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ABSTRACT

Technological and scientific advances in recent years have revolutionized genomics. For example,

decreases in whole genome sequencing (WGS) costs have enabled largerWGS studies as well as larger

imputation reference panels, which in turn provide more comprehensive genomic coverage from

lower-cost genotyping methods. In addition, new technologies and large collaborative efforts such

as ENCODE and GTEx have shed new light on regulatory genomics and the function of non-coding

variation, and produced expansive publicly available data sets. These advances have introduced data

of unprecedented size and dimension, unique statistical and computational challenges, and numerous

opportunities for innovation. In this dissertation, we develop methods to leverage functional

genomics data in post-GWAS analysis, to expedite routine computations with increasingly large

genetic data sets, and to address limitations of current imputation reference panels for understudied

populations.

In Chapter 2, we propose strategies to improve imputation and increase power in GWAS of

understudied populations. Genotype imputation is instrumental in GWAS, providing increased

genomic coverage from low-cost genotyping arrays. Imputation quality depends crucially on

reference panel size and the genetic distance between reference and target haplotypes. Current

reference panels provide excellent imputation quality in many European populations, but lower

quality in non-European, admixed, and isolate populations. We consider a GWAS strategy in

which a subset of participants is sequenced and the rest are imputed using a reference panel that
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comprises the sequenced participants together with individuals from an external reference panel.

Using empirical data from the HRC and TOPMedWGS Project, simulations, and asymptotic analysis,

we identify powerful and cost-effective study designs for GWAS of non-European, admixed, and

isolated populations.

In Chapter 3, we develop efficient methods to estimate linkage disequilibrium (LD) with large

data sets. Motivated by practical and logistical constraints, a variety of statistical methods and tools

have been developed for analysis of GWAS summary statistics rather than individual-level data. These

methods often rely on LD estimates from an external reference panel, which are ideally calculated

on-the-fly rather than precomputed and stored. We develop efficient algorithms to estimate LD

exploiting sparsity and haplotype structure and implement our methods in an open-source C++

tool, emeraLD. We benchmark performance using genotype data from the 1KGP, HRC, and UK

Biobank, and find that emeraLD is up to two orders of magnitude faster than existing tools while

using comparable or less memory.

In Chapter 4, we develop methods to identify causative genes and biological mechanisms

underlying associations in post-GWAS analysis by leveraging regulatory and functional genomics

databases. Many gene-based association tests can be viewed as instrumental variable methods in

which intermediate phenotypes, e.g. tissue-specific expression or protein alteration, are hypothesized

to mediate the association between genotype and GWAS trait. However, LD and pleiotropy

can confound these statistics, which complicates their mechanistic interpretation. We develop a

hierarchical Bayesianmodel that accounts formultiple potential mechanisms underlying associations

using functional genomic annotations derived from GTEx, Roadmap/ENCODE, and other sources.

We apply ourmethod to analyze twenty-five complex traits using GWAS summary statistics fromUK

Biobank, and provide an open-source implementation of our methods.

In Chapter 5, we review our work, discuss its relevance and prospects as new resources emerge,
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and suggest directions for future research.
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Chapter 1

Introduction

1.1 Background

The past two decades have seen an explosion of technological and scientific advances in genomics.

As new sequencing technologies have emerged, the cost of whole-genome sequencing (WGS) has

fallen from over $100M USD to under $1,000 USD per genome (KA 2018), enabling larger WGS

studies as well as larger haplotype reference panels (e.g., McCarthy et al. 2016), which in turn

provide more comprehensive genomic coverage from lower-cost genotyping methods through

genotype imputation. New technologies and large collaborative efforts such as the Encyclopedia

of DNA Elements (ENCODE) project, NIH Roadmap Epigenomics Mapping Consortium, and

Genotype-Tissue Expression (GTEx) project have produced a wealth of data and shed new light

on regulatory genomics and the functional non-coding genome (ENCODE Project Consortium

2012; GTEx Consortium 2015; Karczewski and Snyder 2018). Genome-wide association studies

(GWAS) have identified thousands of genetic variants associated with hundreds of complex traits

(MacArthur et al. 2016), and while the biological mechanisms underlying these associations are often

poorly understood, there have been notable breakthroughs in genomic medicine and gene therapy
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(e.g., Ribeil et al. 2017; Rangarajan et al. 2017). Altogether, these advances have produced data of

various new types and unprecedented volume, presenting new challenges as well as opportunities

for statistical innovation.

Challenges & Opportunities from Advances in Genomics

Large sequencing studies and imputation reference panels, made possible by advances in sequencing

technologies, require enormous computational resources to process, store, and analyze, presenting a

need for more efficient data formats and analysis methods (McCarthy et al. 2016; Das et al. 2016).

In addition, large reference panels have enabled far more accurate and comprehensive genotype

imputation for many populations, prompting a need to re-assess the relative cost-effectiveness

of sequencing and imputation-based genotyping in GWAS, and to develop more powerful and

cost-effective genotyping strategies for understudied populations (McCarthy et al. 2016; B. Li and

Leal 2008). Large omics studies, empowered by new experimental techniques as well as sequencing

technologies, have constructed expansive databases characterizing transcriptomic, proteomic, and

metabolomic interactions as well as the functional effects of coding and non-coding variation

(ENCODE Project Consortium 2012; GTEx Consortium 2015; De Rie et al. 2017). These data,

together with more comprehensive genomic coverage in GWAS, can provide more refined insights

into the biological pathways that underlie genetic effects on complex traits, prompting a need for

statistical methods to integrate GWAS with diverse types of functional genomic data.

Purpose

In this dissertation, we develop statistical methods to leverage functional genomics databases in

post-GWAS analysis, to expedite routine computations with increasingly large genetic data sets, and

to address limitations of current imputation reference panels for understudied populations.

2



1.2 Genotype Imputation: Challenges for Understudied

Populations

Genotype imputation has been instrumental in GWAS, enabling more complete meta-analysis of

results frommultiple studies, and providing increased genomic coverage from array-based genotype

callsets (Y. Li et al. 2009). Imputation algorithms typically employ a Hidden Markov Model (HMM)

in which partially observed haplotypes in the study sample are modeled as mosaics of complete

haplotypes in a reference panel (N. Li and Stephens 2003; e.g., International HapMap 3 Consortium

2010; 1KGP Consortium 2015). Genotyping arrays, e.g. the Illumina OmniExpress, are often used

to construct a scaffold for imputation via array-based genotype calls over a sparse set of directly

typed marker variants. This array-and-imputation genotyping strategy provides an inexpensive in

silico alternative to whole genome sequencing, the gold-standardmethod to capture genetic variation

comprehensively across the allele frequency spectrum.

Imputation coverage and accuracy depend crucially on the genetic similarity between reference

and target populations (Roshyara and Scholz 2015) and the number of reference haplotypes available

(Das et al. 2016). The earliest imputation reference panels, e.g. from the 1000 Genomes Project

and International HapMap Consortium, included individuals from diverse worldwide human

populations (1KGP Consortium 2015; International HapMap 3 Consortium 2010). These projects

provided new insights into haplotype structure and demographic history across human populations,

as well as new resources for genotype imputation. By contrast, the largest current imputation

reference panels, e.g. from the Haplotype Reference Consortium (HRC; McCarthy et al. 2016) and

UK10K Consortium (UK10K Consortium 2015), are largely European. These reference panels have

enabled far more accurate and comprehensive imputation for many European populations, but are

less effective for non-European, admixed, and isolate populations (UK10K Consortium 2015). In
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populations that are underrepresented in current imputation reference panels, population-matched

or multi-ethnic reference panels can be constructed to provide improved imputation quality (Deelen

et al. 2014; Lencz et al. 2017; Ahmad et al. 2017).

In Chapter 2, we propose strategies to improve genotype imputation and increase power in

GWAS of diverse human populations. We consider a strategy in which a subset of participants is

sequenced and the rest are imputed using a reference panel that comprises the sequenced participants

together with individuals from an external reference panel. Using empirical data from the Haplotype

Reference Consortium (HRC) and NHLBI Trans-Omics for Precision Medicine (TOPMed) Whole

Genome Sequencing (WGS) Project, simulations, and asymptotic analysis, we identify powerful and

cost-effective sequencing-and-imputation study designs for GWAS of non-European, admixed, and

isolated populations.

1.3 Leveraging Natural Features of Genetic Data to Expedite

Computation

Demographic history and the driving processes of mutation and recombination impart distinctive

features to human genetic datasets. For example, the mutation process coupled with explosive

population growth produces an abundance of rare variant alleles, resulting in natural sparsity (Kimura

1983; Takahata 1996; Keinan and A. G. Clark 2012); and the sharing of short genomic segments

between unrelated individuals produces a high degree of redundancy (Wall and Pritchard 2003;

International HapMap 3 Consortium 2010). In Chapter 3, we leverage these properties to expedite

linkage disequilibrium estimation with large data sets.

Linkage disequilibrium (LD) refers to association between alleles at different genetic variants,

which generally decays with increasing distance between variants on a given chromosome due to

4



genetic recombination. Accounting for LD is critical for many multi-variant genetic association

methods, e.g. conditional analysis and fine-mapping (Benner et al. 2016; Wen et al. 2016; Lee et al.

2018), gene-based association (Lamparter et al. 2016; Bakshi et al. 2016; Feng et al. 2014), and

functional enrichment analysis (Finucane et al. 2015; Lamparter et al. 2016). These methods are often

applied to GWAS summary association statistics (single-variant test statistics, or effect size estimates

and standard errors), and rely on LD estimates that are pre-computed from the GWAS sample (e.g.,

Feng et al. 2014) or estimated from an external population-matched reference panel (e.g., Lamparter

et al. 2016). Existing tools to estimate LD often scale linearly with sample size, prompting a need for

more efficient methods for increasingly large genetic data sets. In Chapter 3, we develop efficient

algorithms to estimate LD exploiting sparsity and haplotype structure. We implement our methods

in an open-source C++ tool, emeraLD, which is up to two orders of magnitude faster than existing

tools while using comparable or less memory.

1.4 Leveraging Prior Knowledge from Functional Genomics

Studies for Informative, Comprehensive Gene-Based

Analysis

New technologies and large collaborative projects in recent years have produced extensive datasets

characterizing functional elements throughout the human genome and regulatory effects of

non-coding genetic variation. For example, the NIH Roadmap Epigenomics Mapping Consortium

has used next-generation sequencing technologies to produce epigenomic datasets across a number

of human tissues and cell types (Kundaje et al. 2015); the Encyclopedia of DNA Elements (ENCODE)

project has characterized functional elements throughout the human genome across a variety of

5



tissues and cell types using ChiP-seq, Methyl-seq, RNA-seq and other techniques (Kellis et al.

2014); the Genotype-Tissue Expression (GTEx) project has produced transcriptomic and eQTL

mapping datasets across 49 human tissues (GTEx Consortium 2015); and the FANTOM (Functional

ANnoTation Of the Mammalian genome) consortium has used RNA sequencing and Cap Analysis

of Gene Expression (CAGE) to characterize active enhancers and promoters across a wide range

of human and mouse cell types (De Rie et al. 2017). These projects have greatly enhanced our

understanding of regulatory genomics and functional non-coding variation, and have enabled new

insights into the mechanisms underlying non-coding GWAS associations.

Integrating functional genomic annotations with GWAS data has been an active area of

methodological research (e.g., Gusev et al. 2016; Hao et al. 2018; Wu et al. 2018). For example,

stratified LD score regression (S-LDSC) and SMART have been applied to partition complex trait

heritability across functional elements and detect functional enrichment using annotations from

ENCODE, Roadmap, and other sources (Finucane et al. 2015; Hao et al. 2018). Methods such as

TWAS and PrediXcan use predictive weights estimated from eQTL mapping datasets (e.g., from

GTEx) to assess associations between complex traits and the genetic component of gene expression

levels (Gamazon et al. 2015; Gusev et al. 2016). Similarly, the SMR (summary-data-based Mendelian

randomization) and HEIDI (heterogeneity in dependent instruments) methods have been applied

to assess gene regulatory perturbations underlying GWAS associations using eQTL and mQTL

datasets (Wu et al. 2018). Finally, Bayesian finemapping methods have been developed incorporating

functional genomic annotations to help prioritize causal variants and assess mechanisms underlying

associations (Kichaev, Yang, et al. 2014; Kichaev and Pasaniuc 2015; Wen et al. 2016).

In Chapter 4, we present GaMBIT, a unified statistical framework to infer causative genes,

pathways, and biological mechanisms underlying GWAS associations leveraging diverse functional

annotations. Our approach accounts for multiple potential mechanisms underlying GWAS
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associations to avoid spurious inferences caused by pleiotropy and LD, and leverages trait-specific

patterns of functional enrichment to improve prioritization of causal genes and mechanisms. We

discuss relationships between the proposed model and existing gene-based tests and fine-mapping

methods, and demonstrate that GaMBIT improves prioritization of causal genes and mechanisms

through simulation studies. Finally, we apply our method to analyze twenty-five complex traits

using GWAS summary statistics from the UK Biobank resource, and provide an open-source

implementation of our methods.

1.5 Looking Forward

Human genomics is a rapidly evolving field, and the emergence of new technologies, studies, and data

resources present new statistical and computational challenges. In Chapter 5, we review our work

and discuss future prospects and opportunities as new resources emerge.
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Chapter 2

Sequencing and Imputation in GWAS: Cost-Effective Strategies

to Increase Power and Genomic Coverage Across Populations

2.1 Introduction

Genome-wide association studies (GWAS) have detected thousands of common genetic variants

associated with hundreds of complex diseases and traits (MacArthur et al. 2016). A key aim for

the next wave of GWAS is to interrogate the full spectrum of genetic variation underlying human

genetic traits, including rare (minor allele frequency [MAF] ≤ 0.5%) variants. Detecting association

at rare variants requires bothmore comprehensive genomic coverage and sufficient sample size. Deep

whole genome sequencing (WGS) is the gold standard method for capturing rare variation; however,

even in the era of the $1,000 genome, large WGS association studies remain prohibitively expensive.

Genotype imputation has been a mainstay of GWAS, providing increased genomic coverage from

inexpensive array-based genotype call sets. While initial imputation studies only surveyed common

variants (e.g., Scott et al. 2007), larger and more diverse reference panels now enable more accurate

and comprehensive imputation of rare and low-frequency variants across awide range of populations

(e.g., Mahajan et al. 2018).
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Imputation algorithms model haplotypes in the study sample as mosaics of haplotypes in a

reference panel (e.g. from the International HapMap Project [International HapMap 3 Consortium

2010] or 1000 Genomes Project [1KGP Consortium 2015]) to predict genotypes at untyped variants

(Li et al. 2009). By increasing genomic coverage and accuracy, imputation increases statistical power

to detect association, enables more complete meta-analysis of results from multiple studies, and

facilitates the identification of causal variants through fine-mapping (Li et al. 2009; Das et al. 2016).

Imputation coverage and accuracy depend crucially on the size of the reference panel and the genetic

distance between reference and target populations (Li et al. 2009; Roshyara and Scholz 2015). The

largest current broadly available reference panels, e.g. from the Haplotype Reference Consortium

(S. McCarthy et al. 2016) (HRC) and UK10K project (UK10K Consortium 2015), include tens of

thousands of predominantly European individuals. These panels provide near complete imputation

of genetic variation down to MAF=0.1% for many European populations, but lower imputation

quality for non-European and admixed populations and population isolates, particularly for rare and

low-frequency (0.5%<MAF < 5%) variants (Deelen et al. 2014; Pistis et al. 2015; Zhou et al. 2017). The

1000 Genomes Project and HapMap panels include individuals from diverse worldwide populations,

but provide more limited imputation coverage and accuracy due to their smaller sample sizes.

Capturing rare variation across diverse populations is crucial to detect population differences

in genetic risk factors, accurately predict genetic risk, and identify causal variants and biological

mechanisms through trans-ethnic fine-mapping (Kichaev and Pasaniuc 2015; Popejoy and Fullerton

2016). Population-matched or multi-ethnic reference panels can improve imputation quality and

coverage for rare variants in GWAS of diverse populations (Deelen et al. 2014; Pistis et al. 2015; Zhou

et al. 2017; Ahmad et al. 2017; Lencz et al. 2017; Van Leeuwen et al. 2015); this approach has enabled

discovery of novel loci and refinement of association signals for multiple populations and complex

traits (Pistis et al. 2015; Auer and Lettre 2015; Holm et al. 2011).
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Here, we consider an approach inwhich a subset of study participants is whole genome sequenced

and the rest are array-genotyped and imputed using an augmented reference panel that comprises

the sequenced participants and individuals from an external reference panel (Hu et al. 2015; Zeggini

2011). This hybrid sequencing-and-imputation strategy providesmore comprehensive coverage than

only array genotyping, and is less costly than whole genome sequencing the entire sample. We

and others have used this strategy (Van Leeuwen et al. 2015; Fuchsberger et al. 2016; Sidore et al.

2015; Steinthorsdottir et al. 2014), but no analysis of coverage, power, and cost-effectiveness has

been carried out to date. Here, we assess how imputation coverage and power to detect association

vary across genotyping arrays and as a functions of the number of population-matched individuals

sequenced and included in the reference panel for two admixed populations (African Americans

and Latino Americans) and two European population isolates (Sardinians and Finns) to identify

powerful and cost-effective strategies for GWAS in these populations. We also describe an interactive

web-based tool to assist researchers in the design and planning of their own GWAS.

