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Abstract 

Aldehyde Dehydrogenase (ALDH) activity is commonly used as a marker to identify cancer 

stem-like cells. The three ALDH1A isoforms have all been individually implicated in cancer 

stem-like cells and in chemoresistance; however, which isoform is preferentially expressed 

varies considerably between various cell lines and tumors. An inhibitor of these three isoforms 

could provide a useful broad-spectrum tool to study ALDH1A biology in any of these cells and 

could potentially be used as a therapeutic. The redundant expression and function of the 

ALDH1A isoforms also suggests that cells could develop resistance to a single isoform selective 

inhibitor by simply expressing an alternate isoform. Lead compound 673A, a pan ALDH1A 

inhibitor, selectively depleted cancer stem cells and reversed chemosensitivity in vivo. Based on 

this compelling activity we set out to optimize 673A and another HTS hit CM39 for ALDH1A 

potency and selectivity, cellular potency, and pharmacokinetic properties. Although progress in 

the development of 673A-based inhibitors has been limited, an affinity probe has been 

synthesized to uncover new targets of the potentially promiscuous compound and to search for 

protein-protein interactions involving ALDH. Our campaign to optimize CM39 with ALDH1A1 

afforded first-in-class pan-inhibitors of ALDH1A1, 1A2, and 1A3 with excellent selectivity over 

ALDH2. We have developed compounds with up to 1000-fold improvement in inhibition of 

specific ALDH isoforms and 5-10 fold improved solubility and metabolic stability.  Exemplary 

compounds exhibited potent cellular inhibition of ALDH, depleted the CD133
+

 putative cancer 

stem cell population, and were highly synergistic with cisplatin in patient derived ovarian cancer 

spheroids. We have also developed the most potent, selective ALDH1A3 inhibitor to date and 
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have begun to define the structural features determining selectivity between the three ALDH1A 

isoforms.  
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Chapter 1 Introduction and Background 

1.1 Ovarian Cancer: Current Treatments and Prognosis 

 

In 2018, more than 22,000 U.S. women will be diagnosed with ovarian cancer and more 

than 14,000 will succumb to the disease, making it the 5
th

 most deadly cancer in women. 

Although ovarian cancer diagnosed at the local stage (Stage 1) has a 5-year survival rate of over 

90%, 3 in 5 women are diagnosed after the cancer has spread to distant sites in the abdomen. In 

these cases, the 5-year survival rate is 29%. Unfortunately, there are no early symptoms or 

reliable tests to detect ovarian cancer in the early stages.  The most common symptoms of 

bloating, pain in the back or abdomen, feeling full quickly, or bladder problems are attributable 

to disease dissemination.  

90% of ovarian cancers are epithelial in origin. High grade serous carcinoma, the most 

common and most aggressive ovarian cancer subtype, is now thought to originate in the serous 

epithelium of the fallopian tubes in many cases before migrating to the ovaries, where the first 

observable tumor will eventually form. The first line therapy for the majority of epithelial 

ovarian cancer (EOC) cases is surgical debulking of the primary tumor at which point the cancer 

is staged and the histological subtype is determined.
1
  

In addition to surgery, platinum- and taxane-based chemotherapeutics are used to treat 

the residual disease.
2-3

 Approximately 70% of EOC patients are initially responsive to 

chemotherapeutics; however, most relapse and ultimately become unresponsive to further 

chemotherapy.
4
 Platinum resistance may be mediated by: 1) reduced expression of copper 
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transporters which promote active transport of platinum drugs into the cell, 2) increased 

expression of copper efflux transporters or ATP-Binding Cassette transporters both of which can 

efflux platinum, 3) increased production of glutathione (GHS) and increased expression of GSH-

S-transferases to promote formation of platinum-thiol adducts, 4) increased activity of DNA 

repair mechanisms, and 5) suppression of DNA-damage sensing apoptotic pathways.
5
 

 There have been few breakthroughs in ovarian cancer treatment since the approval of 

taxane-based chemotherapeutics in the 1990s.  Two new therapeutic strategies, targeting vascular 

endothelial growth factor (VEGFR) and poly(ADP-ribose) polymerase (PARP), have recently 

been FDA approved for treatment of ovarian cancer.   

The VEGFR targeting monoclonal antibody Bevacizumab inhibits tumor angiogenesis, 

and normalizes existing vasculature, which improves the efficacy of traditional 

chemotherapeutics. Bevacizumab is generally better tolerated than traditional chemotherapeutics. 

Unfortunately, Bevacizumab provides very modest improvements in overall survival and 

progression-free survival in EOC patients.
6
   

The genes involved in homologous recombination, the repair of DNA double strand 

breaks, are mutated or epigenetically silenced in about 50% of high grade serous ovarian cancers. 

Tumors with these deficiencies tend to be more sensitive to DNA damaging chemotherapeutics 

such as the platinum drugs, because they are unable to repair the drug induced DNA damage.
5
 

Mutation or silencing of the BRCA1/2 genes specifically is present in up to 30% of high grade 

serous ovarian tumors and diminishes homologous recombination activity.  Inhibiting alternative 

DNA repair mechanisms is selectively toxic to homologous recombination deficient cancers.  

The enzymes PARP1-3 bind single strand DNA breaks and synthesize negatively charged 

poly(ADP-ribose) polymers, recruiting DNA repair enzymes.  PARP inhibition in combination 
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with homologous recombination deficiency leads to an accumulation of DNA strand breaks and 

prevents mitosis. Three approved PARP inhibitors, Olaparib, Rucaparib and Niraparib, show 

compelling efficacy in homologous repair deficient high grade serous ovarian cancer.  As a 

maintenance therapy, Niraparib improves progression free survival from 5.5 to 21 months in 

BRCA-mutation-positive cancers. In homologous recombination deficient tumors without BRCA 

mutations progression free survival was improved from 3.8 to 12.9 months. More modest, but 

still significant, improvements in progression-free survival were also observed in homologous 

repair competent tumors.
7-9

 Despite these promising results, PARP inhibitors have yet to 

demonstrate an improvement in overall survival and work best only in a minority of ovarian 

cancer patients. Therefore, new treatments to address ovarian cancer are still needed.  

1.2 The Cancer Stem Cell Hypothesis 

 

Similar to healthy tissue where distinct cell types serve different functions, tumors 

contain distinct subpopulations of cells with a multitude of observable phenotypic differences. 

The 2001 review by Reya et al. was perhaps the first to formalize the cancer stem cell (CSC) 

hypothesis to explain the heterogeneous populations of cells within a tumor.
10

  The central 

tenants of the CSC hypothesis are: 1) the oncogenic mutations which lead to tumor formation 

occur in stem cells, and therefore stem cells are the origin of tumors; and 2)   tumors contain a 

heterogeneous population of cells, and a stem-like subpopulation of cells are necessary to drive 

tumor progression and maintain heterogeneity.
10-11

  The alternative hypothesis, the stochastic 

model of tumor heterogeneity, asserts that all of the heterogeneous cell types are able to replicate 

and can produce other cell types through random “stochastic” events. In this model, 

chemoresistance is acquired through natural selection of chemoresistant cells.
10

 Recent evidence 
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suggests a combination of the two models is most likely correct. Mutations in differentiated cells 

may reverse epigenetic suppression of stem-ness genes, allowing de-differentiation
12

 

As a consequence of CSCs being vital to maintaining tumor heterogeneity, CSCs are 

uniquely able to repopulate a tumor following insult with chemotherapy. Eradication of CSCs is 

therefore vital to sustain a response following treatment.  Unfortunately, chemotherapeutics 

which target rapidly dividing cells have less effect on CSCs which are relatively quiescent. 

Additionally, CSCs may harbor enhanced DNA repair mechanisms or express efflux transporters 

or enzymes capable of inactivating chemotherapeutics.
11, 13

 

The high initial response rate, subsequent relapse, and eventual development of 

chemoresistance can be explained by the CSC hypothesis; chemotherapy initially is able to kill 

the bulk of the tumor comprised of non stem-like cells, but chemoresistant CSCs are able to 

repopulate the tumor and eventually confer newly acquired or existing chemoresistance traits to 

their progeny. 

While, historically, facile assays measuring bulk cytotoxicity have been employed to 

assess the efficacy of potential new cancer therapeutics in vitro and in vivo, more sophisticated 

measurement techniques which can assess the phenotype of individual cells such as flow 

cytometry and high content imaging are needed to specifically probe the impact of therapeutics 

on CSCs.  

1.3 Markers for CSCs in Ovarian Cancer 

 

 Given that a tenant of the CSC hypothesis is that CSCs originate from somatic stem cells, 

it follows that the markers used to identify somatic stem cells may also be useful in identifying 

CSCs.  CSC markers relevant to ovarian cancer have been reviewed in depth elsewhere. Briefly, 

surface glycoproteins (CD24, CD44, CD117, CD133, and epithelial cell adhesion molecule), cell 
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surface antigens (LY6A), GPCRs (LGR5), catalytic enzymes (aldehyde dehydrogenase 

(ALDH)), and ATP-binding cassette transporter proteins (ABCG2) all have potential utility in 

identifying ovarian CSCs. 
14-15

  CSC markers are typically validated by separating cells with and 

without the marker by flow cytometry and assessing the tumorigenicity of the two separate 

populations by engrafting a defined number of cells in immunocompromised mice.
16

  Increased 

tumorigenicity for a particular sub-population is taken as evidence of stemness.   A practical 

limitation of this method is that it biases studies towards marker populations which can withstand 

the considerable manipulation associated with flow cytometric separation and engraftment 

without significant changes in marker expression, rather than the most biologically relevant 

marker populations.  Additionally, an immunocompromised mouse presents  a different tumor 

environment than an immunocompetent patient, and therefore such models may select for 

markers which are not biologically relevant in patients.
16

  Validating putative cancer stem cell 

markers in humanized mouse models may eventually provide a more conclusive assessment of 

their biological relevance.
17

 

 In 2011, Silva et al. assessed several potential CSC markers in a number of epithelial 

ovarian tumors, primary peritoneal tumors, and ovarian cancer cell lines.
18

 They found a small 

population (0.25% to 9%) of ALDH
Bright

 (high ALDH activity as determined by ALDEFLUOR) 

cells in every sample, consistent with a common assertion that CSCs should be relatively rare.  

While cisplatin affected a dose dependent decrease in the total viable cell count in the SKOV3 

ovarian cancer cell line, the relative percentage of ALDH
Bright

 cells increased with higher 

concentrations of cisplatin, suggesting that either cisplatin induces ALDH expression or ALDH 

identifies a chemoresistant subpopulation. Brief cisplatin treatment of FACS (fluorescence-

activated cell sorting) purified ALDH
Dim 

(low ALDH activity as determined by ALDEFLUOR)  
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and ALDH
Bright

 cell populations revealed a greater number of viable cells with high ALDH 

activity immediately following treatment and a faster recovery following treatment cessation.  

ALDH
Bright

 SKOV3 and Hey1 cells were substantially more tumorigenic than ALDH
Dim

 cells.  

Engraftment of 1000 ALDH
Bright

 primary human tumor cells resulted in tumor growth in 2 of 9 

mice while 50,000 ALDH
Dim  

cells did not generate any tumors in 9 attempts.   In light of 

previous work demonstrating a highly tumorigenic population of ALDH
Bright

/CD133
+
 cells in 

hepatocellular carcinoma, this rare population of cells purified from primary human ovarian 

tumor cells was assessed for tumorigenicity.
19

 Interestingly, between 11 and 500 

ALDH
Bright

/CD133
+ 

cells were able to initiate tumors in 4 of 9 cases while cells with only one 

marker were unable to initiate tumors following injection of the same number of cells.  

Furthurmore, ALDH
Dim

/CD133
- 
cells were unable to initiate tumors in 9 trials following 

injection of 50,000 cells.  To assess the clinical relevance of the ALDH
Bright

/CD133
+
, 56 patient 

tumors were scored for ALDH and CD133 positivity.  For the 18 patients with tumors bearing 

cells with both ALDH
Bright

 and CD133
+
 cells, the overall survival at 10 years was approximately 

10%.  For the remaining patients with tumors without one or both markers, overall survival 

ranged from 40-60% at 10 years.  Many of the key findings from the Silva et al. study were 

corroborated in the near simultaneous disclosure by Kryczek et al.
20

  

In a follow up study, single cell techniques were used to demonstrate an ovarian CSC 

hierarchy. ALDH
Bright

/CD133
+ 

cells can self-renew or produce progeny without one or both 

putative CSC markers. ALDH
Dim

/CD133
+
 and

 
ALDH

Bright
/CD133

- 
were capable of self-renewal 

or differentiation into ALDH
Dim

/CD133
- 
cells. ALDH

Dim
/CD133

- 
cells did not produce any 

progeny bearing either putative CSC marker.  Interestingly out of over 1000 observed cell 

divisions, only one case of a stochastic event in which a ALDH
Bright

/CD133
- 
primary ovarian 
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tumor cell produced an ALDH
Bright

/CD133
+ 

daughter cell was noted. Bone morphogenetic 

protein 2 (BMP-2) is more highly expressed in the differentiated ALDH
Dim

/CD133
+
, 

ALDH
Bright

/CD133
-
, or

 
ALDH

Dim
/CD133

- 
cells, but not ALDH

Bright
/CD133

+ 
cells.   This cytokine 

signaling molecule produced primarily in ALDH
Dim

/CD133
-  

appears to mediate a feedback loop 

regulating relative cell populations by stimulating proliferation of putative CSCs 

(ALDH
Bright

/CD133
+
) and inhibiting growth of differentiated (ALDH

Dim
/CD133

-
) cells.

21
 

1.4 Function of CD133 in CSCs 

 

CD133, also known as prominin-1, is a surface glycoprotein with an N-terminal 

extracellular domain, 5 transmembrane domains, 8 sites of glycosylation, and a c-terminal 

intracellular tail with multiple tyrosine residues known to be phosphorylated by Src kinase. 

Although countless studies have correlated CSC properties and the function of various cellular 

pathways with CD133
 
expression, compelling evidence of a specific role of CD133 in CSCs has 

remained elusive.
22-23

  Liu et al. demonstrated that binding of the Src SH2 regulatory domain to 

the phosphorylated intracellular tail of CD133 activates Src kinase, promoting phosphorylation 

of focal adhesion kinase and eventually leading to activation of oncogenic pathways promoting 

survival, migration, and metastases.
22, 24

 In glioma, interaction between the phosphorylated tail of 

CD133 and p85 similarly leads to activation of the oncogenic Akt pathway. Weng et al. 

discovered direct interaction between CD133 and epidermal growth factor receptor (EGFR) 

which may lead to ligand-independent activation of the receptor which may also activate the Akt 

pathway. They also demonstrated that CD133
+

 overexpression increased the resistance of 

pancreatic cancer cell lines to chemotherapeutics, but sensitized cells to the EGFR inhibitor 

gefitinib.
25

  In hepatocellular carcinoma, expression of CD133 correlated with increased 

autophagy and knockdown of CD133 reduced viability in low glucose media. These results 
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suggest CD133 may help CSCs evade death in nutrient poor conditions by increasing nutrient 

uptake via autophagy.
26

   CD133
+
 knockdown in heptatocellular carcinoma reduced cellular 

glutathione levels, decreasing resistance against reactive oxygen species (ROS) and 

chemotherapy.  Pharmacological depletion of intracellular glutathione with sulfasalazine 

similarly increased the efficacy of chemotherapy in vitro and in vivo.
27

 Although none have been 

disclosed thus far, specific inhibitors of the protein-protein interactions between CD133 and Src, 

p85, and EGFR would have great value as biological probes to elucidate the specific roles of 

CD133.  

1.5 Function of ALDH in CSCs  

 

The ALDH superfamily of enzymes is primarily responsible for the NAD(P)
+
-dependent 

oxidation of endogenous and exogenous aldehydes into the corresponding carboxylates. The 

detailed mechanism is illustrated in Figure 1.1. They also possess NAD(P)
+
 independent esterase 

activity.
28

  Both ALDH1A1 (1A1) and ALDH1A3 (1A3) have been extensively linked to stem-

like characteristics in a number of malignancies.
29-30

 Additionally knockdown or inhibition of  

1A1 increases chemosensitivity in a number of cancers. 
31-37

 ALDH1A2 (1A2) and 1A3 show a 

high degree of sequence homology with 1A1 and have also been implicated in 

chemoresistance.
38-39

 The ability of 1A1 and ALDH3A1 (3A1) to promote chemoresistance to 

cyclophosphamide is well understood; the two isoenzymes are able to oxidize an aldehyde on an 

intermediate (aldophosphamide) in the bioactivation of cyclophosphamide, preventing formation 

of the active phosphoramide mustard.
40

  The role of ALDH in chemoresistance to other 

chemotherapeutics and in CSCs is not well understood. 
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Figure 1.1: Mechanism of Aldehyde Dehydrogenase (Morgan et al.
41

)  

1) Water mediates deprotonation of catalytic Cys302
 
by Glu268. 2) Nucleophilic attack of 

substrate aldehyde by cysteine anion. 3) NAD(P)
+

 abstracts hydride from the tetrahedral 

intermediate. 4) The resulting thioester is hydrolyzed by water and NAD(P)H is ejected, 

regenerating the enzyme to accept a new substrate and cofactor molecule. 5) Another molecule 

of NAD(P)
+
 enters the cofactor binding site.  

 

Lipid peroxidation is a common source of endogenous aldehydes.  Cellular metabolic 

processes, primarily in the mitochondria, can release “free radicals” and peroxides (e.g. 

superoxide radical (O2 
-•
), hydrogen peroxide). These short lived reactive intermediates form 

lipid peroxides which eventually can break down to lipid aldehydes such as malonaldehyde, 

hexanal, 4-hydroxynonenal, and acrolein.  These reactive electrophiles can form adducts with 

glutathione, proteins and DNA. Many tumors exhibit increased levels of reactive oxygen species 

compared to healthy tissue, which can lead to detectable DNA damage such as the mutagenic 

oxidation of guanosine (8-Oxo-2'-deoxyguanosine).  Antitumor agents, including cisplatin, 
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promote lipid peroxidation leading to further oxidative stress. Given that ALDH is able to 

neutralize the aldehyde end-products of lipid peroxidation, the elevated ALDH activity in CSCs 

may function to confer resistance against oxidative stress. 
42

  

The three ALDH1A isoforms, along with ALDH8A1, also participate in cellular 

signaling by oxidizing retinaldehyde into all-trans retinoic acid (ATRA).
28

  The retinoic acid 

signaling function of ALDH may also be relevant in CSCs.  In many healthy stem cell types and 

in leukemia, ATRA can promote differentiation of stem cells by binding to Retinoic Acid 

Receptors (RAR) in the nucleus and enhancing expression of genes responsible for loss of stem 

cell markers, differentiation, and morphological changes. ATRA is an effective therapeutic for 

acute promyelocytic leukemia, demonstrating that depletion of the cancer stem cell pool by 

inducing differentiation can reduce tumor cell propagation.  Unfortunately, in many solid tumors, 

epigenetic modification prevents expression of RARβ.  In this context, combination of ATRA 

with emerging epigenetic modifiers may restore the ability of ATRA to promote differentiation.  

In solid tumors retinoic acid can also activate transcription of oncogenic pathways PDK-1/Akt, 

c-MYC, and cyclin D1.
43-44

  

In contrast to CD133
+
, ALDH is a classical “druggable” protein possessing a well-

defined enzyme active site; many small molecule inhibitors of ALDH have been disclosed which 

will be discussed below.  

1.6 Possible Connections Between ALDH and CD133 in CSCs 

 

Although any direct mechanistic link between expression of CD133 and ALDH in CSCs 

is unclear, they are involved in many similar pathways which may explain their role in the 

hierarchy of CSCs proposed by Choi et al.   First, CD133 is able to activate proliferation-
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inducing and anti-apoptotic Akt pathway through interaction with p85 and EGFR.  Retinoic acid, 

produced by ALDH, can stimulate expression of Akt genes by binding to the nuclear hormone 

receptors PPARβ and δ.
45

  Importantly Akt activation is associated with the pro-metastatic 

epithelial-to-mesenchymal transition in ovarian cancer.
46-47

 Furthermore, ovarian cancer cells 

bearing the hallmarks of the mesenchymal phenotype exhibit increased resistance to platinum-

based chemotherapy.
48

 Second, knockdown of CD133 diminished the ability of hepatocellular 

carcinoma cells to survive in nutrient starved environments.
26

 ALDH may likewise be linked to 

the acquisition of nutrients; Kang et al. demonstrated that inhibition or knockdown of ALDH 

significantly diminishes the ability of non-small-cell lung carcinoma cells to produce ATP.
49

 

They propose these cells depend directly on the ALDH mediated production of NAD(P)H  to 

power the electron transport chain, but do not address the abundant source of aldehydes required 

for such a hypothesis.  Finally, CD133
+
 promotes resistance to ROS, and ALDH is a scavenger 

of reactive oxygen species.  

As noted above, BMP2 appears regulate ALDH+CD133+ CSC self-renewal. 

Interestingly, BMP-2 can activate Akt, similarly to CD133 and ALDH.
50-52

  The role of BMP-2 

in maintaining cell population homeostasis in ovarian cancer deserves further study.   

1.7 Validation of ALDH1A as a Target in Ovarian Cancer Stem Cells 

 

To assess whether inhibition of ALDH might influence the CD133
+
 cell population in 

ovarian cancer cell lines the Buckanovich lab performed knockdown experiments of various 

ALDH isoforms. As shown in Figure 1.2 siRNA knockdown indicated targeting 1A1, 1A2, and 

1A3 could deplete of CD133
+
 A2780 ovarian cancer cells and furthermore, the effects of 



12 

 

knocking down multiple isoforms were additive. These results were confirmed in the additional 

ovarian cancer cell lines PEO-4 and Kuramochi.  

 

Figure 1.2: Effect of ALDH1A Knockdown on Ovarian Cancer Cell Lines.  

(Left) Average live cell numbers following transfection of FACS purified CD133
+
 A2780 

cells with the specified siRNAs. *p<0.05, **p<0.01 vs control. (Right) Average live cell 

numbers following transfection of FACS purified CD133
+
 Kuramochi and PEO4 cells with 

the specified siRNAs.  

 

1.8  Rationale for Isoform Selective ALDH Inhibitors 

 

Figure 1.3: ALDEFLUOR Assay 

Passively cell permeable ALDEFLUOR reagent is converted to non-permeable carboxylate by a 

number of ALDH isoforms.  

 

Currently, ALDEFLUOR is the standard assay for determining ALDH activity in cells.  

As shown in Figure 1.3, the assay relies on accumulation of the cell impermeable BODIPY-
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carboxylate following oxidation of the ALDEFLUOR reagent aldehyde by ALDH. A PGP 

inhibitor is included in the assay to prevent active transport of either species.  A serious 

limitation of the ALDEFLUOR assay is that the reagent is a substrate for many ALDH isoforms, 

making it impossible to attribute the ALDEFLUOR activity in cells to a specific ALDH 

isoform.
53-54

 A further complication is the lack of published Michaelis-Menten kinetic 

parameters for the ALDEFLUOR reagent with respect to the various ALDH isoforms. 

(Obtaining this information may be difficult due to the potential for interference between the 

highly fluorescent ALDEFLUOR reagent and the typical readout of NAD(P)H absorbance used 

in ALDH assays.)  Given that there is a 250-fold discrepancy in Km for the very simple substrate 

acetaldehyde between 1A1 and ALDH2, it is conceivable that expression of ALDH isoforms for 

which ALDEFLUOR is a poor substrate are currently going undetected by this methodology.
53, 55

 

Additionally, expression of an isoform which rapidly turns over ALDEFLUOR may obfuscate 

subtle changes in expression of other isoforms.  

A platform to rapidly elucidate the ALDH isoforms responsible for ALDEFLUOR 

activity would facilitate discovery of the underlying mechanisms of ALDHs function in CSCs. 

Such a platform might consist of a panel of isoform specific ALDEFLUOR-like substrate probes, 

or a panel of isoform selective inhibitors. A panel of isoform specific ALDEFLUOR probes with 

different absorbance/emission spectra might one day enable simultaneous tracking of multiple 

isoforms.
53, 56

 It is unclear whether modified ALDEFLUOR analogs, likely with higher 

molecular weight and more steric crowding of the aldehyde to affect isoform selectivity, would 

maintain the favorable cell permeability properties which are vital to the function of the assay.   

In the case of isoform selective inhibitors, looking for a decrease in ALDEFLUOR signal 

following compound administration would implicate that isoform in the ALDEFLUOR activity.  
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Isoform selective inhibitors would, of course, have the added advantage of enabling rapid 

assessment of the effect of inhibiting a particular isoform in various cellular assays, which is 

currently often achieved using siRNA techniques.   

Given the strong evidence for the role of the ALDH1A family in CSCs, we have pursued 

isoform selective inhibitors of the ALDH1A subfamily.  Given the homology and overlapping 

substrate specificity of the ALDH1A family, the Buckanovich Lab evaluated whether cells could 

compensate by increasing 1A3 expression in response to selective inhibition of 1A1 or 1A2. As 

shown in Figure 1.4 1A1 or 1A2 knockdown increased expression of 1A3 by 4 to 6 fold. 

Analysis of mRNA levels for the ALDH1A isoforms in ovarian cancer cell lines uncovered 

variation in which isoform was preferentially expressed (Figure 1.5). In light of this, we reasoned 

that in contrast to isoform selective inhibitors, the pan-ALDH1A inhibitors could overcome 

compensatory expression of other isoforms in response to ALDH inhibition, and also might have 

efficacy in a wider array of cell lines and tumors with different ALDH1A expression profiles. 

For proof-of-concept studies we desired pan-ALDH1A inhibitors with good selectivity over 

other isoforms; however, for the reasons mentioned above, single isoform selective inhibitors 

could also provide valuable information. 
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Figure 1.4 Effect of 1A1/1A2 Knockdown on 1A3 Expression 

mRNA expression of ALDH1A3 following treatment of PEO4 cells with the specified siRNAs. 

(Unpublished work, courtesy Buckanovich Lab) 

 

 

Figure 1.5 ALDH1A Expression in Ovarian Cancer Cell Lines 

Analysis of Cancer Cell Line Encyclopedia ALDH1A expression data for ovarian cancer cell 

lines. (Unpublished work, courtesy Buckanovich Lab) 

 

 In addition to desiring selective inhibitors to provide the most unambiguous results in 

studies probing the function of ALDH1A, from a therapeutic standpoint, ALDH2 deficiency or 

inhibition causes adverse reactions to alcohol, may promote liver fibrosis, and reduces the 
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efficacy of nitroglycerin.
57-59

 Additionally, there is evidence that ALDH2 may mitigate ischemia-

induced cardiac and cerebrovascular damage.
60

  Therefore, we felt that selectivity over the 

closely related ALDH2 was desirable in our ALDH1A probes. 

 

1.9 Structural Basis for ALDH Isoform Selectivity 

The members of the ALDH1A family possess ~70% sequence homology. ALDH2 and 

ALDH1B1 are also closely related, with 66% and 62% homology respectively.
28

 As shown in 

Figure 1.6, the main difference between the ALDH1A1 and 1A2-1A3 active sites is an 

asparagine (N475) in 1A2, 1A3 at the residue corresponding to G458 in ALDH1A1.  According 

to the crystal structure of 1A2 (PDB: 6B5H) the conformation of the peptide backbone changes 

to accommodate the N475 without reducing the size of the mouth of the active site. The 

homology model of ALDH1A3 suggests the asparagine is reducing the size of the active site 

mouth. More subtle differences between the ALDH1A isoforms will be discussed in subsequent 

chapters. ALDH2 presents a significantly narrower passage to the catalytic cysteine due to 

M125; the corresponding residue in ALDH1A is glycine.  Based on the similar active sites of 

ALDH1A and the much narrower active site in ALDH2 we reasoned that pan-ALDH1A 

inhibitors with selectivity over ALDH2 were possible.  
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Figure 1.6: Active Site Homology of ALDH1A family and ALDH2 

Clockwise from top left: ALDH1A1 (PDB: 5TEI), ALDH1A2 (PDB: 6B5H), ALDH1A3 

(Homology model courtesy Dr. Bikash Debnath), ALDH2 (PDB: 5L13). A) Catalytic cysteine, 

B) Residue corresponding to Gly458 in ALDH1A1 is Asn in 1A2 and 1A3, C) Met125 in 

ALDH2 reduces the size of the active site mouth.  

1.10 Review of ALDH Inhibitors 

The 2012 comprehensive review by Koppaka et al. named 15 distinct chemotypes of ALDH 

inhibitors.
28

  Eight of these inhibitor classes inhibit ALDH through covalent modification of the 



18 

 

catalytic cysteine, which is conserved throughout all 19 members of the ALDH superfamily.  

Key compounds from the review are addressed here (See Figure 1.7 for structures).  

 

 

 

Figure 1.7: Structure of Selected Literature ALDH Inhibitors 

 

Disulfiram, perhaps the most well-known ALDH inhibitor, is an FDA approved treatment for 

alcoholism. Disulfiram is rapidly and extensively metabolized into a number of covalent ALDH 

inhibitors with varied isoform selectivity which are responsible for its activity in vivo.   

Disulfiram promotes aversion to alcohol consumption by altering the metabolism of ethanol. 

Ethanol is metabolized to acetic acid in two steps.  In the first step, alcohol dehydrogenase 

converts ethanol to acetaldehyde, the metabolite responsible for many symptoms associated with 

hangover. 
61

 Subsequently ALDH (predominately ALDH2) metabolizes acetaldehyde to acetic 

acid.  Thus, in the presence of the ALDH2 inhibitor Disulfiram, even moderate alcohol 
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consumption causes the rapid onset of unpleasant symptoms including tachycardia, palpitations, 

hypotension, headache, and nausea.
57

 A mutant variant of ALDH2 with reduced ability to 

metabolize acetaldehyde is also responsible for an adverse reaction to alcohol consumption 

known as Asian Flush in approximately 1/3 of East Asians.
62

  

Interestingly, Disulfiram, or its metabolite diethyldithiocarbamic acid (DDC), has 

demonstrated efficacy in the treatment of cancer in vitro and in vivo.
63-64

  This effect is not 

entirely ALDH mediated; it is attributed, at least in part, to the stable complex of DDC and 

copper, which can inhibit the p97 protein degradation by binding to the NPL4 protein.
64

  

Nevertheless, disulfiram demonstrates that relatively broad spectrum ALDH inhibitors are 

clinically tolerable.   
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One of most widely studied ALDH inhibitors and the standard positive control in 

ALDEFLUOR assays, 4-diethylaminobenzaldehyde (DEAB), inhibits at least 6 isoforms of 

ALDH with an IC50 <15 µM and is a substrate of at least 5 isoforms, including 1A1. The 

diethylamino substituent of DEAB retards turnover of the aldehyde as shown in Figure 1.8.
41

 

DEAB suffers from poor cellular activity, requiring concentrations of ~100 µM to induce 

chemosensitization of CSCs.
65

 

 

Figure 1.8: DEAB is a Slow Substrate of ALDH 

DEAB is converted to a thioether according to the typical mechanism of ALDH. The thioester is 

still susceptible to hydrolysis; however, the electron releasing 4-diethylamino substituent along 

with N169 and C302 are able to stabilize an alternative quinoid tautomer which cannot be 

hydrolyzed   
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In recent years, there has been significant progress in the development of more drug-like 

ALDH inhibitors. A fruitful HTS campaign for 1A1 inhibitors disclosed by the Hurley lab 

resulted in the discovery of 19 novel 1A1 inhibitors from 12 distinct chemotypes.
66

  

Encouragingly, follow up studies of 2 chemotypes from this series, CM026 and 

CM037,demonstrated that potent, selective inhibition of 1A1 was possible.
67

  

The Maloney lab further developed the CM026 chemotype resulting in NCT-501, a 

40nM 1A1 selective inhibitor.
68

  A recent effort from the same group to improve cell 

permeability by scaffold hopping resulted in NCT-506 a 7nM 1A1 selective inhibitor with potent 

ALDEFLUOR activity and good exposure following oral administration.  Importantly, this 

compound potentiated the effect of paclitaxel in a paclitaxel resistant 1A1 high cell line.
69

   

1.11 Conclusions 

 

There is a notable absence of pan-ALDH1A selective inhibitors with selectivity over 

ALDH2.  Given the significant evidence supporting the role of the ALDH1A isoforms in 

chemoresistance and CSC biology, this is a critical unmet need.  Additionally, there have been 

no systematic studies attempting to elucidate the structural motifs which impart selectivity 

between 1A1, 1A2 and 1A3. In following chapters, I document my efforts to develop 

metabolically stable pan-ALDH1A selective inhibitors based on two chemotypes.  As a result of 

our rigorous assessment of inhibition against the three ALDH1A isoforms, we have also made 

significant inroads in development of selective dual 1A2-1A3 inhibitors and 1A3 selective 

inhibitors to compliment the 1A1 selective inhibitors already in the literature.  
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Chapter 2 : Synthesis and Characterization of 673A Analogs 

 

2.1 Characterization of 673A 

 

Prior to my involvement, a survey of commercial analogs of DEAB in search of 

compounds with improved cellular potency resulted in the discovery of the promising compound 

673A (Table 2.1). The Buckanovich lab has extensively characterized the effects of this 

compound for a forthcoming publication. As shown in Figure 2.1, 673A durably inhibits 

ALDEFLUOR, albeit at a relatively high concentration (25 µM). Although ALDEFLUOR 

positivity is widely considered a marker of stem-ness, the decrease in ALDEFLUOR signal 

indicates target engagement, but does not indicate an actual reduction in the number of ALDH
+
 

cells. Gratifyingly, 637A also reduced the CD133
+
 cell population. FACS purification of 

ALDH
Bright/Dim 

and CD133
+/-

 cells showed enhanced toxicity of the compound against the 

ALDH
Bright 

and CD133
+
 populations. This suggests that 673A is selectively toxic to the two stem 

cell pools, rather than promoting a loss of markers. In contrast DEAB had little effect on any cell 

population, and cisplatin spared CD133
+
 cells. 673A also demonstrated synergy with 

chemotherapy in vitro, and enhanced the efficacy of cisplatin against cell line xenografts and 

platinum resistant patient derived xenografts in vivo.  There is significant evidence to suggest 

that 673A mediates programmed cell death by necroptosis, an alternative cell death pathway to 

apoptosis: 1) Cells killed by 673A do not stain positive for Annexin-5, a marker of apoptosis, 2) 

673A treatment increases intracellular calcium, a marker and mediator of necroptosis, 3) pre-
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treatment with the calcium chelator BAPTA rescues cells from 673A toxicity 4) 673A treated 

cells show a swollen morphology consistent with necroptosis, 5) HMBG1 undergoes a nuclear to 

cytoplasmic shift, 6) appropriate phosphorylation changes are seen in necroptosis associated 

proteins Drp-1 and PGAM5, and 7) 673A induced cell death can be partially rescued with the 

MLKL inhibitor necrosulfonamide.  It has been speculated that induction of necroptosis may be 

a viable strategy to treat tumors with apoptosis resistant cells.
70

  

  

Figure 2.1: 673A Depletes CSCs and Sensitizes Patient Derived Tumors to Carboplatin 

(Top Left) 673A depletion of ALDEFLUOR in PEO1 cells at 1 and 6 hours is superior to DEAB 

at 25 µM,  (Top Right) 673A depletes A2780 CD133
+
 cells, (Bottom Left) In FACS purified 

cells (ALDH
Bright/Dim

 in SKOV3 and CD133
+/-

 in A2780), 673A preferentially depletes 

ALDH
Bright

 and CD133
+

  in contrast to Cisplatin which spares ALDH
Bright

 cells, (Bottom Right) 

673A reverses chemoresistance in a platinum-resistant patient derived xenograft model.  

