al. 2016; Prum et al. 2016; Renard et al. 2013). 

Although there is a large population burden and severe consequence to quality of life, there is a 

gap in knowledge to advance our understanding beyond the established clinical risk factors for 

glaucoma. 

In addition to clinical risk factors, genetic risk factors for glaucoma have been established 

through the Mendelian studies and genome-wide association studies (GWAS) (Mabuchi et al. 

2015; Prum et al. 2016; Sakurada and Mabuchi 2015; Wiggs 2015; Wiggs et al. 2013). Adult-

onset glaucoma occurs mostly among individuals older than 40 years. Primary open-angle 

glaucoma (POAG) is the major form of adult-onset glaucoma in the United States (prevalence: 

1.9%) (Prevalence of Open-Angle Glaucoma Among Adults in the United States 2004). Recent 

heritability estimate to quantify the proportion of genetic attribution on the total phenotype 

variation of POAG was about 42%, which was lower than its proportion for age-related macular 

degeneration (AMD) (>70%) (Cuellar-Partida et al. 2016). Although the various genetic risk 
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alleles for specific forms of glaucoma have been successfully identified by linkage and GWAS 

approaches, the environmental risk factors for glaucoma have proven difficult to identify.  

Oxidative stress plays a role in glaucoma pathogenesis (Babizhayev 2012; Goyal et al. 

2014; Majsterek et al. 2011; Zhao et al. 2016). The pathophysiology of glaucoma involves 

complex tissues in the anterior segment that regulate aqueous humor fluid dynamics and 

determine intraocular pressure and posterior segment end organ damage of the optic nerve, 

which is recently reviewed in Jonas et al (Jonas et al. 2017). The complex relationships among 

the delicate ganglion cells that contribute to the axonal fibers of the optic nerve, the vascular 

supply, the glial support tissue and connective support tissues in the optic nerve canal, and 

counter-pressure from the cerebral spinal fluid are active areas of research (Jonas et al. 2017). 

Within these tissues, markers of oxidative stress, such as superoxide dismutase, glutathione 

peroxidase and catalase levels, are elevated in the aqueous humor of patients with POAG 

(Babizhayev 2012; Goyal et al. 2014; Majsterek et al. 2011). Oxidative stress can disrupt the 

normal function of trabecular meshwork cells, block the outflow of aqueous humor, and increase 

the intraocular pressure (Babizhayev 2012; Saccà et al. 2016; Zhao et al. 2016). In the posterior 

segment, elevated 4-hydroxy-2-nonenal adducts generated by free-radicals have been detected in 

the glaucomatous retina cases, implying that oxidative stress plays a pathogenic role damaging 

the retina-optic nerve (Tezel et al. 2010).   

As a key environmental source of oxidative stress, heavy metals may be an important risk 

factor for glaucoma. As early as 1990, a study reported higher copper levels in the aqueous 

humor of glaucoma patients (Akyol et al. 1990). Recent studies have also indicated a significant 

association between heavy metal and glaucoma. A cross-sectional analysis of the Korean 

National Health and Nutrition Examination Survey (KNHANES) found that higher blood 
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mercury and lower blood manganese levels were associated with higher prevalence of glaucoma 

(Lin et al. 2015). Another KNHANES study found that higher blood cadmium levels were 

associated with higher glaucoma risk, particularly in men with intraocular pressures within the 

normal range (Lee et al. 2016). A case-control study conducted in Japan reported that higher hair 

lead level was associated with POAG especially normal tension glaucoma in females (Yuki et al. 

2009). 

 The threat of non-occupational cumulative exposure to low-dose lead has been reported 

since lead was banned from gasoline and paint in the United States (U.S.) in the 1990’s. As there 

is a gap in knowledge on heavy metals as potential environmental risk factors of glaucoma, we 

propose an epidemiological study to test the hypothesis that cumulative lead exposure increases 

the risk of POAG. To the best of our knowledge, no epidemiologic study has ever tested the 

association between cumulative lead exposure and risk of POAG. Results of previous studies, 

which were mostly based on Asian populations, may not be generalizable to the U.S. population. 

Moreover, no previous lead-glaucoma study has ever utilized bone lead levels as a biomarker of 

cumulative lead dose (tibia lead) or an endogenous source of stored lead (patella lead) (Hu et al. 

2007). Bone lead, which represents the majority of the body’s lead burden with a half-life 

spanning years to decades, is known to be a better biomarker to assess chronic health effects than 

blood or urinary lead (Hu et al. 2007). Further, cross-sectional studies raise causal inferences and 

reverse causality concerns. In this study, we aim to examine the association between bone lead 

levels and incident POAG in a male population in the Boston area, the Normative Aging Study 

(NAS). 
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3. Method 

3.1. Study population 

The NAS is a longitudinal study of aging started in 1963 by the U.S. Department of 

Veterans Affairs (Glynn et al. 1982). The study recruited 2280 healthy male participants who 

were predominantly whites and free of systemic disease at the time of enrollment. Participants 

underwent a comprehensive physical examination, including a standard ocular evaluation, every 

3-5 years (Schaumberg et al. 2004). Informed consent was provided by participants at each visit. 

From 1991 to 1999, 868 participants underwent bone lead measurements via K x-ray 

fluorescence (KXRF). We set the date of the first bone lead measurement as the baseline of the 

longitudinal study. Since the cohort has a long follow-up time which may accumulate survival 

bias, we restricted the study cohort within 15 years’ follow-up. The inclusion criteria for this 

project were pre-cohort ophthalmology examination prior to the KXRF measurement, minimum 

of one ophthalmology examinations after the baseline, and no missing for covariates used for 

data analysis. 702 participants had both complete ophthalmology evaluations and bone lead 

measurement. After excluding those who were not eligible (8 for no ophthalmology examination 

after bone lead measurement, 30 for missing covariate data, 18 for missing information on 

inverse probability weighting (more details described below), 8 for pre-existing diagnosis of 

either open-angle glaucoma, secondary glaucoma, or narrow angle glaucoma, 1 for unacceptable 

uncertainty for patella lead, 3 for follow-up less than 2 years), we included a total of 634 

individuals into this study (Figure II.1). The current study was reviewed and approved by the 

Institutional Review Boards of each participating institute, the University of Michigan School of 

Public Health, the Harvard School of Public Health and the Department of Veterans Affairs 

Boston Healthcare System.  
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Figure II.1. Diagram illustrating the establishment cohort structure of the study 

population, from the NAS original recruitment in 1963 to the KXRF measurement in 

1990s, which is the baseline of our study, until the end of 15 years’ follow-up. 

3.2. Bone lead measurements 

Bone lead levels (µg/g, microgram of lead per gram of bone mineral) at the mid-tibial shaft 

and patella were measured for the NAS using a KXRF instrument. Tibia and patella are 

representative of two typical bone structures: cortical bone and trabecular bone (Hu et al. 1995). 

Tibia lead is a biomarker of past life-time exposure, and patella lead is a biomarker of an 
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endogenous source of lead body burden (Hu et al. 1995, 2007; Wilker et al. 2011). The KXRF 

instrument utilizes low-dose gamma radiation to provoke the release of X-rays which are specific 

and proportional to the lead level in bones (Hu et al. 1995). It provides a non-invasive and safe 

method to precisely evaluate bone lead concentrations. The physical principles, technical 

specifications, and validation of this instrument have been described in detail elsewhere (Burger 

et al. 1990). 

We have multiple measurements of bone lead over time in this cohort. We used the first 

measurements in our study, instead of time-varying bone lead levels. One reason is that not all 

subjects had multiple measurements. Besides, a previous study with repeatedly measured bone 

lead levels in the same population showed that tibia lead decreased slightly over 11 years (1.4% 

annual decline) after cessation of exposure, whereas patella lead had an initial decline of 5% per 

year during the first 5 years but then did not change much (0.4% annual decline) after 5 years 

(Wilker et al. 2011). We assumed that baseline tibia lead levels did not change much during follow-

up, and baseline patella lead levels can reasonably capture the average of exogenous exposures 

that had gradually decreased since the phase out of lead from gasoline and paint. 

A subset of bone lead levels measured by KXRF had negative values (3 for tibia lead levels 

and 5 for patella lead levels) since the instrument provided an unbiased point estimate that may 

oscillate around the true value (Kim et al. 1995). In order to better present the true distribution of 

bone lead levels, we used original values, including negative values, rather than using a 

substitution method.  As a quality control procedure, we adopted the measurement uncertainty for 

each bone lead measurement to evaluate the chance of estimated level corresponding to a true level 

(Hu et al. 1995). The measurement uncertainty is equal to 1 standard deviation of replicated 

measurements; the higher uncertainty a bone lead measurement has, the lower reliability this value 
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possesses. We only included those participants who had bone lead levels within an acceptable 

uncertainty (10 µg/g for tibia and 15 µg/g for patella).  

3.3. Glaucoma identification 

The NAS standard ocular evaluation includes family and personal ocular/systemic 

disease history, medical history, visual acuity data, biomicroscopy, tonometry and 

ophthalmoscopy (Schaumberg et al. 2004). A staff optometrist performed examinations at the 

NAS examination facility and results were reviewed/cosigned by a second qualified person. For 

the current study, we reviewed the de-identified medical records spanning the years 1991 to 

2014. Variables were extracted for glaucoma identification, including personal and family 

history of glaucoma, medication, visual acuity, intraocular pressures of each eye (pre-dilated, 

measured in the morning), the vertical cup-to-disc ratios (CDR) of each eye and other 

descriptions from the fundus exam, additional testing that included visual field, and ocular 

diagnoses made by the NAS optometrists. Central cornea thickness was not part of the NAS 

standard ophthalmology examination.  

The ascertainment of incident POAG cases were adopted from the glaucoma phenotype 

description defined from the National Eye Institute Glaucoma Human genetics collaBORation 

(NEIGHBOR) Consortium (Wiggs et al. 2013). POAG cases were identified in participants who 

showed one of the following characteristics (Table II.1): 1) either eye having CDR greater than 

or equal to 0.7; 2) the difference of two eyes’ CDRs equal to 0.2 or larger which indicates 

asymmetric cup-to-disc ratio; 3) any eye’s CDR equal to 0.6 or larger, with either disc 

hemorrhage or visual field defect; 4) vision loss due to nerve fiber layer loss. In addition, an 

open angle was assumed based upon biomicroscopic description of deep chamber and lack of 

NAS optometric description of narrow angles.  Those who had glaucoma prior to the baseline 
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were defined as baseline glaucoma cases and were excluded from the longitudinal analysis (n=8, 

prevalence at baseline=1.1%). All eligible participants were followed until the end of 15 years 

since baseline, the last recorded visit if lost to follow-up, or the date of the first vision test 

identifying the onset of POAG or other types of glaucoma (Table II.1). 

Table II.1. Identification of Primary Open-Angle Glaucoma Cases 

Diseases Criteria 

POAG patients  

POAGa 1) Either eye CDR ≥ 0.7, open angleb 

2) The difference between two eyes’ CDRs ≥ 0.2, open angle 

3) Either eye CDR ≥ 0.6, together with disc hemorrhage or 

visual field defect, open angle 

4) Vison loss of either eye together with nerve fiber layer loss, 

open angle 

Non-POAG  

PACG Same as criteria of POAG, but angle narrowed or closed 

(angle≤1/4, or being diagnosed as PACG by NAS optometrist) 

Secondary 

glaucoma 

1) Pseudoexfoliation glaucoma 

2) Pigment dispersion glaucoma 

3) Glaucoma secondary to other diseases or accidents (trauma, 

stroke, surgery, etc.) 

Glaucoma suspects Being diagnosed as a glaucoma suspect by NAS optometrist, 

without any of the above characteristics 

Abbreviations: POAG, primary open-angle glaucoma; CDR, cup-to-disc ratio; PACG, primary angle-closure 

glaucoma; NAS, the Normative Aging Study. 
a Criteria of POAG were adopted from the NEI Glaucoma Human genetics collaBORation (NEIGHBOR) 

Consortium (Wiggs et al. 2013) and were modified to be more applicable to the NAS population. 
b Angle was defined as the angle between cornea and iris in the anterior chamber of eye; an open angle was assumed 

based upon biomicroscopic description of deep chamber and lack of NAS optometric description of narrow angles. 

 

3.4. Other variables 

Established risk factors for POAG include older age, elevated intraocular pressure (IOP) 

defined as greater than or equal to 23 mmHg, and myopia (Jonas et al. 2017). Given the 

extensive data on this NAS cohort, the following variables were analyzed: age at baseline 

(years), race/ethnicity (white or other), body mass index (BMI, varying at each follow-up visit, 

kg/m2), educational attainment (equal to or less than high school, high school, some college, and 
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higher) and job types (blue collar, white collar or mixed). Cigarette smoking status is an 

inconsistent risk factor for POAG, but meta-analyses and systemic reviews show heavy smoking, 

not simply a positive smoking status, is associated with POAG (Bonovas et al. 2004; Jain et al. 

2016; Prum et al. 2016; Zhou et al. 2016). Thus, we used categorized cigarette consumption data 

based on pack-years (0, 0-19 pack-years and ≥20 pack-years) to adjust for smoking behavior. In 

addition, we also controlled for diabetes mellitus status (yes/no, identified by either had been 

diagnosed as diabetes mellitus, or had used insulin or other diabetes medication/treatment, or had 

blood fasting glucose level ≥ 126 mg/dl), systemic hypertension (yes/no, identified by systolic 

blood pressure ≥ 140 mm/Hg or diastolic blood pressure ≥ 90 mm/Hg or had used hypertension 

medication/treatment) and ocular hypertension (yes/no, identified by either the highest 

intraocular pressure (untreated) value ≥ 23 mm/Hg at that visit, or the highest intraocular 

pressure (treated) value ≥ 23 mm/Hg after being divided by 0.7 at that visit; criteria was made 

according to Jun Li’s IOP GWAS study (Ozel et al. 2014)). The covariates were collected by the 

time of bone lead measurement.  

3.5. Handling Selection Bias and Inverse Probability Weighting 

Our bone lead study conducted several decades after the inception of the NAS is subject 

to selection bias due to loss to follow-up (Weisskopf et al. 2015), which is common to 

observational prospective cohort studies (Howe et al. 2016).  We have 2 types of selection bias: 

selection bias due to restriction of analysis to the KXRF sub-study, and selection bias due to 

survivorship from glaucoma diagnosis (i.e., no development of glaucoma) at the later follow-up 

period or loss to follow-up that could have been influenced by lead exposure (directed acyclic 

graphs depicting these 2 types of selection bias in Figure II.2).  

Among the original 2280 NAS participants enrolled in the 1960s, nonparticipation in the 
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subsequent KXRF bone lead sub-study in the 1990s is likely to be related to past lead exposure 

and other confounders (e.g., socioeconomic status) that could affect participation. Restricting to 

the subset of those who participated in the bone lead substudy (i.e., conditioning on a collider) 

could therefore bias the exposure-outcome association (Hernán et al. 2004). To reduce this 

potential selection bias, we applied inverse probability weighting (IPW) to our models 

(Weisskopf et al. 2015). Briefly, we ran a logistic regression model to predict the probability of 

KXRF enrollment for all NAS participants, and calculated IPW from this probability. For those 

in our sub-study, in this model we used all observations from NAS recruitment to the time of 

KXRF measurement and each visit was treated as a single observation. For those who were not 

in the sub-study, we used observations until the last visit before year 1999, which is the last year 

of bone lead measurement in our study. IPW of our study population ranged from 1.0 to 6.1, with 

the mean of 1.18 (data not shown). This approach simulates a pseudo-population similar to the 

original NAS population and therefore can account for potential selection bias that may have 

happened before our bone lead sub-study.  

Selection bias due to survivorship from glaucoma diagnosis at the later follow-up period 

or loss to follow-up is also likely to occur. Those who were more susceptible of lead toxicity 

could develop POAG earlier or be dropped out earlier. Although IPW is again a standard 

recommendation to account for this selection bias, because we already included the 

aforementioned IPW and it is challenging to include two IPWs in analysis. Such selection bias 

may result in time-varying hazard ratios (HRs), which have been commonly reported in 

prospective observational studies (Hernán 2010). Simply reporting the average HR during the 

whole follow-up time may result in the underestimation of association. Thus, instead of IPW, we 

created adjusted survival curves as the solution. This approach was suggested to address two key 
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limitations of the use of average HR using Cox proportional hazard modeling, the time-varying 

HR and a built-in selection bias (Hernán 2010). See analytical approach used below. 

 

Figure II.2. Causal diagram representing the impact of two types of selection bias at the 

baseline of KXRF measurement and during follow-ups in the unweighted (A) and IPW-

weighted (B) models. SKXRF is the selection bias caused by participation of KXRF sub-study 

from the NAS inception; SCohort is the selection bias due to survivorship from either POAG 

diagnosis or loss to follow-up during current study. U and C refer to unmeasured and 

measured covariates at the baseline. Health Status0 and Health Status1 are severe health 

conditions which may affect the attendance of study at baseline and during the follow-ups. 

Bone Pb refer to the bone lead concentration at baseline, which reflects past cumulative 

lead exposure (by tibia lead) and baseline endogenous source of stored lead (by patella 

lead). The rectangular blue shade illustrates the main association we investigated in this 

study. The inverse probability weighting (IPW) applied in the current study has already 

accounted for the effect of SKXRF; this IPW removed the dash red lines in A. Standard 

solution for the 2nd selection bias occurred during the follow-up time (SCohort) was still the 

application of another IPW (which can remove the bold red lines). However, since it was 

challenging to combine two IPWs into one model, SCohort was hard to be avoided. 
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3.6. Statistical analysis 

We compared baseline population characteristics (means (standard deviations (SDs)) for 

continuous variables and frequencies for categorical variables) by POAG status. We also 

performed bivariate analysis between baseline covariates and bone lead concentrations.  

We used Cox proportional hazard models to evaluate the association between bone lead 

and incident POAG. Three sequential covariate models were performed: Model 1 adjusted for 

age; Model 2 further adjusted for BMI, educational levels, job types, and categorical pack-years 

which are known risk factors for POAG; Model 3 further adjusted for diabetes mellitus, 

hypertension, and ocular hypertension, systemic or ocular diseases that are related to the 

pathogenesis of POAG. We show Model 3 as a separate model because those diseases may play 

as mediators rather than confounders in the lead-POAG association.  

The proportional hazard assumption was tested by creating Schoenfeld residual plots. 

Because the assumption is often violated and HRs are not constant over time in prospective 

observational studies (Hernán 2010), we evaluated whether HRs are time-varying in our study by 

using the adjusted survival curves. We illustrated the risks of POAG of participants in different 

bone lead quartiles throughout the entire 23 years’ follow-up using adjusted survival curves. The 

procedures of creating adjusted survival curves was adopted from Hernan, briefly fitted discrete-

time models with adjustment of covariates, and then estimated the conditional survivals under 

different exposure levels using a manipulated counterfactual data (Hernán 2010). 

In Cox regression, we restricted our analysis with the follow-up visits to 15 years after 

baseline because selection bias may have increased with longer follow-ups, since those who 

tended to live longer were healthier than the baseline population and less susceptible to the lead 
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toxicity. We chose 15 years because Schoenfeld residual plots for bone lead verses time using 

the entire follow-ups of up to 23 years showed flat fit lines centered at zero during the 15 years’ 

follow-up and then inclined afterwards, which suggests that HRs were consistent across the first 

15 years and then declined over time; such characteristics of time-varying HRs was confirmed by 

the adjusted survival curves. 

We treated the lead variables in two ways in Cox proportional hazard models: 1) we log-

transformed the lead variables on the natural scale and calculated HRs together with 95% 

confidence interval (CI) for the occurrence of POAG for a 10-fold increase in each lead variable 

(5 participants for tibia lead and 3 participants for patella lead were excluded due to negative 

values); 2) we categorized the lead variables into four quartiles, calculated HRs for POAG by 

each quartile, and tested the significance of a linear trend across the quartiles (ordinally coded 

each quartile by 1, 2, 3, 4). To evaluate nonlinear dose-response relationships, we fit the lead 

variable using natural splines with knots at the 25th, 50th, and 75th percentiles.   

As a sensitivity analysis, we additionally ran all models without the application of IPW. 

We also restricted the models within white race, or extended the follow-up time beyond 15 years 

by using all follow-ups (range=1 to 23 years) to test the robustness of the association.  