Figure 2.1.1: Sequencing-and-Imputation GWAS Flowchart

GWAS
Array Data

Imputed GWAS
Array Data

External 
Reference 

Panel

Augmented 
Reference Panel

GWAS 
Sequence Data

Association
Analysis

Flowchart of sequencing and imputation GWAS strategy. An augmented reference panel that comprises sequenced

GWAS participants and an external panel is used to impute array-genotyped GWAS samples. Both sequenced and
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imputed GWAS participants are included in association analysis.

2.2 Materials and Methods

We first describe WGS data sources used in our analysis. Next, we describe imputation strategies,

and outline procedures and imputation quality metrics to compare these strategies. Finally,

we present a novel method to estimate power for the sequencing-only, imputation-only, and

sequencing-and-imputation strategies. For ease of presentation, we assume a dichotomous trait and

a multiplicative disease model, although our findings generalize easily to continuous traits and other

genetic models.

2.2.1 Data Resources

WeusedWGS data on 3,412 African Americans (participants from the JacksonHeart Study) and 2,068

Latino Americans (participants of Puerto Rican and Mexican descent from the GALA II study and

Costa Rican descent from the Genetic Epidemiology of Asthma in Costa Rica and CAMP studies)

in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine

(TOPMed) WGS program, and on 2,995 Finns (participants of the GoT2D, 1KGP, SISu, and Kuusamo

studies) and 3,445 Sardinians (participants of the SardiNIA study) in the HRC to compare imputation

quality between reference panel configurations and genotyping arrays.

2.2.2 Procedures to Evaluate Imputation Coverage and Accuracy

We considered three imputation strategies: (1) using sequenced study participants as a study-specific

reference panel, (2) using an external reference panel alone (for this comparison, the HRC or HRC

subset excluding individuals from the target population), and (3) using an augmented panel that
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comprises sequenced study participants and an external panel.

For African Americans, which are underrepresented in the current version 1.1 of the HRC,

we constructed population-specific and HRC-augmented reference panels with 0 to 2,000 African

Americans. For Latino Americans, we used the same approach but restricted the study-specific panel

size to <1,500 due to the more limited available sample of sequenced Latino American individuals.

For Finns and Sardinians, which are present in the HRC, we constructed augmented reference panels

that comprised the 29,470 non-Finnish or 29,020 non-Sardinian individuals in the HRC together

with 0 to 2,000 Finns or Sardinians from the HRC.

For each population, each imputation strategy, and each of three commonly-used genotyping

arrays (Table 2.1), we used sequence-based genotype calls at marker variants present on the array

as a scaffold for imputation using Minimac3, masking the remaining sequence-based genotype calls

(Das et al. 2016). We then compared the imputed genotype dosages to the true (masked) genotypes

to estimate (a) imputation r2, the squared Pearson correlation between true genotype and imputed

dosage, and (b) imputation coverage, the proportion of variants with imputation r2 ≥ 0.3 and minor

allele count (MAC) ≥ 5 (the MAC threshold used by the HRC panel [S. McCarthy et al. 2016]) in the

reference panel.

Table 2.1: Genotyping Arrays Used for Comparisons

Array No. Marker Variants List Cost per Sample (Illumina Inc. 2018)

Illumina Infinium Core 307K $49

Illumina Infinium OmniExpress 710K $94

Illumina Infinium Omni2.5 2.5M $172
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2.2.3 Estimating Power to Detect Association using Empirical Imputation

Quality Data

When sequenced individuals are included in the reference panel, power calculations should account

for the interdependence between imputation r2 and the number of participants sequenced n, and for

the possibility that the variant is not imputable (absent in the reference panel or not imputed due to

insufficient MAC, or filtered prior to association analysis due to imputation r2 falling below a given

threshold). While common variant associations are likely to be captured by LD proxy SNPs even

when the causal variant is not directly genotyped or imputed, rare variant associations are much less

likely to be captured by proxy SNPs (Montpetit et al. 2006). Here, we assume that power to detect

association for variants that are not imputable is zero. This assumption affects power calculations

almost exclusively for rare variants, since common variants are almost uniformly imputable with

large reference panels (Das et al. 2016; S. McCarthy et al. 2016).

We assume that the n participants who are sequenced are randomly subsampled from the overall

sample of n+m study participants, and that test statistics are calculated separately for the sequenced

and imputed subsamples and combined using the effective sample size weighted meta-analysis test

statisticZnm = c
1/2
nmZseq

n +(1−cnm)1/2Z imp

m , where cnm = n/(n+r2m). The asymptotic distribution

of Znm − η
√
n+ r2m is normal with mean 0 and variance 1, where r2 is the squared correlation

between imputed dosages and true genotypes, and η is an effect size parameter which is equal to

0 under the null hypothesis of no association. The form of η depends on the association model

(additive, dominant, multiplicative), relative risk or odds ratio, MAF, and population prevalence and

case-control ratio for binary traits. Under an arbitrary association model for binary traits, we can

write
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where p
case

and p
control

are the alternate allele frequencies in the disease-positive and disease-negative

populations, v
case

and v
control

are the variances of genotypes in the disease-positive and

disease-negative populations, and s is the GWAS case-control ratio.

To estimate power while accounting for variability in imputation r2 and the possibility that a

variant is not imputable, we average empirical imputation r2 values and MACs across variants from

experimentswith real data described in the previous section. Specifically, we estimate power to detect

association when n individuals are sequenced andm are genotyped and imputed as

ˆ
Power(m,n) =

1∑
j wj

∑
j

wjCnj

∫ z1−α/2

−z1−α/2
φ
(
u− η

√
n+ r2njm

)
du

where φ (u) = e−
u2

2 /
√

2π is the standard normal density function, z1−α/2 is the α-level significance

threshold, r2nj is the imputation r2 value for the jth variant,Cnj = I(MACpanel

nj ≥ 5, r2nj ≥ 0.3) is an

indicator equal to 1 if the jth variant was imputable and 0 otherwise, andMACpanel

nj is the reference

panel MAC for the jth variant when the n sequenced individuals from the target population were

included in the reference panel.

We define the weightswj = PGWAS

N (p̂j)/P̂N(p̂j), whereN is the total number of samples used in

our analysis for the given population (e.g. N =3,412 for African Americans), p̂j is the sampleMAF for

the jth variant in the total sample, P̂N(x) is the proportion of variants with MAF = x, and PGWAS

N (x)

is the probability of observing sample MAF = x in a sample of sizeN given the specified association

model. For example, in a GWAS with sample size N and case-control ratio s, the sample MAC

(which is equal to 2Np̂, where p̂ is the sample MAF) is approximately Poisson distributed with mean

2N(sp
case

+p
control

)/(s+1), where p
case

= pγ/(1+p(γ−1)) and p
control

= (p−Kp
case

)/(1−K) for
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a variant with population MAF p and relative risk γ for a disease with prevalenceK . This weighting

approach adjusts for differences between the empirical distribution of MACs across variants in real

data, and the theoreticalMACdistribution for a variantwith the specifiedMAF, effect size, prevalence

in a GWAS with sample sizeN and case-control ratio s.

2.3 Results

First, we compare strategies to improve imputation using study-specific WGS data for African

Americans, Latino Americans, Sardinians, and Finns. Next, we assess the effects of genotyping array

on imputation quality and coverage for each population and reference panel. We then use these

results to estimate statistical power to detect association as a function of study-specific panel size,

number of participants imputed, external reference panel, and genotyping array. Finally, we identify

cost-effective study designs by comparing statistical power and total experimental (sequencing and

genotyping) costs for sequencing-only, imputation-only, and sequencing-and-imputation GWAS

designs for each population and genotyping array.

2.3.1 Strategies to Improve Imputation using Study-Specific WGS Data

We compared imputation r2 and coverage (proportion of variants with imputation r2>0.3 and

reference MAC ≥ 5) for three imputation strategies: (1) using an external panel (the HRC or HRC

subset) alone, (2) using an augmented panel that combines the study-specific and external panels, and

(3) using a study-specific panel alone.

The external panel alone (HRC for Latino Americans andAfrican Americans, andHRC subset that

excludes individuals from the target population for Finns and Sardinians) provided 96% imputation

coverage for MAF ≥ 0.25% variants (where MAF is calculated separately within each population)
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for Finns, 84% coverage for Sardinians, 86% coverage for Latino Americans, and 77% coverage for

African Americans (Figure 2.3.1A). The relatively lower coverage for African Americans is expected

since the HRC consists primarily of Central and Northern Europeans, who are genetically closer to

Finns and Sardinians, and includes relatively few Africans or African Americans. Despite the small

number of Latino or Native Americans included in the HRC, imputation coverage was slightly higher

for Latino Americans than for Sardinians. This may reflect the high degree of European admixture in

many Latino American populations (Bryc et al. 2010), and the abundance of population-specific rare

and low-frequency variants in the Sardinian population (Sidore et al. 2015).

Figure 2.3.1: Imputation Quality by Population and Genotyping Array.

Imputation and coverage as a function of number of population-matched individuals included in augmented reference

panels (Number Sequenced). Here and elsewhere, MAF is calculated separately within each population.

Augmenting an external reference panel with even a relatively small number of sequenced

individuals substantially increased coverage, particularly for African Americans and Sardinians and

for variants with lower MAF. For example, augmenting the external panel with 500 sequenced

individuals from the study population improved overall imputation coverage for MAF=0.25-0.5%
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variants by 4% for Finns, 9% for LatinoAmericans, 16% forAfricanAmericans, and 23% for Sardinians

genotyped using the OmniExpress relative to the external panel alone (Figure 2.3.1A). Similarly,

augmenting the external reference panel with even 200 individuals increased imputation coverage

for =0.1-0.25% variants by 3%, 4%, 6%, 10% relative to the external panel alone for Finns, Latino

Americans, African Americans, and Sardinians, respectively.

With 2,000 individuals from the target population (or 1,500 for Latino Americans),

population-specific panels provided roughly equivalent imputation r2 compared to augmented

panels (Supplementary Figure 2.1A); however, augmented panels provided higher imputation

coverage overall for lowMAF variants (Supplementary Figure 2.1B). For example, augmented panels

with 2,000 individuals from the target population (or 1,500 for Latino Americans) provided 86%,

80%, 79%, and 86% coverage for 0.1-0.25% MAF variants for Finns, Latino Americans, African

Americans, and Sardinians respectively, whereas population-specific panels alone provided 72%,

51%, 78%, and 72% coverage using the Omni Express array. However, imputation coverage for

variants with MAF>0.25% differed by <1% between augmented and population-specific panels with

2,000 individuals from the target population (or 1,500 for Latino Americans) for all populations

and genotyping arrays. When only a small number (less than 500) of individuals from the target

population are sequenced, augmented reference panels provided substantially higher imputation

coverage and r2 than population-specific panels alone. For example, augmented panels with 500

individuals from the target population provided 90%, 85%, 65%, and 85% coverage for 0.25-0.5%

MAF variants for Finns, Latino Americans, African Americans, and Sardinians respectively, whereas

population-specific panels of 500 individuals provided <30% coverage using the Omni Express array.

Even very rare variants (MAF=0.1-0.25%) attained high coverage across all populations given a

sufficient number of population-matched individuals in the reference panel. For example, attaining

>70% imputation coverage for MAF=0.1-0.25% variants required a study-specific panel of >1,800
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individuals for African Americans, 1,000 for Latino Americans, 700 for Sardinians, and 0 for Finns

using theOmniExpress. These increases in imputation coverage primarily reflect increasing numbers

of population-specific variants captured in the reference panel, which are absent from or present in

low copy number in the external panel.

We also assessed potential drawbacks of augmented reference panels relative to

population-specific panels. Using a reference panel that includes individuals outside of the

target population can result in false positive imputed variants: variants that are monomorphic in the

target population but have imputed MAC� 0 and high imputation quality metrics (see also Zeggini

2011). We found that many false positive variants can be identified and filtered by comparing allele

frequencies between the sequenced and imputed samples from the target population (Supplementary

Figure 2.2).

2.3.2 Imputation Coverage and Quality across Genotyping Arrays

Imputation coveragewas generally similar for theOmniExpress andOmni2.5 arrays, but consistently

lower for the less dense Core array. Coverage differed by <7% between the OmniExpress and

Omni2.5 across all MAF bins, populations, and reference panels, whereas the Core provided up to

24% lower coverage than the Omni2.5 (Figure 2.3.1A). Imputation coverage wasmore heterogeneous

across arrays for populations with greater genetic distance from the external reference panel (e.g.,

African Americans and the HRC panel), particularly with smaller (or absent) study-specific panels

(Figure 2.3.1A). Because we used the same reference panels for each genotyping array, differences

in imputation coverage between arrays are solely due to differences in the proportion of variants

that attained imputation r2 ≥ 0.3. Imputation r2 varied more across genotyping arrays than

did imputation coverage (Figure 2.3.1B versus 2.3.1A); however, the magnitude of differences in

imputation r2 between arrays was still generally modest, particularly for the Finns and Sardinians.
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2.3.3 Powerful and Cost-Effective Strategies for GWAS across Populations

We compared the cost-effectiveness of sequencing-only, imputation-only, and

sequencing-and-imputation strategies by analyzing statistical power to detect association as a

function of numbers of study participants sequenced and imputed, genotyping array, and reference

panel across a range of genetic models. Here, we define the most cost-effective strategy as either (1)

minimizing total experimental (sequencing and genotyping) cost while attaining power at or above

a given threshold, or equivalently (2) maximizing power while maintaining cost no greater than a

specified constraint.

Figure 2.3.2: Power and Optimal Design by Population and Genotyping Array.

Power to detect association for case-control studies with equal numbers of cases and controls as a function of sequenced

subsample size (x-axis) and imputed subsample size (y-axis) for a variant with MAF 0.5% and relative risk 4 for a disease

with prevalence 1%. Axes are scaled to reflect costs of genotyping arrays (Table 2.1) and sequencing ($1K per sample).

Power shown only for designs with total genotyping cost $2M ($1.5M for Latino Americans). Dashed diagonal lines

indicate study designs with the same total cost, given by y = a− bx where a = (Total Cost)/(Array Cost) and
b = (Sequencing Cost)/(Array Cost). Circled points indicate optimal study designs, which attain the indicated

power level at minimum total experimental cost (or, maximize power at the indicated total experimental cost).

The cost-effectiveness of sequencing a subset of study participants varied greatly across

populations. For Finns, imputation-only designsweremost powerful to detect association and adding
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sequenced individuals increased power onlyminimally, even for low-frequency and rare variants. For

Sardinians, Latino Americans, and African Americans, sequencing a subset of study participants was

optimal, and often achieved substantially greater power than imputation-only or sequencing-only

studies. For example, a GWAS of African Americans with equal numbers of cases and controls in

which 800 participants are sequenced and 10,500 are imputed using the Illumina Infinium Core

array has 90% power to detect a risk variant with MAF = 0.5% and RR = 4 for a disease with

prevalence 1%, whereas an imputation-only GWAS with the same total cost (27,000 participants)

has power <70% (Figure 2.3.2). Even for populations in which optimal sequencing-and-imputation

designs had substantially greater power than imputation-only, the optimal number to sequence was

often modest. For example, only 175 participants are sequenced under the optimal design using the

Illumina OmniExpress to attain 80% power in the previous example (Figure 2.3.3). This is expected

because even a relatively small study-specific panel can substantially increase imputation coverage

(Figure 2.3.1A).
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Figure 2.3.3: Power as a Function of Minor Allele Frequency and Effect Size.

Statistical power (y-axis) to detect a rare large-effect variant (MAF=0.25%, RR=3; top row) and common modest-effect

variant (MAF=5%, RR=1.3; bottom row) for a disease with prevalence 1% as a function of the number of participants

array-genotyped and imputed (x-axis) when 0, 500, or 2,000 participants are sequenced and included in an augmented

reference panel. The number of participants sequenced has a far greater impact on statistical power for the rare variant

association. Importantly, statistical power is bounded above by the probability that the variant is imputable (r2 > 0.3
and referenceMAC ≥ 5), causing power to asymptote below 1 as a function of the number of imputed participants

(e.g., upper-left panel).

2.3.4 Denser Genotyping Arrays vs. Sequencing: Which is More

Cost-Effective to Increase Power?

Imputation coverage and power to detect association can be increased by using denser genotyping

arrays, which provide a more informative framework for imputation, or by sequencing

population-matched individuals and adding them to the reference panel. We assessed the

cost-effectiveness of these two strategies by comparing power to detect association across genotyping
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arrays for study designs that have the same total cost assuming $1000 forWGS and current list prices

for genotyping arrays (Table 2.1). As expected, the optimal number of participants sequenced to

maximize power given fixed total cost generally decreasedwith increasing array density. For example,

the optimal number sequenced to maximize power to detect association was 625, 275, and 100 for

the Infinium Core, OmniExpress, and Omni2.5 respectively for Sardinians given a risk variant with

RR = 2, MAF = 1%, and disease prevalence 1%. Power to detect association under the optimal design

given a fixed total cost was generally greater for sparser arrays; in the previous example, power under

the optimal design was 97%, 88%, and 54% for the Infinium Core, OmniExpress, Omni2.5.

