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Abstract 

 

Coherent Pulse Stacking Amplification (CPSA) is a new time-domain coherent addition 

technique that overcomes the limitations on pulse energies achievable from optical amplifiers. It 

uses reflecting resonators to transform a sequence of phase- and amplitude-modulated optical 

pulses into a single output pulse enabling high pulse energy for fiber lasers.  

This thesis focuses on utilizing efficient algorithms for stabilization and optimization 

aspects of CPSA and developing a robust, scalable, and distributed digital control system with 

firmware and software integration for algorithms, to support the CPS (Coherent Pulse Stacking) 

application. We have presented the theoretical foundation of the stochastic parallel gradient 

descent (SPGD) for phase stabilization, discussed its performance criteria, its convergence, and its 

stability. We have presented our software and hardware development for time-domain coherent 

combing stabilization (specifically, an FPGA (Field Programmable Gate Array)-based Control 

system with software/firmware development to support stabilization and optimization algorithms). 

Analytical formulations of output stacked pulse profile as a function of input pulse train amplitudes 

and phase and stacker cavity parameters have been derived so as to build up a foundation for a 

GTI (Gires-Tournois-Interferometer) Cavity-based noise measurement technique. Time-domain 

and frequency domain characterization techniques have been presented to analyze phase and 

amplitude noise in the stacking system. Stacking sensitivity to errors in different control 

parameters (stacker cavity phase, pulse amplitude, and phases) for different stacker configurations 

have been analyzed. Noise measurement results using GTI cavities with different round-trip time 

has have been presented and we have shown how effectively the stacking phase noise in the system 
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can be reduced by improving the noise performance of the mode-locked oscillator. Simulation and 

Experimental results for stabilizing different stacker configurations have been presented. Finally 

an algorithmic control system along with software/hardware development for optimizing 

amplitudes and phases of the input burst has been implemented to increase stacking fidelity. A 

complete detailed description, and simulation of the Genetic Algorithm as an alternative algorithm 

for optimizing the stacked pulse fidelity has been presented. Comparison between SPGD and 

Genetic Algorithm results has been done to evaluate their performance. 

To summarize, this thesis provides theoretical, experimental, and implementation aspects 

of controlling CPSA system by introducing efficient control algorithms and developing a turn-key 

digital control system which is scalable to large number of stacker cavities.          
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Chapter 1 Introduction 

 

1.1 Background 

 Ultrashort-pulse laser sources, or equivalently, ultrafast laser sources which output 

picosecond to hundreds of femtosecond long pulses are widely used for many applications such as 

acceleration of particles, laser cutting, biomedical engineering, etc. [1,2]. 

Of particular interest are high energy ultrashort pulses, which can reach peak powers in the range 

from TW (1012W) to multiple PW (>1015W), which have enabled entirely new areas in ultrafast 

science and technology based on laser-matter interactions in the relativistic intensity regime. 

Achieving such high peak powers is only possible via the use of optical amplification, necessary 

to boost the energy of mode-locked laser oscillator seed sources from approximately nanojoules 

to more than a Joule (and up to 10s and 100’s of Joules) .  

 In 1985, Donna STRICKLAND and Gerard MOUROU invented a new technique called 

chirped pulse amplification (CPA), which enabled achievement of these high pulse energies and 

peak powers. They showed that by first stretching a chirped optical pulse, then amplifying, and 

finally compressing, very high laser peak powers could be achieved. Focusing such high peak 

power pulses to a diffraction-limited spot led to the demonstration of record-breaking peak 

intensities of 1022 𝑊/𝑐𝑚2 in 2004 [3]. It was the CPA technique that had enabled the rapid 

development of ultra-intense and ultra-short lasers, and had led to the development of extremely 

high-field ultrafast science, which creates extreme physical conditions using relatively compact 

laboratory-scale facilities. In this approach, ultrashort pulses on the order of 10’s of femtoseconds 
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need first to be stretched out to about a nanosecond. This, in turn, reduces the peak power in the 

laser amplifier, and lowers the significant nonlinear effects in the amplifier. After the amplification 

stage, pulse lengths are compressed back to the femtosecond domain. As a result, chirped pulse 

amplification effectively increases the pulse energy by about 4 to 5 orders of magnitude. In the 

majority of solid-state laser amplifiers (e.g. Ti:sapphire) the amplified pulse energy can be further 

increased by another ~2 orders of magnitude by correspondingly increasing the transverse aperture 

size, thus allowing a complete stored-energy extraction with minimal nonlinearities. For example, 

energies of 100s of Joules can be achieved in TW-PW Ti:sapphire CPA systems using transverse 

apertures as large as 150mm in diameter [4]. Scaling up the transverse aperture size to get the 

maximum extracted energy out of the stored energy suffers from limitations for some laser 

amplifiers such as fiber amplifiers. For the case of single mode (SM) operation, the core size 

usually needs to be less than 100um in diameter [5].As an example, single mode operation of a 

photonic crystal Large Mode Area (LMA) fiber with core size of larger than 50um has been 

reported in [6]. However, operating with largest diffraction-grating-based pulse stretchers and 

compressors for implementing CPA is not sufficient to completely extract the stored energy which 

in most of cases is nearly 1% of the stored energy. (<1mJ for SM operation). 

 

1.2 Time Domain Coherent Combining Techniques 

       As indicated in the previous section, fiber CPA can extract only ~1% of the stored energy. For 

high energy applications, one needs parallel combination of channels to achieve required energy 

per pulses (Notice that solid state laser amplifier such as Ti:sapphire with large transverse aperture 

size are not discussed here). For example, a 10GeV acceleration stage [2] would require 10s of 

Joules per pulse. However, each amplification channel in the standard CPA allows 10−4 to 10−3 
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Joules meaning that the acceleration stage requires parallel combination of 104  to 

105 amplification channels to satisfy the energy condition, which is quite a technical challenge.  

To overcome the challenge one can amplify much longer pulses (effectively beyond 1ns) instead. 

This will boost the achieved pulse energies closer to the stored energies in the amplifier. However, 

there are no known practical dispersion-based techniques of extending stretched pulse duration to 

significantly beyond 1 ns. Therefore, it is necessary to look beyond dispersion based pulse 

stretching. One broad approach to increase pulse duration is to use time-domain pulse combining, 

in which multiple stretched pulses would be amplified in a burst, and then combined into a single 

pulse at the system output. This thesis is devoted to the development of certain control aspects of 

such a time-domain pulse combining technique, called coherent pulse stacking amplification 

(CPSA). In the remainder of this introductory chapter we will first review the other demonstrated 

time-domain pulse combining techniques, such as divided pulse amplification (DPA) [8,9], 

Stacking and Dumping (SND), and 𝑁2 coherent combining, and then describe the CPSA approach. 

 

1.2.1 Divided Pulse Amplification (DPA) 

       DPA is a time domain coherent combining technique, which is based on first spatially splitting 

the pulses, amplifying, then spatially recombining the pulses after the amplification. (see Fig. 1.1). 

The technique starts with spatially arranging N delay lines in which the initial pulse is divided into 

N pulses that are temporally delayed with respect to each other. Next, this pulse train is amplified. 

Finally the pulse train goes through another delay-line setup where the delays are removed, and a 

single pulse is obtained after the copied pulses interfere with each other. [16,17].  
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Figure 1.1: DPA principle DPA principle. The original pulse is divided into N copies of itself; the N pulses are amplified, 

and then recombined coherently to produce the final intense pulse [16] 

 

 Figure 1.2 shows a typical experimental DPA System. A single low energy pulse is divided 

into a number of pulses with different polarizations utilizing a number of delay lines, PBS 

(Polarizing Beam Splitters) and HWPs (Half-Wave Plates).  As stated before, the delayed pulses 

are then amplified and finally turn into a single intense pulse utilizing a similar setup of delay lines, 

PBS and HWPs. As shown in figure 1.2 for this specific example, there are 2 different delay lines 

in the division stage of the DPA implementation in which each line produces two copies (total 4 

pulse copies). The delay of the two lines are different namely 𝜏1 and 𝜏2. The two HWPs before 

and after the PBS in the division stage are used to shape the amplified pulse train for saturation 

compensation.  
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Figure 1.2: Experimental Set Up for DPA (PBS - polarizing beam splitter, HWP - half-wave plate, QWP - quarter wave plate) 

[17]  

 Therefore, the DPA technique (as any time-domain combining technique) allows one to 

increase the amplified pulse energy by approximately the factor N equal to the number of pulse 

replicas. This technique is also simpler to implement compared to the chirped pulse amplification 

technique discussed previously in the sense that it utilizes only one amplification stage.  

 If the number of delay lines goes beyond 2 or 4 or more, the existing combination of HWPs 

and pulse shapers would not provide sufficient degrees of freedom to accordingly shape the input 

burst to compensate for saturation. This is a major challenge since one need always to accurately 

carve out the input amplitude profile to minimize the nonlinearity in and after the amplification 

stage.  

 

1.2.2 Stack-and-Dump (SnD)  

 The experimental setup for this technique is made of a high-finesse optical cavity, for 

storing the stacked pulses, and an active element such as a rotating-mirror or an AOM (Acousto-

Optic-Modulator) for extracting or dumping the stored pulses [10,11]. As an alternative to the 

DPA technique, the stacking and dump (SND) avoids the creation of temporal replicas, by 
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amplifying a pulse train at a high repetition rate, storing them in a high-finesse optical cavity (i.e. 

enhancement cavity - EC) as a single circulating pulse, and then periodically extracting this 

circulating pulse using a sufficiently fast optical switch [18,19].  

 Figure 1.3 shows a typical experimental set-up for SnD technique. In this experimental 

setup the pulse train from the mode-locked oscillator with repetition rate 𝑓𝑟𝑒𝑝 is first stacked in a 

high-finesse optical cavity (e.g. EC) to enhance the power. Next, the stored stacked pulses are 

extracted or dumped by the implemented switch. Assuming that N pulses are stacked in the EC, 

the switch needs to operate at 
𝑓𝑟𝑒𝑝

𝑁
 to accurately and periodically extract out the circulating stacked 

pulse. It can be further shown that the pulse energy linearly increases by the number of stacked 

pulses [18]. It is also important for the switching to function fast enough so that it can dump the 

circulating stacked pulse out of the EC between the successive pulses. 

 

Figure 1.3: working principle of SnD enhancement cavity 

 

 This technique suffers from pulse energy limitations and stability constrains. All existing 

SnD experimental setups use AOMs for the switching part which will ultimately limit the 

maximum energy storage due to the insertion loss of the modulator and the trade-off between speed 
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and damage threshold/strong nonlinearity due to the small spot size, which is necessary to achieve 

sufficiently short rise time. Beam size is the key factor for damage considerations where increasing 

the beam size will accordingly reduce the energy density and hence reducing the risk of damaging 

the AOM. For example, a beam diameter of larger than 1cm will keep the energy density below 

the 10𝐽/𝑐𝑚2 threshold for achieving 10J for 1ns pulses [20]. This range of beam size will result 

in very large round-trip length of the enhancement cavity which would be technically challenging. 

As an example, a beam diameter of larger than 1cm for a SiO2-based AOM corresponds to 1us 

rise time for the AOM, and 300m round-trip length for the optical cavity. 

 Insertion loss in the modulator as mentioned before also limits the maximum number of 

stacked pulses inside the EC and hence the maximum energy storage. To resolve this, an all-

reflective mechanical rotating mirror could be implemented for the switching part which is also 

experimentally difficult [18]. 

 

 

1.2.3 𝑵𝟐Coherent Combining 

 The third published time-domain technique is 𝑁2coherent array combining. This technique 

is utilized to boost the pulse energy extraction corresponding to each individual amplification 

channel in a coherently combined array [12]. This approach is realized and analyzed in both 

temporal and spatial domains. As is further visually shown, 𝑁2 coherent combing boosts the output 

pulse energy proportional to 𝑁2, which is the key benefit of this technique compared to other 

conventional combining approaches. This is due to the reduction of repetition rate by a factor of 

N after coherently combing N channels. The average power in this technique also linearly increases 

by the number of combined channels which is the same in other conventional combining systems. 
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This 𝑁2factor in pulse energy increase indicates that one can achieve same pulse energies with 

smaller number of combined channels combined to the previous conventional combining 

approaches.  

 

a) 

 

b) 

Figure 1.4: a) The Concept of 𝑵𝟐 coherent combining b) The Time domain representation of 𝑵𝟐 coherent combing 

showing the input and output pulse sequences as well as their pulse energy coefficients [12] 

 

 Figure 1.4 a) shows the concept of 𝑁2 coherent combining in frequency domain. There are 

N parallel channels or N periodic pulse trains in the input stage that are coherently combined into 

a pulse train with an effective repetition rate N times lower than the input repetition rate 𝑓𝑟𝑒𝑝. The 
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combining elements in this approach are a sequence of Fabry-Perot-Interferometers (FPI)s. It is 

important to point out that repetition rate for all N parallel channels is the same and equal to 𝑓𝑟𝑒𝑝. 

The frequency spectrum for these parallel channels is a frequency comb in which the comb teeth 

are separated by 𝑓𝑟𝑒𝑝 and the pulse envelope is the same for all the channels. The only difference 

is that the comb teeth in the 𝑚𝑡ℎ channel (1 ≤  𝑚 ≤  𝑁 − 1) are shifted by 
𝑚

𝑁
𝑓𝑟𝑒𝑝 (e.g the last 

pulse train’s spectrum is shifted by 
𝑁−1

𝑁
𝑓𝑟𝑒𝑝). This indicates that the comb teeth in two consecutive 

pulse trains are shifted by 
𝑓𝑟𝑒𝑝

𝑁
 with respect to each other. Now if a linear combiner adds these 

channels together the resulting output pulse train will have a frequency spectrum with the same 

envelope but the comb teeth are separated by 
𝑓𝑟𝑒𝑝

𝑁
. This is the important conclusion indicating that 

the output pulse energy in 𝑁2 coherent combining technique which is the average power divided 

by the output repetition rate is approximately 𝑁2 times the input pulse energy. (Notice that the 

average power in this technique is approximately increased by a factor of N as in any other 

combining approach). In the time domain, as shown in 1.4 b) the output train consists of pulses 

with a period of N times lower than the period of the input pulse [12].  

 The issue we have in 𝑁2 coherent combing is that having short FPIs as the combining 

elements is at the cost of high starting repetition rates which is not compatible with high energy 

applications. Still this technique is valuable for high repetition rate operation, but in order to 

significantly reduce the repetition rate to the desired degree one would need a very large number 

of cavities and channels, beyond what is practical. An additional minor technical issue is the need 

to combine two beams with each cavity, whereas in the CPSA technique there is only one input 

beam into each GTI cavity stacker, which is much simpler to implement. 
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1.3 GTI Cavity Based Coherent Pulse Stacking Amplification (CPSA) 

 The research of this thesis was focused on developing key control-system aspects 

(specifically –algorithms, software and hardware for time-domain coherent combining 

stabilization, and algorithm-based stacked-pulse fidelity optimization) of the new technique, called 

coherent pulse stacking Amplification (CPSA). As has been proved in [22] in details, CPSA is the 

best candidate among all the published combining techniques that enable achievement of 

maximum pulse energies and at the same time do not suffer from the limitations mentioned in the 

previous techniques. In this approach, an input burst of pulses that have been modulated both in 

their phases and amplitudes is transmitted through a number of GTI (Gires-Tournois-

Interferometer) cavities as optical resonators. These resonators then temporally and coherently 

stack the pulses and transform them into a single intense stacked pulse at the output under specific 

conditions. Different stacking scenarios have been demonstrated in either cascading or multiplexed 

configurations (which will be further explained in detail through this chapter) including stacking 

of 81 pulses for high energies. This approach proved successful in achieving high energy pulses 

from the initial ultrashort femtosecond long pulses by completely extracting the stored energy in 

a yb-doped fiber laser system. In the following sections we describe the CPSA concept and its key 

design and performance characteristics in more detail. Since the development of the theoretical 

aspect of the CPSA technique was not the subject of this thesis, this will be only a review of key 

theoretical results that were obtained in [22].  

 

1.3.1 Concept of the CPSA technique 
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 The conceptual outline of the CPSA technique is shown in the figure 1.5. Note that the 

specific pulse repetition rates and pulse energies indicated in the figure 1.5 are intended only as a 

representative example, not as a general CPSA system description. 

 

 

Figure 1.5: coherent pulse stacking amplification single fiber channel diagram 

 As shown in figure 1.5, The CPSA experimental setup starts with a mode-locked oscillator 

operating at repetition rate of 1GHz (~988.7MHz) generating bursts of ultrashort femtosecond 

pulses which are then modulated both in their phase and amplitude using integrated Electro-Optic-

Modulators (EOMs) operating with bandwidths from 1GHz to 10GHz. Proper modulation for 

phases and amplitudes are important to make it possible for the pulse burst to be stacked after 

going through the free-space resonators. Due to the fact that different pulses experience different 
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gain values during amplification stage (~ the front pulse gets highest and the last one gets the 

lowest gain), this amplitude profile should be carved out accordingly to minimize the output 

nonlinearity which needs to be always taken care of. Next the pulses go into the stretching stage 

to be stretched to nanosecond duration and then amplified in the subsequent amplifiers. At this 

stage, the pulse burst is transmitted through a number of free-space GTI interferometers to achieve 

stacking. These optical resonators need to be controlled in terms of their round-trip length or phase 

and stabilized to achieve stacking. They can be scaled to larger numbers for higher energy and 

average power experiments as well. An advantage of this setup is that only a few numbers of these 

optical cavities in a specific spatial configuration can lead to stacking of up to 100 pulses. 

 

1.3.2 Coherent Pulse Stacking with a Single GTI Cavity           

 In coherent pulse stacking amplification (CPSA) a sequence of pulses from the mode-

locked oscillator at GHz repetition rate is coherently added together in the time-domain and being 

stacked into a single intense pulse at the output utilizing resonant reflecting interferometers. This 

resonant reflecting interferometer is basically a variant of Fabry-Perot interferometer consisting of 

one partially reflecting mirror which is usually called as Gires-Tournois-Interferometer (GTI). A 

travelling-wave GTI cavity is able to spatially separate the input optical beam and the reflected 

beam.   For the CPSA scheme to function, the cavity roundtrip time must be an integer number of 

the laser-oscillator cavity roundtrip periods, plus a certain fraction of the pulse-train carrier-wave 

optical cycle [13], which defines an individually-prescribed phase shift associated with each 

individual GTI in the stacker.                    

 In order to explain how the pulse stacking works, let us first consider stacking with a single 

GTI cavity [13]. Such a single-GTI stacker has a roundtrip length L equal to that of the mode-
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locked oscillator seed of the system and is characterized by its front-mirror reflectivity R and its 

roundtrip phase  for the carrier wave (cavity phase).  

 

 

If the GTI is lossless (i.e. it's cavity-folding mirrors have perfect 100% reflectivity and the 

beam splitter has no absorption), then it is a linear and time-reversible system. In practice, there 

will be some small losses associated with each cavity-folding mirror, but they should be negligibly 

small, and the time- reversibility should be preserved to a high degree. This reversibility makes it 

convenient to consider this GTI stacker in reverse: i.e. consider its response to a single input pulse. 

Because a lossless GTI reflects all the incident optical power, a single input pulse at the GTI input 

will produce a sequence of pulses at its output. Analytically this can be calculated using the 

equation 3.4 from the chapter 3, which indicates that the sequence will consist of two "main" pulses 

at the beginning, followed up by a rapidly (as a geometrical progression) decaying "tail", as 

illustrated in the figure 1.6 (a). The relative amplitudes of the two "main" pulses is determined by 

the front-mirror reflectivity 𝑟 = √𝑅. Equation 3.4 also indicates that there will be certain phases 

Figure 1.6: a) impulse response of a single cavity (consisting the main and tail sequences) as well as the single pulse with unit 

amplitude that is input to the stacker b) the stacking burst profile which is the complex conjugate time reversal of the impulse 

response  
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imprinted on each of the pulses. Time reversing this sequence (which means reversing the order 

of the pulses and complex conjugating pulse phases) produces a stacking burst (illustrated in figure 

1.6(b)), which, when launched into this single-GTI stacker, should produce a single stacked pulse 

at the output. 

As evident from the equation 3.4, stacking-burst pulse phases are primarily determined by 

the stacking condition, which requires that the last pulse in the stacking burst should be out of 

phase with the rest of the pulses in the burst. However, there will be also an additional phase added 

to each pulse, which is determined by the GTI roundtrip phase . Imprinting this “total” phase (i.e. 

required by stacking condition + GTI cavity roundtrip) on the stacking burst is achieved with the 

phase EOM, and the correct amplitudes - with the amplitude EOM, as shown in figure 1.5. 