(Unpublished work, courtesy of Buckanovich Lab) 
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2.3.  SAR of 673A Analogs 

With this compelling cellular data in hand, we set out to further optimize the 673A 

scaffold primarily to address the low metabolic stability and relatively poor cellular potency. 

Biochemical, crystallographic, and cellular data are unpublished work, courtesy of the Hurley 

and Buckanovich labs. General experimental protocols for these assays are included in Chapter 

3. Prior to adding the assay substrate, the ability of ALDH to catalyze oxidation of the inhibitors 

was assessed. We began our SAR campaign employing 1A1 as our representative ALDH1A 

family member and using ALDH2 as our indicator of selectivity given that selectivity over 

ALDH2 was desirable as discussed in Chapter 1.8.   Although the crystal structure of analog 

673B, an ortho-methyl analog of 673A, bound to ALDH1A1 did not indicate covalent interaction 

with the catalytic cysteine (Figure 2.3), 673A and 673B were both slow substrates for 1A1 and 

1A2, leading us to believe they engage the catalytic cysteine with a mechanism similar to 

DEAB.  We felt the covalent interaction was likely the primary contributor to the activity, given 

the low molecular weight and simple architecture of 673A. We reasoned that deriving significant 

affinity from a covalent interaction with a cysteine found in every ALDH isoform would make it 

difficult to achieve selectivity.  Additionally, there are few aldehydes found in clinical candidates 

or approved drugs, likely due to metabolic instability and concerns about their reactivity.  We 

therefore set out to expand the 673A scaffold to engage more features in the ALDH1A active 

site, reasoning that increasing non-covalent interactions would eventually enable us to use more 

accepted electrophilic warheads or eliminate the warhead altogether.  The ability of ALDH to 

slowly oxidize the inhibitors complicates analysis of SAR trends.  Paradoxically, improving the 

non-covalent affinity for the enzyme can conceivably promote turnover by increasing the 

residence time of the aldehyde in the active site, effectively lowering the Michaelis-Menten 

parameter KM.  
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Attempts to add substituents ortho to the aldehyde were poorly tolerated by 1A1 and 

ALDH2 (673B, 6702972, 206560, 215121)(Table 2.1). Being symmetrical, 673A would have 

more possible approaches to the catalytic cysteine, perhaps enhancing the on-rate relative to 

673B, which may only be able to bind in the orientation depicted in Figure 2.3.  Additionally, the 

tetrahedral intermediate formed upon addition of the catalytic cysteine is likely destabilized by 

steric crowding. The quinoid tautomer which is hypothesized to stabilize the thioester DEAB-

ALDH complex (see Figure 1.8) is likely especially sensitive to steric crowding as it requires the 

cysteine sulfur, oxyanion, and phenyl moieties to be co-planar.  The ortho-group is predicted to 

clash with Cys302 distorting the ideal 120° bond geometry for sp
2
 carbons as depicted in Figure 

2.2.
71

  

 

 

Figure 2.2: Ortho Substituents Destabilize the Hypothesized Quinoid Tautomer 

MM2 energy minimization of quinoid tautomers and computed bond angles for 673A (Left) and 

673B (Right).  Catalytic cysteine truncated to ethyl-mercaptan for computation. 

 

The ortho-OMe analog 6702972 was 2-fold less potent than 673B.  Electronically, the 

OMe should further stabilize the quinoid through resonance; however, it seems that the steric 

bulk counteracts the electronic effects. The OBn (206560) and 2,5-dimethyl substituents 

232721completely abolished activity. The loss of activity between the sterically similar methyl 
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of 673B and chloro of 215121 suggests that electron withdrawing substituents are additionally 

disfavorable. Electron withdrawing substituents may inhibit hydride abstraction, stalling the 

catalytic cycle at the reversible addition of the catalytic cysteine into the aldehyde.
41

 The 

diminished formation of the stable thioester may reduce the residence time of the inhibitor in the 

active site. 

The meta-chloro analog 215123 was also substantially less potent than 673A. 

Interestingly, the meta-methoxy analog 223960 was 2-fold more potent against 1A1 (0.1 µM) 

and 68-fold more potent against ALDH2 (0.025 µM). 223960 exhibited far better MLM stability 

than 673A, perhaps due to steric blocking of the metabolically labile isoindoline.   

We predicted that clash with the ALDH2 specific residue Phe292 (Figure 2.3) would 

cause translation of the isoindoline towards the cleft in ALDH1A which is occluded by Met125 

of ALDH2. This translation should bring large meta substituents into close proximity with 

Met125, preventing ALDH2 binding to provide our desired selectivity profile. Surprisingly, 

extending to the benzyloxy 223903 and substituted benzyloxy 223905-223906 analogs 

diminished ALDH potency overall but maintained the ALDH2 selectivity observed for 223960. 

The benzyloxy analogs were substrates of 1A1 but not ALDH2, suggesting that more effective 

stabilization of the quinoid tautomer in ALDH2 may explain the observed selectivity; however, a 

meta substituent is not capable of stabilizing the quinoid tautomer through resonant electron 

donation.  Alkoxy substituents exhibit inductive electron withdrawing character, albeit weaker 

than for chloro substituents (Hammet Values: σMeta = +0.37 and +0.12 for –Cl and –OMe, 

respectively).
72

 Therefore, from an electronic standpoint, the alkoxy substituents are predicted to 

be detrimental to stabilization of the quinoid tautomer, suggesting that the increased affinity is 

best explained by direct interaction of the alkoxy with the active site. Interestingly, the alkyl-
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branched analog 223904 restored 1A1 potency and modest selectivity against ALDH2; however, 

it was still inferior to 673A in both aspects. Based on an overlay of the 1A1-673B crystal 

structure with ALDH2, we expected that branching at this position would improve selectivity 

against ALDH2.  

Appending a benzyloxy substituent at the 4-position on the isoindoline (223940) resulted 

in a 4-fold decrease in 1A1 potency relative to 673A but a complete loss of inhibition of 

ALDH2. According to the 673B crystal structure, substituents at the 5 position were expected to 

project into solvent.  Surprisingly, 5-hydroxy analog 224258 exhibited no inhibition of ALDH.  

5-Benzyloxy analog was only 2-fold less potent than 673A against 1A1 but inactive against 

ALDH2. 2-Cl benzyloxy analog 224260 was inactive against 1A1, while 2-OMe benzyloxy 

analog 224262 weakly inhibited 1A1.  The surprisingly tight SAR for substituents at the 5-

position suggests an alternative binding mode in which the 5-benzyloxy substituent is not 

projecting into solvent.  
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Figure 2.3: Crystal Structure of 673B Bound in ALDH1A1 Active Site Overlaid with 

ALDH2 (PDB: 5L13) 

(A) Catalytic Cys302, (B) ALDH2 Specific Met125 (C) ALDH2 Specific Phe292. (Unpublished 

work, courtesy Hurley Lab) 
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Table 2.1 Commercial SAR of DEAB Analogs 

 Cmpd ALDH IC50 

(µM) 

FACS Purified 

SKOV3 CC50 

(µM) 

1A1 2 CD133
- 

CD133
+ 

 DEAB 0.057* 0.16 400 180 

 673A 0.22* 1.7* 55 4 

 

673B 1.3* >20 80 6 

 

6702972
 2.2* >10 30 9 

 

206560
a ~10 ~10 160 30 

IC50 values are N=1 performed in triplicate, CC50 values are N=1. *Denotes 

compound is a slow substrate. 
a
Synthesized by Ron Sorenson. FACS = 

Fluorescence Activated Cell Sorting 
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Table 2.2 Characterization of Novel Analogs of 673A 

 Cmpd. ALDH IC50 

(µM) 

Inhibition at 50 

µM in A2780 

Cells 

MLM 

Stability 

(% remaining 

at 5 min) 1A1 2 Total
 

CD133
+ 

 673A 0.22* 1.7* 72% 90% 17% 

 

215121
b >10* >10 61% 71% 38% 

 

232721 >10 N.D. 31% 13%  

 

215123
b 14 5.2 35% 45%  

 

223960 0.104* 0.025* 40% 47% 87% 

 

223903 1.5* 0.27 0% 0%  

 

223905 2.8* 0.69    

 223906 3.6* 0.26    
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Since the alkoxy scan did not afford a compelling avenue to improve ALDH inhibition, 

we briefly surveyed electrophiles to replace the aldehyde as shown in Table 2.3. As mentioned 

previously, aldehydes are undesirable in drug development, and the slow substrate nature of this 

series complicates interpretation of the SAR trends.   Unfortunately the ketone and nitrile 

 

223904 0.36* 0.61 41% 25%  

 223940 0.86* >10* 50% 50%  

 

224258 ~10* ~10*  70%  

 223908 0.5* >10*  36%  

 223941 1.8* >10*    

 224260 >10* >10*  77%  

 224262 3 >10    

IC50 values are N=1 performed in triplicate, CC50 values are N=1. *Denotes compound is a 

slow substrate. 
b
Synthesized by Dr. Scott Barraza. MLM = Mouse liver microsomes 
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analogs (22151, 224259) were inactive against ALDH. Tuning the electronic properties of the 

aryl nitrile to enhance electrophilicity towards the catalytic cysteine might restore activity.
73

   

The trifluoroacetyl analog 223902 was weakly active against 1A1 and ALDH2. The results were 

consistent with our hypothesis that the aldehyde contributed significantly to the ALDH1A1 

activity.  

Cell data for the early SAR (Table 2.1) was obtained using FACS purified CD133
+/-

 cells 

in the SKOV3 cell line. Only 0.33% of cells in this line are CD133
+
.
18

 Due to the resource 

intensive nature of FACS purified cell assays, especially when observing rare cell populations, 

further cellular SAR was conducted in the A2780 cell line. Because 10% of cells in this line are 

CD133
+
, it is possible to simultaneously quantify total cell kill and CD133

+
 cell kill in the same 

assay.  Compound 673A at 50 µM was able to selectively deplete the CD133
+
 population by 

90% in this cell line, with modest selectivity over the total cell population. Unfortunately for the 

novel analogs in the series, there was very little correlation between enzymatic ALDH activity 

and the cytotoxicity against CD133
+

 cells. Notably, only the compounds with 1A1 and ALDH2 

IC50s equal or greater than 10µM (206560, 215121, 224258, and 224260) were able to deplete 

CD133
+
 cells by greater than 50% at 50 µM. The reasonably potent ALDH1A1 inhibitors 

(223904, 223940, 223960) exhibited little to no selectivity for CD133
+
 cells vs. the total cell 

population.  There also wasn’t any correlation between ALDH2 inhibition and bulk or CD133
+ 

cytotoxicity.  
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Table 2.3 Characterization of Alternative Electrophile Analogs 

 

Compound 

ALDH IC50 (µM) 

1A1 2 

 673A 0.22 1.7 

 22151 >10 >10 

 223902 3.5 6.1 

 224259 >10 >10 

IC50 values are N=1 performed in triplicate.  

 

We predicted that the isoindoline moiety was unstable to oxidative metabolism at the sp
3
 

carbons. Consistent with the mechanism of covalent inhibition proposed for DEAB, analogs 

without a nitrogen para to the aldehyde were rendered excellent ALDH substrates (224256-

224257)(Table 2.4). Tetrahydroisoquinoline and indoline analogs 232200 and 232720 were also 

excellent ALDH substrates. The transition from tetrahedral to trigonal planar for the amine in 

232200 upon donating its lone pair into the phenyl may introduce additional ring strain in the 

tetrahydroquinoline core, destabilizing the quinoid resonance form. In the case of 232720, 

conjugation of the amine lone pair with the aromatic system of the indoline would reduce the 

contribution of the quinoid tautomer. Amide 232483 was a weak inhibitor and slow substrate of 

ALDH1A1. Resonance of the amide in 232483 would likewise occupy the amine lone pair and 

reduce its electron donating character. The rapid turnover of 232662 suggests that the electron 
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releasing character of the two alkyl substituents is important to stabilize the positively charged 

amine in the quinoid resonance form.  

Table 2.4 Characterization of Alternative Core Analogs 

 

Compound 

ALDH IC50 (µM) 

1A1 2 

 673A 0.22* 1.7* 

 

224256 Substrate Substrate 

 

224257 Substrate Substrate 

 

232200 Substrate Substrate 

 

232720 Substrate Substrate 

 

232483 6.1* Substrate 

 

232662 Substrate Substrate 

IC50 values are N=1 performed in triplicate. *Denotes compound is a 

slow substrate.  
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2.4. 673A SAR Conclusions 

There was no obvious correlation between CD133
+
 toxicity and 1A1 potency.  It is 

probable, given the structural simplicity and reactivity of 673A, that it inhibits proteins other 

than ALDH at the relatively high concentrations required for efficacy in cells. Increasing the 

structural complexity of the compound, especially adding steric bulk near the aldehyde, may 

reduce the ability of the series to access cysteines bur likely reduces the number of non-specific 

targets of 673A and limits cytotoxicity mediated through off target mechanisms. A search of the 

PubChem database for HTS assays in which 673A was active returned only 3 validated hits for 

enzymatic targets, the SUMO specific proteases SENP6, SENP7, and SENP8. Other members of 

this class have been proposed as targets in prostate cancer and it is reasonable to expect that 

673A could inhibit enzymes bearing catalytic cysteine such as the SENP family.
74

 673A was also 

submitted for a broad safety profile (Eurofins SafteyScreen44) and bound or inhibited 5 of 44 

targets (monoamine oxidase-A, androgen receptor, norepinephrine transporter, COX1, and 

COX2) by more than 50% at 10 µM.  Of these proteins, androgen receptor
75

, COX1
76

, and 

COX2
77

 have been proposed as targets in ovarian cancer while monoamine oxidase-A
78-79

 has 

been proposed as a target in prostate cancer and is expressed in the ovary. Out of a panel of 102 

kinases implicated in cancer (Eurofins Kinase Profiler, Broad Oncology Panel), 673A inhibited 

c-Kit(V560G) and DNA-PKc by > 50% at 30 µM. While c-Kit has a possible, but controversial, 

role in ovarian cancer
80-82

, DNA-PKc is involved in a non-homologous repair mechanism for 

DNA double strand breaks critical in homologous recombination deficient ovarian tumors.
83

  

An activity based probe proteomics approach preformed in the Cravatt lab verified 

cellular target engagement of 1A1 for 673A and indicated 673A bound near the catalytic cysteine 

of four additional proteins, FNBL1L, IDI1, MSRB2, and S100A3.
84
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The inability to significantly improve 1A1 inhibition by expanding the scaffold, and the 

inability to replace the undesirable aldehyde and isoindoline moieties encouraged us to pursue 

more attractive leads for further therapeutic development, which will be discussed in the 

following chapters.   

2.5. Development of a 673A Affinity Probe 

 

Although the semi-covalent aldehyde warhead of 673A was undesirable for developing a 

therapeutic, we reasoned that the slow off-rate typical of semi-covalent inhibitors would be a 

useful feature in an affinity probe. Our objectives in performing pulldown experiments were: 1) 

to identify targets for 673A other than ALDH, such as those mentioned above, and 2) to search 

for new protein-protein interactions involving ALDH, which might link the enzyme to known 

necroptosis pathways. Differentiating protein-protein interactions from direct binding of 673A 

can be achieved by established methods.
85

 Currently, the only proteins known to interact directly 

with 1A1 are P300/CBP-associated factor (PCAF) and sirtuin 2(SIRT2). PCAF can inactivate 

1A1 by acetylating K353 in the cofactor binding site. SIRT2 can re-activate 1A1 by 

deacetylating K353. The acetylation status of 1A1 is controlled, at least in part, by the oncogenic 

NOTCH pathway through its effect on SIRT2 activity.
86

    

Based on the 673B-1A1 crystal structure, I designed the biotinylated affinity probe 

264441 (Figure 2.4) such that the linker-biotin portion of the molecule would project into 

solvent. Although this fairly high molecular weight probe was not necessarily expected to retain 

the cell permeability of 673A, it showed comparable ALDEFLUOR activity. As a result, we can 

treat live cells, rather than lysate, with the probe to obtain more biologically relevant binding 
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partners for ALDH. Cell lysis conditions which preserve relatively strong protein-protein 

interactions have been reported.
87

 

 The Buckanovich Lab has successfully pulled down 1A3 in two ovarian cancer cell lines, 

validating the probe. In depth proteomic studies to determine additional targets of 673A and 

binding partners of ALDH are underway.  

 

 

 

Figure 2.4: Structure of 673A Affinity Probe 264441 
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2.6. Synthesis of 673A Analogs 

 

Scheme 2.1: Synthesis of Compounds 223960, 223903-223906
a
 

 

 

a
Reagents and conditions: (a) o-anisidine, HOAc, reflux;(b) BH3-THF, 80°C, sealed tube; (c) 

POCl3, DMF, DCE, 60°C, then 1N NaOH; (d) BBr3, DCM, 80°C; (e) alkyl halide, CsCO3, DMF, 

50°C. 

As shown in Scheme 2.1, synthesis of compounds 223960, and 223903-223906 began 

with the condensation of phthalic anhydride 2.1a and o-anisidine in refluxing acetic acid 

followed by BH3-THF reduction to afford the isoindoline 2.1c. Vilsmeier-Haack formylation 

provided aldehyde 223960. Deprotection of the phenol by BBr3 yielded intermediate 2.1d which 

was subsequently alkylated to generate compounds 223903-223906.   
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Scheme 2.2: Synthesis of Analogs 223940
a
 

 

a
Reagents and conditions: (a) aniline, HOAc, reflux; (b) BH3-THF, 100°C, sealed tube; (c) BnBr, 

KOtBu, DMF, 50°C; (d)  POCl3, DMF, DCE, 0-60°C, then 1N NaOH. 

 

Synthesis of 223940 began with condensation of the commercially available 2.2a with 

aniline in refluxing acetic acid and subsequent reduction with BH3-THF to afford the isoindoline 

2.2c as shown in Scheme 2.2.  Installation of the benzyl pendent followed by Vilsmeier-Haack 

formylation yielded 223940.  
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Scheme 2.3: Synthesis of 224258, 223908, 224260, 224262
a 

 

a
Reagents and conditions: (a) neat, 200°C; (b) aniline, HOAc, reflux; (c) BH3-THF, 90°C, sealed 

tube; (d) TBDPS-Cl, imidazole, DMF; (e) POCl3, DMF, DCE, 0 – 20°C, then 1N NaOH; (f) KF, 

HBr, DMF; (g) R-X, Cs2CO3, DMF, 50°C. 

 

As shown in Scheme 2.3, synthesis of 224258 began with the thermal dehydration of 

commercially available 4-hydroxyphthalic acid 2.3a to afford the anhydride 2.3b.
88

  Treatment 

of the anhydride with aniline in refluxing acetic acid provided imide 2.3c; subsequent reduction 

with BH3-THF yielded isoindoline 2.3d. Attempts to directly formylate 2.3d directly resulted in 

an inseparable emulsion upon basic hydrolysis of the iminium intermediate, likely due to the 

very poor solubility of 224258 in most solvents. TBDPS protection of the phenol facilitated 

Vilsmeier-Haack formylation. 2.3f was easily purified by recrystallization and removal of the 

TBDPS group was achieved by in situ generation of hydrofluoric acid; pure 224258 precipitated 

from the reaction mixture upon addition of water.
89

 Alkylation with the appropriate alkyl halides 

afforded 223908, 224260, and 224262.  
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Scheme 2.4: Synthesis of 22151, 223902, 224259, and 232721
a 

 

a
Reagents and conditions: (a) aniline, 4-amino acetophenone, or 3,5-dimethylaniline, K2CO3, 

H2O, 120°C Microwave; (b) TFAA, AlCl3, THF, 80°C, Sealed tube; (c) DMF, POCl3, DCE, 

50°C, then 1N NaOH. 

 

Synthesis of analogs 22151, 223902, 224259, and 232721 began with the microwave-

assisted ring-forming bis-alkylation of the appropriate aniline with α,α'-dibromo-o-xylene 

(Scheme 2.4).
90

 Aluminum trichloride mediated Friedel-Crafts acylation of 2.4b with TFAA 

afforded 223902.  Vilsmeier-Haack formylation of 2.4d gave 232721.  

 

Scheme 2.5: Synthesis of 224256 
a
 

 

a
Reagents and Conditions: (a) benzyl chloroformate, 1N aq. NaOH; (b) 4-ethynylbenzaldehyde, 

PdCl2(PPh3)2, CuI, TEA, toluene, 70°C; (c) TBAF, THF, 70°C.  
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As shown in Scheme 2.5, synthesis of 224256 began with Cbz protection of 2-iodoaniline 

2.5a, followed by Sonogashira cross coupling with 4-ethynylbenzaldehyde to yield compound 

2.5c.  TBAF mediated cyclization afforded 224256.
91

 

Scheme 2.6: Synthesis of 224257
a
 

 

a
Reagents and Conditions: (a) K2CO3, I2, t-BuOH, 70°C. 

 

As shown in Scheme 2.6, benzimidazole 224257 was synthesized by iodine mediated 

oxidative cyclization between 1,2-diaminobenzene 2.6a, and terephthalaldehyde 2.6b.  

Scheme 2.7: Synthesis of 232200, 232483, 232662, and 232720
 a
 

 

a
Reagents and Conditions: (a) 4-Fluorobenzaldehyde, K2CO3, DMSO, 75°C; (b) 4-

Bromobenzaldehyde, Pd(OAc)2, Xantphos, Cs2CO3, Dioxane, 80°C; (c) 4-Bromobenzaldehyde, 

Pd2(dba)3, X-Phos, Cs2CO3, 100°C; (d) 4-Bromobenzaldehyde, Pd(OAc)2, BINAP, Cs2CO3, 

Toluene, 60°C. 
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232200 was synthesized according to Scheme 2.7 by SNAr of 4-fluorobenzaldehyde with 

tetrahydroisoquinoline.  232483, 232662, and 232720 were synthesized by Buchwald-Hartwig 

coupling of 4-bromobenzaldehyde with the appropriate nucleophiles 2.7b-d (Scheme 2.7).  

Scheme 2.8: Synthesis of Affinity Probe 264441
a 

 

a
Reagents and Conditions: (a) NaN3, KI, H2O, 50°C; (b) PPh3, THF, H2O, then 1N HCl; (c) 

Pentafluorophenol, EDC, DMF; (d) 2.8b, TEA, DMF; (e) Ms-Cl, Pyridine; (f) 224258, Cs2CO3, 

DMF, 80°C.  

 

As shown in Scheme 2.8, synthesis of 264441 began by KI mediated displacement of 

chloride 2.8a with sodium azide followed by PPh3 reduction to afford 2.8b. Biotin (2.8c) was 

activated for amide coupling by generating the pentafluorophenol ester with EDC. The aqueous 

workup necessitated by standard one-step amide coupling procedures was complicated by the 
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tendency of 2.8e to partition into water. Following acylation of amine 2.8b with ester 2.8d, the 

crude reaction mixture could be concentrated and immediately purified by flash chromatography 

to afford 2.8e. Mesylation in pyridine followed by displacement with phenol 224258 afforded 

probe 264441.  

2.7. Experimental Procedures 

 

All reagents were used in the condition received from commercial sources. 
1
H NMR and 

13
C 

NMR were taken in CDCl3 or DMSO-d6 at room temperature on Varian Inova 400 or 500 MHz 

instruments.  Reported chemical shifts are expressed in parts per million (ppm) on the δ scale 

from an internal standard of tetramethylsilane (0 ppm). Mass spectrometry data were obtained on 

either an Agilent TOF or Agilent Q-TOF. An Agilent 1100 series HPLC with an Agilent Zorbax 

Eclipse Plus−C18 column was used to determine purity of biologically tested compounds. All 

tested compounds were determined to be >95% pure using a 6 minute gradient of 10-90% 

acetonitrile in water followed by a 2 minute hold at 90% acetonitrile with detection at 254 nm. 

Flash chromatographic purifications were performed using a Teledyne ISCO Combiflash RF 

with Redisep Gold RF columns. 

 

 

2-(2-methoxyphenyl)isoindoline-1,3-dione (2.1b) 

Phthalic anhydride (2.1a) (5 g, 33.8 mmol) and o-anisidine (4.57 mL, 40.5 mmol) were added to 

50 mL of glacial acetic acid.  After refluxing for 12 h the solution was cooled and added to 100 
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mL of distilled water.  Collection of the precipitate by vacuum filtration yielded the titled 

compound as a tan powder (8.24 g, 96%). 
1
HNMR (500 MHz, CDCl3) δ 7.95 (m, 2H), δ 7.78 (m, 

2H), δ 7.45 (m, 1H), δ 7.27 (m, 1H), δ 7.08 (m, 1H) δ 7.05 (m, 1H), δ 3.8(s, 3H). 

 

2-(2-methoxyphenyl)isoindoline (2.1c)  

2.1b (2.5 g, 10 mmol) was dissolved in anhydrous THF in an oven dried pressure tube.  While 

stirring the solution, 1M BH3 in THF (40 mL) was added dropwise.  The headspace of the 

pressure tube was purged with Ar and the sealed tube was heated to 80°C for 12 h.  The reaction 

was quenched by slow addition of distilled water.  The mixture was diluted with EtOAc and 

washed 2x with saturated aq. NH4Cl, once with saturated aq. NaHCO3, and once with brine.  The 

organic layer was dried over Na2SO4 and concentrated yielding a yellow oil which was purified 

by flash chromatography (10-20% EtOAc in Hexanes) to afford the titled compound as a 

colorless oil (1.4 g, 62%). 
1
HNMR (500 MHz, CDCl3) δ 7.28 (m, 4H), δ 6.94 (m, 2H), δ 6.84 (m, 

2H), δ 4.76 (s, 4H), δ 3.87 (s, 3H). 

 

4-(isoindolin-2-yl)-3-methoxybenzaldehyde (223960) 

The Vilsmeier-Haack reagent was formed by cooling 4 mL DCE and DMF (4.12 ml, 53.3 mmol) 

to -10°C in a dry RBF under N2. POCl3 (3.31 ml, 35.5 mmol) was added slowly by syringe while 
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stirring the mixture.  After 1 h 2.1c (4 g, 17.76 mmol), a free flowing oil, was added and the total 

volume of the mixture was brought to 25mL with DCE forming a viscous suspension.  The 

reaction was warmed to RT then heated to 50°C overnight.  A yellow precipitate formed, which 

was collected by vacuum filtration and washed with EtOAc. The Vilsmeier adduct was 

hydrolyzed by adding the solid to a separatory funnel along with EtOAc and 10% aq. NaOH and 

shaking vigorously until all of the solid dissolved in the organic layer.  The aqueous layer was 

back extracted with EtOAc and the combined organic layers were washed with brine, dried with 

sodium sulfate and concentrated, yielding 3g crude orange crystalline solid.  The crude was 

recrystallized from hot ethanol yielding the titled compound as orange crystalline sheets (2.5 g, 

9.87 mmol, 55.6 % yield). MS (ESI): m/z 254.2 [M+H]
+

 
 
  

1
HNMR (500 MHz, CDCl3) δ 9.74 (s, 

1H), δ 7.42 (d, 1H), δ 7.39 (s, 1H), δ 7.32 (m, 4H), δ 6.70 (d, 1H), δ 5.00 (s, 4H), δ 3.92 (s, 3H). 

13
C NMR (126 MHz, CDCl 3) δ 190.13, 148.68, 143.90, 137.12, 128.26, 127.26, 126.76, 122.19, 

112.91, 109.99, 56.56, 55.96. 

 

 

3-hydroxy-4-(isoindolin-2-yl)benzaldehyde (2.1d)   

To a dry pressure tube 223960 (500 mg, 1.97 mmol) was added and dissolved in DCM. The 

pressure tube was purged with N2 and cooled to 78 °C.  1M BBr3 in DCM (7.9 mL, 7.9 mmol) 

was added dropwise over 5 minutes.  The pressure tube was sealed and heated to 80°C overnight.  

The reaction was quenched by dropwise addition of aqueous NaHCO3 at 0°C with vigorous 

stirring.  The mixture was diluted with EtOAc, and vacuum filtered through celite.  The organic 

layer was washed with brine, dried over Na2SO4, and concentrated yielding a dark brown crude 
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product.  Further purification by flash chromatography (5-25% EtOAc in Hexanes) yielded the 

titled compound as a yellow solid (100 mg, 20%). 
1
HNMR (500 MHz, DMSO-d6) δ 9.67 (brs, 

1H), δ 9.62 (s, 1H), δ 7.37 (m, 1H), δ 7.29 (m, 4H), δ 7.21 (s, 1H), δ 6.73 (d, 1H), δ 4.94 (m, 

4H). 

 

3-(benzyloxy)-4-(isoindolin-2-yl)benzaldehyde (223903) 

2.1d (15 mg, .063 mmol) dissolved in 1mL anhydrous DMF was added to a dry pressure tube 

charged with Cs2CO3 (61.3 mg, .188 mmol).  Benzyl bromide (9.3 µL, .078 mmol) was added 

and the mixture was stirred overnight under N2 at 50°C.  Upon addition of water, a precipitate 

formed.  The mixture was centrifuged and the solvent decanted.  The crude material was further 

purified by flash chromatography (10-25% EtOAc in Hexanes) yielding the titled compound as 

an off white solid (3.8 mg, 18%) ESIMS: 330.2 [M+H]
+
 
1
HNMR (500 MHz, CDCl3) δ 9.73 (s, 

1H), δ 7.48 (d, 2H), δ 7.47 (s, 1H), δ 7.44 (m, 2H), δ 7.43 (m, 1H), 7.37 (t, 1H), δ 7.26 (m, 4H), δ 

6.73 (d, 1H), δ 5.14 (s, 2H), δ 4.98 (s, 4H) 
13

CNMR (125 MHz, CDCl3) δ 190.02, δ 147.62, δ 

144.10, δ 137.02, δ 136.46, δ 128.66, δ 128.24, δ 127.86, δ 122.18, δ 113.19, δ 111.71, δ 109.98, 

δ 71.66, δ 56.69.  
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4-(isoindolin-2-yl)-3-((4-methoxybenzyl)oxy)benzaldehyde (223905) 

2.1d (15 mg, .06 mmol) dissolved in 1mL anhydrous DMF was added to a dry pressure tube 

charged with Cs2CO3 (61.3 mg, 0.19 mmol).  1-(bromomethyl)-4-methoxybenzene (11 µL, .08 

mmol) was added and the mixture was stirred overnight under N2 at 50°C.  Upon addition of 

water, a precipitate formed.  The mixture was centrifuged and the solvent decanted.  The crude 

material was further purified by flash chromatography (10-25% EtOAc in Hexanes) yielding the 

titled compound as an off white solid (12 mg, 53%). ESIMS: 360.2 [M + H]
+
 
1
HNMR (500 

MHz, CDCl3), δ 9.73 (s, 1H), δ 7.44 (td, 2H), δ 7.33 (t, 1H), δ 7.25 (m, 4H), δ 7.03 (td, 2H), δ 

6.91 (d, 1H), δ 6.71 (d, 1H), δ 5.11 (s, 2H), δ 4.99 (s, 4H), δ 3.83 (s, 3H); 
13

CNMR (125 MHz, 

CDCl3) δ 190.00, δ 159.85, δ 147.56, δ 144.06, δ 138.04, δ 137.01, δ 129.71, δ 128.22, δ 127.24, 

δ 126.70, δ 122.17, δ 119.96, δ 113.71, δ 113.21, δ 71.52, δ 56.70, δ 55.27.  

 

3-((3-chlorobenzyl)oxy)-4-(isoindolin-2-yl)benzaldehyde (223906) 

2.1d (15 mg, .063 mmol) dissolved in 1mL anhydrous DMF was added to a dry pressure tube 

charged with Cs2CO3 (61.3 mg, .188 mmol).  1-(bromomethyl)-3-chlorobenzene (10 µL, .078 
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mmol) was added and the mixture was stirred overnight under N2 at 50°C.  Upon addition of 

water, a precipitate formed.  The mixture was centrifuged and the solvent decanted.  The crude 

material was further purified by flash chromatography (10-25% EtOAc in Hexanes) yielding the 

titled compound as an off white solid (2.2 mg, 10%). ESIMS: 364.2 [M + H]
+
 
1
HNMR (500 

MHz, CDCl3) δ 9.74 (s, 1H), 7.50 (s, 1H), 7.46 (dd, 2H),7.35 (m, 3H), 7.26 (m, 4H), 6.74 (d, 

1H), 5.12 (s, 2H), 5.00 (s, 4H); 
13

CNMR (125 MHz, CDCl3) δ 192.12, 147.47, 144.17, 138.66, 

137.06, 134.76, 130.14,128.52, 127.97, 127.47, 126.83, 125.89, 122.36, 113.46, 71.01, 56.90.  

 

4-(isoindolin-2-yl)-3-(1-phenylethoxy)benzaldehyde (223904)  

2.1d (15 mg, .063 mmol) dissolved in 1mL anhydrous DMF was added to a dry pressure tube 

charged with Cs2CO3 (61.3 mg, .188 mmol).  (1-bromoethyl)benzene  (10.7 µL, .078 mmol) was 

added and the mixture was stirred overnight under N2 at 50°C.  Upon addition of water, a 

precipitate formed.  The mixture was centrifuged and the solvent decanted.  The crude product 

was further purified by recrystallization in boiled ethanol, yielding the titled compound as orange 

crystals (10 mg, 47%). ESIMS: 366.2 [M + H]
+
 
1
HNMR( 500 MHz, CDCl3) δ 9.62 (s, 1H), 7.45 

(d, 2H), 7.33 (m, 9H), 6.70 (d, 1H), 5.46 (q, 1H), 5.09 (q, 4H), 1.76 (d, 3H); 
13

CNMR ( 125 

MHz, CDCl3) δ 189.94, 146.50, 144.17, 142.32, 137.16, 128.77, 127.77, 127.33, 127.28, 126.69, 

125.77, 122.23, 113.35, 112.90, 77.22, 56.76, 24.00.  
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4-hydroxy-2-phenylisoindoline-1,3-dione (2.2b) 

Aniline (334 µl, 3.66 mmol) and 4-hydroxyisobenzofuran-1,3-dione (2.2a) (500 mg, 3.05 mmol) 

were refluxed in 50mL HOAc overnight.  The next day the product was precipitated by pouring 

the mixture into 100mL cold water.  The solid was filtered and washed with additional water to 

yield the titled compound as a tan powder  (570mg, 2.383 mmol, 78 % yield). 
1
H NMR (500 

MHz, CDCl3) δ 7.80 (s, 1H), 7.65 (t, J = 7.8 Hz, 1H), 7.54 - 7.46 (m, 2H), 7.45 - 7.37 (m, 3H), 

7.23 (d, J = 8.4 Hz, 1H). 

 

 

 

 

2-phenylisoindolin-4-ol (2.2c) 

1M BH3-THF (10.400 mL, 10.40 mmol) was added slowly to a pressure tube at 0°C charged 

with 4-hydroxy-2-phenylisoindoline-1,3-dione (2.2b) (620mg, 2.59 mmol) under a stream of 

nitrogen.  The tube was stirred at room temperature for 1 h then sealed and heated to 100°C 

overnight. The tube was cooled to 0°C and quenched by slow addition of sat. aq. NH4Cl and 

extracted 2x with EtOAc.  The combined organics were washed with brine, dried over sodium 
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sulfate and concentrated.  The isoindolinone was poorly soluble in DCM so the crude residue 

was taken up in DCM and filtered to yield the titled compound in the filtrate as an off white 

solid. (250 mg, 1.183 mmol, 45.5 % yield). 
1
H NMR (500 MHz, CDCl3) δ 7.37 - 7.29 (m, 2H), 

7.17 (t, J = 7.7 Hz, 1H), 6.92 (d, J = 7.5 Hz, 1H), 6.78 (t, J = 7.3 Hz, 1H), 6.72 - 6.66 (m, 3H), 

4.64 (q, J = 3.1 Hz, 4H). 