We also compared optimal designs to attain power above a given threshold at minimum total cost

across genotyping arrays based on the per-sample genotyping costs reported in Table 2.1. Generally,

sparser arrays were more cost-effective (reached the power threshold with lower total cost) than

dense arrays. In fact, the sparsest genotyping array in our analysis, the Infinium Core, was most

cost-effective across all disease models and populations apart from African Americans, for whom

the Infinium OmniExpress was often most cost-effective. This last result is unsurprising given the

substantial difference in imputation coverage between the InfiniumCore andOmni arrays for African

Americans (Figure 2.3.1B). Importantly, our analysis assumes 1) a direct trade-off between the GWAS

sample size and sequencing/genotyping costs, and 2) no additional costs per GWAS sample other

than sequencing/genotyping. Under these assumptions, we found that denser arrays are generally

less cost-effective than sparser arrays; however, denser arrays provide higher imputation coverage

given a fixed GWAS sample size.
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2.3.5 Optimal Study Design as a Function of Minor Allele Frequency and

Effect Size

Power to detect association under a given study design depends on MAF, effect size (relative risk or

odds ratio), and population prevalence (Sham and Purcell 2014). These parameters also influence the

relative cost-effectiveness of sequencing and imputation. While common variants can be accurately

imputed with small reference panels, large population-matched reference panels are needed to

capture rare (population-specific) variants. In Figure 2.3.4, we illustrate the impact of sequencing on

statistical power for two combinations of MAF and effect size in each of the four study populations.

Figure 2.3.4: Optimal Design as a Function of Minor Allele Frequency and Effect Size.

Optimal numbers of participants sequenced (y-axis) and imputed (x-axis; using the Illumina OmniExpress array) to
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attain statistical power 80%.

The optimal number of study participants sequenced to attain≥80% power to detect association

at minimum total cost increases with decreasing MAF (Figure 2.3.4). This is expected, since larger

reference panels are needed to capture variants with lower frequency. In addition, the total cost

required to attain ≥80% power increases with decreasing MAF, which is expected given that power

to detect association for a given sample size decreases with decreasing MAF. The optimal number

to sequence to attain≥80% power decreases with increasing effect size magnitude. This is expected,

since the expected number of risk alleles captured in the reference panel increases with effect size

magnitude.

2.4 Discussion

While the cost of genome sequencing has fallen dramatically ((KA, 2018)), large genome sequencing

studies remain prohibitively expensive. Large reference panels are now enabling accurate imputation

of even very rare variants (S. McCarthy et al. 2016; Zhou et al. 2017; Mahajan et al. 2018),

making imputation-based GWAS viable and cost-effective for detecting associations across the

allele frequency spectrum. For populations with limited reference panel data, we have shown

that sequencing a subset of study participants can substantially increase imputation coverage and

accuracy, particularly for rare and population-specific variants, at a fraction of the cost of sequencing

the entire study cohort. Our results also suggest that it is almost always advantageous to augment

existing reference panels, except when the study-specific panel is large or the target population has

high genetic distance from the external panel.

Complementary sequencing-and-imputation GWAS strategies have been applied to refine

association signals and discover novel associations for several populations and complex traits (Pistis
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et al. 2015; Auer and Lettre 2015; Holm et al. 2011). While most sequencing-and-imputation studies

to date have been carried out in European isolated populations, our results suggest that this strategy

can also be powerful and cost-effective for admixed and non-European populations. In addition to

increasing genomic coverage and power to detect association for the study itself, sequencing a subset

of study participants provides a data resource that can be used to enhance imputation in future studies

of the same or related populations.

Directly augmenting an existing reference panel with study-specific sequence data is not always

feasible due to technical, logistical, and privacy constraints. However, we and others have found that

the distributed reference panel approach (separately imputing with two ormore reference panels and

combining the results) provides nearly equivalent imputation quality (Supplementary Figure 2.3).

Thus, study-specific WGS data can be used to improve imputation even when directly augmenting

an external panel is not feasible.

While large reference panels enable accurate imputation across a wide range of the allele

frequency spectrum (S.McCarthy et al. 2016; Zhou et al. 2017), the extent of genetic variation that can

be captured through imputation is limited relative toWGS. For example, de novomutations cannot be

imputed regardless of reference panel size. This is particularly salient for monogenic disorders; for

example, over 80% of achondroplasia cases occur from recurrent de novomutations in FGFR3(Bellus

et al. 1995). Thus, imputation may be unable to detect causative alleles for traits with extreme genetic

architectures, even with very large reference panels.

As increasingly large and diverse sequencing projects are conducted, larger and more diverse

reference panels will become available. In the design and planning of GWAS, it may be prudent to

consider resources under development and pending release in addition to resources that are currently

available. More broadly, our analysis highlights the utility of collaboration and coordination across

institutions for effective study design and resource allocation. For example, the optimal design to
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maximize power in an individual study does not necessarily maximize meta-analysis power across

multiple studies of the same trait and population.

Our analysis of cost-effectiveness and optimal design depends crucially on the relative per-sample

costs of sequencing and array genotyping. Both sequencing and genotyping costs have fallen

markedly in recent years, and are likely to continue to do so. Depending on the relative rates of

change, cost-effectiveness and optimal design also may change. In addition, the cost of participant

recruitment and DNA sample collection may alter the relative cost-effectiveness of sequencing and

genotyping. Finally, our cost-effectiveness analysis assumes that sample size is unconstrained, and

may not apply for small populations or rare diseases. While our results are illustrative, investigators

may wish to explore questions of the relative cost-effectiveness of sequencing and array genotyping

strategies in the context of their own study and relevant assumptions about population, reference

panels, and sequencing and array genotyping costs. To enable this exploration, we have developed a

flexible, easy-to-use software tool, APSIS (Analysis of Power for Sequencing and Imputation Studies),

to analyze power and identify optimal study designs while accounting for imperfect imputation

coverage and accuracy.

2.4.1 Conclusions

Here, we assessed the genomic coverage, statistical power, and cost-effectiveness of sequencing

and imputation-based designs for GWAS in a variety of populations and a range of genetic

models. We developed a novel method to account for available reference haplotype data in power

calculations using empirical data, which can be applied to inform GWAS planning and design. For

European populations that are well-represented in current reference panels, our results suggest that

imputation-basedGWAS is cost-effective andwell-powered to detect both common- and rare-variant

associations. For populations with limited representation in current reference panels, we found that

29



sequencing a subset of study participants can substantially increase genomic coverage and power to

detect association, particularly for rare and population-specific variants. Our results also suggest that

larger and more diverse reference panels will be important to facilitate GWAS in global populations.
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2.6 Appendix: Supplementary Figures

Supplementary Figure 2.1: Imputation Coverage and r2 as Functions of Population-Specific

Reference Panel Size.

(A) Imputation coverage, defined as the proportion of variants with imputation r2 ≥ 0.3 and minor

allele count (MAC)≥ 5 in the reference panel, and (B) imputation r2, defined as the squared Pearson

correlation between true genotype and imputed dosage, as a function of study-specific reference

panel size (Number Sequenced).
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Supplementary Figure 2.2: Filtering False-Positive Imputed Variants.

ROC and Precision-Recall curves for detecting false-positive imputed variants (variants with true

MAC = 0, butMACimputed ≥ 5 and imputation r2 ≥ 0.3) using the two-sample t-test statistic of

allele frequencies between the imputed and sequenced subsamples. Results are shown for African

Americans variants based on a sequenced subsample size of 1,400 and imputed subsample size of

1,412. Out of 656K variants with imputed MAF≥ 0.1% and imputation r2 ≥ 0.3, 11K variants

(1.7%) have true MAC=0. Area under the ROC curve = 0.94, and area under Precision-Recall curve

= 0.34.
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Supplementary Figure 2.3: Imputation r2 for Augmented versus Distributed Reference Panels.

Imputation r2 for augmented reference panels (directly augmenting the HRC or HRC subset with

study-specific sequence data) versus a distributed reference panel approach, in which participants

are separately imputed with the HRC (or HRC subset) and the study-specific reference panel

merged by selecting the MaCH- r̂2. Results are shown for the Omni Express array, and study

specific reference panel sizes of 2,000 for African Americans, Finns, and Sardinians and 1,500 for

Latino Americans. he mean pairwise difference in imputation r2 across variants between

augmented and distributed panels was < 0.005 in magnitude for each population.
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Supplementary Figure 2.4: Optimal Designs for a Common Variant with Moderate Effect.

Power to detect association for case-control studies with equal numbers of cases and controls as a

function of sequenced subsample size (x-axis) and imputed subsample size (y-axis) for a variant

with MAF=10% and relative risk 1.5 for a disease with prevalence 1%. Axes scaled to reflect costs of

genotyping arrays (Table 2.1) and sequencing ($1K per sample). Power shown only for designs with

total genotyping cost≤ $2M ($1.5M for Latino Americans). Dashed diagonal lines indicate study

designs with the same total cost, given by y = a− bx where a = (Total Cost)/(Array Cost) and

b = (Sequencing Cost)/(Array Cost). Circled points indicate optimal study designs, which

attain the indicated power level at minimum total experimental cost (or, maximize power at the

indicated total experimental cost). In this example, exclusively array-based genotyping and

imputing from the external HRC panel is optimal for all populations considered.
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Supplementary Figure 2.5: Optimal Designs for a Rare Variant with Large Effect.

Power to detect association for case-control studies with equal numbers of cases and controls as a

function of sequenced subsample size (x-axis) and imputed subsample size (y-axis) for a variant

with MAF=0.3% and relative risk 6 for a disease with prevalence 1%. Axes scaled to reflect costs of

genotyping arrays (Table 2.1) and sequencing ($1K per sample). Power shown only for designs with

total genotyping cost≤ $2M ($1.5M for Latino Americans). Dashed diagonal lines indicate study

designs with the same total cost, given by y = a− bx where a = (Total Cost)/(Array Cost) and

b = (Sequencing Cost)/(Array Cost). Circled points indicate optimal study designs, which

attain the indicated power level at minimum total experimental cost (or, maximize power at the

indicated total experimental cost). In this example, sequencing a subset of participants is almost

uniformly optimal across populations, with the exception of Finns.

36



2.7 References

1KGP Consortium (2015). “A global reference for human genetic variation”. In: Nature 526.7571,
pp. 68–74.

Ahmad, Meraj et al. (2017). “Inclusion of Population-specific Reference Panel from India to the 1000

Genomes Phase 3 Panel Improves Imputation Accuracy”. In: Scientific reports 7, p. 6733.
Auer, Paul L andGuillaumeLettre (2015). “Rare variant association studies: considerations, challenges

and opportunities”. In: Genome medicine 7.1, p. 16.
Bellus, Gary A et al. (1995). “Achondroplasia is defined by recurrent G380Rmutations of FGFR3.” In:

American journal of human genetics 56.2, p. 368.
Bryc, Katarzyna et al. (2010). “Genome-wide patterns of population structure and admixture among

Hispanic/Latino populations”. In: Proceedings of the National Academy of Sciences, p. 200914618.
Das, Sayantan et al. (2016). “Next-generation genotype imputation service and methods”. In: Nature

genetics 48.10, pp. 1284–1287.
Deelen, Patrick et al. (2014). “Improved imputation quality of low-frequency and rare variants in

European samples using the ’Genome of The Netherlands’”. In: European Journal of Human
Genetics 22.11, pp. 1321–1326.

Fuchsberger, Christian et al. (2016). “The genetic architecture of type 2 diabetes”. In:Nature 536.7614,
p. 41.

Holm, Hilma et al. (2011). “A rare variant in MYH6 is associated with high risk of sick sinus

syndrome”. In: Nature genetics 43.4, p. 316.
Hu, Yi-Juan et al. (2015). “Integrative analysis of sequencing and array genotype data for discovering

disease associationswith raremutations”. In: Proceedings of the National Academy of Sciences 112.4,
pp. 1019–1024.

Illumina Inc. (2018). Microarray kits for genotyping and epigenetic analysis. [Online; accessed

1-August-2018]. url: https://www.illumina.com/products/by-type/microarray-

kits.html.

International HapMap 3 Consortium (2010). “Integrating common and rare genetic variation in

diverse human populations”. In: Nature 467.7311, pp. 52–58.
KA, Wetterstrand (2018). DNA Sequencing Costs: Data from the NHGRI Genome Sequencing

Program (GSP). [Online; accessed 1-August-2018]. url: https : / / www . genome . gov /

sequencingcostsdata.

37

https://www.illumina.com/products/by-type/microarray-kits.html
https://www.illumina.com/products/by-type/microarray-kits.html
https://www.genome.gov/sequencingcostsdata
https://www.genome.gov/sequencingcostsdata


Kichaev, Gleb and Bogdan Pasaniuc (2015). “Leveraging functional-annotation data in trans-ethnic

fine-mapping studies”. In: The American Journal of Human Genetics 97.2, pp. 260–271.
Lencz, Todd et al. (2017). “High-depth whole genome sequencing of a large population-specific

reference panel: Enhancing sensitivity, accuracy, and imputation”. In: bioRxiv, p. 167924.
Li, Yun et al. (2009). “Genotype imputation”. In: Annual review of genomics and human genetics 10,

pp. 387–406.

MacArthur, Jacqueline et al. (2016). “The new NHGRI-EBI Catalog of published genome-wide

association studies (GWAS Catalog)”. In: Nucleic acids research 45.D1, pp. D896–D901.
Mahajan, Anubha et al. (2018). “Refining the accuracy of validated target identification through coding

variant fine-mapping in type 2 diabetes”. In: Nature genetics 50.4, p. 559.
McCarthy, Shane et al. (2016). “A reference panel of 64,976 haplotypes for genotype imputation”. In:

Nature genetics 48.10, p. 1279.
Montpetit, Alexandre et al. (2006). “An evaluation of the performance of tag SNPs derived from

HapMap in a Caucasian population”. In: PLoS genetics 2.3, e27.
Pistis, Giorgio et al. (2015). “Rare variant genotype imputation with thousands of study-specific

whole-genome sequences: implications for cost-effective study designs”. In: European Journal of
Human Genetics 23.7, p. 975.

Popejoy, Alice B and Stephanie M Fullerton (2016). “Genomics is failing on diversity”. In: Nature
538.7624, p. 161.

Roshyara, Nab Raj and Markus Scholz (2015). “Impact of genetic similarity on imputation accuracy”.

In: BMC genetics 16.1, p. 90.
Scott, Laura J et al. (2007). “A genome-wide association study of type 2 diabetes in Finns detects

multiple susceptibility variants”. In: science.
Sham, Pak C and Shaun M Purcell (2014). “Statistical power and significance testing in large-scale

genetic studies”. In: Nature Reviews Genetics 15.5, pp. 335–346.
Sidore, Carlo et al. (2015). “Genome sequencing elucidates Sardinian genetic architecture and

augments association analyses for lipid and blood inflammatory markers”. In: Nature genetics
47.11, p. 1272.

Steinthorsdottir, Valgerdur et al. (2014). “Identification of low-frequency and rare sequence variants

associated with elevated or reduced risk of type 2 diabetes”. In: Nature genetics 46.3, p. 294.
UK10K Consortium (2015). “The UK10K project identifies rare variants in health and disease”. In:

Nature 526.7571, pp. 82–90.
Van Leeuwen, ElisabethM et al. (2015). “Population-specific genotype imputations using minimac or

IMPUTE2”. In: Nature protocols 10.9, p. 1285.
Zeggini, Eleftheria (2011). “Next-generation association studies for complex traits”. In:Nature genetics

43.4, p. 287.

Zhou, Wei et al. (2017). “Improving power of association tests using multiple sets of imputed

genotypes from distributed reference panels”. In: Genetic epidemiology 41.8, pp. 744–755.

38



Chapter 3

emeraLD: Rapid Linkage Disequilibrium Estimation with

Massive Data Sets

1

3.1 Introduction

Linkage disequilibrium (LD) – pairwise association between alleles at different genetic variants – is of

fundamental interest in population genetics as a vestige of natural selection and demographic history,

and is essential for a wide range of analyses from summary statistics in genome-wide association

studies (GWAS). Motivated by restrictive data sharing policies and logistical constraints, a variety of

methods have been developed for analysis of GWAS summary statistics (single-variant association

statistics) rather than individual-level data. For example, summary statistics-based methods have

been developed for fine-mapping (Benner, Spencer, et al. 2016), conditional association (Yang et al.

2012), gene-based association (Bakshi et al. 2016; Barbeira et al. 2016; Lamparter et al. 2016),

heritability estimation (Bakshi et al. 2016), and functional enrichment analysis (Finucane et al. 2015;

1
This work has been published (Quick et al. 2018)
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Lamparter et al. 2016). These methods generally rely on LD estimates from an external data set,

which are ideally calculated on-the-fly rather than precomputed and stored due to prohibitive storage

costs. For example, the 1000 Genomes Project Phase 3 panel includes over 35M shared variants

(1KGP Consortium 2015), which corresponds to over 4 × 1011
pairwise LD coefficients within 1

Mbp windows genome-wide.