This analysis of a single-GTI stacking highlights key aspects of a stacker design: choosing 

front-mirror reflection coefficient r determines the shape of the "main" pulse sequence, in this 

simplest case consisting of two pulses, and choosing GTI cavity round-trip phase  affects the 

phase modulation profile at the system input. As we discuss in greater detail later, this can be 

generalized to a general stacking arrangement consisting of M GTI cavities: a sequence of M of 

GTIs has 2M degrees of freedom (only 2M-1 are independent), and it can be shown that these 

degrees of freedom can be optimized to stack approximately 2M pulses (i.e. 2M ± 1) with a 

precisely prescribed amplitude profile [13].   

Furthermore, this single-GTI example also highlights key features of the stacking burst, as 

well as the stacker design strategy. The stacking burst contains the "main" pulse sequence with 

approximately 2M pulses, whose amplitude profile can be precisely tailored by finding suitable M 

cavity reflection coefficients and M -1 cavity round-trip phases. It also contains the "tail" pulse 

sequence. The important design aspect for a general M – GTI stacker is that the choice of the all 
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M front-mirror reflection coefficients and the cavity round-trip phases is completely defined by 

the desired amplitude profile of the "main" pulse burst, while the amplitude profile of the "tail" 

sequence, as well as the phases of all the pulses in the burst, are merely the result of this stacker-

parameter choice. 

 

1.3.3 Amplitude Profile Requirements for the “Main” Pulse Sequence 

 At this point it is necessary to consider the general requirements placed on the amplitude 

profile of the main stacking-burst sequence, which are visualized in the figure 1.7. Since the CPSA 

technique is used in addition to the CPA technique, each pulse in the stacking burst is a stretched 

(approximately 1 ns) pulse. Therefore, the length/duration of the main sequence will be completely 

determined by the number of pulses in that sequence, assuming an optimal arrangement in which 

all the pulses are immediately adjacent to each other in the burst. The choice of the duration of the 

stacking-burst main sequence is determined by the need to achieve sufficiently low nonlinearity in 

the last amplification stages, which generally means longer bursts will be required for achieving 

higher pulse energies. From the early discussion in this chapter it is clear that in order to extract 

all stored energy it is necessary to use pulse-burst lengths on the order of approximately 100 ns. 

 Furthermore, CPSA is uniquely different from the CPA in that it can reach a nearly 

complete stored-energy extraction from a yb-doped fiber amplifier. This means that there will be 

very strong distortions in the profile of the final amplified pulse burst [22]. It is one of the principal 

advantages of the CPSA technique that it allows one to completely control the shape of this burst. 

As shown in [22], the amplified burst shape is optimally defined by the requirement that equal 

nonlinearity would be produced at every point in this amplified burst. As it happens, this optimal 

profile also minimizes the induced nonlinearity. The analytical expression for this optimal profile 

can be found in the reference [22]. One important result, however is that this optimal amplified-
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burst shape strongly depends on the degree of energy extraction. As illustrated in the figure 1.7, at 

low energy extraction the required burst shape is nearly flattop, but it becomes a strongly decaying 

profile as the degree of energy extraction increases toward full stored-energy extraction. Again, it 

is the principal advantage of the CPSA technique that it can accommodate this varying stacking-

burst shape and is thus fully compatible which strongly saturated amplification at the limit of near-

complete energy extraction. 

Finally, the last additional requirement is that this main stacking-burst profile be smooth, 

to within approximately +-1% (as determined by the numerical simulations), in order to avoid 

adding detrimental nonlinearity-produced phases to each of the pulse of the stacking burst. 

 

Figure 1.7: Stacking profiles producing equal nonlinearity within the burst 

 

 

 

 



17 

 

  

1.3.4 Equal-Length GTI Stackers 

 From what was described earlier it follows directly that using M equal-length GTI cavities 

(Fig. 1.8) it is always possible to stack 2M pulses in the main stacking-burst sequence with 

precisely prescribed amplitude profile (see the illustration in Fig. 1.9). As was discussed in the 

preceding section, this profile has to be smooth, of certain optimum shape, and sufficiently long 

to achieve sufficiently low linearity in the last amplification stages. Since in order to extract fully 

the stored energy, it is necessary to use approximately 100 pulses in the main stacking sequence, 

it follows that this would require approximately 50 equal-length GTI cavities. Such large number 

of the stacking cavities does not appear to be practically appealing. Fortunately, this practical 

challenge can be overcome by using multiplexed-length GTI stacker configurations described in 

the next section. 

 

Figure 1.8: M cascaded equal-length GTI cavities 
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Figure 1.9: stacking burst sequence with precisely prescribed amplitude profile for M equal-length GTI cavities 

  

1.3.5 Multiplexed-length GTI Stackers 

       Detailed description of how the multiplexed-length GTI stacker works, and how it is designed 

goes beyond the research topics of this thesis. It is sufficient to state at this point that, as it has 

been proven in [22], using multiplexed-length stacking arrangements it is possible to stack a very 

large number of pulses in the main stacking-burst sequence with very few stacking cavities. 

 

 Instead of considering a general case, let's consider a conceptually much simpler case of 

two identical-design equal-length cascades, each consisting of M GTI cavities, but one cascade 

having the round-trip GTI-lengths equal to that of the mode-locked seed oscillator, and another 

having 2M (M is the number of GTIs per set) times longer round-trip GTI-lengths (see Fig. 

1.10). 
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Figure 1.10: M+M Multiplexed Different Round-Trip Length GTI Cavities 

 Here the Multiplexed configuration is analyzed in terms of the pulse bursts. First a burst of 

approximately (2𝑀)2 pulses with a time-separation of 𝑇 enters the first set of M-cascaded cavities. 

This burst is then transformed into a burst of  2𝑀 pulses but with a time-separation of (2𝑀) ∗ 𝑇. 

Second this burst of 2𝑀 pulses enters the second set of M-cascaded cavities and transforms into a 

single stacked pulse at the final output. The peak power for the final stacked pulse is (2𝑀)2 times 

larger than the peak power in the incident pulse burst. Therefore, a large number of pulses can be 

stacked using only a few GTI stackers. For example, in the experiments carried out in this work, 

we typically used 4 + 4 multiplexed configuration consisting of 8 cavities, but capable of stacking 

up to 81 pulses in the main sequence. (Notice that (2𝑀)2 is an approximate number. For instance, 

for the case of M=4, (2𝑀 + 1)2 = 81 pulses can be stacked).   

 However, as is shown in [22], the price one has to pay is that in general it is no longer 

possible to precisely match any desired and smooth main stacking-burst sequence profile – it is 

only possible to approximate this desired profile. This means that in general (i.e. except some 

very rear special cases) the main stacking-burst sequence profile is not smooth, as illustrated in 

the figure 1.11. Nevertheless, we have recently shown that this limitation of multiplexed-length 
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GTI stackers can be overcome by accepting a certain trade-off. While it is not possible to achieve 

a single stacked pulse with any desired smooth main sequence profile, it is possible to achieve 

efficient stacking with some negligible post-pulses after the main stacked pulse. Detailed 

explanation of this, however, goes beyond the subject matter of this thesis. 

 

 

 

Figure 1.11: stacking burst sequence profile for a multiplexed-length GTI stacker 

 

 

 

1.3.6 Theoretical Description of N-GTI pulse stacker 

 For completeness we include here a summary of a theoretical description of coherent pulses 

stacking technique. In general, a sequence of GTI cavities can be described by linear time invariant 

(LTI) system theory [23] and such an LTI system is characterized by its impulse response (i.e. its 

response to a single unit amplitude pulse). Since the M-GTI stacking system is an LTI system, it 

can be characterized by the product of individual responses of each cavity as follows: 

                                                               𝐹(𝜔)𝑀 = ∏ 𝐹𝑘(𝜔)𝑀
𝑘=1         (1.1) 

the transfer function 𝐹𝑖(𝜔) of such a cavity can be written as follows [24]: 

                                                               𝐹𝑘(𝜔) =
𝑒𝑖𝜔𝑇𝑟√𝑅𝑘−𝑒𝑖𝜙𝑘

𝑒𝑖𝜔𝑇𝑟−√𝑅𝑘𝑒𝑖𝜙𝑘
        (1.2) 
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Where 𝑅𝑘 is the front mirror reflectivity of the kth cavity, and 𝜙𝑘 is the round-trip phase of the kth 

cavity, and 𝑇𝑟 is the round-trip time of each cavity. 

Considering a single unit-amplitude pulse 𝑝𝑠(𝑡) which is transmitted into an M-GTI 

stacker, this incident pulse will produce a pulse burst at the output which represents the continuous 

time impulse response ℎ(𝑡) as follows: 

                                                       ℎ(𝑡) = ∑ ℎ̃[𝑛]. 𝑝𝑠(𝑡 − 𝑛. 𝑇𝑟)
∞
𝑛=0                    (1.3) 

 

 The formula above represents ℎ(𝑡) as a summation of equal amplitude pulses 𝑝𝑠(𝑡 − 𝑛. 𝑇𝑟) 

each characterized by ℎ[𝑛] (the discrete time impulse response) that accounts for amplitude and 

phases of each pulse. After a few steps in mathematical manipulation one can show that the 

frequency response of the M-GTI stacker system can be related to the discrete time impulse 

response as follows: 

                             𝐹(𝜔)𝑀 = ∑ ℎ̃[𝑛]. 𝑒−𝑖𝜔𝑛𝑇𝑟 =∞
𝑛=0 ∑ ℎ̃[𝑛]. 𝑒−𝑖Ω𝑛∞

𝑛=0                              (1.4)  

                                                   ℎ[𝑘] =
𝜔

2𝜋
∫ ∏ 𝐹𝑖(𝜔)𝑒𝑗𝜔𝑇𝑟𝑘𝑑𝜔𝑁

𝑖=1
2𝜋

0
       (1.5) 

Where Ω = 𝜔𝑇𝑟.  

 After the input pulse train propagates through the M-GTI stacker system, the response of 

the stackers �̃�𝑜𝑢𝑡[𝑛] to the input pulse train can be calculated as the convolution sum between the 

input pulse sequence and the stackers discrete time impulse response as follows: 

            �̃�𝑜𝑢𝑡[𝑛] = �̃�𝑖𝑛[𝑛] ∗ ℎ̃[𝑛] = ∑ �̃�𝑖𝑛[𝑘].∞
𝑘=−∞ ℎ̃[𝑛 − 𝑘] = ∑ �̃�𝑖𝑛[𝑘]. ℎ̃[𝑛 − 𝑘]𝑛

𝑘=−∞            (1.6) 

 The upper bound of the summation is limited by n due to the causality of the impulse 

response of the M-GTI stacker system. Using this impulse response, the response of the system to 

any arbitrary input pulse sequence can be calculated as the convolution of the impulse response 

and that input pulse train. The M-GTI stacker response ℎ̃[𝑘] which is obtained by solving equation 
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(1.6) is characterized by the round-trip phase of each cavity and the reflectivities of the partially-

reflective front mirror in each cavity as stated in equations (1.2). 

        

1.4 Stacking Stabilization 

 As described in the section 1.3, coherent pulse stacking is a time-domain coherent 

combining technique. Therefore, in order to achieve coherent stacking at the output, it is necessary 

to “actively” control the round-trip length of the GTI cavities and lock them to each prescribed 

cavity phase  with a tolerance of a fraction of wavelength, as described by the equations (1.2) and 

(1.5) in section 1.3.3 where the round-trip phase and reflectivity of each cavities are determined 

once the impulse response ℎ(𝑡) of the M-GTI stacker system is obtained. Stabilizing cavity 

requires active stabilization using feedback control systems. This stabilization has been one of the 

key tasks accomplished by this thesis work and is described in greater detail in chapters 2 and 4. 

 

1.5 GTI Stacking Burst Amplitude and Phase Control for Achieving High Stacking 

Efficiency 

 One of the key advantages offered by the CPSA technique is the many degrees of freedom 

of the control that are available. This becomes particularly relevant when considering the many 

uncertainties present in the system. First of all, the recipe for the stacking-burst profile both in 

terms of amplitude and pulse phases cannot be known with absolute accuracy. This is due to the 

fact that front-mirror reflection coefficients of each GTI cavity cannot be defined with the accuracy 

of better than approximately 1%. Furthermore, even if this recipe were known precisely, it is nearly 

impossible in practice to imprint it with an absolute accuracy using electro-optic modulators at the 

front end of the system, since there always is a certain degree of inaccuracy in determining the 
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exact amplitude and phase response of each of the modulators, expressed for example as 

inaccuracy in knowing the 𝑉𝜋 voltage of a modulator. Also, one can expect that various linear and 

nonlinear effects in the fibers and components of the fiber amplifier chain might also affect both 

the amplitudes and the phases of the stacking-burst pulses. It is certain that quantifying all these 

effects beforehand would be a very challenging, and perhaps even a hopeless task. 

 

 Therefore, it was one of the critical research tasks carried out for this thesis to develop a 

computer-based control system, which would optimize the stacking-burst amplitude and phase 

profiles in real time, based on the measured fidelity of the stacked pulse at the system output. This 

work is described in detail in the chapter 5. 

 

1.6 Pathways to Pre-Pulse Contrast 

         Throughout this work we had used stacked pulses fidelity measurement based on peak 

power detection. This, however, puts certain constrains on the maximum achievable fidelity of the 

stacked pulses. Indeed, one of the important desired characteristics of the stacked pulses is 

associated with a high degree of pre-pulse contrast of up approximately 40 – 60 dB, which is 

required by laser-plasma acceleration applications, as well as numerous other laser-matter 

interaction-based applications. Since in practice peak detection cannot be achieved with better than 

approximately 1% accuracy (due to the laser amplitude noise), this stacked-pulse fidelity 

metrology does not allow achieving pre--pulse of better than approximately 20 dB. At this point 

we have identified techniques with which this limitation can be overcome (for example, 

developing a new fidelity measurement technique which would detect both the pre-pulse content 

and the stacked pulse peak). However, development of these techniques is outside of the topics of 
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this thesis and will be carried out in the future. Nevertheless, it is important to point out that this 

next stage in improving fidelity of the stacked pulses will necessarily be founded on the work 

reported in this thesis. 
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Chapter 2 Algorithmic and Hardware Basics of the Control System 

 

2.1 Background 

 As previously explained coherent pulse stacking is a time-domain combining technique 

where the GTI cavity phases should be stabilized in real-time to achieve stacking. As shown in 

equations (1.2), (1.5), and (1.6), for a given stacker design, round-trip phases of the GTI cavities, 

as well as input pulse amplitudes and phases are known; However, cavity phases change in time 

and need to be precisely kept at the required values. This is done by an active stabilization system. 

  

 Stabilizing the GTI stacker system is a key element in CPSA to achieve robust stacking 

and it directly affects the stacking parameters such as stacking efficiency. The stacker design 

defines amplitudes, and phases of the input pulse profile (�̃�𝑖𝑛[𝑘] in equation (1.6)) where they are 

imprinted onto the burst by the electro-optic modulators (EOMs) and are kept unchanged during 

stacking. The design also defines the required mirror reflectivities for the cavities that cannot be 

changed once they are fabricated. However, phase variations in the GTI cavities or the oscillator 

need to be actively controlled by an stabilization system to stabilize the phases as required for 

stacking.   

  

 Before discussing the details of how we developed the stabilization algorithm, a general 

discussion in broad sense about the concept and definition of stabilization in control theory 

followed by a survey of different stabilization algorithms is presented. This provides the reader 
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with broad insight into the subject before being deeply involved into the formulations. Among the 

many stabilization algorithms that are discussed here in the survey section, we chose stochastic 

parallel gradient descent (SPGD) due to its model-free and stochastic-based model, its relatively 

fast convergence, simplicity in implementation, and etc.   

 

2.2 Concept and Definition of Stabilization in Control Theory 

 Stabilization system in a general and broad sense is a particular control system that is 

commonly used in a variety of engineering problems and applications. Control systems exist in 

almost every aspect and they consist of different parts that can give commands, regulate, improve, 

and manage the behavior of a single or a group of devices. Automobile steering control system, 

temperature-controlled air conditioning systems, GPS-based path control systems in vehicles or 

aircrafts are only a few examples of many types of the existing control systems. A control system 

can be generally discussed in open-loop and closed loop forms. An open-loop configuration is not 

able to compensate for any internal or external noise, thus will not be discussed here. On the other 

hand, a closed loop configuration is well-known for its ability to reconstruct or compensate for 

any possible disturbances in the system. The configuration (see figure 2.1) starts with an input 

transducer which converts the input to the measurable electric signal that is further used by the 

controller. For instance, if the input signal is position it can be converted to voltage through a 

potentiometer or in the case of digital control system, if the input signal is an analog electric signal, 

it can be converted to a digital signal through Analog to Digital Converters (ADC). Next block in 

the configuration is just a subtractor which can be a mixer producing an error signal which shows 

how deviated the output signal is from the desired input signal. This error signal is then used by 

the controller to decide in which direction and how to drive the system (plant, or process) [48,49].   



 27 

 

Figure 2.1: Typical closed loop configuration of a control system [49] 

 

 The plant, process, or system block in many cases are unstable systems where the controller 

(stabilization system) tries to stabilize it. In control theory, the stable system is generally defined 

as a system whose response to a bounded input is bounded. Or in other words, the system does not 

exhibit oscillatory or unbounded behavior in response to a bounded input [48,49]. There exist 

many approaches in control theory to check this criterion. For example, Laplace transformation is 

one specific approach where this criterion is checked by evaluating the poles of the system transfer 

function. If all the poles of a transfer function lie on the closed left hand plane (LHP) then the 

system is called stable. [50]. Assuming that a system is potentially stabilizable, the question is that 

what are the conditions that need to be satisfied to stabilize an unstable system. As discussed 

previously a stabilization system is essentially a closed-loop control system. The inputs of a typical 

stabilization system are the control parameters or the parameter space that define the output signal. 

For example, for the case of coherent combining systems, phases of the combining elements are 

the key parameters that define the output signal. Therefore, input signal in the closed-loop 

configuration of the control system is a vector of combining element phases. The feedback path 

might need a mechanism to extract phase information from the output signal. Usually the output 

signal in such combining system is a function of intensity. The controller unit in figure 1 is the 
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stabilization algorithm that determines how to derive the actuators and consequently the plant 

which will be the system. This discussed overview of typical stabilization systems implies that an 

unstable system and consequently the output signal is stabilized once the error signal goes below 

certain threshold and ideally approaches zero. In other words, the vector of phases gets locked with 

high precision to the required values. Upon satisfaction of this criteria, the system and the output 

signal are stabilized but not necessarily optimized in terms of the desired performance. 

  

 The following section discusses in detail a general survey of existing stabilization 

algorithms that can be used for stabilizing coherent combining systems and lasers.   

 

2.2.1 Survey of Stabilization Algorithms 

 

1) Stochastic Parallel Gradient Descent (SPGD) Algorithm: 

Gradient Descent Algorithm         

 A popular method for finding the global minimum of a metric function or minimizing an 

error functional for a known metric is the gradient descent (steepest descent) [30,31,32,33,34] (if 

the goal is to find the global maximum of the function the algorithm is called gradient ascent 

(steepest ascent).  These algorithms calculate gradients based on detailed knowledge of the metric 

model and they involve calculating exact values of the derivative of the goal function. Gradient 

method is based on the observation that if the goal function 𝐽(�⃗� ) is defined and differentiable in a 

neighborhood of a point then 𝐽(�⃗� ) increases fastest if one goes from �⃗� 𝑖𝑛𝑖𝑡 in the direction of the 

gradient as follows [30]: 

                                                                 �⃗� 𝑖 = �⃗� 𝑖 + 𝜇∇𝐽(�⃗� 𝑖)     (2.1) 
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 However, for those scenarios where the goal function is not analytically known, or where 

calculating exact values of the gradients in the landscape is analytically or numerically difficult, 

an alternative algorithm to the gradient descent is the Hill-Climbing Stochastic Gradient Descent 

method it is independent of the exact gradient calculation.  

 

Hill-Climbing Stochastic Gradient Descent Algorithm 

       For many years, a sufficiently simple and efficient optimization technique was the mountain-

climbing technique where the optimization unit tries to detect the best path in the landscape of the 

control parameters for maximizing/minimizing a certain goal function in the system (see figure 

2.2). This is achieved by disturbing the control parameters and correspondingly evaluating the 

variation of the goal function. It has been shown that following the gradient path in the landscape 

is the optimal path [29]. Currently, this method is being used by the stochastic gradient descent 

(SGD) optimization algorithm.  