 

4-(benzyloxy)-2-phenylisoindoline (2.2d) 

Benzyl bromide (0.113 ml, 0.947 mmol) was added to a flask was charged with 2.2c (100mg, 

0.473 mmol), KOtBu (159 mg, 1.420 mmol) and 1mL DMF.  The reaction was heated to 50°C 

for 4 hours. The mixture was diluted with EtOAc and washed 3x with water and 1x with brine. 

The organic portion was dried over MgSO4 and concentrated to yield an oily brown crude 

residue which was purified by flash (10-25% EtOAc in Hexanes) to yield the titled compound as 

a pink crystalline solid. (73mg, 0.242 mmol, 51.2 % yield) 
1
H NMR (400 MHz, CDCl3) δ 7.33 - 

7.08 (m, 7H), 7.05 (t, J = 8.1 Hz, 1H), 6.75 (d, J = 7.7 Hz, 1H), 6.64 - 6.53 (m, 2H), 6.49 (d, J = 

8.2 Hz, 2H), 4.91 (s, 2H), 4.44 (d, J = 12.2 Hz, 4H). 

 



52 

 

4-(4-(benzyloxy)isoindolin-2-yl)benzaldehyde (223940) 

To a flask at 0°C charged with 0.25 mL DCE and DMF (0.027 ml, 0.348 mmol) was added 

POCl3 (0.022 ml, 0.232 mmol). The solution was stirred for an hour at which point 2.2d (35mg, 

0.116 mmol) dissolved in 0.75 mL DCE was added by syringe.  The solution was stirred at 60°C 

for two hours at which point the mixture was diluted with ethyl acetate and 10% aq. NaOH to 

hydrolyze the Vilsmeier adduct.  The organic portion was subsequently washed with brine, dried 

over sodium sulfate, and concentrated.  The crude product was purified by flash (10-25% EtOAc 

in Hex) to yield the titled compound as a yellow solid. (20mg, 0.061 mmol, 52.3 % yield) 

ESIMS: 330.1 [M+H]
+ 1

H NMR (500 MHz, CDCl3) δ 9.76 (s, 1H), 7.79 (d, J = 8.4 Hz, 2H), 7.48 

- 7.40 (m, 4H), 7.40 - 7.35 (m, 1H), 7.28 (t, J = 8.0 Hz, 1H), 6.95 (d, J = 7.5 Hz, 1H), 6.86 (d, J = 

8.1 Hz, 1H), 6.69 (d, J = 8.4 Hz, 2H), 5.14 (s, 2H), 4.76 - 4.60 (m, 4H).  
13

C NMR (126 MHz, 

CDCl3) δ 190.37, 153.93, 151.40, 138.58, 136.66, 132.23, 129.30, 128.66, 128.15, 127.40, 

125.52, 125.31, 114.97, 111.24, 110.16, 69.95, 54.17, 51.86. 

  

5-Hydroxyisobenzofuran-1,3-dione (2.3b) 

4-hydroxyphthalic acid (2.3a) (10g, 54.9 mmol) was added to a 100mL pressure tube.  A septum 

was fitted on the tube and punctured with a nitrogen inlet and outlet needle to drive off water as 

the reaction proceeded.  The reaction was heated to 200°C overnight and the titled compound 

was obtained as a white solid upon cooling (8.81 g, 53.7 mmol, quantitative yield). 
1
H NMR 

(500 MHz, DMSO-d6) δ 11.42 (s, 1H), 7.91 (d, 1H), 7.30 (d, 1H), 7.27 (s, 1H). 
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5-Hydroxy-2-phenylisoindoline-1,3-dione (2.3c) 

2.3b (8.81 g, 53.7 mmol) was added to a flask along with 100 mL of glacial acetic acid.  Aniline 

(5.88 ml, 64.4 mmol) was added, and the flask was fitted with a condenser and refluxed for 4 h. 

The acetic acid was removed in vacuo and the residue was taken up in ethyl acetate and washed 

3x with sat. aq. NaHCO3 and 1x with brine.  The organic portion was dried over sodium sulfate 

and concentrated. The orange-red crude solid was taken up in boiling ethanol and upon cooling 

the titled compound recrystallized as a light orange solid (11.37 g, 47.5 mmol, 89 % yield). 
1
H 

NMR  (500 MHz, DMSO-d6) δ 11.00 (s, 1H), 7.78 (d, 1H) 7.50 (m, 2H), 7.41 (m, 2H), 7.40 (s, 

1H), 7.19 (m, 2H). 

 

2-Phenylisoindolin-5-ol (2.3d) 

A pressure tube under a stream of nitrogen was charged with 2.3c (3.99 g, 16.67 mmol).  The 

tube was cooled in an ice-brine bath and 1M BH3.THF (50ml, 50.0 mmol) over 15 minutes by 

syringe.  The mixture was stirred in the cooling bath until for (~30 min) then warmed to room 

temperature.  The tube was capped and heated to 90 °C overnight (high heat is essential to good 

conversion).  After 24 hours the initially reddish brown solution had turned pale yellow and the 

reaction was complete by HPLC. The mixture was poured into an oversized flask and cooled to 

0°C before careful addition of sat. aq. NH4Cl.  The mixture was extracted with ethyl acetate and 
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the organic portion washed 2x with water and 1x with brine.  The organic portion was dried over 

sodium sulfate and concentrated to yield the titled compound as an off white powder (3.45 g, 

16.33 mmol, 98 % yield). 
1
H NMR (500 MHz, Chloroform-d) δ 7.31 (d, J = 8.3 Hz, 2H), 7.20 (d, 

J = 8.1 Hz, 1H), 6.83 (s, 1H), 6.80 – 6.72 (m, 2H), 6.68 (d, J = 9.0 Hz, 2H), 4.59 (d, J = 10.5 Hz, 

4H). 

 

5-((tert-butyldiphenylsilyl)oxy)-2-phenylisoindoline (2.3e) 

A flask was charged imidazole (2.095 g, 30.8 mmol), (2.3d)  (2.6 g, 12.31 mmol)  and 25mL 

DMF. Following this TBDPS-Cl (3.48 ml, 13.54 mmol) was added dropwise by syringe.  A 

slight warming over the course of addition was observed.  The flask was stirred overnight at 

room temp at which point the reaction was complete by TLC.  The contents of the flask were 

poured over 125 mL water and stirred for 20 min.  The white precipitate was collected by 

vacuum filtration and dried in vacuo yielding 6.1g of the crude which was homogenous by TLC 

but cannot be detected on reverse phase (sticks on column).  The crude was recrystallized by 

dissolving in ~450 mL hot ethanol and allowing to gradually cooling yielding the titled 

compound as a white crystalline solid (5 g, 11.12 mmol, 90 % yield).  Taken forward without 

further purification.  

 

4-(5-((tert-butyldiphenylsilyl)oxy)isoindolin-2-yl)benzaldehyde (2.3f) 
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To a flask at 0°C charged with DMF (2.97 ml, 38.4 mmol) in 10mL DCE was added POCl3
 
(2.86 

ml, 30.7 mmol).  The mixture was stirred at 0°C for 5 minutes then allowed to warm to RT for 

10 minutes.  Another flask was charged with 2.3e (6.9 g, 15.34 mmol) and 30mL of DCE and 

cooled to 0°C.  The contents of the first flask were transferred to the second flask by cannula and 

the flask was stirred overnight at RT.  At this point the mixture was green with yellow 

precipitate.  The reaction was quenched by cooling the flask back to 0°C and adding 10% aq. 

NaOH solution until the color changed from green to red.  The flask was removed from the 

cooling bath and stirred for 1 h. The mixture was extracted 2x with ethyl acetate.  The organic 

portions were combined, washed with brine and dried over sodium sulfate.  Following removal 

of the solvent 7.3g of rust red crude material was recovered. The crude was taken up in hot 

ethanol and the titled compound crystallized out as a golden crystalline solid upon cooling (5.88 

g, 12.31 mmol, 80 % yield). 
1
H NMR (500 MHz, CDCl3) δ 9.76 (s, 1H), 7.77 (d, J = 8.4 Hz, 2H), 

7.73 (d, J = 7.0 Hz, 4H), 7.45 (t, J = 7.5 Hz, 2H), 7.39 (t, J = 7.1 Hz, 4H), 7.05 (d, J = 8.8 Hz, 

1H), 6.77 - 6.68 (m, 2H), 6.62 (d, J = 8.5 Hz, 2H), 4.58 (d, J = 27.9 Hz, 4H), 1.12 (s, 9H). 

 

4-(5-hydroxyisoindolin-2-yl)benzaldehyde (224258) 

2.3e (2.48 g, 5.19 mmol) and potassium fluoride (0.603 g, 10.38 mmol) were added to a flask 

along with 25mL of DMF yielding an orange solution. To this was added 48% aq. HBr (0.583 

ml, 5.19 mmol) dropwise.  With each addition the solution darkened then gradually returned to 

the light orange color at which point the next portion was added.  After addition over about 

fifteen minutes the flask was allowed to stir for another 15 at which point the solution was 

orange with a green hue.  The SM was consumed by TLC and the mixture was poured over 
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100mL cold water and stirred for five minutes yielding a fine yellow silty precipitate which was 

collected by vacuum filtration using a FINE frit.  The precipitate was washed with 30mL water 

and 30 mL diethyl ether before drying under high vacuum (1g, 4.18 mmol, 80 % yield). ESIMS: 

m/z 240.1 [M+H]
+
 
 1
HNMR (500 MHz, DMSO-d6) δ 9.69 (s, 1H), 9.63 (s, 1H), 7.38 (m, 2H), 

7.32 (d, 1H), 7.29 (m, 2H), 7.22 (s, 1H), 6.74 (d, 1H), 4.95 (s, 4H).
 13

C NMR (126 MHz, DMSO-

d6) δ 190.44, 157.48, 151.78, 138.47, 132.25, 127.15, 125.40, 123.88, 115.22, 111.86, 109.72, 

53.93, 53.35.  

 

4-(5-(benzyloxy)isoindolin-2-yl)benzaldehyde (223908)  

224258 (20 mg, .084 mmol) was dissolved in 2 mL anhydrous DMF and transferred to a dry 

flask charged with KOtBu (14 mg, 1.25 mmol) under N2.  Benzyl bromide (10.9 µL, .092 mmol) 

was diluted in 1 mL anhydrous DMF and added dropwise to the flask and the mixture was stirred 

for 3 h.  The mixture was diluted in EtOAc and washed with water and brine.  After 

concentration, the crude material was further purified by flash chromatography (10-25% EtOAc 

in Hexanes).  In order to achieve >95% purity it was necessary to recrystallize the product in 

boiled ethanol yielding the titled compound as yellow needles (3.2 mg, 11.6%). ESIMS: 330.1 

[M+H}
+
 
1
HNMR (500 MHz, CDCl3) δ 9.78 (s, 1H), 7.81 (d, 2H), 7.44 (d, 2H), 7.40 (td, 2H), 

7.34 (tt, 1H), 7.25 (d, 1H), 6.97 (m, 1H), 6.96 (s, 1H), 6.69 (d, 2H), 5.10 (s, 2H), 4.72 (s, 2H), 

4.69 (s, 2H); 
13

CNMR (125 MHz, CDCl3) δ 190.40, 158.77, 151.43, 138.11, 136.76, 132.29, 

128.94, 128.65, 128.06, 127.43, 125.62, 123.46, 114.85, 111.22, 108.94, 70.34, 53.94.  
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4-(5-(1-phenylethoxy)isoindolin-2-yl)benzaldehyde (223941) 

Prepared according to the procedure for 223908. Yellow crystalline solid.  (14mg, 0.041 mmol, 

32.5 % yield). ESIMS: 344.1 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 9.75 (s, 1H), 7.78 (d, J = 

8.8 Hz, 2H), 7.42 – 7.32 (m, 4H), 7.30 – 7.24 (m, 1H), 7.15 (d, J = 8.2 Hz, 1H), 6.87 – 6.80 (m, 

2H), 6.64 (d, J = 8.5 Hz, 2H), 5.32 (q, J = 6.5 Hz, 1H), 4.61 (s, 4H), 1.66 (d, J = 6.4 Hz, 3H). 
13

C 

NMR (126 MHz, CDCl3) δ 190.38, 157.92, 151.40, 142.94, 137.89, 132.24, 128.69, 128.61, 

127.56, 125.51(2 carbons), 123.28, 115.82, 111.16, 110.04, 76.38, 53.87, 53.24, 24.54 

 

 

4-(5-((3-chlorobenzyl)oxy)isoindolin-2-yl)benzaldehyde (224260) 

Prepared according to the procedure for 223908. (12mg, 0.033 mmol, 16.44 % yield) M+H 364.1 

1H NMR (500 MHz, CDCl3) δ 9.78 (d, J = 1.0 Hz, 1H), 7.86 - 7.75 (m, 2H), 7.46 (s, 1H), 7.36 - 

7.29 (m, 3H), 7.28 - 7.24 (m, 1H), 7.02 - 6.89 (m, 2H), 6.69 (d, J = 8.4 Hz, 2H), 5.07 (s, 2H), 

4.70 (d, J = 11.0 Hz, 4H). 13C NMR (126 MHz, CDCl3) δ 190.38, 158.45, 151.39, 138.86, 

138.20, 134.58, 132.26, 129.91, 129.25, 128.18, 127.36, 125.65, 125.27, 123.53, 114.78, 111.22, 

108.96, 69.46, 53.90, 53.27.  
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4-(5-((3-methoxybenzyl)oxy)isoindolin-2-yl)benzaldehyde (224261) 

Prepared according to the procedure for 223908 (15mg, 0.042 mmol, 20.80 % yield). ESIMS: 

360.2 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 9.76 (s, 1H), 7.82 – 7.76 (m, 2H), 7.32 (t, J = 7.8 

Hz, 1H), 7.28 – 7.21 (m, 1H), 7.02 (d, J = 7.7 Hz, 1H), 7.00 (d, J = 1.8 Hz, 1H), 6.95 (d, J = 8.7 

Hz, 2H), 6.88 (dd, J = 8.3, 2.6 Hz, 1H), 6.69 – 6.62 (m, 2H), 5.07 (s, 2H), 4.66 (dd, J = 10.3, 2.4 

Hz, 5H), 3.83 (s, 2H).
 13

C NMR (126 MHz, CDCl3) δ 190.38, 159.87, 158.71, 151.41, 138.40, 

138.09, 132.26, 129.70, 128.94, 125.59, 123.44, 119.54, 114.85, 113.41, 112.95, 111.21, 108.92, 

70.17, 55.26, 53.90, 53.27. 

 

 

 

  
 

 

1-(4-(isoindolin-2-yl)phenyl)ethanone (22151)   

2.4a (98 mg, .37 mmol), 4-aminoacetophenone (50 mg, .37 mmol) and K2CO3 (51 mg, .37 

mmol) were added to a microwave reaction vessel along with 2 mL distilled water and a 

magnetic stirrer.  The vessel was sealed and heated to 120°C for 20 minutes on a Biotage 

Initiator microwave reactor.   An orange-red solid formed during the reaction which was washed 



59 

 

with water and cold hexanes.  The crude was further purified by recrystallization from hot 

methanol, followed by recrystallization from hot ethanol, yielding the titled compound as red 

crystals (30 mg, 34%). ESI MS: 238.1[M + H]
+
 
1
HNMR (500 MHz, CDCl3) δ 7.95 (d, 2H), 7.36 

(d, 2H), 7.34 (d, 2H), 6.65 (d, 2H),4.74 (s, 4H), 2.53 (s, 3H); 
13

CNMR (125 MHz, CDCl3) δ 

195.60, 150.49, 137.06, 130.96, 127.68, 125.90, 122.81, 110.87, 53.87, 26.20.  

 

2-phenylisoindoline (2.4b) 

2.4a (213 mg, .805 mmol), aniline (70 µL, .805 mmol), and K2CO3 (111 mg, .805 mmol) were 

added to a microwave reaction vessel along with 2 mL distilled water and a magnetic stirrer.  

The vessel was sealed and heated to 120°C for 20 minutes on a Biotage Initiator microwave 

reactor.  A red solid formed during the reaction which was washed with water and cold hexanes 

yielding the titled compound as a red solid (130 mg, 82%). 
1
HNMR (400 MHz, CDCl3) δ 7.34 

(m, 7H), 6.92 (m, 2H), 4.76 (s, 4H). 

 

2,2,2-trifluoro-1-(4-(isoindolin-2-yl)phenyl)ethanone (223902) 

A dry pressure tube was charged with AlCl3 (1.3 mg, .01 mmol) purged with N2 and cooled to 

0°C at which point  1 mL of dry THF was added. 2.4b (20 mg, .102 mmol) was dissolved in 2 

mL dry THF and added via syringe to the pressure tube.  TFAA (58 µL, .41 mmol) was added 

dropwise by syringe while stirring.  The pressure tube was sealed and the reaction was heated to 

80°C with stirring under N2 for 3 h.  The mixture was diluted with EtOAc and washed with 
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saturated aq. NaHCO3 and brine.  The organic layer was dried over Na2SO4 and the solvent 

removed by rotary evaporation yielding orange crude material.  The crude was first purified by 

flash chromatography (30-60% DCM in Hexanes) and then recrystallized twice in boiled ethanol 

yielding the titled compound as faintly yellow needles (10 mg, 33%).  ESIMS: 292.0 [M + H]
+
 

1
HNMR (500 MHz, CDCl3) δ 8.04 (d, 2H), 7.38 (m, 2H), 7.36 (m, 2H), 6.70 (d, 2H), 4.79 (s, 

4H); 
13

CNMR (125 MHz, CDCl3) δ 151.82, 136.29, 132.91, 127.82, 122.72, 118.02, 116.28, 

111.32, 53.81; 
19

FNMR δ -70.33.  

 

4-(isoindolin-2-yl)benzonitrile (224259) 

2.4a (112 mg, 0.423 mmol), 4-aminobenzonitrile (50mg, 0.423 mmol), and K2CO3 (58.5 mg, 

0.423 mmol) were added to a 2mL microwave tube along with 1mL of water.  The tube was 

sealed and irradiated for 20 minutes at 120°C with 15 sec of prestirring.  The solids were filtered 

from the reaction and washed with additional water and hexanes yielding a red solid. The solid 

was taken up in ethyl acetate and filtered.  The filtrate was concentrated and taken up in boiling 

ethanol.  The titled compound recrystallized as a yellow solid upon cooling (22mg, 0.095 mmol, 

22.42 % yield) ESIMS: 221.1[M+H]
+ 1

H NMR (500 MHz, CDCl3) δ 7.54 (d, J = 8.31 Hz, 2H), 

7.29 - 7.39 (m, 4H), 6.64 (d, J = 7.83 Hz, 2H), 4.70 (s, 4H) 
13

C NMR (126 MHz, CDCl3) δ 

149.5, 136.6, 133.7, 127.6, 122.7, 120.7, 111.5, 97.9, 53.6 

 

2-(3,5-dimethylphenyl)isoindoline (2.4d) 
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3,5-dimethylaniline (249 µl, 2 mmol), 2.4a (528 mg, 2.000 mmol), and K2CO3 (829 mg, 6.00 

mmol) were added to a pressure tube along with 2mL of water.  The tube was sealed and heated 

to 120°C for 1 h then left at RT overnight.  The solid was filtered, and washed with water before 

discarding the filtrate. The solid was then taken up in DCM, filtered to remove a fine precipitate 

and the filtrate was concentrated.  The crude solid was taken up in acetone and the titled 

compound precipitated as a white solid upon addition of methanol (365mg, 1.634 mmol, 82 % 

yield).  Taken forward without further characterization.  

 

4-(isoindolin-2-yl)-2,6-dimethylbenzaldehyde (232721) 

To a dry flask charged with 2-(3,5-dimethylphenyl)isoindoline (360mg, 1.612 mmol) in 5mL 

DCE was added a solution of DMF (374 µl, 4.84 mmol) and POCl3 (376 µl, 4.03 mmol) in 5mL 

DCE which had been pre stirred at RT for 15 min.  The mixture was heated to 50°C for 1 h at 

which point the reaction appeared complete by HPLC.  The reaction was quenched by addition 

of 10% NaOH and then extracted with EtOAc.  The organic portion was dried over sodium 

sulfate and the crude red residue was taken up in boiling ethanol.  The titled compound 

recrystallized as an orange solid up cooling (90mg, 0.358 mmol, 22.21 % yield). ESIMS: 252.1 

[M+H]
+ 1

H NMR (400 MHz, CDCl3) δ 10.38 (s, 1H), 7.41 - 7.28 (m, 4H), 6.31 (s, 2H), 4.72 (s, 

4H), 2.64 (s, 6H). 
13

C NMR (101 MHz, CDCl3) δ 190.61 (d, J = 10.8 Hz), 149.93, 144.55, 

136.83, 127.55, 122.75, 112.28, 112.07, 53.57, 21.59 (d, J = 15.7 Hz). 
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4-(3,4-dihydroisoquinolin-2(1H)-yl)benzaldehyde (232200) 

4-fluorobenzaldehyde (0.216 ml, 2.014 mmol) was dissolved in 2.5mL anhydrous DMSO in a 

dry pressure vessel.  To this was added K2CO3 (418 mg, 3.02 mmol) and 1,2,3,4-

tetrahydroisoquinoline (0.278 ml, 2.216 mmol) . The headspace of the tube was purged with 

argon and the tube was capped.  The mixture was heated to 75°C overnight.  To the resultant 

mixture was added 20mL of water.  The mixture was extracted with EtOAc. The organic portion 

was washed 2x with brine and then dried over sodium sulfate and concentrated yielding a yellow 

oil.  The crude was purified by flash (0-25% EtOAc in Hexanes) yielding the titled compound as 

a yellow solid (195mg, 0.822 mmol, 40.8 % yield).  ESIMS:  238.1 [M+H]
+
 
1
H NMR (500 MHz, 

CDCl3) δ 9.78 (s, 1H), 7.72 - 7.84 (m, J = 8.80 Hz, 2H), 7.18 - 7.26 (m, 4H), 6.90 - 6.97 (m, J = 

8.80 Hz, 2H), 4.57 (s, 2H), 3.70 (t, J = 5.87 Hz, 2H), 3.02 (t, J = 5.87 Hz, 2H) 
13

C NMR (126 

MHz, CDCl3) δ 190.3, 154.0, 135.0, 133.5, 132.0, 128.1, 126.9, 126.5, 126.5, 126.1, 112.1, 48.8, 

44.6, 29.0 

 

4-(indolin-1-yl)benzaldehyde (232720) 

4-bromobenzaldehyde (311 mg, 1.678 mmol), indoline (189 µl, 1.678 mmol), BINAP (115 mg, 

0.185 mmol), PdOAc2 (37.7 mg, 0.168 mmol) and Cs2CO3 (820 mg, 2.52 mmol)  were added to 

4mL degassed toluene and heated to 60°C for 2 h.  The mixture was diluted with EtOAc and 

washed with water and brine.  The organic portion was dried over sodium sulfate and 
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concentrated.  Purification by flash (EA in Hex) yielded the titled compound as a brown oil 

(160mg, 0.717 mmol, 42.7 % yield). 
1
H NMR (400 MHz, CDCl3) δ 9.84 (s, 1H), 7.89 - 7.79 (m, 

2H), 7.34 (d, J = 8.0 Hz, 1H), 7.31 - 7.26 (m, 2H), 7.23 (d, J = 7.4 Hz, 1H), 7.16 (d, J = 7.8 Hz, 

1H), 6.89 (t, J = 7.4 Hz, 1H), 4.05 (t, J = 8.3 Hz, 2H), 3.18 (t, J = 8.3 Hz, 2H). 
13

C NMR (101 

MHz, CDCl3) δ 190.38, 149.02, 144.72, 132.27, 131.74, 128.41, 127.09, 125.53, 121.00, 115.32, 

110.35, 51.88, 28.02. 

 

4-(1-oxoisoindolin-2-yl)benzaldehyde (232483)  

Cs2CO3 (734 mg, 2.253 mmol), PdOAc2 (8.43 mg, 0.038 mmol), Xantphos (43.5 mg, 0.075 

mmol), 4-bromobenzaldehyde (139 mg, 0.751 mmol), isoindolin-1-one (100mg, 0.751 mmol), 

were added to a flask equipped with a stir bar.  The flask was vacuum purged and backfilled with 

argon. 10mL of rigorously degassed anhydrous dioxane was transferred to the reagent flask by 

syringe.  The flask was stirred at 80°C for 1 hour at which point TLC indicated a clean and 

complete conversion of the starting materials to a new spot.  The reaction was filtered through 

celite and the filter cake washed with EtOAc.  The filtrate was concentrated in vacuo and the 

residue taken up in EtOAc, washed twice with brine and the organic portion dried over sodium 

sulfate.  The solvent was removed yielding a white solid crude. The residue was taken up in hot 

ethanol and the titled compound recrystallized upon cooling (150mg, 0.632 mmol, 84 % yield).  

ESIMS: 238.0 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 9.99 (s, 1H), 8.13 (d, J = 8.80 Hz, 2H), 

7.93 - 8.00 (m, 3H), 7.62 - 7.69 (m, 1H), 7.52 - 7.58 (m, 2H), 4.94 (s, 2H) 
13

C NMR (126 MHz, 

CDCl3) δ 191.0, 167.9, 152.2, 149.8, 144.8, 139.9, 132.8, 131.1, 128.7, 124.5, 122.7, 118.4, 50.5 
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4-((2,3-dihydro-1H-inden-2-yl)amino)benzaldehyde (232662) 

 To a pressure tube charged with 3mL of rigorously degassed anhydrous toluene were added, 

Cs2CO3 (528 mg, 1.621 mmol), Pd2(dba)3 (37.1 mg, 0.041 mmol), X-Phos (19.32 mg, 0.041 

mmol), 2,3-dihydro-1H-inden-2-amine (106 µl, 0.811 mmol), and 4-bromobenzaldehyde 

(150mg, 0.811 mmol).  The mixture was bubbled with argon for a few minutes then the tube was 

capped and heated to 100°C overnight.  The reaction mixture was diluted with ethyl acetate and 

ran through a plug of celite.  The filtrate was further diluted with ethyl acetate and washed with 

water and brine.  The organic portion was dried over sodium sulfate and the solvent removed in 

vacuo.  The crude material was purified by flash chromatography 10-30% EA in Hex. The 

product was further taken up in hot methanol and the titled compound was obtained as a yellow 

crystalline solid upon cooling (50mg, 0.211 mmol, 26.0 % yield). ESIMS: 238.1 [M+H]
+
 
1
H 

NMR (500 MHz, CDCl3) δ 9.74 (s, 1H), 7.71 (d, J = 8.9 Hz, 2H), 7.28 - 7.23 (m, 2H), 7.23 - 

7.18 (m, 2H), 6.64 (d, J = 8.6 Hz, 2H), 4.56 (d, J = 7.4 Hz, 1H), 4.43 (dtd, J = 11.1, 7.1, 4.0 Hz, 

1H), 3.42 (dd, J = 16.0, 6.7 Hz, 2H), 2.92 (dd, J = 16.0, 4.1 Hz, 2H). 
13

C NMR (126 MHz, 

CDCl3) δ 190.19, 152.37, 140.70, 132.32, 126.92, 124.97, 112.29, 109.99, 53.58, 40.17. 

 

benzyl (2-iodophenyl)carbamate (2.5b)  

To a flask containing 2-iodoaniline (2.5a) (1 g, 4.57 mmol) was added 1N aq. NaOH (4.57 ml, 

4.57 mmol).  To the suspension was added CBZ-Cl (0.978 ml, 6.85 mmol) dropwise by syringe.  

The flask was stirred for an additional hour and the mixture was extracted 3 times with DCM and 

dried over NaSO4 and concentrated, yielding a yellow oil.  The oil was dissolved in minimal 
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diethyl ether then cooled to -78°C until the titled compound crystallized as a white solid (1.499g, 

4.24 mmol, 93 % yield). 
1
HNMR is consistent with literature.

92
 

 

benzyl (2-((4-formylphenyl)ethynyl)phenyl)carbamate (2.5c)  

Bis(triphenylphosphine)palladium(II) dichloride (35.1 mg, 0.050 mmol), copper(I) iodide (19.05 

mg, 0.100 mmol), 2.5b (353 mg, 1.000 mmol), and 4-ethynylbenzaldehyde (130 mg, 1 mmol) 

were added to an flask which was purged and backfilled with N2 3x.  A rigorously deoxygenated 

solution of triethylamine (1.394 ml, 10.00 mmol) in 2.5 mL toluene was added by syringe and 

the flask was heated to 70°C for 1 hour, at which point the reaction was observed to be complete 

by TLC.  The reaction mixture was concentrated and the resulting residue was dissolved in ethyl 

acetate and washed with sat. aq. NH4Cl  then brine.  The organic portion was dried over sodium 

sulfate and concentrated.  The crude was dissolved in a ~20 mL of hot ethanol and immediately 

filtered to remove an insoluble impurity.  The titled compound recrystallized as an orange 

crystalline solid upon cooling (207mg, 0.582 mmol, 58.2 % yield).
1
H NMR (500 MHz, CDCl3) δ 

10.03 (s, 1H), 8.21 (d, J = 8.31 Hz, 1H), 7.83 - 7.95 (m, J = 7.83 Hz, 2H), 7.62 - 7.74 (m, J = 

7.83 Hz, 2H), 7.50 (d, J = 7.34 Hz, 1H), 7.42 - 7.47 (m, 2H), 7.33 - 7.42 (m, 4H), 7.06 (t, J = 

7.58 Hz, 1H), 5.26 (s, 2H) 

 

 

4-(1H-indol-2-yl)benzaldehyde (224256)  
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To a degassed solution of (2.5c) (207mg, 0.582 mmol) in 5mL THF was added 1M TBAF in 

THF (1747 µl, 1.747 mmol) which was sealed in a pressure tube and stirred at 70°C for 1 h at 

which point the initially red solution turned nearly black.  The mixture was concentrated and 

taken up in EtOAc and washed several times with 1% NaOH until a clear aqueous portion 

resulted.  The organic portion was washed with brine, dried over sodium sulfate and 

concentrated.  The crude product was purified by flash (0-10% EtOAc in Hexanes) yielding the 

titled compound as an off white solid (12mg, 0.054 mmol, 9.31 % yield).  ESIMS: 222.1 [M+H]
+
 

1
H NMR (500 MHz, CDCl3) δ 10.04 (s, 1H), 8.51 (br. s., 1H), 7.96 (dd, J = 1.30, 8.31 Hz, 2H), 

7.83 (d, J = 8.31 Hz, 2H), 7.68 (d, J = 7.83 Hz, 1H), 7.44 (d, J = 8.31 Hz, 1H), 7.23 - 7.29 (m, 

1H), 7.13 - 7.21 (m, 1H), 7.02 (s, 1H) 
13

C NMR (126 MHz, CDCl3) δ 191.6, 138.1, 137.5, 136.2, 

135.3, 130.7, 129.2, 125.3, 123.7, 121.3, 120.9, 111.3, 102.8. 

 

 

 

4-(1H-benzo[d]imidazol-2-yl)benzaldehyde (224257)  

A flask charged with benzene-1,2-diamine (81 mg, 0.746 mmol), terephthalaldehyde (100mg, 

0.746 mmol), 3Å M.S., and 10 mL t-BuOH was heated to  40°C for 5 min resulting in a bright 

orange solution.  I2 (237 mg, 0.932 mmol) and K2CO3 (309 mg, 2.237 mmol) were added and the 

mixture was stirred at 70°C.  A bright orange precipitate formed and quickly turned rust red.  

After heating for 2 h, 10% sodium thiosulfate was added to the mixture until the solution turned 

yellow.  The mixture was extracted with DCM and the organic portion was washed with brine 

and dried over sodium sulfate before removing the solvent in vacuo.  The residue was purified by 
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flash (25-75% EtOAc in Hex) yielding the titled compound as a yellow solid (20mg, 0.089 

mmol, 11.95 % yield). ESIMS:  223.1 [M+H]
+ 1

H NMR (500 MHz, DMSO-d6) δ 10.09 (s, 1H), 

8.43 (d, J = 7.83 Hz, 2H), 8.09 (d, J = 8.31 Hz, 2H), 7.67 (dd, J = 2.93, 5.87 Hz, 1H), 7.23 - 7.31 

(m, 2H) 
13

C NMR (126 MHz, DMSO-d6) δ 192.6, 149.9, 136.6, 135.3, 130.1, 126.9, 122.7, 

115.6, 111.4 

 

 

2-(2-(2-aminoethoxy)ethoxy)ethanol, HCl (2.8b) 

2-(2-(2-azidoethoxy)ethoxy)ethanol (prepared  from 2.8a as previously described
93

) (1.5 g, 8.56 

mmol) was dissolved in 5mL THF to which triphenylphosphine (2.69 g, 10.27 mmol) was added.  

After stirring for 30 minutes, 1mL water was added and the mixture was stirred overnight.  The 

next day the reaction was taken up in 1N HCl and washed 3x with EtOAc.  The aqueous portion 

was concentrated in vacuo to afford the titled compound as a brown oil (1.4 g, 7.54 mmol, 88 % 

yield). 
1
H NMR (400 MHz, Methanol-d4) δ 3.76 - 3.62 (m, 7H), 3.60 - 3.53 (m, 2H), 3.30 (p, J = 

1.6 Hz, 2H), 3.12 (t, J = 5.0 Hz, 2H). 

 

Perfluorophenyl 5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanoate (2.8d) 

To a solution of Biotin (2.8c) (1g, 4.09 mmol) in 5mL DMF at 0°C was added EDC (0.942 g, 

4.91 mmol).  The mixture was stirred for 1hour at which point 2,3,4,5,6-pentafluorophenol 
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(0.829 g, 4.50 mmol) was dissolved in 2mL DMF and added by syringe.  The slurry was stirred 

overnight and diluted with 10% citric acid and DCM and the titled compound was collected by 

filtration as a white solid (1.06 g, 2.58 mmol, 63.1 % yield).  
1
H NMR was consistent with 

literature.
94

 

 

N-(2-(2-(2-hydroxyethoxy)ethoxy)ethyl)-5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-

d]imidazol-4-yl)pentanamide (2.8e) 

To a flask charged with 2.8d (300 mg, 0.731 mmol) and 2.8b (163 mg, 0.877 mmol) in 5mL 

DMF was added DIPEA (0.153 ml, 0.877 mmol).  The mixture was stirred at RT overnight.  The 

next day the DMF was removed in vacuo and the crude residue was purified by flash (0-15% 

MeOH in DCM) to yield the titled compound as a white solid. (190mg, 0.506 mmol, 69.2 % 

yield) 
1
H NMR (500 MHz, DMSO-d6) δ 7.81 (t, J = 5.8 Hz, 1H), 6.39 (s, 1H), 6.33 (s, 1H), 4.56 

(t, J = 5.5 Hz, 1H), 4.28 (dd, J = 7.7, 5.1 Hz, 1H), 4.11 (ddd, J = 7.0, 4.5, 1.8 Hz, 1H), 3.52 - 3.44 

(m, 6H), 3.42 - 3.34 (m, 4H), 3.16 (q, J = 5.8 Hz, 2H), 3.08 (ddd, J = 8.8, 6.1, 4.4 Hz, 1H), 2.80 

(dd, J = 12.4, 5.1 Hz, 1H), 2.56 (d, J = 12.4 Hz, 1H), 2.04 (t, J = 7.4 Hz, 2H), 1.66 - 1.54 (m, 1H), 

1.53 - 1.37 (m, 3H), 1.35 - 1.17 (m, 2H). 