3.1.1 Existing Tools to Estimate LD

Existing tools to estimate LD generally scale linearly with sample size, prompting a need for more

efficient methods for large data sets. PLINK is a widely used software toolkit for analyzing genetic

data, and is among the most computationally efficient tools for estimating LD (Shaun Purcell et al.

2007; Purcell and Chang 2016). PLINK’s BED genotype data format allows efficient querying and

data processing, but demands prohibitive storage space for large sample sizes and large numbers

of markers (e.g., 7.6TB for the TOPMed Whole Genome Sequencing Project, which includes >60K

individuals). VCFtools is anotherwidely used software toolkit formanipulating and analyzing genetic

data in the Variant Call Format (VCF) (Danecek et al. 2011). Compressed VCF files (VCF.gz) require

far less storage space than BED files (e.g., >30× less storage space for the TOPMedWGS Project), and

permit random access of genomic regions through block-compression and Tabix indexing (Danecek

et al. 2011; Li 2011). VCFtools provides utilities to estimate LD fromVCF files, but is computationally

burdensome for large data sets. M3VCF format uses a compact haplotype representation that requires

far less storage than genotype formats (Das et al. 2016). m3vcftools provides efficient utilities for

estimating LD with M3VCF format, but is substantially slower than PLINK with BED file input.
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3.2 Methods

3.2.1 LD Statistics

Three common measures of LD are the LD coefficient D (the covariance of genotypes), the

standardized LD coefficient D′ (D divided by its maximum value given allele frequencies), and the

Pearson correlation r or its square (Gabriel et al. 2002). Each of these statistics can be written as a

function of allele frequency estimates, sample size, and dot product of genotype vectors. Importantly,

only the dot product must be calculated for each pair of variants to calculate LD, since allele

frequencies and haplotype counts can be precomputed when processing genotype data.

3.2.2 Computational Approach

We tailored our computational approach to exploit the structure of each supported input data

format. For genotype formats (e.g., VCF Danecek et al. 2011), we calculate the dot product using

sparse-by-dense and sparse-by-sparse vector products. Using haplotype block format (M3VCF Das

et al. 2016), we can calculate the dot product using within-block and between-block haplotype

intersections.

Sparse Representation of Phased Genotypes For each variant, we keep a {0, 1}2n vector of

genotypes (where 1 indicates the minor allele) and sparse vector containing the indexes of non-zero

entries. If the major allele is non-reference in the input file (allele count greater than n), we reverse

the sign of its LD coefficients for consistency. Letting Cj = {i|Gij = 1} denote the set indexing

minor-allele carriers of variant j, the dot productmjk := Gj ·Gk between variants j and k can be

calculated in min(mj,mk) operations, where mj is the minor allele count (MAC) for variant j, by

using the sparse-by-dense product formulamjk =
∑

i∈Cj Gik.
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Sparse Representation of Unphased Genotypes For unphased genotypes, we store a {0, 1, 2}n

vector of genotypes and sparse vectors indexing heterozygotes and minor-allele homozygotes for

each variant. In this case, LD between two variants can be calculated in min(Nj1 +Nj2, Nk1 +Nk2)

operations, whereNji is the number of individuals with genotype i at variant j.

Haplotype Block Representation A haplotype is a sequence of contiguous alleles along a

chromosome within a genomic region, or haplotype block. Due to the limited diversity of human

haplotypes (Wall and Pritchard 2003), the number of distinct haplotypes in a block with J biallelic

variants is typically small relative to the sample sizen or number of possible haplotypes 2J (whichever

is smaller). M3VCF formatmaps each sample to a haplotypewithin each block, andmaps each variant

in a block to the set of haplotypes that contain the non-reference allele (Das et al. 2016). GivenM3VCF

input, we precompute the number of observationsN b
h of each haplotype h for each block b, and index

the set of haplotypes Hb
j containing the minor allele at each variant j in block b. For two variants j

and k in the same block, the dot product can then be calculated in at most min(cbj, c
b
k) operations,

where cbk = #Hb
k is the number of distinct haplotypes that carry the minor allele at variant k, using

the sparse-by-dense product formula mjk =
∑

h∈Hb
j

1Hb
k
(h)N b

h. To calculate LD for variants in

different blocks, we can compute a between-block count matrix Nab
hh′ , the number of samples with

haplotype h in block a and haplotype h′ in block b. The dot product between variants j and k can

then be calculated in caj × cbk operations using the formulamjk =
∑

h∈Ha
j

∑
h′∈Hb

k
Nab
hh′ . In practice,

sparse-by-dense genotype products are typically more efficient for between-block calculations.

Informed Subsampling to Estimate LD with Large Sample Sizes When both variants j and

k have large MAC (e.g., common variants and/or large sample sizes), calculating sparse-by-dense

products to estimate LD becomes expensive. In this case, we use an informed subsampling approach

to efficiently estimate LDwhile maintaining a user-specified bound on the precision of LD estimates.
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We treat the sample correlation r = (pjk−pjpk)/sjsk as a parameter to be estimated by informed

subsampling. Here, pj, pk, sj and sk can be calculated efficiently and stored; because pjk must be

calculated for each pair of variants, we subsample from the carriers of the rarest allele to increase

computational efficiency. In Supplementary Materials, we show that the approximate estimator r̃`

can be calculated in at most ` operations for any pair of variants, and increases the mean squared

error (MSE) by no more than 1/` relative to exact LD estimates (or 2/` for unphased genotypes),

where ` is a user-specified parameter. In very large data sets (n > 50K), subsampling with ` = 250

decreased computation time for common variants (MAF > 5%) by an order of magnitude or more.

3.3 Results

3.3.1 Implementation and Usage

We implemented our algorithms as an open-source C++ tool, emeraLD (efficient methods for

estimation and random access of LD), which can be used via command line or through an R interface

included with source files. emeraLD accepts block compressed VCF.gz and M3VCF.gz input, and

leverages Tabix (Li 2011) and the C library HTSlib to support rapid querying and random access of

genotype data over genomic regions. emeraLD implements several options to customize output fields

(variant information and LD statistics) and formats (long tables or square symmetric matrices). We

also provide tools to facilitate estimating LD from a reference panel for analysis of GWAS summary

statistics.
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3.3.2 Performance

Table 3.1: Benchmarking: CPU Time and Memory Usage

Tool: m3vcftools PLINK 1.9 LDstore emeraLD* Absolute*

Format: M3VCF.gz BED BGEN M3VCF.gz

CPU Time Relative to emeraLD

1KGP 18.8 1.3 4.4 1.0 8.5 m

HRC 44.7 6.8 16.8 1.0 2.6 m

UKB 473.7 128.4 250.6 1.0 19.9 m

Memory Usage Relative to emeraLD

1KGP 0.7 137.6 372.4 1.0 43.8 MiB

HRC 0.6 10.7 26.1 1.0 156.9 MiB

UKB 0.4 4.7 4.8 1.0 4.8 GiB

Time and memory to calculate LD in a 1Mbp region of chr20 (28,126 variants in 1KGP; 13,174 in HRC; and 32,783 in

UKB). All experiments were run on a 2.8GHz Intel Xeon CPU. emeraLD

*Absolute time or memory for emeraLD as reference

We used WGS genotype data from the 1000 Genomes Project Phase 3 (1KGP; n = 2,504) (1KGP

Consortium 2015), Haplotype Reference Consortium (HRC; n = 32,470) (McCarthy et al. 2016),

and imputed genotype data from the UK Biobank (UKBB; n = 487,409) to compare performance

between emeraLD and PLINK v1.9 (Purcell and Chang 2016), LDstore (Benner, Havulinna, et al.

2017), VCFtools (Danecek et al. 2011), and m3vcftools (Das et al. 2016). For UKB, emeraLD from

M3VCF.gz file input is >100× faster than PLINK from BED files (Table 3.1), which are >10× larger

than VCF.gz and >30× larger than M3VCF.gz. For HRC, which includes 32K individuals and only

variants with MAC ≥5, emeraLD calculates LD from M3VCF.gz files >6× faster than PLINK from

BED files, which are >4× larger than VCF.gz and >20× larger than M3VCF.gz. Times reported for

emeraLD used ` = 1, 000 (MSE of approximation ≤ 0.001); this has a negligible effect for 1KGP,

but reduced overall computation time by ~50% for UKB and HRC. Using M3VCF.gz files reduced

computation time for emeraLD by ~30-50% relative to VCF.gz.
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3.3.3 Applications

Our approach will be implemented in a forthcoming web-based service capable of providing LD

information from large panels with >60K samples, such as the TOPMed WGS project, in real

time. This enables use of improved LD information by rapidly emerging and gaining in popularity

web-based interactive analysis and visualization tools such as LocusZoom (Pruim et al. 2010).

We have also used emeraLD to estimate LD for gene-based association and functional enrichment

analysis of GWAS summary statistics. This approach avoids precomputing and storing LD without

compromising speed – for example, we developed an implementation of the MetaXcan gene-based

association method (Barbeira et al. 2016) using emeraLD to estimate LD on-the-fly, which is

~5× faster than the original implementation using precomputed LD estimates. To enable simple

integration with R scripts or libraries, we include an R interface to emeraLD with source files.

3.4 Conclusions

Here we described computational and statistical methods to efficiently estimate LD with large

data sets. Our methods exploit two natural features of genetic data: sparsity that arises from the

abundance of rare variation, and high redundancy that arises from haplotype structure. We also

developed an informed subsampling approach to further improve computational efficiency while

maintaining a user-specified bound on precision relative to exact LD estimates. Finally, we described

an open-source software implementation that can be used to facilitate analysis of GWAS summary

statistics.
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3.6 Appendix: Supplementary Methods & Figures

Here we describe subsampling techniques to approximate linkage disequilibrium (LD) between

biallelic variants. We begin with the case where haplotype phase is known (genotypes take values

0 or 1), followed by the case where phase is unknown (genotypes take values 0, 1, or 2).

We treat the sample correlation r = (pjk − pjpk)/sjsk as a parameter to be estimated by

subsampling. Here, minor allele frequencies pj and pk (and standard deviations sj and sk) can

be calculated efficiently and stored; because pjk must be calculated for each pair of variants, we

approximate to increase computational efficiency. For convenience, we treat allele frequencies as

known constants.

Informed Subsampling with Phased Genotypes

Here, we describe a subsampling approach to approximate the sample correlation r = (pjk −

pjpk)/sjsk using phased genotypes. Consider the estimator r̃(`,∆) = [p̃jk(`,∆) − pjpk]/sjsk ,

where

p̃jk(`,∆) =


pj
`

∑`
i=1 G̃

(j)
ik ∆ = 1

pk
`

∑`
i=1 G̃

(k)
ij ∆ = 0

for∆ ∈ {0, 1} and where each G̃(j)
ik (or G̃

(k)
ij ) is independently sampled from the subset of haplotypes

withGij = 1 (orGik = 1).

Clearly r̃(`,∆) is an unbiased estimator for r, and has empirical variance

varn[r̃(`,∆)] =
pjk
`s2js

2
k

[
∆p2j(pj − pjk) + (1−∆)p2k(pk − pjk)

]
.

Therefore, given that we sample `minor allele carriers of either variant j or variant k, the optimal
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estimator r̃` is given by taking ∆ = I(pj ≤ pk). Intuitively, carriers of the rarer allele are more

informative for estimating the size of the intersection.

Letting ρ denote the true LD value in the population, the MSE of the approximate estimator is

MSE(r̃`) := E[(r̃` − ρ)2] = E[(r − ρ)2] + E[(r̃` − r)2],

so for pj ≤ pk (WLOG) we have MSE(r̃`)−MSE(r)= (pj − pjk)pjk/`s2js2k.

The variance of the estimator is maximized with respect to pjk when pjk = pj/2, and maximized

with respect to pj when pj = 1/2 (because 1/2 ≥ sk ≥ sj ≥ pj ). It follows that MSE(r̃`) −

MSE(r) ≤ 1/`.

Informed Subsampling with Unphased Genotypes

Here, we describe a subsampling approach to approximate the sample correlation r = cjk/sjsk

using unphased genotypes. We define the sample covariance between variants j and k as cjk =

1
n

∑n
i=1GijGik − 4pjpk, and we can write

1

n

n∑
i=1

GijGik = pk,1Ê(Gj|Gk = 1) + 2pk,2Ê(Gj|Gk = 2)

where pk,m is the proportion of individuals with genotypem at variant k, and Ê(Gj|Gk = m) is the

mean genotype at variant j among individuals with genotypem at variant k in the overall sample of

n individuals.

Define the approximate estimator

c̃jk(`1, `2) = pk,1Ẽ`1(Gj|Gk = 1) + 2pk,2Ẽ`2(Gj|Gk = 2)− 4pjpk,
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where Ẽ`(Gj|Gk = m) is estimated by sampling ` genotypes from individuals with genotypem at

variant k. The approximate estimator is unbiased and has empirical variance

varn[c̃jk(`1, `2)] =
p2k,1
`1

varn(Gj|Gk = 1) +
4p2k,2
`2

varn(Gj|Gk = 2).

Supposing that variants j and k are independent (which maximizes the variability of the

estimator),

varn[c̃jk(`1, `2)] =

(
p2k,1
`1

+
4p2k,2
`2

)
s2j ,

which is minimized by choosing `1 : `2 in proportion to pk,1 : 2pk,2, or in other words oversampling

homozygotes by a factor of 2.

We can now define the optimal approximate estimator c̃`jk = c̃jk(`
∗
1, `
∗
2), where

`∗1 =
pk,1

2pk,2 + pk,1
` and `∗2 =

2pk,2
2pk,2 + pk,1

`.

Therefore, the optimal approximate estimator has varn(c̃`jk) ≤ 4p2ks
2
j/` (note that 2pk = pk,1 +

2pk,2), and letting r̃` = c̃`jk/sjsk , we have

MSE(r̃`)−MSE(r) = varn(r̃`) ≤
4p2k
`s2k
≤ 2

`
.

Here, we have not assumed Hardy-Weinberg Equilibrium (HWE) for either variant. Supposing

that both variants are inHWE,we canwrite Ê(GjGk) = 2pjk(1+pj+pk−pjk)+2(pk−pjk)(pj−pjk),

and because pjk is the only unknown parameter, the most efficient subsampling estimator would use

as many minor-allele homozygotes as possible before sampling any heterozygotes. We avoid this

assumption to ensure that estimates are robust.
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Time Complexity of Approximation by Informed Subsampling

By subsampling ` individuals or haplotypes whenever min(MACj,MACk) > `, we are guaranteed

at most ` operations for each pair of variants. For computational efficiency, we sample subsets of

minor-allele carriers once for each variant as genotype data are processed.
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Supplementary Figure 3.1: Approximate vs. Exact LD Estimates.

Here, we show approximate vs. exact LD estimates from the Haplotype Reference Consortium. The

number of minor-allele carriers sampled ` is equal to 1/∆MSE , where ∆MSE is the maximumMSE

induced by approximation.
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Chapter 4

Leveraging Functional Genomic Annotations to Identify

Causative Genes and Biological Mechanisms Underlying GWAS

Associations

4.1 Introduction

Genome-wide association studies (GWAS) have identified thousands of genetic loci associated with

hundreds of complex traits (Welter et al. 2013). However, the biological mechanisms underlying

these associations are often poorly understood. The majority of GWAS associations to date are

in non-coding regions of the genome, making it difficult to identify causal genes, let alone dissect

genetic etiology in more detail. The Roadmap Epigenomics project (Bernstein et al. 2010), ENCODE

(ENCODE Project Consortium 2012), GTEx (GTEx Consortium 2015), FANTOM5 (Lizio et al.

2015), and other consortia have fueled significant advances in regulatory genomics, and have

provided valuable public data resources for studying the activity of regulatory elements and potential

functional effects of non-coding variation. Integrating these large and complex data to better

understand GWAS associations is a highly active area of research, and has presented enticing new
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possibilities for GWAS researchers as well as formidable computational and statistical challenges.

Identifying Causal Variants Narrowing down the most likely causal variants underlying GWAS

association signals is an important step toward identifying causal mechanisms. While linkage

disequilibrium (LD) has been invaluable for identifying causal loci– first exploited in gene mapping

studies, and later in genotype imputation algorithms– it complicates the identification of causal

variants, forming dense clusters of highly correlated association statistics. To address this challenge, a

Bayesian framework is often used to finemap associated loci, which involves calculating Bayes factors

to identify sets or configurations of variants with the highest posterior probability of being causal

(Y. Lee et al. 2018; Wen et al. 2016; Benner et al. 2016). Variants identified through finemapping can

be cross-referenced with functional annotations to assess potential causal mechanisms (e.g., J. Z. Liu

et al. 2012; Farh et al. 2015; Huang et al. 2017); however, this approachmay ormay not be informative

for identifying causal genes.

Identifying Causal Genes Gene-based association tests provide a more interpretable framework

for association analysis, and can increase power to detect association by aggregating effects across

variants and reducing the burden of multiple testing (D. J. Liu et al. 2014; Sham and Purcell 2014).