All analyses were performed using SAS system version 9.4 (Cary, NC) and RStudio 

version 1.0.136. 
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4. Results 

In total, 634 individuals with 1868 observations were eligible to be included in the study 

after excluding those who had missing covariate data. During follow up, (median=10.6 years, 

range=2 to 15), 44 incident POAG cases were identified (incidence rate=74 per 10,000 person-

years). The mean baseline age at the date of bone lead measurement was 66.8 years (SD 6.7, 

range from 49.9 to 94.0 years) (Table II.2). The concentration of tibia lead ranged from -5 to 126 

µg/g (median was 19 µg/g), while patella lead ranged from -10 to 165 µg/g (median was 27 

µg/g). The Pearson correlation coefficient comparing the two bone lead measures was 0.78 

(p<0.001). Baseline ocular hypertension (p<0.001) was associated with POAG identification 

(Table II.2).  

Higher tibia lead levels were associated with older baseline age (p<0.001), non-white 

(p=0.03), baseline diabetes history (p=0.04), baseline systemic hypertension history (p=0.05), 

lower education levels (p<0.001), and blue collar jobs (p<0.001) (Table II.3). Higher patella lead 

levels were associated with older baseline age (p<0.001), non-white (p=0.04), history of 

systemic hypertension (p=0.02), history of ocular hypertension (p=0.02), lower educational 

attainment (p<0.001), a greater number of baseline pack-years of cigarette smoking (p=0.01), 

and blue collar jobs (p<0.001) (Table II.3). 

Log-transformed bone lead was associated with incident POAG (Table II.4). After 

adjustment for age, educational level, job types, BMI and cumulative cigarette smoke, a 10-fold 

increase in patella lead was significantly associated with an HR of 5.30 (95% CI: 1.71, 16.43, 

p=0.004), and a 10-fold increase in tibia lead was positively but not significantly associated with 

an HR of 2.78 (95% CI: 0.83, 9.31, p=0.10) (Table II.4, Model 2). The HRs comparing 

participants in the third and fourth quartiles with the lowest quartile were 3.90 (95% CI: 1.52, 
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9.97) and 3.60 (95% CI: 1.34, 9.65) with a positive linear trend (p-for-trend=0.007) for patella 

lead; and 3.95 (95% CI: 1.59, 9.86) and 2.44 (95% CI: 0.87, 6.83) for tibia lead (p-for-

trend=0.03) (Table II.4, Model 2).  The associations remained significant even after further 

controlling for ocular hypertension, diabetes mellitus and systemic hypertension. A 10-fold 

increase in patella lead was significantly associated with an HR of 5.06 (95% CI: 1.61, 15.88, 

p=0.005), and a 10-fold increase in tibia lead was positively but not significantly associated with 

an HR of 3.07 (95% CI: 0.94, 10.0, p=0.06) (Table II.4, Model 3). The HRs comparing 

participants in the third and fourth quartiles with the lowest quartile were 3.41 (95% CI: 1.34, 

8.66) and 3.24 (95% CI: 1.22, 8.62) for patella lead (p-for-trend=0.01); and 3.84 (95% CI: 1.54, 

9.55) and 2.61 (95% CI: 0.95, 7.21) for tibia lead (p-for-trend=0.02) (Table II.4, Model 3). 

Smoothing plots based on natural splines support these findings that the associations linearly 

increased until the third quartile and plateaued in the range of the fourth quartile (Figure II.3). 

The survival curves comparing 4 quartiles of bone lead illustrated that the absolute risks 

started to get closer and cross over between 15-20 years. This suggests that the HRs in our study 

were not constant and changed over time (Figure II.4).  This observation is consistent with the 

Schoenfeld residual plots, the assessment of proportional hazard assumption.  

We performed several sensitivity analyses to assess the robustness of the findings (data 

not shown). In fully adjusted models, restricting the study population to whites only (n=613 for 

patella lead and n=611 for tibia lead) did not change main findings, with a 10-fold increase in 

patella lead significantly associated with an HR of 4.18 (95% CI: 1.29, 13.57, p=0.02), and a 10-

fold increase in tibia lead positively but not significantly associated with an HR of 3.00 (95% CI: 

0.89, 10.15, p=0.08). The association was attenuated when follow-up time extended up to 23 

years: a 10-fold HR for a fully adjusted model for patella lead became 2.59 (95% CI: 1.00, 6.68, 
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p=0.049) and the association between tibia lead and POAG became insignificant. Results were 

similar without the application of IPW: the associations were attenuated, with a 10-fold HR of 

4.29 for a fully adjusted model for patella lead (95% CI: 1.18, 15.55, p=0.03) and non-significant 

association for tibia lead.  

Table II.2. Baseline Characteristics of Study Population Comparing Participants with 

POAG vs participants with Non-POAG 

 

 

Characteristics 

Total 

Population 

(n=634) 

Non-

POAG 

(n=590) 

POAG 

(n=44) P valuea 

Bone lead levels     

  Tibia Lead, mean±SD, μg/g 21.7±13.7 21.6±13.8 23.5±12.4 0.37 

  Patella Lead, mean±SD, μg/g 31.0±20.2 30.6±20.1 36.3±21.4 0.08 

Age at baseline, mean±SD, years 66.8±6.7 66.8±6.8 67.7±6.1 0.36 

Age at end of 15 years’ follow-up, mean±SD, 

years 

76.8±6.7 76.8±6.7 75.8±6.4 0.30 

BMI, mean±SD, kg/m2 27.9±3.7 27.9±3.8 27.5±3.4 0.44 

Diabetes mellitus, n (%) 89 (14.0) 81 (13.7) 8 (18.2) 0.41 

Systemic hypertension, n (%) 346 (54.6) 320 (54.2) 26 (59.1) 0.53 

Ocular hypertension, n (%) 21 (3.3) 13 (2.2) 8 (18.2) <0.001 

White population, n (%) 616 (97.2) 575 (97.5) 41 (93.2) 0.11 

Educational levels, n (%)     

  ≤ High school 65 (10.3) 62 (10.5) 3 (6.8)  

  High school 230 (36.3) 214 (36.3) 16 (36.4)  

  Some college 157 (24.8) 144 (24.4) 13 (29.6)  

  ≥ 4 years’ college 182 (28.7) 170 (28.8) 12 (27.3) 0.71 

Pack-years, n (%)     

  0 204 (32.2) 190 (32.2) 14 (31.8)  

  1-19 171 (27.0) 159 (27.0) 12 (27.3)  

  ≥20 259 (40.9) 241 (40.9) 18 (40.9) 0.97 

Job type, n (%)     

Blue collar 265 (41.8) 247 (41.9) 18 (40.9)  

Mix 139 (21.9) 129 (21.9) 10 (22.7)  

White collar 230 (36.3) 214 (36.3) 16 (36.4) 0.99 

Abbreviations: POAG, primary open-angle glaucoma; SD, standard deviation; KXRF, K x-ray fluorescence; BMI, 

body mass index. 
a P values were calculated using logistic regression; educational levels and pack-years were treated as ordinal 

variables. 
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Table II.3. Bivariate Analysis of Lead Concentration by Baseline Characteristics 

Abbreviations: SD, standard deviation; KXRF, K x-ray fluorescence; BMI, body mass index. 
a P values were calculated using linear regression. Educational levels and pack-years were treated as ordinal 

variables. 

  

  Bone Lead Concentration, mean (SD), μg/g P valuea 

Characteristics No. (%) Tibia Lead Patella lead Tibia Lead Patella lead 

Overall  634 (100) 21.7 (13.7) 31.0 (20.2) - - 

Age at baseline (years)      

  45-59 95 (15.0) 14.7 (8.0) 22.5 (12.9)   

  60-70 351 (55.4) 20.7 (11.8) 29.3 (17.6)   

  70+ 188 (29.7) 27.1 (16.9) 38.5 (24.9) <.001 <.001 

Race/ethnicity      

  White 616 (97.2) 21.5 (13.5) 30.7 (19.7)   

  Non-white 18 (2.8) 28.5 (19.2) 40.5 (33.2) 0.03 0.04 

Diabetes mellitus      

  Yes 89 (14.0) 24.5 (14.1) 34.1 (21.5)   

  No 545 (86.0) 21.2 (13.6) 30.5 (20.0) 0.04 0.12 

Systemic hypertension      

  Yes 346 (54.6) 22.7 (15.3) 32.7 (22.8)   

  No 288 (45.4) 20.5 (11.3) 28.9 (16.3) 0.05 0.02 

Ocular hypertension      

  Yes 21 (3.3) 25.8 (18.4) 41.0 (27.7)   

  No 613 (96.7) 21.6 (13.5) 30.6 (19.8) 0.17 0.02 

BMI ((kg/m2)      

  <25 135 (21.3) 20.4 (11.5) 29.9 (15.6)   

  25-30 342 (53.9) 22.1 (13.3) 31.1 (19.2)   

  ≥30 157 (24.8) 21.8 (16.1) 31.6 (25.3) 0.40 0.47 

Educational levels      

  ≤ High school 65 (10.3) 28.1 (17.9) 39.5 (24.3)   

  High school 230 (36.3) 24.2 (15.4) 35.3 (23.0)   

  Some college 157 (24.8) 20.6 (11.4) 28.7 (17.2)   

  ≥ 4 years’ college 182 (28.7) 17.2 (9.4) 24.4 (14.0) <.001 <.001 

Pack-years      

  0 204 (32.2) 21.2 (14.1) 29.6 (20.2)   

  1-19 171 (27.0) 20.1 (12.4) 27.9 (17.0)   

  ≥20 259 (40.9) 23.2 (14.1) 34.1 (21.7) 0.10 0.01 

Job type      

  Blue collar 265 (41.8) 26.2 (16.4) 37.0 (4.0)   

  Mix 139 (21.9) 19.1 (10.8) 27.3 (15.3)   

  White collar 230 (36.3) 18.1 (9.8) 26.2 (15.8) <.001 <.001 
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Table II.4. Hazard Ratio (95% CI) of POAG by Bone Lead Concentrations with 

Application of IPW 

    Model 1a Model 2b Model 3c 

Exposure 

N 

total 

N 

case 

Range 

(μg/g) 

10-fold HR 

(95% CI) 

P 

value 

10-fold HR 

(95% CI) 

P 

value 

10-fold HR 

(95% CI) P value 

Tibia          

Continuousd 629 44 1 to 126 2.73 (0.92, 8.16) 0.07 2.78 (0.83, 9.31) 0.10 3.07 (0.94, 10.0) 0.06 

  Quartilese          

Quartile 1 148 6 -5 to 12 Reference  Reference  Reference  

Quartile 2 154 7 13 to 18 1.48 (0.51, 4.24)  1.56 (0.54, 4.55)  1.76 (0.60, 5.13)  

Quartile 3 169 20 19 to 27 3.75 (1.55, 9.05)  3.95 (1.59, 9.86)  3.84 (1.54, 9.55)  

Quartile 4 163 11 28 to 126 2.34 (0.89, 6.19) 0.02 2.44 (0.87, 6.83) 0.03 2.61 (0.95, 7.21) 0.02 

Patella          

Continuousd 631 44 1 to 165 4.68 (1.65, 13.30) 0.004 5.30 (1.71, 16.43) 0.004 5.06 (1.61, 15.88) 0.005 

  Quartilese          

Quartile 1 162 6 -10 to 18 Reference  Reference  Reference  

Quartile 2 150 10 19 to 26 2.29 (0.88, 6.01)  2.52 (0.95, 6.73)  2.23 (0.83, 5.98)  

Quartile 3 165 14 27 to 38 3.47 (1.40, 8.58)  3.90 (1.52, 9.97)  3.41 (1.34, 8.66)  

Quartile 4 157 14 39 to 165 3.35 (1.32, 8.53) 0.006 3.60 (1.34, 9.65) 0.007 3.24 (1.22, 8.62) 0.01 

Note: We applied un-stabilized IPW into our models; IPW of all participants ranged from 1.0 to 6.1. 

Abbreviations: POAG, primary open-angle glaucoma; IPW, inverse probability weighting; HR, hazard ratio; CI, 

confidence interval. 
a Model 1 was adjusted for age. 
b Model 2 was further adjusted for body mass index, educational levels, job types, and categorical pack-years. 
c Model 3 was further adjusted for diabetes mellitus, systemic hypertension, ocular hypertension. 
d To calculate 10-fold HR for POAG using continuous bone lead levels, we natural-log-transformed the values, 

excluded 5 participants for negative levels in tibia lead and 3 participants for negative levels in patella lead. Bone 

lead levels measured by KXRF can have negative values since the instrument provided an unbiased point estimate 

that may oscillate around the true value. 
e P-values represented trend P-values calculated by applying ordinal values (1,2,3,4) to bone lead quartiles. 
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Figure II.3. Splines Illustrating non-linear association between bone lead levels and log of 

Hazard Ratio (logHR) for incident POAG adjusted for baseline age, BMI, educational 

levels, job types, smoking, systemic hypertension, diabetes mellitus, and ocular 

hypertension. IPW was applied. Dark black line illustrated the Natural Splines with knots 

at 25th, 50th, and 75th percentiles, together with the 95% CI (red dash lines). X-axis is 

log(bone lead). Histogram illustrates the distribution of log(bone lead) of all participants by 

count (right y-axis). The left y-axis is logHR, with the reference horizontal blue dash line 

illustrating logHR=0 at the mean of log(bone lead) (21.8 μg/g for tibia lead and 31.0 μg/g 

for patella lead). A. Spline for tibia lead; B. Spline for patella lead. 
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Figure II.4. Adjusted survival curves illustrating changes of survival of different bone lead 

quartiles during follow-up. X-axis indicates years since baseline, y-axis indicates the 

survival calculated by discrete-time hazard models with adjustment for baseline age, BMI, 

educational levels, job types, smoking, diabetes mellitus, systemic hypertension, ocular 

hypertension. A. Tibia lead; B. Patella lead. 
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5. Discussion 

Our study provided longitudinal evidence that bone lead may be an important risk factor 

of POAG. Men in the third and fourth quartiles of patella lead levels had a more than 3-fold 

higher risk of POAG compared to those in the lowest quartile during 15 years of follow-up. A 

10-fold increase in patella lead level was associated with more than 5-fold higher risk of POAG 

during 15 years of follow-up. Similar but slightly weak associations were observed for tibia lead. 

 Previous studies suggested that lead and other heavy metals may be associated with 

glaucoma pathogenesis in different Asian populations. Although the end organ damage of 

glaucoma is at the level of the optic nerve, there are diverse phenotypes based on anatomy and 

clinical findings that vary widely based on different populations (Jonas et al. 2017).  The various 

phenotypes include POAG, normal tension glaucoma, and primary angle closure glaucoma. As 

the epidemiology for the various forms of glaucoma varies among different populations (Chan et 

al. 2016; Cheng et al. 2014; Kapetanakis et al. 2016; Tham et al. 2014), it is essential that 

epidemiology studies be interpreted in the context of the study population and not generalized to 

different populations. In addition, it is important to not over interpret findings from cross-

sectional study designs regarding causal inferences and reverse causality. Two major strengths of 

our study are the longitudinal study design and a predominantly white study population. 

Another strength of our study was the utilization of bone lead levels as biomarkers. Tibia 

bone lead can better indicate cumulative lead dose compared with blood or hair lead levels 

measured in previous studies, while patella bone lead mainly reflects a source of cumulatively 

stored lead that is bioavailable (Hu et al. 2007). Blood lead reflects a combination of recent 

exogenous exposure and endogenous exposure by the cumulative lead body burden; it has a half-

life at approximately one month, which limits inferences regarding chronic effects of cumulative 
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exposure (Hu et al. 1995, 2007). As POAG is an age-related disease, any biomarkers with a 

relatively short half-life should be interpreted cautiously as a risk of chronic conditions (Lin et al. 

2015). Hair lead levels used in the Japanese case-control study were also poor indicators of 

cumulative lead exposure, since hair lead can be greatly affected by the frequency and method of 

hair washing and cutting (Barbosa et al. 2005). Bone lead has a much longer half-life, which 

makes it a better indicator of cumulative exposure. Studies showed that more than 90% of lead 

body burden are stored in bone with a half-life from years to decades: half-life of tibia lead can 

be up to 48.6 years assuming a constant decline rate (Wilker et al. 2011).  

We observed a stronger association with patella lead than tibia lead. We hypothesize that 

this discordance may reflect the different metabolic activity of these two kinds of bones. Bones 

are the major storage site of lead in the body, but also are an important source of endogenous 

lead (Hu et al. 1998). Lead in bone can be mobilized gradually into the plasma, and transferred 

into other target tissues through the circulatory system (Wilker et al. 2011). Trabecular bone, 

such as patella bone, has a higher rate of metabolic activity compared with cortical bone such as 

mid-tibia bone (Rabinowitz 1991; Wilker et al. 2011). Tibia lead slowly declines about 1.4% per 

year after the cessation of exogenous exposure to lead, while patella lead follows a piecewise 

log-linear decline with a rapid initial rate more than twice as fast as tibia lead and then go to a 

plateau (Wilker et al. 2011). Thus patella lead may be more likely to reflect biologically 

available endogenous lead which can affect the development of age-related diseases in other 

tissue, such as glaucoma in eyes. 

The mechanisms of lead on the pathogenesis of glaucoma may involve oxidative stress. 

Lead can increase oxidative stress through the depletion of the glutathione and thiol pools, as well 

as disrupting the antioxidant defense system (Ercal et al. 2001; Jomova and Valko 2011; Valko et 
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al. 2016). Excessive oxidative stress and lipid peroxidation may lead to the accumulation of free 

radicals and their derivatives (reactive oxygen species, ROS), overwhelming the antioxidant 

defense system, cause the loss of cell adhesion and changes in the cytoskeletal structure of 

trabecular meshwork cells, induce the dysfunction of the aqueous humor drainage system, disrupt 

the outflow of aqueous humor from the eyeball, result in the increase of intraocular pressure, and 

finally cause the development of glaucomatous neuropathy (Babizhayev 2012; Saccà et al. 2016; 

Zhao et al. 2016). In addition, oxidative stress may directly damage the head of optic nerves 

through the similar cell dysfunction mechanism to induce the development of glaucoma (Tezel et 

al. 2010). Our results showed that after controlling for ocular hypertension, the association 

between patella lead and POAG was attenuated but remained significant, suggesting that lead 

could directly affect glaucoma pathogenesis other than through the dysfunction of aqueous humor 

drainage system. 

Further investigation on lead-gene interaction may help reveal the mechanisms of lead’s 

effect on POAG as well as the unclear pathogenesis of POAG. The heritability of POAG is 

polygenic, and usually related to genes having incomplete penetrance (Wiggs 2015). Current 

known genes associated with POAG includes Myocilin (MYOC), Atonal BHLH transcription 

Factor 7 (ATOH7), Transmembrane And Coiled-Coil Domains 1 (TMCO1), SIX Homeobox 1/SIX 

Homeobox 6 (SIX1/SIX6), Growth Arrest Specific 7 (GAS7), (Abu-Amero et al. 2015) etc. These 

genes may interact with the lead metabolic pathways and affect the development of glaucoma. For 

instance, mutation in some genes such as MYOC may change the sensitivity of oxidative stress 

(Joe and Tomarev 2010), thus change the susceptibility of lead poisoning. 

Our study has several limitations. Those who were eligible at the baseline might be 

healthier than the original NAS cohort recruited in 1960s.  We applied IPW to reduce such 
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selection bias at the time of bone lead measurements (baseline). We also have another selection 

bias during the follow-up time. Follow-up time varied greatly among our participants, and as 

expected with an aging population, the rate of loss to follow-up was relatively high. Those who 

remained in the study for long follow-up may be even healthier than the baseline study sample, 

and consequently may have been less susceptible to glaucoma. This was reflected by the time-

varying HRs. Such selection bias could result in underestimation of the association, which means 

it would not change our conclusion. Besides, baseline bone lead levels may not capture the 

environmental lead exposure during the follow-up. Since the usage of lead in gasoline and paint 

was generally banned in the U.S. since 1990s, we assumed that the environmental exposure of lead 

largely decreased after our baseline. Thus, we hypothesized that participants’ tibia lead levels may 

not change a lot, while patella lead levels may reflect the gradually decreased exogenous exposures 

during the follow-up time. A natural limitation for costly cohort epidemiology studies is reduced 

power to detect age-related diseases, such as POAG; the sample size for incident cases was 

relatively small. We did not include family history of POAG in to our analysis, although it is an 

important risk factor of POAG. Family history of glaucoma was self-reported in NAS with lots of 

missing and uncertain description. Since there is no previous study reported that family history of 

POAG was associated with bone lead levels, it may not confound the lead-POAG association. 

NAS only recruited male veterans living in the Boston area (97% were white). Therefore, our 

results may not be generalizable to other populations, although the incident POAG rate in our 

population (15-year incidence of 7%) is comparable to other populations (i.e., the 26-year 

incidence of 9.7% in the Health Professional Follow-up Study) (Kang et al. 2018).  