       Stochastic gradient descent (SGD), from machine learning point of view was originally 

introduced in [36] but from control and applications point of view, it is an improved alternative 

algorithm to the standard gradient descent (GD) method simply because GD requires computation 

of a full gradient on each iteration.  Stochastic Gradient Descent Algorithm is a model-free (blind) 

algorithm for optimization purposes and it is a local optimization that seeks to “climb the hill” 

toward the local maximum (or minimum), and for this reason it is sometimes also referred to as a 

“hill climbing algorithm”. In general, Stochastic Gradient Descent (SGD) algorithms are 

commonly used mainly because of their simplicity and ease of implementation. SGD has been 

widely used in control areas even for complicated systems. While the key advantage of the SGD 

algorithm is its model-free characteristic it is also popular due to its stability if it converges, its 

simplicity for implementation, and its potential for scalability. 
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 The algorithm is based on the idea where the small perturbation 𝛿𝑢𝑚 (the perturbation 

voltage which follows the Poisson random distribution or Gaussian random distribution on the 

𝑚𝑡ℎ step, e.g. the probability density distribution (𝑃(𝛿𝑢𝑚) = ±𝜏) = 0.5) is applied to the control 

parameter  𝑢𝑚 in the system. For instance, in our CPSA system, 𝑢1, 𝑢2, … , 𝑢𝑁 will be the cavity 

phases as the control parameters and the perturbations 𝛿𝑢𝑗 are applied to them. The resulting 

change in the system performance metric would be expressed in a Taylor expansion as in equation 

2.2 if perturbations were sequentially applied: [26] 

 

Figure 2.2: Hill-Climbing algorithm  

                         𝛿𝐽 =
δJ

𝛿𝑢𝑚
𝛿𝑢𝑚 +

1

2
 
𝛿2𝐽

𝛿𝑢𝑚
2  (𝛿𝑢𝑚)2 + ⋯                   (2.2) 

 The metric 𝐽 that we used in our system is a second harmonic generation (SHG) signal 

proportional to the intensity to the power of four at the output of the stackers. If we multiply both 

sides of the equation above by 𝛿𝑢𝑚 we will have: 

 

                           𝛿𝐽𝛿𝑢𝑚 =
𝛿𝐽

𝛿𝑢𝑚
(𝛿𝑢𝑚)2 + 𝜓𝑚                               (2.3) 

 The term 𝛿𝐽𝛿𝑢𝑚 in the equation above is essentially a sum of two terms. The actual 

gradient component 
𝛿𝐽

𝛿𝑢𝑚
(𝛿𝑢𝑚)2 and the noise term 𝜓𝑚. 
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 Now, there is an interesting feature in stochastic gradient descent algorithm compared to 

the conventional gradient descent algorithm and that is the replacement of the true gradient 

component 𝐽𝑚
′ =

𝛿𝐽

𝛿𝑢𝑚
 with the product 𝛿𝐽𝛿𝑢𝑚. This is key benefit of the Stochastic Gradient 

Descent (SGD) method over the conventional gradient descent (GD), one which requires exact 

calculation of the gradient at each point. We will present the proof for this feature in a more general 

fashion in section 2.2.3 where Stochastic Parallel Gradient Descent (SPGD algorithm. 

 

Stochastic Parallel Gradient Descent (SPGD)Algorithm       

 In order to speed-up the Stochastic Gradient Descent (SGD) algorithm, it is much more 

efficient to parallelly perturb the control parameters instead of dithering them sequentially. This 

opens the path to the stochastic parallel gradient descent (SPGD) algorithm which was first applied 

for adaptive optics in 1997 by M.A.Vorontsov [26]. The idea here is to apply perturbations 𝛿𝑢𝑗 

(the perturbation voltage vector) simultaneously (Parallel) to the control parameters in the system.  

 

 

             𝛿𝐽 = 𝐽(𝑢1 + 𝛿𝑢1, 𝑢2 + 𝛿𝑢2, … , 𝑢𝑁 + 𝛿𝑢𝑁) − 𝐽(𝑢1, 𝑢2, … , 𝑢𝑁)      (2.4) 

                         𝛿𝐽 = Σ
δJ

𝛿𝑢𝑗
𝛿𝑢𝑗 +

1

2
 Σ

𝛿2𝐽

𝛿𝑢𝑖𝛿𝑢𝑗
 (𝛿𝑢𝑖𝛿𝑢𝑗) + ⋯                   (2.5) 

 Now, in this part, it will be shown why in SGD the exact gradient can be replaced by the 

product 𝛿𝐽𝛿𝑢𝑚. Let us evaluate both sides of the equation above in terms of average [26]. 

                           < 𝛿𝐽𝛿𝑢𝑚 >=
𝛿𝐽

𝛿𝑢𝑚
< (𝛿𝑢𝑚) >2 +< 𝜓𝑚 >       (2.6) 

                                      

      < 𝜓𝑚 >= ∑
δJ

𝛿𝑢𝑗
< 𝛿𝑢𝑗𝛿𝑢𝑚 >𝑁

𝑗≠𝑚 +
1

2
 ∑

𝛿2𝐽

𝛿𝑢𝑖𝛿𝑢𝑗
 (< 𝛿𝑢𝑖𝛿𝑢𝑗𝛿𝑢𝑚 >)𝑁

𝑖,𝑗 +     (2.7) 
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 Usually the terms 𝛿𝑢𝑗 are generated as statistically independent variables with zero 

expected value and same variances.   

< 𝛿𝑢𝑗𝛿𝑢𝑚 >= 𝜎2𝛿𝑖,𝑗   &&   < 𝛿𝑢𝑗 >= 0 

                                         < 𝛿𝑢𝑖𝛿𝑢𝑗𝛿𝑢𝑝 >= 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗, 𝑝                                          (2.8) 

 Consequently < 𝜓𝑚 >= 𝑂(𝜎4) . Therefore, we can conclude that statistical average of 

the term 𝛿𝐽𝛿𝑢𝑚 (stochastic gradient) is well-approximated by the scaled gradient value (𝐽𝑚
′ ) to 

the accuracy of  𝑂(𝜎4). This is the most important conclusion manifesting the reason why the 

stochastic gradient descent can be a suitable candidate for replacement of the conventional 

gradient descent algorithm. (e.g. replacement of 𝐽𝑚
′  by  𝛿𝐽𝛿𝑢𝑚). 

 

 As is known, control parameters { 𝑢𝑚} (m=1,…,N) in the conventional gradient descent 

algorithm are updated through an iterative process as 𝑢𝑚
𝑖+1 = 𝑢𝑚

𝑖 − 𝜇(
𝛿𝐽

𝛿𝑢𝑚
), where 𝑖 is the 

iteration number and 𝜇 is the gain coefficient (positive for minimizing Δ𝐽 ). This iterative process 

can be similarly applied for the SGD algorithm by replacing the actual gradient term 
𝛿𝐽

𝛿𝑢𝑚
 by the 

so-called stochastic gradient term 𝛿𝐽𝛿𝑢𝑚 discussed above. The resulting relation is as follows: 

 

                                                              𝑢𝑚
𝑖+1 = 𝑢𝑚

𝑖 − 𝜇(𝛿𝐽𝑖𝛿𝑢𝑚
𝑖 )         (2.9) 

 

 It is necessary to evaluate the variation of the metric function as the dithering 𝛿𝑢𝑚on the 

control parameters is applied. The variation of the metric function between two consecutive 
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iterations can be written as Δ𝐽 = 𝐽(𝑢𝑖+1) − 𝐽(𝑢𝑖). Plugging equation (2.9) into equation (2.4) 

and (2.5) we would have the following: 

Δ𝐽 ≅ ∑ (
𝛿𝐽

𝛿𝑢𝑚
)

𝑁

𝑚=1

(−𝜇𝛿𝐽𝛿𝑢𝑚) 

= −𝜇 ∑ (
𝛿𝐽

𝛿𝑢𝑚
)

𝑁

𝑚=1

(
𝛿𝐽

𝛿𝑢𝑚

(𝛿𝑢𝑚)2 + 𝜓𝑚) 

≅ −𝜇 ∑ (
𝛿𝐽

𝛿𝑢𝑚
𝛿𝑢𝑚)

2
𝑁
𝑚=1 − 𝜇 ∑

𝛿2𝐽

𝛿𝑢𝑚𝛿𝑢𝑛
 (𝛿𝑢𝑚𝛿𝑢𝑛)

𝑁
𝑚,𝑛≠𝑛                   (2.10) 

 By using the assumptions in (2.8) implying that the dithering values are statistically 

independent from each other and their variances are the same and equal to 𝜎, (2.10) can be 

evaluated in terms of the statistical average as follows: 

                                             < Δ𝐽 > = −𝜇𝜎2 ∑ (
𝛿𝐽

𝛿𝑢𝑚
)
2

+ 𝑂(𝜇𝜎4)𝑁
𝑚=1                  (2.11) 

 Equation (2.11) shows that the metric function tends to decrease on average under the 

previously-mentioned conditions if the first term dominates the sum on absolute. 

 In this part a thorough reasoning from physical point of view is presented to manifest the 

advantage of the SPGD over sequential-based SGD in terms of the convergence speed. It has been 

proved in the literature that the maximum speed of the sequential-based SGD algorithm is a factor 

of N slower than the conventional gradient descent algorithm. Now we will show that SPGD can 

reduce the upper limit of this maximum speed to √𝑁 meaning that the maximum speed of the 

SPGD algorithm is effectively √𝑁 slower than the conventional gradient descent algorithm. In 

other words, SPGD performs √𝑁 times faster than the sequential-based SGD algorithm.  
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 SPGD is implemented by simultaneously generating N stochastically independent 

dithering values and applying them in N parallel paths. The variation of the single metric function 

instead is evaluated only through a single path. This means that maximum effective information 

that can be obtained on average about the response of the system to the N paths of control 

parameters is through √𝑁 paths. However, this is the best case that can be achieved only if all the 

N dithers are completely independent from each other allowing for maximum information 

extraction. The worst case also happens when the information is extracted only through a single 

path. As a result, by parallelly dithering the control parameter through SPGD once can achieve a 

factor of √𝑁 faster speed compared to sequential-based SGD algorithm. [30] 

 

Convergence of SPGD  

 Convergence of the SGD or SPGD algorithms has been analyzed from different points of 

view. One of the well-known ways is through the theory of convex/concave 

minimization/maximization. It can be shown that by making the gain parameter sufficiently small 

in the vicinity of the global peak the algorithm is almost guaranteed to converge to the global 

maximum. Otherwise, it is mostly probable for the algorithm to converge to a local maximum. 

This analysis is essentially one of the results of the so-called Robbins-Siegmund theorem [35]. As 

we will be explaining more in detail in further chapters, the objective function in our optical system 

is not a concave/convex function since it has many local peaks around the main global peak. 

However, executing a local search prior to the actual stochastic gradient descent algorithm will 

compensate for that we can show that the objective function can converge to the desired global 

peak. 
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 Convergence of the gradient-descent-based algorithms can be also viewed and analyzed 

from other directions. In fact, the steeper the gradient path in the landscape is, the faster the 

algorithm reaches the ultimate global peak. This essentially implies that the larger absolute values 

of the gradients 𝐽𝑚
′ =

𝛿𝐽

𝛿𝑢𝑚
 at each point in the landscape are, the steeper the gradient curve is and 

consequently the algorithm approaches the peak faster. This idea can be similarly applied to the 

SPGD algorithm as well where instead the average variation of the goal function < 𝛿𝐽 > should be 

maximized to increase the convergence speed. [26] 

 

stability of SPGD  

 Stability analysis for SPGD-based Control systems can be done in different ways. For 

instance, for those systems where the goal/metric function is mathematically provided, Lyapunov 

functions are used to prove that a system is locally stable [28]. In this technique, the defined 

function needs to be locally evaluated for 2 different criteria. One is that the function is locally 

positive definite and the second is that it is simultaneously possess a semidefinite negative time 

derivative at that spot. Upon satisfaction of these two criteria the system is proved to be stable at 

the specified spot. 

 Another approach which has recently been developed is based on the assumption that the 

goal function behaves parabolically around the point to be stabilized. [22]. In this analysis optimal 

steady state error of the cavity phase and average of the metric function has been analytically 

calculated as follows: 

                                                                    𝐸𝑟𝑟(𝛿𝑖) ≈ 3.42𝑀𝑅0
2      

                                                      < 𝐽(𝛿 ) > ≈ 𝐽(𝛿 𝑜𝑝𝑡) − 1.71|𝐻|𝑀2𝑅0
2     (2.11) 
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 Where 𝐸𝑟𝑟(𝛿𝑖) is the steady state error of cavity phases, 𝑀 is the number of cavities, 𝑅0 is 

the standard deviation of the cavity phase noise profile, and |𝐻|is the magnitude of the second 

derivative for the metric. As |𝐻| does not show up in (2.11) for calculating the steady state error it 

implies that 𝐸𝑟𝑟(𝛿𝑖) does not depend on what objective you have chosen or in other words, only 

the number of cavities and the noise magnitude matters for minimizing the steady state standard 

deviation. 

 

2) LOCSET (self-referenced & self-synchronous) 

In this section a summary of the theory of an active coherent technique called LOCSET (locking 

of optical coherence by single-detector electronic-frequency tagging) [51,52,53] is presented. This 

technique is usually implemented in two different ways namely self-reference and self-

synchronous. The difference is that in self-synchronous version all the array elements in the system 

are modulated in phase whereas in self-referenced version one of the elements is remains 

unmodulated during the locking process. In the following section a summary of how this technique 

is modeled and implemented is presented. 

 Suppose that the electric fields associated with each individual array element in an array of 

optical fibers are modeled as polarized plane waves as in equation (2.12): 

   𝐸𝑚 = 𝐴𝑚cos (𝜔𝐿 . 𝑡 + 𝜙𝑚 + 𝐵𝑚 sin(𝜔𝑚. 𝑡))      (2.12) 

Where 𝐴𝑚 (1 ≤ 𝑚 ≤ 𝑁) represent the amplitudes of the electric fields for each of the modulated 

array elements. 𝜔𝐿 represents the central laser frequency, 𝜙𝑚 represents the optical phases 

associated with each array element which equivalently shows the relative phase among them. 

𝛽𝑚 represents the phase modulation associated with the 𝑚𝑡ℎ element in the array, 𝜔𝑚 represents 

the radio frequency (RF) angular frequency associated with the 𝑚𝑡ℎ array element. Notice that for 
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the case of self-referenced LOCSET one of the array elements is not modulated. The total electric 

field sensed at the photodetector can be modeled as the superposition of the individual modulated 

and unmodulated electric fields as:   

  𝐸𝑡𝑜𝑡 = ∑ 𝐸𝑚(𝑡)𝑁+1
𝑚=1  for the self-synchronous LOCSET     (2.13) 

 𝐸𝑡𝑜𝑡 = 𝐸𝑢𝑚(𝑡) + ∑ 𝐸𝑚(𝑡)𝑁
𝑚=1    for the self-referenced LOCSET     (2.14) 

In equations (2.13) and (2.14), 𝐸𝑢𝑚(𝑡) represents the unmodulated electric field.  

As a result, the photodetector current or the sensed intensity by the photodetector is proportional 

the above summation squared as follows: 

    𝐼𝑡𝑜𝑡 ∝ (𝐸𝑢𝑚(𝑡) + ∑ 𝐸𝑚(𝑡)𝑁
𝑚=1 )2 = (𝐸𝑢𝑚

2 (𝑡) +

∑ 𝐸𝑝(𝑡)
𝑁
𝑝=1 ∑ 𝐸𝑞(𝑡) +𝑁

𝑞=1 2𝐸𝑢𝑚(𝑡)∑ 𝐸𝑚(𝑡)𝑁
𝑚=1 )        (2.15) 

The intensity signal is then used to extract the error signal through RF demodulation process. The 

whole intensity function is multiplied by sin(𝜔𝑚𝑡) and integrated over certain time period to 

extract the error signal associated with the 𝑚𝑡ℎ array element (see equation 2.16))  

 

    𝐸𝑟𝑟(𝑚) =
1

𝜏
∫ 𝐼𝑡𝑜𝑡(𝑡). sin(𝜔𝑚𝑡)𝑑𝑡

𝜏

0
    (2.16) 

 

 The aforementioned error signal can be approximated to high degree of accuracy under 

specific condition. This condition states that the integration time should be sufficiently longer than 

2/min (𝜔𝑖 − 𝜔𝑗) for all the 𝑖′𝑠 and 𝑗′𝑠 where 1 ≤ 𝑖, 𝑗 ≤ 𝑁 and 𝑖 ≠ 𝑗. Under this condition the error 

signal can be approximated as follows: 

   𝐸𝑟𝑟(𝑚) ∝ √𝑃𝑚𝐽1(𝛽𝑚)[∑ 𝐽0(𝛽𝑗). √𝑃𝑗  sin(𝜙𝑗 − 𝜙𝑚)]𝑁
𝑗=1     (2.17) 

Where 𝐽0 and 𝐽1 are the 0𝑡ℎ and 1st order Bessel functions respectively, and 𝑃𝑖 represent the optical 

power sensed by the photodetector associated with the ith  array element. 
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3) Hänsch-Couillaud technique 

 This technique has been first used by T.W. HANSCH and B. COUILLAUD to stabilize 

the frequency of the laser by polarization spectroscopy of a passive reference cavity but has been 

widely used for variety of spatial combining of FPCA laser systems as well. [54]. Prior to this 

technique there were many locking schemes that were used to electronically locked the laser 

frequency to a passive reference cavity. However, this technique utilizes a passive cavity as well 

as an internal linear polarizer to monitor the changes in the polarization of the reflected beam [55]. 

 

Figure 2.3: Scheme of laser frequency stabilization using Hänsch-Couillaud technique [55] 

 

 In order to briefly explain this technique, we consider a linearly polarized incoming light 

from the laser incident on the passive reference cavity with the intracavity polarizer (see figure 

2.3). This linearly polarized light can be decomposed into two orthogonal linearly polarized 

electric fields, parallel and perpendicular to the transmission axis of the polarizer inside the cavity. 

As calculated in [55], the reflected electric fields associated with the two orthogonal components 

can be calculated as follows: 

   𝐸||
𝑟 = 𝐸||

𝑖 (√𝑅1 −
𝑇1𝑅

√𝑅1

𝑐𝑜𝑠𝛿−𝑅+𝑖𝑠𝑖𝑛𝛿

(1−𝑅)2+4𝑅𝑠𝑖𝑛21

2
𝛿 
)  & 𝐸⊥

𝑟 = 𝐸⊥
𝑖 √𝑅1    (2.18) 

𝑅1 and 𝑇1 are reflectivity and transmittivity of the M1 mirror shown in the scheme, 𝑅 is a ration 

factor taking into account the losses in the intracavity polarizer. It also determines the amplitude 
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ration between successive roundtrips, and the cavity finesse as well. By looking into the two 

reflected electric field, one can see a phase difference between the two components due the 

imaginary part of 𝐸||
𝑟. This happens at off-resonances (𝛿 ≠ 2𝑚𝜋) where produces an elliptically 

polarized beam. This elliptically polarized light then enters a combination of a 𝜆/4 retarder and a 

beam polarization splitter to measure its ellipticity. The difference between the output intensities 

𝐼𝑎 − 𝐼𝑏 as shown in the scheme is then used to generate an error signal and consequently servo-

lock the laser frequency.  

 

4) A. D White Stabilization Technique: 

 This technique was reported by A. D White in 1965 for stabilizing lasers based on high 

quality factor optical cavities [57]. Prior to this Pound in 1946 introduced the frequency 

stabilization scheme in microwave regime where high quality factor cavities were used as 

discriminators [56]. Here in optical regime, transmission or reflection characteristic of a high 

quality factor optical reference cavity is used to measure the deviation of the laser frequency from 

the reference cavity frequency and thus control it. In order to this, central frequency of a high Q 

optical cavity is modulated at a low frequency 𝑓𝑚, and consequently the reflected or transmitted 

beam is modulated as well. The intensity modulated component in the transmitted beam is then 

detected by a phase detector (PD) and used an error signal to lock the laser frequency to the center 

frequency of the cavity [56]. There exist some drawbacks for this technique. First, the electronics 

required for modulation and phase detection need to be extremely precise and they are quite slow 

in functioning. Second, the signal away from the resonance becomes small very fast and thus 

makes it difficult to compensate for very large laser frequency deviations.  
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5) Pound Drever Hall (PDH) method for phase and frequency stabilization: 

  This technique is a powerful method for stabilization of laser frequency using the 

derivative of the reflected beam from an optical cavity [58]. Prior to this technique, many locking 

schemes such as [57] were introduced which were based on measuring the intensity of the 

transmitted beam through an optical cavity, and then feeding it back to the laser to compensate for 

the changes in the laser frequency. However, these techniques could not allow the user to 

distinguish between laser intensity changes and laser frequency changes since both of them could 

produce the same changes in the intensity of the reflected light [59]. In this case, PDH method uses 

the reflected beam from an optical cavity and try to lock it to zero which separates the intensity 

noise from the frequency noise. In this way the previous drawback is resolved. However, due to 

the symmetry of the reflected intensity around the resonance, characteristic of the derivative of the 

reflected light is needed since its spectrum is asymmetric with respect to the resonance. Above the 

resonance the intensity increases in phase with frequency, and below resonance it decreases 180 

degree out of phase from the frequency. This reflected signal is then feedbacked to the laser for 

locking its frequency to the optical cavity. The detail of this scheme is shown in figure 2.4. 
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Figure 2.4: (top) block diagram of the PDH stabilization scheme, (bottom left) intensity spectrum of the reflection coefficient for 

a Fabry-Perot cavity (bottom right) phase spectrum of the reflection coefficient for a Fabry-Perot cavity. [58,59] 

 

SPGD Implementation  

 As discussed in the survey of stabilization algorithms, monitor signals have been used in 

some techniques which will be troublesome if we extend the number if GTI cavities. Therefore, 

we can use the two-photon absorption (TPA) or equivalently second harmonic generation (SHG) 

signal detection schemes. In the cascaded GTI configuration, instead of using a monitor signal, a 

single peak power detector is used to feedback the frequency-modulated channels. Each channel 

is modulated at a modulation frequency of few kHz utilizing analog circuits and then demodulated 

in the same way as done in single cavity stabilization [37]. 