Often, variants are grouped based on their putative functional effects, e.g., rare non-synonymous

variants for a given gene (D. J. Liu et al. 2014; Morrison et al. 2013). Amore recent class of gene-based

association tests have been developed for eQTL variants, e.g. PrediXcan (Gamazon et al. 2015;

Barbeira et al. 2016) and TWAS (Gusev et al. 2016), which were proposed as tests of association

between the genetic component of gene expression and traits. These expression-based tests employ

the logic of Mendelian randomization to estimate causal effects: since genotype precedes phenotype,

the direction of causality between phenotype and the genetic component of expression– a function of

genotype– is unambiguous (Gusev et al. 2016; Hauberg et al. 2017). More broadly, many gene-based
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association tests can be viewed as proxy variable methods in which intermediate phenotypes, e.g.

protein dysfunction or tissue-specific expression, are hypothesized to mediate association. However,

as in the analysis of single variants, LD is a potential source of confounding for gene-based association,

which complicates the mechanistic interpretation of these statistics.

Purpose Here, we develop a statistical framework and computational tool to integrate regulatory

and functional genomic datasets with GWAS summary statistics to identify causal genes and

biological mechanisms underlying associations. We describe a novel gene-centered Bayesian model

that accounts for multiple potential mechanisms underlying GWAS association signals, and use

an approximate E-M algorithm to efficiently estimate hyperparameters. A central premise of this

approach is to utilize functional enrichment to update prior weights for groups of variants; this

approach has been used to improve the accuracy of single-variant finemapping (Y. Lee et al. 2018;

Wen et al. 2016), but has not been applied in gene-based analysis. We compiled an integrative

annotation dataset that maps functional variants to likely target genes by aggregating data sets from

Roadmap/ENCODE (Cao et al. 2017; Bernstein et al. 2010; ENCODE Project Consortium 2012),

FANTOM5 (Marbach et al. 2016; Cao et al. 2017; Lizio et al. 2015), and GTEx (GTEx Consortium

2015; Gamazon et al. 2015; Barbeira et al. 2016). We present a software toolkit and implementation of

our methods, which leverages functional annotations to simultaneously examine a range of potential

genes, mechanisms, and pathways underlying association signals. Finally, we discuss an application

to 25 diverse traits using GWAS summary statistics from the UK Biobank.

4.2 Methods

We describe 1) a statistical model that explicitly maps functional variants to genes to identify

genes implicated by association signals, 2) methods to aggregate variants for gene-based analysis,
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3) algorithms to estimate the model and inference procedures using GWAS association summary

statistics and LD estimates, 4) functional genomic data resources we used to annotate functional

variants, 5) procedures to simulate GWAS data using real genotype and functional annotation data,

and 6) GWAS data from the UK Biobank to which we applied our methods.

4.2.1 Model Definitions and Assumptions

Mediation as a Conceptual Basis for Genetic Association

The molecular mechanisms underlying complex traits are intricate, and involve many complex

processes interacting over time at the cellular level and beyond. Here, we describe a simple model

for complex traits as a conceptual basis, which is motivated by the intuition that cellular phenotypes

(e.g., gene expression levels, protein functionality) mediate the causal associations between genetic

variants and traits.

For a phenotype Yi with mean 0 and unit variance, we consider a linear model

Yi =
∑
g

α>gMig + εi

whereMig is a vector of cellular phenotypes for gene g and εi is an environmental component. In

turn, we modelMi = (M>
i1 ,M

>
i2 , ...)

>
as a linear function of genotypes,

Mi = ΛGi + ei

where each element of the genotype vector Gi has mean 0 and unit variance. In practice, the

functional effects of genetic variants (denoted by Λ) are typically unknown, and cellular phenotypes

Mi are typically unobserved in GWAS (unless additional omics data have been collected). We

use functional genomic data to construct a proxy matrix Λ̃ specifying effects of genetic variants
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on gene-based cellular phenotypes. We then aggregate groups of variants based on functional

annotations to construct proxy cellular phenotypes, which serve as the unit of association in our

approach.

Using external functional genomic data to construct proxies for cellular phenotypes has been

widely applied in methods such as TWAS and PrediXcan (Gusev et al. 2016; Gamazon et al. 2015),

which can be conceptualized as tests of association between the predicted genetic component of

tissue-specific gene expression levels andGWAS trait. However, thesemethods can be confounded by

LD and pleiotropy (illustrated in Figure 4.2.1), rendering a causal interpretation ambiguous. Here,

we aggregate diverse and comprehensive functional genomic annotation databases to account for

multiple possible mechanisms underlying association. This approach lessens the potential for LD or

pleiotropy-induced confounding, although such confounding is still possible due to incomplete and

imprecise annotations. In addition, we assume that genetic associations reflect causal genetic effects,

and ourmethods will be affected by confounding caused by un-adjusted technical factors, population

structure, or relatedness in GWAS data.
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Figure 4.2.1: Causal Diagrams: Mediation as a Conceptual Basis for Genetic Association
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Path diagrams for four scenarios. In each subpanel,G = (G1, G2, G3, G4)
>
represents genotypes at four genetic

variants, which are potentially correlated due to LD (gray undirected edges).M = (M1,M2)
>
represent intermediate

cellular phenotypes (e.g., cell-type-specific mRNA expression levels for a given transcript, protein functionality, protein

stability, etc.). The trait of interest is indicated in the upper right corner of each subpanel, and U in the lower right

represents an unmeasured confounding variable. Here, we do not useM directly (and in general do not measureM

directly); instead, we use genotypes to construct proxies M̃ to assess association with the trait of interest. Importantly,

since M̃ is constructed solely from genotype, it can be used for valid causal inference even whenM is confounded.

In Panel A, the intermediate phenotypeM2 and the trait of interest are both downstream of counfounding variable U .

However, because genotypesG are independent of U , we can construct a valid instrumental variable fromG to

estimate the causal effect ofM2 on trait (dashed line) if it exists.

In Panel B,G affects the trait throughM2. However, becauseM1 is downstream of the trait,G also indirectly affects

M1. Thus, a proxy variable M̃1 constructed fromGmay lead to the erroneous conclusion thatM1 affects the trait.

Panel C depicts LD-induced confounding. Here, onlyM1 has a causal affect on the trait. However, we may detect a

statistical association between M̃2 and trait due to LD betweenG3 (which affectsM2) withG1 andG2 (which affect

M1).

Panel D depicts pleiotropy. Here, onlyM1 has a causal affect on the trait. However, we may detect a statistical

association between M̃2 and trait becauseG2 affects bothM1 andM2.
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4.2.2 Aggregating Variants for Gene-Based Analysis

Gene-based Test Statistics

Table 4.1: Gene-Based Association Tests

Gene-based Test Test Statistic Comments Synonyms & Special Cases

Q-form (Quadratic) Z>WZ W = diagonal weight matrix SKAT, SOCS

L-form (Linear) w>Z w = weight vector Burden test, TWAS & PrediXcan

M-form (Min/Max) maxj |Zj|2 Alternatively, minj p-valuej MOCS

Here, we review common gene-based association tests and their interpretation in the proposed

framework. The oldest and most widely used gene-based tests are linear combinations of z-scores

(B. Li and Leal 2008; S. Lee, Wu, and Lin 2012), here referred to as L-form tests (Table 4.1). Examples

of L-form tests include the burden test (B. Li and Leal 2008), which aggregates rare, putatively

deleterious mutations; and TWAS/PrediXcan tests (Gamazon et al. 2015; Gusev et al. 2016), which

aggregate eQTL variants using prediction weights estimated from external eQTL mapping data, e.g.

GTEx. These can be viewed as tests of association between GWAS trait and an explicit proxy variable

constructed as a linear combination of genotypes. Importantly, L-form tests rely on prior knowledge

regarding the directions of effect across variants. For example, burden tests are appropriate when

rare deleterious alleles are hypothesized to increase risk for disease, and TWAS/PrediXcan tests

(using predictive weights) are appropriate when gene expression levels are hypothesized to affect

trait. Another common form of gene-based test is the sum of squared z-scores across variants, here

referred to as Q-form tests. While less tractable than L-form, analytical p-values for Q-form tests

can be calculated using a variety of techniques to approximate the tail probabilities of multivariate

normal quadratic forms (e.g., Davies 1980; H. Liu, Tang, and H. H. Zhang 2009). Q-form tests are

most appropriate when a sizable proportion of variants are hypothesized to have non-zero effects

of unknown and inconsistent direction (S. Lee, Wu, and Lin 2012). Finally, perhaps the simplest

60



gene-based test is the maximum absolute z-score across variants (or equivalently, the minimum

p-value), here referred to as M-form tests. Analytical p-values for M-form tests can be calculated

by directly integrating the multivariate normal density of z-scores within the hypercube given by

x ∈ Rm : maxk |xk| ≤ maxj |Zj| wherem is the number of variants, or approximated by adjusting

the minimum p-value across variants by the effective number of tests (Conneely and Boehnke 2007).

M-form tests are most appropriate when only a small proportion of variants are hypothesized to

have non-zero effects. Unlike L-form tests, Q-form and M-form do not involve constructing an

explicit proxy variable; however, they can be viewed as testing association between GWAS trait and

a proxy variable constructed with stochastic weights. For example, a M-form test across variants

within a regulatory element could be used to assess evidence that regulatory perturbations of a given

gene affects GWAS trait, supposing that only a single unknown variant within the regulatory element

perturbs gene regulation.

It is interesting to note the mathematical relationships among these three forms and the variety

generalizations and possible extensions. Q-form andM-form can both be viewed as special cases of a

more general statistic Sp = (
∑

j |Zj|p)1/p, which is equivalent to Q-form (withW = I) when p = 2,

and equivalent to M-form when p→∞; the Sp generalized form has been used, for example, in the

aSPU gene-based test (Kwak and Pan 2015). Similarly, Q-form and L-form can both be viewed as

special cases of a more general statistic Sπ = Z>(πW + (1 − π)ww>)Z , which is equivalent to

Q-form when π = 1 and L-form when π = 0; the Sπ generalized form has been used, for example,

in the SKAT-O gene-based test (S. Lee, Wu, and Lin 2012). Here, we focus primarily on using prior

biological knowledge to inform gene-based analysis, and use only the basic gene-based test forms

given in Table 4.1.
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Gene-based Bayes Factors

In this section, we outline a Bayesian perspective of gene-based association analysis and provide

Bayes factors corresponding to various prior distributions for the genetics effects on GWAS trait.

Here and elsewhere, genetic effect sizes β are scaled such that β2
j is equal to the proportion of trait

variance accounted for by the effect of variant j. We consider three distributional forms for the prior

distribution of genetic effect sizes β:

1. Linear prior in which weights w are used to construct an explicit proxy phenotype M̃i =

w>Gi. We assume that the effect size of the intermediate phenotype on trait is α ∼ N (0, τ),

which implies β is multivariate normal with mean 0 and the degenerate covariance matrix

ww>τ . We use this approach to aggregate eQTL variants using precomputed prediction

weightsw scaled such thatw>Rw = 1.

2. Dispersed prior in which all variants have non-zero effect sizes, but magnitude and direction

are unknown. Specifically, we assume β ∼ Nm(0, Im
τ
m

) wherem is the number of variants.

We use this approach to aggregate groups of coding variants and variants in regulatory

elements.

3. Sparse prior in which only a single variant has a non-zero effect. Specifically, the causal

variant j∗ is uniformly distributed over {1, 2, ..., m} where m is the number of variants, and

βj∗ ∼ N (0, τ). We use this approach to aggregate groups of coding variants and variants in

regulatory elements.

We define the Bayes factor BFs for a prior model A as

BF =
fβ̂|A(β̂)

fβ̂|β≡0(β̂)
, (4.2.1)
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where β̂ denotes the MLE of effect sizes. In general, we do not explicitly calculate β̂; rather, we

reconstruct the Bayes factor using single-variant z-scores Z and LD matrix R. This approach has

been widely applied previously for single-variant Bayesian finemapping (e.g., Y. Lee et al. 2018). The

sampling distribution of the MLE β̂ is approximately

n1/2(β̂ − β)
a∼Nm(0, σ2

Y R−1) (4.2.2)

where σ2
Y is the trait variance, and R is the LD matrix. Equation 4.2.2 holds exactly under a linear

regression model with i.i.d. normal residuals where genotypes are scaled with unit variance.

For prior distributions of the form A : β ∼ Nm(0,Λ), where Λ is a positive semi-definite

matrix, we can use the binomial inverse theorem to find

BF =

∣∣∣∣Im +
n

σ2
Y

RΛ

∣∣∣∣−1/2 exp

{
− 1

2σ2
Y

Z>Λ(
σ2
Y

n
Im + RΛ)−1Z

}
.

When Λ = τ 2ww>, wherew is scaled such thatw>Rw = 1, this expression can be simplified

by again applying the binomial inverse theorem and Sylvester’s determinant theorem. Bayes factors

for each form of prior are given in Table 4.2.

Table 4.2: Gene-Based Bayes Factors

Prior Effect Size Distribution Log Bayes Factor

Linear

β ∼ Nm(0, τ 2ww>)
wherew>Rw = 1

nτ2

2σ2
Y (σ2

Y +nτ2)
(Z>w)2 − 1

2
log
(

1 + nτ2

σ2
Y

)
Dispersed β ∼ Nm(0, 1

m
τ 2Im) τ2

2mσ2
Y
Z>(

σ2
Y

n
Im + τ2

m
R)−1Z − 1

2
log
∣∣∣Im + nτ2

mσ2
Y

R
∣∣∣

Sparse

βj ∼ Nm(0, δj∗,jτ
2) where

j∗ ∼ Unif{1, 2, ...,m} log

(
1
m

∑m
j=1 e

nτ2

2σ2
Y

(σ2
Y

+nτ2)
Z2
j

)
− 1

2
log
(

1 + nτ2

σ2
Y

)

It is interesting to note the close relationships between these gene-based BFs and the gene-based
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test statistics described in the previous section. The linear-prior BF is a direct function of the

L-form gene-based test. Similarly, the dispersed-prior BF can be expressed as a function of a Q-form

gene-based test. Finally, the sparse-prior BF can bewritten as a function ofLSE(cZ2
1 , ..., cZ

2
m), where

the LogSumExp function LSE(x1, ..., xm) = log
(∑

j e
xj

)
is a well-known smooth approximation

to max(x1, ..., xm), and is thus closely related to the M-form gene-based test.

4.2.3 Model Fitting Algorithms and Statistical Inference

Hierarchical Bayesian Model for Gene-based Association

Here we describe a hierarchical Bayesianmodel for gene-based association. For each gene, we stratify

variants by annotation class j = 1, 2, ..., J (coding variants, eQTLs, enhancers, and UTR regions),

and further stratify variants within each class j by annotation subclass k = 1, 2, ..., Kj (tissue-type

for eQTLs and enhancers; and non-synonymous, splice-site, .... for coding variants). Let βgjk denote

the effect sizes of variants in class j and subclass k with respect to gene g, and let ξgjk denote an

indicator function such that

fβ|ξ(βgjk; ξgjk) =


fk ξgjk = 1

δ0 ξgjk = 0

where the forms of prior densities fk are given in the previous section (Table 4.2). We assume that

each gene has at most one causal class and subclass; this assumption simplifies computation, and is

analogous to an adjustedminimum p-value across stratified gene-based tests. We introduce indicator

variables θg and ξgj for each gene g and for each annotation class j, and assume
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P (θg = 1) = πθ, P (ξgj = 1|θg) =


πj θg = 1

0 θg = 0

, P (ξgjk = 1|ξgk) =


πjk ξgj = 1

0 ξgj = 0

.

In other words, θg is equal to 1 if any functional variants for gene g affect GWAS trait and 0

otherwise; ξgj is equal to 1 if any functional variants of annotation class j with respect to gene g

affect GWAS trait; and ξgjk is equal to 1 if functional variants of annotation class j and subclass k

affect GWAS trait and 0 otherwise. Under the assumption that each gene has at most one causal

annotation class and subclass, we can calculate an overall gene-based Bayes factor as

BFg =
fβ̂|θ=1(β̂g)

fβ̂|β≡0(β̂g)
=

∑
j P (ξgj = 1|θg = 1)

∑
k P (ξgjk = 1|ξgj = 1)fβ̂|ξ(β̂g|ξgjk = 1)

fβ̂|β≡0(β̂g)

=
∑
j

πj
∑
k

πjk
fβ̂|ξ(β̂g|ξgjk = 1)

fβ̂|β≡0(β̂g)

=
∑
j

πj
∑
k

πjkBFgjk,

where β̂g denotes the effect size estimates for functional variants for gene g and BFgjk :=

fβ̂|ξ(β̂g|ξgjk = 1)/fβ̂|β≡0(β̂g) has the corresponding form given in Table 4.2. We can similarly

calculate the posterior probability for annotation class j and subclass k for gene g as

P (ξgjk = 1|β̂g) =
P (β̂g|ξgjk = 1)P (ξgjk = 1)

P (β̂g)
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=
P (β̂g|ξgjk = 1)P (ξgjk = 1|ξgj = 1)P (ξgj = 1|θg = 1)P (θg = 1)

P (β̂g|θg = 0)P (θg = 0) + P (β̂g|θg = 1)P (θg = 1)

=

P (β̂g |ξgjk=1)

P (β̂g |θg=0)
πjkπjπθ

(1− πθ) + P (β̂g |θg=1)

P (β̂g |θg=0)
πθ

=
πjπjkBFgjk
1−πθ
πθ

+BFg
,

which can be viewed as a form of Bayesian model averaging (Hoeting et al. 1999).