Lead is related to multiple age-related health problems, such as cognitive decline (Fishbein 

et al. 2008), hearing loss (Park et al. 2010), cataract (Mosad et al. 2010; Schaumberg et al. 2004), 
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and AMD (Erie et al. 2009; Hwang et al. 2015). Recent concerns about the widespread exposure 

of the residents of Flint, Michigan to elevated lead levels in their drinking water was an important 

reminder that lead continues to be a dangerous environmental toxicant (Gómez et al. 2018; Hanna-

Attisha et al. 2016; Zahran et al. 2017). Concerns are especially high in urban environments with 

aging infrastructure and public awareness of lead exposure needs to be reinforced. Aging 

populations are at greater risk to lead toxicity given the cumulative nature of lead. Further, the 

older population is growing and age-related glaucoma-induced blindness will impose a huge 

economic burden on the whole society. In 2013, the number of glaucoma patients worldwide (aged 

40-80 years old) was estimated to be 64.3 million, and this number is projected to increase to 76.0 

million in 2020 and 111.8 million in 2040 (Tham et al. 2014). In the U.S., the National Eye Institute 

reported that approximately 1.9% of the population aged 40 years and older was suffering from 

POAG in 2010. The number of cases rose from 2.22 million in 2000 to 2.72 million in 2010 

(Glaucoma, Open-angle | National Eye Institute). Glaucoma is a neurodegenerative disease; the 

loss of visual function is irreversible once symptomatic, and there is no cure (Prum et al. 2016; 

WHO | Glaucoma is second leading cause of blindness globally). In order to minimize the burden 

of glaucoma-related blindness, it is important to identify risk factors that can implemented to 

clinical practice for pre-symptomatic prevention and earlier detection. Our finding contributes 

additional evidence on the chronic health effects of environmental lead exposure, which might 

help strengthen the public awareness of lead-related ocular diseases and blindness.  

In conclusion, this is the first epidemiologic study indicating the association between 

bone lead levels and risk of POAG at a longitudinal scale. We show that bone lead may be an 

important risk factor of POAG in a U.S. population of men. Further studies for replication and in 

women are needed to validate our findings. We expect our study to increase the public awareness 
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of cumulative environmental lead exposure, provide new points of view for the exploration of 

the pathogenesis of glaucoma, give new ideas for glaucoma interventions such as mitigating the 

oxidative stress consequence of lead in ocular tissues, and therefore provide new avenues to 

effectively decrease the global burden of blindness. 
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1. Abstract  

Background: Elevated bone lead level may be a risk factor for age-related primary open-angle 

glaucoma (POAG). High intake of nutrients has been associated with lower POAG risk.  We 

examined effect modification by dietary intake of vitamins and dietary patterns in the association 

between bone lead and POAG. 

Methods:  A total of 620 POAG free males (mean baseline age=66.9 years (SD=6.7)) from the 

Normative Aging Study were followed for 15 years since their bone lead measurements by K X-

ray fluorescence between 1991 and 1999. Those who had consistent observed enlarged or 

asymmetric cup-to-disc ratio together with visual field defect or existence of disc hemorrhage 

were identified as POAG cases. Two dietary patterns were identified by principal component 

analysis: a ‘prudent’ diet was highly correlated with high intake of legumes, vegetables, seafood, 

onions, tomatoes, fruit and poultry, while a ‘Western’ diet was highly correlated with high intake 

of eggs, red and processed meat, high-fat dairy products, butter, beers, chowder, fries, refined 

grains and mayonnaise. Cox proportional hazards regressions were performed to estimate hazard 

ratios (HRs) of incident POAG comparing low (<median dietary scores) vs. high (≥median) 

dietary groups.  

Results:  Forty-four incident POAG were identified during a median of 10.4 years’ (incidence 

rate=72 per 10,000 person-years) follow-up. In a fully adjusted model, an HR of POAG was 2.03 

(95% CI: 1.25, 3.29) per 2-fold increase in patella lead among participants with low adherence to 

prudent diet, whereas it was 1.33 (95% CI: 0.86, 2.05) among participants with high adherence to 

prudent diet. Similar effect modification was found for provitamin A carotenoid intake: HRs per 

2-fold increase in patella lead between those with low intake versus high intake of carotenoid 
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were 2.04 (95% CI: 1.26, 3.29) and 1.26 (95% CI: 0.90, 2.11), respectively. No significant effect 

modification was found by western diet or dietary intake of vitamins C, D and E. 

Conclusions: High adherence of prudent diet and high dietary intake of carotenoids may help 

reduce POAG risk related to bone lead. These results need to be interpreted cautiously due to the 

small sample size and generalization issues.  

 

Key words: Bone lead, primary open-angle glaucoma, diet, vitamin A 
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2. Introduction 

Glaucoma is the second leading cause of blindness and the leading cause of irreversible 

vision loss globally (Pascolini and Mariotti 2012). In the United States, approximately 1.9% of 

the population aged 40 and older are suffering primary open-angle glaucoma (POAG) 

(Prevalence of Open-Angle Glaucoma Among Adults in the United States 2004). Despite the 

increasing patient population and severe health consequence with largely effects on quality of 

life, the etiology of glaucoma remains unclear. As a neurodegenerative disease, the established 

pathophysiology of glaucoma includes pathological or anatomic change in the complex tissues in 

the anterior chamber of eye ball that control the dynamics of aqueous humor fluid, regulate the 

intraocular pressure (IOP), and induce the progressive end-organ optic neuropathy in the 

posterior segment (Jonas et al. 2017). Commonly known risk factors for age-related glaucoma 

includes older age, ocular hypertension, race/ethnicity, positive family history, optic nerve 

susceptibility and myopia, according to previous clinical trials (Jonas et al. 2017).  

 As mentioned in Chapter II, increased oxidative stress may play an important role in the 

development of glaucoma (Babizhayev 2012a; Goyal et al. 2014; Majsterek et al. 2011; Zhao et 

al. 2016; McMonnies 2018). The threaten of none-occupational lead exposure, an important 

source of environmental oxidative stress, has not vanished even though lead was phased out of 

paint in 1978 and gasoline in the 1990’s by the U.S. government. Lead’s toxic ocular effects in 

aging populations was noted in a previous investigation in the Normative Aging Study (NAS): 

bone lead levels were associated with the risk of age-related cataract (Schaumberg et al. 2004). 

Our group’s study in Chapter II using an NAS subsample found a significant positive association 

between bone lead levels and incident POAG on a longitudinal scale. We utilized tibia lead level 

as a biomarker of cumulative environmental lead exposure, and patella lead level as an indicator 
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of endogenous exposure from lead body burden. We founded that patella lead level was 

positively associated with the risk of incident POAG. 

  Dietary intervention can be a more applicable and acceptable treatment for lead poisoning 

compared with the traditional chelation therapy (Aposhian et al. 1995; Kalia and Flora 2005). 

Some previous studies have suggested that antioxidant nutrients, such as vitamins C and E 

intake, can attenuate the toxicity of lead by balancing the lead-induced oxidative stress (Al-Attar 

2011; Calabrese et al. 1987; Hsu and Guo 2002; Rendón-Ramírez et al. 2014; Simon and Hudes 

1999). Traditional glaucoma therapies mostly emphasize in decreasing the IOP. Novel treatments 

focus on reduction of intraocular oxidative stress using antioxidants and have been tested in 

mouse models (Dong et al. 2016; Inman et al. 2013; Kimura et al. 2017; Yang et al. 2016). 

Dietary intake of vitamins A and C has a protective association with OAG (D. Ramdas et al. 

2018). Lipid-soluble antioxidant vitamins D and E may be associated with risk of glaucoma 

(Kim et al. 2016; Ko et al. 2010; Yoo et al. 2014).  

Single nutrient intake styduesm without the consideration of a combination of multiple 

food and nutrients, may be limited in their ability to establish a practical dietary intervention of 

POAG. The traditional single nutrient approach has multiple limitations: it cannot reflect the 

complex interactive effects among nutrients; it can hardly distinguish separate effect of each 

nutrient due to high intercorrelation among some nutrients; the statistical significance of 

association between single nutrient and chronic disease may simply being detected by chance 

when analyzing large number of nutrients; when the effect of single nutrient is too small to be 

detected, investigators cannot conclude that the cumulative or combined effect of multi-nutrient 

is null (Hu 2002). Dietary patterns can solve these problems through a more comprehensive view 

of nutrient intakes. Dietary pattern analysis is a common method for investigating the association 
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between diet and chronic disease (Hu 2002; Kant 2010; Tucker 2010).  

  To the best of our knowledge, no previous epidemiologic study has ever investigated the 

potential effect modification by dietary intakes on the lead-POAG association. In this study, we 

aimed to examine the effect modification by dietary patterns as well as single dietary vitamin 

intake on the association between bone lead levels and incident POAG. Our study sample was 

male participants lived around the Great Boston Area, who were derived from the VA Normative 

Aging Study (NAS). This study is a further exploration of potential intervention of the lead 

toxicity on POAG development. 
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3. Methods 

3.1. Ethical Declaration 

This study has been reviewed and approved by Institutional Review Boards (IRB) of the 

following participating institutes: 1) University of Michigan School of Public Health, 2) Harvard 

School of Public Health, and 3) Department of Veterans Affairs Boston Healthcare System.  

3.2. Study Population 

 The overall structure of NAS has been described in Chapter II.  

 Among the initial NAS participants, 868 individuals attended the bone lead measurement 

via K x-ray fluorescence (KXRF) from January 1st, 1991 to December 31th, 1999. In our study, 

we used the date of the first bone lead measurement as the baseline of our prospective cohort. 

We restricted the follow-up time within 15 years in order to reduce the cumulative survival bias 

since our study population was relatively old at baseline. Among this bone lead sub-group, 702 

participants had sufficient information for glaucoma identification via ocular evaluation. We 

further excluded 82 individuals (more details described in Figure III.1); among them 6 lacking 

complete Food Frequency Questionnaire (FFQ) information for effective dietary evaluation. 

Finally, we established a population of 620 participants for the analysis of dietary patterns and 

vitamins A and C. For vitamins D and E, the total sample size was 405 due to missingness in 

vitamin intake.  
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Figure III.1. Diagram illustrates the establishment of study population.   

3.3. Primary open-angle glaucoma identification 

 During the routine NAS standard ocular evaluation, participants were asked about their 

family and personal systemic or ocular disease history, medical history, and underwent visual 

acuity test, biomicroscopy, tonometry and ophthalmoscopy for a comprehensive evaluation 

(Schaumberg et al. 2004). Details of how we reviewed and extracted information for glaucoma 
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identification were described in our previous study (Chapter II). 

 We adopted the definition of glaucoma phenotype from the National Eye Institute 

Glaucoma Human genetics collaBORation (NEIGHBOR) Consortium for the identification of 

POAG in our study (Wiggs et al. 2013). The criteria were also described in detail in Chapter II. 

Briefly, POAG were ascertained for participants who showed any one of the following 

characteristics with an open angle between cornea and iris in the anterior segment: 1) enlarged 

vertical cup-to-disc ratios (CDR) (either eye’s CDR≥0.7); 2) asymmetric CDR (the difference of 

two eyes’ CDRs≥0.2); 3) relatively large CDR together with other typical glaucomatous 

phenotypes (any eye’s CDR≥0.6 with either disc hemorrhage or visual field defect); 4) 

glaucomatous blindness (caused by loss of nerve fiber layer). Individuals with re-existing 

glaucoma were treated as baseline glaucoma cases and were ineligible for our study (n=8).  

All 620 eligible participants were followed until the date of first ocular evaluation 

reporting POAG onset, or the end of 15 years’ follow-up, or the last return visit before loss to 

follow-up. Individuals with incident glaucoma types other than POAG (narrow angle glaucoma 

or secondary glaucoma) were treated as lost to follow-up which stopped at the onset visit 

(Chapter II, Table II.1). 

3.4. Bone lead measurements 

 We used the K x-ray fluorescent instrument to measure the bone lead levels with the unit 

of microgram of lead per gram of bone mineral (µg/g), at the mid-tibial shaft and patella for each 

participant. Tibia bone is a representative of cortical bone while patella bone is trabecular bone 

(Hu et al. 1995).  As mentioned in Chapter II, the low decline rate of tibia lead makes it a good 

biomarker for cumulative environmental lead exposure, while patella lead may represent 
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endogenous lead exposure due to a higher rate of metabolic activity of trabecular bone 

(Rabinowitz 1991; Wilker et al. 2011).  

Since we used log-transformed bone lead levels in the following statistical analysis, 8 

individuals had negative values for either tibia or patella lead were excluded for simplicity. The 

KXRF instrument also provides measurement uncertainty (1 standard deviation of replicate 

measurements) to evaluate the quality of estimated bone lead level (Hu et al. 1995). Those who 

had unacceptable uncertainty (higher than 10 µg/g for tibia and 15 µg/g for patella) were 

ineligible for our study (n=1). Details for the KXRF bone lead measurement were described 

elsewhere (Burger et al. 1990) and in Methods of Chapter II.  

3.5. Food frequency questionnaires and single dietary nutrient intakes 

The NAS adapted a self-reported semi-quantitative FFQ from the Nurses’ Health Study 

for the evaluation of dietary nutrient intake (Willett et al. 1985).  Participants were asked to 

report serving counts for each of 135 food items per month, week or day during the past year 

through mailed FFQ on about every four years since 1987. Intake frequency of each food item 

was categorized into nine possible responses, ranging from “never or less than one serving per 

month” to “more than six servings per day”. Single nutrient intake was calculated by the sum of 

each food intake frequency multiplied by the specific nutrient content of the specific serving 

size. Nutrient intake estimation of this FFQ was reported to be reproducible and valid by 

previous studies (Rimm et al. 1992; Wang et al. 2017; Willett et al. 1985).  

In this study, we extracted the dietary intakes of vitamins A, C, D and E, which are 

reported to be related with either health effect of lead toxicity or POAG development. Vitamin A 

can be absorbed from diet by two forms: preformed vitamin A, which includes retinols, and 
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provitamin A, which includes different carotenoids (Ross et al. 2010). Retinols are found in 

animal sources food, such as meat, fish and dairy products, while carotenoids are mostly 

converted from plant pigments by human body (Ross et al. 2010; Office of Dietary Supplements 

- Vitamin A). Previous meta-analysis showed that dietary vitamin A intakes may have beneficial 

association with POAG risk (D. Ramdas et al. 2018); however, most previous studies regarding 

vitamin A intakes and glaucoma did not separate preformed vitamin A and provitamin A. Fruit 

and vegetable based provitamin A more frequently have protective effect on POAG (Coleman et 

al. 2008; Giaconi et al. 2012; Kang et al. 2016; Ramdas et al. 2012; Wang et al. 2013), while 

effect of animal-sourced retinols is rarely evaluated independently. To determine the exact 

dietary source of potential effective vitamin A, we used total dietary vitamin A intake, dietary 

retinols intake, and dietary carotenoid intake into our study. Since dietary carotenoid has lots of 

missing, we estimated the carotenoid intake by calculating the difference between total vitamin 

A intake and retinol intake (carotenoids = vitamin A – retinols). Vitamin C, D and E were also 

reported to have protective effect on the development of glaucoma, however the association is 

inconsistent across different studies (Giaconi et al. 2012; Ramdas et al. 2012; Veach 2004; Wang 

et al. 2013; Goncalves et al. 2015; Yoo et al. 2014). 

For each individual, we calculated the “baseline daily vitamin intake” by averaging 

intake reported by all following FFQs since year 1987 till “1 year after the baseline” (date of 

KXRF measurement + 365.25 days). 

Our study only focused on the dietary intakes of single vitamins, without the inclusion of 

nutritional supplementary intakes. 
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3.6. Dietary pattern scores  

 Commonly used methods of measuring dietary patterns include data-driven approaches 

such as principal component analysis (PCA) and cluster analysis (Tucker 2010). The procedure 

of creating dietary pattern scores by PCA using FFQ of NAS has been introduced by previous 

study (Wang et al. 2017). Briefly, we first created 40 food groups by aggregating 135 food items 

based on the similarities of food species, components, and cooking styles (Wang et al. 2017). We 

then used PCA to create factors, which are highly correlated with certain food groups. 

Orthogonal rotation (varimax rotation) was adopted to maximize the variance of food groups’ 

coefficients, centralize the effect of correlated food groups, simplify the structure of factors, and 

enhance their interpretability (O’Rourke and Hatcher 2013). We extracted two factors with the 

highest two eigenvalues, which means they captured the highest two proportion of dietary 

variance of the study population. The first factor was highly correlated with legumes, vegetables, 

seafood, onions, tomatoes, fruits and poultry (Table III.1); we defined this factor as “prudent” 

dietary pattern. The second factor was characterized by eggs, processed meat, high-fat dairy 

products, butter, red meat, beers, chowder, fires, refined grains, and mayonnaise (Table III.1); we 

defined this factor as “Western” dietary pattern. Dietary pattern scores, which were adopted from 

factor scores, were calculated by summing the weighted values of each food groups. The scores 

quantitatively reflect the adherence to the dietary pattern.  

Similar to single nutrient intake, baseline dietary pattern scores were calculated for our 

study: we averaged dietary pattern from the beginning of FFQs to one year after the baseline 

date. We defined those with baseline dietary pattern scores lower than the median of study 

population as “low adherence group”, while the others are identified as “high adherence group” 

(median for prudent diet= - 0.14, median for Western diet= - 0.19). We then stratified the study 
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population into four dietary subgroups: low prudent and low Western group (n=156), low 

prudent and high Western group (n=154), high prudent and low Western group (n=154), high 

prudent and high Western (n=156) (Figure III.2, details explained later). 

Table III.1. Factor Loading Matrixa for the Calculation of Dietary Patterns using FFQ 

Data of the Normative Aging Study (n=620). 

Food groups 

Prudent dietary 

pattern 

Western dietary 

pattern 

Legumes 0.71 - 

Other vegetables 0.71 - 

Dark-yellow vegetables 0.70  

Cruciferous vegetables 0.65 - 
Leafy vegetables 0.58 - 

Seafood 0.43 - 
Onions 0.39 - 

Tomatoes 0.37 - 

Fruits 0.32 - 
Poultry 0.26 - 

Eggs - 0.63 

Processed meat - 0.59 

High-fat dairy products  0.57 

Butter - 0.54 

Red meat - 0.52 

Beers - 0.32 

Chowder - 0.30 

Fries  0.29 

Refined grains - 0.29 

Mayonnaise - 0.26 
a Only food groups with absolute values of factor loading score > 0.25 were shown. 
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Figure III.2. Plot illustrating the dietary pattern scores of participants in four dietary sub 

groups. 

3.7. Covariates 

We included baseline age (years), race/ethnicity (white, non-white), body mass index 

(BMI, varying at each return visit, kg/m2), educational attainment (≤high school, high school, 

some college, and higher), job types (blue collar, white collar or mixed), cigarette consumption 

in pack-years (0, 0-19, ≥20) in our models. Inclusion criteria of above covariates has been 

explained by previous paper (Chapter II, Methods). We further adjusted for diabetes mellitus 

status (yes/no), systemic hypertension (yes/no) and ocular hypertension (yes/no). Identification 

criteria of those three symptoms were also described in Chapter II. Additionally, we adjusted for 

total energy intake (kCal) as a marker of individual’s comprehensive health status (physical 
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activity, body size, and metabolic efficiency), as well as to mitigate the measurement error 

caused by self-report bias (Neuhouser et al. 2008; Willett et al. 1997).  

3.8. Statistical analysis 

 We conducted bivariate analyses to compare the baseline characteristics of our study 

population by POAG status at the end of follow-up. Means with standard deviations (SDs) were 

provided for continuous variables while frequencies and percentages were provided for 

categorical variables. Pearson correlation coefficients were calculated among bone lead levels, 

dietary pattern scores, and single nutrients.  

We used Cox proportional hazards regression to assess the association between bone lead 

levels and incident POAG in our 15 years’ prospective cohort. We computed hazard ratios (HRs) 

and 95% confidence intervals (CIs) to quantitatively evaluate the risk of POAG related with 

either patella or tibia lead.  The Cox regression we performed for the main association between 

bone lead and POAG was: 

 𝜆(𝑡) =  𝜆0(𝑡)× 𝑒𝑥𝑝 ( 𝛽1̂𝐿𝑒𝑎𝑑 + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠)   (Model 0) 

Here 𝜆(𝑡) and 𝜆0(𝑡) represents the hazard of POAG at time t and baseline, respectively; 

Lead indicates log-transformed patella or tibia lead concentrations (base-2 logarithms); 

Covariates included total energy intake, age at baseline, BMI, job types, educational levels, 

pack-year of cigarettes, systemic hypertension, diabetes mellitus, and ocular hypertension. The 

proportional hazard assumption was tested and discussed in Chapter II. The HRs were reported 

based on a two-fold increase in bone lead levels.  