 

2-(2-(2-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-

yl)pentanamido)ethoxy)ethoxy)ethyl methanesulfonate (2.8f) 
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2.8e (340mg, 0.905 mmol) was dissolved in 3mL pyridine, to which Ms-Cl (0.085 ml, 1.087 

mmol) was added.  The mixture turned green immediately then went to brown over the course of 

the next hour, at which point the reaction was complete by TLC (20% MeOH in DCM, Visualize 

with permanganate stain.  Product is more lipophilic than starting material, UV active spot is 

dissociated pyridine HCl).  The reaction mixture was concentrated and purified by flash (2-10% 

MeOH in DCM, detect with ELSD) to obtain  the titled compound as an oily orange solid 

(410mg, 0.904 mmol, 100 % yield). ESIMS 454.1677 [M+H]
+
.  

1
H NMR (500 MHz, CDCl3) δ 

7.37 - 6.17 (m, 2H), 4.66 - 4.23 (m, 3H), 3.86 - 3.51 (m, 7H), 3.48 - 3.30 (m, 2H), 3.26 - 3.04 (m, 

3H), 3.03 - 2.68 (m, 2H), 2.26 (s, 2H), 1.87 - 1.33 (m, 7H).  

 

N-(2-(2-(2-((2-(4-formylphenyl)isoindolin-5-yl)oxy)ethoxy)ethoxy)ethyl)-5-((3aS,4S,6aR)-2-

oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide (264441) 

A dry flask charged with 2.8f (410mg, 0.904 mmol), Cs2CO3 (295 mg, 0.904 mmol)  and 5mL 

DMF was rigorously deoxygenated under vacuum then heated to 80°C for 2 days under N2.  The 

solvent was removed in vacuo and the crude residue subjected to flash (Silica gel, 0-20% MeOH 

in DCM gradient) yielding a dark green solid with reasonable purity by HPLC.  The product was 

further purified by flash (C18 20-50% ACN in Water, 0.1% TFA (Permanently stained the 

column)) which resulted in >95% purity by HPLC but did not remove the dark green coloration.  

Decoloration was achieved by flash (Neutral Alumina, 0-20% MeOH in DCM) to yield the titled 

compound as a yellow residue (12mg, 0.02 mmol, 2.2 % yield). ESIMS 597.2741 [M+H]
+
. 

1
H 

NMR (500 MHz, DMSO-d6) δ 9.71 (s, 1H), 7.82 (t, J = 5.6 Hz, 1H), 7.79 – 7.73 (m, 2H), 7.31 
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(d, J = 8.3 Hz, 1H), 7.00 (d, J = 2.3 Hz, 1H), 6.91 (dd, J = 8.3, 2.4 Hz, 1H), 6.80 – 6.73 (m, 2H), 

6.38 (d, J = 30.6 Hz, 2H), 4.74 – 4.60 (m, 4H), 4.32 – 4.23 (m, 1H), 4.17 – 4.04 (m, 2H), 3.79 – 

3.69 (m, 2H), 3.60 (dd, J = 5.9, 3.5 Hz, 2H), 3.54 (dd, J = 5.7, 3.4 Hz, 2H), 3.41 (t, J = 5.9 Hz, 

2H), 3.20 (t, J = 5.8 Hz, 2H), 3.07 (ddd, J = 8.6, 6.1, 4.3 Hz, 1H), 2.80 (dd, J = 12.5, 5.1 Hz, 

1H), 2.57 (d, J = 12.4 Hz, 1H), 2.06 (t, J = 7.4 Hz, 2H), 1.60 (ddt, J = 12.3, 9.7, 6.1 Hz, 1H), 

1.55 – 1.40 (m, 4H), 1.38 – 1.20 (m, 2H).
 13

C NMR (126 MHz, DMSO-d6) δ 190.45, 172.53, 

163.12, 158.71, 151.71, 138.63, 132.24, 129.08, 125.49, 124.00, 114.79, 111.89, 108.93, 70.32, 

70.03, 69.64, 69.39, 67.85, 61.47, 59.63, 55.86, 53.98, 53.33, 49.04, 38.89, 35.55, 28.64, 28.48, 

25.71.  
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Chapter 3 Development of 1
st
 Generation Pyrazolopyrimidinone 

Aldehyde Dehydrogenase Inhibitors 

3.1. Characterization of Lead Compound CM39 

 

 

Figure 3.1: Biochemical and Cellular ALDH Inhibition by CM39 

(A) Fraction of enzyme activity remaining for 9 ALDH isoforms in the presence of 20 µM 

CM39. (B) Percent control ALDH
Bright 

cells remaining following treatment of PEO1 cells at the 

specified concentration with DEAB (1) or compound CM39 (N=2). (Unpublished work, 

courtesy of Hurley and Buckanovich Labs) 

 

The Hurley Lab HTS campaign for 1A1 inhibitors that resulted in discovery of CM026 

and CM037 also identified CM39.
66

  This compound was an attractive lead for the development 

of pan-ALDH1A inhibitors because it exhibited reasonably ligand-efficient inhibition of 1A1 

(IC50 = 0.9 µM, LE = 0.32) and good selectivity (<20% inhibition of ALDH2 and 3A1 at 

20uM).
66

 A further screen of selectivity showed ~50% inhibition of 1A2 and 1A3 at 20 µM and 

little activity against other ALDH isoforms (Figure 3.1A).
95

   

A B 



72 

 

Despite the presence of a potentially electrophilic isothiourea, CM39-mediated inhibition 

of 1A1 was fully reversed following gel filtration, indicating it is non-covalent. Similar to other 

non-covalent inhibitors of 1A1, CM39 was found to be non-competitive with respect to the 

substrate acetaldehyde with a Ki = 0.38 ± 0.05 µM and uncompetitive with respect to NAD
+
.
67

  

Liabilities of the lead with regard to its potential as a therapeutic included a half-life of 9 minutes 

in the  presence of MLMs and poor aqueous solubility (2 µM), both of which could be attributed 

to high lipophilicity (cLogP of 5.2).
95

 

As shown in Figure 3.1B, compound CM39 was inferior to the widely-used 

ALDEFLUOR control compound DEAB (1) at reducing ALDH
Bright  

PEO1 cells at 

concentrations up to 30 µM, suggesting that ALDH1A1 selective inhibition is not sufficient to 

inhibit ALDEFLUOR in this 1A3 high cell line, although we cannot rule out poor solubility or 

cell permeability. It is important to note that while DEAB is a 57 nM 1A1 selective inhibitor, it 

only inhibits ALDEFLUOR above its 1A3 IC50 (3 µM).
41

  Lower ALDEFLUOR IC50s for DEAB 

in two 1A1 high cell lines, MIA PaCa-2 (3.4 µM) and HT-29 (1.7 µM), have previously been 

reported.
96

   

3.2. Crystal Structure of ALDH1A1 complexed with CM39 

To guide the design of new analogs, an X-ray crystal structure of CM39 bound to N121S 

ALDH1A1 was obtained with a resolution of 2.1Å (PDB code 5TEI, Figure 3.2A). The known 

single nucleotide polymorphism (NCBI rs1049981) resulting in the N121S missense mutation 

has been found in a small percentage of the HapMap-CEU population. There is no known 

clinical significance to the mutation and its structure is highly similar to the wild-type.
66-67

  The 

N121S enzyme crystallizes under identical conditions to the WT enzyme, but complexes with 

inhibitors are frequently easier to obtain, presumably due to dynamic fluctuations within the 
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active site that are not detectable by crystallography and have little impact on observed potency. 

Furthermore, the IC50 of CM39 was comparable for the WT and N121S (0.9 and 0.7 µM 

respectively).  

Similar to the complex with CM026 (PDB code 4WP7), the bicyclic ring binds across the 

exterior 1/3 of the substrate binding pocket. The 3-fluorobenzyl group extends in towards the 

catalytic nucleophile (C303) making contacts with aromatic residues F171, W178 and F466. In 

contrast to CM026 and CM037 (PDB code 4X4L), CM39 does not engage the cleft of the active 

site adjacent to T129, suggesting it may be possible to gain additional interactions with the active 

site in this region.
67

 The pyrazolopyrimidinone of CM39 binds adjacent to G458.  Other 

ALDH1/2 isoenzymes have either an Asn or Asp residue at position 458 which may drive  

  

Figure 3.2 Structure of ALDH1A1 N121S with CM39 (2.10 Å, PDB 5TEI) 

(A) The fluorophenyl of compound CM39 projects into the lipophilic pocket towards the 

catalytic cysteine (C303). Key residues are labelled. (B) Overlay of Compounds CM026 (Cyan, 

PDB entry 4WP7), CM073 (Grey, PDB Entry 4X4L), and CM39(Orange) bound in ALDH1A1. 

(Unpublished work, courtesy Hurley lab)  

A B 
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selectivity by prohibiting a similar binding mode in these isoforms. There appears to be room for  

small substitutions on the pyrazole at N-1 but not N-2, suggesting that larger substituents at these  

positions will not be tolerated without alteration of the binding pose. The lipophilic 2-

methylphenyl ring binds near a relatively polar region of the 1A1 active site, suggesting that 

appropriate polar substituents could improve or maintain binding affinity while lowering cLogP.  

The 3-fluorobenzyl ring attached to the sulfur projects into the deepest section of the active site 

and maximizes contacts with the aromatic residues near the catalytic nucleophile, C303. The 

apparent goodness of fit of the 3-fluorobenzyl substituent, as well as its expected metabolic 

stability, encouraged us to retain it for the initial set of analogs based on CM39. 

3.3. Optimization of Pyrazole Substituents  

 

We began our SAR campaign by generating N-alkylated analogs to fill the small 

lipophilic pocket adjacent to Ile304. We also hypothesized that eliminating the moderately acidic 

(pKa = 8.1
97

) pyrazole N-H might improve cell permeability. Encouragingly, methylation at N-1 

(Table 3.1, 257128) resulted in a modest improvement in 1A1 inhibition compared to CM39. 

Consistent with a reduction in cLogP
97

 aqueous solubility was also improved.  Installing the 

larger ethyl (257443) and cyclopropyl-methyl substituent (257724) improved the 1A1 IC50 but 

did not improve potency against 1A2 or 1A3. The unfavorable cLogPs > 5 of the two analogs 

encouraged us to explore less lipophilic oxetanyl analogs 257910-257911.  Importantly, 257911 

maintained comparable potency against 1A1 with substantially lower cLogP (4.7).  The 

homologated oxetane 257910 was 2-fold less potent against 1A1, suggesting that larger 

substituents would not be tolerated.  

 In an effort to pare down the CM39 scaffold to the key pharmacophore, we discovered 

that removing the R
2
 o-methyl markedly improved inhibition of 1A2 and 1A3 affording 
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compound 257901, the first pan-ALDH1A inhibitor in the series.  We revisited the panel of N-1 

substituents used in the o-methyl series (257723, 257904, 257905, 258082, 258084) and 

observed different SAR trends. The small N-methyl substituent of 257723 afforded the most 

potent of the four analogs tested but exhibited very poor solubility. The cLogP of 257723 is 

significantly lower than 257901; however, as judged by retention times on reverse and normal 

phase chromatography, the lipophilicity of the two was similar. We believe the poor solubility is 

best explained by the increased planarity of 257723 upon removal of the o-methyl. The MLM 

stability of 257723 was unchanged relative to CM39.  The bulkier ethyl, cyclopropyl-methyl, 

and oxetanyl-methyl substituents resulted in 4-fold or greater reduction in potency against the 

ALDH1A family relative to 257723.  The smaller oxetanyl substituent of 258082 was only 

slightly less potent than 257723 and afforded a modest improvement in aqueous solubility. The 

divergent SAR trends for N-1 pyrazole substituents upon removal of the o-methyl suggested a 

new binding mode was accessible.   
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Table 3.1 Characterization of N-1 Pyrazole Substituents 

 

 
 

ALDH IC50
a
 (µM) or 

% control at 20 µM
b
 

ADME Characterization 

Cmpd 

No. 

R
1
 R

2
 

1A1 1A2 1A3 2 

cLogP Aq. 

Sol.
c 

(µM) 

MLM 

t1/2 

(min) 

CM39 H Me 0.9  

±0.2 

53% 53% 85% 5.2 2 9 

257901 H H 0.45 

±0.03 

0.67  

±0.08 

0.39 

±0.02 

94% 4.7 
  

257128 Me Me 0.66 

±0.06 

52% 4   

±1 

94% 4.8 38  

257443 Et Me 0.35 

±0.01 

>10 >10 100% 5.2   

257724 c-PrCH2 Me 0.18 

±0.01 

>10 >10 100% 5.6   

257911 3-oxetanyl Me 0.26 

±0.03 

6   

± 1 

60% 96% 4.7   

257910 3-oxetanyl-

CH2 

Me 0.42 

±0.01 

45% 58% 97% 4.7   

257723 Me H 0.08 

±0.01 

0.15  

±0.01 

0.09 

±0.01 

100% 4.3 <0.7 

(BLQ)
d
 

8 

257904 Et H 0.32 

±0.02 

0.40 

±0.06 

0.25 

±0.02 

82% 4.7   

257905 c-PrCH2 H 0.56 

±0.03 

1.26  

±0.08 

0.55 

±0.02 

83% 5.1   

258082 3-oxetanyl H 0.13 

±0.01 

0.23 

±0.01 

0.17 

±0.01 

94% 4.1 8  

258084 3-oxetanyl-

CH2 

H 0.34 

±0.07 

1.1 

±0.1 

0.61  

±0.09 

96% 4.1   

Values are expressed as 
a 
Mean ± SEM (n=3), 

b
 Mean (n=3); 

c
 Thermodynamic solubility 

analysis was performed by Analiza Inc. using quantitative nitrogen detection. 

(www.analiza.com); 
d
BLQ = below limit of quantitation. (Unpublished work, courtesy of 

Hurley and Sun Labs) 

 

  

http://www.analiza.com/


77 

 

 

Table 3.2 Characterization of N-2 Pyrazole Substituents 

 

 

 

ALDH IC50
a
 (µM) or 

% control at 20 µM
b
 

ADME Characterization 

Cmpd 

No. 

R
1
 R

2
 

1A1 1A2 1A3 2 

cLogP Aq. 

Sol.
c 

(µM) 

MLM 

t1/2 

(min) 

257432 Me Me 0.67 

±0.07 

6  

±1 

2.2  

±0.4 

100% 5.3   

257434 Et Me 0.40 

±0.05 

5 

±1 

>5 91% 5.6   

257725 c-Pr-CH2 Me 0.10 

±0.01 

>10 1.0 

±0.1 

100% 6.1   

257913 3-oxetanyl Me 0.44 

±0.06 

8   

±1 

3.9   

±0.4 

100% 5.2   

257912 3-oxetanyl-

CH2 

Me 0.20 

±0.03 

3.9  

±0.3 

2.6  

±0.3 

98% 5.2   

257902 Me H 0.25 

±0.01 

0.34 

±0.05 

0.13 

±0.01 

94% 4.8 69 13 

257903 Et H 0.17 

±0.07 

0.6 

±0.05 

0.15±

0.01 

98% 5.2   

257906 c-Pr-CH2 H 0.13 

±0.03 

1.1  

±0.2 

0.17 

±0.03 

87% 5.6   

258083 3-oxetanyl H 0.08 

±0.01 

0.25 

±0.04 

0.12 

±0.02 

97% 4.7 5 23 

258085 3-oxetanyl-

CH2 

H 0.27 

±0.01 

0.48 

±0.04 

0.13 

±0.01 

99% 4.7 53 27 

262701 

 

H 7% 21% 4% 97% 5.0   

262702 

 

H 14% 14% 10% 93% 4.3   

Values are expressed as 
a 
Mean ± SEM (n=3), 

b
 Mean (n=3); 

c
 Thermodynamic solubility 

analysis was performed by Analiza Inc. using quantitative nitrogen detection. 

(www.analiza.com); 
d
BLQ = below limit of quantitation. (Unpublished work, courtesy of 

Hurley and Sun Labs) 

 

http://www.analiza.com/
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N-2 alkylated analogs were also tested to further probe the flexibility of the binding mode 

depicted in the CM39 crystal structure (Table 3.2). 257432 exhibited a similar ALDH1A 

inhibition profile to 257128. Extending to bulkier substituents (257434, 257725, 257912, 

257913) resulted in improved 1A1 potency with the cyclopropyl-methyl being optimal, 

providing strong evidence for an alternative binding mode. These N-2 substituted analogs were 

more potent against 1A3 than the corresponding N-1 regioisomers, as exemplified by the 

modestly 1A1/1A3 selective cyclopropyl-methyl analog 257725 vs 1A1-selective 257724. As we 

observed previously, removal of the o-methyl significantly improved the inhibition of 1A2 and 

1A3 in analogs (257902-257903, 257906, 258083, 258085).  Oxetane was the optimal N-2 

substituent to achieve potent pan-ALDH1A inhibition (258083), while cyclopropyl-methyl 

(257906) afforded a potent 1A1/1A3 inhibitor with >5-fold selectivity over 1A2. Despite having 

higher values for cLogP than the corresponding N-1 regioisomers, N-2 analogs were observed to 

be more polar by both normal and reverse phase chromatography. Consistent with this 

observation, the solubility of N-2 methyl analog 257902 was substantially improved over 

regioisomer 257723. 257902 was also moderately more stable to treatment with MLMs, leading 

us to prioritize N-2 substituted analogs for further pharmacokinetic studies.  Curiously, 

appending the oxetanyl substituent at N-2 (258083) was not favorable for solubility as was 

observed at N-1 (258082).  Reasonable aqueous solubility was restored for the homologated 

analog 258085. Perhaps resulting from steric blocking of N-dealkylation, 258083 and 258085 

were about 2-fold more stable in the MLM assay than 257902.  The branched oxetanyl and 

azetidinyl analogs 262701-262702 maintained reasonable ALDH inhibition but did not offer any 

particular advantage. Exquisite selectivity over the closely related ALDH2 isoform was 
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maintained for all tested analogs, positioning the series as a useful set of tool compounds to 

probe the biological effect of ALDH1A inhibition.  

Table 3.3 Characterization of N-phenyl Modifications 

 
Cmpd 

No. 

R
3 

ALDH IC50
a
 (µM) or % control at 20 µM

b 

1A1 1A2 1A3 2 

257128 2-Me-Ph 0.66 ±0.06 52% 4 ±1 94% 

257723 Ph 0.08 ±0.01 0.15 ±0.01 0.09 ±0.01 100% 

258463 2-Cl-Ph 0.25 ±0.04 75% 10 ±2 100% 

258464 3-Cl-Ph 4.1  ±0.6 0.56  ±0.06 2.6 ±0.3 100% 

258465 4-Cl-Ph 69% 1.1  ±0.1 0.75 ±0.05 100% 

258962 2-F-Ph 0.11 ±0.01 8%
c 

1%
c 

90% 

257727 2-OMe-Ph 0.97 ±0.10 >10 >10 100% 

258077 3-OMe-Ph 41% 1.3 ±0.1 44% 82% 

258078 4-OMe-Ph 8.2 ±0.7 1.77 ±0.09 0.78 ±0.09 86% 

257907 3-Pyridyl 3.83 ±0.03  45% 117% 99% 

257908 4-Pyridyl 52% 52% 60% 97% 

257914 2-Pyridyl 2.4 ±0.4  64% 67% 99% 

257726 Bn 0.89 ±0.13 0.72 ±0.04 >10 100% 

258081 Ph-CH2-

CH2 

1.4 ±0.15 0.9 ±0.1 0.18 ±0.04 87% 

258074 Me 4.1 ±0.37 79% 66% 95% 

258466 Cyclohexyl 37% 36% 43% N.I. 

258467 Cyclopentyl 46% 37% 95% N.I. 

258468 Cyclopropyl 28% 14% 73% 96% 

Values are expressed as 
a 
Mean ± SEM (n=3), 

b
 Mean (n=3); 

c
 Dose response 

curves were not satisfactory for IC50 determination. (Unpublished work, 

courtesy of Hurley Lab) 
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The substantial increase in inhibition across the ALDH1A family upon removal of the o-

methyl at R
2
 (257723) encouraged us to further probe the effect of varied substitutions at this 

position as shown in Table 3.3. We retained the N-1 methyl substituent of 257723 for synthetic 

ease. Although we had evidence to suggest the binding mode of CM39 depicted in the crystal 

structure was flexible, we began by designing R
3
 analogs according to the crystal structure. The 

R
3 

region of CM39 is flanked by a region of exposed peptide backbone (residues 458-460) and 

the sidechain of N121 (S121 in WT), suggesting that polar interactions in this region might 

improve binding over the lipophilic 2-methylphenyl.  Additionally, as the R
3 
methyl-phenyl is 

partially solvent exposed, polar solubilizing moieties were expected to improve pharmacokinetic 

properties without substantial loss of potency. Unfortunately, all attempts to alter the phenyl 

present in 257723 resulted in significant loss of activity across the ALDH1A family. 

Nevertheless, interesting selectivity trends did emerge. Substituents other than methyl at the 

ortho position (Cl, OMe) also rendered compounds 1A1 selective, but decreased 1A1 potency 

(258463 and 257727) relative to proteo analog 257723.  Chloro analog 258463 showed a twofold 

improvement in potency (1A1 IC50  = 250 nM) compared to methyl analog 257128.  Because of 

the comparable size of Cl and CH3, this difference suggested a preference for electron 

withdrawing groups; however, the electron-deficient fluorinated analog 258962 was merely 

equipotent with 257723 despite the similar size of the ortho substituents. Electron-rich methoxy 

analog 257727 was four-fold less potent against 1A1 than chloro analog 258463. Meta 

substituents rendered analogs 258464 and 258077 modestly 1A2 selective.  Addition of a 

chlorine in the para position resulted in a 1A2/1A3-selective inhibitor vs 1A1 (258465), while 

para methoxy analog 258078 exhibited very modest selectivity for 1A3.  Pyridyl analogs 

257907-257908, 257914 were substantially less potent across the ALDH1A family, perhaps 
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reflecting a desolvation penalty without formation of productive hydrogen bonds within the 

active site. Benzyl analog 257726 inhibited 1A1 and 1A2 with good selectivity over 1A3.  

Homologation to phenylethyl analog 258081 resulted in potent inhibition of 1A3 (IC50 = 180 

nM) with more than 5-fold selectivity over 1A1 and 1A2 and greater selectivity over other 

ALDH isoforms as shown in Figure 3.3.  Methyl and cycloalkyl groups at R
3
 were not tolerated 

(258074, 258466-258468).  The steep SAR at R
3
, inconsistent with partial solvent exposure, was 

further evidence that the binding mode depicted in the crystal structure of CM39 was no longer 

relevant.   

 

Figure 3.3 Isoform Selectivity of Compound 258081 

Fraction of enzyme activity remaining for 9 ALDH 

isoforms in the presence of 20 µM 258081. 

(Unpublished work, courtesy of Hurley Lab) 

 

 

3.4. Crystal Structure of ALDH1A1 Complexed with Compound 258083 
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To elucidate the change in binding mode we suspected, the Hurley lab obtained a co-crystal 

structure of N121S ALDH1A1 with compound 258083 resolved to 2.0Å (PDB code 6DUM) 

(Figure 3.4).  The structure reveals a dramatically different binding pose for 258083 in which the 

R
3
 N-phenyl is situated near the catalytic cysteine.  The N-phenyl is flanked by Phe171 and 

Phe466, potentially explaining why steric bulk and polarity are not tolerated at the ortho and 

meta positions (Table 3.3).  It is more difficult to justify why para substituents are so poorly 

tolerated.  In contrast to the binding pose of compound CM39, there is room for fairly large N-2 

pyrazole substituents to extend across the mouth of the active site.  Consistent with this 

observation, larger substituents at N-2 improve 1A1 potency (257906 and 258083) relative to 

methyl analog 257902.  As expected, given that large substituents at N-1 would project into 

solvent, compounds with larger N-1 substituents (e.g. 257904-257905, 258084) do not improve 

potency over methyl analog 257723.  

  

Figure 3.4 258083-1A1 Crystal Structure 

(A) X-Ray crystal structure of 258083 bound to ALDH1A1 (PDB code 6DUM). (B) Overlay of 

compounds CM39 (PDB code 5TEI) (Orange) and 258083 (Green). (Unpublished work, 

courtesy of Hurley Lab) 

 

A B 
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3.5. Homology Models to Explain Isoform Selectivity 

 

Homology models for 1A2 and 1A3 and docking experiments were performed by the 

Neamati lab to rationalize the selectivity trends we observed among the ALDH1A isoforms. At 

the time the studies were conducted there were no crystal structures for 1A2 or 1A3 of sufficient 

quality to inform drug design. We later validated our 1A2 homology model with the recently 

published 1A2 crystal structure (PDB:6B5H).
98

  The average RMSD between the two 1A2 

structures was 0.76 Å, indicative of an excellent homology model. The docking method was 

validated by comparing the CM39 and 258083 docking poses in 1A1 to their respective 

crystallographic poses.  Good agreement (1.0 and 0.8 Å) was observed for CM39 and 258083, 

respectively.  

 

 

Figure 3.5 1A2 and 1A3 Homology Models Provide Rationale for 1A1 Selectivity of CM39  

(A) Val460 does not clash with o-methyl substituent of N-Phenyl in ALDH1A1-CM39 structure. 

(B, C) Docking poses of CM39 in ALDH1A2 and ALDH1A3, respectively. Red arrow indicates 

that in both ALDH1A2 and A3, 2-methyl substituent at phenyl clashes with Leu477/471. 

(Unpublished work, courtesy Neamati Lab) 

 

As shown in Figure 3.5, the docking studies suggest that the smaller 1A1 specific residue 

Val460 accomodates the o-methyl substituent of CM39, while the bulkier leucine at the 

A B C 
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corresponding position in 1A2 and 1A3 clashes. This result is consistent with the observed 1A1 

selectivity of CM39. 

 

 

Figure 3.6 Homology Model Docking of 258085 

Compound 258085 docked in the active site of 1A1 (A), 1A2 (B) and 1A3 (C). (Unpublished 

work, courtesy Neamati Lab) 

 

Given that the large N-2 pyrazole substituents should preclude binding in the CM39-like 

binding mode, we also wanted to rationalize the continued ability of the o-methyl substituent to 

promote 1A1 selectivity in the N-2 substituted analogs. The docking pose for 258085 in the 1A1 

active site (Figure 3.6A) agrees with the 258083 crystal structure (Figure 3.4).  258085 docks 

into 1A2 and 1A3 in a similar manner.  For both 258083 and 258085, the ortho position of the N-
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Phenyl is situated near the 1A1 specific Val460 and the bulkier corresponding leucine in 1A2 

and 1A3. We hypothesize that the 1A1 selectivity of  257912 and 257913 arises from clash of the 

o-methyl with this leucine in 1A2 and 1A3.  

3.6. Confirming Activity in Live Cells 

 

 The Buckanovich Lab next performed the ALDEFLUOR assay (Stem Cell Technologies) 

in PEO1 and OVCAR5 cells, cancer cell lines with high ALDH activity (predominantly 1A3), to 

confirm ALDH inhibition in live cells (Figure 3.7A, B). PEO-1 is a high grade serous ovarian 

cancer cell line.
99

 OVCAR5, a commonly used cell line originally classified as high grade serous 

ovarian, may be gastrointestinal in origin.
100

  The pan-ALDH1A inhibitors 258082-258083, and 

258085 all exhibited strong inhibition of ALDEFLUOR signal with significant activity in both 

cell lines at 1 µM and reductions of greater than 50% at 10 µM.  Similar to CM39 (1A1 

selective), 258464 (1A2 selective) had little effect on ALDH activity at concentrations up to 30 

µM. In contrast to CM39, 258464 had 55 µM thermodynamic aqueous solubility (Analiza inc.) 

ruling out poor solubility as an alternative explanation for the lack of activity. Poor cell 

penetrance is also an unlikely explanation for this lack of activity, as 258464 has a lower TPSA, 

MW, and fewer rotatable bonds than the efficacious pan-inhibitors. 

 As mentioned in Chapter 1, the surface glycoprotein CD133 has also been used as a 

marker of stemness in many cancers including ovarian cancer, and its expression is correlated 

with poorer patient outcomes in ovarian cancer.
18, 101

 Treating PEO1 and OVCAR5 cells with the 

pan-ALDH1A inhibitors 258082-258083, and 258085 also elicited a dose dependent preferential 

reduction in the percentage of CD133
+
 cells (Figure 3.7C, D). The 1A2 selective 258464 had a 
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less pronounced effect. Considering that 673A also depleted CD133
+
 cells, this suggests that the 

CD133
+
 depletion is indeed an on-target effect.  

 

Figure 3.7 Pan-ALDH1A Inhibitors Engage ALDH in Cells and Deplete Cells Bearing 

Putative CSC Marker CD133 

 (A, B) Graphs showing changes in ALDEFLUOR activity in PEO1 (A) and OVCAR5 (B) cells 

following the specified treatment (N=3). (C, D) Graphs showing changes in the CD133
+
 cell 

population as determined by flow cytometry following 48 h drug treatment of PEO1 (C) and 

OVCAR5 (D) at the specified concentration (N=3-6). *p≤0.05, **p≤0.01, ***p≤0.0001. 

(Unpublished work, courtesy Buckanovich Lab) 

 

3.7. Evaluation of Synergy with Cisplatin  

 

 ALDH1A family members are known to play a role in resistance to multiple 

chemotherapy agents, 
102-105

 and a reduction in their activity has been shown to restore sensitivity 

(as shown in Chapter 1 for 673A).
32-38, 106-108

 Therefore, the Buckanovich lab investigated the 

A B 

D C 
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ability of our pan-ALDH1A inhibitors to increase sensitivity to and potentially synergize with 

cisplatin in PEO1 and OVCAR5 cells. Using the Chou-Talalay method, we determined that the 

pan-ALDH1A inhibitors 258082-258083, and 258085 are highly synergistic (Combination Index 

values <1 indicate synergy with smaller numbers indicating stronger synergy) with cisplatin 

(Figure 3.7 A,B).
109

  The observed synergy for 258082 and 258083 at 1 µM was already strong 

but it was improved by increasing the concentration of these compounds to 10 µM. While 

258082 and 258083 alone did not show cytotoxicity at these doses, 258085 did and, therefore, 

had to be tested at lower doses. Nonetheless, synergy with 258085 was observed at 

concentrations as low as 0.3 µM. The ALDH1A2 selective inhibitor, 258464, also showed 

synergy but was overall less effective than any of the pan inhibitors.  

The Mehta lab evaluated synergy using primary patient derived samples in a 3-D tumor 

spheroid assay; a platform which mimics in vivo growth (Figure 3.7C).
110-111

 As 258085 showed 

comparable synergy to 258082 and 258083 at 3-fold lower concentrations in the initial synergy 

studies, we tested this compound.   Ovarian cancer spheroids, compared to 2D monolayer 

culture, are more resistant to standard therapies and express higher levels of ALDH1A1.
36, 112

  

Treatment of patient derived ovarian cancer spheroids with 0.3 µM 258085 did not significantly 

reduce viability as monotherapy.  However it was highly synergistic with all three concentrations 

of cisplatin tested (Figure 3.7C, Combination indices 0.08-0.27).
109
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Figure 3.8 Compounds 258082, 258083, and 258085 Synergistically Enhance the Effect of 

Cisplatin on Ovarian Cancer Cell Lines and Patient Derived Spheroids. 

 (A, B) Representative heatmaps of combination indices for PEO1 (A) and OVCAR5 (B) cells 

cultured for 72 h in the presence of cisplatin and the indicated ALDH inhibitor at the 

concentrations shown. (N=3) (C) Normalized average viability as determined using Alamarblue 

dye following exposure to the specified compounds for 72 hours. (N=5-8) *p≤0.05, 

****p≤0.0001 one way ANOVA compared to Control. Combination indices for the specified 

drug combinations calculated using CompuSyn software. (CI < 1 indicates synergy) 

(http://www.combosyn.com).
109

  (Unpublished work, courtesy Buckanovich and Mehta Labs) 

  

C 

A 

B 
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3.8. Evaluation of In Vivo Metabolic Stability 

 

Table 3.4 In Vivo Exposure Following IP Injection in Mice. 

Compound 

(dose) 

Plasma Concentration (µM) AUC0-7h
obs

 

(hr∙µM) 
0.5 h 2 h 4 h 7 h 

257723  

(20 mg/kg) 

24.3 ± 4.1 5.1  ± 0.7 1.0 ± 0.6 0.2 ± 0.2 36 

258083 

(10mg/kg) 

7.6 ± 0.8 5.2 ± 1.0 3.0 ± 1.3 0.9 ± 0.7 27.8 

258085 

(10mg/kg) 

5.6 ± 0.2 2.6 ± 0.6 0.6 ± 0.2 0.1 ± 0.1 11 

Compounds at the specified doses were administered by a single intraperitoneal injection 

of the specified dose to CD-1 mice. Values expressed as Mean ± S.D for 3 mice at each 

timepoint. (Unpublished work, courtesy of Sun Lab) 

 

Our most potent pan-inhibitor at the time (257723) and our two most promising compounds in 

cells (258083, 258085) were submitted for a preliminary study of exposure following IP 

injection (Table 3.4). 257723 demonstrated the highest AUC, driven by a high Cmax, but it was 

given at twice the dose of the other two compounds. It was cleared the fastest of the three 

compounds, consistent with its short MLM t1/2 (8 min).  Despite 258083 and 258085 having very 

similar MLM t1/2 (23 and 27 min, respectively), the AUC for 258083 was more than double that 

of 258085.  258083 achieved a higher maximal concentration and appeared to be more resistant 

to clearance. The greater plasma exposure of 258083 could also reflect less partitioning into the 

tissue (Lower VD) given its cLogP is lower than 258085. Importantly, plasma concentrations of 

258083 exceeded 1 µM, the concentration needed for 50% inhibition of ALDEFLUOR (Figure 

3.7B), for nearly 7 hours. Compound 258085 exceeded 0.3 µM, an efficacious dose in the 

spheroid cisplatin synergy assay (Figure 3.8C), for almost 4 hours.   
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3.9. Efficacy of 258085 in Xenograft Studies 

 

 

 

 

Figure 3.9 258085 Reduces OVSAHO Xenograft Tumor Volume as a Single Agent 

Mice were engrafted bilaterally with OVSAHO cells, generating two tumors in each mouse. 

Five days after engraftment mice were injected with the specified compound(s) or vehicle 

(258085 10mg/kg i.p. q.d.), (cisplatin 1mg/kg i.p. weekly). 18 days post injection, the mice 

were sacrificed to obtain tumor weight. (Unpublished work, courtesy Buckanovich Lab) 

 

In light of the promising results in the spheroid assay, the Buckanovich lab next assessed 

the impact of our pan-ALDH1A inhibitor 258085 against a xenograft of the ovarian cancer cell 

line OVSAHO in mice. To assess any dose limiting toxicities for 258085, we treated Nod-scid 

gamma (NSG) mice with 20mg/kg 258085 i.p. q.d. for 7 days. Mice in the treatment group lost 

15% body weight compared to 5% for vehicle and showed some enlargement of the spleen.  
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Because of concern that these effects combined with the adverse effects associated with cisplatin 

treatment would not be tolerated, we decided to dose at 10mg/kg 258085 in the xenograft 

studies. As shown in Figure 3.9, as a single agent, 258085 significantly inhibited tumor growth.  