Algorithms for Empirical Bayes Estimation

Here, we describe algorithms to obtain empirical Bayes estimates of priorweights for each annotation

class and subclass. In general, we use E-M algorithms in which the latent variables are indicators

variables ξgjk for each gene g, annotation class j, and annotation subclass k. We estimate subclass

priors πjk separately within each annotation class j to avoid penalizing genes with association signals

across multiple annotation classes.

Within each annotation class j, we use a logistic prior of the form

P (ξgjk = 1) = 1/(1 + e−x
>
gjkγ)

wherexgjk denotes an annotation vector. In the simplest case, xgjk indicates the annotation subclass

(e.g., tissue-type), and if annotation subclasses aremutually exclusive and collectively exhaustive, then

we simply have

P (ξgjk = 1) = 1/(1 + e−γjk)
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where the intercept is omitted to avoid rank deficiency. In this case, the logisticMLE has closed form;

namely, γ̂jk = logit( 1
Njk

∑
g ξgjk) where Njk is the number of genes with one or more variants of

annotation class j and subclass k. Otherwise, γ̂ can be estimated using Fisher scoring or gradient

descent. We note that this logistic prior does not explicitly account for interdependence between

neighboring groups of variants, and can thus be viewed as a form of composite likelihood estimation

(Varin, Reid, and Firth 2011).

Because ξgjk are unobserved, we use an E-M algorithm to estimate γ̂ . In the tth E step for class j,

we update each

ξ̃
(t+1)
gjk = Ê(t+1)(ξgjk|β̂gj,xgjk) =

ex
>
gjkγ̂

(t)

BFgjk

1 +
∑

k′ e
x>
gjk′ γ̂

(t)

BFgjk′
, k = 1, 2, ..., Kj and g = 1, 2, ..., Njk

and update γ̂(t)
in the subsequent M-step using Fisher scoring or closed form (when possible) as

described previously. We then calculate subclass priors as π̂jk = P̂ (ξgjk = 1|ξgj = 1) =

eγ̂jk/
∑

k′ e
γ̂jk′ .

After updating annotation subclass priors πjk , we collapse across subclasses and use the same

approach to calculate annotation class priors πj . For example, the E step becomes

ξ̃
(t+1)
gj = Ê(t+1)(ξgj|β̂g,xgj) =

ex
>
gj γ̂

(t)

BFgj

1 +
∑

j′ e
x>
gj′ γ̂

(t)

BFgj′
,

where BFgj =
∑

k π̂jkBFgjk. In practice, we may estimate subclass priors for annotation classes of

direct interest and use a flat prior elsewhere for convenience.

67



Calculating Posterior Probabilities in Hit Regions

The composite likelihood approach described above ignores LD between neighboring genes. To

calculate gene-based posterior probabilities accounting for signals at neighboring genes, we finemap

regions with one or more marginal Bayes factors above a specified threshold. We define hit regions

by forming 1 cMwindows around each of the identified genes and merging regions that overlap. We

then calculate posterior probabilities under the assumption that each hit region contains at most one

causal gene.

4.2.4 Regulatory and Functional Annotation Data

To establish regulatory and functional relationships between variants and genes, we aggregated

annotations from four databases. To identify potentially protein-altering variants, we used

TabAnno/EPACTS ( Kang 2014). We used expression and genotype data fromGTEx to estimate eQTL

weights using forward selection and elastic net models for variable selection (GTEx Consortium

2015; Gamazon et al. 2015; Barbeira et al. 2016). To capture additional regulatory variation, we

used promoter-target pairs and enhancer-target pairs from regulatorycircuits.org inferred using

FANTOM5 CAGE data (Marbach et al. 2016), and tissue-specific enhancer-target pairs from JEME

(joint effect ofmultiple enhancers) inferred using FANTOM5andENCODE/Roadmap data (Cao et al.

2017).

Table 4.3: Functional Annotation Sources

Annotation Source Data Source Annotation Class Reference

Anno/EPACTS GENCODE, RefSeq Coding variation Kang, 2014

GTEx eQTLs GTEx eQTLs GTEx Consortium, 2015

RegulatoryCircuits FANTOM5 Enhancers, promoters Marbach et al., 2016

JEME ENCODE,FANTOM5 Enhancers Cao et al., 2017
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4.2.5 Simulation Procedures

Here, we describe procedures to simulate GWAS summary statistics using real genotype data or LD

estimates. We begin by defining summary statistics and deriving their distribution. We next outline

procedures to simulate GWAS summary statistics under the desired distribution. Finally, we describe

procedures to simulate configurations of causal genes, causal variants, and effect sizes using real

functional genomic annotation data.

GWAS Summary Statistics

In the absence of covariates, we can write the single-variant z-score test Zj for association between

genotypeGj and a continuous trait Y as

Zj = n−1/2G̃>j Ỹ ,

where Ỹ and G̃j are scaled and centered with mean 0 and standard deviation 1. Similarly, we can

write the vector of z-scores across variants as

Z = n−1/2G̃
>
Ỹ .

Given the additive association model Yi = α0 + α>Gi + εi, we can write a scaled model Ỹ =

G̃β + ε̃, where βj = sd(Gj)αj/sd(Y ) are heritability-scale effect sizes such that β2
j is equal to the

proportion of trait variance accounted for by the effect of the jth variant. Substituting this expression

for Ỹ , we can re-writeZ as

Z = n−1/2G̃
>
G̃β + n−1/2G̃

>
ε̃
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= n1/2Rβ + n−1/2G̃
>
ε̃,

where R := 1
n
G̃
>
G̃ denotes the LD matrix. If the residuals are i.i.d. normal, i.e. ε̃ ∼ N n(0, In)

where N n denotes the n-dimensional multivariate normal distribution, then the z-scores are

distributed

Z ∼ n1/2Rβ + Nm(0,R) (4.2.3)

For convenience, we define Z0 := n−1/2G̃
>
ε̃ ∼ Nm(0,R) as the z-score residual. Under the

null hypothesis that β = 0, the z-scoresZ andZ0 are equivalent.

Equation (1) also holds approximately for non-normally distributed traits, which can be shown

by asymptotic arguments under a sequence of local alternatives. For binary traits, the z-score

corresponding to the score test of association in the absence of covariates can still be written

Zj = n−1/2G̃>j Ỹ , and Z − n1/2Rnγ
d→ Nm(0,R), where γ is an effect size parameter that

depends on the odds-ratio or relative risk, minor allele frequency (MAF), population prevalence of

the trait, and the GWAS case-control ratio.

Procedures to Simulate GWAS Summary Statistics

Here, we describe procedures to simulate Z following equation (1) given a specified vector of effect

sizes β, GWAS sample size n, and LD matrix R. While the GWAS sample size n does not explicitly

appear in the distribution of the z-score residual, the rank of R and statistical precision of estimates

rjk do depend on n. Specifically, rank(R) ≤ rank(G) ≤ min(m,n), where m is the number of

variants. In addition, the number of distinct variants in a sample of size n under a neutral model

(constant population size and no selection) isO(log n); however, we ignore this dependence because
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the number of observed variants in array and imputation-based studies is fixed (restricted to variants

that are directly typed, or imputable from the reference panel). In GWAS simulations, we condition

on the reference LD structure (so that the precision of rjk estimates is irrelevant) to simulateZ with

arbitrary n given a fixed number of LD reference samples nref , and avoid rank deficiency when

necessary by LD pruning or Tikhonov regularization.

To simulate summary statistics following equation (1), we can consider two approaches:

1. Compute R1/2
, simulate S ∼ Nm(0, Im), multiply to obtainZ0 = R1/2S ∼Nm(0,R), and

calculateZ = n1/2Rβ +Z0.

2. Find m × n V such that VV> = R, simulate T ∼ Nm(0, Im), multiply to obtain Z0 =

VT ∼ Nm(0,R), and calculate Z = n1/2Rβ + Z0. When reference genotypes are directly

available, we can simply take V = G̃
>
ref/
√
nref .

To simulate summary statistics for whole chromosomes (with m � n), we use Approach 2 with

reference genotypes from the European subset of the 1000 Genomes Phase 3 panel.

Simulating Configurations of Causal Genes, Variants, and Effect Sizes

To generate variant effect sizes for simulations under the alternative hypothesis, we first select K

causal annotation classes using real functional genomic annotation data described above. We then

sample Mk causal genes for each causal annotation class k = 1, 2, ...K , ensuring each that each

causal gene has at least one variant matching its causal annotation. For example, a gene with the

causal group “liver-specific eQTL” must have one or more liver-specific eVariant.

Given a configuration of causal genes and annotation groups, we simulate effect sizes for each

variant following the effect size prior forms given in Table 4.2. We then rescale βj ’s for each causal

gene to ensure that

∑
j∈Cg β

2
j = h2L, where Cg is the set of causal SNPs for gene g and h2L is the
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specified per-locus heritability.

4.2.6 The UK Biobank Resource

We selected 25 traits from the UK Biobank for primary analysis with effective sample size of at least

7,500, one or more significant GWAS association, and one or more relevant Mendelian gene (Table

4.4).

Table 4.4: UK Biobank: Traits Included for Primary Analysis

Phenotype Category neff No. cases No. controls

Gout Endocrine/Metabolic 12679.9 3195 404630

Hypercholesterolemia Endocrine/Metabolic 122016.0 33242 370349

Hyperlipidemia Endocrine/Metabolic 130804.5 35844 372951

Hypothyroidism NOS Endocrine/Metabolic 54687.0 14171 388068

Lipoid Metabolism Disorders Endocrine/Metabolic 131083.3 35927 373034

Mineral Metabolism Disorders Endocrine/Metabolic 8463.8 2127 406834

Overweight, Obesity & Other Hyperalimentation Endocrine/Metabolic 42695.4 10968 397993

Type 2 Diabetes Endocrine/Metabolic 72247.7 18945 387496

Angina Pectoris Circulatory System 61928.5 16175 361420

Atrial Fibrillation & Flutter Circulatory System 56983.3 14820 367697

Cardiac Dysrhythmias Circulatory System 92666.4 24681 377558

Circulatory Disease NEC Circulatory System 62782.7 16366 383215

Hypertension Circulatory System 252255.9 77977 329748

Ischemic Heart Disease Circulatory System 115780.3 31355 376600

Myocardial Infarction Circulatory System 45325.9 11703 356948

Pulmonary Heart Disease Circulatory System 16848.7 4257 400046

Muscle, Ligament, & Fascia Disorders Musculoskeletal 17726.6 4488 352949

Rheumatoid Arthritis Musculoskeletal 17412.1 4412 325621

Cholelithiasis Digestive 53215.7 13777 387430

Inguinal Hernia Digestive 61024.6 15995 330268

Psoriasis Dermatologic 8896.9 2237 389674

Breast Cancer Neoplasms 49902.8 12898 381035

Skin Cancer Neoplasms 53157.0 13752 394933

Asthma Respiratory 98301.4 26332 368381

Delirium Dementia & Amnestic & Other Cognitive Disorders Mental Disorders 7841.2 1970 397775
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4.3 Results

We first describe GaMBIT (GWAS and Multi-Omics: Bayesian Inference and Data Integration

Toolkit), an open-source software implementation of the proposed methods. Next, we evaluate

1) the Type I error rates of gene-based test statistics, 2) power and specificity to identify

tissue-specific enrichment, 3) performance identifying causal mechanisms underlying association,

and 4) performance identifying causal genes for GaMBIT and existing methods through GWAS

simulations. Finally, we discuss an application to 25 complex traits using GWAS summary statistics

from the UK Biobank. We assess 1) the empirical power of GaMBIT and existing gene-based tests

by comparing the numbers of independent genes identified at standard GWAS significance and FDR

thresholds, 2) tissue-specific enrichment across traits, and 3) concordance with known Mendelian

genes for related traits from the OMIM database using GaMBIT and existing methods.
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4.3.1 Software Implementation

Figure 4.3.1: Overview of GaMBIT Method & Workflow
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4.3.2 GWAS Simulations

We simulated 650 sets of whole-genome GWAS summary statistics following the procedures

described in Methods 4.2.5 using LD reference data from the European subset of the 1KGP Phase 3

reference panel. To evaluate Type I error rates, we simulated 500 data sets under the null hypothesis

(no genetic effects on traits). To assess the Type I error rates of eQTL enrichment statistics in the

presence of association signals, we simulated 50 data sets with 5-10 coding associations and 2-5

UTR3 associations, but no causal eQTL effects. Finally, we simulated 100 traits with 1-16 eQTL
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associations across 1-3 tissues, 2-10 coding associations, and 3-5 UTR associations. Each GWAS data

set was simulated with GWAS sample size 100,000, and each causal locus accounted for 0.05-0.10%

of trait variance.

Evaluation of Type I Error Rates using Null GWAS Simulations

We evaluated the Type I error rate of gene-and-annotation stratified gene based tests (linear

combinations of z-scores for eQTLs, and the sum of squared z-scores for other annotation classes)

and GaMBIT gene-based tests (the adjusted minimum p-value across stratified tests for each gene)

using 500 sets of whole-genome GWAS summary statistics simulated under the null hypothesis. As

expected, GaMBIT gene-based test statistics were slightly conservative due to unadjusted Bonferroni

correction. All other test statistics maintained Type I error consistent with the desired alpha level

(Table 4.5).

Table 4.5: Evaluation of Type I Error Rates in Simulations

Alpha-level Threshold

No. Reps 5e-08 1e-06 2.5e-06 5e-06 0.001 0.005 0.01 0.05

Coding 8,844,000 0 7.9e-07 3.4e-06 6.0e-06 0.00097 0.0048 0.0096 0.049

Enhancer 82,761,500 4.8e-08 1.3e-06 2.9e-06 5.8e-06 0.00100 0.0048 0.0096 0.048

Exon 8,349,000 0 1.8e-06 4.2e-06 7.4e-06 0.00105 0.0049 0.0096 0.047

Proximal 2,931,000 0 6.8e-07 2.0e-06 2.7e-06 0.00092 0.0048 0.0097 0.049

UTR3 6,757,000 0 1.9e-06 3.8e-06 7.0e-06 0.00099 0.0048 0.0095 0.048

UTR5 4,276,000 0 1.2e-06 2.8e-06 5.4e-06 0.00093 0.0048 0.0097 0.049

eQTL 167,598,000 6.0e-09 4.1e-07 1.5e-06 3.3e-06 0.00093 0.0048 0.0096 0.049

GaMBIT 16,679,000 0 5.4e-07 2.2e-06 4.3e-06 0.00079 0.0039 0.0076 0.037

Observed Type-I error rates for gene-based tests stratified by functional class and for GaMBIT gene-based tests

(adjusted minimum p-value for each gene) across 500 GWAS traits simulated under the null hypothesis (no genetic

effects on trait). Each simulated trait provides 566,350 annotation-stratified gene-based tests in total across 33,435

unique genes.
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Identifying Relevant Tissues: Sensitivity & Type I Error Rate in GWAS Simulations

We assessed Type I error and sensitivity to detect relevant tissues (tissues with one or more causal

eQTL gene for a given trait) in simulated GWAS data sets. Type I error was well controlled in null

simulations (with causal coding or UTR3 variants, but no tissue-specific effects), and relevant tissues

were detected with relatively high sensitivity in simulations with tissue-specific enrichment (Figure

4.3.2).

Figure 4.3.2: Tissue-Specific Enrichment in Simulated Data: Sensitivity & Type I Error Rate

Left: Q-Q plots of enrichment p-values for 50 null simulation replicates (no causal eQTL genes for any tissue, but causal

coding and UTR3 variants) and 100 enriched simulation replicates (1-8 causal eQTL genes for each of 1-3 tissues, as

well as causal coding and UTR3 variants at other loci).

Right: Performance identifying enriched tissues across 100 simulation replicates. Ranking of tissues within replicates is

shown in green (the quantile of 1-sided enrichment -log10 p-values within each replicate; AU-ROC=0.92 and

AU-PR=0.53), and aggregate performance is shown in red (raw 1-sided enrichment -log10 p-values across replicates;
AU-ROC=0.92 and AU-PR=0.66). The overall percentage of tissues with one or more casual eQTL gene per replicate is

4.8% (range 2.2%-6.5% across replicates).

Sensitivity to Identify Causal Mechanisms Underlying Associations in GWAS Simulations

We assessed performance identifying the causal mechanism underlying association at causal

genes (for example, liver-specific eVariants or protein-altering variants) in simulated data using
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GaMBIT’s gene-and-annotation stratified posterior probabilities (leveraging functional enrichment

to re-weight annotation-stratified statistics for each gene), posterior probabilities with a flat prior

(weighting all tissues and functional annotations equally), and p-values for gene-and-annotation

stratified test statistics. Results include 1,064 coding-effect genes (genes for which coding variants

are causal), 655 UTR3 genes (genes for which UTR3 variants are causal), and 764 eQTL genes (genes

for which eVariants are causal) across 150 simulated traits.