In order to reduce selection bias of those who had attended the bone lead measurement 
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from the initial NAS recruitment, we applied inverse probability weighting (IPW) into our Cox 

models to assign weights to each participant (Weisskopf et al. 2015), as we’ve done previously 

in Chapter II.  

We used two methods to evaluate effect modification effect by dietary patterns or 

individual vitamin intake on the lead-POAG association:  

1) Interaction analysis: test the interaction effect on multiplicative scale by adding 

interaction terms between bone lead and dietary pattern or single vitamin intake, using the 

following model:   

𝜆(𝑡) =  𝜆0(𝑡)× 𝑒𝑥𝑝 ( 𝛽1̂𝐿𝑒𝑎𝑑 + 𝛽2̂𝑑𝑖𝑒𝑡𝑎𝑟𝑦 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑣𝑖𝑡𝑎𝑚𝑖𝑛) +

𝛽3̂𝐿𝑒𝑎𝑑 × 𝑑𝑖𝑒𝑡𝑎𝑟𝑦 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑣𝑖𝑡𝑎𝑚𝑖𝑛) + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠) (Model 1a); Here dietary 

pattern (or single vitamin) refers to the dichotomized dietary pattern scores or single nutrient 

intake which cut at median. 

2) Stratified analysis: stratified the total study population by dichotomized dietary pattern 

scores or single vitamin intake and run Model 0 within each sub-group to intuitively observe the 

change of HRs. This stratified analysis is equivalent to the following model: 

 𝜆(𝑡) =  𝜆0(𝑡)× 𝑒𝑥𝑝 ( 𝛽1̂𝐿𝑒𝑎𝑑 + 𝛽2̂𝑑𝑖𝑒𝑡𝑎𝑟𝑦 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (𝑜𝑟𝑠𝑖𝑛𝑔𝑙𝑒 𝑣𝑖𝑡𝑎𝑚𝑖𝑛) +

𝛽3̂𝐿𝑒𝑎𝑑 × 𝑑𝑖𝑒𝑡𝑎𝑟𝑦 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑣𝑖𝑡𝑎𝑚𝑖𝑛) + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 ×

𝑑𝑖𝑒𝑡𝑎𝑟𝑦 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 (𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑣𝑖𝑡𝑎𝑚𝑖𝑛) (Model 1b), which included the interactions of dietary 

pattern/vitamins with not only bone lead levels, but also covariates.  

We also ran both interaction analysis and stratified analysis using continuous dietary 

pattern scores and vitamin intake to avoid the loss of information caused by dichotomization. 
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The stratified analysis considered complicated interactions, which is more comparable to the real 

situation; however, due to the limited sample size and low incidence rate of POAG, the power of 

stratified analysis was reduced. We adopted the interaction analysis as the main strategy, and 

stratified analysis as tests for sensitivity.  

 To test the complicated interactions among prudent diet, Western diet, and bone lead, we 

further stratified the total population into 4 dietary pattern groups. Participants were classified 

into low prudent and low Western diet (Group 1), low prudent and high Western diet (Group 2), 

high prudent and low Western diet (Group 3), and high prudent and high Western diet (Group 4), 

according to their adherence to two dietary patterns.  

For interaction analysis, we used four dietary pattern groups to analyze complicate cross-

product interactions: 𝜆(𝑡) =  𝜆0(𝑡)× 𝑒𝑥𝑝 ( 𝛽1̂𝐿𝑒𝑎𝑑 + 𝛽2̂𝐺𝑟𝑜𝑢𝑝2 + 𝛽3̂𝐺𝑟𝑜𝑢𝑝3 + 𝛽4̂𝐺𝑟𝑜𝑢𝑝4 +

𝛽5̂𝐿𝑒𝑎𝑑 × 𝐺𝑟𝑜𝑢𝑝2 + 𝛽6̂𝐿𝑒𝑎𝑑 × 𝐺𝑟𝑜𝑢𝑝3 + 𝛽7̂𝐿𝑒𝑎𝑑 × 𝐺𝑟𝑜𝑢𝑝4 + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠) (Model 2a). 

This model is equivalent to the follow one: 𝜆(𝑡) =  𝜆0(𝑡)× 𝑒𝑥𝑝 ( 𝛽1̂𝐿𝑒𝑎𝑑 + 𝛽2̂𝑃𝑟𝑢𝑑𝑒𝑛𝑡 +

𝛽3̂𝑊𝑒𝑠𝑡𝑒𝑟𝑛 + 𝛽4̂𝐿𝑒𝑎𝑑 × 𝑃𝑟𝑢𝑑𝑒𝑛𝑡 + 𝛽5̂𝐿𝑒𝑎𝑑 × 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 + 𝛽6̂𝑃𝑟𝑢𝑑𝑒𝑛𝑡 × 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 +

𝛽7̂𝐿𝑒𝑎𝑑 × 𝑃𝑟𝑢𝑑𝑒𝑛𝑡 × 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠) (Model 3). Here Prudent and Western 

indicate dichotomized variables of prudent and Western dietary pattern scores, which were cut at 

the median. To evaluate the separate effect of modification by prudent or Western diet with bone 

lead, we used likelihood ratio test (with covariates) to compare the difference of fitness between 

Model 3 and the following reduced models: 

1) For effect of prudent diet, we compared Model 3 with reduced Model 4: 

 λ(t) =  λ0(𝑡)× exp ( 𝛽1̂𝐿𝑒𝑎𝑑 + 𝛽2̂𝑊𝑒𝑠𝑡𝑒𝑟𝑛 + 𝛽3̂𝑃𝑟𝑢𝑑𝑒𝑛𝑡 + 𝛽4̂𝐿𝑒𝑎𝑑 × 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 +

𝛽5̂𝑃𝑟𝑢𝑑𝑒𝑛𝑡 × 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠) (Model 4).  
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2) For effect of Western diet, we compared Model 3 with reduced Model 5: 

 λ(t) =  λ0(𝑡)× exp ( 𝛽1̂𝐿𝑒𝑎𝑑 + 𝛽2̂𝑊𝑒𝑠𝑡𝑒𝑟𝑛 + 𝛽3̂𝑃𝑟𝑢𝑑𝑒𝑛𝑡 + 𝛽4̂𝐿𝑒𝑎𝑑 × 𝑃𝑟𝑢𝑑𝑒𝑛𝑡 +

𝛽5̂𝑃𝑟𝑢𝑑𝑒𝑛𝑡 × 𝑊𝑒𝑠𝑡𝑒𝑟𝑛 + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠) (Model 5).  

Again, we also conducted stratification analysis, running Model 0 within each group to 

intuitively compare the HRs of POAG among different diet, which was equivalent to the 

following model including interactions of four dietary groups with both bone lead levels and 

covariates:  𝜆(𝑡) =  𝜆0(𝑡)× 𝑒𝑥𝑝 ( 𝛽1̂𝐿𝑒𝑎𝑑 + 𝛽2̂𝐺𝑟𝑜𝑢𝑝2 + 𝛽3̂𝐺𝑟𝑜𝑢𝑝3 + 𝛽4̂𝐺𝑟𝑜𝑢𝑝4 +

𝛽5̂𝐿𝑒𝑎𝑑 × 𝐺𝑟𝑜𝑢𝑝2 + 𝛽6̂𝐿𝑒𝑎𝑑 × 𝐺𝑟𝑜𝑢𝑝3 + 𝛽7̂𝐿𝑒𝑎𝑑 × 𝐺𝑟𝑜𝑢𝑝4 + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 +

𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 × 𝐺𝑟𝑜𝑢𝑝2 + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 × 𝐺𝑟𝑜𝑢𝑝3 + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 × 𝐺𝑟𝑜𝑢𝑝4) (Model 2b). 

We used SAS system version 9.4 (SAS Institute, Inc., Cary, North Carolina) and R 

version 3.5.0 to perform all analysis. 
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4. Results 

 In total 620 individuals with 1817 observations (6132 person-years) were eligible to be 

included in our study for the evaluation of effect modification by dietary patterns and vitamins A 

(total, carotenoids, retinols) and C. For vitamin D and E, the sample size was 405 with 1184 

observations (3963 person-years). The baseline characteristics of the study population (n=620) 

were shown in Table III.2. During the 15 years’ follow-up, we identified 44 incident POAG 

cases with an incidence rate at 72 per 10,000 person-years (median follow-up=10.4 years). The 

average age of participants at baseline was 66.9 years (SD 6.7, range from 49.9 to 66.9 years). 

The mean concentration of tibia lead was 21.9 µg/g (SD 13.6, range from 1 to 126 µg/g, 

median=19 µg/g), while the mean concentration of patella lead was 31.3 µg/g (SD 20.2, range 

from 1 to 165 µg/g, median=27 µg/g). Pearson correlation coefficient showed that tibia lead was 

highly correlated with patella lead (coefficient=0.79, p<0.001). Those who developed incident 

POAG were more likely to have ocular hypertension at the baseline (p<0.001). The 

characteristics of covariates were similar to what we reported in Chapter II.  

 We created two dietary patterns using PCA with orthogonal rotation (Table III.1). The 

mean score of prudent dietary pattern was -0.02 (SD 0.81, range from -1.65 to 5.50), while the 

mean score of Western dietary pattern was 0.01 (SD 0.90, range from -1.69 to 4.68) (Table III.2). 

The baseline average value for total energy intakes was 1987.2 kCal (SD 571.5 kCal). Dietary 

intake of total vitamin A was 10851.0 IU (SD 5486.6 IU), carotenoids was 8453.2 IU (SD 

5161.2 IU), retinoids was 2397.3 IU (SD 1817.6 IU), vitamin C was 155.0 mg (SD 67.5 mg), 

vitamin D was 220.8 IU (SD 135.9 IU), and vitamin E was 8.20 mg (SD 6.66 mg) (Table III.2). 

Pearson correlation test showed that prudent diet is highly correlated with vitamin A (coefficient 

for total vitamin A=0.72, coefficient for carotenoid=0.73, both p<0.001), and positively 
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correlated with other vitamins (Figure III.2). On the contrast, Western diet was negatively 

correlated with vitamins A, C, D and E (Figure III.2). 

 For interaction analysis, we intuitively compared the HRs of POAG between low or high 

adherence of dietary patterns, as well as low or high dietary intake of single vitamins, 

respectively. After adjusting for total energy intake, age at baseline, BMI, job types, educational 

levels, cigarette consumption, systemic hypertension, diabetes mellitus, and ocular hypertension, 

comparing those who had low adherence versus high adherence to prudent diet, the HR of POAG 

per 2-fold increase in patella lead dropped from 2.03 (95% CI: 1.25, 3.29) to 1.33 (95% CI: 0.86, 

2.05, p-for-interaction=0.18, Table III.3). Similar effect modification was also found for dietary 

vitamin A intake, especially the provitamin A (carotenoids): the 2-fold HRs for patella lead 

comparing those who had low intake versus high intake of carotenoid decreased from 2.04 (95% 

CI: 1.26, 3.29) to 1.37 (95% CI: 0.90, 2.11) (p-for-interaction=0.20, Table III.3).  

Although the p-for-interaction terms were not significant when using dichotomized 

dietary pattern and vitamin intake. In analysis using continuous ones, the interaction effects 

showed significance between patella lead with prudent dietary scores (p-for-interaction=0.03), 

total vitamin A intake (p-for-interaction=0.02) and carotenoid intake (p-for-interaction=0.02), 

and between tibia lead with carotenoid intake (p-for-interaction=0.04) (Table III.4). We found 

that the effect of patella lead on the risk of POAG changed when we held prudent dietary pattern 

score at different levels. When we increased prudent dietary pattern score from 1st quartile (-

0.54) to 3rd quartile (0.31), the slope of lead-POAG association decreased from 1.04 to 0.47, and 

the 2-fold HRs decreased from 2.05 (95% CI: 3.10, 1.36) to 1.39 (95% CI: 2.00, 0.96) (Table 

III.5). This suggested a higher susceptibility of patella lead toxicity for those who have low 

adherence to prudent diet, and a higher resistance for lead toxicity for those who have high 
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adherence to prudent diet. We did not observe significant interactions on the multiplicative scale 

between bone lead and Western diet or dietary intakes of vitamins C, D and E. 

 In the four group analysis of dietary patterns, we found that participants with low prudent 

dietary score and low Western dietary score showed a HR per 2-fold increase in patella and tibia 

lead at 2.03 (95%CI: 1.13, 3.66) and 2.09 (1.03, 4.20), respectively (Figure III.4 and Figure 

III.5). Those who had low prudent dietary score and high Western dietary score showed a HR per 

2-fold increase in patella lead at 2.13 (95%CI: 0.98, 4.62), which was marginally significant 

(Figure III.4). Our findings suggested that prudent diet may be protective to the risk of POAG 

caused by patella lead, no matter of the adherence of Western dietary pattern (p-for-interaction of 

prudent diet=0.03).  

 For sensitive analysis, we found that the results were similar when utilized the stratified 

analysis instead of interaction analysis (data not shown).  

  



72 

 

Table III.2. Baseline Characteristics of Study Population Comparing Participants with 

POAG vs participants with Non-POAG 

 

 

Characteristics 

Total 

Population 

(n=620) 

Non-

POAG 

(n=576) 

POAG 

(n=44) 

P 

valuea 

Bone lead levels     

  Tibia lead, mean±SD, μg/g 21.9±13.6 21.8±13.6 23.5±12.4 0.44 

        High tibia lead (>19 μg/g), n (%)  278 (51.7) 30 (68.2)  

  Patella lead, mean±SD, μg/g 31.3±20.2 31.0±20.0 36.3±21.4 0.09 

        High patella lead (>27 μg/g), n (%)  290 (50.4) 28 (63.6)  

Age at baseline, mean±SD, years 66.9±6.7 66.9±6.7 67.7±6.1 0.40 

Age at end of 15 years’ follow-up, mean±SD, 

years 

77.3±6.9 77.4±6.9 75.8±6.4 0.13 

BMI, mean±SD, kg/m2 27.8±3.7 27.9±3.8 27.5±3.4 0.48 

Diabetes mellitus, n (%) 88 (14.2) 80 (13.9) 8 (18.2) 0.43 

Systemic hypertension, n (%) 339 (54.7) 313 (54.3) 26 (59.1) 0.54 

Ocular hypertension, n (%) 21 (3.4) 13 (2.3) 8 (18.2) <0.001 

White population, n (%) 602 (97.1) 561 (97.4) 41 (93.2) 0.12 

Educational levels, n (%)     

  ≤ High school 64 (10.3) 61 (10.6) 3 (6.8)  

  High school 225 (36.3) 209 (36.3) 16 (36.4)  

  Some college 152 (24.5) 139 (24.1) 13 (29.6)  

  ≥ 4 years’ college 179 (28.9) 167 (29.0) 12 (27.3) 0.71 

Pack-years, n (%)     

  0 198 (31.9) 184 (31.9) 14 (31.8)  

  1-19 167 (26.9) 155 (26.9) 12 (27.3)  

  ≥20 255 (41.1) 237 (41.2) 18 (40.9) 0.99 

Job type, n (%)     

Blue collar 261 (42.1) 243 (42.2) 18 (40.9)  

Mix 136 (21.9) 126 (21.9) 10 (22.7)  

White collar 223 (36.0) 207 (35.9) 16 (36.4) 0.99 

Total energy intakes, kCal 1987.2±571.5 1991.4±569.2 1931±606.1 0.50 

Dietary pattern     

  Prudent diet score, mean±SD -0.02±0.81 -0.01±0.81 -0.05±0.78 0.79 

  Western diet score, mean±SD -0.01±0.90 -0.00±0.90 -0.08±0.99 0.57 

Dietary intakes of single nutrient b     

  Total Vitamin A, mean±SD, IU 10851.0±5486.6 10836.3±5468.1 11043.5±5785.9 0.74 

  Carotenoid, mean±SD, IU 8453.2±5161.2 8422.1±5113.0 8860.0±5804.6 0.59 

  Retinol, mean±SD, IU 2397.3±1817.6 2412.8±1852.5 2194.5±1275.4 0.43 

  Vitamin C, mean±SD, mg 155.0±67.5 154.9±68.7 156.6±51.0 0.87 

  Vitamin D c, mean±SD, IU 220.8±135.9 222.0±133.6 203±167.7 0.51 

  Vitamin E c, mean±SD, mg 8.20±6.66 8.23±6.84 7.81±3.17 0.76 

Selected food group intakes (servings/day)     

  Legumes, mean±SD 0.41±0.27 0.41±0.27 0.39±0.31 0.70 

  Other vegetables, mean±SD 0.38±0.28 0.39±0.29 0.34±0.25 0.28 

  Dark-yellow vegetables, mean±SD 0.39±0.37 0.39±0.37 0.40±0.45 0.96 

  Cruciferous vegetables, mean±SD 0.37±0.35 0.37±0.35 0.36±0.26 0.74 

  Leafy vegetables, mean±SD 0.57±0.46 0.58±0.46 0.50±0.40 0.28 

  Seafood, mean±SD 0.39±0.28 0.39±0.28 0.35±0.20 0.37 

  Onions, mean±SD 0.15±0.21 0.16±0.21 0.14±0.22 0.64 
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  Tomatoes, mean±SD 0.57±0.40 0.57±0.40 0.55±0.39 0.77 

  Fruit, mean±SD 1.52±1.07 1.51±1.07 1.68±1.00 0.32 

  Poultry, mean±SD 0.36±0.26 0.36±0.24 0.39±0.43 0.43 

  Eggs, mean±SD 0.23±0.25 0.23±0.25 0.24±0.30 0.67 

  Processed meat, mean±SD 0.34±0.33 0.34±0.33 0.30±0.28 0.38 

  High-fat dairy products, mean±SD 0.76±0.72 0.76±0.72 0.75±0.77 0.94 

  Butter, mean±SD 0.25±0.47 0.25±0.47 0.28±0.45 0.67 

  Red meat, mean±SD 0.51±0.31 0.51±0.31 0.45±0.31 0.23 

  Beers, mean±SD 0.46±0.92 0.48±0.93 0.28±0.64 0.19 

  Chowders, mean±SD 0.07±0.08 0.07±0.08 0.06±0.05 0.26 

  Fries, mean±SD 0.09±0.10 0.09±0.10 0.08±0.09 0.47 

  Refined grains, mean±SD 1.45±0.96 1.46±0.97 1.32±0.85 0.34 

  Mayonnaise, mean±SD 0.18±0.21 0.18±0.21 0.20±0.24 0.66 

Abbreviations: POAG, primary open-angle glaucoma; SD, standard deviation; KXRF, K x-ray fluorescence; BMI, 

body mass index. 
a P values were calculated using logistic regression; educational levels and pack-years were treated as ordinal 

variables. 
b Single nutrient intake were adjusted for total energy intake. 
c Sample size for vitamins D and E was 405 (including 26 POAG cases) due to missing in vitamin intake. 

  



74 

 

Table III.3. Hazard Ratio (with 95% CI) of POAG by Bone Lead Concentrations, 

Stratified by Dichotomized Dietary Pattern Scores and Single Vitamin Dietary Intakes, 

using interaction analysisa, with Application of IPW (n=620). 