Disappointingly, cisplatin alone appeared to be slightly more effective at inhibition of tumor 

growth than combination therapy with cisplatin + 258085 or 258085. This contrasts significantly 

with the in vitro results. Compared to the cisplatin cohort, mice in the combination therapy arm 

exhibited subjectively less of the characteristic behavior associated with cisplatin treatment, 

suggesting that cisplatin may be reacting with 258085 or the DMSO vehicle and reducing 

systemic exposure for the drug. Although the two drugs were administered in separate injections 

in close succession, the reactivity of cisplatin and DMSO is well-known, and 258085 contains 

aza-heterocycle and thioether motifs which could also potentially inactivate cisplatin.
113-115

 

Future in vivo studies will employ dosing regimens with temporally or spatially separate 

administration of cisplatin and the ALDH inhibitors. 

3.10. Conclusions 

 

 In order to assess the suitability of a novel series of pan-ALDH1A inhibitors as a 

treatment to deplete cancer stem cells and/or potentiate chemotherapy in ovarian cancer, we 

generated a number of analogs of lead compound CM39 guided by a co-crystal structure with 

1A1. Expedient synthetic routes were developed to allow late-stage diversification at multiple 

sites. The observation that the ortho-methyl group on the N-phenyl was unfavorable to binding 

across the ALDH1A family led to the first potent pan ALDH1A inhibitor with excellent 

selectivity over ALDH2 (257723). Small structural changes led to a new binding mode for 

compound 258083, explaining SAR trends which did not agree with the 1A1 crystal structure for 
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lead compound CM39. We demonstrated that significant changes in ALDH1A isoform-

selectivity can be achieved by minor structural changes to the N-phenyl substituent, which binds 

in the narrow lipophilic region of the active site near the catalytic cysteine according to the 

258083-1A1 structure.  In the course of exploring SAR at this position we discovered the 1A2 

selective compounds 258464 and 258077, and the 1A3 selective compounds 258078 and 258081. 

To our knowledge, these are the first examples of 1A2 and 1A3 selective inhibitors with no 

activity against ALDH2, which should prove useful for probing the function of these specific 

isoforms.  

 Our primary objective of obtaining pan-ALDH1A inhibitors with cellular activity was 

realized with exemplary compounds 258082, 258083, and 258085.  The compounds achieved 3-

to-10-fold improvements in 1A1 IC50 vs. lead CM39 and even greater improvements against 1A2 

and 1A3 as well as engaging ALDH in cells as determined by the ALDEFLUOR assay. 

Interestingly the three compounds depleted the CD133
+
 putative stem cell pool in a dose 

dependent manner, and synergized with cisplatin at a range of concentrations.  258085 also 

showed synergy with cisplatin in patient derived ovarian cancer spheroids. Notably, 1A2 

selective 258464 was much less effective in the ALDEFLUOR and CD133 assays, supporting 

our hypothesis that pan-ALDH1A inhibitors will be more effective anticancer agents, perhaps 

due to their ability to overcome any compensating overexpression of alternate ALDH1A 

isoforms. 

 In a preliminary PK study, both 258083 and 258085 cover efficacious concentrations 

following i.p. administration.  Due to its compelling activity in the spheroid assay, 258085 was 

advanced into a xenograft model.  While 258085 was effective at reducing tumor growth as a 

single agent, it appeared to antagonize the effects of cisplatin. In contrast, 258085 was non-toxic 
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as a single agent in the spheroid assay but was highly synergistic with cisplatin. We suspect this 

may result from interaction between 258085 or its vehicle, DMSO, and cisplatin.  Future 

xenograft studies will employ more metabolically stable analogs and may stagger dosing 

schedules or use a different route of administration than for cisplatin.   

 The following chapter will disclose further optimization of this series, focusing on further 

improving enzymatic and cellular potency and pharmacokinetic properties, as well as tuning the 

selectivity profile among the ALDH1A isoforms in order to generate diverse probes for 

determining the contribution of individual isoforms to cellular activity.  

 

3.11. Synthesis of CM39 Analogs 

 

Scheme 3.1 Synthesis of Pyrazole substituted analogs (Table 3.1, Table 3.2).
a
 

 

a
Reagents and conditions: (a) ArNCS, toluene, reflux; (b) 1N NaOH, reflux; (c) 3-F-PhCH2Br, 

K2CO3, DMF, RT; (d) R
1
-X, K2CO3, DMF, 50°C X = Br, OMs 
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As shown in Scheme 3.1, synthesis of N-1 and N-2 pyrazole substituted analogs (Table 

3.1, Table 3.2) began with the commercially available pyrazole 3.1a.
116

 Treatment of 3.1a with 

the appropriate aryl isothiocyanate in refluxing toluene afforded the thioureas 3.1b-c which 

precipitated from the reaction mixture upon cooling. Ring closure to generate thiopyrimidinones 

3.1d-e proceeded in aqueous NaOH at reflux. Selective S-alkylation with 3-fluorobenzyl 

bromide yielded compounds CM39 and 257128. Subsequent N-alkylation resulted in a mixture 

of regioisomers which were easily separated by flash chromatography on silica. Regioisomeric 

assignment was made by NOE; in all cases the N-1 substituted analogs eluted before the 

corresponding N-2 substituted analogs.  

Scheme 3.2 Synthesis of N-Phenyl Modifications (Table 3.3)
a
 

 

a
Reagents and conditions: (a) NaH, CS2, I2, THF, 0-40°C; (b) R

3
-NH2, 3-F-

PhCH2Br, NaH, DMF, 0-20°C(257723, 258463-5, 258962, 257727, 258077-8, 

257907-8); (c) (i) R
3
-NH2, NaH, DMF, 0-20°C(257914, 257726, 258081, 

258466-8); (ii) 3-F-PhCH2Br, K2CO3, DMF, RT; (d) (i) MeNH2, EtOH; (ii) 3-

F-PhCH2Br, K2CO3, DMF, RT (258074). 

 

In a departure from our earlier synthetic strategy, we envisioned an alternative route to R
3 

analogs that would use readily available amines rather than the corresponding isothiocyanates to 

introduce diverse R
3
 substituents as shown in Scheme 3.2. The synthesis of 3.2b has been 

previously accomplished by treating commercially available pyrazole 3.2a with thiophosgene 
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under Schotten-Baumann conditions; however, we found the low yield, difficult purification, and 

use of noxious reagents to be unsatisfactory.
117

 After screening many reported isothiocyanate-

forming conditions employing carbon disulfide as the thiocarbonyl source, we found that 

treatment of 8b with NaH and CS2 followed by the slow addition of I2 afforded 3.2b in good 

yield following a simple purification.
118

 Isothiocyanate 3.2b reacted with amines rapidly under 

mild conditions to form thioureas. Subsequent addition of NaH in the same pot facilitated 

cyclization to the thiopyrimidinone. For the majority of arylamines, adding 3-fluorobenzyl 

bromide at this point completed the transformation of 3.2b to afford R
3
 analogs (257723, 

258463-5, 258962, 257727, 258077-8, 257907-8) in one pot. For alkylamines and 2-

aminopyridine (257914, 257726, 258081, 258466-8), an aqueous workup prior to S-alkylation 

with 3-fluorobenzyl bromide reduced the formation of several unidentified side products. The 

thiourea resulting from treatment of 3.2b with 8N ethanolic methylamine spontaneously cyclized 

to form the thiopyrimidinone. Following removal of volatiles, S-alkylation of this intermediate 

with 3-fluorobenzyl bromide under basic conditions afforded 258074.  

3.12. Experimental Procedures 

 

Crystal Structure Determination (Hurley Lab) 

Crystals of ALDH1A1 N121S were grown by equilibrating 4-8 mg/mL ALDH1A1 N121S 

against 100 mM sodium BisTris, pH 6.2-6.5, 6-11% PEG3350, 200 mM NaCl, and 5-10 mM 

YbCl3. The crystal of ALDH1A1 N121S in complex with CM39 was prepared by soaking 

approximately 2-week old apo crystals for 6 hr in crystallization solution containing 500 µM 

CM39 with 1% (v/v) DMSO and 1 mM NAD. The crystal of ALDH1A1 N121S in complex with 

258083 was prepared by soaking apo crystals for 1 hr in crystallization solution containing 1 mM 
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NAD followed by soaking overnight in crystallization solution containing 500 µM 258083 with 

2% (v/v) DMSO and 1 mM NAD. Cryoprotection for flash-freezing was 20% (v/v) ethylene 

glycol in ligand soaking solution. Diffraction data for CM39 in complex with ALDH1A1 N121S 

was collected at Beamline 23-ID-D (GM/CA), National Institute of General Medicine Sciences 

and National Cancer Institute of the NIH at APS. Diffraction data for 258083 in complex with 

ALDH1A1 N121S was collected at Beamline 19-ID operated by the Structural Biology 

Consortium at the Advance Photon Source (APS), Argonne National Laboratory. Diffraction 

data were indexed, integrated, and scaled using HKL3000.
119

  The CCP4 program suite was used 

for molecular replacement and refinement.
120

 The Coot molecular graphic application was used 

for model building.
121

 The TLSMD (translation/libration/screw motion determination) server was 

used to determine dynamic properties of ALDH1A1 N121S.
122-123

  

 

Protein Purification and Enzymatic Assays (Hurley Lab) 

Human ALDH1A1, ALDH1A2, ALDH1A3, ALDH2, ALDH1B1, ALDH3A1, ALDH4A1, 

ALDH5A1 and rat ALDH1L1 were prepared and purified as previously described. 
41, 124-127

 

Inhibition of ALDH activity by compounds and IC50 curves were determined by measuring the 

formation of NAD(P)H spectrophotometrically at 340 nm (molar extinction coefficient of 6200 

M
-1

 cm
-1

) on the Beckman DU-640 and Spectramax 340PC spectrophotometers using purified 

recombinant enzyme. Reaction components for ALDH1A and ALDH2 assays consisted of 100-

200 nM enzyme, 200 µM NAD
+
, 100 µM propionaldehyde, and 1% DMSO in 25 mM BES 

buffer, pH 7.5. For ALDH1B1, the assay included 500 µM NAD
+
 and 200µM propionaldehyde. 

For ALDH3A1, the assay included 300µM NADP
+
, 20nM enzyme, and 300µM benzaldehyde. 

For ALDH4A1 and ALDH5A1, the assay included 1.5mM NAD
+
, 100nM enzyme, with 20mM 
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propionaldehyde for ALDH4A1 and 2mM propionaldehyde for ALDH5A1. For rat ALDH1L1, 

the assay included 0.5mM NADP
+
, 200nM enzyme ad 4mM propionaldehyde. All assays were 

performed at 25°C and were initiated by addition of substrate after a 2 min incubation period. 

IC50 curves were collected for compounds which substantially inhibited ALDH1A activity at 20 

µM compound. Data were fit to the four parameter EC50 equation using SigmaPlot (v12) and the 

values represent the mean/SEM of three independent experiments (each n=3). 

 

ALDEFLUOR Assay (Buckanovich Lab) 

 PEO1 and OVCAR5 cells were grown in RPMI 1640 media (Corning) containing 2mM 

glutamine, 2mM sodium pyruvate (PEO1 only, Gibco), 10% FBS (Sigma), and 1X Pen/Strep 

(Gibco).  When the cells reached 80% confluency they were harvested by trypsinization and 

assayed for ALDH activity using the aldefluor assay (STEMCELL Technologies). Briefly, the 

cells were washed with PBS before being centrifuged and resuspended in ALDEFLUOR buffer. 

Once the cells were resuspended in ALDEFLUOR buffer, the ALDEFLUOR reagent was added. 

The cells were quickly mixed and evenly distributed into 1.5 mL Eppendorf tubes containing 

inhibitor or vehicle. The tubes were incubated for 30 minutes at 37 °C. Next, the tubes were 

centrifuged, the buffer containing the ALDEFLUOR reagent was removed, and the cells were 

resuspended in fresh ALDEFLUOR buffer that had been kept on ice. The tubes were kept on ice 

until they were analyzed on an Accuri C6 flow cytometer (BD). The percent of control values 

were calculated using the percentage of ALDEFLUOR positive cells for a particular sample and 

the percentage of ALDEFLUOR positive cells in the control sample (vehicle treated). The 

percentage of ALDEFLUOR positive cells was graphed in Prism 7 (GraphPad) and is displayed 

as mean ± SD. The Two-way ANOVA with Tukeys multiple comparison test within Prism 7 
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(GraphPad) was used to determine statistical significance between samples treated with 

compound or vehicle.  

CD133
+
 Cell Assay (Buckanovich Lab) 

PEO1 and OVCAR5 cells were grown in RPMI 1640 media (Corning) containing 2mM 

glutamine, 2mM sodium pyruvate (PEO1 only, Gibco)10% FBS (Sigma), and 1X Pen/Strep 

(Gibco).  When the cells reached 80% confluency they were harvested by trypsinization, washed 

with PBS, and reseeded in 6-well plates at 1 x 10
5
 cells/well. The cells were allowed to recover 

for 24 h, inhibitor or vehicle was added, and the cells were put back into the incubator for 48 h. 

Following the 48 h incubation, the cells were harvested and counted. An equal number of cells 

were isolated from each sample. The cells were washed with PBS and resuspended in fresh PBS. 

CD133/2-APC antibody (Miltenyi Biotec) was added at a dilution of 1:100. The cells were 

mixed and incubated at room temperature for 10 minutes. Next, ten times the volume of PBS was 

added and the cells were centrifuged. The cells were washed with PBS and resuspended in fresh 

PBS that had been kept on ice. The tubes were kept on ice until they could be analyzed on a 

Cytoflex S flow cytometer (CeckmanCoulter). The percentage of CD133 positive cells was 

graphed in Prism 7 (GraphPad) and is displayed as mean ± SD. The Two-way ANOVA with 

Tukeys multiple comparison test within Prism 7 (GraphPad) was used to determine statistical 

significance between samples treated with compound or vehicle. 

Cell Viability and Synergy Assays (Buckanovich Lab) 

PEO1 and OVCAR5 cells were grown in RPMI 1640 media (Corning) containing 2mM 

glutamine, 2mM sodium pyruvate (PEO1 only, Gibco)10% FBS (Sigma), and 1X Pen/Strep 

(Gibco).  When the cells reached 80% confluency they were harvested by trypsinization, washed 
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with PBS, and reseeded in 96-well plates at 4000 cells/well (PEO1) or 1500 cells/well 

(OVCAR5). The cells were allowed to recover for 24 h, inhibitor or vehicle was added, cisplatin 

was added, and the cells were put back into the incubator for 72 h. Following the 72 h 

incubation, the media was removed and a 1X solution of Cell-Titer Glo 2.0 (Promega) was 

added. The plates were mixed and allowed to incubate at room temperature for 10 min before 

luminescence was read. Normalized viability was calculated by comparing the luminesence of 

drug-treated wells to vehicle treated wells and expressed as a percentage. The percentage of 

viable cells was graphed in Prism 7 and all data are displayed as mean ± SD. Synergy was 

assessed using Chou-Talalay method and the CompuSyn program. 
109

   

Hanging drop culture for patient derived spheroid formation (Mehta Lab) 

Graded patient tumor samples (high grade epithelial stage IIIC or IV, obtained from IRB 

approved protocol, and collected from consented patients) were dissected, digested 

enzymatically using a mixture of Collagenase IV/Dispase, recovered by centrifugation and 

filtered through a 500µm mesh to remove large debris. Resulting patient cells were suspended in 

serum-free medium (SFM) supplemented with 5ng/ml FGF, 5ng/ml EGF, B27, 1X insulin-

transferrin-selenium supplement, 1X nonessential amino acids, antibiotics and antimycotics. Cell 

counts were obtained using a hemocytometer and adjusted such that a 20μL volume contained 

100 cells. Similar to previously established protocol, patient derived spheroids were initiated 

using 100 CD133
+
 ALDH

+
 cells per spheroid.

110, 112, 128
 Spheroids were maintained in SFM for a 

period of 10 days, and imaged using live phase contrast microscopy to follow spheroid formation 

and maintenance. 

Drug treatment on patient derived spheroids in hanging drop array culture (Mehta Lab) 
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Patient derived spheroids were initiated in 384-well hanging drop arrays using 100 cells per 

spheroid. Spheroids were allowed to aggregate and form a 3D microtissue over a period of 10 

days. For drug treatment, a 10X stock of drug was prepared independently, and 2μL of drug was 

added to the 20μL hanging drop containing spheroids, to result in a final concentration of 1X. 

Several drug-dosing regimens were carried out, including cisplatin in the range of 1-50μM and 

ALDH inhibitor  258085 in the range of 0.03-.3μM.  

The effect of drug was assayed on spheroids 72 hours, using the alamarBlue assay to determine 

viability after drug treatment. Control untreated spheroids were maintained for the same duration 

in culture. Cell viability after drug treatment was normalized to untreated controls, and 

quantified. At least 20 spheroids (technical replicates) were assayed per experiment, with 5 to 8 

biological replicates. Drug-treated spheroids were imaged using phase-contrast microscopy to 

observe morphologic differences in spheroids exposed to drug compared with control untreated 

spheroids. 

Metabolic activity in hanging drop ovarian cancer spheroids (Mehta Lab) 

AlamarBlue dye (Life Technologies, Carlsbad CA) was added in a 1:10 dilution to 100 

cells/drop spheroids. Following 4 hours of alamarblue addition and incubation, the 384 hanging 

drop array was placed in a fluorescence plate reader (Synergy HT, BioTek Instruments, 

Winooski, VT). Alamarblue fluorescence readings were obtained at 530 nm excitation and 590 

nm emission. To quantify viability within spheroids, alamarblue readings of treated as well 

untreated spheroids were obtained at Day 10, and compared to the untreated Control spheroids. 

Statistical analysis (Mehta Lab) 
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 Drug viability data were determined and quantified using the alamarBlue assay, as outlined 

previously.
110, 112

 Briefly, normalized viability was calculated by comparing the alamarBlue 

fluorescence of drug-treated spheroids to control untreated spheroids and expressed as a 

percentage. Statistical analysis was performed using one-way ANOVAs and levels of statistical 

significance are indicated in the figures. All data are expressed as mean±SEM and are an average 

of at least 5 to 8 independent experiments. 

Metabolic Stability in Mouse Liver Microsomes (Sun Lab) 

The metabolic stability was assessed using CD-1 mouse liver microsomes. 1 μM of each 

compound was incubated with 0.5 mg/mL microsomes and 1.7 mM cofactor -NADPH in 0.1 M 

phosphate buffer (pH = 7.4) containing 3.3 mM MgCl2 at 37 °C. The DMSO concentration was 

less than 0.1% in the final incubation system. At 0, 5, 10, 15, 30, 45, and 60 min of incubation, 

40 µL of reaction mixture were taken out, and the reaction is quenched by adding 3-fold excess 

of cold acetonitrile containing 100 ng/mL of internal standard for quantification. The collected 

fractions were centrifuged at 15000rpm for 10 min to collect the supernatant for LC−MS/ MS 

analysis, from which the amount of compound remaining was determined. The natural log of the 

amount of compound remaining was plotted against time to determine the disappearance rate and 

the half-life of tested compounds.  

Pharmacokinetic Studies in Mice (Sun Lab) 

All animal experiments in this study were approved by the University of Michigan Committee on 

Use and Care of Animals and Unit for Laboratory Animal Medicine (ULAM). The abbreviated 

pharmacokinetics of compounds 257723, 258083, and 258085 were determined in female CD-1 

mice following intraperitoneal (ip) injection of 10 mg/kg respectively. Compounds were 
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dissolved in the vehicle containing 20% DMSO, 50% PEG-400, and 30% PBS. Four blood 

samples (50 μL) were collected over 7 h (at 0.5h, 2h, 4h, and 7h), centrifuged at 35 00 rpm for 10 

min, and plasma was frozen at -80˚C for later analysis. Plasma concentrations of the compounds 

were determined by the LC−MS/MS method developed and validated for this study. The 

LC−MS/MS method consisted of a Shimadzu HPLC system, and chromatographic separation of 

tested compound which was achieved using a Waters Xbridge-C18 column (5 cm × 2.1 mm, 3.5 

μm). An AB Sciex QTrap 4500 mass spectrometer equipped with an electrospray ionization 

source (ABI-Sciex, Toronto, Canada) in the positive-ion multiple reaction monitoring (MRM) 

mode was used for detection. All pharmacokinetic parameters were calculated by 

noncompartmental methods using WinNonlin, version 3.2 (Pharsight Corporation, Mountain 

View, CA, USA).  

Molecular Modeling (Neamati Lab) 

Molecular modeling was performed on a Dell Precision T7400n Mini-Tower, Quad Core Xeon 

Proc X5450 dual processor with 32 nodes computer. 

 

Homology Modeling (Neamati Lab) 

Homology models for ALDH1A2 and 1A3 were built on Swiss-Model Workspace (SMW) using 

ALDH1A1 PDB (PDB code 5TEI) as a template.
129-130

 The homology modeling on SMW can be 

briefly described as alignment of a target sequence and a template sequence using the 

“automated mode” since the similarity between ALDH1A isoforms are approximately 70%. The 

target/template alignment along with 3D coordinates of the template were used as input for 

generating an all-atom model for the target sequence using ProMod3, a comparative modelling 
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engine. Side chains were remodeled using a backbone dependent rotamer library. Finally, the 

geometry of the resulting model was energy minimized by using the force field OpenMM.
129-130

 

Global and per-residue quality of the model was assessed by the QMEAN scoring 

function, where several statistical potential terms, i.e., geometrical features of the model as well 

as each residue (pairwise atomic distances, torsion angles, solvent accessibility, etc.), are 

compared to statistical parameters obtained from experimental structures.
129, 131

 The local scores 

are linear combinations of the four statistical potential terms evaluated on a per residue basis. 

Each residue gets a score between 0 and 1, with 1 being the best.  To assess the overall quality of 

the model, global QMEAN scores were calculated as a Z-score which compares the obtained 

values to scores calculated from a set of high-resolution X-ray structures. GMQE (Global Model 

Quality Estimation) is another global quality estimation which combines properties from the 

target-template alignment.
131

 The resulting GMQE score is between 0 and 1 and expresses the 

accuracy of a model built with that alignment and template. The quality of the model increases as 

the number approaches 1. Additionally, the model quality was evaluated by a Ramachandran plot 

within the PROCHECK server.
132

 PROCHECK assesses the stereo-chemical quality of a protein 

structure. A good quality model would be expected to have over 90% in the most favored 

regions.
133

 

Molecular Docking (Neamati Lab)  

Molecular docking studies were performed using the HYBRID docking program from OpenEye 

Scientific, Santa Fe, NM against ALDH1A isoforms with co-crystal CM39 (PDB code 5TEI) or 

258083 (PDB code 6DUM)  as the reference ligands.
134

 Prior to docking, 500 different 

conformations were generated for each ligand using Omega (OpenEye Scientific, Santa Fe, NM), 

a systematic, knowledge-based conformer generator.
135

  HYBRID performs a systematic, 



104 

 

exhaustive, non-stochastic examination of poses within the protein active site. However, 

HYBRID reduces this search space based on shape and chemical complementarity to reference 

bound ligands. It treats ligand conformers as rigid during the docking process, although ligand 

flexibility is implicitly included by docking multiple conformers of each ligand. The input for 

HYBRID is a protein structure and a multi-conformer representation of the ligand to be docked. 

In the exhaustive search using the Chemical Gaussian Overlay (CGO) scoring function, each 

ligand conformation is systematically rotated and translated within the active site at a resolution 

of 1 Å. Every pose that passes a bump check is scored.
134

 

 

Xenograft Studies (Buckanovich Lab) 

50K OVSAHO cells were resuspended in 50 uL of complete media (RPMI containing 10% FBS 

and 1X pen/strep) and added to a mix of 100 uL of PBS and 100 uL of growth factor reduced 

Matrigel. This mixture was drawn up into an 1 mL syringe with a 27 g needle and stored on ice 

until ready to inject. Bilateral subcutaneous injections were performed on four sets of 5 NSG 

mice such that mice would develop tumors near their front axilli. Tumors were allowed to form 

for 5 days before treatments were begun. Treatment groups were: 1. 10 mg/kg 258085 + 1mg/kg 

cisplatin, 2. 10 mg/kg 258085, 3. 1 mg/kg cisplatin, and 4. vehicle only. The cisplatin was 

delivered in PBS while 258085 prepared such that each injection contained 30 uL DMSO, 75 uL 

PEG-400, and 45 uL PBS. Cisplatin was delivered weekly while 258085 was given daily. 

Tumors were measured starting on day 16 post injection with electronic calipers. Tumor volume 

was determined using the V=L*W*W formula. At the end of the experiment the mice were 

sacrificed and tumors were removed and weighed.  
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General Chemistry Information: All reagents were used in the condition received from 

commercial sources. 
1
H NMR and 

13
C NMR were taken in CDCl3 or DMSO-d6 at room 

temperature on Varian Inova 400 or 500 MHz instruments.  Reported chemical shifts are 

expressed in parts per million (ppm) on the δ scale from an internal standard of tetramethylsilane 

(0 ppm). Mass spectrometry data were obtained on either an Agilent TOF or Agilent Q-TOF. An 

Agilent 1100 series HPLC with an Agilent Zorbax Eclipse Plus−C18 column was used to 

determine purity of biologically tested compounds. All tested compounds were determined to be 

>95% pure using a 6 minute gradient of 10-90% acetonitrile in water followed by a 2 minute 

hold at 90% acetonitrile with detection at 254 nm. Flash chromatographic purifications were 

performed using a Teledyne ISCO Combiflash RF with Redisep Gold RF columns.  

 

6-((3-Fluorobenzyl)thio)-5-(o-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (CM39). To a 

flask charged with potassium carbonate (1.56 g, 11.3 mmol), 3.1b (1.46 g, 5.7 mmol), and 10 mL 

DMF was added 3-fluorobenzyl bromide (0.69 mL, 5.7 mmol).  After stirring under N2 for 16 h 

at RT the reaction was neutralized with sat. aq. NH4Cl and the mixture was diluted with water 
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and extracted 2x with EtOAc.  The combined organic portions were washed 3x with brine and 

then dried with sodium sulfate and the solvent removed.   The crude was purified by flash (50% 

EtOAc in Hex) yielding the titled compound as a white solid (1.26g, 61% yield). HRMS (ESI): 

m/z 367.1022 [M+H]
+
. 

1
H NMR (500 MHz, CDCl3) δ 8.40 (br. s, 1H), 8.15 (s, 1H), 7.40 (t, J = 

8.30 Hz, 1H), 7.34 (d, J = 7.83 Hz, 1H), 7.31 (t, J = 7.83 Hz, 1H), 7.21 (t, J = 7.80 Hz, 1H), 7.18 

(d, J = 7.83 Hz, 1H), 7.07 (d, J = 7.34 Hz, 1H), 7.02 (d, J = 9.29 Hz, 1H), 6.90 (dt, J = 1.96, 8.56 

Hz, 1H), 4.28 (d, J = 13.69 Hz, 1H), 4.31 (d, J = 13.69 Hz, 1H), 2.10 (s, 3H)
 13

C NMR (126 

MHz, CDCl3) δ 162.59 (d, J = 246.5 Hz), 161.52, 157.71, 153.63, 138.25 (d, J = 7.5 Hz), 136.92, 

135.62, 134.42, 131.40, 130.42, 130.01 (d, J = 8.2 Hz), 129.36, 127.37, 124.82 (d, J = 3.2 Hz), 

116.08 (d, J = 21.9 Hz), 114.54 (d, J = 21.1 Hz), 102.86, 36.55, 17.28. HPLC Purity: 99%. 

Method A: General Method for Synthesis of Pyrazolopyrimidinones 3.1b-c. A solution of 

the appropriate isothiocyanate (12.9 mmol), and ethyl 5-amino-1H-pyrazole-4-carboxylate (3.1a) 

(12.9 mmol) in 15 mL toluene was refluxed under N2 for 3 h. The thiourea intermediate, which 

precipitated upon cooling to RT, was collected and added to 10 mL 1N NaOH and refluxed for 3 

h.  The product was precipitated by the addition of concentrated HCl and collected by filtration.  

6-Mercapto-5-(o-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (3.1b). Method A. White 

solid. 44% yield. 
1
H NMR (400 MHz, DMSO-d6) δ 13.77 (br. s., 1H), 13.41 (br. s., 1H), 8.57 (br. 

s., 1H), 7.19 - 7.31 (m, 3H), 7.09 (d, J = 5.87 Hz, 1H), 1.99 (s, 3H). 
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5-Phenyl-6-thioxo-6,7-dihydro-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (3.1c). Method A. 

White solid. 64% yield.  
1
H NMR (500 MHz, DMSO-d6) δ 13.73 (s, 1H), 13.37 (s, 1H), 8.58 (s, 

1H), 7.44 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.4 Hz, 1H), 7.20 (d, J = 7.7 Hz, 2H). 

 

6-((3-Fluorobenzyl)thio)-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (257901). 

Starting from compound 3.1c the titled compound was synthesized and purified in a similar 

manner to compound CM39 and obtained as a white solid. 69% yield. HRMS (ESI): m/z 

353.0867
  
[M+H]

+
.
 1
H NMR (400 MHz, CDCl3) δ 12.54 (br. s., 1H), 8.08 (s, 1H), 7.47 (s, 3H), 

7.30 (s, 2H), 7.14 - 7.22 (m, 1H), 7.06 (d, J = 7.83 Hz, 1H), 7.02 (d, J = 9.39 Hz, 1H), 6.89 (t, J 

= 8.60 Hz, 1H), 4.22 - 4.35 (m, 2H), 
13

C NMR (101 MHz, CDCl3) δ 162.46 (d, J = 246.6 Hz), 

161.46, 158.34, 153.26, 138.12 (d, J = 7.6 Hz), 135.27, 135.13, 129.98, 129.91 (d, J = 9.0 Hz), 

129.60, 129.27, 124.84 (d, J = 2.9 Hz), 116.07 (d, J = 21.8 Hz), 114.42 (d, J = 21.1 Hz), 102.73, 

36.68. HPLC Purity: 99%. 

Method B. General Method for Synthesis of Pyrazole Substituted Analogs (Table 3.1, Table 

3.2). 



108 

 

 To a dry flask charged with CM39 or 257128 (0.27 mmol) and potassium carbonate (0.55 

mmol) under N2 was added 2 mL DMF and the appropriate alkyl halide or mesylate (0.34 mmol) 

by syringe.  The mixture was heated to 50 
o
C for 16 h at which point starting material was 

consumed by HPLC.  The mixture was diluted with ethyl acetate and washed with water and 3x 

with brine.  The organic portion was dried over sodium sulfate and the solvent removed.  The 

regioisomers were separated by flash (EtOAc in Hex gradient).  The 1-alkyl pyrazoles (Table 

3.1) eluted more quickly than the 2-alkyl pyrazoles (Table 3.2). The alkylating reagents used are 

designated below for each compound. All were commercially available except for oxetan-3-

ylmethyl methanesulfonate,
136

 (3-methyloxetan-3-yl)methyl methanesulfonate,
136

 and tert-butyl 

3-(((methylsulfonyl)oxy)methyl)azetidine-1-carboxylate
137

 which were prepared as previously 

described.  

 

6-((3-Fluorobenzyl)thio)-1-methyl-5-(o-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(257128). 

 Method B. Methyl iodide. White solid. 43% yield. HRMS (ESI): m/z 381.1179 [M+H]
+
  

1
H 

NMR (400 MHz, DMSO-d6) δ 8.06 (s, 1H), 7.41 (dt, J = 1.20, 6.40 Hz, 2H), 7.31 - 7.38 (m, 2H), 
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7.23 - 7.31 (m, 3H), 7.06 (tt, J = 1.60, 8.60 Hz, 1H), 4.38 (d, J = 13.30 Hz, 1H), 4.43 (d, J = 

13.30 Hz, 1H), 3.96 (s, 3H), 1.95 (s, 3H) 
13

C NMR (126 MHz, CDCl3) δ 162.63 (d, J = 246.5 

Hz), 161.21, 157.07, 151.01, 138.62 (d, J = 7.4 Hz), 136.93, 135.40, 134.49, 131.41, 130.40, 

130.01 (d, J = 8.4 Hz), 129.35, 127.37, 124.67 (d, J = 2.9 Hz), 116.05 (d, J = 22.0 Hz), 114.54 

(d, J = 21.0 Hz), 102.86, 36.56 (d, J = 2.0 Hz), 34.09, 17.29. HPLC Purity: 97%. 

 

1-ethyl-6-((3-fluorobenzyl)thio)-5-(o-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(257433)  

Method B. Iodoethane. White solid (52mg, 0.132 mmol, 48.3 % yield) MS (ESI): m/z 395.1 

[M+H]
+
 
1
H NMR (400 MHz, CDCl3)  8.04 (s, 1H), 7.42 (t, J = 7.70 Hz, 1H), 7.30 - 7.39 (m, 

2H), 7.25 (s, 1H), 7.16 (d, J = 7.83 Hz, 1H), 7.13 (d, J = 7.83 Hz, 1H), 7.09 (d, J = 9.78 Hz, 1H), 

6.94 (dt, J = 1.57, 8.41 Hz, 1H), 4.41 (q, J = 7.04 Hz, 2H), 4.26 - 4.36 (m, 2H), 2.11 (s, 3H), 1.53 

(t, J = 7.24 Hz, 3H) 
13

C NMR (101 MHz, CDCl3) δ 162.7, 161.0, 157.2, 150.4, 138.8, 137.0, 

135.4, 134.6, 131.4, 130.4, 130.1, 129.4, 127.4, 124.6, 116.0, 114.5, 102.9, 42.4, 36.6, 17.4, 15.0  

HPLC Purity: 98%. 



110 

 

 

1-(Cyclopropylmethyl)-6-((3-fluorobenzyl)thio)-5-(o-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (257724).  

Method B. Cyclopropylmethyl bromide. Colorless oil. 32% yield. HRMS (ESI): m/z 421.1493
 

[M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 8.05 (s, 1H), 7.42 (t, J = 7.80 Hz, 1H), 7.31 - 7.39 (m, 

2H), 7.21 - 7.28 (m, 1H), 7.17 (d, J = 7.34 Hz, 1H), 7.12 (d, J = 7.83 Hz, 1H), 7.07 (d, J = 9.78 

Hz, 1H), 6.94 (dt, J = 2.20, 8.44 Hz, 1H), 4.32 (d, J = 13.69 Hz, 1H), 4.29 (d, J = 14.18 Hz, 1H), 

4.19 (d, J = 7.20 Hz, 2H), 2.12 (s, 3H), 1.32 - 1.44 (m, 1H), 0.62 (td, J = 5.50, 7.80 Hz, 2H), 0.44 

(dt, J = 4.80, 5.50 Hz, 2H) 
 13

C NMR (126 MHz, CDCl3) δ 162.66 (d, J = 246.7 Hz), 160.99, 

157.09, 150.50, 138.64 (d, J = 7.4 Hz), 136.96, 135.33, 134.53, 131.37, 130.36, 130.01 (d, J = 

8.2 Hz), 129.34, 127.33, 124.45 (d, J = 2.7 Hz), 115.81 (d, J = 22.1 Hz), 114.47 (d, J = 21.0 Hz), 

102.82, 52.05, 36.49 (d, J = 1.9 Hz), 17.33, 11.16, 3.97. HPLC Purity: 96%. 