Overall, GaMBIT posterior probabilities had the highest sensitivity to detect causal mechanisms

(Figure 4.3.3). Posterior probabilities with flat prior had slightly higher sensitivity than GaMBIT

posterior probabilities at UTR3 genes, reflecting the smaller numbers of UTR3 genes relative to

coding-effect and eQTL genes for most simulated traits. Indeed, for simulated traits with the

strongest UTR3 enrichment (43 simulated traits for which UTR3 genes make up ≥30% of all causal

genes; a total of 185 UTR3 genes), GaMBIT outperformed flat-prior posterior probabilities at UTR3

genes (AU-ROC = 0.99, 0.98, 0.96 and AU-PR = 0.87, 0.83, 0.73 for GaMBIT, flat-prior, and p-values

respectively).
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Figure 4.3.3: ROC & PR Curves for Identifying Causal Mechanisms in Simulated Data

Receiver Operating Characteristic (ROC; top row) and Precision-Recall (PR; bottom row) curves for identifying causal

mechanisms at 2,483 causal loci across 150 simulated GWAS traits (7-25 causal loci per trait). Performance is assessed

by ranking tissue-and-annotation stratified statistics for each causal gene, where each causal gene has a single causal

annotation class (and for eQTL genes, a single causal tissue). The mean number of tissue-and-annotation stratified

statistics per causal gene is 13.8 (range 2-185; median = 11).

GaMBIT Posterior: Posterior probability that annotation class/tissue underlies association for a given gene, leveraging
tissue-specific enrichment in empirical Bayes priors (AU-ROC=0.96 and AU-PR=0.78).

Posterior with Flat Prior: Posterior probability that annotation class/tissue underlies association for a given gene,

assigning equal prior weight to each tissue and functional annotation class (AU-ROC=0.95 and AU-PR=0.72).

P-value: P-values for tissue-and-annotation stratified tests for each gene (AU-ROC=0.92 and AU-PR=0.61).

Sensitivity to Identify Causal Genes in GWAS Simulations

We assessed performance identifying causal genes at associated loci using GaMBIT gene-based test

p-values, GaMBIT gene-based posterior probabilities (leveraging functional enrichment to re-weight
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annotation-stratified statistics), gene-based posterior probabilities with a flat prior (weighting each

tissue and functional annotation class equally, but otherwise equivalent to GaMBIT posterior

probabilities), Pascal/VEGAS gene-based p-values (the sum of squared z-scores for all variants within

50 Kbp of each gene), and top-SNP-to-TSS distance (ranking each gene at a locus by the genomic

distance between its TSS and the most significant independent GWAS variant). Here, posterior

probabilities are calculated by summing across gene-and-annotation stratified posterior probabilities

for each gene. We evaluate performance for each method by ranking genes within each causal locus

(defined as the region +/- 1Mbp of a causal gene), and aggregating across all causal loci and simulated

traits.

GaMBITposterior probabilities generally provided the highest sensitivity to identify causal genes,

although flat-prior posterior probabilities had slightly higher sensitivity at UTR3 loci. Similar to

the previous section, this trend reflects UTR3 being the least-enriched annotation class for 75/150

simulated traits. For simulated traits with the strongest UTR3 enrichment (≥30% of all causal

genes have causal UTR3 variants), GaMBIT posterior had the highest performance identifying

causal genes at UTR3 loci (AU-ROC = 0.97, 0.97, 0.97, 0.81, 0.88 and AU-PR = 0.78, 0.76, 0.69,

0.20, 0.28 for GaMBIT posterior, flat-prior posterior, GaMBIT p-value, Pascal/VEGAS p-value, and

top-SNP-to-TSS distance respectively).
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Figure 4.3.4: ROC & PR Curves for Identifying Causal Genes in Simulated Data

Receiver Operating Characteristic (ROC; top row) and Precision-Recall (PR; bottom row) curves for identifying causal

genes at across 150 simulated GWAS traits with 7-25 causal loci per trait. Performance is assessed by ranking genes

within each causal locus for each trait, where a causal locus is defined as the set of genes +/- 1Mbp from a causal gene.

Further details are provided in Table 4.6.

GaMBIT Posterior: Posterior probability that a gene is causal, leveraging tissue-specific enrichment in empirical Bayes

priors.

Posterior with Flat Prior: Posterior probability that a gene is causal, assigning equal prior weight to each tissue and
functional annotation class.

GaMBIT P-value: Adjusted minimum p-value across gene-based tests stratified by tissue and functional annotation

class for each gene.

Pascal/VEGAS P-value: Annotation-agnostic SKAT p-value calculated by aggregating all variants +/- 50 Kbp from

each gene.

Top-SNP-to-TSS Distance: Distance from TSS to nearest top independent GWAS variant (most significant p-value in

sliding 2 Mbp window).
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Table 4.6: Performance Identifying Causal Genes in Simulated Data

Predictor AU-PRC AU-ROC Top-Ranked

Causal Class: cis-eVariants (765 Loci)
GaMBIT P-value 0.75 0.99 0.84

GaMBIT Posterior 0.85 0.98 0.90
Posterior with Flat Prior 0.76 0.97 0.84

Pascal/VEGAS P-value 0.17 0.77 0.35

Top-SNP-to-TSS Distance 0.18 0.81 0.28

Causal Class: Coding Variants (1,065 Loci)

GaMBIT P-value 0.68 0.96 0.80

GaMBIT Posterior 0.78 0.96 0.86
Posterior with Flat Prior 0.77 0.97 0.85

Pascal/VEGAS P-value 0.20 0.81 0.37

Top-SNP-to-TSS Distance 0.39 0.91 0.53

Causal Class: UTR3 Variants (655 Loci)

GaMBIT P-value 0.66 0.96 0.77

GaMBIT Posterior 0.72 0.97 0.80

Posterior with Flat Prior 0.75 0.97 0.83
Pascal/VEGAS P-value 0.25 0.85 0.46

Top-SNP-to-TSS Distance 0.39 0.91 0.52

Proportion of causal genes that are top-ranked within locus (defined by +/- 1Mbp of causal gene) according to each

method across 2,725 causal loci from 150 simulated traits. Leveraging tissue-specific enrichment to re-weight

associations (GaMBIT Posterior) improves performance identifying causal genes at eQTL loci by 7.6% relative to

weighting each tissue and functional class equally (Posterior with Flat Prior).

AU-ROC: Area Under Receiver Operating Characteristic (ROC) curve.
AU-PR: Area Under Precision-Recall (PR) curve.
Top-Ranked: Proportion of loci at which top-ranked gene according to method is causal.

4.3.3 Application to the UK Biobank: Analysis of 25 Complex Traits

We selected 25 traits from the UK Biobank for primary analysis with effective sample size of at least

7,500, one or more significant GWAS association, and one or more relevant Mendelian gene (Table

4.4).
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Empirical Power: Numbers of Loci Discovered Across UK Biobank Traits

We compared the numbers of significant independent loci detected for UK Biobank traits using

GaMBIT gene-based tests, Pascal/VEGAS gene-based tests, and GWAS single-variant analysis. For

GaMBIT and Pascal/VEGAS, we assessed the numbers of CCDS protein-coding genes reaching

gene-based test significance (p-value < 2.5e-6) and discovered at 5% FDR threshold, counting only

the most significant gene within a sliding 2 Mbp window. For single-variant analysis, we similarly

counted the numbers of genome-wide significant independent variants (p-value < 5e-8), including

only the most significant variant within a sliding 2 Mbp window.

Single-variant analysis identified more significant loci than either gene-based approach overall

and almost uniformly across traits. This is unsurprising, as many single-variant associations are

intergenic and not in close proximity to any protein-coding gene. Despite using fewer variants and a

higher burden ofmultiple-testing (applied at the gene level), GaMBIT detectedmore significant genes

than Pascal/VEGAS in total across traits and for each trait individually, and discovered more genes at

5% FDR than Pascal/VEGAS for 72% of all traits. This suggests that GaMBIT’s functional annotation

strategy effectively reduces noise and increases power overall, despite sacrificing a large number of

variants.

We also assessed the numbers of genes detected by using gene-and-annotation stratified

test statistics individually. GaMBIT gene-based tests (adjusted minimum p-value across

annotation-stratified statistics for each gene) consistently detected more significant independent

genes than any annotation class used individually across traits (85.6%, 17.1%, 83.3%, and 31.9% more

than gene-based tests from coding variants, enhancers, UTR variants, and eQTLs respectively). This

suggests that GaMBIT’s stratify-and-combine approach increases power overall, despite having a

higher burden of multiple testing. However, substantially more loci were discovered at 5% FDR by

applying an overall FDR adjustment across all gene-and-annotation stratified tests together rather
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than applying FDR adjustment to GaMBIT’s aggregated gene-based tests directly (Table 4.7).

Table 4.7: Empirical Power: Number of Independent Loci Discovered for UK Biobank Traits

Trait Single-Variant Pascal/VEGAS GaMBIT Stratified

Cancer
Skin cancer 35 15 (60) 25 (66) 134

Breast cancer 24 11 (34) 17 (40) 72

Endocrine/Metabolic
Hypothyroidism NOS 51 28 (159) 45 (178) 328

Type 2 diabetes 46 24 (189) 39 (185) 306

Lipoid Metabolism Disorders 37 27 (134) 32 (127) 255

Hyperlipidemia 38 27 (137) 33 (133) 254

Hypercholesterolemia 34 24 (119) 30 (124) 249

Gout 7 4 (11) 6 (13) 23

Disorders of mineral metabolism 4 2 (5) 3 (12) 38

Overweight, obesity and other hyperalimentation 9 5 (28) 7 (31) 71

Circulatory System
Ischemic Heart Disease 40 21 (133) 33 (142) 256

Myocardial infarction 21 13 (49) 18 (47) 100

Angina pectoris 20 10 (65) 19 (55) 111

Pulmonary heart disease 9 4 (5) 8 (10) 17

Atrial fibrillation and flutter 36 27 (73) 30 (82) 149

Circulatory disease NEC 6 4 (9) 6 (10) 20

Digestive
Inguinal hernia 22 13 (52) 21 (67) 128

Cholelithiasis 17 15 (48) 19 (41) 92

Musculoskeletal
Rheumatoid arthritis 6 1 (13) 5 (18) 63

Muscle, ligament, & fascia disorders 23 13 (33) 21 (34) 67

Other
Asthma 31 22 (126) 28 (122) 258

Psoriasis 7 4 (12) 6 (22) 91

Single-Variant: Number of independent genome-wide significant (p-value≤ 5× 10−8) variants.

Pascal/VEGAS: Number of significant independent genes (gene-based p-value≤ 2.5× 10−6) and number of

independent genes discovered by Pascal/VEGAS gene-based tests at 5% FDR (in parenthesis).

GaMBIT: Number of significant independent genes (gene-based p-value≤ 2.5× 10−6) and number of independent

genes discovered by GaMBIT gene-based tests at 5% FDR (in parenthesis).

Stratified: Number of independent genes discovered at 5% FDR using stratified gene-and-annotation GaMBIT test

statistics.
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Tissue-Specific Enrichment

We assessed tissue-specific eQTL enrichment across the 25 selected complex traits from the

UK Biobank. We detected strong enrichment in heart tissues for atrial fibrillation and other

cardiovascular traits, and enrichment in liver for multiple endocrine and metabolic traits (Table

4.8). However, relatively few traits exhibited significant tissue-specific enrichment overall. This may

reflect the imprecision of eQTLweights (due to the limited sample size of GTEx and imbalance across

tissues), limited statistical power (due to the limited effective sample size for many traits), polygenic

effects of small magnitude dispersed across many genes (which are less likely to be detected by

GaMBIT), or perhaps genuine genetic etiology. Here, it is also important to note that our simulations

assumed eQTL effects are measured without error, and therefore likely overestimate power to detect

enrichment in real data.
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Table 4.8: Tissue-Specific eQTL Enrichment across UK Biobank Traits

Trait Term Coef. (SE) Pval

Circulatory
Angina Pectoris Artery Aorta 1.24 (0.35) 2e-04

Liver 1.45 (0.44) 5e-04

Atrial Fib. & Flutter Heart Atrial Appendage 1.52 (0.24) 9e-11

Heart Left Ventricle 1.09 (0.28) 5e-05

Brain Cerebellar

Hemisphere

0.97 (0.36) 3e-03

Cardiac Dysrhythmias Heart Atrial Appendage 1.28 (0.35) 1e-04

Heart Left Ventricle 1.09 (0.38) 2e-03

Hypertension Artery Aorta 1.30 (0.52) 6e-03

Ischemic Heart Disease Artery Aorta 0.93 (0.26) 2e-04

Liver 1.07 (0.35) 1e-03

Myocardial Infarction Artery Aorta 0.92 (0.33) 3e-03

Liver 1.15 (0.43) 4e-03

Pulmonary Heart Disease Vagina 1.83 (0.60) 1e-03

Endocrine/Metabolic
Hypercholesterolemia Liver 0.85 (0.34) 6e-03

Overweight, Obesity, &

Other Hyperalimentation

Liver 1.20 (0.51) 9e-03

Type 2 Diabetes Liver 0.74 (0.31) 9e-03

Mental Disorders
Delirium Dementia, Adrenal Gland 5.64 (1.60) 2e-04

Amnestic, & Other Esophagus Mucosa 5.00 (1.67) 1e-03

Cognitive Disorders Nerve Tibial 4.85 (1.67) 2e-03

Brain Anterior

Cingulate Cortex BA24

5.48 (2.32) 9e-03

Musculoskeletal
Muscle, Ligament,

& Fascia Disorders

Artery Aorta 1.01 (0.38) 4e-03

Neoplasms
Breast Cancer Testis 1.38 (0.56) 7e-03

Respiratory
Asthma Prostate 0.58 (0.23) 6e-03

Liver 0.59 (0.24) 7e-03

eQTL enrichment estimates and p-values for tissues with marginally significant p-values (p < 0.01) across traits.
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Figure 4.3.5: Heatmap of Tissue-Specific Enrichment

Clustering of tissues and traits from tissue-specific enrichment estimates.

Concordance with OMIM Genes

To assess GaMBIT’s performance identifying causal genes in real data, we first extracted lists of

known Mendelian genes for related traits the OMIM database for each of the 25 UK Biobank traits.

We next filtered the lists of OMIM genes, retaining only genes within 1 Mbp of a significant GWAS

association (single-variant p-value < 5e-8) or a significant gene-based test (Pascal/VEGAS orGaMBIT

p-value < 2.5e-6) for the corresponding UK Biobank trait. After filtering, we retained 55 unique

OMIM genes across traits from the original list of 353 unique genes.
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Figure 4.3.6: ROC and PR Curves for OMIM Genes in the UK Biobank

Receiver Operating Characteristic (ROC; left) and Precision-Recall (PR; right) curves for 55 OMIM genes in total across

25 traits in the UK Biobank. Only OMIM genes within +/- 1 Mbp of a genome-wide significant association (p-value<
5e-8) or significant Pascal/VEGAS or GaMBIT gene-based test (p-value< 2.5e-6) are included (55 OMIM genes from a

total of 404). Performance is assessed by ranking genes within each OMIM locus for each trait, where an OMIM locus is

defined as the set of genes +/- 1Mbp from an OMIM gene.

GaMBIT Posterior: Posterior probability that gene causal (AU-ROC=0.87, AU-PR=0.41).
GaMBIT P-value: Adjusted minimum p-value across gene-based tests stratified by tissue and functional annotation

class for each gene (AU-ROC=0.86, AU-PR=0.44).

Pascal/VEGAS P-value: Annotation-agnostic SKAT p-value calculated by aggregating all variants +/- 50 Kbp from

each gene (AU-ROC=0.85, AU-PR=0.26).

Top-SNP-to-TSS Distance: Distance from TSS to nearest top independent GWAS variant (most significant p-value in

sliding 2 Mbp window) (AU-ROC=0.85, AU-PR=0.42).
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Table 4.9: Concordance at OMIM Loci in UK Biobank Data: Quantile Rank of OMIM Genes

Mean Locus Quantile Rank of OMIM Genes for:

GaMBIT Top SNP to Pascal/VEGAS No.

Trait Category Post. Pr. P-value TSS Dist. P-value Genes

Neoplasms 0.83 0.83 0.73 0.74 8

Endocrine/metabolic 0.90 0.87 0.90 0.88 26

Circulatory System 0.91 0.88 0.96 0.82 7

Respiratory 0.88 0.67 0.77 0.86 3

Digestive 0.97 1.00 1.00 0.70 3

Dermatologic 0.75 0.76 0.72 0.71 3

Musculoskeletal 0.64 0.75 0.42 0.73 5

Overall 0.86 0.84 0.83 0.82 55

Average quantile of OMIM genes within each locus (+/- 1Mbp of each OMIM gene) across traits in each category for

each method. Quantiles of OMIM genes that appear for multiple traits in a given category are first averaged across traits

so that each OMIM gene contributes equally to the total. The average quantile of OMIM genes is approximately equal

to AU-ROC.

Table 4.10: Concordance at OMIM Genes in UK Biobank Data: Proportion of Top-Ranked OMIM

Genes

Proportion of Top-Ranked OMIM Genes for:

GaMBIT Top SNP to Pascal/VEGAS No.