  Patella lead Tibia lead 
 N case/ 

Person-years 

2-fold HR 

(95% CI) 

P for 

interactionb 

2-fold HR 

 (95% CI) 

P for 

interactionb 

Total Study 

Population (n=620) 
44/6132 

1.62 

(1.15, 2.29) 

 1.40 

(0.98, 2.01) 

 

Dietary Patterns      

Prudent Diet      

     Low  24/3055 2.03 

(1.25, 3.29) 
0.18 1.65 

(1.02, 2.69) 
0.31 

  

     High  20/3077 1.33 

(0.86, 2.05) 

 1.20 

(0.75, 1.92) 

 

Western Diet      

     Low 26/2013 1.67 

(1.10, 2.55) 
0.83 1.60 

(0.97, 2.64) 
0.43 

  

     High 18/3119 1.56 

(0.94, 2.60) 

 1.23 

(0.77, 1.96) 

 

Single Nutrientsc      

Total Vitamin A (IU)       

    ≤ 9871.5 24/3056 1.85 
(1.19, 2.86) 

0.31 1.44 
(0.90, 2.28) 

0.83 

     9875.3 -  90506.8 20/3076 1.36 

(0.85, 2.16) 

 1.34 

(0.81, 2.19) 

 

Carotenoid (IU) d      

     ≤ 7344.2  20/3083 2.04 

(1.26, 3.29) 

0.20 1.64 

(0.98, 2.74) 

0.48 

     7354.3 -  87086.2 24/3049 1.37 

(0.90, 2.11) 

 1.31 

(0.83, 2.05) 

 

Retinol (IU)      

     ≤ 1999.9 26/3090 1.74 

(1.13, 2.69) 

0.53 1.58 

(0.98, 2.53) 

0.44 

     2016.8 – 29498.2 18/3042 1.42 

(0.86, 2.36) 

 1.22 

(0.74, 2.00) 

 

Vitamin C (mg)      

     ≤ 148.4 23/3115 1.85 

(1.19, 2.86) 

0.32 1.61 

(0.99, 2.63) 

0.44 

     148.5 – 660.9 21/3017 1.36 

(0.84, 2.21) 

 1.25 

(0.78, 2.00) 

 

Total population 

(n=405) 
26/3963 

1.90 

(1.19, 3.04) 
 

1.58 

(0.96, 2.61) 
 

Vitamin D (IU) f      

     ≤ 192.5 17/2037 1.89 

(1.10, 3.25) 
1.00 1.53 

(0.88, 2.64) 
0.75 
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     194.5 – 1252.5 9/1925 1.89 

(0.94, 3.80) 

 1.78 

(0.77,4.07) 

 

Vitamin E (mg) f      

     ≤ 6.78 12/1899 2.00 

(1.08, 3.72) 
0.89 1.60 

(0.85, 3.02) 
0.95 

  

     6.84 – 53.73 14/2063 1.90 

(1.03, 3.50) 

 1.56 

(0.79, 3.08) 

 

Abbreviations: POAG, primary open-angle glaucoma; IPW, inverse probability weighting; HR, hazard ratio; CI, 

confidence interval. 
a Cox regression model was adjusted for total energy intake, age at baseline, BMI, job types, educational levels, 

pack-year of cigarettes, systemic hypertension, diabetes mellitus, and ocular hypertension. The interaction analysis 

adopted the following model, which only include interaction between diet/vitamin and lead: 𝜆(𝑡) =
 𝜆0(𝑡)× 𝑒𝑥𝑝 ( 𝛽1̂𝐿𝑒𝑎𝑑 + 𝛽2̂𝑑𝑖𝑒𝑡𝑎𝑟𝑦/𝑣𝑖𝑡𝑎𝑚𝑖𝑛 + 𝛽3̂𝐿𝑒𝑎𝑑 × 𝑑𝑖𝑒𝑡𝑎𝑟𝑦/𝑣𝑖𝑡𝑎𝑚𝑖𝑛 + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠). 
b P-values for interaction terms of dichotomized dietary pattern scores/single nutrient intake on the lead-POAG association 

were calculated by Wald test, which were p for 𝛽3̂. 
c Single nutrient intake were dietary, which did not include supplement intake. 
d Carotenoid intake was estimated by subtracting retinol intake from total vitamin A intake. 
f Sample size for vitamins D and E was 405 (including 26 POAG cases) due to missing in vitamin intake. 



76 

 

Table III.4. Interaction between Bone Lead Concentrations and Continuous Dietary 

Pattern Scores or Single Vitamin Dietary Intakes on the Lead-POAG Association, using 

Interaction Analysisa (n=620). 

  Patella lead Tibia lead 
 N case/ 

Person-years 

Beta for 

interaction (se) 

P for 

interactionb 

Beta for 

interaction (se) 

P for 

interactionb 

Total Study 

Population (n=620) 
44/6132     

Dietary Patterns      

Prudent Diet  -0.67 (0.31) 0.03 -0.22 (0.31) 0.49 

Western Diet  -0.27 (0.26) 0.31 -0.50 (0.29) 0.09 

Single Nutrientsc      

Total Vitamin A (IU)  -0.88 (0.37) 0.02 -0.77 (0.40) 0.05 

    Carotenoid (IU) d  -0.73 (0.32) 0.02 -0.71 (0.34) 0.04 

    Retinol (IU)  -0.55 (0.38) 0.15 -0.16 (0.36) 0.65 

Vitamin C (mg)  -0.36 (0.40) 0.37 -0.25 (0.43) 0.57 

Total population 

(n=405) 
26/3963     

Vitamin D (IU) f  -0.00 (0.30) 0.99 0.02 (0.37) 0.96 

Vitamin E (mg) f  0.14 (0.53) 0.80 0.22 (0.55) 0.69 

Abbreviations: POAG, primary open-angle glaucoma; IPW, inverse probability weighting; HR, hazard ratio; CI, 

confidence interval. 
a Cox regression model was adjusted for total energy intake, age at baseline, BMI, job types, educational levels, 
pack-year of cigarettes, systemic hypertension, diabetes mellitus, and ocular hypertension. The interaction analysis 

adopted the following model, which only include interaction between diet/vitamin and lead: 𝜆(𝑡) =

 𝜆0(𝑡)× 𝑒𝑥𝑝 ( 𝛽1̂𝐿𝑒𝑎𝑑 + 𝛽2̂𝑑𝑖𝑒𝑡𝑎𝑟𝑦/𝑣𝑖𝑡𝑎𝑚𝑖𝑛 + 𝛽3̂𝐿𝑒𝑎𝑑 × 𝑑𝑖𝑒𝑡𝑎𝑟𝑦/𝑣𝑖𝑡𝑎𝑚𝑖𝑛 + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠). 
b P-values for interaction terms between continuous dietary pattern scores/single nutrient intake and bone lead levels 

were calculated by Wald test, which were p for 𝛽3̂. 
c Single nutrient intakes were dietary, which did not include supplement intakes; all single nutrient intakes were log-

transformed by natural base. 
d Carotenoid intake was estimated by subtracting retinol intake from total vitamin A intake. 
f Sample size for vitamins D and E was 405 (including 26 POAG cases) due to missing in vitamin intake. 
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Table III.5. The Effect of Bone Lead Concentrations on the Risk of POAG, Holding Continuous Dietary Pattern Scores at 

25% (1st Quartile), Median and 75% (3rd Quartile) of the Total Population, using Interaction Analysisa (n=620). 

  Patella lead Tibia lead 
 Dietary pattern 

scores 
 

Slope/Betab 
 

2-Fold HR (95%CI)c 
P for 

interactiond 

 
Slope/Betab 

 
2-Fold HR (95%CI)c 

P for 
interactiond 

Prudent Diet        

    1st Quartile: 25% -0.54 1.04 2.05 (3.10, 1.36) 0.03 0.60 1.52 (2.30, 1.00) 0.49 

    Median: 50% -0.14 0.77 1.71 (2.42, 1.20)  0.51 1.42 (2.05, 1.00)  

    3rd Quartile: 75% 0.31 0.47 1.39 (2.00, 0.96)  0.42 1.33 (1.96, 0.91)  

Western Diet        

    1st Quartile: 25% -0.62 0.86 1.82 (2.74, 1.21) 0.31 0.80 1.74 (2.71, 1.12) 0.09 

    Median: 50% -0.17 0.74 1.67 (2.38, 1.17)  0.58 1.49 (2.16, 1.03)  

    3rd Quartile: 75% 0.47 0.57 1.48 (2.20, 1.00)  0.26 1.19 (1.79, 0.80)  

Abbreviations: POAG, primary open-angle glaucoma; IPW, inverse probability weighting; HR, hazard ratio; CI, confidence interval. 
a Cox regression model was adjusted for total energy intake, age at baseline, BMI, job types, educational levels, pack-year of cigarettes, systemic hypertension, 

diabetes mellitus, and ocular hypertension. The interaction analysis adopted the following model, which only include interaction between diet/vitamin and lead: 

𝜆(𝑡) =  𝜆0(𝑡)× 𝑒𝑥𝑝 ( 𝛽1̂𝐿𝑒𝑎𝑑 + 𝛽2̂𝑑𝑖𝑒𝑡𝑎𝑟𝑦 + 𝛽3̂ 𝐿𝑒𝑎𝑑 × 𝑑𝑖𝑒𝑡𝑎𝑟𝑦 + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠). 
b Slopes/Betas of bone lead levels on risk of POAG were calculated by combining the beta of main effect term of lead and the beta of interaction term: 𝛽1̂ + 𝛽3̂. 
c The HRs and 95% CIs were calculated by delta method. 
d P-values for interaction terms between continuous dietary pattern scores/single nutrient intake and bone lead levels were calculated by Wald test, which were p 

for 𝛽3̂. 
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* P-values <0.05, which indicated that the correlation test was significant. 

a  Single dietary nutrient intakes were adjusted for total energy intake. 
b  Sample size for vitamins D and E was 405 due to missing in vitamin intake. 

 

Figure III.3. Pearson correlation coefficients among bone lead concentrations, dietary patterns, and selected single dietary 

vitamin intake.  
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Figure III.4. HR (95%CI) of POAG per 2-fold increase in patella lead level, among different dietary pattern sub-groups, and 

the total study population (n=620), in Cox regression models using interaction analysis method adjusted for total energy intake, 

age at baseline, BMI, job types, educational levels, pack-year of cigarettes, systemic hypertension, diabetes mellitus, and ocular 

hypertension. Participants were classified into low prudent and low Western diet (Group 1), low prudent and high Western diet 

(Group 2), high prudent and low Western diet (Group 3), and high prudent and high Western diet (Group 4), according to 

their adherence to two patterns. The interaction analysis adopted the following model, which only include interaction between 

four dietary groups and lead: 𝝀(𝒕) =  𝝀𝟎(𝒕)× 𝒆𝒙𝒑 ( 𝜷𝟏̂𝑳𝒆𝒂𝒅 + 𝜷𝟐̂𝑮𝒓𝒐𝒖𝒑𝟐 + 𝜷𝟑̂𝑮𝒓𝒐𝒖𝒑𝟑 + 𝜷𝟒̂𝑮𝒓𝒐𝒖𝒑𝟒 + 𝜷𝟓̂𝑳𝒆𝒂𝒅 × 𝑮𝒓𝒐𝒖𝒑𝟐 +

𝜷𝟔̂𝑳𝒆𝒂𝒅 × 𝑮𝒓𝒐𝒖𝒑𝟑 + 𝜷𝟕̂𝑳𝒆𝒂𝒅 × 𝑮𝒓𝒐𝒖𝒑𝟒 + 𝜷̂𝑪𝒐𝒗𝒂𝒓𝒊𝒂𝒕𝒆𝒔). 
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Figure III.5. HR (95%CI) of POAG per 2-fold increase in tibia lead level, among different dietary pattern sub-groups, and the 

total study population (n=620), in Cox regression models using interaction analysis method adjusted for total energy intake, age 

at baseline, BMI, job types, educational levels, pack-year of cigarettes, systemic hypertension, diabetes mellitus, and ocular 

hypertension. Participants were classified into low prudent and low Western diet (Group 1), low prudent and high Western diet 

(Group 2), high prudent and low Western diet (Group 3), and high prudent and high Western diet (Group 4), according to 

their adherence to two patterns. The interaction analysis adopted the following model, which only include interaction between 

four groups and lead: 𝜆(𝑡) =  𝜆0(𝑡)× 𝑒𝑥𝑝 ( 𝛽1̂𝐿𝑒𝑎𝑑 + 𝛽2̂𝐺𝑟𝑜𝑢𝑝2 + 𝛽3̂𝐺𝑟𝑜𝑢𝑝3 + 𝛽4̂𝐺𝑟𝑜𝑢𝑝4 + 𝛽5̂𝐿𝑒𝑎𝑑 × 𝐺𝑟𝑜𝑢𝑝2 +

𝛽6̂𝐿𝑒𝑎𝑑 × 𝐺𝑟𝑜𝑢𝑝3 + 𝛽7̂𝐿𝑒𝑎𝑑 × 𝐺𝑟𝑜𝑢𝑝4 + 𝛽̂𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠). 
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5. Discussion 

 In a 15 years’ longitudinal cohort of older men, we observed that those who had high 

adherence with prudent dietary pattern, which is plentiful of legumes, vegetables, seafood, 

onions, tomatoes, fruits and poultry, were less susceptible to the toxicity of patella lead on the 

risk of POAG. The HR of POAG was more than 2-fold higher per 2-fold increase in patella lead 

among participants with low adherence to prudent diet, whereas it dropped to almost null among 

participants with high adherence to prudent diet. The attenuation effect of prudent diet on the 

lead toxicity may be due to the abundance of vitamin A, especially the provitamin A carotenoid 

which is plant-sourced. Moreover, this protective effect of high adherence of prudent dietary 

pattern on lead-associated POAG was independent of the simultaneous adherence to Western 

diet.  

 As an irreversible neural degenerative disease, glaucoma currently has no widely-used 

effective cure, and treatments mainly focus on the cessation of deterioration (Cohen and 

Pasquale 2014; Prum et al. 2016). Hence, pre-symptomatic prevention and intervention are very 

important. Dietary modifications are commonly used by the general public as applicable 

interventions for chronic diseases. Multiple studies have investigated the associations between 

single nutrient intakes and the risk of glaucoma. However, single nutrient analysis may not have 

sufficient reference value for the establishment of an effective dietary intervention, due to its 

built-in limitations (as mentioned in introduction, (Hu 2002)). Furthermore, previous studies 

regarding the effects of dietary patterns on glaucoma were very limited. One study among type 2 

diabetic patients in Africa reported that, regular intake of Mediterranean diet, which includes 

high consumption of fruit and vegetable sourced foods, significantly reduced the risk of 

glaucoma (Moïse et al. 2012). Higher consumption of fruits and vegetables was also reported to 
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reduce the risk of glaucoma among African-American women (Giaconi et al. 2012). Among 

Caucasians, only one previous study using the Willet food frequency questionnaire has 

investigated the association between glaucoma and six food groups (including green leafy 

vegetables, all fruits, and all vegetables), and there were no observed associations (Kang et al. 

2003). However, unlike the previous two studies, that study used the self-reported glaucoma 

which may underestimate the risk. Even in high income countries, nearly 50% of glaucoma 

patients are unaware of their condition (Giaconi et al. 2012; Gupta et al. 2016). The effect of 

dietary patterns other than single nutrient intake on the development of glaucoma demands more 

attention. 

To the best of our knowledge, our study is the first to investigate the effect of dietary 

patterns, which were derived from a data-driven PCA approach, on the risk of POAG, and the 

first to reveal a protective effect of prudent dietary pattern on the lead-POAG association. We 

found that this association may be due to the abundance of provitamin A carotenoid intake 

caused by the high adherence to prudent diet. Our study further suggested that it is the plant-

sourced vitamin A which can attenuate the lead toxicity on the development of POAG, not the 

animal-sourced vitamin A. This is consistent with a previous study that showed diets including 

high abundance of plant-sourced foods can reduce the risk of glaucoma (Giaconi et al. 2012; 

Moïse et al. 2012).  

Lead induced oxidative stress may play an important role in the pathogenesis of glaucoma. 

As mentioned in Chapter II, lead can disrupt the antioxidant defense system, increase oxidative 

stress, accumulate reactive oxygen species (ROS), induce the dysfunction of the aqueous humor 

drainage system, block the outflow of aqueous humor from the eye, elevate the intraocular pressure, 

and cause the glaucomatous neuropathy (Babizhayev 2012b; Saccà et al. 2016; Zhao et al. 2016). 
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Previous studies and our results from Chapter II also suggest that oxidative stress may directly 

damage the optic nerve head other than through the dysfunction of aqueous humor drainage system 

(Tezel et al. 2010). In our study, dietary intake of provitamin A carotenoid had a protective effect 

against the lead toxicity. The plant-sourced vitamin A may be an effective antioxidant which 

protects the optic nerve from damage due to lead-induced oxidative stress. It may help to balance 

the antioxidant defense system from excessive oxidative stress and reduce the oxidative damage 

on trabecular meshwork, retinol ganglion cells, and vessels around the optic nerve head (Giaconi 

et al. 2012). The animal-sourced preformed vitamin A retinol also acts as an antioxidant, however 

its protective effect may be attenuated by the combined effect of a high intake of animal-sourced 

food. Previous studies have reported that high-cholesterol or high-fat diet, such as with a highly 

animal based diet, may increase the risk of glaucoma (Kang et al. 2004; Kashiwagi et al. 2012). 

 We did not observe interaction effects for vitamins C, D and E. These findings should be 

interpreted cautiously. A limitation of single nutrient analysis makes is that it can be difficult to 

separate and detect the effect of a single vitamin. In addition, analyse of vitamins D and E were 

restricted in a smaller study population with only 26 incident POAG patients. The small sample 

size reduced the power of statistical analysis.  

 We detect differences in HRs for the association of lead and POAG between the low and 

high adherence to prudent diet, as well as the low and high intake of provitamin A carotenoids. 

The interaction terms between bone lead and diet/vitamin were significant only when we used 

the continuous forms of diet/vitamin intake. No interactions were found when used dichotomized 

forms. This may be simply due to the loss of information after the transformation of a continuous 

variable into a dichotomized variable. Besides, in the interaction analysis which ignored the 

comprehensive effects between diet/vitamin and covariate, the difference of HRs between two 
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groups may be due to a combined effect of main diet/vitamin term plus the interaction term. In 

the stratified analysis which includes the interaction terms of lead with both diet/vitamin and 

covariates, the interaction between both lead and covariates contributed to the difference of HRs 

between two groups. 

Our study also has several limitations. Aside from the limitations discussed in Chapter II, 

this further exploration was based on the information provided in the self-reported FFQ, which 

lists foods and their serving size, as well as details of any supplement intake. Recall bias as well 

as measurement error are possible, since the questionnaire cannot cover all kinds of intake 

situations. Even the same food which underwent different cooking styles could result in different 

nutrient intake. In addition to this, we only incorporated baseline diet/vitamin into the analysis. 

Dietary habits may change over time and baseline may not reflect the intake levels during the long 

follow-up time. The data-driven PCA approach has been widely used in generating the dietary 

pattern scores, however, the definition or classification of food items/groups may be arbitrary since 

there is no gold standard.  

 Environmental low-dose exposure to lead has declined for a long time, yet the threat has 

not vanished. Recent reports of increasing proportions of high blood lead levels among children 

due to change in water source in Flint, Michigan, reflect lead contamination from corrosion of 

aging water pipes (Gómez et al. 2018; Hanna-Attisha et al. 2016). Peeling of wall paint in old 

houses built before 1978 is also a major source of environmental lead exposure (Leighton et al. 

2003). Due to the cumulative nature of lead metabolism, older people were exposed for a longer 

term and to a higher dose of lead (Vig and Hu 2000). Our study provides evidence that prudent 

dietary pattern, which is abundant of fruits and vegetables and provitamin A carotenoids, may 

attenuate lead toxicity on the development of age-related POAG. The results suggest that 
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modified diet may be a practical approach to effectively prevent and reduce the risk of POAG 

caused by lead toxicity. We hope our study can add reference on the effect of diet in the 

development of POAG, help to further understand the etiology of this irreversible ocular disease, 

and provide an applicable approach of intervention to reduce the global burden of blindness.  
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1. Abstract 

Background and Objective: The etiology of age-related cataract (ARC), which is a leading 

cause of vision loss and visual impairment, is not yet fully understood. A few individual 

environmental pollutants, such as lead, cadmium, and biomass fuel product, are associated with 

ARC, there has been no systematic evaluation of various pollutants as potential risk factors for 

ARC.  We conducted a two-stage environment-wide association study (EWAS) to identify 

potential environmental risk factors for ARC. 

Methods: We examined 104 biomarkers of environmental pollutants from the National Health 

and Nutrition Examination Survey (NHANES) between 1999 and 2008. The sample sizes ranged 

from 1161 to 21641 for different pollutants. Self-reported cataract surgery was a surrogate for 

the presence of clinically significant ARC. We performed survey weighted logistic regressions 

associating each pollutant with cataract surgery using a two-stage approach, discovery then 

validation. Because half-lives of pollutant biomarkers are related to the degrees of measurement 

error, which in turn affect the probability of being detected by EWAS, we further attempted a 

weighted approach by weighting the significance thresholds inversely proportional to maximum 

composite half-lives.  

Results: Five biomarkers were identified (false discovery rate<0.10) after adjusting for age, 

gender, education attainment, race/ethnicity, diabetes mellitus, smoking status, BMI and 

NHANES cycle number: serum polychlorinated biphenyls 44 (PCB 44) (Odds ratio (OR) per 2-

fold increase=1.67 (95% confidence interval, 1.06, 2.62)), PCB 49 (OR=1.74 (1.13, 1.67)), 

urinary cadmium (OR=1.30 (1.11, 1.52)), urinary cobalt (OR=1.15 (1.05, 1.25)), and urinary 

tungsten (OR=1.15 (1.04, 1.27)).  Additional pollutants with relatively short half-lives were 
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identified from the weighted approach: urinary N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-

cysteine (OR=0.92 (0.75, 1.13)), urinary N-acetyl-S- (3-hydroxypropyl)-L-cysteine (OR=0.93 

(0.73, 1.17)), and urinary mono-(3-carboxypropyl) phthalate (OR=1.06 (0.97, 1.16)). 