 



111 

 

6-((3-Fluorobenzyl)thio)-1-(oxetan-3-yl)-5-(o-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(257911).  

Method B. 3-Bromooexetane. White solid. 18% yield. HRMS (ESI): m/z 423.1292 [M+H]
+
 
1
H 

NMR (500 MHz, CDCl3) δ 8.14 (s, 1H), 7.41 - 7.46 (m, 1H), 7.32 - 7.39 (m, 2H), 7.24 - 7.29 (m, 

1H), 7.11 - 7.17 (m, 2H), 7.06 - 7.10 (m, 1H), 6.95 (dt, J = 2.20, 8.44 Hz, 1H), 5.91 - 5.99 (m, 

1H), 5.28 - 5.35 (m, 2H), 5.04 - 5.09 (m, 2H), 4.30 (d, J = 13.69 Hz, 1H), 4.34 (d, J = 13.69 Hz, 

1H), 2.10 (s, 1H) 
13

C NMR (126 MHz, CDCl3) δ 162.71 (d, J = 246.9 Hz), 161.93, 156.91, 

151.04, 138.31 (d, J = 7.6 Hz), 136.85, 136.37, 134.35, 131.51, 130.55, 130.10 (d, J = 8.4 Hz), 

129.26, 127.47, 124.57 (d, J = 2.9 Hz), 115.92 (d, J = 22.0 Hz), 114.66 (d, J = 21.1 Hz), 103.38, 

76.85, 50.69, 36.62, 17.32. HPLC Purity: 98%. 

 

6-((3-Fluorobenzyl)thio)-1-(oxetan-3-ylmethyl)-5-(o-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (257910).  

Method B. Oxetan-3-ylmethyl methanesulfonate. White crystalline solid. 42% yield. HRMS 

(ESI): m/z 437.1449 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 8.03 (s, 1H), 7.42 - 7.47 (m, 1H), 

7.33 - 7.40 (m, 2H), 7.25 - 7.31 (m, 1H), 7.17 (d, J = 7.34 Hz, 1H), 7.14 (d, J = 7.34 Hz, 1H), 
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7.06 - 7.11 (m, 1H), 6.97 (dt, J = 2.45, 8.31 Hz, 1H), 4.86 (dt, J = 1.47, 7.09 Hz, 2H), 4.59 - 4.66 

(m, 4H), 4.35 (d, J = 13.69 Hz, 1H), 4.31 (d, J = 14.18 Hz, 1H), 3.52 - 3.61 (m, 1H), 2.12 (s, 3H)
 
 

13
C NMR (126 MHz, CDCl3) δ 162.68 (d, J = 246.7 Hz), 161.69, 156.89, 150.99, 138.43 (d, J = 

7.5 Hz), 136.90, 135.82, 134.41, 131.44, 130.46, 130.08 (d, J = 8.2 Hz), 129.28, 127.40, 124.50 

(d, J = 2.9 Hz), 115.86 (d, J = 22.0 Hz), 114.58 (d, J = 21.3 Hz), 102.85, 74.85, 74.77, 49.40, 

36.64 (d, J = 1.9 Hz), 35.21, 17.32. HPLC Purity: 99%. 

Method C. General Synthesis of Selected R
3

 analogs (Table 3.3) 

 To a dry flask under N2 charged with 3.2b (0.24 mmol) and 2 mL dry DMF was added the 

appropriate amine (0.24 mmol) by syringe.  The reaction was stirred at RT for 1hr and then 

cooled to 0°C.  60 wt.% NaH in mineral oil(0.24 mmol) was added and the flask was stirred at 

0C for 20min then allowed to warm to RT and stirred for 3 h.  The flask was once again cooled 

to 0°C and 3-fluorobenzyl bromide (0.24 mmol) was added by syringe.  The mixture was stirred 

at 0°C for 30 min at which point the reaction was complete by HPLC. The reaction was diluted 

with 10 mL water and extracted 2x with 10 mL EtOAc.  The combined organic portion was 

washed 3x with brine, dried over sodium sulfate and the solvent removed.  The crude product 

was purified by flash (0-100% EtOAc in Hexanes).  
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6-((3-Fluorobenzyl)thio)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(257723). 

Method C. White crystalline solid. 84 % yield. HRMS (ESI): m/z 367.1023 [M+H]
+
 
1
H NMR 

(500 MHz, CDCl3) δ 8.03 (s, 1H), 7.47 - 7.58 (m, 3H), 7.22 - 7.30 (m, 3H), 7.13 (d, J = 7.83 Hz, 

1H), 7.09 (d, J = 9.78 Hz, 1H), 6.95 (dt, J = 2.20, 8.44 Hz, 1H), 4.34 (s, 2H), 4.01 (s, 3H) 
13

C 

NMR (126 MHz, CDCl3) δ 162.67 (d, J = 246.6 Hz), 161.31, 157.68, 150.89, 138.47 (d, J = 7.4 

Hz), 135.50, 135.42, 130.11, 130.06 (d, J = 8.3 Hz), 129.75, 129.36, 124.76 (d, J = 3.1 Hz), 

116.15 (d, J = 21.9 Hz), 114.61 (d, J = 21.0 Hz), 102.95, 36.88, 34.12. HPLC Purity: 98%. 

 

1-ethyl-6-((3-fluorobenzyl)thio)-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (257904) 

Method B. Iodoethane. White Solid (43mg, 0.113 mmol, 49.8 % yield) MS (ESI): m/z 381.1175  

[M+H]
+
 
1
H NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 7.46 - 7.56 (m, 3H), 7.24 - 7.31 (m, 2H), 
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7.21 (dd, J = 6.26, 7.83 Hz, 1H), 7.12 (d, J = 7.83 Hz, 1H), 7.06 (d, J = 9.78 Hz, 1H), 6.91 (dt, J 

= 1.76, 8.51 Hz, 1H), 4.40 (s, 2H), 4.33 (q, J = 7.43 Hz, 2H), 1.61 (t, J = 7.43 Hz, 3H)  
13

C NMR 

(101 MHz, CDCl3) δ 162.7, 159.9, 158.7, 158.1, 138.5, 135.6, 130.0, 130.0, 129.9, 129.6, 127.8, 

125.0, 116.3, 114.5, 104.6, 48.6, 37.0, 15.4. HPLC Purity: 99% 

 

1-(Cyclopropylmethyl)-6-((3-fluorobenzyl)thio)-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (257905) 

Method B. Cyclopropylmethyl bromide. White Solid. 47.7 % yield. HRMS (ESI): m/z 407.1335
 

[M+H]
+
 
1
H NMR (400 MHz, CDCl3) δ 8.05 (s, 1H), 7.48 - 7.57 (m, 3H), 7.20 - 7.33 (m, 3H), 

7.12 (d, J = 7.83 Hz, 1H), 7.08 (d, J = 9.39 Hz, 1H), 6.95 (t, J = 8.41 Hz, 1H), 4.31 (s, 2H), 4.19 

(d, J = 7.04 Hz, 2H), 1.38 (s, 1H), 0.54 - 0.69 (m, 2H), 0.36 - 0.50 (m, 2H) 
13

C NMR (101 MHz, 

CDCl3) δ 162.69 (d, J = 246.7 Hz), 161.07, 157.71, 150.37, 138.46 (d, J = 7.6 Hz), 135.53, 

135.35 (d, J = 3.7 Hz), 130.07, 130.05 (d, J = 8.1 Hz), 129.72, 129.35, 124.55 (d, J = 2.9 Hz), 

115.92 (d, J = 21.9 Hz), 114.54 (d, J = 21.3 Hz), 102.91, 52.05, 36.82, 11.22, 3.98. HPLC Purity: 

99%. 
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6-((3-Fluorobenzyl)thio)-1-(oxetan-3-yl)-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(258082) 

 Method B. 3-bromooexetane. White solid. 15.5 % yield. HRMS (ESI): m/z 409.1131 [M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 8.13 (s, 1H), 7.50 - 7.57 (m, 3H), 7.21 - 7.31 (m, 3H), 7.12 (d, J = 

7.83 Hz, 1H), 7.08 (d, J = 9.29 Hz, 1H), 6.92 - 6.99 (m, 1H), 5.94 (quin, J = 7.21 Hz, 1H), 5.30 

(t, J = 6.36 Hz, 2H), 5.06 (t, J = 7.09 Hz, 2H), 4.33 (s, 2H) 
13

C NMR (126 MHz, CDCl3) δ 

162.71 (d, J = 246.6 Hz), 161.98, 157.48, 150.90, 138.14 (d, J = 7.4 Hz), 136.33, 135.33, 130.22, 

130.12 (d, J = 8.3 Hz), 129.82, 129.25, 124.64 (d, J = 2.9 Hz), 115.99 (d, J = 22.1 Hz), 114.69 

(d, J = 21.1 Hz), 103.47, 76.81, 50.75, 36.91. HPLC Purity: 96%. 

 

6-((3-Fluorobenzyl)thio)-1-(oxetan-3-ylmethyl)-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (258084)  
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Method B. Oxetan-3-ylmethyl methanesulfonate. White solid. 32.5 % yield. HRMS (ESI): m/z 

423.1289 [M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 8.00 (s, 1H), 7.48 - 7.56 (m, 3H), 7.23 - 7.31 

(m, 3H), 7.14 (d, J = 7.83 Hz, 1H), 7.08 (d, J = 9.78 Hz, 1H), 6.92 - 6.98 (m, 1H), 4.83 (t, J = 

7.09 Hz, 2H), 4.62 (d, J = 7.34 Hz, 2H), 4.60 (t, J = 6.10 Hz, 2H), 4.32 (s, 2H), 3.48 - 3.59 (m, 

1H) 
13

C NMR (126 MHz, CDCl3) δ 162.59 (d, J = 246.6 Hz), 161.67, 157.39, 150.77, 138.22 (d, 

J = 7.6 Hz), 135.68, 135.34, 130.05, 130.2 (d, J = 7.6) 129.99, 129.67, 129.21, 124.51 (d, J = 3.0 

Hz), 115.84 (d, J = 22.0 Hz), 114.52 (d, J = 21.0 Hz), 102.84, 74.67, 49.29, 36.85, 35.15. HPLC 

Purity: 99%. 

 

6-((3-Fluorobenzyl)thio)-2-methyl-5-(o-tolyl)-2H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(257432) 

 Method B. Methyl iodide. Colorless Oil. 27% yield. HRMS (ESI): m/z 381.1179 [M+H]
+
 
1
H 

NMR (500 MHz, CDCl3) δ 8.03 (s, 1H), 7.40 (t, J = 7.58 Hz, 1H), 7.29 - 7.36 (m, 2H), 7.19 - 

7.25 (m, 1H), 7.17 (d, J = 7.83 Hz, 1H), 7.13 (d, J = 7.83 Hz, 1H), 7.07 (d, J = 9.78 Hz, 1H), 

6.91 (dt, J = 2.00, 8.30 Hz, 1H), 4.33 - 4.42 (m, 2H), 4.07 (s, 3H), 2.10 (s, 3H) 
13

C NMR (126 

MHz, CDCl3) δ 162.61 (d, J = 246.1 Hz), 159.88, 158.40, 157.99, 138.73 (d, J = 7.4 Hz), 137.12, 
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134.53, 131.25, 130.26, 129.89 (d, J = 8.5 Hz), 129.59, 129.31, 127.20, 124.93 (d, J = 2.9 Hz), 

116.09 (d, J = 21.6 Hz), 114.34 (d, J = 21.1 Hz), 104.89, 40.29, 36.60 (d, J = 2.1 Hz), 17.29. 

HPLC Purity: 99%. 

 

2-ethyl-6-((3-fluorobenzyl)thio)-5-(o-tolyl)-2H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(257434) 

Method B. Iodoethane. Colorless oil (30mg, 0.076 mmol, 27.9 % yield) MS (ESI): m/z 395.1
  

[M+H]
+
 
1
H NMR (400 MHz, CDCl3) δ 8.08 (s, 1H), 7.41 (t, J = 7.40 Hz, 1H), 7.28 - 7.37 (m, 

2H), 7.19 - 7.26 (m, 1H), 7.17 (d, J = 7.83 Hz, 1H), 7.12 (d, J = 7.83 Hz, 1H), 7.06 (d, J = 9.78 

Hz, 1H), 6.91 (t, J = 8.41 Hz, 1H), 4.40 (s, 2H), 4.33 (q, J = 7.43 Hz, 2H), 2.11 (s, 3H), 1.61 (t, J 

= 7.43 Hz, 3H)  
13

C NMR (101 MHz, CDCl3)  162.7, 159.9, 158.3, 158.2, 138.7, 137.2, 134.6, 

131.3, 130.3, 130.0, 129.6, 127.9, 127.3, 125.0, 116.2, 114.4, 104.6, 48.6, 36.7, 17.4, 15.4. 

HPLC Purity: 98% 
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2-(Cyclopropylmethyl)-6-((3-fluorobenzyl)thio)-5-(o-tolyl)-2H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (257725) 

Method B. Cyclopropylmethyl bromide. White Crystalline solid. 38% yield. HRMS (ESI): m/z 

421.1492 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 8.21 (s, 1H), 7.40 (t, J = 7.34 Hz, 1H), 7.28 - 

7.36 (m, 2H), 7.19 - 7.25 (m, 1H), 7.17 (d, J = 7.83 Hz, 1H), 7.12 (d, J = 7.83 Hz, 1H), 7.06 (d, J 

= 9.78 Hz, 1H), 6.91 (t, J = 8.31 Hz, 1H), 4.41 (d, J = 14.18 Hz, 1H), 4.38 (d, J = 14.20 Hz, 1H), 

4.13 (d, J = 6.85 Hz, 2H), 2.12 (s, 3H), 1.36 - 1.47 (m, 1H), 0.69 - 0.78 (m, 2H), 0.42 - 0.49 (m, 

2H) 
13

C NMR (126 MHz, CDCl3) δ 162.58 (d, J = 246.2 Hz), 159.74, 158.16, 158.10, 138.60 (d, 

J = 7.3 Hz), 137.13, 134.55, 131.22, 130.21, 129.87 (d, J = 8.4 Hz), 129.58, 127.85, 127.17, 

124.90 (d, J = 3.1 Hz), 116.08 (d, J = 21.9 Hz), 114.32 (d, J = 21.2 Hz), 104.54, 58.20, 36.64, 

17.30, 10.71, 4.19. HPLC Purity: 97%. 
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6-((3-Fluorobenzyl)thio)-2-(oxetan-3-yl)-5-(o-tolyl)-2H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(257913)  

Method B. 3-Bromooexetane. White solid. 15% yield. HRMS (ESI): m/z 423.1295 [M+H]
+
 
1
H 

NMR (500 MHz, CDCl3) δ 8.21 (s, 1H), 7.39 - 7.45 (m, 1H), 7.30 - 7.37 (m, 2H), 7.23 (dt, J = 

5.87, 7.83 Hz, 1H), 7.15 - 7.19 (m, 1H), 7.12 (d, J = 7.83 Hz, 1H), 7.04 - 7.09 (m, 1H), 6.92 (dt, 

J = 1.96, 8.56 Hz, 1H), 5.53 - 5.62 (m, 1H), 5.23 (t, J = 6.60 Hz, 2H), 5.10 (t, J = 7.34 Hz, 2H), 

4.38 - 4.46 (m, 2H), 2.11 (s, 3H) 
13

C NMR (126 MHz, CDCl3) δ 162.70 (d, J = 246.7 Hz), 

160.89, 158.58, 157.91, 138.34 (d, J = 7.8 Hz), 137.11, 134.40, 131.36, 130.41, 130.00 (d, J = 

8.2 Hz), 129.58, 128.09, 127.31, 124.97 (d, J = 3.2 Hz), 116.18 (d, J = 22.2 Hz), 114.51 (d, J = 

21.0 Hz), 105.25, 76.81 (d, J = 2.7 Hz), 56.83, 36.87, 17.34. HPLC Purity: 96%. 

 

6-((3-Fluorobenzyl)thio)-2-(oxetan-3-ylmethyl)-5-(o-tolyl)-2H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (257912)  

Method B. Oxetan-3-ylmethyl methanesulfonate. Colorless oil. 24.3 % yield. HRMS (ESI): m/z 

437.1449 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 8.07 (s, 1H), 7.38 - 7.44 (m, 1H), 7.29 - 7.37 

(m, 2H), 7.22 (dt, J = 6.11, 7.95 Hz, 1H), 7.16 (d, J = 7.34 Hz, 1H), 7.10 (d, J = 7.83 Hz, 1H), 
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7.05 (dd, J = 1.96, 9.78 Hz, 1H), 6.91 (dt, J = 2.45, 8.31 Hz, 1H), 4.88 (t, J = 7.09 Hz, 2H), 4.59 

(d, J = 7.83 Hz, 2H), 4.55 (t, J = 6.36 Hz, 2H), 4.35 - 4.43 (m, 2H), 3.62 - 3.71 (m, 1H), 2.11 (s, 

3H) 
13

C NMR (126 MHz, CDCl3) δ 162.66 (d, J = 246.2 Hz), 160.42, 158.56, 157.96, 138.42 (d, 

J = 7.7 Hz), 137.13, 134.45, 131.32, 130.36, 129.96 (d, J = 8.3 Hz), 129.57, 128.70, 127.28, 

124.95 (d, J = 2.6 Hz), 116.18 (d, J = 21.9 Hz), 114.45 (d, J = 21.1 Hz), 104.89, 74.48 (d, J = 2.7 

Hz), 55.85, 36.79, 35.36, 17.35. HPLC Purity: 99%. 

 

6-((3-Fluorobenzyl)thio)-2-methyl-5-phenyl-2H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(257902) 

Method B. Methyl Iodide. White solid. 24.0 % yield. HRMS (ESI): m/z 367.1021  [M+H]
+
 
1
H 

NMR (500 MHz, CDCl3) δ 8.02 (s, 1H), 7.46 - 7.56 (m, 3H), 7.26 - 7.31 (m, 2H), 7.23 (q, J = 

7.34 Hz, 1H), 7.14 (d, J = 7.83 Hz, 1H), 7.08 (d, J = 9.29 Hz, 1H), 6.92 (t, J = 8.07 Hz, 1H), 4.39 

(s, 2H), 4.07 (s, 3H) 
13

C NMR (126 MHz, CDCl3) δ 162.64 (d, J = 246.3 Hz), 159.88, 158.52, 

158.23, 138.61 (d, J = 7.6 Hz), 135.54, 129.91 (d, J = 8.3 Hz), 129.91, 129.57, 129.54, 129.25, 

124.98 (d, J = 3.2 Hz), 116.17 (d, J = 21.9 Hz), 114.38 (d, J = 21.3 Hz), 104.95, 40.28, 36.90. 

HPLC Purity: 96%.  
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2-Ethyl-6-((3-fluorobenzyl)thio)-5-phenyl-2H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (257903)  

Method B. Iodoethane White Solid (8mg, 0.021 mmol, 9.26 % yield) M+H found: MS (ESI): m/z 

381.1178 
 
[M+H]

+ 1
H NMR (500 MHz, CDCl3) δ 8.04 (s, 1H), 7.49 - 7.57 (m, 3H), 7.23 - 7.32 

(m, 3H), 7.14 (d, J = 7.83 Hz, 1H), 7.10 (d, J = 9.78 Hz, 1H), 6.95 (dt, J = 2.20, 8.44 Hz, 1H), 

4.41 (q, J = 7.01 Hz, 2H), 4.33 (s, 2H), 1.53 (t, J = 7.09 Hz, 3H) 
13

C NMR (126 MHz, CDCl3) δ 

162.7, 161.1, 157.7, 150.2, 138.7, 135.6, 135.4, 130.1, 130.1, 129.8, 129.4, 124.7, 116.1, 114.6, 

103.0, 42.5, 36.8, 15.0 HPLC Purity: 96% 

 

2-(Cyclopropylmethyl)-6-((3-fluorobenzyl)thio)-5-phenyl-2H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (257906) 

 Method B. Cyclopropylmethyl bromide. White Solid. 36.8 % yield. HRMS (ESI): m/z 407.1334  

[M+H]
+
  

1
H NMR (400 MHz, CDCl3) δ 8.19 (s, 1H), 7.42 - 7.58 (m, 3H), 7.27 (d, J = 4.30 Hz, 
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2H), 7.16 - 7.24 (m, 1H), 7.11 (d, J = 7.43 Hz, 1H), 7.06 (d, J = 9.78 Hz, 1H), 6.90 (t, J = 8.41 

Hz, 1H), 4.39 (s, 2H), 4.12 (d, J = 7.04 Hz, 2H), 1.34 - 1.49 (m, 1H), 0.72 (d, J = 7.83 Hz, 2H), 

0.44 (d, J = 4.30 Hz, 2H) 
13

C NMR (101 MHz, CDCl3) δ 162.7, 159.8, 158.8, 158.0, 138.5, 

135.6, 130.0, 129.9, 129.6, 129.6, 127.9, 125.0, 116.2, 114.4, 104.7, 58.3, 37.0, 10.5, 4.3. HPLC 

Purity: 99%. 

 

6-((3-Fluorobenzyl)thio)-2-(oxetan-3-yl)-5-phenyl-2H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(258083) 

Method B. 3-bromooexetane. White solid. 21.6 % yield.  HRMS (ESI): m/z 409.1130 [M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 8.20 (s, 1H), 7.46 - 7.54 (m, 3H), 7.26 - 7.31 (m, 2H), 7.19 - 7.25 

(m, 1H), 7.12 (d, J = 7.34 Hz, 1H), 7.06 (d, J = 9.78 Hz, 1H), 6.92 (dt, J = 1.71, 8.44 Hz, 1H), 

5.56 (quin, J = 6.97 Hz, 1H), 5.21 (t, J = 6.60 Hz, 2H), 5.07 (t, J = 7.34 Hz, 2H), 4.42 (s, 2H) 
13

C 

NMR (126 MHz, CDCl3) δ 162.71 (d, J = 246.3 Hz), 160.83, 158.50, 158.42, 138.22 (d, J = 7.4 

Hz), 135.42, 130.09, 130.02 (d, J = 6.8Hz), 129.68, 129.58, 128.18, 125.05 (d, J = 3.0 Hz), 

116.26 (d, J = 21.9 Hz), 114.55 (d, J = 21.1 Hz), 105.26, 76.82, 56.81, 37.17. HPLC Purity: 

96%. 
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 6-((3-Fluorobenzyl)thio)-2-(oxetan-3-ylmethyl)-5-phenyl-2H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (258085) 

Method B. Oxetan-3-ylmethyl methanesulfonate. White solid. 22.5 % yield. HRMS (ESI): m/z 

423.1286 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 8.07 (s, 1H), 7.47 - 7.54 (m, 3H), 7.25 - 7.30 

(m, 2H), 7.19 - 7.25 (m, 1H), 7.11 (d, J = 7.34 Hz, 1H), 7.05 (d, J = 9.29 Hz, 1H), 6.92 (dt, J = 

1.47, 8.31 Hz, 1H), 4.86 (t, J = 7.09 Hz, 2H), 4.57 (d, J = 7.34 Hz, 2H), 4.54 (t, J = 6.11 Hz, 2H), 

4.38 (s, 2H), 3.58 - 3.70 (m, 1H) 
13

C NMR (126 MHz, CDCl3) δ 162.63 (d, J = 246.5 Hz), 

160.34, 158.48, 158.36, 138.26 (d, J = 7.5 Hz), 135.42, 129.98, 129.95 (d, J = 7.8 Hz), 129.59, 

129.52, 128.68, 124.98 (d, J = 2.9 Hz), 116.21 (d, J = 21.9 Hz), 114.45 (d, J = 21.0 Hz), 104.90, 

74.41, 55.76, 37.03, 35.31. HPLC Purity: 99%. 
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6-((3-fluorobenzyl)thio)-2-((3-methyloxetan-3-yl)methyl)-5-phenyl-2H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (262701) 

Method B. (3-Methyloxetan-3-yl)methyl methanesulfonate. White solid (30mg, 0.069 mmol, 

24.22 % yield) MS (ESI): m/z 437.1444 [M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 8.05 (s, 1H), 

7.55 - 7.46 (m, 3H), 7.31 - 7.25 (m, 2H), 7.22 (q, J = 7.5 Hz, 1H), 7.10 (d, J = 7.7 Hz, 1H), 7.05 

(d, J = 9.6 Hz, 1H), 6.91 (t, J = 8.3 Hz, 1H), 4.78 (d, J = 6.3 Hz, 2H), 4.47 (s, 2H), 4.45 (d, J = 

6.4 Hz, 2H), 4.39 (s, 2H), 1.29 (s, 3H). 
13

CNMR (126 MHz, CDCl3) δ 162.68 (d, J = 246.5 Hz), 

160.34, 158.62, 158.34, 138.20 (d, J = 7.6 Hz), 135.49, 130.03, 130.01 (d, J = 8.0 Hz), 129.65, 

129.57, 129.50, 125.06 (d, J = 2.9 Hz), 116.31 (d, J = 21.8 Hz), 114.52 (d, J = 21.0 Hz), 104.86, 

80.24, 60.07, 40.49, 37.18, 21.52. HPLC Purity: 98% 

 

3-((6-((3-fluorobenzyl)thio)-4-oxo-5-phenyl-4,5-dihydro-2H-pyrazolo[3,4-d]pyrimidin-2-

yl)methyl)azetidin-1-ium sulfate (262702) 

Method B afforded tert-butyl 3-((6-((3-fluorobenzyl)thio)-4-oxo-5-phenyl-4,5-dihydro-2H-

pyrazolo[3,4-d]pyrimidin-2-yl)methyl)azetidine-1-carboxylate using tert-butyl 3-
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(((methylsulfonyl)oxy)methyl)azetidine-1-carboxylate.White solid (230mg, 0.441 mmol, 15.54 

% yield). 1H NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 7.59 - 7.46 (m, 3H), 7.25 - 7.17 (m, 3H), 

7.11 (d, J = 7.6 Hz, 1H), 7.06 (d, J = 9.6 Hz, 1H), 6.93 (dt, J = 9.8, 4.9 Hz, 1H), 4.47 (d, J = 7.6 

Hz, 2H), 4.39 (s, 2H), 4.08 (t, J = 8.5 Hz, 2H), 3.77 (dd, J = 8.9, 5.0 Hz, 2H), 3.23 (q, J = 8.0, 6.8 

Hz, 1H), 1.45 (s, 9H).  

Tert-butyl 3-((6-((3-fluorobenzyl)thio)-4-oxo-5-phenyl-4,5-dihydro-2H-pyrazolo[3,4-

d]pyrimidin-2-yl)methyl)azetidine-1-carboxylate (230mg, 0.441 mmol), 5mL toluene and 0.5 

mL concentrated sulfuric acid was stirred for 1 hour at RT.  The toluene layer was discarded and 

the sulfuric acid layer was washed with 10mL Diethyl ether before being dissolved in 5mL hot 

methanol.  The product crystallized out upon cooling. The product was further washed with cold 

methanol to remove residual sulfuric acid yielding the titled compound as a white solid (50mg, 

0.118 mmol, 26.8 % yield). MS (ESI): m/z 422.1445 [M+H]
+
  

1
H NMR (500 MHz, DMSO-d6) δ 

9.11 (s, 3H), 8.68 (s, 1H), 7.52 (d, J = 5.3 Hz, 3H), 7.41 - 7.34 (m, 2H), 7.34 - 7.29 (m, 1H), 7.23 

(t, J = 9.2 Hz, 2H), 7.07 (t, J = 8.7 Hz, 1H), 4.61 (d, J = 7.2 Hz, 2H), 4.35 (s, 2H), 4.03 (t, J = 9.6 

Hz, 2H), 3.91 (t, J = 8.6 Hz, 2H), 3.33 (dq, J = 15.3, 7.6 Hz, 1H).
13

C NMR (126 MHz, DMSO-

d6) δ 162.38 (d, J = 244.0 Hz), 159.53, 158.25, 157.93, 139.95 (d, J = 7.9 Hz), 136.15, 130.96, 

130.81 (d, J = 8.6 Hz), 130.28, 130.24, 129.85, 125.71, 116.35 (d, J = 21.9 Hz), 114.60 (d, J = 

21.1 Hz), 104.54, 54.06, 48.89, 35.98, 32.39. HPLC Purity: 96%. 
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Ethyl 5-isothiocyanato-1-methyl-1H-pyrazole-4-carboxylate (3.2b). To a dry flask under N2  

at 0°C charged with 60 wt.% NaH in mineral oil (296 mg, 7.39 mmol) and 3.2a (500 mg, 2.96 

mmol) was added 10 mL THF.  The mixture was stirred for 10 min at which point CS2 (1.8 mL, 

29.6 mmol) was added by syringe.  The mixture was allowed warm to room temperature then 

heated to 40°C and stirred for 3 h. After cooling the flask to 0°C, iodine was added portion-wise 

over 10 min.  The mixture was stirred for 1 h at 0°C then 30 mL diethyl ether was added and the 

precipitate was filtered off.  The filtrate was washed 3x with 1N HCl, 1x with brine and the 

organic portion was dried over sodium sulfate and the solvent removed yielding a reddish black 

solid.  The crude product was purified by flash (0-30% EA in Hex) yielding the titled compound 

as a yellow solid (460 mg, 2.18 mmol, 74% yield). MS (ESI): m/z 212.0 [M+H]
+
 
1
H NMR (400 

MHz, CDCl3) δ 7.81 (s, 1H), 4.25 - 4.44 (m, 2H), 3.80 (s, 3H), 1.30 - 1.44 (m, 3H). 
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5-(2-Chlorophenyl)-6-((3-fluorobenzyl)thio)-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-

one (258463)  

Method C. White crystalline solid. 83% yield.  HRMS (ESI): m/z 401.0629 [M+H]
+ 1

H NMR 

(500 MHz, CDCl3) δ 8.04 (s, 1H), 7.58 (dd, J = 1.47, 7.83 Hz, 1H), 7.48 (dt, J = 1.71, 7.70 Hz, 

1H), 7.43 (dt, J = 1.47, 7.58 Hz, 1H), 7.33 (d, J = 7.83 Hz, 1H), 7.23 - 7.30 (m, 1H), 7.15 (d, J = 

7.34 Hz, 1H), 7.10 (d, J = 9.78 Hz, 1H), 6.95 (dt, J = 1.96, 8.31 Hz, 1H), 4.32 - 4.42 (m, 2H), 

4.01 (s, 3H) 
13

C NMR (126 MHz, CDCl3) δ 162.67 (d, J = 246.8 Hz), 160.82, 156.77, 150.91, 

138.29 (d, J = 7.3 Hz), 135.54, 133.78, 133.22, 131.56, 131.21, 130.73, 130.05 (d, J = 8.5 Hz), 

128.07, 124.69 (d, J = 2.9 Hz), 116.07 (d, J = 22.1 Hz), 114.63 (d, J = 21.0 Hz), 102.72, 36.59, 

34.15. HPLC Purity: 99%. 

 

 

5-(3-Chlorophenyl)-6-((3-fluorobenzyl)thio)-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-

one (258464) 
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Method C. White crystalline solid. 44% yield. HRMS (ESI): m/z 401.0629 [M+H]
+ 

 
1
H NMR 

(500 MHz, CDCl3) δ 8.03 (s, 1H), 7.51 (td, J = 1.60, 8.00 Hz, 1H), 7.47 (t, J = 8.00 Hz, 1H), 

7.26 - 7.32 (m, 2H), 7.18 (td, J = 1.53, 7.70 Hz, 1H), 7.15 (d, J = 7.83 Hz, 1H), 7.11 (td, J = 

2.08, 9.54 Hz, 1H), 6.98 (dt, J = 2.69, 8.44 Hz, 1H), 4.32 - 4.41 (m, 2H), 4.02 (s, 3H) 
13

C NMR 

(126 MHz, CDCl3) δ 162.70 (d, J = 246.8 Hz), 160.84, 157.42, 150.77, 138.20 (d, J = 7.6 Hz), 

136.53, 135.47, 135.27, 130.66, 130.47, 130.15 (d, J = 8.1 Hz), 129.77, 127.77, 124.78 (d, J = 

3.2 Hz), 116.19 (d, J = 21.7 Hz), 114.74 (d, J = 21.0 Hz), 102.80, 36.93, 34.18. HPLC Purity: 

98%. 

 

5-(4-Chlorophenyl)-6-((3-fluorobenzyl)thio)-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-

one (258465) 

Method C. White crystalline solid. 44% yield. HRMS (ESI): m/z 401.0629 [M+H]
+ 

 
1
H NMR 

(500 MHz, CDCl3) δ 8.02 (s, 1H), 7.49 (d, J = 8.31 Hz, 2H), 7.24 - 7.30 (m, 1H), 7.20 (d, J = 

8.31 Hz, 2H), 7.13 (d, J = 7.34 Hz, 1H), 7.09 (d, J = 9.78 Hz, 1H), 6.96 (dt, J = 2.45, 8.31 Hz, 

1H), 4.34 (s, 2H), 4.01 (s, 3H) 
13

C NMR (126 MHz, CDCl3) δ 162.69 (d, J = 246.7 Hz), 160.96, 
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157.53, 150.81, 138.22 (d, J = 7.6 Hz), 136.33, 135.44, 133.89, 130.75, 130.17, 130.11, 124.76 

(d, J = 2.9 Hz), 116.16 (d, J = 22.1 Hz), 114.73 (d, J = 21.0 Hz), 102.81, 36.92, 34.16. HPLC 

Purity: 99%. 

 

6-((3-Fluorobenzyl)thio)-5-(2-fluorophenyl)-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-

one (258962) 

Method C. White crystalline solid. 70% yield. HRMS (ESI): m/z 385.0932 [M+H]
+ 

 
1
H NMR 

(500 MHz, CDCl3) δ 8.03 (s, 1H), 7.57 - 7.49 (m, 1H), 7.36 - 7.20 (m, 4H), 7.14 (d, J = 7.6 Hz, 

1H), 7.10 (d, J = 9.5 Hz, 1H), 6.96 (td, J = 8.4, 2.5 Hz, 1H), 4.40 (d, J = 13.7 Hz, 1H), 4.34 (d, J 

= 13.6 Hz, 1H), 4.01 (s, 3H). 
13

C NMR (126 MHz, CDCl3) δ 162.70 (d, J = 247.0 Hz), 161.09, 

158.28 (d, J = 253.4 Hz), 156.94, 150.92, 138.20 (d, J = 7.6 Hz), 135.52, 132.33 (d, J = 8.0 Hz), 

131.24, 130.12 (d, J = 8.5 Hz), 125.05 (d, J = 3.9 Hz), 124.75 (d, J = 3.1 Hz), 123.11 (d, J = 14.1 

Hz), 117.03 (d, J = 19.5 Hz), 116.15 (d, J = 22.2 Hz), 114.71 (d, J = 21.0 Hz), 102.69, 36.73, 

34.18. HPLC Purity: 98%. 
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6-((3-Fluorobenzyl)thio)-5-(2-methoxyphenyl)-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (257727)  

Method C. White crystalline solid. 19% yield. HRMS (ESI): m/z 397.1127  [M+H]
+
 (400 MHz, 

CDCl3) δ 8.02 (s, 1H), 7.49 (t, J = 8.02 Hz, 1H), 7.22 - 7.29 (m, 1H), 7.19 (d, J = 7.83 Hz, 1H), 

7.02 - 7.16 (m, 4H), 6.94 (t, J = 8.22 Hz, 1H), 4.33 (s, 2H), 3.99 (s, 3H), 3.78 (s, 3H)  
13

C NMR 

(101 MHz, CDCl3) δ 162.64 (d, J = 246.3 Hz), 161.76, 157.31, 155.40, 151.04, 138.76 (d, J = 

7.6 Hz), 135.39, 131.80, 130.64, 129.92 (d, J = 8.4 Hz), 124.70 (d, J = 2.9 Hz), 123.89, 121.08, 

116.00 (d, J = 21.9 Hz), 114.44 (d, J = 21.0 Hz), 112.34, 102.95, 55.82, 36.48, 34.06. HPLC 

Purity: 99%. 
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6-((3-Fluorobenzyl)thio)-5-(3-methoxyphenyl)-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (258077) 

Method C. White Solid. 80% yield. HRMS (ESI): m/z 397.1125  [M+H]
+
  

1
H NMR (400 MHz, 

CDCl3)  δ 7.99 (s, 1H), 7.41 (t, J = 8.22 Hz, 1H), 7.21 - 7.30 (m, 1H), 7.07 - 7.17 (m, 2H), 7.04 

(dd, J = 2.35, 8.22 Hz, 1H), 6.90 - 6.98 (m, 1H), 6.85 (dd, J = 0.78, 7.83 Hz, 1H), 6.80 (d, J = 

1.96 Hz, 1H), 4.33 (s, 2H), 3.99 (s, 3H), 3.80 (s, 3H) 
13

C NMR (101 MHz, CDCl3) δ 162.55 (d, J 

= 246.6 Hz), 161.20, 160.39, 157.50, 150.73, 138.41 (d, J = 7.5 Hz), 136.38, 135.24, 130.29, 

129.97 (d, J = 8.3 Hz), 124.72 (d, J = 3.0 Hz), 121.31, 116.06 (d, J = 21.8 Hz), 115.82, 114.83, 

114.48 (d, J = 21.1 Hz), 102.79, 55.39, 36.74, 34.04. HPLC Purity: 97%. 