Trait Category Post. Pr. P-value TSS Dist. P-value Genes

Neoplasms 0.50 0.62 0.25 0.25 8

Endocrine/metabolic 0.64 0.65 0.62 0.62 26

Circulatory System 0.57 0.43 0.71 0.29 7

Respiratory 0.33 0.33 0.33 0.33 3

Digestive 0.67 1.00 1.00 0.67 3

Dermatologic 0.33 0.00 0.33 0.33 3

Musculoskeletal 0.20 0.40 0.20 0.00 5

Overall 0.54 0.56 0.53 0.44 55

Proportion of OMIM genes that are top-ranked within each locus (+/- 1Mbp of each OMIM gene) across traits in each

category for each method. For OMIM genes that correspond with multiple traits, proportions are averaged across traits

within each category.
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4.4 Discussion

Here, we described novel Bayesianmethods to identify likely causal genes, pathways, andmechanisms

underlying GWAS associations. We also outlined our efforts to assemble a comprehensive

compendium of gene-centric regulatory and functional annotations by aggregating databases derived

from Roadmap/ENCODE (Cao et al. 2017; Bernstein et al. 2010; ENCODE Project Consortium

2012), FANTOM5 (Marbach et al. 2016; Cao et al. 2017; Lizio et al. 2015), and GTEx (GTEx

Consortium 2015; Gamazon et al. 2015; Barbeira et al. 2016). To apply our approach with GWAS

summary statistics, we used our approach described Chapter 2 to estimate LD from reference

panels on-the-fly for gene-based association statistics. Finally, we presented a novel, open-source

computational toolkit, GaMBIT, that allows researchers to simultaneously examine a range of

potential regulatory and functional perterbations underlying GWAS association signals, and permits

both Frequentist and Bayesian inference.
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4.6 Appendix: Supplementary Tables & Figures

Supplementary Table 4.1: Ranking Genes at OMIM Loci for UK Biobank Traits

GaMBIT Top SNP to Pascal/VEGAS No.

Gene Post. Pr. P-value TSS Dist. P-value Traits

Neoplasms CDKN2A 0.86 0.90 0.95 0.95 1

CDSN 0.77 0.64 0.13 0.79 1

IRF4 1.00 1.00 1.00 1.00 1

MC1R 1.00 1.00 0.96 0.25 1

SLC45A2 1.00 1.00 1.00 0.82 1

TUBB 0.09 0.12 0.49 0.25 1

TYR 1.00 1.00 0.89 1.00 1

CHEK2 0.95 1.00 0.40 0.85 1

Endocrine/metabolic ABCC8 0.91 0.91 0.95 0.86 1

GCKR 1.00 0.89 1.00 0.84 1

HNF1A 1.00 1.00 0.97 1.00 1

HNF1B 0.96 1.00 1.00 0.83 1

IGF2BP2 1.00 1.00 0.94 1.00 1

INS 0.84 0.23 0.55 0.65 1

INSR 0.94 0.74 0.49 0.83 1

IRS1 1.00 1.00 1.00 0.44 1

KCNJ11 1.00 1.00 1.00 1.00 1

MTNR1B 1.00 1.00 1.00 1.00 1

RETN 0.13 0.29 0.67 0.58 1

SLC30A8 1.00 1.00 1.00 1.00 1

TCF7L2 1.00 1.00 1.00 1.00 1

WFS1 1.00 1.00 1.00 1.00 1

APOB 1.00 1.00 1.00 1.00 3

HMGCR 0.92 1.00 1.00 1.00 3

LDLR 1.00 1.00 1.00 1.00 3

LIPC 1.00 1.00 1.00 1.00 3

LPL 1.00 1.00 1.00 1.00 3

PCSK9 1.00 1.00 1.00 1.00 3

SCARB1 1.00 1.00 1.00 1.00 3

SORT1 0.99 0.97 0.93 1.00 3

LDLRAP1 0.03 0.06 0.30 0.08 2

DYRK1B 0.66 0.50 0.68 0.70 1

SLC17A3 0.94 0.96 0.98 0.98 1

MC4R 1.00 1.00 1.00 1.00 1

Circulatory System APOE 1.00 1.00 1.00 1.00 1

MMP3 0.83 0.77 0.81 0.19 3

NOS3 0.60 0.71 1.00 0.97 1

MYH6 1.00 1.00 1.00 0.97 2

NKX2-5 1.00 1.00 1.00 1.00 1

SCN5A 0.92 0.88 0.92 0.96 1

TAB2 1.00 0.78 1.00 0.67 1

Respiratory CHI3L1 0.93 0.96 0.93 0.86 1

IL13 1.00 1.00 1.00 1.00 1

TNF 0.71 0.03 0.39 0.73 1

Digestive ABCB4 0.92 1.00 1.00 1.00 1

ABCG8 1.00 1.00 1.00 1.00 1

SLC10A2 1.00 1.00 1.00 0.11 1

Dermatologic HLA-C 0.99 0.92 0.99 0.33 1

PSMB8 0.25 0.45 0.16 0.81 1

TRAF3IP2 1.00 0.92 1.00 1.00 1

Musculoskeletal LTA 0.38 0.72 0.02 0.72 1

NFKBIL1 0.38 0.72 0.03 0.71 1

PTPN22 1.00 1.00 1.00 0.84 1

IL10 0.96 1.00 0.64 0.84 1

PLEC 0.49 0.32 0.42 0.53 1
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Supplementary Table 4.2: OMIM Genes & Traits Used for Analysis of UK Biobank Traits

Gene OMIM Traits UK Biobank Traits Detected

MMP3 Coronary Heart Disease Angina Pectoris; Cardiovascular Traits GWAS

CHI3L1 Asthma-related Traits Asthma GWAS

IL13 Asthma Asthma GWAS,Pascal,GaMBIT

TNF Asthma; Dementia Asthma; Delirium Dementia Pascal

MYH6 Atrial Septal Defect Atrial Fibrillation; Cardiac Dysrhythmias Pascal,GaMBIT

NKX2-5 Atrial Septal Defect; Heart Malformations; Hypothyroidism Cardiovascular Traits Pascal,GaMBIT

CHEK2 Breast And Colorectal Cancer; Breast Cancer Breast Cancer; Skin Cancer GaMBIT

ABCB4 Gallbladder Disease Cholelithiasis GWAS,Pascal,GaMBIT

ABCG8 Gallbladder Disease Cholelithiasis GWAS,Pascal,GaMBIT

SLC10A2 Bile Acid Malabsorption Cholelithiasis GaMBIT

APOB Hypercholesterolemia Lipid Traits GWAS,Pascal,GaMBIT

HMGCR LDL Level Qtl 3; Statins Lipid Traits GWAS,Pascal,GaMBIT

LDLR Hypercholesterolemia; Ldl Cholesterol Level Qtl2 Lipid Traits GWAS,Pascal,GaMBIT

PCSK9 Hypercholesterolemia; LDL Level Qtl Lipid Traits GWAS,Pascal,GaMBIT

SCARB1 HDL Level Qtl6 Lipid Traits GWAS,GaMBIT

SORT1 LDL Level Qtl6 Lipid Traits GWAS,Pascal,GaMBIT

LIPC T2D; HDL Level Qtl 12 Lipid Traits; Type 2 Diabetes GaMBIT

LPL Combined Hyperlipidemia; HDL Level Qtl 11 Lipid Traits; Type 2 Diabetes Pascal,GaMBIT

PLEC Muscular Dystrophy Muscle/Ligament Disorders GWAS

NFKBIL1 Rheumatoid Arthritis Muscle/Ligament Disorders; Gout; Rheumatoid Arthritis Pascal,GaMBIT

PTPN22 Diabetes; Rheumatoid Arthritis Musculoskeletal Traits; Type 2 Diabetes GaMBIT

SLC17A3 Gout Susceptibility Gout GWAS,GaMBIT

LTA Myocardial Infarction; Psoriatic Arthritis Gout; Myocardial Infarction; Rheumatoid Arthritis Pascal,GaMBIT

APOE Coronary Artery Disease Ischemic Heart Disease GWAS,Pascal,GaMBIT

NOS3 Coronary Artery Spasm 1; Hypertension; Ischemic Stroke Ischemic Heart Disease GWAS

IRS1 Coronary Artery Disease; T2D Ischemic Heart Disease; Type 2 Diabetes GWAS,GaMBIT

IRS1 Coronary Artery Disease; T2D Ischemic Heart Disease; Type 2 Diabetes GWAS

MC4R Obesity Overweight, Obesity GWAS,GaMBIT

HLA-C Psoriasis Susceptibility Psoriasis GWAS,Pascal,GaMBIT

PSMB8 Autoinflammation Psoriasis GWAS,Pascal

TRAF3IP2 Psoriasis Susceptibility Psoriasis GWAS,Pascal,GaMBIT

MC1R Uv-induced Skin Damage Psoriasis; Skin Cancer GWAS,Pascal,GaMBIT

MC1R Uv-induced Skin Damage Psoriasis; Skin Cancer GWAS

CDKN2A Pancreatic Cancer/melanoma Syndrome Skin Cancer GWAS,Pascal

CDSN Peeling Skin Syndrome Skin Cancer GWAS

IRF4 Skin/hair/eye Pigmentation Skin Cancer GWAS,Pascal,GaMBIT

SLC45A2 Skin/hair/eye Pigmentation 5 Skin Cancer GWAS,GaMBIT

TUBB Symmetric Circumferential Skin Creases Skin Cancer GWAS

TYR Skin/hair/eye Pigmentation 3 Skin Cancer GWAS,Pascal,GaMBIT

ABCC8 T2D; Hyperinsulinemic Hypoglycemia Type 2 Diabetes GWAS,GaMBIT

GCKR Fasting Plasma Glucose Level Qtl 5 Type 2 Diabetes GWAS,Pascal

HNF1A T2D Type 2 Diabetes GaMBIT

HNF1B T2D; Renal Cysts And Diabetes Syndrome Type 2 Diabetes GWAS

IGF2BP2 T2D Type 2 Diabetes GWAS,Pascal,GaMBIT

INS T2D; Hyperproinsulinemia; MODY Type 2 Diabetes GWAS

INSR T2D; Hyperinsulinemic Hypoglycemia Type 2 Diabetes GWAS

KCNJ11 Diabetes; T2D; Hyperinsulinemic Hypoglycemia; MODY Type 2 Diabetes GWAS,GaMBIT

MTNR1B T2D Type 2 Diabetes GWAS,Pascal

RETN T2D; Hypertension Type 2 Diabetes GWAS

SLC30A8 T2D Type 2 Diabetes GWAS,GaMBIT

TCF7L2 T2D Type 2 Diabetes GWAS,Pascal,GaMBIT

WFS1 T2D Type 2 Diabetes GWAS,GaMBIT
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Chapter 5

Discussion

5.1 Summary

In this dissertation, we assessed strategies to improve imputation and statistical power for GWAS of

populations that are underrepresented in current imputation reference panels, presented methods to

expedite LD computationswith increasingly large sample sizes, and developed a statistical framework

to identify likely causal genes and mechanisms in post-GWAS analysis leveraging expanding

regulatory genomic annotation data. Here, we review these works, discuss their limitations and

prospects in the ever-evolving landscape of human genomics, and suggest possible directions for

future research.

5.2 Sequencing & Imputation in the Age of Massive Reference

Panels

In Chapter 2, we assessed sequencing-and-imputation as a strategy to improve genotype imputation

and increase power in GWAS populations that are underrepresented in current imputation reference
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panels. While imputation reference panels have increased in size since the release of the 1KGP, they

have not always increased in diversity. The largest current imputation reference panels, e.g. HRC

and UK10K (UK10K Consortium 2015; McCarthy et al. 2016), are predominantly European, and

provide limited imputation quality in non-European, admixed, and isolate populations (Deelen et al.

2014; Lencz et al. 2017). For these populations, we found that sequencing a subset of participants can

substantially increase genomic coverage and power to detect association.

Sequencing to construct augmented or population-specific reference panels is expected to be

most impactful for populations that are least represented in current imputation reference panels

(Van Leeuwen et al. 2015; Roshyara and Scholz 2015). By contrast, our analysis in Chapter 2 was

limited to four populations in which relatively large sequencing studies have already been conducted

(African Americans, Latino Americans, Sardinians, and Finns). However, we are hopeful that our

results can serve as a guidepost for the design and planning of GWAS in other populations with

comparable demographic histories but more limited representation in current imputation reference

panels.

With larger and more representative imputation reference panels, array-and-imputation based

genotyping provides a closer approximation to genotyping by deep sequencing. Forthcoming

reference panels, e.g. from the TOPMed WGS Program (NHLBI TOPMed WGS 2018), are

substantially larger and more diverse than the HRC. These resources will allow far more accurate

and comprehensive imputation for a wider range of populations, so that imputation coverage and

accuracy more closely approximate WGS, thereby lessening the utility of study-specific sequencing

for many populations and traits. However, the utility of sequencing and imputation for extreme

genetic architectures is less clear; e.g., de novo mutations cannot be imputed regardless of reference

panel size. Thus, the efficacy of population-based sequencing and imputation studies, family-based

studies, and other strategies under extreme genetic architectures is an area for further research.
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Finally, individual-level genotype data are not publicly available for many of the largest

imputation reference panels, e.g. the HRC and UK10K, which must be accessed indirectly through

imputation servers (UK10K Consortium 2015; McCarthy et al. 2016). Thus, direct augmentation

with other reference panels, e.g. study-specific reference data, is often difficult or impossible.

Other strategies to combine results from multiple reference panels include meta-imputation, which

strategically combines results from multiple reference panels (Sayantan Das 2017), and a distributed

reference panel approach, in which sets of imputed dosages from multiple reference panels are

combined for association analysis (Zhou et al. 2017). A more comprehensive evaluation of these

and other strategies to indirectly combine multiple reference panels, as well as tools to facilitate

analysis with multiple reference panels (e.g., on imputation servers), will be important for future

sequencing-and-imputation studies.

5.3 Efficient Computation with Human Genetic Data

In Chapter 3, we developed efficient methods to estimate linkage disequilibrium (LD) with large

sample sizes, exploiting the natural sparsity and high redundancy of genetic data to increase

computational efficiency. Efficient methods to calculate LD will be critical for the analysis of

GWAS summary statistics with large sample sizes, which will require correspondingly precise and

comprehensive LD estimates, including for rare and low-frequency variants (Benner, Havulinna, et al.

2017). In addition, because individual-level genotype data are not publicly available for many of the

largest WGS datasets (e.g., McCarthy et al. 2016; NHLBI TOPMed WGS 2018), the development of

web-based utilities for querying LDwithout compromising genetic privacywill be important to allow

researchers to utilize these resources for analyses involving LD (Quick et al. 2018).

One area for further research in this domain is the development of compressed data formats
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that allow efficient LD querying and estimation while avoiding quadratic storage costs, and do not

compromise genetic privacy. In addition, sparsity and haplotype structure can be used to improve

efficiency in a variety of other contexts; e.g., compact genotype data formats (e.g., M3VCF format;

Das and Abecasis 2015; Sayantan Das et al. 2016), and efficient computation for routine tasks and

analyses (e.g., sparse representations have been used to efficiently calculate single-variant association

tests; Dey et al. 2017).

5.4 Post-GWASMethods for the Omics Age

In Chapter 4, we developed an integrative Bayesian model and software toolkit, GaMBIT, to identify

causitive genes, pathways, and biological mechanisms underlying GWAS associations by leveraging

regulatory and functional genomics databases. We demonstrated through simulations that GaMBIT

has high precision to identify causal genes and mechanisms given accurate and comprehensive

functional genomic annotations. However, despite substantial progress in regulatory genomics,

current functional genomic annotations remain incomplete and often imprecise (Bodea et al. 2018;

e.g., GTEx sample sizes are limited and imbalanced across tissues [GTEx Consortium 2015; Hao

et al. 2018]). Thus, we expect the utility of the proposed methods to increase as functional genomic

annotations improve through new technologies and larger studies. In particular, improved methods

to infer relationships between regulatory elements and target genes will be important to facilitate the

interpretation of non-coding associations (Marbach et al. 2016).

Despite the imprecision of current annotation data, our analysis of 25 traits using GWAS

summary association statistics from the UK Biobank identified biologically relevant tissues and

showed high concordance with known Mendelian genes. We also demonstrated that LD and

pleiotropy can confound gene-based tests, and showed that our framework can providemore reliable
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and interpretable gene-based analysis by accounting for multiple possible mechanisms underlying

association. Finally, we found that our aggregated annotation-stratified gene-based testing approach

has substantially higher power than annotation-agnostic gene-based tests and any individual class of

annotation-stratified gene-based test (e.g., TWAS/PrediXcan tests across one or more tissues, Gusev

et al. 2016; Gamazon et al. 2015).

GaMBIT’s core methods involve a number of simplifying assumptions, which could be relaxed in

a variety of possible extensions and generalizations. For example, GaMBIT’s Bayesianmodel assumes

that each GWAS association region harbors at most one causal gene and annotation class. This

assumption primarily serves to simplify computation, as the number of possible causal configurations

is exponential in the number of genes and annotation classes. However, a variety of approaches

have been used to effectively reduce the search space over causal configurations in single-variant

fine-mapping (e.g., Wen et al. 2016; Benner, Spencer, et al. 2016), which could also be adapted in the

proposed framework.

Another natural extension of the GaMBIT framework is to incorporate gene-based annotations,

e.g. biological pathways and molecular functions, to improve gene prioritization and detect gene-set

enrichment. Gene-based annotations can be incorporated by introducing an additional logistic prior

at the gene level, similar in form to the priors used for annotation-stratified gene-based associations.

This extension will be explored in a forthcoming work.
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