 However, using the peak detection technique can be utilized in more efficient and simpler 

control algorithms that can stabilize the stackers much faster.      

 To resolve this issue, it is needed to first look for a stochastic-based algorithm since 

instantaneous cavity phase values or their positions in the N-dimensional phase landscape is not 
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known, and second a model-free algorithm which does not dependent on the analytical form of the 

metric as a function of our control parameters (e.g. Cavity Phases). That is why we chose 

Stochastic Parallel Gradient Descent (SPGD) algorithm for stabilization and optimization purposes 

in this research. This algorithm is a hill-climbing technique which will be further explained in the 

subsequent section. 

 The demonstrated control system based on the SPGD algorithm, is shown in Fig 2.5. It 

applies small random perturbations to all control parameters (voltages of PZTs) simultaneously, 

and then evaluates the gradient variation of system performance metric (J). 

 

Figure 2.5: SPGD model in GTI based CPSA system 

 

 

 Although measuring the exact instantaneous cavity phases is not required for stacking there 

are some ways to measure them. As an example, our collaborators in Lawrence Berkeley National 

Laboratory (LBNL) uses a pulse-pattern-based cavity phase detection algorithm to measure the 

instant values of the GTI cavity phases. In this technique a burst of N pulses separate from the 

actual stacking burst is transmitted through the GTI cavities. This specific pulse burst probes the 
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instantaneous round-trip phase of the GTI cavities based on the fact that there are different 

measurable intensity functions corresponding to each of the individual pulses while the cavity 

phases changes over the 2𝜋 interval. As a result, it is supposed that the instantaneous phases can 

be probed and measured by combining those intensity functions [25]. However, beside the 

technical and implementation costs behind the above technique, still it suffers from the fact that it 

does not inherently determine what cavity phases are required to realize stacking.  

 

2.3 Stabilization System Implementations 

2.3.1 Analog Electronics 

       The initial techniques explained in the beginning of the chapter for locking single cavity using 

Monitor signal and Transmission, and locking multiple cavities using peak detection and frequency 

tagging of each channel have been implemented using Analog Circuits (See Fig 2.6) 

        

 

Figure 2.6: Analog-Implementation for stabilizing N-cascaded GTI cavities 
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 Such implementations face many challenges. First is that the number of analog circuits 

linearly increase with the number of GTI cavities thus making it inflexible. Implementations of 

such algorithms either in Analog or Digital platforms requires extensive effort for designing filters, 

frequency up/down counters, mixer, phase shifters, and etc. The other challenge is that manual 

adjustment of the feedback parameters such as gain and perturbation to lock the cavities take 

extensive time for multiple GTI cavities case (e.g. 2 Cavities take 0.5 hour and 4 Cavities take 4 

hours), thus making it quite inefficient. Lack of remote accessibility and automation are also some 

other disadvantages of this implementation.  

 

2.3.2 Software-Based Implementation   

 In order to bypass the challenges in Analog-Based Implementation of the feedback control 

system we can implement the digital control system which benefits from remote accessibility, 

automation, improved performance at low frequencies where low frequency electronic noise may 

be a problem. As the first try, we implemented a LABVIEW-Based control system using stochastic 

parallel gradient descent (SPGD) algorithm which is in-detail explained in chapter 2. (See Fig 2.7)  
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 LABVIEW can be considered as a graphical-based language and tool for designing 

complex control systems which provides the user with many pre-defined modules for application 

development purposes via Graphical User Interface (GUI). The existing modules and libraries 

inside the design environment are fully compatible with the external electronic instrument and 

hence are widely used in many automation tasks. The digital signal processing and arithmetic 

operations carried out in the LABVIEW environment makes it almost immune to the noise 

compared to the analog platforms and hence is an advantage. 

 

  

 However, control loops implemented in LABVIEW suffer from poor execution speed. In 

order to overcome this limitation we implemented the algorithm in python.   

 In this section we report the demonstration of a turn-key cavity-stabilization technique for 

an N-cavity sequence of GTI pulse stackers, which takes seconds to establish itself, and then 

operates robustly over long and continuous time period. It is very simple in that it does not require 

Figure 2.7: Software-Based Implementation for stabilization of N GTI stacker system 
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any separate monitor signals, or frequency tagging of each individual cavity. It is based on a single 

peak-detector, which samples the stacked-pulse signal at the system output and achieves optimized 

and stable stacking-system performance by maximizing the output pulse peak power. Its 

implementation is completely digital, relying on analog-to-digital signal conversion, and on 

software-based system control algorithms. In this control system the SPGD algorithm achieves a 

very time-efficient and, therefore, rapid system control, thus ensuring robust long-term stability of 

an N-GTI pulse stacking system against external perturbations. Since the hardware complexity of 

the demonstrated control system does not depend on the number N of the stacking cavities, it 

constitutes a very efficient control platform for scaling of the CPSA technique.  

 Our system control pathway consists of a pulse peak-power detector, a single-channel ADC 

converter, computer-based system control software, and an N-channel DAC converter, which 

controls an N-channel PZT driver.  

 There are number of merits that are important in complex control systems such as limitless 

flexibility, sufficiently high-speed execution loop, and so on. National Instrument Fixed-Hardware 

A/D and D/A convertors along with the communication/data path through USB with the PC where 

the control algorithm is implemented in either LABVIEW or Python languages is limited in 

providing high speed execution loop. The PC CPU involved in the data communication path and 

different operations must compete for the same resources. The other limitation to be addressed in 

such systems is that the software application (e.g. the control algorithm) cannot be hardware-wised 

implemented where the operations and control algorithms are run much faster. This is the due to 

the fixed hardware resources in the National Instrument Modules. (However, recently National 

Instruments LABVIEW-FPGA modules has provided embedded FPGAs that can be programmed 

using LABVIEW, but it still lacks in some specific cases [27]).  
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 In order to overcome the limitations explained, we decided to benefit from the Field-

Programmable-Gate-Arrays (FPGA) technology. FPGAs are well-known for their potentially 

high-speed operations. This benefit is mainly because they allow for parallel logical and arithmetic 

operations without the need to compete for access to the processor resources. There is also no 

operating system in FPGA systems as opposed to the PC-based systems or processors. These 

features make it possible for the user to be able to parallelly run as many control loops as needed 

at potentially and sufficiently high execution and update rates. High speed gets more and more 

important when we go to real-time control of pulse shaping with bandwidth of at least 4 to 5 GHz 

for saturation compensation. Overcoming the limitations of the conventional Arbitrary Waveform 

Generators (AWGs) by replacing them with FPGA/fast Digital-to-Analog converters (DACs) is 

another benefit that can be addressed here. In the next section, details of FPGA control systems 

will be explained.  

 

2.3.3 FPGA Based Control System 

 Timing and synchronization among electronic and control elements plays one of the most 

important roles in outputting an exact timed and jitter-free signal in any control systems. This 

becomes more critical in time-domain-based techniques such as combining approaches where the 

read-out, data-processing, and outputting feedback all need to be synchronized. Here in this 

research we took advantage of the fast processing and high-precision timing capabilities of the 

FPGA technology through development of software and firmware to realize stacking stabilization 

and input burst optimization in CPSA system. Fast Analog-to-Digital (ADC) for reading purposes, 

fast DAC for outputting high-precision feedback signals, FPGA evaluation-board for processing 

purposed, central PC, for executing the control algorithm, all make a distributed control system 

which is not only stable enough but is potent to be scaled for larger number of resonators too.   
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 Let us first take a look into the historical path for control implementations and see how 

FPGAs came in to lead the path. In general control implementations can be realized in two different 

ways, software-based and hardware based. Software-based implementations such as DSPs (Digital 

Signal Processors) and microcontrollers require a memory as a platform for maintaining and saving 

the target control program and a processor to decode and executes the control program. On the 

other hand, hardware-based implementations utilize electronic components to perform the control 

commands. In this category many generations have been emerged. In the early 19th century relays 

were developed which were used as electric switches to turn on/off bigger parts of a system. Then 

digital gates appeared to be an efficient alternative for on/off switching and other commands in a 

control system. After these, Integrated circuits showed up starting from the early mini-scale 

versions (MIS), then large-scale (LSI), Ultra-large scale (USI) and finally very-large scale ICs 

(VLSI). And finally, application-specific integrated circuits were developed using those ICs for 

specific tasks in a complex system. However, the process for making ASICs are quite time 

consuming and hence are not popular for control applications. 

 

  FPGA is a technology that allows the user to configure arbitrary integrated circuits for 

certain purposes and any logic-based tasks can be implemented using these FPGAs. They have 

shown great advantages compared to both software-based control systems and previous hardware-

based generations of controllers. Much faster execution and processing time, scalability, flexibility 

for being configured for different functions, efficient power consumption and etc are among many 

advantages of FPGAs. 

 Specifically, FPGAs are we suited for implementing digital control systems due to their 

high processing and execution speed, compactness, and power efficiency. Real-time control 
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systems where the inputs and the target/goal functions need to be updated in real-time are the best 

applications where FPGAs can be used in the form of a single chip or an evaluation board for 

communication between other boards. Control algorithms are programmed in a reconfigurable and 

small-size platform which can be easily edited. 

 

Hardware Structure of the FPGA control system 

 As shown in figure 2.8, the ML605 FPGA Evaluation Board is an FPGA based digital 

signal processing board which is used for designing versatile electronic and control platforms using 

the Virtex-6 FPGA. The Ml605 evaluation board connects the FPGA and the CPU via 1Gbit 

Ethernet and provides the interface between the FPGA and the physical layer (PHY) through GMII 

(Gigabit Media Independent Interface). Here, the FPGA evaluation board is externally interfaced 

with two boards. First it is interface with 2-Channel 1GSPS ADC and 2-Channel 1GSPS DAC via 

FMC HPC connector. And second, it is interfaced with XM105 daughter card via FMC LPC 

connector and then gets connected to the 8-channel slow DAC. 

  

 The ML605 FPGA board processes digital signals captured by high-speed ADC and then 

sends feedback signals to the modulator and the cavity actuator. An outerloop control module tries 

to optimize the input burst profile in terms of amplitude and phase and a cavity control module 

ensures that each optical cavity is phase stabilized. The FPGA outputs the feedback control signal 

to optical cavities at kHz frequency, to support kHz repetition rates.  
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Figure 2.8: FPGA-Based Hardware Structure with Experimental Setup 

 

 

 The sampling clock, which is the master clock signal, is supplied externally by the laser 

oscillator to enable simultaneous sampling at a rate of 1 GSps (~977.8 MSps). A trigger signal at 

MHz repetition rate, which is derived from the master clock, determines the repetition rate at which 

the phase and amplitude waveforms are loaded into the Electro Optic Modulators (EOMs). In 

addition, through a firmware-based down counting, the 1MHz trigger signal is converted to a 

50KHz trigger to enable the ADC reads the SHG signal at 50KHz.The XM105 Debug Card is 

designed to provide a number of multi-position headers and connectors which output  FPGA 

interface  signals  to  slow DACs (which drive the cavity PZTs). 

 

 

 



 51 

Firmware and Software Development for the FPGA Based Control System 

 In this section, I collaborated with the Lawrence Berkeley National Laboratory. The FPGA 

firmware can be divided into three layers: 

  The 1st layer (bottom one) is where all the required hardware drivers need to be transferred 

into a firmware. Here the firmware is inherited from the FMC110 (1GHz ADC and DAC each one 

2 channels).   

 The 2nd layer (Middle One) is the layer where encoding and decoding of the data is done. 

The FPGA needs to encode the acquired digital data via 1GHz ADC and the central host PC needs 

on the other side needs to decode them. A UDP-based protocol firmware/software has also been 

developed for the data transmission and communication of the ML605 and the host PC.  

 The 1st layer (Top One) in the firmware contains a control program functioning as a digital 

signal processor for stabilization and optimization purposes in CPSA system. In this layer, two 

different buffers have been employed to accommodate the required two-sided data transmission 

between the central PC (as the host) and the hardware (including the FPGA evaluation board, fast 

ADC, fast DAC, and slow DACs). Specifically an ADC buffer has been developed to provide a 

fast and synchronous exchange of data from the ADC to the central PC, and a DAC buffer has 

been developed to provide a secure and fast data transfer from the central PC to the DAC side. A 

serial-peripheral interface (SPI) has also been made to serialize the generated digital data and 

clocking them into the ad5628 DAC. On the software side, we implemented all the control 

algorithms on PC utilizing Python and communicating with the FPGA system via Ethernet. 
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Chapter 3 System Noise Characterisation Techniques 

 

3.1 Phase Noise Measurement Technique Using a GTI Stacker 

  Studying and understanding the sources of noise and disturbances, and their effect at the 

output is a crucial step in control systems for improving the system performance. In electrical 

systems noise behavior in different time and frequency regions is investigated to fully characterize 

it and subsequently minimize it. In this section we are primarily interested in understanding how 

much noise (in radians) from the oscillator pulse train and the GTI cavities appear in the 

measurements of our system metric and for that we will use a technique which is based on the 

characteristics of the GTI stacker cavity or the Oscillator Cavity. 

 This section starts with mathematical representation of the oscillator pulse train . Time 

domain electric field of the oscillator pulse train can be written as follows in the absence of any 

kind of noise [38,39,40]: 

 

                                              𝐴(𝑡) = 𝐴0 ∑ 𝑎(𝑡 − 𝑚𝑇𝑅)𝑒𝑖(𝜔𝑐𝑡+𝑚Φ𝐶𝐸)∞
𝑚=−∞         (3.1) 

 As shown above the pulse train consists of number of pulses with amplitude 𝐴0, and the 

terms inside the summation are the envelopes of the pulses 𝑎(𝑡) and the propagation part 

represented by the exponential function.𝑇𝑅 is the pulse repetition period, 𝜔𝑐 is the angular carrier 

frequency, and Φ𝐶𝐸 is the pulse-to-pulse carrier envelope phase slip which is the mismatch from 

the peak of the envelope. In the frequency domain, it is equivalent to the carrier envelope offset 

frequency 𝜔𝐶𝐸𝑂 = Φ𝐶𝐸 ∗ 𝑓𝑟𝑒𝑝. Now, since the phase velocity 𝑣𝑝 and the group velocity 𝑣𝑔 for the 
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pulse train are not equal, the pulse repetition period 𝑇𝑅 does not necessarily correspond to an 

integer number of wavelengths. This is the origin of the carrier-envelope offset which shifts the 

frequency comb by  𝑓𝐶𝐸𝑂 = (
1

2𝜋
) ∗  𝜔𝐶𝐸𝑂 . This representation can be visually shown as in the 

following figure 3.1. 

 

Figure 3.1: Time-frequency correspondence of the output from a femtosecond mode-locked laser. 

 

 The pulse train in equation 3.1 in the presence of noise will be as follows: 

      𝐴(𝑡) = [𝐴0 + Δ𝐴0(𝑡)]∑ 𝑎(𝑡 − 𝑚𝑇𝑅 + Δ𝑇𝑅(𝑡))𝑒𝑖(𝜔𝑐𝑡+𝑚Φ𝐶𝐸+Δ𝛿𝑝𝑢𝑙𝑠𝑒(𝑡))∞
𝑚=−∞        (3.2) 

Where Δ𝐴0(𝑡) is the amplitude noise, Δ𝑇𝑅(𝑡) is the pulse timing jitter (the envelope delay which 

varies from pulse to pulse), and Δ𝛿𝑝𝑢𝑙𝑠𝑒(𝑡) represents the phase noise from the oscillator. These 

are the three different types of noise appearing in the oscillator pulse train. 

 

 Next, we describe the GTI stacker response which is dependent on both the cavity phase 

and the pulse train errors. Using equation (1.6) for a single cavity, in order to achieve ideal 

stacking, the output stacked pulse train is the convolution of the input pulse train �̃�𝑖𝑛[𝑘] and the 
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cavity impulse response ℎ̃[𝑛 − 𝑘]. The impulse response of a single lossless GTI cavity is the 

response of that cavity to a single pulse 𝑝𝑖𝑛(𝑡) = 𝑝𝑠(𝑡)𝑒
𝑖(𝜔𝑡+𝜙0)as follows: 

                                      𝑝𝑜𝑢𝑡(𝑡) = ∑ ℎ̃[𝑛] 𝑝𝑠(𝑡 − 𝑛𝑇𝑟)𝑒
𝑖(𝜔0𝑡+𝜙0)∞

𝑛=0    (3.3) 

 

                                      ℎ̃[𝑛] =  {
𝑟                                    𝑓𝑜𝑟 𝑛 = 0

−𝑟𝑛−1(1 − 𝑟2)𝑒𝑖𝑛𝛿           𝑓𝑜𝑟 𝑛 = 1,2, …
       (3.4) 

Where 𝑟 is the square root of the cavity mirror reflectivity 𝑅, and 𝛿 is the round-trip phase. An 

ideal pulse stacker is essentially a GTI resonator with folding mirrors whose reflectivities are 

exactly unity which completely reflects the incident electric and hence no losses are exhibited. 

This ideal GTI cavity is represented by an impulse response in which its complex conjugate time 

reverse can produce a perfect stacked pulse (With no pre-pulse and infinite pre-pulse contrast) if 

transmitted as the input pulse train. 

 

                                            𝑝𝑖𝑛(𝑡) = ∑ 𝐴𝑖�̃�[𝑛] 𝑝𝑠(𝑡 + 𝑛𝑇𝑟)𝑒
𝑖(𝜔0𝑡+𝜙0)∞

𝑛=0        (3.5) 

 

             �̃�𝑖𝑛[𝑛] = (ℎ̃[−𝑛])∗ = {
𝑟                                            𝑓𝑜𝑟 𝑛 = 0

−𝑟−𝑛−1(1 − 𝑟2)𝑒+𝑖𝑛(𝛿𝑚𝑜𝑑−𝜔0𝑇𝑅) 𝑓𝑜𝑟 𝑛 = −1,−2,…
     (3.6) 

  

 Notice n’s are negative, therefore +𝑖𝑛(𝛿𝑚𝑜𝑑 − 𝜔0𝑇𝑅) automatically accounts for 

conjugate. 𝜔0𝑇𝑅 is due to the carrier envelop offset from the oscillator.  We denote 

𝛿𝑝𝑢𝑙𝑠𝑒 = 𝛿𝑚𝑜𝑑 − 𝜔0𝑇𝑅 to indicate that this is the phase difference between any two consecutive 

input pulses. As shown above, if 𝛿𝑝𝑢𝑙𝑠𝑒 = 2𝜋𝑚 (m is an integer), the last pulse n=0 has 0 phase, 

and all the other pulses in the incident burst are in phase with each other and π degree out of phase 

with the last pulse. However, for the cases where the round-trip phase 𝛿 is not integer multiple of 
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2𝜋, it is required to add complex conjugate of that 𝛿 to all pulses which is equivalent to have a 

linear phase ramp according to the 𝑒𝑖𝛿 term in (3.4). 

 

 In general, the response of the GTI stacker to any arbitrary input signal 

(�̃�𝑖𝑛[0], �̃�𝑖𝑛[1], … , �̃�𝑖𝑛[𝑛]) can be calculated using the following convolution. 

 

                                                �̃�𝑜𝑢𝑡[𝑛] = ∑ �̃�𝑖𝑛[𝑘]. ℎ̃[𝑛 − 𝑘]𝑛
𝑘=−∞         (3.7) 

 

 In general where we have phase mismatch (𝛿 ≠ 𝛿𝑝𝑢𝑙𝑠𝑒) the convolution formula leads to 

the following: 

For n=0: 

�̃�𝑜𝑢𝑡[0] = 𝐴[0] ∗ ℎ[0] + 𝐴[−1] ∗ ℎ[1] + ⋯ = 𝑟2 + (1 − 𝑟2)2𝑒𝑖(𝛿−𝛿𝑝𝑢𝑙𝑠𝑒) + 𝑟2(1 −

𝑟2)𝑒𝑖2(𝛿−𝛿𝑝𝑢𝑙𝑠𝑒) + 𝑟4(1 − 𝑟2)𝑒𝑖3(𝛿−𝛿𝑝𝑢𝑙𝑠𝑒) + ⋯ = 𝑟2 + (1 − 𝑟2)2 (
1

1−𝑟2𝑒
𝑖(𝛿−𝛿𝑝𝑢𝑙𝑠𝑒))                    (3.8) 

For n<0: 

�̃�𝑜𝑢𝑡[𝑛] = 𝐴[𝑛]ℎ[0] + 𝐴[𝑛 − 1]ℎ[1] + ⋯ = (−𝑟−𝑛−1)(𝑟)(1 − 𝑟2)𝑒𝑖𝑛𝛿𝑝𝑢𝑙𝑠𝑒 + (𝑟−𝑛)(1 −

𝑟2)2𝑒𝑖(𝑛−1)𝛿𝑝𝑢𝑙𝑠𝑒𝑒𝑖𝛿 + (𝑟−𝑛+2)(1 − 𝑟2)𝑒𝑖(𝑛−2)𝛿𝑝𝑢𝑙𝑠𝑒𝑒𝑖2𝛿 + ⋯ = −𝑟−𝑛(1 − 𝑟2)𝑒𝑖𝑛𝛿𝑝𝑢𝑙𝑠𝑒(1 −

(1 − 𝑟2)(
𝑒

𝑖(𝛿−𝛿𝑝𝑢𝑙𝑠𝑒)

1−𝑟2𝑒
𝑖(𝛿−𝛿𝑝𝑢𝑙𝑠𝑒)

)          (3.9) 

 

 For the cases, where there is matching between the round-trip phase of the stacker 𝛿 and 

round-trip phase of the oscillator 𝛿𝑝𝑢𝑙𝑠𝑒 (e.g 𝛿 = 𝛿𝑝𝑢𝑙𝑠𝑒) , a perfect and ideal stacking is achieved. 