Conclusion: Our data-driven EWAS approach suggests unrecognized environmental pollutants, 

such as cobalt, tungsten, PCB 44 and 48, N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine, N-

acetyl-S- (3-hydroxypropyl)-L-cysteine, and mono-(3-carboxypropyl) phthalate, as potential risk 

factors for ARC. Causal links need to be validated using hypothesis-driven, targeted approaches.  

 

Key words: EWAS, cataract, heavy metal, PCB, half-life 

  



93 

 

2. Introduction 

 Cataract, defined as any opacification or clouding of lens tissue which affects vision 

(Bobrow et al. 2015; Cataracts | National Eye Institute), is the leading cause of vision loss and a 

major cause of visual impairment (Jick and American Academy of Ophthalmology. 2016). 

Previous meta-analysis reported that the proportion of blindness attributed to cataract among 

individuals aged 50 and older ranged from less than 22% in developed region to more than 44% 

in Southeast Asia and Oceania in year 2015 (Flaxman et al. 2017). It is estimated that 

approximately 13.4 million people will suffer from blindness attributed to cataract by the year 

2020 (Flaxman et al. 2017). In the United States, approximately 24 million individuals were 

affected by cataract in 2010, and it is estimated to rise to 30.1 million by 2020 (Jick and 

American Academy of Ophthalmology. 2016). The only effective treatment for visually 

significant cataract is surgery, which removes the patient’s cataract and replaces it with an 

artificial lens. A retrospective study using data from 2001 to 2011 reported that approximately 

23.1% of cataract patients in the U.S. underwent at least one surgery (Kauh et al. 2016).  

Despite the high prevalence and severe consequences, the etiology of age-related cataract 

(ARC) is not completely understood. Commonly known risk factors other than genetic factors for 

ARC include increasing age, smoking, obesity, hyperglycemia, UV light/radiation exposure, and 

intake of specific pharmaceuticals (such as corticosteroids) (Bobrow et al. 2015). 

Oxidative stress may play an important role in the development of cataract. UV filter 

compounds can protect the lens from damage of photo-oxidation (Jick and American Academy of 

Ophthalmology. 2016). Increased oxidative stress can generate excessive reactive oxygen species 

(ROS) which disrupt the synthesis of these compounds, disrupt the antioxidant defense system, 

cause oxidative damage to functional DNA, enhance apoptosis of epithelial cells of the lens, and 
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induce protein and lipid aggregation in the lens (Babizhayev 2012; Bobrow et al. 2015; Spector 

1995; Truscott 2005; Tweeddale et al. 2016).  

Environmental heavy metal exposures can lead to oxidative stress through the depletion of 

the glutathione and thiol pools, hence increase the risk of ARC. Lead and cadmium were positively 

associated with ARC risk (Schaumberg et al. 2004; Wang et al. 2016). In the cataractous lens 

among smokers, researchers also found elevated levels of lead and cadmium (Cekic 1998; Harding 

1995; Mosad et al. 2010; Rácz and Erdöhelyi 1988; Ramakrishnan et al. 1995). In addition to 

heavy metals, several studies have reported that indoor smoke generated from household use of 

biomass cooking fuels can increase the risk of cataract, especially among women (Mishra et al. 

1999; Mohan et al. 1989; Pokhrel et al. 2005; Ravilla et al. 2016; Smith et al. 2014). The risk may 

be attributed to increased PM2.5 levels and polycyclic aromatic hydrocarbon (PAH) levels 

generated by biomass fuels combustion (Ravilla et al. 2016). Animal studies and clinical 

observations have also suggested an association between cataract and exposure to naphthalene and 

formaldehyde, which can be released in large amounts during the burning of biofuels (Hayasaka 

et al. 2001; Pokhrel et al. 2005; Xu et al. 1992).  

Many other pollutants may also affect cataract risk given that oxidative stress is a common 

underlying biological mechanism of ARC. A comprehensive and systematic approach would be 

useful to identify those potential pollutants as modifiable risk factors for ARC. An environment-

wide association study (EWAS) which adopts the framework of genome-wide association study 

(GWAS) to search for health-related environmental factors in a much broader range than 

traditional targeted environmental epidemiological studies (Patel et al. 2010). Like GWAS, EWAS 

treats each individual pollutant as a single environmental “locus”, and tests the associations 

between each pollutant and the health outcome of interest. The pollutants that meet the criteria of 
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significance (i.e. false discovery rate) are subsequently validated either internally or in external 

independent populations. EWAS methodology is now widely used to discover environmental risk 

factors as well as nutrients related to multiple health outcomes (McGinnis et al. 2016; Patel et al. 

2010, 2013, 2014). 

Previous EWAS studies have shown that those pollutants with longer half-lives, such as 

persistent heavy metals and persistent organic pollutants, were more likely to be associated with 

chronic diseases (McGinnis et al. 2016; Park et al. 2014; Patel et al. 2010, 2014). The temporal 

variability of a biomarker depends on its half-life and temporal variation in exposure, which can 

introduce measurement error (García-Closas et al. 2006). Biomarkers with relatively short half-

lives have larger temporal variability, which may introduce more measurement error into the 

analysis compared to biomarkers with relatively long half-lives (García-Closas et al. 2006; White 

2011).  Biomarkers with relatively long half-lives are generally more recommended in 

epidemiological study design, especially in cross-sectional studies with measurement at a single 

but not optimal time point (García-Closas et al. 2006). In order to address this issue, we propose 

a weighted approach based on the half-lives of biomarkers and applied it into the typical EWAS 

framework.  

In short, few studies have evaluated environmental risk factors other than radiation, 

heavy metals and indoor smoke from biomass fuel as risk factors for ARC. Our study used 

EWAS to identify potential environmental pollutants for cataract surgery in U.S. adults, in 

NHANES 1999-2008. To address measurement error related to half-lives of pollutants, we 

adopted a two-stage EWAS into our study: in Stage One we conducted a conventional two-step 

EWAS, in Stage Two we further applied a new approach on EWAS with hypothesis testing 

weighted by half-lives.   
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3. Methods 

3.1. Study population 

This study used NHANES, a population-based cross-sectional study designed to analyze 

the physical status of the U.S. general population (NHANES - Questionnaires, Datasets, and 

Related Documentation). Each cycle of NHANES is an independent cross-sectional survey which 

includes different representative samples. Survey protocols were approved by the National Center 

for Health Statistics Research Ethics Review Board, and all participants have provided written 

informed consent. We limit our study to adult participants aged 20 and older over five cycles from 

year 1999-2000 to 2007-2008, to reduce the prevalence of congenital cataract (cataract presents at 

birth) in the sample.  

3.2. Identification of ARC surgery 

Eligible participants of NHANES were asked whether they have had eye surgery for 

cataracts, before undertaking detailed vision examination according to the NHANES’ Vision 

Procedures Manual (US Dept of Health and Human Services 2005). Due to the advanced cataract 

detection strategy and increasing rate of cataract surgery in the U.S. (Bobrow et al. 2015; 

Lundström et al. 2015), self-reported cataract surgery can be viewed as a robust indicator of the 

presence of clinically significant cataract. This method was also used in previous studies (Wang 

et al. 2016; Zhang et al. 2012). Participants who answered “yes” were considered as cataract cases. 

Those who were blind or had severe eye infections were excluded. 

3.3. Environmental Risk Factors 

We extracted as many biomarkers of environmental risk factors from the NHANES’ 



97 

 

laboratory data as feasible. We excluded those biomarkers for which the data are not completely 

available in those aged 20 and older, as well as all pooled and surplus datasets, datasets unrelated 

to biomarkers of external exposure, virus antibodies, all hormone levels, variables have total 

sample size fewer than 1000 individuals after excluding those who missing in covariates, and 

variables with more than 35% values below or above detection limits (Figure IV.1). Inorganic 

arsenic in the urine was manually calculated by subtracting urinary arsenobetaine and 

arsenocholine from total urinary arsenic.  

We identified 104 biomarkers for environmental pollutants in NHANES’s laboratory data. 

These included blood acrylamide and glycidamide (2), blood brominated flame retardants (BFRs) 

(4), blood cotinine (1), blood polychlorinated biphenyls (PCBs)/dioxins/furans (14), urinary N,N-

Diethyl-meta-toluamide (DEET) (1), blood and urinary heavy metals (17), urinary herbicides (2), 

urinary organophosphate insecticides (1), urinary polycyclic aromatic hydrocarbons (PAHs) (10), 

urinary perchlorate/nitrate/thiocyanate (3), environmental  pesticides (2), urinary  phenols and 

parabens (5), urinary phthalates (12), urinary phytoestrogens (6), perfluorinated compounds (PFCs) 

(4), blood and urinary biomarkers of volatile organic compounds (VOC) (20) (Table IV.1). Study 

sample sizes for the 104 biomarkers ranged from 1161 to 21641. We used lipid-adjusted 

biomarkers for PCBs and BFRs to control the measurement error caused by serum lipids’ variation 

(O’Brien et al. 2016, 2018). 
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Figure IV.1. Diagram illustrates the establishment of the study population and the 

procedure of two-step EWAS. 
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Table IV.1. Counts of eligible biomarkers for environmental pollutants, by NHANES cycle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Covariates 

We performed independent regression models for each pollutant. We included commonly 

known risk factors for ARC such as age (years), race/ethnicity (non-Hispanic white, non-Hispanic 

black, Mexican American, other), gender, body mass index (BMI) (kg/m2), smoking status 

(current/former/none), and diabetes mellitus status (yes/no) into the regressions as confounders. 

Education (elementary, middle, high, college and higher) collected from the NHANES 

demographic dataset was adjusted for as an indicator of socioeconomic status (SES). We also 

adjusted for cycle number (ranging from 1-5) to account for cycle-to-cycle variations.  

3.5. Statistical Analysis 

All biomarkers were log-transformed with base 2 to reduce the skewness of their respective 

Cycle # 1 2 3 4 5 sum 

Acrylamide and Glycidamide 0 0 2 2 0 2 

BFRs - Polybrominated diphenyl ethers (PBDEs) 0 0 4 0 0 4 

Cotinine 1 1 1 1 1 1 

Dioxins, Furans, PCBs 11 10 13 0 0 14 

DEET  0 0 0 0 1 1 

Heavy Metals 13 15 17 17 17 17 

Herbicides 2 2 0 0 2 2 

Organophosphate Insecticides 1 1 1 1 1 1 

PAHs 0 8 10 10 9 10 

Perchlorate/Nitrate/Thiocyanate  0 0 1 3 3 3 

Environmental Pesticides 0 0 2 2 2 2 

Phenols and Parabens 0 0 2 5 5 5 

Phthalates  5 8 9 11 11 12 

Phytoestrogens 6 6 6 6 6 6 

PFCs 0 0 4 4 4 4 

Volatile Organic Compounds  4 4 4 20 4 20 

sum 43 55 76 82 66 104 
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distributions. Base 2 was selected to easily standardize the beta coefficient as the change in the 

outcome per doubling increases in each pollutant. They will then be centered at 0 for easy 

interpretation. NHANES survey-specific weights will be created for each class of pollutants for 

each individual. 

3.5.1. Stage 1. Conventional EWAS 

We adopted a two-step EWAS framework using joint analysis to filter the potential 

environmental risk factors for ARC; the detail of procedure was described by previous literature 

(Park et al. 2014; Skol et al. 2006). We randomly split the total population into 2 groups, where 

70% was assigned as training data and 30% was assigned as testing data (Figure IV.1).  

In Step One, we fit a fully adjusted single-pollutant survey weighted logistic model for 

each pollutant i (log (p/(1-p))i = β0 + β1 Ei + β2
’ Zi, where p is the probabilty of having ARC surgery, 

Ei indicates an environmental pollutant, and Zi are co-variates. β1 is our coefficient of primary 

interest and it represents log(OR)). Based on the Wald test statistices from the training data (z1) 

for each polluant, those with p-values less than the false discovery rate (FDR=0.1) were selected. 

Thus, the threshold of z-score at Step One is 1.65 (C1). Setting the FDR at a threshold of 0.1 

enabled us to capture small effects of environmental pollutants under an acceptible expected rate 

of false positives for all significant risk factors.  

We then ran the same model using the testing data in Step Two. Wald test statistics from 

the training data (z1) and testing data (z2) for the selected pollutants were used to calculate a joint 

zjoint score evaluating the between-step heterogeneity (zjoint =√𝜋𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑧1 + √1 − 𝜋𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑧2 , 

where 𝜋𝑠𝑎𝑚𝑝𝑙𝑒𝑠 indicates the proportion of training samples (0.7)). If the | zjoint | value was larger 

than a pre-defined threshold (Cjoint, used for FDR control), then this pollutant was identified as a 
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risk factor for ARC surgery. The pre-defined threshold of Cjoint was calculated via CaTS-Power 

Calculator provided online by Center for Statistical Genetics of University of Michigan School of 

Public Health (http://csg.sph.umich.edu).  

In order to reduce the type I error, the probability of making false discoveries in the EWAS, 

we adopted two methods to calculate a corrected significance threshold Ti used for Cjoint calculation 

in Step Two. We rejected all hypothesis with Pi ≤ Ti, where Pi is corresponding to the zjoint:  

A) The false discovery rate (FDR) control using the Benjamini-Hochberg (BH) procedure, 

briefly ordered the zjoint of pollutant selected by Step I descendingly and consecutively calculated 

𝑇𝑖 = 𝐹𝐷𝑅 × 𝑖/𝑚. Here FDR=0.1, i refers to the order of zjoint, m refers to the total number of 

hypothesis tested in the EWAS (m=104). Hence different pollutants have different 𝑇𝑖  and Cjoint.  

B) The family-wise error rate (FWER) control using Bonferroni correction, which is more 

stringent. We calculated constant threshold T for all pollutants at T =𝛼/m=0.00096. Here 𝛼 refers 

to the significance level 0.05. In this circumstance Cjoint after Bonferroni correction was constant 

at 3.299 (calculated by CaTS-Power Calculator).  

For sensitivity analysis, we further adjusted for current job types for the pollutants 

selected by conventional EWAS, to test the robustness of associations. Job types were classified 

as “UV highly exposed group” and “UV low exposed group”. Outdoor jobs and jobs related with 

welding were classified as “UV highly exposed”, such as agriculture, forestry, fishing, mining, 

construction, utility, and armed forces. 

3.5.2. Stage 2. Application of weighted approach based on half-lives in EWAS 

 In order to adjusted for the variable measurement errors due to different half-lives of 

http://csg.sph.umich.edu/
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pollutants, we’ve adopted the biological half-lives in humans of all 104 biomarkers, either 

collected from previous literature, or calculated by a quantitative structure activity relationship 

(QSAR) approach (Arnot et al. 2014; Brown et al. 2012).  

Adding weights which can control for measurement error to the threshold of each 

hypothesis’ test has been increasingly utilized in GWAS (Li and Ghosh 2014; Roeder and 

Wasserman 2009; Zhao and Zhang 2014). Here we adopted a weighted approach described in 

detail elsewhere (Genovese et al. 2006). First, for each null hypothesis test where the pollutant is 

not associated with ARC surgery, we created a weight based on the half-life of the pollutant (𝑊𝑖 ) 

using the following equation:  

𝑊𝑖

𝑚
=

1 log10(half-life𝑖)⁄

∑ [1 log10(half-life𝑖)⁄ ]𝑚
𝑖=1

  

Briefly, we log-transformed the maximum composite half-life of each chemical at base 

10 (log10(half-life𝑖 )), then inversed the log-transformed half-life. We set the mean of all weights 

equals to 1 (
1

𝑚
∑ (𝑊𝑖 )𝑚

𝑖=1 = 1, m=104). Those chemicals with shorter half-lives tended to have 

larger weights.  

Similar to conventional EWAS, the weight 𝑊𝑖  can be used with two methods for the 

calculation of weighted thresholds for Step Two (Table IV.2): 

1) In the weighted FDR control using BH procedure, we defined 𝑄𝑖 = 𝑃𝑖/𝑊𝑖 . We rejected 

all hypothesis with 𝑄𝑖 < 𝑇𝑖 = 𝐹𝐷𝑅 × 𝑖/𝑚, which was equivalent to 𝑃𝑖 <

 𝑊𝑖 × 𝐹𝐷𝑅 × 𝑖/𝑚. The weighted thresholds were 𝑇𝑖 ×  𝑊𝑖 . 

2) In the weighted FWER control using Bonferroni correction, again we rejected all 
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hypothesis with 𝑄𝑖 < 𝑇 = 𝛼/𝑚, which was equivalent to 𝑃𝑖 <  𝑊𝑖 ×
𝛼

𝑚
. The weighted 

thresholds were 𝑇 ×  𝑊𝑖 . 

When all pollutants have the same 𝑊𝑖  (equal to one), the weighted thresholds are the 

same thresholds in the unweighted conventional EWAS (Table IV.2). 

This two-step cross-validation method is an approach to increase the validity of our study 

(Figure IV.1). Finally, odds ratios (ORs) per 2-fold increase in pollutant concentration and 95% 

confidence intervals (CIs) for selected pollutants were calculated using the total study population 

(no split) for easier interpretation.  

All analysis other than Cjoint calculation was performed via SAS system version 9.4 (SAS 

Institute, Inc., Cary, North Carolina) and R version 3.5.0. 

Table IV.2 Demonstration of the weighted controls in EWAS. 

 Weighted FWER Control 

Bonferroni Correction 

Weighted FDR Control 

BH Procedure 

𝑃𝑖
a for each null hypothesis 

test 
𝑃1<𝑃2<….<𝑃𝑚−1 < 𝑃𝑚  𝑃1<𝑃2<….<𝑃𝑚−1 < 𝑃𝑚  

Defination of 𝑄𝑖 𝑄𝑖 = 𝑃𝑖/𝑊𝑖 𝑄𝑖 = 𝑃𝑖/𝑊𝑖 

Condition to reject the null 
hypothesis 

𝑄𝑖 < 𝛼/𝑚 𝑄𝑖 < 𝛼 × 𝑖/𝑚 

𝛼 𝛼 = 0.05 𝛼 = 𝐹𝐷𝑅 = 0.10 
Weighted thresholds  𝑊𝑖 × 𝛼/𝑚 𝑊𝑖 × 𝛼 × 𝑖/𝑚 

Threshold of pollutants if the 

 𝑊𝑖  were all equal to one 
𝛼/𝑚 𝛼 × 𝑖/𝑚 

Abbreviations: FWER, family-wise error rate; FDR, false discovery rate; BH procedure, Banjamini-Hochberg procedure; 𝑊𝑖, 

weights for pollutants based on their maximum composite half-lives. 
a These p-values 𝑃𝑖 were corresponding to zjoint calculated in Step Two. 
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4. Results 

After excluding those missing covariates, 22602 individuals were included in our EWAS, 

among them 1938 (5.65%) reported a cataract surgery experience (Table IV.3). Specific sample 

size for each biomarker ranged from 1161 to 21641 (Table IV.4). The half-lives among our 104 

items ranged from 0.4 hours (urinary methyl paraben) to 70.0 years (blood 1,2,3,6,7,8-hxcdd, a 

dioxin-like chemical), which were quite diverse (Table IV.4). The survey weighted mean age of 

total population was 45.9 years (Std.E=0.12). Those who had cataract surgery were more likely to 

be older, non-hispanic white women, with lower education attainment (all p-values<0.001) (Table 

IV.3). They were also more likely to have had diabetes, with a bit lower BMI, and more likely to 

be former smokers (all p-values <0.001 due to large sample sizes) (Table IV.3). 

In the two-step conventional EWAS analysis, after the filter in Step One, 19 biomarkers 

had |z1|>1.65, which passed the threshold C1. They were six biomarkers for heavy metal (urinary 

cadmium, urinary cobalt, urinary mercury, urinary tungsten, urinary thallium, and blood total 

mercury), four PCBs or furans (lipid adjusted blood trans-nonachlor and 1,2,3,4,6,7,8- 

heptachlorodibenzofuran, PCB 49 and PCB 44), two phenols (urinay bisphenol A and urinary 

benzophenone-3), two VOCs (urinary N-Acetyl-S-(4-hydroxy-2-butenyl)-L-Cysteine, and urinary 

phenylglyoxylic acid), one PFC (blood perfluorohexane sulfonic acid), one PAH (urinary 1-

hydroxynaphthalene), one BFR (lipid adjusted blood 2,4,4'-tribromodiphenyl ether), urinary 

nitrate, and urinary DEET acid (z1 data not shown).  