 

6-((3-Fluorobenzyl)thio)-5-(4-methoxyphenyl)-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (258078)  

Method C. White needles. 47% yield. HRMS (ESI): m/z 397.1123  [M+H]
+
  

1
H NMR (400 MHz, 

CDCl3) δ 8.01 (s, 1H), 7.22 - 7.30 (m, 1H), 7.07 - 7.19 (m, 4H), 6.98 - 7.04 (m, 2H), 6.95 (dt, J = 

2.35, 8.41 Hz, 1H), 4.32 (s, 2H), 4.00 (s, 3H), 3.85 (s, 3H) 
13

C NMR (101 MHz, CDCl3) δ 

162.64 (d, J = 246.4 Hz), 161.92, 160.63, 157.91, 150.86, 138.52 (d, J = 7.4 Hz), 135.38, 130.40, 
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130.00, 127.75, 124.76 (d, J = 2.7 Hz), 116.16 (d, J = 22.6 Hz), 114.96, 114.56 (d, J = 21.0 Hz), 

102.91, 55.45, 36.93, 34.14. HPLC Purity: 96%. 

 

6-((3-Fluorobenzyl)thio)-1-methyl-5-(pyridin-3-yl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(258907) 

Method C. White solid. 64 % yield. HRMS (ESI): m/z 368.0972  [M+H]
+
 (500 MHz, CDCl3) δ 

8.72 (d, J = 4.40 Hz, 1H), 8.52 (s, 1H), 7.97 (s, 1H), 7.63 (d, J = 8.31 Hz, 1H), 7.45 (dd, J = 

4.89, 7.83 Hz, 1H), 7.21 - 7.30 (m, 1H), 7.12 (d, J = 7.34 Hz, 1H), 7.07 (d, J = 9.78 Hz, 1H), 

6.94 (t, J = 8.30 Hz, 1H), 4.37 (d, J = 14.18 Hz, 1H), 4.33 (d, J = 14.18 Hz, 1H), 4.00 (s, 3H) 
13

C 

NMR (126 MHz, CDCl3) δ 162.54 (d, J = 246.9 Hz), 160.65, 157.29, 150.83, 150.64, 150.08, 

137.96 (d, J = 7.6 Hz), 137.13, 135.25, 132.31, 130.05 (d, J = 8.2 Hz), 124.66 (d, J = 3.2 Hz), 

124.07, 116.02 (d, J = 21.9 Hz), 114.64 (d, J = 21.0 Hz), 102.54, 36.80, 34.09. HPLC Purity: 

99%. 
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6-((3-Fluorobenzyl)thio)-1-methyl-5-(pyridin-4-yl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(257908) 

Method C. Off white solid. 62% yield. HRMS (ESI): m/z 368.0974 [M+H]
+
 
1
H NMR (500 MHz, 

CDCl3) δ 8.82 (d, J = 4.89 Hz, 2H), 8.00 (s, 1H), 7.26 - 7.32 (m, 1H), 7.25 (d, J = 5.38 Hz, 2H), 

7.13 (d, J = 7.83 Hz, 1H), 7.09 (d, J = 9.78 Hz, 1H), 6.96 (dt, J = 2.45, 8.31 Hz, 1H), 4.37 (s, 

2H), 4.01 (s, 3H)  
13

C NMR (101 MHz, CDCl3) δ 162.48 (d, J = 246.8 Hz), 162.30, 159.50, 

156.74, 151.49, 150.51, 143.30, 137.86 (d, J = 7.5 Hz), 135.19, 130.03 (d, J = 8.3 Hz), 124.62 

(d, J = 3.0 Hz), 124.20, 115.96 (d, J = 22.1 Hz), 114.63 (d, J = 21.0 Hz), 102.45, 36.28, 34.06 (d, 

J = 4.9 Hz). HPLC Purity: 99%. 

 

Method D. General Synthesis of Selected R
3

 analogs (Table 3.3) 

To a dry flask under N2 charged with 3.2b (0.24 mmol) and 2 mL dry DMF was added the 

appropriate amine (0.24 mmol) by syringe.  The reaction was stirred at RT for 1 h and then 

cooled to 0°C.  60 wt. % NaH in mineral oil (0.71 mmol) was added and the flask was stirred at 

0°C for 20 min then allowed to warm to RT and stirred for 3 h.  The reaction was quenched with 

sat. aq. NH4Cl and extracted 2x with ethyl acetate.  The combined organics were dried with 

sodium sulfate and the solvent removed.  The residue was dissolved in 2 mL DMF and 3-

fluorobenzyl bromide (0.03 mL, 0.24 mmol), sodium bicarbonate (80 mg, 0.95 mmol) were 

added.  The mixture was stirred at RT overnight at which point the reaction was complete by 
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HPLC.  The mixture was diluted with water and extracted 2x with EtOAc.  The combined 

organics were washed 3x with brine, dried over sodium sulfate, and the solvent removed.  The 

crude product was purified by flash chromatography (0-100% EtOAc in Hex) yielding the titled 

compounds.   

 

6-((3-Fluorobenzyl)thio)-1-methyl-5-(pyridin-2-yl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(257914).  

Method D. White needles. 40% yield. HRMS (ESI): m/z 368.0977 [M+H]
+
 
1
H NMR (500 MHz, 

CDCl3) δ 8.69 (dd, J = 1.47, 4.89 Hz, 1H), 8.03 (s, 1H), 7.92 (dt, J = 1.96, 7.58 Hz, 1H), 7.44 - 

7.49 (m, 1H), 7.38 (d, J = 7.83 Hz, 1H), 7.21 - 7.29 (m, 1H), 7.13 (d, J = 7.83 Hz, 1H), 7.06 - 

7.11 (m, 1H), 6.95 (dt, J = 2.20, 8.44 Hz, 1H), 4.38 (s, 2H), 4.01 (s, 3H) 
13

C NMR (126 MHz, 

CDCl3) δ 162.70 (d, J = 246.7 Hz), 160.19, 157.59, 150.88, 150.26, 149.38, 138.83, 138.17 (d, J 

= 7.6 Hz), 135.52, 130.10 (d, J = 8.5 Hz), 125.06, 124.86, 124.81 (d, J = 3.1 Hz), 116.19 (d, J = 

22.0 Hz), 114.70 (d, J = 21.4 Hz), 102.96, 36.66, 34.18. HPLC Purity: 98%. 
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5-Benzyl-6-((3-fluorobenzyl)thio)-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(257726).  

Method D. White crystalline solid. 57% yield. HRMS (ESI): m/z 381.1180
 
[M+H]

+
 
1
H NMR 

(500 MHz, CDCl3) δ 8.02 (s, 1H), 7.22 - 7.35 (m, 6H), 7.16 (d, J = 7.83 Hz, 1H), 7.11 (d, J = 

9.78 Hz, 1H), 6.97 (t, J = 8.31 Hz, 1H), 5.36 (br. s., 2H), 4.43 (s, 2H), 3.96 (s, 3H) 
13

C NMR 

(126 MHz, CDCl3) δ 162.69 (d, J = 246.9 Hz), 160.36, 157.77, 150.44, 138.33 (d, J = 7.5 Hz), 

135.33, 135.20, 130.09 (d, J = 8.3 Hz), 128.57, 127.67, 127.28, 124.70 (d, J = 3.1 Hz), 116.09 

(d, J = 22.0 Hz), 114.70 (d, J = 21.0 Hz), 102.58, 46.60, 36.51, 33.97. HPLC Purity: 99%. 

 

6-((3-Fluorobenzyl)thio)-1-methyl-5-phenethyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(258081)  
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 Method D. White Needles. 72% yield. HRMS (ESI): m/z 395.1341 [M+H]
+  1

H NMR (500 

MHz, CDCl3) δ 8.00 (s, 1H), 7.27 - 7.36 (m, 5H), 7.23 (t, J = 7.58 Hz, 2H), 7.17 (d, J = 9.78 Hz, 

1H), 7.00 (dt, J = 2.20, 8.44 Hz, 1H), 4.48 (s, 2H), 4.24 - 4.31 (m, 2H), 3.96 (s, 3H), 2.97 - 3.04 

(m, 2H) 
13

C NMR (126 MHz, CDCl3) δ 162.76 (d, J = 246.8 Hz), 159.65, 157.37, 150.47, 138.42 

(d, J = 7.6 Hz), 137.64, 135.00, 130.18 (d, J = 8.3 Hz), 128.90, 128.65, 126.81, 124.76 (d, J = 

2.9 Hz), 116.19 (d, J = 22.0 Hz), 114.78 (d, J = 21.2 Hz), 102.75, 45.68, 36.34, 34.23, 33.98. 

HPLC Purity: 99%. 

 

6-((3-Fluorobenzyl)thio)-1,5-dimethyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (258074) 

Compound 3.2b (100mg, 0.47 mmol) was dissolved in 1 mL 8N methylamine in ethanol and 

stirred at RT for 1 h.  The volatiles were removed and the residue was dissolved in 1 mL DMF to 

which sodium bicarbonate (80 mg, 0.947 mmol) and 3-fluorobenzyl bromide (70 µl, 0.57 mmol) 

were added.  The reaction was stirred for 1 h at which point the product was precipitated out by 

the addition of water.  The precipitate was collected by filtration, washed with water and then 

hexanes.  The precipitate was then taken up in dichloromethane and dried with sodium sulfate.  

The solvent was removed to yield the titled compound as a white crystalline solid (122mg, 0.40 
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mmol, 85 % yield). HRMS (ESI): m/z 305.0864
 
[M+H]

+
  

1
H NMR (500 MHz, CDCl3) δ 7.99 (s, 

1H), 7.29 - 7.35 (m, 1H), 7.24 (d, J = 7.83 Hz, 1H), 7.19 (d, J = 9.78 Hz, 1H), 7.00 (dt, J = 2.45, 

8.56 Hz, 1H), 4.49 (s, 2H), 3.96 (s, 3H), 3.55 (s, 3H) 
13

C NMR (126 MHz, CDCl3) δ 162.74 (d, J 

= 246.7 Hz), 160.32, 157.62, 150.46, 138.42 (d, J = 7.5 Hz), 134.95, 130.17 (d, J = 8.2 Hz), 

124.75 (d, J = 2.9 Hz), 116.17 (d, J = 22.0 Hz), 114.77 (d, J = 21.0 Hz), 102.44, 36.28, 33.95, 

29.70. HPLC Purity: 99%. 

 

5-cyclohexyl-6-((3-fluorobenzyl)thio)-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(258466)  

Method D. White Needles (22mg, 0.059 mmol, 20.80 % yield) MS (ESI): m/z 373.1498 [M+H]
+  

1
H NMR (500 MHz, CDCl3) δ 7.93 (br. s., 1H), 7.28 - 7.37 (m, 1H), 7.23 (d, J = 7.34 Hz, 1H), 

7.18 (d, J = 9.29 Hz, 1H), 7.00 (t, J = 7.83 Hz, 1H), 4.44 (br. s., 2H), 4.07 - 4.19 (m, 1H), 3.92 (s, 

3H), 2.69 (d, J = 10.27 Hz, 2H), 1.88 (br. s., 2H), 1.59 - 1.77 (m, 3H), 1.30 (br. s., 3H) 
13

C NMR 

(126 MHz, CDCl3) δ 162.8, 160.2, 158.4, 150.0, 138.3, 134.8, 130.2, 124.9, 116.2, 114.7, 104.2, 

62.2, 37.2, 33.9, 28.8, 26.5, 25.0 HPLC Purity: 96% 
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5-cyclopentyl-6-((3-fluorobenzyl)thio)-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(258467)  

Method D. Clear faintly yellow sheets.  (44mg, 0.123 mmol, 43.2 % yield) MS (ESI): m/z 

359.1346 [M+H]
+ 1

H NMR (500 MHz, CDCl3) δ 7.93 (s, 2H), 7.32 (dq, J = 1.90, 7.30 Hz, 1H), 

7.23 (d, J = 7.34 Hz, 1H), 7.18 (d, J = 9.29 Hz, 1H), 7.00 (dt, J = 1.90, 8.30 Hz, 1H), 4.79 (quin, 

J = 8.44 Hz, 1H), 4.45 (s, 2H), 3.93 (s, 3H), 2.25 - 2.37 (m, 2H), 2.01 - 2.12 (m, 2H), 1.85 - 1.96 

(m, 2H), 1.55 - 1.66 (m, 2H) 
13

C NMR (126 MHz, CDCl3) δ 162.8, 160.5, 157.8, 150.1, 138.3, 

134.7, 130.1, 124.8, 116.2, 114.7, 104.0, 60.5, 37.1, 33.9, 28.8, 26.0. HPLC Purity: 99% 

 

5-cyclobutyl-6-((3-fluorobenzyl)thio)-1-methyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(258468) 
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Method D. White crystalline solid. (11mg, 0.032 mmol, 11.24 % yield) MS (ESI): m/z 345.1182 

[M+H]
+ 1

H NMR (500 MHz, CDCl3) δ 7.95 (s, 1H), 7.31 (q, J = 7.5 Hz, 1H), 7.22 (d, J = 7.7 Hz, 

1H), 7.17 (d, J = 9.6 Hz, 1H), 6.99 (td, J = 8.4, 2.4 Hz, 1H), 4.91 (p, J = 8.7 Hz, 1H), 4.44 (s, 

2H), 3.92 (s, 3H), 3.24 (pd, J = 9.6, 2.7 Hz, 3H), 2.40 - 2.24 (m, 3H), 2.11 - 1.94 (m, 2H), 1.76 

(h, J = 9.4 Hz, 1H). 
13

C NMR (126 MHz, CDCl3) δ 162.73 (d, J = 246.7 Hz), 160.20, 158.96, 

149.94, 138.38 (d, J = 7.4 Hz), 134.87, 130.14 (d, J = 8.2 Hz), 124.81 (d, J = 3.1 Hz), 116.19 (d, 

J = 22.0 Hz), 114.71 (d, J = 21.0 Hz), 103.87, 53.45, 36.93, 33.91, 27.66, 14.72. HPLC Purity: 

97% 
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Chapter 4 Development of 2
nd

 Generation CM39 Analogs 

4.1. Rationale 

 

Although exemplary compounds from Chapter 3, 258083 and 258085, provided 

promising ALDEFLUOR inhibition, depletion of CD133
+

 cells, and synergy with chemotherapy, 

several challenges in the development of compounds with in vivo efficacy remained. Namely, 

the relatively high ALDEFLUOR IC50s (~1 µM) combined with modest solubility and metabolic 

stability limited our ability to cover efficacious concentrations for > 7 h.  We felt that the dose 

limiting toxicity (weight loss) of 258085 may result from its toxicity as a single agent in 2-D cell 

assays, which we believe is not ALDH mediated (see Section 4.2).   It is impractical to perform 

multi-week xenograft studies with more than one i.p. injection each day, so we sought to achieve 

more durable coverage of efficacious concentrations by: 1) improving cellular potency to reduce 

the necessary drug concentration, 2) improving solubility to enable greater exposure following 

i.p. administration and the potential for dose escalation, and 3) optimizing metabolic stability. 

Our main approach to improving the solubility and metabolic stability was to eliminate the 

lipophilic thioether and engage ALDH in new polar interactions to lower cLogP while improving 

or maintaining potency.  We also explored TPSA-lowering modifications to the core heterocycle 

and conformational restriction as a potential avenue to improve cellular activity by improving 

ALDH potency and/or cell permeability. Promising compounds were tested for ALDEFLUOR 

and CD133 inhibition in PEO-1 cells.  We performed the ALDEFLOUR assay at 1µM, the 

concentration at which the exemplary compounds in Chapter 3 inhibited ~50% in the assay. A 
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concentration of 10 µM for the CD133 assay was chosen for the same reason. No analogs 

inhibited ALDH2 by > 20% at 20 µM, so the values have been removed from the tables for 

clarity. (All results shown are unpublished, courtesy of Buckanovich, Hurley, and Sun labs) 

4.2. Optimization of Thioether Linker 

 

 

Table 4.1 Optimization of the Thioether Linker 

 

CMPD No. / 

R
1
 

ALDH 
a
IC50 or 

b
% 

Control at 20 µM 

ADME 

Characterization 

d
PEO-1 Cell 

Assays % Control 

1A1 1A2 1A3 MLM 

t1/2 

(min) 

c
Aq. 

Sol 

(µM) 

cLogP ALDH 

1 µM 

CD133 

10 µM
 

257723 

 

0.08 

±0.01 

0.15  

±0.01 

0.09  

±0.01 

8 <0.7 4.3   

259011 

 

0.775 

±0.031 

3.7  

±0.64 

1.7  

±0.1 

  3.6   

263868 

 

69% 73% 58%   3.0   

258475 

 

0.7 

±0.2 

71% 86%   3.3   

258079 

 

8.2 

±0.7 

1.77  

±0.09 

0.78  

± 0.09 

 194 

 

2.8   
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258473 

 

0.57 

±0.03 

2.3 

±0.1 

1.05 

±0.08 

 64 

 

2.5   

259123 

 

88% 72% 74%   3.1   

258471 

 

0.27  

±0.06 

0.44  

±0.03 

79%  4 3.7   

258472 1.0  

±0.1 

41% 2.5  

±0.2 

 126 3.6   

262741 

 

0.151 

±0.003 

0.11  

±0.01 

0.128  

±0.005 

8  4.6   

259122 

 

0.13 

±0.03 

 

0.11 

±0.02 

 

0.073 

±0.005 

 

8 8 4.5 53 

±5 

 

83 

±2 

 

262548 

 

0.07  

±0.04 

 

0.04 

±0.01 

 

0.034 

±0.001 

  

8  4.5 29 

±5 

 

75 

±5 

 

262703 

 

1.41  

±0.09 

1.48  

±0.07 

1.64  

±0.07 

  4.5 98 

±3 

 

82 

±3 
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263057 

 

1.9 

±0.3 

2.2  

±0.3 

1.39  

±0.09 

  4.7   

262704 

 

0.150 

±0.003 

0.179  

±0.011 

0.119  

±0.001 

  5.0   

263639 0.38 

±0.07 

0.3 

±0.1 

0.13 

±0.04 

  5.4   

262561 2.4 

±0.6 

e
42% 0.6 

±0.2 

  3.9   

Values are expressed as 
a 
Mean ± SEM (n=3), 

b
 Mean (n=3); 

c
 Thermodynamic solubility 

analysis was performed by Analiza Inc. using quantitative nitrogen detection. 

(www.analiza.com), 
d
 Mean ± SD as determined by flow cytometry (N=3), 

e
Obtained at 5 

µM.(Unpublished work, courtesy of Buckanovich, Hurley and Sun labs.) 

 

Due to the predicted metabolic lability and calculated lipophilicity of the thioether, we 

reasoned that finding an alternative linker could substantially improve the metabolic stability and 

solubility of the series.  Direct replacement of the sulfur with oxygen led to a 10-20 fold loss of 

potency across the ALDH1A family (Table 4.1, 259011).  Nitrogen fared worse; 263868 failed 

to inhibit any 1A isoforms by 50% at 5 µM. 

As shown in Figure 4.1A the lack of tolerance for hydrophilic linkers by ALDH1A1 can 

be justified by the crystal structure 5DUM in which the four closest contacts of the sulfur are 

lipophilic sidechains (F171, V174, W178, V460). Conversely, the linker carbon is situated 4.1Å 

http://www.analiza.com/
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from the polar S121 sidechain (N121 in wild type ALDH1A1), suggesting that it might be 

favorable to reverse the position of the carbon and heteroatom in the linker. Flipping the 

orientation of the thioether, as in 258475, results in greater predicted partial charge on the carbon 

and a significantly lower cLogP vs. 257723; unfortunately, this change was poorly tolerated by 

ALDH1A.
97

 Oxygen and nitrogen analogs 258079 and 258473 evidently did not engage in a 

favorable interaction with N121, but exhibited much improved aqueous solubility, consistent 

with their lower cLogP.  Methylated analog 259123 abolished the remaining weak 1A1 activity 

of 258473, perhaps due to an unfavorable effect of the methyl on the linker conformation.  

The methylene group more closely matches the electronegativity, lipophilicity, and bond 

angle of sulfur than nitrogen or oxygen.
138

  We next assessed the ALDH activity of alkenyl and 

alkyl C-C linker analogs 258471-2. Based on the non-planar active conformation of the thioether 

258083 in crystal structure 5DUM, we were surprised that rigidifying the linker in a planar 

conformation was only modestly detrimental to the ALDH1A1 and 1A2 binding of 258471. 

Despite a moderate reduction in cLogP, this analog did not show enough improvement in 

aqueous solubility to justify the loss of potency and was not pursued further. We also felt that 

increasing the planarity was unattractive for further development. The less conformationally 

constrained analog 258472 was 4-fold less potent against 1A1, although it did exhibit excellent 

aqueous solubility. Sulfur provides unique bond geometries that are difficult to mimic with 

simple single atom replacements; a more sophisticated and synthetically complex bioisostere is  

likely required to satisfactorily mimic the sulfur.
139

  

Since the thioether linker proved difficult to replace while maintaining potent ALDH1A 

inhibition in the series, we next turned to alkyl branching as a strategy to improve solubility by 

reducing planarity and sterically blocking metabolism of the thioether. Methyl-branched analog 
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262741 was nearly equipotent against all 3 members of the 1A family. To assess whether we 

could simplify synthesis of further analogs, we synthesized des-fluoro analog 259122, which 

gratifyingly retained potency relative to 262741 and showed a modest improvement in solubility 

relative to 257723. We observed a 20:1 eudismic favoring R-enantiomer 262548 over S-

enantiomer 262703. We did not observe any difference in MLM stability between the racemate 

and the R-enantiomer.   

Throughout the project, we observed single-agent toxicity for a number of compounds 

that did not seem to correlate with ALDH activity. As discussed in Chapter 3, despite having 

similar ALDEFLUOR activity, 258085 had single agent toxicity, while 258083 didn’t. The pair 

of enantiomers provided the strongest evidence yet that the toxicity was off-target; inactive 

enantiomer 262703 was one of the most toxic compounds in the series (OVSAHO CC50 = 1 µM), 

while 262548 was non-toxic at relevant concentrations (OVSAHO CC50 > 30 µM). At the time, 

262548 exhibited the strongest inhibition of ALDEFLUOR at 1 µM of any compound tested; 

conversely, 262703 was inactive.  
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Figure 4.1 Crystal Structures of ALDH1A1 Bound to 258083 and 262548 

(a) Crystal structure of 258083 bound in N121S ALDH1A1 (PDB ID: 5DUM).  (b) Crystal 

structure of 262458 bound in N121S ALDH1A1 (Unpublished work, courtesy Hurley lab) 

 

We obtained a crystal structure of 262548 (Figure 4.1 B) which indicates that 262548 

adopts a very similar binding pose to 258083. Gem-dimethyl analog 263057, which likely 

presents a methyl in the same orientation as 262703 was not tolerated. The crystal structure of 

262548 indicated a small cleft adjacent to the methyl which might accommodate further 

branching; however, ethyl-branched analog 262704 lost modest activity relative to 259122. The 

bulkier isopropyl analog 263639 lost further potency against 1A1/1A2 but retained similar 

inhibition of 1A3. Revisiting the sulfur to oxygen substitution with our newly optimized linker 

resulted in a 0.6 µM 1A3 selective compound (262561).   

Before we knew which enantiomer was active, we submitted 259122 to broad safety 

profiling and kinase inhibition screening (Eurofins SafteyScreen44, Eurofins Broad Oncology 

Kinase Panel) to assess off-target liabilities. Using 50% ligand displacement or 50% enzyme 

inhibition at 10 µM as a cutoff, 259122 only exhibited significant (66% ligand displacement) 

A B

B 
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binding to the CB2 receptor.  Importantly < 10% displacement of the ligand dofetilide in the 

hERG binding assay was observed at 10 µM. Interestingly, 259122 increased the binding of the 

agonist ligand to the GABAA receptor by 51%, indicating possible positive allosteric modulation. 

Eurofins advises that increased binding in these assays is most frequently the result of assay 

interference. We also assessed permeability and PGP efflux liability utilizing the MDR1-MDCK 

assay (Alliance Pharma). 259122 has excellent permeability (Papp, A>B = 28 x 10
-6

 cm/s) and is 

not a PGP substrate (Efflux Ratio = 1.2). 
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4.3. Exploring Alternative Heterocyclic Cores 

 

Table 4.2 Characterization of Alternative Heterocyclic Core Analogs 

CMPD 

No. / 

Structure 

a
ALDH IC50  ADME 

Characterization 

c
PEO-1 Cell 

Assays % Control 

1A1 1A2 1A3 MLM 
b
Aq. 

Sol 

cLogP ALDH 

1 µM 

CD133 

10 µM
 

257723 0.08 

±0.01 

0.15  

±0.01 

0.09  

±0.01 

8 <0.7 4.3   

258469 

 

0.240 

±0.007 

0.24 

±0.02 

0.14 

±0.02 

9 178 

 

4.4 97  

±1 

 

81  

±2 

 

258470 

 

0.93 

±0.05 

0.81 

±0.04 

0.6 

±0.1 

 23 

 

5.2   

259010 

 

2.2 

±0.2 

1.60 

±0.04 

0.50 

±0.02 

 47 3.4   

Values are expressed as 
a 
Mean ± SEM (n=3), 

b
 Thermodynamic solubility analysis 

was performed by Analiza Inc. using quantitative nitrogen detection. 

(www.analiza.com) 
c 
Mean ± SD as determined by flow cytometry (N=3) 

(Unpublished work, courtesy of Buckanovich, Hurley, and Sun labs.) 
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In a parallel effort to our optimization of the linker, we explored TPSA-lowering changes 

to the pyrazolopyrimidinone core to improve cell penetrance. As shown in Table 4.2, de-aza 

analog 258469 was 4-fold less potent against 1A1 than 257723, but had substantially better 

aqueous solubility. Unfortunately, it was inactive against ALDELFUOR at 1 µM.  Given the 

similar cLogP of 258469 compared to 257723, we hypothesize that the nitrogen of 257723 

stabilizes the crystal packing leading to poorer solubility.  Pyrrole and imidazole analogs 258470  

and 259010 lost significantly more ALDH activity.  The steep SAR for pyrazole modifications 

contrasts with the relatively flat SAR for pyrazole substituents.  Perhaps modifying the 

electronics of the heterocycle unfavorably impacts the offset-parallel π-π interaction with Y297.   

4.4. Conformational Restriction of the Thioether 

 

 

Table 4.3 Characterization of Conformationally Restricted Analogs 

CMPD No./ 

Structure 

ALDH 
a
IC50 or 

b
% 

Control at 20 µM 

ADME 

Characterization 

d
PEO-1 Cell 

Assays % Control 

1A1 1A2 1A3 MLM 
c
Aq. 

Sol 

cLogP ALDH

1 µM 

CD133 

10 µM 

263861 

 

1.0 

±0.1 

0.17 

±0.02 

0.15 

±0.05 

5 38 3.7 46 

±3 

 

77 

±5 
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263645 

 

0.206 

±0.06 

0.4 

±0.1 

0.69 

±0.08 

8  3.9 98 

±2 

 

80   

±5 

 

263867 

 

0.8 

±0.1 

0.27  

±0.01 

0.24  

±0.01 

  4.2 89  

±1 

 

70 

±3 

 

C1

 

     4.4   

Values are expressed as 
a 
Mean ± SEM (n=3), 

b
 Mean (n=3); 

c
 Thermodynamic solubility 

analysis was performed by Analiza Inc. using quantitative nitrogen detection. 

(www.analiza.com) 
d
 Mean ± SD as determined by flow cytometry (N=3) 

(Unpublished work, courtesy of Buckanovich, Hurley and Sun labs.) 

 

Upon examination of the 262548 crystal structure (as shown in 4.1B), we envisioned restricting 

the thioether into the active conformation by forming a 5 or 6 membered ring joining the 

benzylic carbon of the thioether to the 7 position of the heterocyclic core. Appropriately applied 

conformational restriction can lead to significant gains in potency; locking the ligand in the 

active conformation reduces the entropic penalty of enzyme binding which results from a loss of 
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rotational degrees of freedom. Conformational restriction may also reduce binding to metabolic 

enzymes and other unwanted targets due to elimination of induced fit.
140

 As shown in Table 4.3, 

the more rigidified analogs 263861 and 263867 favored binding to 1A2 and 1A3 with 3-to-5-fold 

selectivity over 1A1. Conversely the more flexible 263645 was slightly 1A1 selective. 

Unfortunately the most flexible analog, C1, was too insoluble in DMSO or water to test. Only 

263861, the most potent 1A3 inhibitor from the series inhibited ALDEFLUOR at 1 µM. As 

shown in Figure 4.1B, the C-S-C bonds of the thioether are essentially co-planar with the 

heterocyclic ring, while the the C-Ph bond comes slightly out of this plane to position the phenyl 

favorably in the 1A1 active site.  Energy minimization of the 4 conformationally restricted 

analogs revealed that the insoluble 6-membered alkane analog  C1 most closely reproduces this 

geometry(Figure 4.2). 1A1 selective compound 263645 was unique among the four analogs in 

that the R-enantiomer most closely replicated the active conformation of 262548.  The benzylic 

carbon puckers out of plane to position the phenyl pseudo-equatorial. 1A2/1A3 selective analogs 

263867 and 263861 project the phenyl more dramatically downward.  If these minimized 

structures are predictive of the bound conformations, it suggests that 1A2/1A3 prefer a somewhat 

different conformation of the thioether than 1A1. According to the 1A1 and 1A2 crystal 

structures, there are not obvious differences between the 1A1 and 1A2 active sites in this region 

to explain this difference. The energy minimization also reveals that, due to a pseudo-biphenyl 

interaction between the phenyl and the 5 or 6 membered rings, the phenyl is oriented nearly 

perpendicular to the heterocyclic core.  In the 262548 the phenyl is about 30-45 degrees out of 

plane.  The phenyl may not be the optimal substituent for these conformationally restricted 

analogs.  
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Figure 4.2 Energy Minimized Conformationally Restricted Analogs 

(Clockwise from Top Left) MM2 energy minimized structures of 263867, C1, 263645, and 

263861. 

4.5. Optimization of the Benzyl Pendant 
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Table 4.4 Characterization of Benzyl Pendant Modifications 

 

 

 

CMPD. 

No / 

R
2
 

ALDH 
a
IC50 or  

b
% Control at 5 µM 

ADME Characterization 
e
PEO-1 Cell 

Assays % Control 

1A1 1A2 1A3 MLM 
c
Aq. 

Sol 

cLogP 
d
LLE ALDH 

1 µM
 

CD133 

10 µM
 

259122 

Phenyl 

0.13 

±0.03 

0.11 

±0.02 

0.073 

±0.005 

8 8 4.5 2.5 53 

±5 

83 

± 2 

263118 

2-Pyridyl 

0.242 

±0.02 

0.063 

±0.006 

0.089 

±0.007 

50 20 3.4 3.2 3 

± 1 

87 

± 3 

264623 

3-Cl-2-

Pyridyl 

0.46 

±0.03 

 

0.144 

±0.004 

 

0.33 

±0.03 

 

  4.2 2.1   

264624 

3-F-2-

Pyridyl 

0.20 

±0.03 

 

0.108 

±0.03 

 

0.28 

±0.03 

 

  3.9 2.7   

263119 

3-Pyridyl 

0.139 

±0.001 

0.089 

±0.005 

0.095 

±0.016 

7 209 3.3 3.6 5 

±2 

89 

± 3 

263640 

3,5-Pyr 

imidinyl 

0.094 

±0.007 

0.38 

±0.08 

0.10 

±0.03 

  2.6 4.4   

263350 

4-Pyridyl 

0.451 

±0.031 

68% 45%   3.3 3.0   

C2 

2-OH 

Phenyl 

         

263117 

3-OH 

Phenyl 

0.130 

±0.004 

0.100 

±0.002 

0.091 

±0.001 

4 

 

21 

 

4.2 2.7 39 

±5 

76 

± 4 
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263351 

2-OMe 

Phenyl 

0.445 

±0.021 

0.136 

±0.009 

0.112 

±0.011 

  4.3 2.1   

263353 

3-OMe 

Phenyl 

0.451 

±0.031 

0.108 

±0.008 

0.174 

±0.015 

6 < 2 4.3 2.0   

263352 

4-OMe 

Phenyl 

0.352 

±0.024 

41% 39%   4.3 2.2   

Values are expressed as 
a 
Mean ± SEM (n=3), 

b
 Mean (n=3); 

c
 Thermodynamic solubility 

analysis was performed by Analiza Inc. using quantitative nitrogen detection. 

(www.analiza.com) 
d
LLE = Lipophilic Ligand Efficiency (1A1 pIC50 – cLogP) 

e
 Mean ± 

SD as determined by flow cytometry (N=3). (Unpublished work, courtesy of Buckanovich, 

Hurley and Sun labs.) 

 

For synthetic ease, we retained our N-1 methyl pyrazolopyrimidinone core as we turned our 

attention to the optimization of the benzyl pendant with the alkyl branched linker (  
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Table 4.4).   The crystal structure of 262548 indicated the opportunity to engage the side chains 

of T129 and W178 in polar interactions and potentially improve the lipophilic efficiency of our 

compounds, as shown in Figure 4.3. Gratifyingly, 2 and 3 pyridyl analogs (263118-9) retained 

potent biochemical inhibition of the ALDH1A family and improved the lipophilic ligand 

efficiency substantially. Consistent with a reduced cLogP, 263118 was more than 2-fold more 

soluble and 6-fold more stable in the MLM assay than 259122.  

 

 

Figure 4.3 The 1A1 Crystal Structure of 262548 Indicates Potential to Engage Polar Side 

Chains of W178 and T129 

The benzyl pendant is in close contact with polar residues W178 and T129 in ALDH1A1. 