(e.g �̃�𝑜𝑢𝑡[0] = 1 and �̃�𝑜𝑢𝑡[𝑛] = 0 for all n<0) as one can simply verify from the formula above. 
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Considerations of Different Noise Sources in the Oscillator 

Amplitude Noise 

 It is not necessary to give mathematical derivations of amplitude noise as it can be directly 

measured by operating either at the peak or the minimum of the target function (e.g. second 

harmonic generation scan profile) where the derivative of the target function with respect to the 

phase is zero, thus enabling us to measure the amplitude noise from the oscillator. (this part will 

be explained in further detail explained throughout this chapter). 

 The effect of the amplitude noise in the oscillator can also be investigated by treating it as 

an added small-amplitude waveform to the original oscillator pulse train. Since the convolution is 

a linear operator, this amplitude noise can be convolved with the impulse response and affects the 

stacked pulse and the pre-pulses as follows: 

                                                �̃�𝑜𝑢𝑡[𝑛] = ∑ (�̃�𝑖𝑛[𝑘] + Δ�̃�𝑖𝑛[𝑘]). ℎ̃[𝑛 − 𝑘]𝑛
𝑘=−∞ =

∑ �̃�𝑖𝑛[𝑘]. ℎ̃[𝑛 − 𝑘] +𝑛
𝑘=−∞ ∑ Δ�̃�𝑖𝑛[𝑘]. ℎ̃[𝑛 − 𝑘]𝑛

𝑘=−∞                   (3.10) 

 In the formula above ∑ Δ�̃�𝑖𝑛[𝑘]. ℎ̃[𝑛 − 𝑘]𝑛
𝑘=−∞  determines the effect of the amplitude noise 

on the stacked pulse, pre-pulses, and accordingly on the target function. The target function chosen 

here is a second harmonic generation (SHG) signal which is a peak-power metric. This signal is 

proportional to the intensity squared of the stacked pulse train. 

Jitter Noise (envelope noise)  

 Jitter builds up over time. Jitter over the burst duration (e.g. ~ 100ns) is negligible. 

Therefore, the jitter within the bursts can be ignored. The jitter between the bursts are clearly large; 
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however, this jitter is exactly the same for all the pulses within the bursts therefore the effect of 

the jitter noise is ignored in the stacking. 

 

Phase Noise 

 Phase noise can be considered as GTI cavity phase noise, oscillator phase noise within the 

burst and the oscillator phase noise between the bursts. First, the GTI cavity phase drifts slowly 

due to mechanical fluctuations in the stacker system. However, on the oscillator side, in addition 

to the oscillator cavity phase drifts, there are more noise sources such as white noise from the 

pumping, heating noise (diodes thermal noise), noise from the gain medium, etc. This manifests 

that there is much more contribution to the total phase noise in the stacking system compared to 

the GTI cavity phase noise. This will be supported by experimental results throughout the thesis 

as well. However, all these noise sources within a given short burst duration (e.g ~ 100ns) will be 

negligible. Further measurements will also show that a control speed in kHz range is sufficient to 

compensate the effect of phase noise in the oscillator which means that the in-burst phase noise 

(in GHz range) is negligible. 

 Between bursts, the oscillator cavity drifts due to changes in the gain medium, changes in 

the pump level, temperature changes, or the mechanical drifts of components. This effect can be 

represented in 𝛿𝑝𝑢𝑙𝑠𝑒 where its value is fixed for all bursts, but they are slightly mismatched from 

the the GTI cavity 𝛿.   

 For the case where we use longer GTI stacker length (e.g. 9 times longer with Heriot 

Cavities) compared to the oscillator length, the same phase mismatch in the equal-length case 

produce noise which is effectively N times larger. This causes the measurement to be more 

sensitive to the oscillator noise. Therefore, for increasing the sensitivity of the measurements one 
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can use longer GTIs. This can be also understood through the mathematical derivations in (3.8) 

and (3.9) where 𝛿𝑝𝑢𝑙𝑠𝑒 changes into 𝑁 ∗ 𝛿𝑝𝑢𝑙𝑠𝑒 where the GTI stacker is N times longer than the 

oscillator cavity length. 

Phase Noise in the Pulse Train and the GTI Cavity Stacker  

In order to take into account, the additive effect of noise in the GTI cavity round-trip phases and 

oscillator pulses, equations (3.7) and (3.8) will change into the following respectively: 

�̃�𝑜𝑢𝑡[0] + �̃�0
𝑜𝑢𝑡(𝑡) = 𝑟2 + (1 − 𝑟2)2 (

1

1−𝑟2𝑒
𝑖(𝛿+Δ𝛿(𝑡)−𝛿𝑝𝑢𝑙𝑠𝑒−Δ𝛿𝑝𝑢𝑙𝑠𝑒(𝑡)))    (3.11) 

�̃�𝑜𝑢𝑡[𝑛 < 0] + �̃�0
𝑜𝑢𝑡(𝑡) = −𝑟𝑛(1 − 𝑟2)𝑒𝑖𝑛(Δ𝛿𝑝𝑢𝑙𝑠𝑒+Δ𝛿𝑝𝑢𝑙𝑠𝑒(𝑡))(1 − (1 −

𝑟2)(
𝑒

𝑖(𝛿+Δ𝛿(𝑡)−𝛿𝑝𝑢𝑙𝑠𝑒−Δ𝛿𝑝𝑢𝑙𝑠𝑒(𝑡))

1−𝑟2𝑒
𝑖(𝛿+Δ𝛿(𝑡)−𝛿𝑝𝑢𝑙𝑠𝑒−Δ𝛿𝑝𝑢𝑙𝑠𝑒(𝑡))

)                                          (3.12) 

 

 The most basic requirements for a noise measurement system are a metric function (which 

is sensitive to the control parameter, in this case cavity round-trip phase or the oscillator pulse 

round-trip phase) and a technique that determines how to measure the phase noise. Here we choose 

second harmonic signal as the metric since it is a function of the cavity and pulse phases and we 

retrieve the phase noise from that in the following way. 

 Any changes in the round-trip length of the GTI stackers or equivalently the oscillator 

cavity length would result in changes in the output stacked profile. Taking advantage of that, a 

peak detector that simply integrates the intensity squared over the stacked burst is a suitable choice 

to obtain the Second Harmonic Generation (SHG) signal as the desired metric for the feedback 

controller since it is sensitive to the changes of the control parameters and can be considered as 

mimic of a sum of the intensities squared. J=𝑆𝐻𝐺( 𝑟, 𝛿,𝛿𝑝𝑢𝑙𝑠𝑒).  
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                                                    𝐽 = ∑ (�̃�𝑜𝑢𝑡[𝑛]. (�̃�𝑜𝑢𝑡[𝑛])∗)2𝑛=0
𝑛=−∞                             (3.13) 

 Plugging equations (3.7) and (3.8) into equation (3.9) leads to a symmetric profile of the 

metric signal with respect to 𝛿 and 𝛿𝑝𝑢𝑙𝑠𝑒 meaning that scanning through either of them while 

fixing the other results in the same profile in the metric function. An example of the scanning 

profile is as follows where either 𝛿 or 𝛿𝑝𝑢𝑙𝑠𝑒 are scanned over a full period of 2𝜋. 

 

Figure 3.2: phase scan profile for measuring either GTI cavity phase noise or the Oscillator phase noise 

 

 In order to measure the phase noise either from the GTI stacker or from the oscillator, the 

measurement system scans through the phase values for at least two 2𝜋 periods and the SHG is 

accordingly measured. Fig 3.2 shows a simulated scan profile where the phases of a single GTI 

stacker or the oscillator cavity has been scanned for more than 4π radians. 

In a real measurement, the initial scanning is performed to capture the profile of the either GTI 

cavity or the Oscillator Cavity. If the scan is released roughly halfway between the maximum and 
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minimum SHG signal (since this is where the signal is most linear) the measurement of the drift 

in the SHG signal for a certain amount of time correspond to a measurement of the combined phase 

noise.     

 For this part, we have developed firmware for the FPGA control system that enables us to 

acquire data as fast as the external trigger signal. The measurement results shown in the subsequent 

sections have all been performed with 50 kHz acquisition rate. The following plot is the drift of 

the SHG signal associated with the scan in Fig 3.2, and being initiated at point C.  

 

Figure 3.3: an example of the SHG drift signal that starts beginning as the phase scan stops at point C in Fig 3.2. 

 

 Using the scan data (e.g. Fig 3.2) the measured drift signal (e.g. Fig 3.3) is converted to 

corresponding phase noise in radians by noting that the scan signal is 2π periodic in the cavity 

phase. In order to do that two approaches can be taken. In the first approach a pair of successive 

maximum and minimum values in the SHG signal is located and subsequently an adjacent pair of 

maxima (or minima) also located.  Then it is guaranteed that there is a 2π phase difference between 

a pair of maxima (or minima), so the phase difference between the successive maxima and minima 
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can be determined (e.g. it is π rads for simulation of Fig 3.2).  experimental evidence shows that 

voltage changes almost linearly with the phase between the maximum and minimum SHG values, 

so all the voltages measured in the drift file can be converted to a phase value (within the allowed 

phase values which are between 0 and π for the above plot).  This method is less precise (due to 

not perfect linear behavior of the SHG versus phase), but also less sensitive to system noise 

(amplitude noise from laser) since the data are collected away from the maxima and minima. 

 The other approach that can be taken is based on interpolation. With this method we use a 

scan file with some smoothing. Then we scale it so that the maximum value from the scan file is 

equal to the maximum value of the drift file. Once this is done, interpolation can be done to 

determine the phase values corresponding to a specific voltage value (again within the allowed 

phase values, which are between 0 and π in Fig 3.2).  This method might be more precise but could 

also be more sensitive to system noise (amplitude noise from laser) causing problems in the 

conversion.  

 For simplicity we use the first approach without applying any interpolation and the phase 

noise can be retrieved as follows: 

                                        Δ𝛿(𝑡) 𝑜𝑟 Δ𝛿𝑝𝑢𝑙𝑠𝑒(𝑡) = (𝐽(𝑡) − 𝐽(𝐶)) ∗ (
𝜋

𝐽(𝐴)−𝐽(𝐵)
)    (3.14) 

 

3.2 Time-Domain and Frequency-Domain Representations of System Noise 

 Noise analysis or measuring frequency instability in any optical system might be done in 

either the time domain or the frequency domain. A detailed description of how each of these 

approaches work is presented below and compared. 

      

Time Domain  
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 We have been analyzing noise effects by classifying them into different components and 

measuring the system response to each individual one. This procedure though is carried out either 

in time or frequency domain. Here we present a time-domain based technique called Allen 

Deviation mainly due to the fact our coherent combining technique has been fundamentally 

established as a time-domain approach. This Allen Deviation technique can effectively shed light 

on specific averaged time periods (~ equivalently frequency bands) where the system behaves 

more stably and hence better to operate at. This feature is rarely easily achieved via other noise-

analysis approaches. This approach utilizes a log graph presenting the amount of noise in dB versus 

a quantity which is the averaged time (will be further explained throughout the chapter). Different 

regions of these graphs tend to correspond to different noise types with specific slopes namely 

white phase, flicker phase, white frequency, flicker frequency, and 1/f low frequency noise 

components. 

 Here is the sequence of steps for classifying and clustering a data set for making a Allan 

Deviation graph.  

 Step 1: Experimentally sample the drift of the metric 𝑦𝑖′𝑠 (e.g SHG signal) for a certain 

period of time. N is the number of samples and 𝜏0 is the sample period. (e.g 𝜏0 =
1

50𝐾𝐻𝑧
). These 

samples will be used in the remaining computational steps. 

 Step 2: Set the average time to be 𝜏 = 𝑚𝜏0 where 𝑚 is the averaging factor. 

 Step 3: Divide the time history of the sampled SHG signal into clusters of finite time 

durations 𝜏 = 𝑚𝜏0. Clustering the sequence can be done in two different ways. Overlapping and 

Nonoverlapping. In the overlapping version, the time stride between two consecutive data clusters 

are always equal to the sample period 𝜏0. For instance, Figure 3.4 shows a typical overlapping data 

clustering with averaging factor m=3.  
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 Step 4: Once the clusters are formed, first take the average of each clusters and call them 

𝑦𝑖
′𝑠. 

 Step 5: In the final step, Allen values corresponding to different selections of “m” are 

calculated using the following formula. Notice that 𝑦𝑖′𝑠 under the square root represent the average 

value of each cluster containing m elements, and M is the total number of clusters. (Notice that 

specifically for this section we do not denote the number of cavities by M). Once the Allen values 

for all m’s are calculated, a log graph of the 𝜎′𝑠 shows the magnitude of noise corresponding to 

different random processes in dB scale.  

 

                                                       𝜎(𝑦) = √
1

𝑀−1
Σ(𝑦𝑖+1 − 𝑦𝑖)2     (3.15) 

 As shown in Figure 3.5, slopes of -1 and -0.5 approximately correspond respectively to 

white phase and frequency noises in the system which are mainly due to the spontaneous emission 

and are considered as high frequency noise. On the other side, slopes of 0 and 1 correspond to 1/f 

or flicker noises which is typically due to the low-frequency drift in the system set-up such as 

mechanical drifts of the cavities.  

Figure 3.4: Clustering the raw noise data for applying Allen Deviation process 
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 For better understanding the Allen Deviation graph, a few points have been labeled on 

Figure 3.5. Point a) as it corresponds to m=1 shows the magnitude of the noise with no averaging 

taken on the dataset. Variation of values among larger number of clusters is feasibly larger and 

hence m=1 usually is the maximum value on the graph. 

 Point b) in contrast is when m>1 and M clusters each containing m data points have been 

averaged and the corresponding Allen value is the standard deviation among these averaged 

values. This points out that the user can effectively degrade the noise effect by taking more and 

more averages. 

 Point d) finally is where a small number of clusters are taken and the variation among them 

will be small compared to the previous m values. 

 The following example shows how this phase measurement technique works along with 

the time domain-based noise analysis approach (Allen Deviation).  

 

Frequency Domain  

 Once the time history of the drift signal (e.g SHG(t)) is sampled, one can also find the 

Fourier Transform of the time domain signal utilizing the Fast Fourier Transformation FFT as 

Figure 3.5: Different regions of the Allen Deviation plot 
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𝐹𝐹𝑇(𝑘) = ∑ 𝑥(𝑛)𝑒−𝑖2∗𝜋∗𝑘∗
𝑛

𝑁𝑁
𝑛=1 . First, we normalize the average power of the data set input to the 

FFT to unity. Since the FFT is a symmetric function, it is sufficient to represent half of the spectrum 

as 𝐹𝐹𝑇 = 𝐹𝐹𝑇 (1:
𝑁𝐹𝐹𝑇 

2
) ,where 𝑁𝐹𝐹𝑇 is the total number of FFT points we choose which is the 

closest power of 2 to the size of our data set (N). 𝐹𝑟𝑒𝑞 = (0:𝑁𝐹𝐹𝑇/2) ∗ 𝐹𝑠/𝑁𝐹𝐹𝑇 is the frequency 

vector against which the FFT is plotted. 𝐹𝑠 : The sampling frequency in which the data points in 

the time domain correspond to (e.g. Fs=50KHz). 

 The following examples illustrate how we can obtain the Fourier Representation of our 

time domain SHG (t). 

 

 The conversion from frequency domain measurements to time domain measurements 

utilizes an integral equation. The Allen Deviation plot described above can be also obtained using 

this integral equation. Leonard S.Cutler (1972) described the following conversion formula for 

frequency domain to time domain conversion [41,42,43]. 

                                                      𝜎𝑦
2(𝜏) = 2∫ 𝑆𝑦(𝑓)

sin4(𝜋𝑓𝜏)

(𝜋𝑓𝜏)2
𝑑𝑓 

∞

0
    (3.16) 

3.3 Example for Phase and Amplitude Measurements: 

 

a) b) 
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 In Figure 3.6 a) the scan profile of the GTI has been shown where the round-trip phase of 

the GTI stacker has been scanned for more than 4π radians by voltage modulating the PZT-

mounted cavity mirror. Notice that during the scan time two consecutive maxima and two 

consecutive minima have been measured to be used for further conversion to corresponding phase 

Figure 3.6: a) scan profile of the GTI stacker cavity for more than 4π period b) Second Harmonic Generation (SHG) sampled 

signal c) Normalized Allen Deviation Characteristics of the Amplitude Noise from the Oscillator. d) Allen Deviation 

Characteristics of the Stacking Phase noise in absolute mrad 

 

c) d) 

Figure 3.7: frequency spectrum of the SHG drift  
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noise values in mrad. The scanning program has been developed such that it stops halfway between 

the SHG maximum and minimum. This ensures that the cavity works linearly and hence the drift 

of the second harmonic signal could give us the phase noise.  

 Figure 3.6 b) shows the measured drift of the SHG signal at 50KHz acquisition rate for 

about 6 seconds. For this measurement, the SHG signal is detected by a peak-power detector and 

sampled by a 1-GSPS ADC in conjunction with the FPGA system. Two different regions of the 

drift signal have been used for phase noise and amplitude noise measurement from the oscillator. 

The linear region is used to linearly converting the SHG values to corresponding phases in mrad 

and the peak region is used for measuring the amplitude noise from the laser where the SHG 

derivate with respect to 𝛿 or 𝛿𝑝𝑢𝑙𝑠𝑒 is zero.  

 Figure 3.6 c) and figure 3.6 d) are Allen Deviation of the amplitude noise and phase noise 

datasets respectively. Averaging factor 𝑚 for this specific measurement as was explained 

previously is 1000 so that the resulting spectrum captures low-frequencies up to 50Hz. Comparing 

Fig 3.6 c) and Fig 3.6 d) one can verify that the amplitude noise from the laser is clearly much 

smaller compared to the phase noise from that existing in the measured SHG signal. Physical origin 

of this has been previously explained in this chapter. Figure d) consists of different frequency 

bands. For times larger than 0.004(s) or equivalently frequencies below around 600Hz which are 

considered as low-frequencies phase noise starts increasing approximately at 𝜏1 or equivalently 

1/f (e.g 1/f noise). Mechanical drift in the GTI cavity or the oscillator cavity, it is expected to 

happen in this frequency band due to the fact these sorts of drift are slow compared to other sources 

of noise. For the times between 0.004(s) and 0.006(s) (600Hz ~ 800Hz) is the band where the 

stacking system experiences the least amount of noise hence it is suitable for stabilization purposes. 

For times smaller than 0.006s (  𝑓 > 800𝐻𝑧), as was noted previously, is the frequency band 
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associated with white noises (white phase and frequency noise). These high-frequency noises are 

expected to be primarily due to oscillator phase noise as noted in the beginning of this chapter. 

 

 As an alternative approach to the time-domain based Allen Deviation technique the 

measured noise can be analyzed in frequency domain using Fourier Transformation. Fig 3.7 is a 

single ended spectrum of the phase noise data which has been obtained with a sampling frequency 

of 𝐹𝑠 =50KHz, a total number of 𝑁𝐹𝐹𝑇 = 216 = 65536 which is the closet power of two to the 

sampling frequency 𝐹𝑠.   