In Step Two, via a BH procedure for FDR control, we identified five biomarkers which 

had |zjoint|>Cjoint: PCB 44 and PCB 49, urinary cadmium, urinary cobalt and urinary tungsten (Table 

IV.5). All five pollutants showed positive associations with cataract surgery. In a fully adjusted 
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survey weighted logistic regression using total study population (training+testing), the OR per 2-

fold increase in serum PCB 44 was 1.67 (95%CI: 1.06, 2.62; p=0.026), the OR per 2-fold increase 

in PCB 49 was 1.74 (95%CI: 1.13, 1.67; p=0.012), the OR per 2-fold increase in urinary cadmium 

was 1.30 (95%CI: 1.11, 1.52; p=0.0009), the OR per 2-fold increase in urinary cobalt was 1.15 

(95%CI: 1.05, 1.25; p=0.0019), and the OR per 2-fold increase in urinary tungsten was 1.15 

(95%CI: 1.04, 1.27; p=0.0060) (Table IV.5). The mean half-lives of those five pollutants were 5.1 

years. Only urinary cadmium remained selected when we changed into FWER control using 

Bonferroni correction in Step Two. Further adjustment for job types did not change the 

significance of these associations (data not shown). 

The tendency that those chemicals with longer half-lives have higher significance were 

confirmed by our results in the Stage 1 conventional EWAS. The linear association between half-

lives and p-values of the pollutant-cataract surgery association was significant, for every 1 unit 

increase in log-transformed half-life (base 10), the p-value dropped for 0.035 (95%CI: -0.069, 

0.001; p=0.048).  

In Stage 2, we then created weights based on half-lives by Genovese’s method. The weights 

𝑊𝑖  ranged from 0.24 to 4.70 (median=0.96). Under the weighted FDR control, we identified six 

biomarkers associated with cataract surgery, via BH method: serum PCB 49, serum PCB 44, 

urinary cobalt, urinary N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine, urinary N-acetyl-S- 

(3-hydroxypropyl)-L-cysteine, and urinary mono-(3-carboxypropyl) phthalate (Table IV.6). The 

latter three with relatively short half-lives were newly identified via more liberal weighted 

thresholds for p-values. In a fully adjusted model, the OR per 2-fold increase in urinary N-acetyl-

S-(3-hydroxypropyl-1-methyl)-L-cysteine was 0.92 (95%CI: 0.75, 1.13; p=0.44), the OR per 2-

fold increase in urinary N-acetyl-S- (3-hydroxypropyl)-L-cysteine was 0.93 (95%CI: 0.74, 1.17; 
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p=0.52), the OR per 2-fold increase in urinary mono-(3-carboxypropyl) phthalate is 1.06 (95%CI: 

0.97, 1.16; p=0.20) (Table IV.6). Mean of half-lives dropped to only 14.9 weeks. Figure IV.2 

illustrates the change of half-lives of selected pollutants from the Stage 1 conventional EWAS to 

the Stage 2 weighted version. Those pollutants with much shorter half-lives, such as VOCs and 

PAHs, were successfully identified after accounting for weights (Figure IV.2). However, no 

pollutant was identified with the weighted FWER control in EWAS.  
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Table IV.3. Survey-Weighted Characteristics of Study Participants by Cataract Surgery 

Status, NHANES, 1999-2008. 

Characteristics total samples 

Ever had cataract operation P-

value
b
 Yes No 

Total sample, N (%) 22602 (100) 1938 (5.65) 20664 (94.4)  

Age, years  45.9 ± 0.12 73.4 ± 0.3 44.1 ± 0.1 <.001 

Female, n (%) 11689 (51.6) 1063 (61.7) 10626 (51.0) <.001 

Race/ethnicity, n (%)        

     Non-Hispanic White 11301 (71.8) 1327 (84.3) 9974 (71.0) <.001 

     Mexican American 4491 (10.8) 244 (6.7) 4247 (11.0)  

     Non-Hispanic Black 4675 (7.4) 227 (2.6) 4448 (7.7)  

     Other 2135 (10.1)  140 (6.4) 1995 (10.3)  

Education, n (%)        

     <high school 6858 (19.3) 790 (31.9) 6068 (18.5) <.001 

     High school 5465 (25.8) 466 (27.7) 4999 (25.7)  

     Some college+ 10279 (54.9) 682 (40.3) 9597 (55.8)  

Diabetes, n (%) 2803 (8.8) 532 (25.4) 2271 (7.9) <.001 

Body mass index, kg/m2  28.3 ± 0.1 28.2 ± 0.2 28.3 ± 0.1 <.001 

Smoking status, n (%) 
 

   

     None smoker 11662 (50.7) 893 (45.5) 10769 (51.0) <.001 

     Former smoker 5946 (25.0) 848 (43.8) 5098 (23.9)  

     Current smoker 4994 (24.3) 197 (10.7) 4797 (25.1)  

Urinary creatinine, mg/dL 100.5 (99.6, 101.5) 79.0 (77.5, 80.6) 102.0 (101.3, 102.6) <.001 

aGeometric mean (95% confidence interval) is presented because of skewness. 
bP-value based on t-tests for continuous variables and Rao-Scott Chi-squared tests for categorical variables. 

 

 



108 

 

Table IV.4. Half-Lives of Biomarkers Included in EWAS Analysis (m=104). 

Variable Name in 

NHANES 
Label 

Half-Life 

(hours) 

Sample 

Size (n) 

# ARC 

Surgery (n) 
Source of Half-Live 

LBXD03LA 1,2,3,6,7,8-hxcdd (fg/g) 613620 3464 290 Knudsen and Merlo 2011 

LBX209LA PCB209 (ng/g) 303598.5 1161 106 
Nguyen et al., unpublished 

data 

URXUCD Cadmium, urine (ng/mL) 205124 7213 636 Ishizaki et al. 2015 

LBXPFNA Perfluorononanoic acid 175320 4358 419 Gleason et al. 2015 

LBX153LA PCB153 (ng/g) 143467 3782 303 Ritter et al. 2011 

LBXBCD Cadmium (ug/L) 140256 21641 1860 Järup et al. 1983 

LBX138LA PCB138 (ng/g) 110627 3779 302 Ritter et al. 2011 

LBX180LA4 PCB180 (ng/g) 100809 3778 302 Viluksela et al. 2014 

LBXBHCLA Beta-hexachlorocyclohexane (ng/g) 63115 3825 315 ATSDR 2005 

LBXD05LA 1,2,3,4,6,7,8-hpcdd (fg/g) 57856 3453 290 Knudsen and Merlo 2011 

LBXBR7LA 2,2',4,4',5,5'-hexabromodiphenyl ether 57120 1301 127 Geyer et al. 2004 

LBXD07LA 1,2,3,4,6,7,8,9-ocdd (fg/g) 49090 3406 285 Knudsen and Merlo 2011 

LBXPFHS Perfluorohexane sulfonic acid 46460 4358 419 Li et al. 2017 

LBXPFOS Perfluorooctane sulfonic acid 29804 4358 419 Li et al. 2017 

LBXBR2LA 2,4,4'-tribromodiphenyl ether 26297 1277 126 Makey et al. 2014 

LBXBR5LA 2,2',4,4',5-pentabromodiphenyl ether 24960 1272 126 Geyer et al. 2004 

LBXPFOA Perfluorooctanoic acid 23668 4358 419 Li et al. 2017 

LBXPCBLA 3,3',4,4',5-pncb (fg/g) 23668 3454 289 Ogura 2004 

LBXF08LA 1,2,3,4,6,7,8-hpcdf (fg/g) 22792 3321 279 Knudsen and Merlo 2011 

LBXPDELA p,p'-DDE (ng/g) 21240 3871 320 Ferreira et al. 2011 

URXUCO Cobalt, urine (ng/mL) 17520 7322 644 
Nguyen et al., unpublished 

data 

LBX044LA PCB44 (ng/g) 14025 1177 108 Shirai and Kissel 1996 

LBXBR6LA 2,2',4,4',6-pentabromodiphenyl ether 13752 1301 127 Geyer et al. 2004 
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URXUCS Cesium, urine (ng/mL) 2616 7322 644 ATSDR 2004 

URXUHG Mercury, urine (ng/mL) 2160 15796 1238 Nuttall 2004 

LBXTNALA Trans-nonachlor (ng/g) 2112 3849 317 Toxicology 1982 

URXUTU Tungsten, urine (ng/mL) 1608 7243 642 Radcliffe et al. 2010 

LBXTHG Mercury, total (ug/L) 1368 7043 434 
Yaginuma-Sakurai et al. 

2012 

URXUPB Lead, urine (ng/mL) 1080 21641 1860 ATSDR 2007 

LBX049LA PCB49 (ng/g) 1046.9 1171 108 
Nguyen et al., unpublished 

data 

URXUBA Barium, urine (ng/mL) 820.8 7188 635 Rundo 1968 

LBXBPB Lead (ug/dL) 672 7322 644 ATSDR 2007 

URXUTL Thallium, urine (ng/mL) 520.8 7286 641 
U.S. Environmental 

Protection Agency 1980 

URXUUR Uranium, urine (ng/mL) 360 5999 539 Bhattacharyya et al. 1992 

URXUIO Iodine, urine (ng/mL) 192 9340 814 
Marwaha and 

Gopalakrishnan 2011 

URXUAS Urinary total Arsenic (µg/L) 96 4570 424 Hughes 2006 

URXUSB Antimony, urine (ng/mL) 95 7217 638 Kentner et al. 1995 

URXSCN Urinary thiocyanate (ng/mL) 72 2174 150 Schulz et al. 1979 

URXUDMA Urinary Dimethylarsonic acid (µg/L) 60 4562 424 Crecelius 1977 

URX14D 2,5-dichlorophenol (ug/L) result 39.9 4491 394 
Somani and Khalique 

1982 

URXDCB 2,4-dichlorophenol (ug/L) result 35.8 4491 394 
Nguyen et al., unpublished 

data 

LBXVXY blood m-/p-xylene (ng/ml) 32.8 6717 370 Matsumoto et al. 1992 

URX2MH 2-Methylhippuric acid (ng/mL) 30.1 2174 150 Engström et al. 1978 

URXUMO Molybdenum, urine (ng/mL) 30 7221 636 Werner et al. 2000 

urxtrs Urinary Triclosan (ng/mL) 29 3119 272 Olaniyan et al. 2016 

URXCPM 3,5,6-trichloropyridinol (ug/L) result 26.9 3969 283 Satoh and Gupta 2011 

URX34M 3-methipurc acd & 4-methipurc acd(ng/mL) 20.1 2174 150 Engström et al. 1978 

URXCNP Mono(carboxynonyl) phthalate (ng/mL) 18 3119 272 Wittassek and Angerer 
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2008 

URXCOP Mono(carboxyoctyl) phthalate(ng/mL) 18 3119 272 Hines et al. 2012 

LBXCOT Cotinine (ng/mL) 16 21329 1826 Benowitz and Jacob 1994 

URXECP Mono-2-ethyl-5-carboxypentyl phthalate 15 4528 407 
Wittassek and Angerer 

2008 

URXETL Enterolactone (ng/mL) 12.6 7265 598 Kuijsten et al. 2005 

URXOP3 Dimethylthiophosphate(µg/L) 12 6788 504 Barr and Angerer 2006 

URXUP8 Perchlorate, urine (ng/mL) 12 10697 928 ATSDR 2008 

URXDEA DEET acid (ug/L) 11.1 1689 172 ATSDR 2017 

URXPHG Phenylglyoxylic acid(ng/mL) 10.5 2174 150 Guillemin and Bauer 1979 

URXMOH Mono-(2-ethyl-5-oxohexyl) phthalate 10 7266 598 
Wittassek and Angerer 

2008 

URXMHH Mono-(2-ethyl-5-hydroxyhexyl) phthalate 10 6025 504 
Wittassek and Angerer 

2008 

URXEQU Equol (ng/mL) 9.7 7392 608 Lu et al. 1995 

URXOPM 3-phenoxybenzoic (ug/L) acid result 8.7 3900 278 Ferland et al. 2015 

URXBP3 Urinary Benzophenone-3 (ng/mL) 8.04 4490 394 Kasichayanula et al. 2007 

URXNO3 Urinary nitrate (ng/mL) 8 9327 806 Bondonno et al. 2015 

URXP03 3-hydroxyfluorene (ng/L) 6.1 5877 493 Li et al. 2012 

URXHP2 N-Ace-S-(2-hydroxypropyl)-L-cys(ng/mL) 6 2174 150 de Rooij et al. 1996 

URXBMA N-Acetyl-S-(benzyl)-L-cysteine(ng/mL) 6 2174 150 de Rooij et al. 1996 

URXBPM N-Acetyl-S-(n-propyl)-L-cysteine(ng/mL) 6 2174 150 de Rooij et al. 1996 

URXMB3 N-A-S-(4-hydrxy-2butn-l-yl)-L-cys(ng/mL) 6 9327 806 de Rooij et al. 1996 

URXAAM N-Ace-S-(2-carbamoylethyl)-L-cys(ng/mL) 6 2174 150 de Rooij et al. 1996 

URXAMC N-Ace-S-(N-methlcarbamoyl)-L-cys(ng/mL) 6 2174 150 de Rooij et al. 1996 

URXCYM N-acetyl-S-(2-cyanoethyl)-L-cyst(ng/mL) 6 2174 150 de Rooij et al. 1996 

URXPMM N-A-S-(3-hydrxprpl-1-metl)-L-cys(ng/mL) 6 2174 150 de Rooij et al. 1996 

URXCEM N-Acetyl-S-(2-Carbxyethyl)-L-Cys(ng/mL) 6 2174 150 de Rooij et al. 1996 

URXHPM N-Ace-S-(3-Hydroxypropyl)-L-Cys(ng/mL) 6 2174 150 de Rooij et al. 1996 

URXDHB N-Ace-S- (3,4-Dihidxybutl)-L-Cys(ng/mL) 6 2174 150 de Rooij et al. 1996 
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URXMIB Mono-isobutyl pthalate 6 6025 504 Seckin et al. 2009 

URXGNS Genistein (ng/mL) 5.5 7112 591 Lu et al. 1995 

URXBPH Urinary Bisphenol A (ng/mL) 5.4 4490 394 Völkel et al. 2002 

URXP06 1-hydroxyphenanthrene (ng/L) 5.1 5836 488 Li et al. 2012 

URXMHP Mono-(2-ethyl)-hexyl phthalate (ng/mL) 5 6025 504 
Wittassek and Angerer 

2008 

LBXGLY Glycideamide (pmoL/G Hb) 4.6 7927 694 Calleman 1996 

LBXACR Acrylamide (pmoL/G Hb) 4.6 7931 686 Calleman 1996 

URXETD Enterodiol (ng/mL) 4.4 7392 608 Kuijsten et al. 2005 

URXP01 1-hydroxynaphthalene (ng/L) 4.3 5843 487 Li et al. 2012 

URXP05 3-hydroxyphenanthrene (ng/L) 4.1 5897 496 Li et al. 2012 

URXATC 2-amnothiazolne-4-carbxylic acid(ng/mL) 4.00 2174 150 Bhandari et al. 2014 

URXP07 2-hydroxyphenanthrene (ng/L) 3.9 5842 487 Li et al. 2012 

URXP10 1-hydroxypyrene (ng/L) 3.9 5855 488 Li et al. 2012 

URXMAD Mandelic acid(ng/mL) 3.9 2174 150 Guillemin and Bauer 1979 

URXDAZ Daidzein (ng/mL) 3.9 7392 608 Lu et al. 1995 

URXDMA o-Desmethylangolensin (O-DMA) (ng/mL) 3.9 7387 608 Lu et al. 1995 

URXP19 4-hydroxyphenanthrene (ng/L) 3.5 2508 213 Li et al. 2012 

URXP17 9-hydroxyfluorene (ng/L) 3.1 4403 396 Li et al. 2012 

URXMEP Mono-ethyl phthalate (ng/mL) 3 7056 576 Calafat and McKee 2006 

URXP04 2-hydroxyfluorene (ng/L) 2.9 5847 490 Li et al. 2012 

URXP09 3-fluoranthene (ng/L) 2.8 1175 84 Motorykin et al. 2015 

URXP02 2-hydroxynaphthalene (ng/L) 2.5 5880 490 Li et al. 2012 

LBXVTO blood toluene (ng/ml) 2 6564 352 Nise et al. 1989 

URXMBP Mono-n-butyl phthalate (ng/mL) 1.9 7254 597 Mittermeier et al. 2016 

LBXVCF blood chloroform (pg/ml) 1.5 6288 356 Ekwall et al. 1998 

URXPPB Propyl paraben (ng/ml) 1.155 3119 272 Abbas et al. 2010 

URXMZP Mono-benzyl phthalate (ng/mL) 1.1 7267 598 
Nguyen et al., unpublished 

data 
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URXMC1 Mono-(3-carboxypropyl) phthalate 0.84 6025 504 
Nguyen et al., unpublished 

data 

LBXVBM blood bromodichloromethane (pb/ml) 0.78 6694 384 Leavens et al. 2007 

URXMPB Methyl paraben (ng/ml) 0.36 3119 272 Abbas et al. 2010 
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Table IV.5. Odds Ratios (95% Confidence Intervals) of Cataract Operation History by Five 

Biomarkers Selected via Conventional EWAS under FDR Control 

 Median (IQR) 

# 

cases/all 

Half-life
a
 

(years) 

2-fold OR 

(95%CI)
b
 p-values

c
 

Urinary cadmium, ng/mL 0.30 (0.41)  633/7213 23.4 1.30 (1.11, 1.52) 0.0009 

Serum PCB 49d, ng/g 1.32 (1.10) 108/1171 0.12 1.74 (1.13, 1.67) 0.0115 

Urinary cobalt, ng/mL 0.35 (0.33)  644/7322  2.00 1.15 (1.05, 1.25)  0.0019 

Serum PCB 44d, ng/g 2.00 (1.70) 108/1171 1.60 1.67 (1.06, 2.62) 0.0259 

Urinary Tungsten, ng/mL 0.073 (0.11) 642/7243 0.18 1.15 (1.04, 1.27) 0.0060 

a Using maximum composite half-lives. 
b Survey weighted model adjusted for age, race/ethnicity, gender, BMI, smoking status, education attainment, diabetes mellitus 

status, and NHANES cycle number. 
c P-values and ORs were calculated via survey weighted logistic model running in total population, not split ones. 
d Serum PCB 44 and 49 were lipid adjusted. 

 

 

 

 

 

 

 

Table IV.6. Odds Ratios (95% Confidence Intervals) of Cataract Operation History by Six 

Biomarkers Selected via EWAS under Weighted FDR Control 

 Median (IQR) 

# 

cases/all 

Half-life
a
 

(years) 

2-fold OR 

(95%CI)
 

p-

values
c
 

Serum PCB 49d, ng/g 1.32 (1.10) 108/1171 0.12 1.74 (1.13, 1.67) 0.0115 

Urinary cobalt, ng/mL 0.35 (0.33) 644/7322  2.00 1.15 (1.05, 1.25) 0.0019 

Serum PCB 44d, ng/g 2.00 (1.70) 108/1171 1.60 1.67 (1.06, 2.62) 0.0259 

Urinary N-acetyl-S-(3-hydroxypropyl-

1-methyl)-L-cysteine, ng/mL 
418 (626) 150/2174 0.0007 0.92 (0.75, 1.13) 0.4371 

Urinary N-acetyl-S- (3-

hydroxypropyl)-L-cysteine, ng/mL 
215 (399) 150/2174 0.0007 0.93 (0.74, 1.17) 0.5200 

Urinary mono-(3-carboxypropyl) 

phthalate, ng/mL 
2.35 (3.40) 504/6025 0.0001 1.06 (0.97, 1.16) 0.1966 

a Using maximum composite half-lives. 
b Survey weighted model adjusted for age, race/ethnicity, gender, BMI, smoking status, education attainment, diabetes mellitus 

status, and NHANES cycle number. 
c P-values and ORs were calculated via survey weighted logistic model running in total population, not split ones. 
d Serum PCB 44 and 49 were lipid adjusted. 
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Figure IV.2. Plots illustrating change of selected pollutants by conventional EWAS and 

weighted EWAS using FDR control. The y-axis showed zjoint. The x-axis illustrates half-

lives. Plots in orange indicate selected pollutants, while plots in blue refer to unselected 

pollutants.  A. Conventional EWAS. B. Weighted EWAS.
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5. Discussion 

Using the conventional EWAS approach, we found that elevated levels of urinary heavy 

metals (cadmium, cobalt and tungsten), and serum PCBs 44 and 49, were positively associated 

with the risk of cataract surgery. Using our new approach accounting for the biological half-lives 

of pollutants, we further identified urinary mono-(3-carboxypropyl) phthalate and two VOCs: 

urinary N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine and urinary N-acetyl-S- (3-

hydroxypropyl)-L-cysteine. The present study suggests that the weighted approach could be a 

useful tool for discovering potential false negative associations that may have not been captured 

in conventional approaches due to the relatively short half-lives and hence high measurement 

errors. 