3.4 Appendix A: Sensitivity Analysis of the SHG profile to Different Number of Input 

Pulses  

 Now let us analyze the sensitivity of our SHG signal to the cavity phase. The form of the 

SHG vs. cavity phase plot is in general sensitive to the number of pulses, the pulse intensities, and 

the pulse phases.  Since here we want to have the SHG metric be only sensitive to the cavity phase, 

we can decide to have a specific number of pulses, relative pulse intensities and phases such that 

SHG is insensitive to pulse phase and amplitude when we scan through the cavity phases. In order 

to get a sense of the cases that gives minimum sensitivity to pulse phase and amplitudes, we present 

simulation results for a number of cases. All simulation results have been obtained based on a 

front-mirror reflectivity of R=0.55 for a single GTI stacker. 
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 In the 2 pulse case (See Fig 3.8 a)), the SHG signal will be sensitive to the cavity phase, 

but will not be affected by the pulse phases (since the only interference that occurs is between the 

a) a) 

b) b) 

c) c) 

Figure 3.8: a) SHG phase profile with 2 pulse b) SHG phase profile with 3 equal-amplitude pulses c) SHG phase profile with 3 

non-equal amplitudes  
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1st and 2nd pulse).  And furthermore, to have the SHG vs. cavity plot not have phase values where 

the SHG is insensitive to cavity phase (e.g. flat areas) as well as to not have multiple local maxima 

(or minima) in a 2π section, the relative pulse intensities are important. For that, we examined a 

profile such that the 2nd pulse has 5 times the intensity of the 1st pulse.  This type of profile gives 

plenty of margin (5 times does not have to be exact, 4 or 6 times would work equally well), and 

has all of the nice features we want.  In the 3-pulse case (See Fig 3.8 b) and 3.8 c)) as one can see 

in the SHG results, local maxima or minima are appearing in the SHG plot. These local maxim or 

minima should not be used when phase noise information is being retrieved from the SHG plot 

since the cavity is not behaving linearly in that region. 

3.5 Appendix B: Sources of Noise that Could Affect the Stacking Fidelity                         

 In this section some of the noise sources that can effectively degrade the stacking fidelity 

while it is under control. These sources can be categorized into three main divisions namely the 

sources that can affect peak detection accuracy, the sources that can affect burst amplitude and 

phase control accuracy, sources that place a limitation on having identical pulses in the burst, and 

finally the sources that affect the stacking interference contrast. The last two categories are not 

discussed here since they are out of the control-oriented tasks accomplished in this thesis. Instead 

the first two categories will be discussed in detail here. 

Peak Detection Accuracy 

 As thoroughly explained in the control algorithms throughout the thesis, the metric signal 

detected by a peak detector plays a significantly important role in determining the direction the 

control system should take for both stabilizing the stacked pulse and optimizing the fidelity. 

Therefore any noise generated in the detection process will contribute to the stacking degradation.  
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Amplitude and Phase noise that have been extensively analyzed in chapter 3 and 4, can be 

considered as two first noise sources that can directly appear in the detected second harmonic 

generation signal.  

 The photodiode used for detecting the SHG signal generates some dark noise in the 

background that is read out by the ADC while measuring the photodiode output. The ADC itself 

produces Quantization error. Figure 3.9 shows the measurement result of the photodiode dark noise 

added to the ADC quantization noise. This clearly shows a p-p 10mV noise which will be added 

on top of any real SHG signal detected by the detector and quantized by the 1GSPS ADC.     

 

Figure 3.9: Measurement results for the photodiode dark noise and the ADC quantization noise  

 

 More specifically the 1GSPS ADC embedded in the FMC 110 in our control systems uses 

a 12bit 1GSPS ADC chip from Texas Instrument [44]. This specific chip has been characterized 

in terms of signal to noise ratio (SNR) in different clock p-p voltage ranges and input frequencies. 
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Figure 3.10: Signal-to-Noise (SNR) performance of the 1GHz ADC versus the peak-to-peak clock voltage at different input 

signal frequencies. [8] 

 As shown in figure 3.10 ADC gives an output SNR of around 57.5dBc at 800MHz 

(closest to our 977.8 MHz Oscillator repetition rate).  

 The other noise source that can be discussed in this category is the noise produced in 

dithering the PZT while the control algorithms are executed. Any noise in dithering gets amplified 

by the PZT amplifier before being applied on the PZTs. The PZT amplifier itself generates noise 

at the output which is added to the dithering noise. 

Burst Amplitude and Phase Control Accuracy 

 To achieve a proper and accurate control on the burst amplitudes and phases many 

electronics devices are required to operate. The 1GSPS DAC which outputs the amplitude and 

phase waveforms, the RF amplifier that boosts the DAC output before inputting the waveforms 

onto the EOMs, and the noise of the EOMs or their output drift are 3 main noise sources that can 

effectively disturb the control on the input burst. 
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Chapter 4 Demonstration of Stable Stacking with Cascaded and Multiplexed GTI 

Configurations 

 

4.1 Experimental Set-Up 

 In this chapter we will be presenting some experimental systems as well as their 

corresponding results achieved to demonstrate stable stacking. Specifically, the two experimental 

sets we will analyze in this chapter are first the 4-cascaded Cavity Set and second the 4+4 

Multiplexed Set.  

 The experimental setup for the 4-cascaded-GTI-cavity scenario (See Fig 4.1) which targets 

stacking a burst of 9 pulses consists of a 1GHz (~988.8MHz) mode-locked oscillator generating 

femtosecond long pulses, two as-fast-as 10GHz electro-optic-modulators for imprinting required 

phase and amplitude modulation on the input pulses, , a grating based stretcher for stretching out 

the initially generated pulses to about nanosecond long levels, single mode fiber amplifiers, four 

cascaded 30cm-long GTI cavities designed and arranged in triangular fashion, and finally a peak 

detector for implementing the feedback control and stabilization system. This experimental setup 

is also further used for demonstrating the 4+4 multiplexed configuration for stacking up to 81 

pulses and hence needs to be understood in depth. The initial chain of femtosecond long pulses at 

988 MHz repetition rate are first modulated by the EOMs for both phase and amplitudes and then 

get stretched out by the specified stretcher. At this step the burst is ready to go under amplification 

through the single-mode fiber amplifier before getting compressed back to the femtosecond level 

at the final stage. The output of the SMFA is then transmitted through the GTI stackers for 
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stacking. The output beam after the last resonator goes into two paths, one for the compression 

and the other is taken as the objective signal for feedback implementation. 

 

Figure 4.1: Experimental Setup for stabilization of 4-Cascaded GTI stacker system using either the All-Software-based control 

system using fixed National Instrument hardware set-up or the fast FPGA control system  

 

 The feedback control system shown above can be either the All-Software-based control 

system using fixed National Instrument hardware set-up or the fast FPGA control system where 

both systems have been in-detailed explained in chapter 2. In the first try we used the All-Software-

Based approach to stabilize the system and the stable stacking was demonstrated at 200Hz 

feedback loop speed. After that, to be able to have more control on the feedback loop speed, and 

also having control on the scalability of our control system, we developed the FPGA control 

system. 

 

       Second experimental system is the 4+4 Multiplexed Configuration. The experimental setup 

for this scenario is made of two different sets of GTI cavities. The first set is exactly the same set 
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which was previously explained, four 30cm-long triangular cavities, and the second set is made of 

four 2.7m-long Heriot-based Cavities, where these two sets are configured in a multiplexed 

formation. 

 

Figure 4.2: Experimental Setup for stabilization of 4+4 Multiplex of two different-length Cascaded GTI stacker sets using the 

fast FPGA control system 

 

 The setup is shown in figure 4.2. This experimental setup similar to the previous 

experiment starts with the same 1GHz (~988 MHz) mode-locked laser, same EOMs, stretcher and 

compressor designs. The fiber amplifier here is a 1m-long Chirally-Coupled-Core (CCC) fiber 

with 40um mode field diameter and 80um core diameter.  The stabilization system here is the 

FPGA based Control System explained in chapter 2. The experiment was carried out for low 

energy at 1 MHz repetition rate. 

4.2 Stacking Sensitivity to Cavity Phase, Pulse Phase and Signal Amplitude Errors 
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 To better understand the complex stacking system, sensitivity of the output stacked burst 

to changes in different system parameters such as phase and amplitude errors in the input burst, 

and stacker round-trip phase needs to be investigated. For both 4-Cascaded GTIs, and 4+4 

Multiplexed, sensitivity analysis in terms of particular metrics are presented. Peak power 

enhancement 𝑃𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 and more importantly peak-power-based pre-pulse contrast 𝐶𝑝𝑟𝑒−𝑝𝑢𝑙𝑠𝑒 

are evaluated for both scenarios under different errors and disturbance configurations. Notice that 

the input burst in this analysis consists of the main part of the burst as well as many other pulses 

in the tail. This has been particularly done such that evaluated metrics would not be dominantly 

sensitive to the first pre-pulse.  

    𝐶𝑝𝑟𝑒−𝑝𝑢𝑙𝑠𝑒 =
𝐼𝑜𝑢𝑡[𝑁]

max {𝐼𝑜𝑢𝑡[1],…,𝐼𝑜𝑢𝑡[2𝑁−1]}
      (4.1) 

                                                 𝑃𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 =
𝐼𝑜𝑢𝑡[𝑁]

max {𝐼𝑖𝑛[1],…,𝐼𝑖𝑛[𝑁]}
    (4.2) 

In the equations above, 𝐼[𝑁] is the intensity which is just the magnitude of the Electric field 

squared. As it is clear, the peak-power enhancement is just the intensity of the 𝑁𝑡ℎ pulse divided 

by the maximum intensity in the input burst. The pre-pulse is just the intensity of the 𝑁𝑡ℎ pulse 

divided by the maximum intensity in the pre-pulses in the output burst.  

       The sensitivity analysis begins with an optimal design of stacker cavities, input phase profile, 

and input amplitude/intensity profile. It is important mentioning that the sensitivity to each 

parameter is investigated while other 2 parameters are kept unperturbed.  

 For sensitivity to the stacker cavity phase, a perturbation vector of standard deviations with 

normal random distribution is considered from 0 to 0.1. A randomly generated number associated 

with each of the standard deviations in this perturbation vector is simultaneously added to all 4 

cavity phases in the case of 4-cascaded scenario, and to all 8 cavity phases in the case of 4+4 

multiplexed scenario. This is done for 10000 times and the average of all the corresponding 10000 
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Pre-Pulse Contrasts or Peak-Power Enhancements associated with that particular standard 

deviation in the perturbation vector is a point in the sensitivity graph.      

 For sensitivity to pulse phase or pulse amplitudes, a perturbation vector similar to the 

previous case with the same distribution is considered. A randomly generated number associated 

with each standard deviation in the perturbation vector is simultaneously added to all the pulse 

phases or pulse amplitudes, simulation runs for 10000 times, and the average of all the 10000 

corresponding Pre-Pulse Contrasts or Peak-Power Enhancements associated with that particular 

standard deviation in the perturbation vector is a point in the sensitivity graph.      

       The following results (See Fig 4.3 and 4.4) correspond to the 4-Cascaded Equal length 

Cavities. The parameters we have chosen for the simulation are as follows: 

Front-Mirror Reflectivities: 𝑅1 = 0.58, 𝑅2 = 0.59, 𝑅3 = 0.57, 𝑅4 = 0.58 

Cavity Phases: 𝜙1 = 4.65, 𝜙2 = 3.15, 𝜙3 = 5.46, 𝜙4 = 0 

And the total number of pulses are 50. 

 

Figure 4.3: a) Pre-Pulse contrast versus cavity phase error for 4-Cascaded GTI cavity set. b) Peak Power Enhancement versus 

cavity phase error for 4-cascaded GTI cavity set 

a) b) 
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 By looking into the simulation results in Fig 4.3 and Fig 4,4, we can see that more than 

30dB pre-pulse contrast can be achieved if we have less 20mrad phase noise in the stacker whereas 

the same pre-pulse contrast can be achieved by having less than 80mrads phase noise in the input 

pulse phase. As a result, the pre-pulse contrast is clearly more sensitive to the cavity phase error 

than the input pulse phase and input pulse intensity errors. However, our recent experiments 

manifest the fact that our stacker cavities are quiet enough that such uncertainty in the cavity phases 

space does not happen. Now this means the sensitivity to the input pulse phase and amplitude 

matter a lot in our case.  

 Another source of uncertainty that could affect the stacking is the uncertainty in the front-

mirror reflectivity (R). However, it is still possible to keep the pre-pulse contrast unchanged due 

Figure 4.4: Pre-Pulse contrast versus pulse phase and amplitude errors for 4-Cascaded GTI cavity set 
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to the uncertainty in R and that is through optimizing the input pulse phase and amplitude profile. 

This will be explained in more details in chapter 5. 

 

 In the next part, we present the sensitivity results of the 4+4 multiplexed configuration 

with nonequal cavity length.  

 

 

Figure 4.5: a) Pre-Pulse contrast versus cavity phase error for 4+4 Multiplexed GTI cavity set. b) Peak Power Enhancement 

versus cavity phase error for 4+4 Multiplexed GTI cavity set 

a) b) 

Figure 4.6: Pre-Pulse contrast versus pulse phase and amplitude errors for 4+4 Multiplexed GTI cavity set 
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The parameters we chose for the simulation results above are as follows: 

Front-Mirror Reflectivities: 𝑅1 = 0.58, 𝑅2 = 0.59, 𝑅3 = 0.33, 𝑅4 = 0.57, 𝑅5 = 𝑅1, 𝑅6 =

𝑅2, 𝑅7 = 𝑅3, 𝑅8 = 𝑅4 

Cavity Phases: 𝜙1 = 𝜙5 = 4.65, 𝜙2 = 𝜙6 = 3.15, 𝜙3 = 𝜙7 = 5.46, 𝜙4 = 𝜙8 = 0 

And the total number of pulses are 500. 

 By comparing the sensitivity curves in the case of 4-Cascaded GTI and the case of 4+4 

Multiplexed GTIs (Fig 4.5 and Fig 3.6) it is clear that the stacking is much more sensitive to the 

pulse phase and pulse intensity errors in the Multiplexed case. Same statement is valid for the 

cavity phase error as well. 

 

4.3 Oscillator Noise Characterization, analysis, and improvement results  

 As it was mentioned in chapter 1, stacking large number of pulses and achieve using 

cascaded configuration would be very challenging since large number of GTI cavities will be 

required. For instance, to stack 81 pulses, 40 cascaded GTI cavities are required to get perfect 

stacking with exactly precise burst profile. Multiplexed GTI cavity configuration where it 

multiplexes a cascade of M equal-roundtrip GTI cavities with a second cascade of N-times longer 

Cavities, is one of the techniques where you can get an approximately precise burst profile by 

using much fewer cavities.    

     

 For stabilization purposes, stacking phase noise has to be sufficiently small so that the 

control system can find the required phase to stabilize the stacker system and stabilize it against 

the dominant noise which turns out to be oscillator phase noise. The 30cm Triangular Cavity who 
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round-trip length is equal to that of the oscillator has been stabilized in which the stabilization was 

limited to the amplitude noise of the oscillator. However, stabilizing the GTI cavity whose round-

trip length was N times larger than that of the oscillator was initially challenging due to higher 

noise level measured in the peak power signal. Initial As it was explained in chapter 3, phase 

matching between the round-trip phase of the GTI cavity 𝛿 and that of the oscillator 𝛿𝑝𝑢𝑙𝑠𝑒 should 

be achieved to get stacking. Such phase mismatch is considered as noise in stabilization purposes.  

                                  �̃�𝑖𝑛[𝑛] =  {
𝑟                                            𝑓𝑜𝑟 𝑛 = 0

−𝑟−𝑛−1(1 − 𝑟2)𝑒+𝑖𝑛𝛿𝑝𝑢𝑙𝑠𝑒  𝑓𝑜𝑟 𝑛 = −1,−2,…
      (4.3) 

                                             �̃�𝑜𝑢𝑡[0] = 𝑟2 + (1 − 𝑟2)2 (
1

1−𝑟2𝑒
𝑖(𝛿−𝛿𝑝𝑢𝑙𝑠𝑒))                        (4.4) 

  �̃�𝑖𝑛[𝑛 < 0] = (1 − 𝑟2)𝑒𝑖𝑛𝛿𝑝𝑢𝑙𝑠𝑒(1 − (1 − 𝑟2)(
𝑒

𝑖(𝛿−𝛿𝑝𝑢𝑙𝑠𝑒)

1−𝑟2𝑒
𝑖(𝛿−𝛿𝑝𝑢𝑙𝑠𝑒)

)              (4.5) 

By looking at the equations above, one can verify that for the case where the GTI round-trip is N 

(e.g. ~ N=9) time longer, the phase factor 𝛿𝑝𝑢𝑙𝑠𝑒 gets magnified by factor of N and turns into 

9𝛿𝑝𝑢𝑙𝑠𝑒. This magnification effect for the phase causes the measurement to be more sensitive to 

the oscillator noise. 

        

       In this part, experimental results of measuring stacking phase noise with equal length (e.g. ~ 

L=30cm) and 9-times longer length GTI cavity (L=2.7m) are presented. will be shown how 

sensitive this longer cavity reacts to the phase noise from the oscillator.  
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Resolution for data-points 

=(1/50KHz) =20us 

Resolution for data-points 
=(1/50KHz) =20us 

a) b) 

Figure 4.7: a) SHG drift using 2.7m cavity b) SHG drift using 30cm cavity c) Allen Deviation Characterization of the absolute 

stacking phase noise and comparison 

c) 
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 Figure 4.7 a) and 4.7 b) above shows the second harmonic generation (SHG) signal drift 

for two different-length Cavity. One thing which is important to mention is such large fluctuations 

shown in figure 4.7 a) is not only due to the phase noise contribution from the oscillator but also 

due to other sources such as air flow, acoustic noise, and etc. This is because by isolating stacker 

setup from all external noise sources (air flow, and etc.) this huge noise is no longer existing in the 

stacking system even without improving the oscillator phase noise.  

 

 As one can see in Fig 4.7 c), SHG experiences much more noise with longer-length cavity 

compared to the short one and this makes stabilization quite challenging. As one can verify from 

the figure 4.7 c), the lowest phase noise for the short cavity was about 5mrad which was 

sufficiently small to stabilize the cavity. However, for the 9-times longer cavity, the lowest phase 

noise measured at around 800Hz was 50 mrad an order of magnitude large that of the short GTI. 

This is coinciding with the magnification effect of phase mismatch that was previously described. 

Although these minimum points on the phase noise characteristics curve is the best potential for 

stabilizing the stacker system however the main important noise level which should be reduced by 

order of magnitude is where there is no averaging taken (m=1). This is of particular interest for 

high energy experiments operating at kHz repetition rate where averaging would change the 

effective repetition rate. 

 

 Another important point to be mentioned is that stabilizing the GTI cavity with 𝑇𝑐𝑎𝑣 = 𝑇𝑜𝑠𝑐 

has been achieved in such a way that it is just limited to the Oscillator Amplitude Noise. In other 

words, since the GTI cavity round-trip time is equal to the round-trip time of the oscillator the 

stacking phase is not sufficiently sensitive to the oscillator phase noise, and therefore the stacking 
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phase noise is just a the same level as the amplitude noise of the oscillator. This is shown in the 

figure 4.8  

 

 

 

 In order to significantly reduce the stacking phase noise, it was required to look for physical 

origins of the phase noise in mode-locked oscillators. In the past, researches have been done both 

theoretically and experimentally on analysis of physical origins in mode-locked oscillators (e.g 

quantum noise sources, pump noises, oscillator cavity length fluctuations, temperature variations, 

variations in the gain medium, and etc.). however, majority of these works are strictly case 

dependent and for different oscillators and electronics system the results are quite different. 

 Here we experimentally proved that reducing the noise in the pump significantly reduces 

the mode-locked oscillator phase noise and hence the stacking phase noise. This includes making 

Figure 4.8: Normalized Allen Deviation Comparison between the Short GTI Cavity Stacking Phase and the 

Amplitude Noise of the mode-locked Oscillator 
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the optical setup for the pump more stable and fixing arrangement of the components as well as 

accurate selection of the driver for the laser diode which will be further explained in the chapter. 

 

 In figure 4.9 we present some of the experimental results of the effect of improving 

oscillator pump noise on the noise observed at the output metric SHG signal. We first show the 

effect of different drivers on the absolute amplitude noise of the laser diode. And second, the 

improvement of the noise observed in the SHG signal after cleaning up the pump will be presented.  

 

Figure 4.9: Absolute Amplitude Noise of the Laser Diode with Various Drivers  

 

 According to our measurement the Wavelength Electronics Driver exhibit the highest 

noise in the laser diode whereas the ILX performs the best among the others. 

 By using the low-noise mode-locked oscillator setup, we carried out the noise 

measuremts for measuring the phase noise one more time and here are the comparison results.  
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 The figure 4.10 is the normalized Allen deviation of the SHG signal measured at 50kHz 

speed. As shown above, after cleaning up the pump the noise on the SHG in the high frequency 

band (>10KHz) has been reduced by order of magnitude in such a way that the stacking phase 

noise using the equal-length cavity, stacking phase using the 9-time longer cavity, and the 

amplitude noise from the laser all experience the same noise level.  

 

 In conclusion, we have successfully characterized the phase noise in our 1GHz mode-

locked oscillator and improved the stacking phase to the laser amplitude noise.  

 

 

Figure 4.10: Significant Improvement of the Stacking Phase Noise by noise reduction on the pumping side. Curves are the Allen 

Deviation Characteristics of the stacking phase noise using different-length GTI cavities before and after Noise improvement 
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4.4 Stacker Phase Space and Phase Drift Characteristics, and their effect on stacking 

stability 

 Since the stacking stabilization is achieved via a peak-detection technique, it is worth 

understanding the variation of the metric signal versus different phase values in the stacker phase 

space. Here we present a 2-Cascade GTI cavity scenario and a the simulated SHG signal versus 

𝜙1 and 𝜙2 as the cavity phases has been plotted here. The parameters we chose for the following 

simulation are 𝑅1(front mirror reflectivity of the 1st cavity) = 0.66, and 

𝑅2(front mirror reflectivity of the 2nd cavity) = 0.34 

 

 

Figure 4.11: A two-dimensional cavity phase landscape where the colors represents the strength of the peak-power metric (TPA 

or SHG). The simulated landscape covers a 4π×4π phase space for a 2 Cascaded GTI stacking case 

 

 The landscape shown in figure 4.11 consists of a main large global maximum in the center 

which is repeatedly shown up for {𝜙1, 𝜙2} ± 2𝑛𝜋. The concept of the gradient path towards the 

global maximum is also clearly observed in the simple case of 2 cascaded cavities. For certain 

conditions depending on the reflectivities of the front mirrors in the GTI cavities, the SHG might 

experiences other semi-global maximums too. This happens primarily if there are almost close 

reflectivities. It can be theoretically proved that 2 cavity phases can be swapped upon the condition 
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if their mirror reflectivities are exactly the same and stacking would not differ. Sensitivity of the 

stacking to the errors on the reflectivity of the mirrors has been analyzed in [22]. Another feature 

of the metric landscape versus as a function of the cavity phases is that for larger number of 

cavities, many local maxima appear around the desired global one, thus the SHG metric function 

is not considered as a concave function. 

 

 For the case of multi-dimensional phase space (e.g. N=4) an N-dimensional parameter 

space should be still considered for determining local and global maximums. However, the phase 

landscape is different where many of the maximums around the global are as large as the main-

global one. The important point is that even if any of these close-to-global maximums for equal-

length GTI cavities are selected during stabilization process, they can still move towards the main-

global maximum by applying the optimization algorithm. The rest of the peaks in the landscape 

are small compared to the main global one.   

 

 In order to eliminate the local maximums, initial cavity phase values need to be in the 

vicinity of the global maximum the local stabilization algorithm such as SPGD runs. If these cavity 

phase values are not near the global maximum, then the local optimization algorithm will  

fail to converge to the global maximum.  

 

 In order to do this, a Lissajous Scan has been chosen to run before the actual SPGD-based 

stabilization algorithm. Lissajous has specifically chosen against other scanning methods such as 

raster scan since the applied voltages on the PZT needs to have smoothly transition from the end 

of one phase cycle to the next one.  
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4.5 Stacker Stabilization Algorithm and its implementation  

 In this section we report the details of the control algorithm we utilized to demonstrate 

the stable stacking and its implementation as well. In this system we take the PZT voltages as our 

control parameters and simultaneously apply small random perturbations to all the control 

parameters, and then evaluates the gradient variation of system performance metric (J). The 

control signals update in iteration process of SPGD algorithm as following rule. 

                           𝜙𝑖 = {𝜙1, 𝜙2, … , 𝜙𝑁}                                           (4.6) 

                           𝜌𝑖 = 𝜌0 ∗ {±1,±1,… ,±1}                                           (4.7) 

                           𝜖𝑖 = 𝐽(𝜙𝑖 + 𝜌𝑖) − 𝐽(𝜙𝑖)                                           (4.8)               

                             𝜙𝑖+1 = 𝜙𝑖 + 𝜇𝜖𝑖𝜌𝑖                                                      (4.9) 

Where 𝑖 is the iteration number, 𝜙𝑘 is the round-trip cavity phase corresponding to the 𝑘𝑡ℎcavity, 

𝜇 is the gain coefficient which is positive for maximizing the metric, 𝜌 denotes small random 

perturbations that have identical amplitudes  and +/- sign (if the random generated phase is bigger 

than 0.5, then the sign is positive, otherwise the sign will be negative), 𝜖𝑖is the variation of system 

performance metric at the 𝑖𝑡ℎiteration. (in our case the metric is the second harmonic generation 

signal which means J=SHG). Each time this error signal is evaluated, the direction in which the 

cavity moves is determined based on the sign of 𝜖𝑖. In essence this algorithm performs a global-

maximum search in the N-dimensional cavity-phase space.  

 In essence this algorithm performs a global-maximum search in the N-dimensional 

cavity-phase space. One complication, however, is that this N-dimensional "landscape" becomes 

very complex further away from this global maximum, consisting of multiple local maxima and 

minima, which would derail the SPGD search. To avoid this, a rapid Lissajous scan over the full 

N-phase space is performed first, identifying the approximate location of the global maximum, 
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and then “releasing” the SPGD algorithm in its relative vicinity. Since a sparse scan is sufficient, 

typical scan times are very short. For example, for the 4-cavity system demonstrated here it is 

less than 5 seconds. Figure 4.12 illustrates the details of the control implementation including the 

SPGD and the local search part. 

 

 

Figure 4.12: Algorithmic description of the Lissajous Local Search followed by the SPGD-based Algorithm for stabilizing the 

stacked pulse. 

 

Here we simulate the performance of the SPGD algorithm for an equal-length 4-GTI stacker 

Cascade where the number of input pulses were chosen to be 10. The stacker parameters for the 

following simulation are as follows: 

Front-Mirror Reflectivities: 𝑅1 = 0.55, 𝑅2 = 0.52, 𝑅3 = 0.63, 𝑅4 = 0.63 

Figure 4.13 shows the simulation result for a 4-cascaded GTI stacker configuration where the 

metric signal (SHG) gets maximized and stabilized after a few iterations.  
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Figure 4.13: Simulation results showing the maximized and stabilized SHG signal associated with 4-cascaded GTI Stacking 

Stabilization  

 

4.6 Stabilization Results for an Equal-Length 4-GTI Stacker Cascade 

 In this section we present the stabilization results for the first experimental set-up 

introduced in section 4.1 which is a 4-cascaded equal length GTI stacker scenario. SPGD algorithm 

software implemented in a PC runs at 200Hz loop frequency. The algorithm has been written on 

python and the software was talking to the fixed National Instrument analog hardware through 

USB. The gain coefficient 𝜇 and the perturbation amplitude 𝜌 Is chosen to be 85 and 25mrad 

respectively but are adjustable in a wide range. 4-cavity locking is reproducibly achieved with 

<5secs convergence time after turning the stabilization key on.  Fig.4.14 shows the stabilized SHG 

signal over 15mins with σ = 3% of the averaged SHG signal, corresponding to σ = 1.5% of the 

stacked pulse peak power. Insert in the figure shows the corresponding stacked pulse trace. Robust 

system operation was tested and verified for up to an hour of continuous running time, currently 

limited only by the continuous observation duration. This demonstration validates an effective 

control method for robust stabilization of a scalable number of CPS cavities.  
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Figure 4.14: Experimental results of 4 Cascaded 1ns-GTI cavities, time domain drift of the maximized metric, and stabilized 

stacked pulse  

 

 

4.7 Stabilization Results for a Multiplexed-Length 4+4 GTI Stacker Configuration 

 In this section we present the stabilization results for the second experimental set-up 

introduced in section 4.1 which is a 4+4 Multiplexed with non-equal length GTI stackers scenario. 

In the figure 4.15 we show the way we have closed the feedback loop using the FPGA system 

developed and explained in chapter 2.  
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Figure 4.15: Block-diagram of the FPGA Control System along with the Stacker arrangement for 4+4 Multiplexed Stabilization 

Experiment 

 

 Figure 4.16 we present simulation results for a 4+4 multiplexed scenario where the front 

mirror reflectivities and cavity phase are chosen as follows: 

𝑅1 0.58 𝑅5 0.58 𝜙1 4.66 𝜙5 4.66 

𝑅2 0.58 𝑅6 0.58 𝜙2 3.15 𝜙6 3.15 

𝑅3 0.69 𝑅7 0.69 𝜙3 5.46 𝜙7 5.46 

𝑅4 0.69 𝑅8 0.69 𝜙4 0 𝜙8 0 

Table 1: Cavity phase and mirror reflectivities for a 4+4 multiplexed stacking configuration 
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Figure 4.16: Simulation results for 4+4 Multiplexed Stacker System, Normalized Output Stacking Intensity Profile before and 

after stacking achieved. 

 

 Figure 4.17 shows the experimental results for a 4+4 multiplexed configuration with 81 

pulse at kHz repetition rate. 
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Figure 4.17: Experimental results for 4+4 Multiplexed Stacker System, Normalized Output Stacking 

Intensity Profile before and after stacking achieved. 
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 These results show quite good qualitative agreement between the simulated experimental  

conditions and the experimental results. Here the stacked pulse (the 81th pulse) got stabilized with 

2% standard deviation. There is the place to further improve the stabilization beyond the 2% 

standard deviation by either adapting the parameters of the SPGD algorithm or operating at the 

optimum loop frequency/speed. The largest pre-pulse happens to be at about the 72th pulse that 

limits the pre-pulse contrast.  A pre-pulse contrast of 7dB was measured which is limited by the 

non-optimized burst pulse amplitude and phase which will be controlled further in feedback 

control outer-loop explained in chapter 5.   
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Chapter 5 Optimization of the Stacked Pulse Fidelity 

 

5.1 Background  

 One of the important and desired characteristics of the stacked pulses is associated with a 

high degree of pre-pulse contrast which is required by many applications such as laser-plasma 

acceleration applications, and other laser-matter interaction-based applications. This is along with 

the main goal which is extracting nearly complete stored energy in the fiber amplifier. This chapter 

discusses about the algorithms developed and implemented to optimize the input burst profile and 

hence optimize the stacking performance in CPSA experiment. Technical goals that are targeted 

to be achieved are high pre-pulse contrast (>40 dB) and simultaneously good stacking efficiency. 

Stacking efficiency is different from pre-pulse contrast in the sense that one can achieve good 

stacking efficiency of, for example, 95% to >99%), while the residual few percent of the energy 

could significantly degrade pre-pulse contrast, if they would happen to be deposited in front of the 

stacked pulse. These two quantities are defined as follows: 

Stacking efficiency 𝜂: power contained in the main stacked pulse compared to the energy power 

in the rest of the pulses: 𝜂 =
𝐼𝑠𝑡𝑎𝑐𝑘𝑒𝑑

𝐼𝑡𝑜𝑡
.  

 Pre-pulse contrast: 𝜒: (power contained in the main stacked pulse compared to the maximum 

power contained in the pre-pulses.  𝜒 =
𝐼

max(𝐼𝑝𝑟𝑒−𝑝𝑢𝑙𝑠𝑒)
. 
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Figure 5.1: representation of power contained in the pulses of the stacked profile 

  

 There are many degrees of freedom of in the CPSA which enables one to better improve 

the stacking performance by real-time optimization of number of parameters. This is an advantage 

that a number of parameters in the system can be perturbed and optimized to maximize the 

objective function. The design of the stacking-burst profile in terms of pulse amplitudes and 

phases, and their practical realization in the stacking system cannot be known with absolute 

accuracy.  

  

 Since the front-mirror reflection coefficients of each GTI cavity cannot be defined with the 

accuracy of better than approximately 1%, it is sufficient to put uncertainty in determining the 

optimal values of input pulse amplitudes and phases. Furthermore, even if this recipe would be 

known precisely, it is nearly impossible in practice to imprint it with an absolute accuracy using 

electro-optic modulators at the front of the system, since there always is a certain degree of 

inaccuracy in knowing the exact amplitude and phase response of each of the modulators, 

expressed for example as inaccuracy in knowing the 𝑉𝜋 voltage of a modulator. Also, it is known 

that various linear and nonlinear effects in the fibers and components of the fiber amplifier chain 
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might also affect both the amplitudes and the phases of the stacking-burst pulses. It is certain that 

quantifying all these effects beforehand would be a very challenging, and perhaps even a hopeless 

task. 

 Therefore, one of the critical tasks carried out and will presented in this chapter is to 

develop a computer-based optimization system, which would optimize the stacking-burst 

amplitude and phase profiles in real time, based on the measured fidelity of the stacked pulse at 

the system output.  

 

 Before discussing the details of how we developed, and implemented our optimization 

algorithm, similar to what was presented in chapter 2, a general viewpoint and discussion on the 

concept and definition of optimization followed by a survey of some optimization algorithms is 

presented. At the end, we decided to choose Stochastic Parallel Gradient Descent (SPGD) 

algorithm for optimization aspects of the system since it is a hill-climbing algorithm that can be 

used in any optimization problem where you have an approximately good starting point 

sufficiently close to the optimal point in your objective function. Moreover, it is compatible with 

the peak power detection scheme of the system in the sense of maximization which is targeted in 

the experiment. And finally, for comparison purposes, a genetic algorithm (GA) was developed, 

and implemented to compare its performance with that of SPGD.    

5.2 Concept and Definition of Optimization 

 Concept of stabilization in control theory was disused and defined in the previous section. 

In this section we discuss the concept of optimization in control theory and concretely define what 

optimization is. Optimization is a process of finding precise values of certain system parameters 
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to either maximize or minimize one or more metric functions. A mathematical representation for 

optimization problem is as follows: 

𝑔𝑖𝑣𝑒𝑛: {
𝑓𝑖(𝑥1, … , 𝑥𝑛), 𝑜𝑛𝑒 𝑜𝑟 𝑚𝑜𝑟𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 

𝑥1, … , 𝑥𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
} 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚: 𝑓𝑖𝑛𝑑𝑖𝑛𝑔 𝑝𝑟𝑒𝑐𝑖𝑠𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 (𝑋1, … , 𝑋𝑁)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑖(𝑋1, … , 𝑋𝑁) ≥

𝑓𝑖(𝑥1, … , 𝑥𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 (𝑥1, … , 𝑥𝑛) [for the case of maximization] 

 Optimization is widely used in variety of mathematical and control problems. The metric 

function 𝑓𝑖 can be a cost function, an error function, a dissipation function for the case of 

minimization. On the other hand, 𝑓𝑖 can be a power function, or energy function for the case of 

maximization.  As an example, for coherent combining of fiber amplifiers where pulses are first 

split into a number of channels and then recombined after the amplification, output peak power 

can be considered as a metric function. After stabilizing path lengths for different fiber channels, 

still there exist some parameters in the system such as the polarization state of the combined beam 

that need to be precisely set to achieve maximized peak power and hence optimize the performance 

[67]. Another example would be coherent pulse stacking system where an optimization algorithm 

tries to find precise system parameters such as pulse phases and amplitudes to maximize peak 

power or pre-pulse contrast as two different metric functions, and as a result, optimize the system 

performance.  

 In the following section, a general survey of existing optimization algorithms is presented 

where they can be used to optimize the performance of coherent combining systems by 

maximizing particular metric functions.   

5.2.1 Survey of Optimization algorithms 

1) SPGD 
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 Detailed discussion on the theory of stochastic parallel gradient descent algorithm (SPGD) 

was presented in chapter 2.  

 

2) Genetic Algorithm (GA) 

 Genetic algorithm is essentially an optimization model based on the concept of evolution 

[45,46]. This algorithm simulates an optimization problem as a specific structure similar to the 

structure of chromosomes and tries to optimize the target function by finding the best chromosome 

or genes in the structure [47]. This approach is utilized in variety of applications and the way it is 

implemented is pretty much problem specific.  

 

 In order to implement this algorithm, a population consist of a number of genes is selected. 

Then the process of selecting the best genes for production begins. The genes that make a better 

value for the goal/target function are assigned with higher probability to produce kids. This process 

is taken for many iteration until the desired value for the goal function is achieved. The general 

flow-diagram of genetic algorithm is shown in the following figure. 

 

 Figure 5.2: Flow-diagram of typical genetic algorithms for optimization purposes  
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3) Simulated Annealing (SA):  

 Simulated annealing is a probabilistic optimization technique used for approximating the 

global optimums of a complex large optimization problem. This technique is more suitable when 

approximating the global optimum is more important than accurately obtaining a local optimum 

in the large search landscape. This technique is based on the physical annealing process of a solid 

material where the solid’s temperature is increased first up to sufficiently close to its melting point 

and then is released to naturally lowers its temperature and hence relieve the existing non-

uniformities inside it [60,61,63]. In order to implement or simulate the algorithm a stochastic 

sampling method such as Metropolis-Hasting algorithm. [64] is used. This algorithm was initially 

utilized for simulating or modeling the equilibrium behavior of a group of atoms (in our case input 

pulse phases or amplitudes). In each iteration, a given atom (control element) receives certain 

amount of displacement as shown in equation (5.1) and the resulting system energy change 

Δ𝐸(≡ Δ𝐽)is calculated. This applied displacement is accepted if the resulting energy change 

becomes negative (Δ𝐸 < 0). However, if Δ𝐸 > 0 the displacement is not rejected but is behaved 

with a probability distribution called probability acceptance as shown in equation (5.2) [61]. 

 

      Δ𝑢𝑘 = {Δ𝑢𝑖
𝑘} perturbation (displacement vector)       (5.1) 

    𝑝𝑘 = 𝑒
−

Δ𝐽𝑘

𝑇𝑘 acceptance probability         (5.2) 

 

4) Algorithm Of Pattern Extraction (Alopex) 
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 Alopex is a cross-correlation based learning algorithm that was first used by Harth & 

Tzanakou, in 1974 for mapping receptive fields [65]. For any optimization algorithm, there are 

two important decisions that need to be made during iterations. In which direction the parameter 

space needs to be modified and the step size along the determined direction. Usually the step size 

can be chosen to be constant and the direction to move from the current point to the next point is 

determined based on the correlation between changes in the parameter space and the changes in 

the target function for certain number of iterations. This is the core feature of alopex. If the vector 

of control parameters is 𝑢 = (𝑢1, … , 𝑢𝑚), then the update in the parameter space is done according 

to the iterative relation [55]: 

𝑢𝑘+1 = 𝑢𝑘 + 𝜂xk  𝑤ℎ𝑒𝑟𝑒  𝑥𝑘 = (𝑥1, … , 𝑥𝑚)𝑘 &  xi
k = {

1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑖
𝑘

       −1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝𝑖
𝑘     (5.3) 

𝑝𝑖
𝑘 =

1

(1+𝑒
−

𝑐𝑖
𝑘

𝑇𝑘)

 𝑤ℎ𝑒𝑟𝑒 𝑐𝑖
𝑘 = Δ𝑢𝑖

𝑘Δ𝐽𝑘 & Δ𝑢𝑖
𝑘 = 𝑢𝑖

𝑘 − 𝑢𝑖
𝑘−1 = 𝜂𝑥𝑖

𝑘−1        (5.4) 

In equations (5.3) and (5.4), 𝑇𝑘 is a temperature parameter which is updated after a certain number 

of iterations. By looking at equations above, it is clear how the algorithm is based on the correlation 

between Δ𝑢𝑖
𝑘 and Δ𝐽𝑘 to determine its direction to move from current point to the next point 

[55,56].  

 

5.3 Implementation of SPGD-Based Algorithm for Optimizing the Burst 

 Before implementing the optimization control system, an optimized set of pulse amplitude 

and phase profiles which were obtained based on our theory of stacking have been input into our 

Electro-Optical Modulators (EOMs). These profiles were manually perturbed such that a perfect 

stacked pulse with sufficiently small pre-pulses in the stacked train is achieved. this illustrates that 

the designed amplitude and phase profile provides a solution sufficiently close to the optimal 
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stacking point. Taking this as an experimental evidence, an SPGD-based Optimization algorithm 

for optimizing the input burst profile is proposed.  

 

 The second fact is that our stacking optimization will be much slower than cavity phase 

stabilization which runs inside the nested control loop. For instance, executing 1000 loops for 

stabilizing cavity phases at kHz range, will make the optimization loop runs every second which 

is slow enough.  

  

 It is known that SPGD algorithm has a convergence time which is roughly proportional to 

the number of parameters you want to optimize in your problem and might reduce the convergence 

speed but for specific cases (e.g. 4 Cascaded GTI cavities with 18 parameters for amplitudes and 

phases in a 9-pulse configuration or 4+4 Multiplexed Case with 162 parameters in a 81-pulse 

configuration), convergence time in the order of minutes will be acceptable to us.  

  

 Also knowing that stacking optimization is not a stabilization problem we can turn the 

outer-loop control off and just continue the cavity stabilization once we get the optimized stacking 

parameters.  
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Figure 5.3: Block Diagram of the Control Algorithm for Stacker Stabilization and Pulse Profile Optimization 

 

phase stabilization process. This is based on the assumption that there is not any slow-drifts in the 

system that can change the optimized parameter set.  

 

 For low-energy experiments where the saturation effects are not of that importance, the  

amplitude profile is not required to be real-time optimized, however for high-energy experiments 

the amplitude profile needs to be optimized too to compensate for any saturation effect. This 

optimization should be done along with the stabilization process since any perturbation on the 

amplitude or phase profile will completely changes the required stacker cavity phases for 

stabilization. Therefore, a nested-based control algorithm has been used where the optimization 

loop runs outside the stabilization feedback loop. 
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 The algorithmic control program shown in figure 5.3 is implemented using the FPGA-

based control system. Details of the implementations will be presented later on through the chapter. 