The development of cataract is affected by both genetic and environmental factors. 

Previous epidemiological studies concerning the association between environmental risk factors 

and cataract were very limited. Researchers have reported that heavy metals, such as lead and 

cadmium can be risk factors for cataract (Schaumberg et al. 2004; Wang et al. 2016). Cumulative 

evidence also suggested that elevated PM2.5 and PAH generated by indoor biomass cooking fuel 

may also increase the risk of cataract (Mishra et al. 1999; Mohan et al. 1989; Pokhrel et al. 2005; 

Ravilla et al. 2016). To the best of our knowledge, our study is the first to utilize a non-targeted 

EWAS strategy to systematically and efficiently identify potential environmental risk factors for 

ARC. 

Heavy metals, as an important environmental source of oxidative stress, may promote the 

formation of cataract in lens. Heavy metal exposure can disrupt the antioxidant defense system 

by depleting the glutathione and thiol pools, causing oxidative DNA damage in lens cells and 
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enhancing apoptosis of lens epithelial cells, thus inducing protein and lipid aggregation in the 

lens (Babizhayev 2012; Bobrow et al. 2015; Ercal et al. 2001; Jomova and Valko 2011; Spector 

1995; Truscott 2005; Tweeddale et al. 2016; Valko et al. 2016). In our previous research, a 

hypothesis-driven targeted study of cadmium and lead in relation to cataract surgery using data 

from NHANES, we found significant association between urinary cadmium and the risk of 

cataract surgery (Wang et al. 2016). In the current nontargeted EWAS, we additionally identified 

cobalt and tungsten as potential risk factors for cataract surgery. Our study provides evidence 

that cadmium, tungsten and cobalt may also play a role in the pathogenesis of ARC.  

The overall exposure of cadmium in the U.S. population has decreased significantly 

during 1988 and 2008 (Tellez-Plaza et al. 2012). Cigarette smoking is a major source of 

environmental exposure of cadmium for smokers: each cigarette contains about 2.0 µg of 

cadmium, of which about 2-10% emits into air in the form of smoke (Mannino et al. 2004). In 

addition to inhalation, oral ingestion is also a main source of environmental cadmium exposure, 

especially in areas where food is produced in severely contaminated soil (Sulfide 1997). There is 

no known biological function of cadmium in higher organisms.  

Tungsten is the heaviest element having bioactivity in some bacteria and archaea 

(Koribanics et al. 2015). As a material with one of the highest melting points of all known 

elements (>3400°C, second to carbon) (Langmuir 1915), tungsten has been widely used in 

industrial and military production, such as producing hard materials, bulb filaments, heavy metal 

alloys, radiation shielding, etc. Although tungsten has been extensively used in various areas, 

toxicological studies of tungsten were relatively limited. Some studies have shown that chronic 

health problems such as chronic inflammation, histological lesion and leukemia may be related 

with low-dose tungsten exposure (Witten et al. 2012). Nevertheless, there is no conclusive 
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evidence.  

As an important component of vitamin B12, cobalt is a well-known essential trace mineral 

for all animals. It has been used in the production of alloys, batteries, painting pigment, and so 

on.  Tungsten carbide-cobalt alloy is a widely used hard material (Tien et al. 1980), while nickel-

cadmium batteries often included cobalt to improve the oxidation reaction (Armstrong et al. 

1988), implying the possibility of cobalt-tungsten and cobalt-cadmium co-exposure. The toxicity 

of cobalt has been noticed within patients who have undergone hip arthroplasties/implants, and is 

associated with the risk of several chronic health effects such as cognitive function decline, 

hearing loss, visual impairment, cardiomyopathy, etc. (Pizon et al. 2013)  

Our study suggests that noncoplanar PCBs 44 and 49 may be potential risk factors for 

ARC. PCBs 44 and 49 are degradation byproducts of larger PCBs (Grimm et al. 2015), which 

implies that they may not be the causal PCB species. PCBs, a group of 209 organic chlorine 

compounds, can act as another environmental source of oxidative stress in the formation of 

cataract. Studies have suggested that PCBs can increase the intracellular superoxide dismutase 

(SOD) activity and disrupt the thiol antioxidant system (Zhu et al. 2009). The toxicity of PCBs 

has long been noticed by the U.S. government and the use of PCBs has been banned since 1978. 

However, as a long-lasting chemical that is resistant to biodegradation, PCBs still exist in the 

environment. It can be absorbed by the human body of the general public through ingestion, 

inhalation and dermal exposure (ATSDR 2000; Beyer and Biziuk 2009).  There are two 

categories of PCBs with distinct toxicological characteristics, coplanar (non-ortho) PCBs and 

noncoplanar PCBs, differentiated by their molecular chlorine substitution position (Fischer et al. 

1998). Coplanar PCBs have no more than one chlorine atom at the ortho-position of the biphenyl 

rings, while noncoplanar PCBs have more chlorine atoms (Fischer et al. 1998). Coplanar PCBs 
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show dioxin-like toxicity which may cause various severe chronic health effects (ATSDR 2000). 

By contrast, noncoplanar PCBs, such as PCBs 44 and 49 identified in our EWAS, have relatively 

lower toxicity than coplanar PCBs (Fischer et al. 1998). However, the toxicity of noncoplanar 

PCBs should not be underestimated since they comprise the major fraction of the PCB body 

burden in humans (Fischer et al. 1998).  

Using our new weighted approach, we further identified two VOCs and one phthalate as 

risk factors for ARC. Our weighted approach successfully identified pollutants with relatively 

short half-lives. On the other hand, cadmium and tungsten, which have relatively long half-lives, 

were excluded by a more stringent threshold. This result should be interpreted cautiously that it 

does not overturn the previous literature that cadmium may be a risk factor for ARC. The 

exclusion of pollutants with relatively long half-lives was a trade-off with the inclusion of 

pollutants with relatively short half-lives under the weighted approach. Generally, those 

pollutants with relatively long half-lives have smaller measurement error, which is genuinely 

preferred in association studies and should not be abruptly excluded (White 2011). Therefore, 

this new approach can be a complementary to the conventional approach.  

The weighted approach added mono-(3-carboxypropyl) phthalate as a potential risk factor 

for ARC. Mono-(3-carboxypropyl) phthalate, which is a metabolite of di-n-octyl phthalate 

(DnOP), is a kind of plasticizer composites in flooring, carpet products and toys (Calafat et al. 

2006). Previous studies have suggested that phthalates have endocrine disrupting effects 

(Frederiksen et al. 2007) as well as the ability to induce oxidative stress, resulting in DNA 

damage (Franken et al. 2017). A study using NHANES 2001-2010 found that urinary phthalates, 

especially mono-n-octyl phthalate (MOP), may be associated with self-reported eye affliction or 

retinopathy (Mamtani et al. 2016). Our results may add reference on a possible link between 
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phthalate and ocular diseases. 

We also found associations between two VOCs (N-acetyl-S-(3-hydroxypropyl-1-methyl)-

L-cysteine (C9H17NO4S, commonly called HPMMA) and N-acetyl-S- (3-hydroxypropyl)-L-

cysteine (C8H15NO4S, commonly called 3HPMA)) and cataract surgery through the survey 

logistic regression (Table IV.5). VOCs emit from all homes and workplaces, and can be 

absorbed by the human body through ingestion, inhalation and dermal contact (Wallace et al. 

1989). HPMMA is a metabolite of crotonaldehyde, which is mainly found in tobacco smoke 

(Urban et al. 2003; NHANES laboratory procedure manual 2011-2012).  3HPMA is a metabolite 

of acrolein, which is generated during heating foods, burning fuels and biomass, and tobacco 

smoking (Stevens et al. 2008, NHANES laboratory procedure manual 2011-2012). Several 

studies have indicated the genotoxicity and neurotoxicity of crotonaldehyde and acrolein (UI 

Islam et al. 2014; Moghe et al. 2015).  

Further investigation is required for our weighted approach. In order to get a rational 

estimation of the beta coefficients, we need to implant the half-life-based weight into the 

regression. Our weighted approach also has other limitations. We only controlled the 

measurement error caused by half-lives of pollutants. Measurement error caused by power 

(related with the estimated beta, sample size, and variability of pollutants’ values) of each 

hypothesis test is not controlled in our EWAS. Besides, in future study, we need to test our 

weighted approach in simulated data to validate our results and horizontally compare it with 

other weighted methods.  

Although our study benefits from a large total sample size and a nationally representative 

study population, a number of limitations deserve consideration. The cross-sectional nature of the 

NHANES study design raises concerns about the temporality of exposure and cataract 
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development. Since the exposure levels were measured after the occurrence of cataract surgery, 

high levels of chemicals with relatively short half-lives may not be necessarily relevant to cataract 

surgery happened long ago. One potential solution is to exclude pollutants with short half-lives 

from the EWAS. We identified 23 biomarkers with biological half-lives ≥ 1 year. They may be 

more likely to have effect on the development of chronic diseases, such as age-related cataract. 

Conducting the conventional EWAS among these 23 biomarkers, we identified four pollutants 

associated with cataract surgery via FDR control: urinary cadmium and cobalt, serum PCB 44, and 

1,2,3,4,6,7,8-Heptachloro dibenzofuran (Table IV.7). 1,2,3,4,6,7,8-Heptachloro dibenzofuran is a 

furan congener (chlorinated dibenzofuran, PCDF), usually generated as a byproduct during the 

manufacturing of iron/steel and other chlorinated chemicals (phenols, diphenyl ethers and PCBs) 

(World Health Organization 2000). PCDF can be absorbed by the human body through inhalation, 

ingestion, and contact (World Health Organization 2000). Once being absorbed, PCDF can be 

excreted into human milk (World Health Organization 2000). 

Additionally, self-report bias and recall-bias may have been introduced into the study. The 

etiology and risk factors for different subtypes of ARC may differ, but the NHANES vision 

examination provides neither the age at onset nor the subtype of ARC. We included current job 

types as a surrogate of UV radiation exposure in the sensitivity analysis. Due to a large amount of 

missingness, we did not adjust for current job types in the logistic regressions used within EWAS. 

Family history of ARC was not considered in our analysis since it was not available in NHANES. 

There is no concrete evidence supporting the association between family history and the exposure 

to environmental chemicals, thus they can reasonably be considered as non-confounders on the 

association between chemical exposure and ARC surgery. Finally, the sample sizes for some 

pollutants were relatively small since they were only measured in one cycle of NHANES (e.g. 
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brominated flame retardants (BFRs), with the corresponding sample size of only about 1500). Such 

small sample size may not provide enough power for a valid conclusion. Since no previous study 

has investigated the association of these newly-recognized pollutants with ARC development, the 

results can still be valuable as pilot implications for further analysis.  

In conclusion, our data-driven EWAS suggests unrecognized environmental pollutants, 

such as cobalt, tungsten, PCB 44 and 48, as potential risk factors for ARC. By adopting a 

weighted approach based on the half-lives of pollutants on the conventional EWAS, we further 

identified two VOCs (N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine and N-acetyl-S- (3-

hydroxypropyl)-L-cysteine) and one phthalate (mono-(3-carboxypropyl) phthalate) associated 

with cataract surgery. Our weighted approach is a pilot attempt, which requires further 

modification and validation. Causal links of these unrecognized risk factors with ARC need to be 

validated using hypothesis-driven, targeted approaches. 

Table IV.7. Odds Ratios (95% Confidence Intervals) of Cataract Operation History by 

Four Biomarkers Selected via Conventional EWAS under FDR Control, among 23 

Pollutants with Half-Lives ≥ 1 year. 

 Median (IQR) 

# 

cases/all 

Half-life
a
 

(years) 

2-fold OR 

(95%CI)
 

p-

values
c
 

Urinary cadmium, ng/mL 0.30 (0.41)  633/7213 23.4 1.30 (1.11, 1.52) 0.0009 

Urinary cobalt, ng/mL 0.35 (0.33) 644/7322  2.00 1.15 (1.05, 1.25) 0.0019 

Serum PCB 44d, ng/g 2.00 (1.70) 108/1171 1.60 1.67 (1.06, 2.62) 0.0259 

1,2,3,4,6,7,8-Heptachloro 

dibenzofuran, fg/g 
7.6 (6.8) 279/3321 2.60 0.75 (0.63, 0.90) 0.0024 

a Using maximum composite half-lives. 
b Survey weighted model adjusted for age, race/ethnicity, gender, BMI, smoking status, education attainment, diabetes mellitus 

status, and NHANES cycle number. 
c P-values and ORs were calculated via survey weighted logistic model running in total population, not split ones. 
d Serum PCB 44 and 49 were lipid adjusted. 
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CHAPTER V 

Conclusions 

1. Conclusions 

Cataract and glaucoma are two leading causes of visual impairment and 

blindness (Bourne et al. 2013; Flaxman et al. 2017). Their pathogeneses were not 

completed understood (Bobrow et al. 2015; Cioffi and American Academy of 

Ophthalmology. 2015; Gupta et al. 2014). The development of these two ocular diseases 

is known to be affected by both genetic and environmental risk factors. Despite their high 

prevalence and severe consequences, epidemiologic studies focusing on the associations 

of environmental risk factors with cataract or glaucoma were limited.  

This dissertation systematically investigated the association between potential 

environmental risk factors with these two ocular diseases. We used comprehensive 

epidemiologic and statistic approaches, including a longitudinal prospective study design 

and a survey weighted cross-sectional study design, a hypothesis-driven targeted 

approach as well as exposure-untargeted environment-wide association study (EWAS), 

various regressions and statistic methods (logistic regression, Cox proportional hazard 

model, inverse probability weighting, adjusted survival curve, effect modification 

analysis, dietary pattern score derived from principal component analysis, weighted 
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hypothesis testing framework, etc.). We identified unrecognized environmental risk 

factors, such as bone lead for primary open-angle glaucoma (POAG), and cobalt, 

tungsten, PCBs 44 and 49, two VOCs and one phthalate for age-related cataract (ARC). 

We also found that a prudent dietary pattern which is abundant in plant-sourced food may 

attenuate the toxicity of bone lead on the development of POAG, where plant-sourced 

provitamin A carotenoid may play an important role in this interaction.  

The risks of ARC and POAG increase with age. As more cures for acute lethal 

diseases are available and more affordable, with the rise of awareness of the benefits of 

healthy lifestyle, the expected lifespan will continue to grow worldwide. Together with a 

diminishing birthrate, population aging is unavoidable. As life expectancy increases, 

increasing numbers of ARC and POAG patients will mean a significant economic burden 

to society, especially for developing countries where the accessibility of effective 

treatment is relatively low. The productivity loss due to blindness has been estimated to 

be $2.5 billion (minimum wage assessment) and $7.8 billion (gross national income per 

capita assessment) in the U.S., whereas for moderate to severe visual impairment, the 

cost is $5.3 billion and $16.5 billion, respectively (Eckert et al. 2015). Not only is 

productivity loss an issue, medical cost plays an even bigger role in the financial burden. 

Therefore, pre-symptomatic prevention, especially for irreversible glaucoma, plays a very 

important role in dealing with these serious issues. Identifying the environmental risk 

factors is the first step towards the establishment of preventive interventions of ARC and 

POAG. Our studies identified unrecognized environmental risk factors for these two 

ocular diseases. We also evaluated the effectiveness of intervention through adjustment 

of dietary patterns. Our study provided evidence that controlling for certain diet could be 
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an applicable preventive intervention for lead toxicity. Future study is required to 

examine the effectiveness of dietary intervention for other chemicals. 

Awareness of these severe ocular diseases should also be emphasized among 

young people. As we enter the digital age, the bytes of information processed by 

individual consumers have increased at an annual rate of 5.4% during 1980 to 2008 in the 

U.S., which is greater than the GDP growth over the same period (Bohn and Short 

2012b). Of all media formats, visual information such as video and text makes up 71.2% 

time-wise, 99.4% byte-wise, and 83% word-wise (Bohn and Short 2012a). Younger 

generations are more likely to be exposed to visual information via various digital 

instruments: the exposure is long-term, high-dose, and the effect is yet unclear. It is 

observed that working on computers longer than 0.8 hours/day can increase the 

occurrence of myopia, whereas reading and writing need longer than 2 hours/day to have 

the same effect (Czepita et al. 2010). The prevalence of smartphones and the rise of near-

field optical instruments like virtual reality headsets may pose even higher risk of myopia 

for younger generations. Myopia is clinically identified as a risk factor for glaucoma 

(Cioffi and American Academy of Ophthalmology. 2015). Awareness must be raised in 

today’s society in order to prevent tomorrow’s tragedies. 

Lead has been a prevalent source of toxicity since ancient times. It is believed that 

lead beverage vessels and lead water pipes may have induced wide lead poisoning in 

ancient Rome, which eventually led to the fall of the Roman Empire (Needleman 2004). 

Even though lead-based paint and gas additives have been banned since 1970’s, the risk 

of lead poisoning still exists in today’s life by means of corroded water pipes (Maas et al. 

2005) and residual lead paint (Jacobs et al. 2002). In recent years, many large-scale lead 
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pollution incidents have been reported. Water contamination is one of the most severe: 

Flint water crisis in 2014, which affected over 100,000 residents, including 6000-12,000 

children (Gómez et al. 2018; Hanna-Attisha et al. 2016), and Washington D.C. drinking 

water contamination in 2001, which resulted in dangerous lead levels in over 15,000 

homes and caused lasting health risks for thousands of children (Edwards et al. 2009).  

Although recent news regarding lead toxicity mainly focused on children, older 

population is also highly susceptible. Low dose environmental lead exposure is 

associated with multiple age-related chronic diseases, such as decline in cognitive 

function (Bandeen-Roche et al. 2009; Shih et al. 2007), hearing loss (Choi et al. 2012; 

Park et al. 2010), cardiovascular disease (Navas-Acien et al. 2007; Schwartz 1995), 

systemic hypertension (Schwartz 1995), chronic renal disease (Lin et al. 2003, 2006; 

Staessen 1995), etc. Several studies have reported the effect of environmental lead 

exposure on age-related ocular diseases. Elevated lead levels were found to be associated 

with a higher risk of ARC and age-related macular disease (AMD), and may increase the 

blood-retina permeability, which itself is a risk factor for retinal vascular diseases (Erie et 

al. 2009; Hwang et al. 2015; Mosad et al. 2010; Schaumberg et al. 2004; Shen et al. 

2016). Our studies added reference on the health consequences of environmental lead 

exposure for older population. Lead can deposit in bones for decades and gradually 

degenerate into the circulatory system as age increases. Hence, endogenous lead 

poisoning may continue even though exogenous exposure has ceased. As life expectancy 

increases, aging population susceptible for not only environmental but also endogenous 

lead exposure increases. The threat of lead poisoning to older population demands more 

public awareness.  
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Besides known pollutants like lead, contemporary chemical engineering and 

industry are also creating new challenges for environmental protection and public health 

by creating new substances. It is estimated that new substances are synthesized at a rate 

of every 2.6 seconds in 2009 (American Chemical Society 2009). Most, if not all, of the 

newly invented substances will eventually enter the environment and people’s life, but 

little is known about their toxicology and health effect on humans.  

Together with the traditional hypothesis-driven targeted approach, data-driven 

untargeted approach such as EWAS can provide an effective and systematic way to 

identify unknown health effects of those chemicals. Further efforts on exploring updated 

or advanced untargeted approach are definitely worthwhile. One potential method may be 

using multi-layer feed-forward neural networks to quickly filter the potential risk factors. 

Deep neural networks (deep learning), which is a newly developed technique in machine 

learning, are a family of universal function approximators; nonlinearity and layered 

structure are the key factors that enable their expressive power to grow exponentially 

with respect to depth (LeCun et al. 2015). Recently, artificial intelligence based on deep 

learning framework was adopted in clinical diagnosis (Nishio et al. 2018; Suzuki 2017). 

Its application in epidemiological studies may also be expectable. 

In conclusion, this dissertation provides new points of view for the exploration of 

the pathogenesis of ARC and POAG, gives new ideas for interventions targeting these 

two highly prevalent and debilitating ocular diseases, and therefore provides new avenues 

to effectively decrease the global burden of blindness.  
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