Cavity phases are denoted as 𝛿, amplitudes of the input pulses are denoted as √𝐼 (square root of 

pulse intensities), 𝜖𝑆𝐻𝐺
𝑆  is the error signal for the stabilization loop which is calculated at each 

iteration for determining how to update cavity phases. 𝜖𝑆𝐻𝐺
𝑂  is the error signal for the optimization 

loop for determining how to update the pulse amplitudes and phases. Two flags have been 

considered for the outer-loop which signals if perturbing the pulse parameters and executing the 

outer-loop is needed or not.  

  

 As shown in the block diagram above, initially the designed amplitude and phase profile 

for the input burst is loaded to the Electro-Optic-Modulators (Phase and Amplitude EOMs) then 

the control system tries to stabilize the stackers for this initially loaded input waveforms by running 

an initial local-search (Lissajous) in N dimensional cavity phase space, finding a point  which is 

sufficiently close to the main-global maximum, and releasing the SPGD-based algorithm to 

stabilize.  

  

 After this initial step, the program enters the normal stabilization loop. This loop consists 

of 5 stages namely perturbing stacker cavity phases, measuring the metric signal, calculating the 

corresponding error signal (~ relative difference between the two measured SHG between two 

consecutive iterations) updating cavity phases depending on the value calculated for the error 

signal, and finally re-measuring the metric signal. The iteration update rate or equivalently loop 

speed is controllable and can be increased to about 4KHz (limited by the data communication 
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depending on the operational frequency or interest). One important point about this loop is that it 

keeps running even if the optimization loop is turned off.  

  

 The optimization loop which acts as an outer-loop with respect to the stabilization loop. 

The important point in this loop is that for each iteration either perturbing the pulse 

phases/amplitudes or updating them is immediately followed by the stabilization process as it was 

explained before. The updated amplitude and phase profile need to be loaded between the pulses 

to avoid damaging the amplifiers in the system. In order to achieve this, specific firmware for the 

FPGA has been developed that swaps two waveforms between the pulses and outputs the new one 

to the 1GHz digital to analog converter. Details of the firmware development for this will be 

explained throughout the chapter.  

5.4 Experimental Setup 

 

 

Figure 5.4: Experimental Setup for improving stacking fidelity 
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 As shown in figure 5.4, a 1GHz clock signal from the mode-locked oscillator is used to 

sample out the SHG data acquired by the 1GSPS ADC. This readout data is used for calculating 

how much improvement has been achieved in the peak-power signal during stabilization and 

optimization process. Each peak of the metric signal is read every 20us (
1

𝑓𝑟𝑒𝑝
=

1

50𝐾𝐻𝑧
= 20𝑢𝑠). 

This requires a 50KHz trigger signal synchronized with the mode-locked Oscillator.  

  

 The 1GSPS DAC with maximum 500MHz analog bandwidth in this system is the key part 

for optimizing the burst amplitudes and phases. We have programmed the DAC such that 

maximum 500MHz analog Bandwidth is obtained and get a time resolution of 1ns in +/-   for 

receives a 1MHz trigger signal to load the updated amplitude and phase waveforms onto the RF 

amplifier first to boost the output power up to more than 2V before being loaded onto the EOMs.  

  

 As explained, the 1GSPS DAC and ADC in the experimental system need to receive 

different trigger signal from the laser system. In order to efficiently provide this a firmware-based 

down-counter has been developed such that the incoming 1MHz trigger signal gets down-counted 

to 50KHz enabling the ADC successfully detects the SHG peaks every 20us. This is a pathway for 

rearranging the entire the trigger scheme in and trigger the rest of the control system using the 

FPGA system operating as the Master Trigger Source. 

 

5.5 Implementation of Genetic Algorithm for Optimization Purposes 

 In this section a complete introductory description as well as implementation details of a 

genetic algorithm for optimization purposes in CPSA system is presented.  
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 To explain the implementation, we consider optimizing the phase profile in the burst while 

the amplitude profile is fixed. However, similar model can be applied for the amplitude profile as 

well. For initialization or making the initial set of parents in the problem, a certain number of phase 

profiles is taken (e.g. 𝑁𝑝𝑎𝑟𝑒𝑛𝑡=20). The way we implement the genetic-based optimization 

algorithm is that phase profiles can be either parents or children. The first parent is first initialized. 

This initial profile could be a profile that ends up in a point relatively-close to the global peak in 

the landscape of the target function or it can be a profile that makes the target function lays 

arbitrarily far from the global peak. We will later on show that the algorithm successfully optimizes 

the system so that the target function converges to the maximum almost independent of the initial 

condition. For instance, in the case of 4-cascaded GTI stacking with 9 pulses, the first parent is 

initialized as  𝑃1= [𝜙1, … , 𝜙10]. In the next step, the (𝑁𝑝𝑎𝑟𝑒𝑛𝑡-1) remaining profiles (parents) are 

generated using the first (master) profile based on mutation. In order to do this, a random sequence 

of 0’s and 1’s are assigned for each individual phases within a profile which determines if that 

particular phase gets mutated or not (e.g 𝑆 = [0 0 1 0 1… . 0 1]). This sequence is then dot-

multiplied by a sequence of random phases generated based on the normal distribution of 0 average 

(e.g 𝑅 = 𝑛𝑜𝑟𝑚𝑟𝑛𝑑(1,10)) . For instance, for the case of 𝑁𝑝𝑎𝑟𝑒𝑛𝑡=20 and 𝑁𝑝𝑢𝑙𝑠𝑒=10, the 𝑖𝑡ℎprofile 

𝑃𝑖 (2 ≤ 𝑖 ≤ 20) is generated as in equation (5.5): 

     𝑃𝑖 = 𝑃1 + 𝑆𝑖 .∗ 𝑅𝑖         (5.5) 

 This procedure is continued until all phase profiles or parents are initialized. Next, each of 

the 𝑁𝑝𝑎𝑟𝑒𝑛𝑡 parents should produce certain number of offspring which are phase profiles (e.g  

𝑁𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 =  9) similar to the procedure taken for making the parents in the previous step (see 

equation (5.6)). We denote the offspring as  𝑂𝑖𝑗 where  𝑖 is the index of the parent from which the 
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offspring is reproduced, and  𝑗 is index of the child (e.g  𝑂23 is the 3rd child from the 2nd parent).   

     𝑂𝑖𝑗 = 𝑃𝑖 + 𝑆𝑗  .∗ 𝑅𝑗         (5.6)  

an initial population consist of 𝑁𝑝𝑎𝑟𝑒𝑛𝑡 parents and 𝑁𝑝𝑎𝑟𝑒𝑛𝑡 ∗ 𝑁𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 children is made to be 

input into the genetic algorithm. As a result, the total number of individual phase profiles in the 

population is (𝑁𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔. +1)*𝑁𝑝𝑎𝑟𝑒𝑛𝑡.   

  

 Next stage in the algorithm is the evaluation where each individual phase profile among 

the entire population of (𝑁𝑝𝑎𝑟𝑒𝑛𝑡+1)* 𝑁𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 elements is evaluated in terms of their 

corresponding  system response or the target function value. In our case, the SHG signal value 

corresponding to each of those individual elements is calculated, sorted out, and the first 𝑁𝑝𝑎𝑟𝑒𝑛𝑡 

highest SHG values and their corresponding phase profile is selected. These new 𝑁𝑝𝑎𝑟𝑒𝑛𝑡 profiles 

are denoted as new parents to reproduce new sets of children. This process is carried out for certain 

number of iterations such that a convergence is guaranteed. Here we present a complete flow 

diagram of the optimization algorithm for better grasp of concept (See Fig 5.5). 
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Figure 5.5: Flow-Diagram for the Genetic Algorithm 

 

 To evaluate the performance of the algorithm and to compare it with the SPGD algorithm, 

we performed a detailed numerical study for an equal-length 4-GTI stacker configuration, which 

can stack approximately 9 pulses. An ideal stacking at the output of a stacking arrangement would 

correspond to a single stacked pulse. The required amplitudes and phases for the incident stacking 

burst that would produce this single stacked pulse could be calculated by taking a time-reversed 

complex conjugate of the impulse response (i.e. stacker response to a single input pulse) for a 

chosen 4-GTI cascaded cavity design, determined by the set of front-mirror reflectivities and 

roundtrip phases given below. We simulate the effects of non-ideal conditions in the system by 
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adding random phases to each of the stacking burst pulses. Then we use this “non-ideal” stacking 

burst as an identical input to both SPGD and Genetic algorithms and calculate the performance of 

each algorithm of optimizing the input stacking burst phases. Multiple random realizations of these 

“distorted” input stacking profiles are used for multiple simulation runs to obtain the evaluation of 

the performance of each of the algorithms for a multitude of possible system conditions. By 

comparing the results of each algorithm in terms of the converged metric (SHG) and the final 

stacked profile (i.e. pre-pulse contrast) we can estimate how well each of the algorithms will be 

able to compensate these system-induced distortions. 

 

Time-Reversed Impulse Response 
Only the largest 9 pulses are selected 

Complex-Conjugate Impulse Response Phases 
Only the largest 9 pulses are selected 

a) b) 
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 Parameters of the stacking system that has been used corresponding to the simulation 

results presented here are as follows: The reflectivities for the front mirror in the GTI cavities are: 

𝑅1 = 0.55, 𝑅2 = 0.52, 𝑅3 = 0.63, 𝑅4 = 0.63. Cavity phases have been chosen to be as  𝛿1 =

4.66, 𝛿2 = 3.15, 𝛿3 = 5.46, 𝛿4 = 0. 

  

 An ideal single stacked pulse, i.e. pulse with no pre- and post-pulses, can only be achieved 

with an infinitely long incoming stacking burst [22].  In real experiment the incoming burst has to 

be truncated to a finite number of pulses. Therefore, in these simulations we truncate the infinitely-

long input amplitude profiles to the largest 9 pulses of the time-reverse complex conjugate of the 

impulse response (as shown in figure 5.6a).  However, this truncation produces the non-zero pre-

pulse content, which is evident as the first three pulses at the positions “-8”, “-7”, and “-6” in the 

5.6 c and d. It originates from the front-mirror reflections of the first pulses in the incoming 

stacking burst, which therefore cannot be reduced by controlling stacking burst phases. In actual 

experiment, these reflection-caused pre-pulses can be made arbitrarily small by increasing the 

c) d) 

Figure 5.6: a) time-reversed impulse response as the input intensity profile with the largest 9 pulses b) Complex-conjugate 

phase of the impulse response as the input phase profile c) ideal stacked profile in linear scale d) ideal stacked profile in 

logarithmic scale  

Linear Scale Stacked Profile Logarithmic Scale Stacked Profile 
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length of the truncated burst to a sufficient length to achieve the required level of the pre-pulse 

contrast [22]. To reduce the computation time, we chose to not increase the burst length, but to 

ignore the first three calculated pre-pulses in the subsequent analysis. 

  

 In this part, we present simulation results corresponding to completely random initial phase 

profiles where all the pulse phases are randomly deviated from the optimal “ideal” profile. Few 

examples of different phase profiles (see fig 5.7), their corresponding SHG values, as well as their 

resulting stacked profiles are presented here to get a better sense that the algorithm can respond to 

any arbitrary initial point and to converge to the optimum. 

 

B1) 40% off the Peak B2) 

A1) 20% off the Peak A2) 



 114 

 

 One point to be mentioned about the results in figure 5.7 is that in real experimental 

scenario the starting point is not expected to be significantly off the global peak (perhaps, by 10% 

- 20%). For evaluation purposes, and to make sure the designed algorithms are able to optimize 

arbitrary profiles, and hence the stacking performance, we examined as many cases as possible 

even as way off as about 60% of the global peak. 

  

 For the following simulations we examined 250 random phase profiles of the input stacking 

bursts, each defined as a normal distribution with a certain value of its standard deviation 𝜎. This 

𝜎 was kept the same for every five profiles, and then changed, thus giving overall 50 different  𝜎 

values covering the range 0 < 𝜎 < 0.5. Each distribution corresponds to a specific initial point on 

the SHG “landscape”, i.e. SHG signal magnitude produced by each corresponding “initial” stacked 

profile which would occur without the optimization, as shown in Figure 5.8. As expected, SHG-

signal magnitude decreases with increasing 𝜎 due to increasing stacking errors, and the SHG value 

spread also increases. 

C1) 57% off the Peak C2) 

Figure 5.7: A1) and A2) are the perturbed phase profile resulting in an SHG 20% off the peak and the corresponding stacked 

profile respectively.  B1) and B2) are the perturbed phase profile resulting in an SHG 40% off the peak and the 

corresponding stacked profile respectively, C1) and C2) are the perturbed phase profile resulting in an SHG 57% off the peak 

and the corresponding stacked profile respectively. 
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Figure 5.8: SHG changes with respect to the perturbations specified by the standard deviation of the normal distribution 

 

 Next, in figure 5.9(a) and (b) we show the optimization simulation results, comparing 

both algorithms.  Only results of 50 “perturbations”, each with a different 𝜎 value, are plotted 

here 

 

Maximum 𝜎 =
0.1405 
(with respect to the 
average) 

Maximum 𝜎 = 0.0523 
(with respect to the 

average) 

Genetic SPGD 

a) b) 
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 As shown in figure 5.9(a) and (b), both algorithms are capable to optimize the stacked 

profile, and to closely approach the “ideal” case, as measured in terms of the stacked-pulse peak 

power (i.e. stacking efficiency). The genetic algorithm seems to be a bit faster (approximately 

twice), but this is not very critical for our application. Two examples of stacked profiles after the 

optimization with each of the algorithms are presented in 5.9 (c), (d) – linear scale, and (e), (f) – 

logarithmic scale. What we can immediately notice is that pre-pulse contrast after the genetic-

algorithm optimization is close 35dB (after discarding first three “reflected” pulses, as discussed 

Genetic  

  

Minimum Prepulse 
Contrast: 20.5 dB 
  

Minimum Prepulse 
 Contrast: 20 dB SPGD  

  

c) d) 

Genetic  

  

SPGD 

  

e) f) 

Figure 5.9: a) SHG profile over 120 iterations for 50 different perturbation distributions (Genetic)  b) SHG profile over 1000 

iterations for 50 different perturbation distributions (SPGD) c) & d) corresponding linear-scale stacked profile associated 

with Genetic and SPGD algorithms respectively. e) & f) corresponding logarithmic-scale stacked profile associated with 

Genetic and SPGD algorithms respectively 
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earlier), but only ~20dB after the SPGD optimization. It is important to state that for achieving 

>40dB contrast it will be imperative to modify the signal metric, i.e. instead of peak-power 

(proportional to SHG) optimization, it will be necessary to also measure the pre-pulse contrast as 

well. But this goes outside the scope of the current thesis work, and will have to be carried out I 

the future 

  

 Also, since the Genetic and SPGD algorithms are both intrinsically based on random 

numbers that are generated in each iteration, it is important to make sure the algorithm behavior 

does not diverge in different runs, and it always converges to the optimal point. In order to do this, 

we have run the two algorithms for number of times for 4 different starting points on the SHG 

landscape,1%, 20%, 40%, and 57% off of the global peak, and observed the behavior of the 

algorithms for those different runs.  

 

SPGD 

Converged Metric 

SPGD 

Converged  
Stacked Pulse Intensity 

a) b) 
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 As shown in Figure 5.10 a) and c), the two algorithms successfully converge to the global 

peak for all 50 runs. comparing a) and c) shows that final converged SHG value through SPGD 

is more insensitive to the randomness nature in different runs compared to the Genetic algorithm. 

The statistical changes of the stacked peak in different runs are also shown in Figure 5.10 b) and 

d). They also manifest that the optimized stacked pulse is guaranteed to be achieved for different 

runs both for SPGD and Genetic algorithm. 

  

 

 

 

 

 

 

 

 

 

Genetic 

Converged Metric 
Genetic 

Converged  
Stacked Pulse Intensity 

c) 
d) 

Figure 5.10: a) Converged SHG value for different runs (SPGD)  b) Final Stacked Pulse for different runs (SPGD) c) 

Converged SHG value for different runs (GENETIC) d) Final Stacked Pulse for different runs (GENETIC) 
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Chapter 6 Conclusions and Future Work 

 

 

6.1 Conclusions 

 This thesis focused on utilizing efficient algorithms for stabilization and optimization 

aspects of CPSA and developing a robust, scalable, and distributed digital control system with 

firmware and software integration for algorithms, to support the CPS application.  

 Theoretical foundations of the control algorithms (specifically Stochastic Parallel Gradient 

Descent (SPGD) algorithm) as they pertain to both stabilizing the stacking system and optimizing 

the input burst profile have been fully presented. Hardware implementation along with 

firmware/software development for the FPGA-based Control system (In collaboration with LBNL) 

have been presented. This FPGA-based feedback control system is a distributed synchronous 

digitizer network with firmware and software integration for algorithms, therefore it can be scaled 

to large numbers of cavities. It also provides sufficiently high feedback loop speed enabling the 

user to control the system at different frequency regimes of interest. 

 A novel GTI-based Noise measurement technique for measuring stacking phase noise as 

well as the amplitude noise from the mode-locked oscillator has been developed. Detailed 

theoretical derivation for representing the output stacking noise in terms of the phase mismatch 

between the GTI stacker cavities and the oscillator cavity has been provided. We illustrate that the 

oscillator phase noise is the dominant factor contributing to the total output stacking noise. The 

details of how the technique works and how the measurement system was developed along with 
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some examples were shown. The neat thing about this is that it does not require any measurement 

of the frequency-comb merits such as linewidth which not only should be measured over a certain 

period of time but also requires complicated measurement setups such as the Heterodyne. Time-

domain-based Allen Deviation technique as well as frequency-domain-based analysis of noise 

measurements have been used to better understand the characteristics of the measured noise in 

different frequency bands. 

 The GTI-based technique described above was applied to different stacking configurations 

(A 30cm-long GTI cavity with the same round-trip time as the oscillator’s round-trip time, and a 

2.7m-long GTI cavity with round-trip time 9 times the oscillator’s round-trip time) to effectively 

measuring the characteristics of the mode-lock oscillator noise (and how they affect the output 

stacking. We mathematically and experimentally showed how the stacking phase noise gets more 

sensitive to the oscillator phase noise when a longer length GTI cavity is used for noise 

characterization. By effectively reducing the noise in the pump current and accordingly the 

oscillator phase noise, we experimentally manifested how the stacking noise can be reduced in an 

order of magnitude down to the limit of the amplitude noise of the oscillator. Simulation and 

experimental results for stabilization of two different GTI stacker configurations (4-Cascaded and 

4+4 Multiplexed) have been presented. 

 For stacking fidelity improvement, an algorithmic-based optimization was implemented in 

the FPGA-based Control system in an outer-feedback-loop nested with the stabilization feedback 

loop. We have developed a dual-buffer DAC in the firmware enabling the 1GSPS DAC swap 

between two different amplitude waveforms between the pulses and output the updated waveform 

to the electro-optic modulators at the trigger arrival. In addition, a detailed discussion on different 

sources of disturbances/noises degrading the stacking fidelity was presented.  
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 By implementing this optimization algorithm in the FPGA-control system, we effectively 

removed the previously existing Arbitrary-Waveform-Generators (AWGs) in the system which 

were not sufficiently fast in operation. We also developed a firmware that uses a reference trigger 

signal (e.g the 1MHz trigger signal synchronized with the laser) and generates different 

synchronous triggers to trigger the rest of the optical system such as the Acousto-optic-modulators 

(AOMs). This is a pathway to puts the FPGA system as the master clock for triggering the entire 

stacking system. 

 Finally, we developed a Genetic-Algorithm-Based optimization program to get more sense 

of how other optimization algorithms (other than SPGD) can effectively improve the stacking 

performance. In this analysis, a detailed description of how we implemented the Genetic Algorithm 

was presented first and then the performance of the algorithm in terms of the converged SHG 

metric and the optimized stacked profile was evaluated. A one-to-one comparison between the 

Genetic Algorithm and SPGD was also performed to see how effective they are in compensating 

for arbitrary changes in the pulse phases and hence optimizing the stacked profile.   

 

6.2 Future Work 

 There are various paths of research to be explored specifically on control sides of the 

stacking system. one of the important desired characteristics of the stacked pulses is associated 

with a high degree of pre-pulse contrast of up approximately 40 – 60 dB, which is required by 

laser-plasma acceleration applications, as well as numerous other laser-matter interaction-based 

applications. Since in practice peak detection cannot be achieved with better than approximately 

1% accuracy, this stacked-pulse fidelity metrics does not allow achieving pre--pulse of better 

than approximately 20 dB. At this point we had identified techniques with which this limitation 
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can be overcome (for example, developing a new fidelity measurement technique which would 

detect both the pre-pulse content and the stacked pulse peak). This opens a path for future works 

to be done to effectively increase pre-pulse contrast. 
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