(Unpublished work, courtesy Hurley lab.)  
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A preliminary assessment of a 263118-1A1 crystal structure (data not shown, refinement 

in progress) indicates a slight rightward shift in the binding mode compared to that of 262548 

depicted in (Figure 4.3). This shift brings the pyridyl nitrogen in closer contact with the W178 N-

H and suggests that there is indeed a hydrogen bonding interaction.  Because the meta position of 

262548 is already in the optimal location for hydrogen bonding with W178 and T129 we predict 

that 263119 would not exhibit the same shift in binding mode. The 3,5-pyrimidinyl analog 

263640 retained strong 1A1 and 1A3 inhibition but was 4-fold less effective against 1A2. Driven 

by a substantial reduction in cLogP, this compound has the best lipophilic efficiency, with 

respect to 1A1, of any compound to date. The 4-pyridyl was not expected to make productive 

polar interactions and showed diminished activity across the ALDH1A family. 3-phenol analog 

263117 was similarly potent against the 1A family as the 3-pyridyl analog, but was less soluble 

and stable in the MLM assay. Examination of a preliminary crystal structure of 263117 (data not 

shown, refinement in progress) indicates that this compound engages W178 and T129 without 

the shift in binding mode observed for 263118.  Interestingly, the 2-phenol analog C2 was 

unstable under basic conditions in organic solvent and in PBS buffer, rapidly decomposing to 

afford the thiol S4.1b (See Scheme 4.1).  Presumably a small amount of the phenoxide was 

formed under neutral conditions and was able to abstract the nearby proton β to the sulfide 

leading to an irreversible elimination. The methoxy analogs (263351, 263353) were tolerated by 

1A2 and 1A3 but somewhat disfavorable to 1A1 binding.  The 4-methoxy analog was a weak 

1A1 selective inhibitor, similar to the 4-pyridyl analog. Overall, polar substituents at the 3-

position (263119, 263117, 263353) had little impact on metabolic stability, while 2-pyridyl 

substituted 263118 was substantially more stable. While both pyridyl analogs should reduce 

CYP 450 mediated metabolism at distant sites by reducing cLogP, the less hindered 3-pyridyl of 
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263119 may be susceptible to N-Oxidation.
137

   Gratifyingly, both pyridyl substituted analogs 

inhibited ALDEFLUOR by >90% at 1 µM. The more potent ALDEFLUOR inhibition did not 

translate to greater CD133
+
 depletion relative to 259122.  
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4.6. Exploring Polar p-Phenyl Substituents  

 

 

 

 

Table 4.5 Characterization of p-Phenyl Substituted Analogs 

CMPD No./ 

R
3
 

ALDH 
a
IC50 or 

b
% Control at 

5 µM 

ADME 

Characterization 

1A1 1A2 1A3 MLM cLogP 

263642 

 

0.6  

±0.2 

0.60  

±0.05 

1.0  

±0.5 

 3.7 

263862 

 

65% 61% 8 

±8 

 4.4 

263863 

 

0.36  

±0.09 

0.216  

±0.003 

3.0 

±0.1 

 4.0 

263864 

 

27% 54% 34%  4.6 

264203 47% 

 

64% 

 

56% 

 

 3.6 

264200 58% 

 

70% 

 

57%  4.0 

264201 47% 86% 53%  4.4 

264205 

 

39% 45% 50%  3.9 
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264207 

 

89% 94% 80%  4.3 

264206 100% 91% 61%  4.7 

264202 55%
c 

3.1 ± 

0.2 

0.200 

±0.009 

  1 4.3 

264626 

 

N.I.
c
 0.8 

±0.1 

0.52 

±0.05 

 4.6 

Values are expressed as 
a 
Mean ± SEM (n=3), 

b
 Mean (n=3); 

c 
% 

Control at 20 µM. (Unpublished work, courtesy of Hurley and 

Sun labs.) 

 

 

Figure 4.4 Features of Active Site Adjacent to Ortho Position of N-Phenyl in 262548-1A1 

Crystal Structure 

(Unpublished work, courtesy Hurley Lab) 

 



160 

 

The 262548 crystal structure also indicated the presence of a water and E477 4.4 and 5.7 

Å and away from distal carbon of the N-phenyl substituent, respectively (Figure 4.4). Although 

none of our attempts to engage these features improved the potency relative to proteo analog 

259122, comparison of alcohols 263642, 263863 and ethers 263862, 263864, indicates a clear 

preference by ALDH1A for hydrogen bond donors in this region. In contrast to the 1A3 

selectivity observed for –Cl and –OMe substituents (see Table 3.3), 263863 achieved 10-fold 

selectivity for 1A1-1A2 over 1A3. Examination of a 263642-1A1 crystal structure (data not 

shown, refinement in progress) indicates that the methylene of the benzyl alcohol substituent is 

situated very close to Met175 with the OH pointed in the direction of the water and Glu477 as 

we predicted. Appending basic amines, in an attempt to form a salt bridge with Glu477, was not 

tolerated across the 1A family (264200-1, 264203-7). We postulate that the desolvation penalty 

for the charged species is too great to be offset by a non-optimal polar interaction. The ability of 

Glu477 to interact with basic amines is likely diminished by the neighboring Lys179. 

Serendipitously, nitrile 264202, an intermediate in an abandoned synthetic route to 264203, is the 

most potent, selective 1A3 inhibitor disclosed to our knowledge. We performed docking studies 

using the 1A2 crystal structure and 1A3 homology model to rationalize the observed selectivity.  

As shown in Figure 4.5, our docking model indicates that the nitrile of 264202 projects deep into 

the active site of 1A3 and is able to engage the catalytic cysteine. The predicted binding mode in 

1A2 is shallower, preventing engagement of the catalytic cysteine. The pyrimidinone carbonyl 

engages the adjacent non-catalytic cysteine in both models. Due to a clash between the nitrile 

and Met175, we predict that 264202 could not adopt the “new” binding mode with the N-Phenyl 

substituent pointing toward the catalytic cysteine in 1A1. Given the typical metabolic stability of 

electron rich arylnitriles, we speculate that the poor stability (MLM t1/2 = 1 min) of this 
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compound may result from the nitrile forming a favorable interaction with a metabolic enzyme, 

promoting metabolism at a distant site. Terminal alkynes possess similar linear geometry as 

nitriles, but are not sufficiently electrophilic to participate in semi-covalent interactions with 

cysteine.  In support of our binding hypothesis, the alkyne 264626 was 2-fold less potent against 

1A3 than the nitrile, consistent with loss of cysteine engagement. 264626 was greater than 3-fold 

more potent against 1A2.  The increase in potency against 1A2 suggests that there is a significant 

desolvation penalty for the polar nitrile to bind deep in the active site. This desolvation penalty 

may partially offset the favorable interaction with the cysteine in 1A3, explaining why a greater 

increase in potency was not observed upon engaging the cysteine. The alkyne substituent is 

about 1Å longer than the nitrile, likely worsening the clash with Met175 in 1A1.  

 

 

Figure 4.5 Homology Model Docking to Rationalize 1A3 Selectivity of Nitrile 246202 

(Left) Docking 264202 into ALDH1A3 homology model active site indicates the nitrile carbon is 

near the catalytic cysteine sulfur (3.6 Å). (Right) Docking 264202 into 1A2 (PDB ID: 6B5H) 

predicts a shallower binding mode with the cysteine sulfur 3.9 Å away from the nitrile carbon. 

(Unpublished work, courtesy Neamati lab.) 



162 

 

4.7. Combining Optimal Thiol and Pyrazole Substituents 

 

Table 4.6 Characterization of Optimized Compounds 

CMPD No. 

Structure 

ALDH 
a
IC50 ADME Characterization 

c
PEO-1 Cell 

Assays % 

Control 

1A1 1A2 1A3 MLM 
b
Aq. 

Sol 

cLogP LLE ALDH 

1 µM
 

CD133 

10 µM 

259122 

 

0.13 

±0.03 

 

0.11 

±0.02 

 

0.073 

±0.005 

 

8 

 

8 

 

4.5 2.5 53 

±5 

 

83 

±3 

262547 

 

0.10 

±0.04 

0.08 

± 0.02 

0.060 

±0.01 

19 77 4.8 2.5 13 

±3 

 

86 

±9 

263052 0.109 

±0.004 

0.065 

±0.006 

0.109 

±0.004 

47 26 4.8 2.2 2  

±0.3 

 

74 

±1 

263646 

 

0.068 

± 0.02 

0.021 

± 0.01 

0.048 

±0.013 

>60  60 3.7 3.5 0.8  

±0.5 

 

79 

±3 

264627 0.118 

±0.008 

0.058 

±0.001 

0.25 

±0.02 

  3.6 3.3   
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264199 

 

0.093 

±0.02 

0.112 

±0.012 

0.050 

±0.003 

>60 

 

 5.1 1.9 10  

±3 

 

64 

±1 

Values are expressed as 
a 
Mean ± SEM (n=3), 

b
Thermodynamic solubility analysis was 

performed by Analiza Inc. using quantitative nitrogen detection. (www.analiza.com) 
c 
LLE = 

Lipophilic Ligand Efficiency (1A1 pIC50 – cLogP) 
c
 Mean ± SD as determined by flow 

cytometry (N=3) (Unpublished work, courtesy of Buckanovich, Hurley and Sun labs.) 

 

As shown in Table 4.6, we combined our optimized thiol substituents with the pyrazole 

substituents disclosed in Chapter 3.  Homologated oxetanyl analog 262547 exhibited potent pan-

ALDH1A inhibition, as well as improved solubility and metabolic stability relative to 259122. 

Oxetanyl analog 263052 maintained comparable ALDH1A activity and more than doubled the 

MLM stability of 259122. As discussed below, the improved MLM stability did not correlate 

well with in vivo exposure.  

To aid in understanding this discrepancy, we obtained in vivo metabolite ID for 263052 

which revealed the oxetane and thioether to be the two sites of metabolism (Figure 4.6).  

Interestingly, the presence of M6 may suggest the role of epoxide hydrolase in the metabolism of 

the oxetane; however, such a transformation has also been attributed to CYP mediated 

metabolism alone.
141-143

  The most abundant M8, M9 species resulted from metabolism of both 

the oxetane and thioether.  

 

 

http://www.analiza.com/
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Figure 4.6 In Vivo Metabolites Identified for 263052 

Ambiguous metabolic pathways denoted with question marks.  

(Unpublished work, courtesy Sun Lab) 
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With the intent of reducing overall metabolism by reducing cLogP, we synthesized 2-

pyridyl analog 263646 which gratifyingly exhibited excellent MLM stability and good solubility.  

Relative to 263118, 263646 improved inhibition across the 1A family. 3-pyridyl analog 264627 

did not gain potency relative to 263119. As discussed above, the 2-pyridyl substituent requires a 

subtle change in binding mode to form a hydrogen bond with W178, while the 3-pyridyl is 

aligned without such a shift. Comparison of the binding modes for 258083 and 262548 (Figure 

4.7) indicates a subtle shift in the orientation of the heterocyclic core, likely to accommodate the 

N-2 pyrazole substituent in 258083.  The changes to accommodate the pyridyl and oxetanyl 

substituents are likely complementary, explaining the increased potency.  In contrast, the shift 

facilitated by the oxetane is not favorable for the 3-pyridyl substituent because the binding mode 

of 262548 already presents the 3 position in the optimal geometry to interact with W178 and 

T129.  
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Figure 4.7 Overlay 258083 and 262548 From Their Respective 1A1 Crystal Structures 

Compound 258083 (PDB ID: 5DUM, green) and 262548 (Unpublished work, courtesy Hurley 

lab, blue) overlaid in 1A1 active site.  

264199 demonstrates that sterically blocking the oxetane is also effective at improving 

MLM stability.  All of the N-2 pyrazole substituted analogs were potent inhibitors of 

ALDEFLUOR and 264199 exhibited especially strong depletion of CD133
+

 cells.  

4.8. Analysis of Pharmacokinetic Data for the CM39 Series 
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Table 4.7 Pharmacokinetic Characterization of Selected Compounds 

CMPD No./ 

Structure 

ADME Properties 

b
Pharmacokinetic Parameters 

10mg/kg i.p. 20mg/kg p.o. 

cLogP 

a
Aq. 

Sol MLM 

AUC 

0-7h
obs 

(hr∙µM)
 

c
t1/2 (h) CMax 

(µM) 

AUC 

0-7h
obs 

(hr∙µM)
 

CMax 

(µM) 

257723

 

4.3 <0.7 8 36
d
 

 

0.9 24.3
d
   

258083 

 

4.7 5 23 27.8 

 

2.6 7.6   

258085

 

4.7 53 27 11 

 

0.9 5.6   

259122 

 

4.5 8 8 4.9 1.8 2.3 3.9 0.8 

263052 

 

4.8 26 47 19.5 

 

2.1 7.9   

263118 3.4 20 50 7.9 1.2 3.9 17.4 7.3 
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263646

 

3.7 60 >60 3.5 0.6 3.3 6.2 3.9 

264199 

 

5.1  >60 23 1.6 7.0   

a
Thermodynamic solubility analysis was performed by Analiza Inc. using quantitative nitrogen 

detection. (www.analiza.com), 
b
 Results expressed as Mean (N=3) following a single 

administration as specified,  
c
 Calculated using 2 and 4 hour timepoints only, 

 
d
 Compound administered at 20 mg/kg i.p. (Unpublished work, courtesy Sun Lab) 

 

As shown in Table 4.7, despite significant improvements in MLM stability and aqueous 

solubility, none of the compounds attained the level of exposure observed for 258083.  Analysis 

of the 7 compounds (Figure 4.8) administered at 10 mg/kg i.p. indicated poor correlation 

between the MLM stability and AUC (257723 was excluded because it was administered at 20 

mg/kg). Comparing the in vivo and MLM half-lives for all 8 compounds revealed a similar lack 

of correlation. Conversely, increased cLogP was associated with increased AUC and in vivo 

half-life.  None of the compounds with cLogP ≤ 4.5 exceeded an AUC of 10 hr∙µM following 10 

mg/kg i.p. injection (257723 (cLogP 4.3) would have exceeded 10 hr∙µM at 10 mg/kg assuming 

http://www.analiza.com/
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a linear relationship between dose and exposure).These preliminary PK studies measure the total 

drug level in the plasma following protein precipitation with acetonitrile; they do not consider 

plasma protein binding or volume of distribution.  A possible explanation for these results is that 

lowering the cLogP is decreasing partitioning into tissue and/or plasma protein binding, leading 

to decreased volume of distribution. The higher fraction of unbound drug in the plasma would 

facilitate greater clearance. Additionally, MLM studies may not correlate to intrinsic clearance 

because 1) hepatocytes contain metabolic enzymes not present in microsomes, 2) hepatocytes 

may uptake drugs via active transport mechanisms increasing clearance, 3) ALDH1 isoforms 

comprise about 0.4% of the soluble protein in human liver tissue, potentially leading to further 

partitioning of potent ALDH inhibitors into the liver.
144-145

 The better oral exposure for 263118 

and 264646 relative to the i.p. study conflicts with the hypothesis that the unbound drug is 

rapidly cleared since following oral administration, compounds are subjected to first pass 

metabolism. Compounds with low plasma protein binding and high intrinsic clearance are 

expected to be very susceptible to first pass metabolism.  It is possible that solubility limited 

exposure in the i.p. study of the two compounds but that the pyridyl promoted greater solubility 

in the low pH of the stomach.  Consistent with this, compound 259122, which does not contain a 

pyridyl, exhibited worse exposure following oral administration relative to i.p., although 

extensive first pass metabolism could also explain this result.  
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Figure 4.8 Analysis of Correlation Between cLogP, MLM stability, and In Vivo Exposure 

and Stability. 

(Top) Plot and trendline depicting the correlation between AUC and MLM t1/2 or cLogP for the 7 

compounds in Table 4.7 (excluding 257723). (Bottom) Plot and trendline depicting the 

correlation between in vivo half-life and MLM t1/2 or cLogP for the 8 compounds in Table 4.7. 

4.9. Conclusions 

 

Encouraged by the promising synergy with cisplatin for several analogs discussed in 

Chapter 3, we set out to create analogs of CM39 with improved ALDEFLUOR activity and 

pharmacokinetic properties. While replacement of the metabolically labile and lipophilic 

thioether linker was not successful, disrupting planarity with alkyl branching resulted in 

improved solubility for 259122 relative to 257723. Synthesis of the two enantiomers 262548 and 

262703 revealed that the R-enantiomer 262548 possessed 20-fold greater ALDH activity and 

greater ALDEFLUOR inhibition. Inactive enantiomer 262703 was potently cytotoxic as a single 
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agent, indicating that the single agent cytotoxicity possessed by some analogs in the series is 

very likely off target.  Efforts to alter the pyrazolopyrimidinone core or conformationally restrict 

the thioether did not afford any advantageous compounds. Exploring polar substituents to engage 

the W179 and T129 was more fruitful. While 2 and 3 pyridyl substituents did not result in 

increased enzymatic 1A1 potency relative to phenyl, they improved solubility, lipophilic 

efficiency, and ALDEFLUOR potency. Crystal structures of the 2-pyridyl and 3-hydroxyl 

analogs 263117-8 indicate engagement with W179 in 1A1, but a desolvation penalty may 

counteract this favorable interaction.  The 2-pyridyl analog 263118 also improved metabolic 

stability 6-fold relative to phenyl analog 259122. Pyrimidinyl analog 263640 demonstrated that 

further increases in polarity in this region are tolerated, and more polar substituents will be 

explored in this region.    

While attempts to engage polar residues deep in the active site were not successful in 

improving potency, they did result in compounds with interesting isoform selectivity. To our 

knowledge, nitrile analog 264202 is the most potent and selective ALDH1A3 selective inhibitor 

to date. Finally combining the optimal linker and pyridyl substituents with the oxetane 

substituents discussed in Chapter 3 resulted in compounds with excellent MLM stability and 

ALDEFLUOR inhibition.  Steric blocking of the oxetane, which was identified as a site of in 

vivo metabolism also resulted in improved MLM stability. Studies to determine the synergy with 

cisplatin for optimal compounds are underway. 

Unfortunately, analysis of the short PK studies obtained for analogs in this series 

indicated a poor correlation between MLM stability and in vivo exposure.  There was a stronger 

correlation between cLogP and in vivo exposure. The 4 aromatic rings in the series are a 

significant liability in terms of clinical developability.  Employing the property forecast index 
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(PFI, ChromLogD7.4 + #Aromatic Rings), compounds with 4 aromatic rings would need a 

measured LogD of < 1 in order to have a reasonable probability of success (PFI <5) in pre-

clinical development.
146

  Major factors in devising the PFI were susceptibility to clearance and 

poor solubility associated with highly aromatic, lipophilic compounds. Early efforts to reduce the 

aromatic ring count will be disclosed in the following chapter.  
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4.10. Chemistry 

 

As shown in Scheme 4.1, synthesis of analogs 259011, 262562, and 263868 started with 

addition of commercially available pyrazole S4.1a to phenyl isothiocyanate in the presence of 

NaH followed by spontaneous cyclization.  Methylation of the thiol followed by mCPBA-

mediated oxidation of resulting sulfide afforded the sulfone S4.1c, which could be displaced 

with the appropriate amine or alcohol under basic conditions to afford 259011, 262562, and 

263868. Synthesis of reversed linker analogs began with the nBuLi mediated addition 

elimination reaction between ester 4.1a and aniline to afford the phenyl amide. Subsequently, 

treatment with chloroacetyl chloride in a melt of chloroacetic acid to afforded compound 

S4.1d.  Employing acetic acid as a solvent exclusively afforded the des-chloro analog, 

presumably resulting from formation of a mixed anhydride and subsequent nucleophilic attack 

at the less hindered acetate. The chloride could be directly displaced with the appropriate 

phenol, thiophenol, or aniline at moderate temperatures to afford analogs 258475, 258079, 

258473.  Alkylation of amine 258473 with methyl iodide afforded the tertiary aniline 258471.  

Alkenyl analog 258471 was generated by displacement of the S4.1d with P(OEt)3 and 

subsequent Horner-Wadsworth-Emmons olefination with 3-fluorobenzaldehyde. Pd-C 

catalyzed hydrogenation of the alkene afforded 258472. 
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Scheme 4.1 Synthesis of Modified Linker Analogs
a
 

 

a
Reagents and Conditions: (a) PhNCS, NaH, DMF, 0-50°C; (b) K2CO3, MeI, DMF; (c) mCPBA, 

DCM; (d) NaH, 3-fluorobenzylamine or 3-fluorobenzyl alcohol, DMF, 0-20°C; (e) nBuLi, 

aniline, THF, -78°C to RT; (f) chloroacetic acid, chloroacetyl chloride, 80-120°C; (g) 3-

fluorophenol or 3-fluorothiophenol or  3-fluoroaniline, K2CO3, DMF, 50 or 70°C; (h) MeI, 

K2CO3, DMF, 50°C; (i) P(OEt)3, DMF, 150°C; (j) NaH, 3-fluorobenzaldehyde, DMF, 0-20°C; 

(k) Pd-C, H2, MeOH. 

 

As shown in Scheme 4.2, the 10 listed branched alkyl analogs were generated by 

displacing the appropriate halide or mesylate with thiol S4.1b in the presence of potassium 

carbonate.  The R and S enantiomers of 259122 were obtained by first activating enantiopure 1-

phenylethanol with the Vilsmeier reagent.  Subsequent displacement by thiol S4.1b with 
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complete inversion of stereochemistry afforded enantiomers 262548 and 262703.
147

  Mitsunobu 

conditions provided the products in inferior yield and enantiopurity. The pyridine halide analogs 

264623-4 were generated under the analogous Vilsmeier reagent mediated conditions with the 

appropriate benzyl alcohol. The gem-dimethyl analog 263057 was formed by treating thiol S4.1b 

with α-methylstyrene under acidic conditions.  

Scheme 4.2: Synthesis of Branched Alkyl Analogs
a
 

 

a
Reagents and Conditions: (a) X-R

1
 or Ms-R

1
, K2CO3, DMF; (b) α-methylstyrene, TFA, DCM, 

0-20°C, (c) R or S 1-phenylethanol, Vilsmeier reagent, TEA, THF, 0-20°C. (d) 1-(6-

fluoropyridin-2-yl)ethan-1-ol or 1-(6-chloropyridin-2-yl)ethan-1-ol, Vilsmeier reagent, TEA, 

THF, 0-20°C. 

 

As shown in Scheme 4.3, Synthesis of de-aza analog 258469 began by lithiating S4.3a 

and quenching with ethyl formate to afford aldehyde S4.3b.  The pyrazole was formed by 

treating S4.3c with methyl hydrazine.  The 4-chloro was selectively hydrolyzed by briefly 
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heating a slurry of S4.3c in aqueous NaOH to 140°C in a microwave synthesizer.
148

  Vigorous 

heating was required to displace the remaining chloride with 3-fluorobenzyl mercaptan forming 

S4.3e.  Finally, Chan-Lam coupling with phenylboronic acid afforded 258469. Pyrrole 258470 

was prepared in a similar manner following methylation of commercially available S4.3f. 

Scheme 4.3: Synthesis of De-aza Analogs 258469-70
a
 

 

a
Reagents and Conditions: (a) n-BuLi, ethyl formate, THF, -78 – 20°C; (b) methyl hydrazine, 

TEA, EtOH, -78 – 20°C; (c) 10% aq. NaOH 140°C Microwave; (d) 3-fluorbenzyl mercaptan, 

DIPEA, n-BuOH, 170°C Microwave; (e) PhB(OH)2, Cu(OAc)2, pyridine, TEMPO, 3Å MS, Air, 

DCE; (f) MeI, NaH, THF, 0 – 20°C; (g) 10% aq. NaOH, Reflux; (h) 3-fluorbenzyl mercaptan, 

DIPEA, EtOH, 100°C; (i) PhB(OH)2, Cu(OAc)2, pyridine, 3Å MS, Air, DCM. 

 

Synthesis of analog 259010 began by treating imidazole S4.4a with the electrophilic NH2 

source O-(diphenylphosphinyl)hydroxylamine and LiHDMS (Scheme 4.4).
149

  Subsequently, 
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thiourea formation, cyclization and displacement of 3-fluorobenzyl bromide in one pot afforded 

imidazole analog 259010.  

Scheme 4.4:Synthesis of Analog 259010
a
 

 

a
Reagents and Conditions: (a) O-(diphenylphosphinyl)hydroxylamine, LiHDMS, DMF, -10 – 

20°C; (b) PhNCS, NaH, 3-fluorobenzyl bromide, DMF, 0 - 20°C.   

 

As shown in Scheme 4.5, synthesis of the conformationally restricted analogs began with 

Chan-Lam coupling of S4.3d with phenylboronic acid followed by displacement of the chloride 

with Na2S.  Synthesis of the 5 membered ring analog proceeded by alkylating the thiol with the 

ethyl 2-bromo-2-phenyl acetate then hydrolyzing the ester to afford acid S4.5c.  Generating the 

acid chloride resulted in a spontaneous intramolecular Friedel-Crafts acylation to afford 263861. 

To generate the 6-membered ring analogs, a survey of 1,4 conjugate addition conditions 

employing cinnamate esters did not afford the desired product.  We postulate that under basic 

conditions the carbanion intermediate formed following addition of the thiol undergoes a retro-

Michael elimination to regenerate starting materials faster than it can be protonated. Gratifyingly, 

treating cinnamic acid with HBr in HOAc affords bromide S4.5g which efficiently alkylates thiol 

S4.5b in the presence of NaHCO3.  Upon generating the acid chloride by treating S4.5d with 

oxalyl chloride, we found heat was required to promote formation of the 6-membered ring.  

Unfortunately the Vilsmeier reagent formed from residual DMF in the starting material resulted 

in significant amounts of the undesirable chloroalkene side product S4.5h.  Generating the 
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mesylic mixed anhydride by treatment with Ms2O in DCE at 85°C promoted the cyclization to 

263645 without the undesired side reaction.
150

  Treatment of the resulting ketone with NaBH4 

afforded S4.5e as an inconsequential, inseparable mix of diastereomers.  We first tried 

deoxygenation of the alcohol with chlorodiphenylsilane and InCl3 but obtained the unexpected 

elimination product 263867.
151

 Barton-McCombie deoxygenation afforded the desired saturated 

linker analog C1.  
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Scheme 4.5: Synthesis of Conformationally Restricted Analogs
a
 

 

a
Reagents and Conditions: (a) PhB(OH)2, Cu(OAc)2, pyridine, 3Å MS, O2, DCE; (b) Na2S, 

DMF, 140°C; (c) ethyl-2-bromo-2-phenylacetate, K2CO3, DMF; (d) Aq. LiOH, EtOH, THF; (e) 

(COCl)2, cat. DMF, DCM; (f) 3-bromo-3-phenylpropanoic acid, NaHCO3, DMF, 50°C; (g) 

methanesulfonic anhydride, DCE, 85°C; (h) NaBH4, EtOH; (i) chlorodiphenyl silane, InCl3, 

DCM; (j) CS2, NaH, MeI, THF, 0°C; (k) tributyltin hydride, AIBN, toluene, reflux (l) 

HBr/HOAc, 70°C, sealed tube.  
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Scheme 4.6: Synthesis of Para-substituted N-Phenyl Analogs
a
  

 

a
Reagents and Conditions: (a) 4-aminobenzyl alcohol, α-methyl bromobenzene, NaH, DMF, 0-

20°C; (b) Ms-Cl, DIPEA, DCM, 0-20°C; (c) NaN3, DMF; (d) PS-PPh3, H2O, THF; (e) MeI, 

NaH, DMF 0-20°C; (f) Dess-Martin periodinane, DCM; (g) titanium isopropoxide, MeNH2 in 

EtOH, NaBH4, MeOH; (h) titanium isopropoxide, Me2NH in EtOH, NaBH4, MeOH; (i) 4-amino 

benzonitrile, NaH, α-methyl bromobenzene, DMF 0-20°C. 

As shown in Scheme 4.6, compound 263642 was generated from isothiocyanate S4.6a by 

addition of aniline then cyclization and alkylation of the resulting thiol under basic conditions in 

two pots as previously described in Chapter 3.  The resulting alcohol afforded primary amine 

264203 upon mesylation, displacement with sodium azide, and Staudinger reduction. Dess-

Martin oxidation of the alcohol 263642 and reductive amination with methyl or dimethylamine 
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afforded 264200-1. Synthesis of the nitrile and alkynyl analogs 264202 and 264626 was affected 

from S4.6a in one pot as previously described in Chapter 3.  

Scheme 4.7:Synthesis of Homologated Para-substituted N-Phenyl Analogs
a
 

 

a
Reagents and Conditions: (a) tert-butyl (4-aminophenethyl)carbamate, α-methyl bromobenzene, 

NaH, DMF, 0-20°C; (b) MeI, NaH, DMF, 0-20°C; (c) TFA, DCM; (d) Aq. Formaldehyde, 

DIPEA, HOAc, sodium triacetoxyborohydride, DCE; (e) 2-(4-Aminophenyl)ethanol, NaH, 

DMF, 0-20°C; 2. α-methyl bromobenzene, K2CO3, DMF; (f) MeI, NaH, DMF 0-20°C. 

Synthesis of 264205-7 began with the addition of tert-butyl (4-

aminophenethyl)carbamate
152

 to isothiocyanate S4.6a according to Scheme 4.7, generating S4.7a 

as described in chapter 3. Alkylation with MeI under basic conditions which furnished S4.7b 

upon deprotection.  Deprotection of S4.7a afforded 264205 which was bis-methylated under 

reductive amination conditions to generate 264206. Deprotection of S4.7b yielded 264207. 

Compounds 263863-4 were prepared analogously to 263642 and 263862. 
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Scheme 4.8: Synthesis of N-2 Pyrazole Substituted Analogs
a 

 

a
Reagents and Conditions: (a) R

1
-Br, R

2
-Br or R

2
-OMs,  K2CO3, DMF, 20-80°C; (b) 1-

bromoethylbenzene, diethyl 2-bromo-2-methylmalonate, K2CO3, DMF, 20-50°C; (c) NaBH4, 

Br2, dimethoxyethane, -20°C to RT; (d) nBuLi, Ts-Cl, THF, -78°C to RT; (e) nBuLi, THF, 0-

80°C. 

As shown in Scheme 4.8, synthesis of oxetanyl analogs 263052, 263646, and 264627 and 

homologated oxetane analog 262547 was accomplished in 1 pot as previously described in 

chapter 3. Synthesis of methyl-oxetane analog 264199 similarly began with the 1-pot double 

alkylation of S4.8a. Fortuitously, in contrast to other electrophiles which alkylated both positions 

of the pyrazole with a slight preference for the 1 position, diethyl 2-bromo-2-methylmalonate 

alkylated exclusively at the 2 position.  The challenging reduction of the malonate ester S4.8b 

was completed by in situ generation of BH3 in dimethoxyethane from NaBH4 and Br2.
153

   S4.8b 
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was unaffected by fresh, commercially-obtained BH3-THF or 9-BBN at temperatures up to 70°C, 

while reduction with NaBH4, LiBH4, and L-Selectride resulted primarily in the decarboxylated 

analog S4.8e. Reduction with aluminum-based reagents LiAlH4, or DIBAL-H resulted in rapid 

decomposition, even at -78°C. With S4.8c in hand, mono-tosylation and cyclization afforded 

oxetane 264199.  

4.11. Experimentals  

 

General chemistry information, protocols for crystallography, cellular, enzymatic, and 

pharmacokinetic assays are reported in Chapter 3.  

 

 

 

1-Methyl-6-(methylsulfonyl)-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (S4.1c)   

MeI (116 µl, 1.858 mmol) was added to a solution of S4.1b (prepared as described in chapter 

3)(400mg, 1.549 mmol) and K2CO3 (321 mg, 2.323 mmol) in 5mL DMF.  The mixture was 

stirred for 2 hours at which point it was diluted with water, cooled to 0C and stirred for 30 

minutes.  The resulting white precipitate was filtered and taken up in 5mL DCM to which 

mCPBA (896 mg, 3.64 mmol) was added.  The mixture was stirred overnight at RT then 5mL 

Aq. Sodium Thiosulfate was added at which point the mixture was stirred an additional 1 H.  The 

mixture was diluted with more DCM and the aqueous portion was discarded.  The aqueous 

portion was washed with sat. aq. bicarbonate followed by brine and dried over sodium sulfate 
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and concentrated.  The reaction was redissolved in 5mL DCM, filtered and the filtrate 

concentrated.  The residue was taken up in hot ethanol and slowly cooled to 0°C to afford the 

titled compound as a white solid (360mg, 1.183 mmol,76 % yield). 

 

 

6-((3-Fluorobenzyl)oxy)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one  

(259011) 

To a dry flask at 0°C under N2 charged with 60 wt.% NaH in mineral oil (16.43 mg, 0.411 

mmol) was added 1 mL of DMF and (3-fluorophenyl)methanol (0.038 mL, 0.353 mmol) by 

syringe.  The mixture was stirred for 10 minutes at which point solid s4.1c (100mg, 0.329 mmol) 

was added quickly.  The mixture was stirred overnight and gradually warmed to RT.  The 

following day the mixture was diluted with EtOAc and washed with water.  The water was back 

extracted with a small portion of EtOAc and the combined organics were washed 3x with brine 

before drying over sodium sulfate and concentrating.  The crude was purified by flash (0-100% 

EtOAc in Hex) yielding the titled compound as a white solid (10mg, 0.029 mmol, 8.69 % yield). 

MS (ESI): m/z 351.1252 [M+H]
+ 

1H NMR (500 MHz, CDCl3) δ 8.00 (s, 1H), 7.59 - 7.43 (m, 

3H), 7.32 - 7.24 (m, 1H), 7.22 (d, J = 7.5 Hz, 2H), 7.04 - 6.90 (m, 2H), 6.84 (d, J = 9.6 Hz, 1H), 

5.41 (s, 2H), 3.94 (s, 3H).13C NMR (126 MHz, CDCl3) δ 162.73 (d, J = 246.7 Hz), 157.90, 

155.24, 150.75, 137.55 (d, J = 7.6 Hz), 135.64, 134.86, 130.08 (d, J = 8.3 Hz), 129.38, 128.95, 
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128.35, 122.58 (d, J = 3.0 Hz), 115.15 (d, J = 21.1 Hz), 114.12 (d, J = 22.3 Hz), 102.06, 69.24, 

33.90. HPLC Purity: 97% 

 

 

 

6-((3-Fluorobenzyl)amino)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(263868) 

To a solution of (3-fluorophenyl)methanamine (0.112 ml, 0.986 mmol) in 5mL DMF at 0°C was 

added 60 wt.% NaH in mineral oil (32.9 mg, 0.821 mmol).  The mixture turned purple and after 

5 minutes and 4.1c (200mg, 0.657 mmol) was added.  The mixture turned immediately yellow 

and was stirred at 0°C for an hour at which point it was allowed to warm to RT.  After another 

hour it was quenched with sat. ammonium chloride and diluted with water and extracted 2x with 

ethyl acetate.  The combined organics were washed with brine 3x and dried over sodium sulfate 

before concentrating to yield a yellow solid.  The crude solid was recrystallized from hot ethanol 

to yield a white crystalline solid. (29mg, 0.083 mmol, 12.63 % yield) MS (ESI): m/z 350.1410 

[M+H]
+ 

 
1
H NMR (500 MHz, CDCl3) δ 7.96 - 7.90 (m, 1H), 7.64 - 7.56 (m, 2H), 7.56 - 7.50 (m, 

1H), 7.34 - 7.27 (m, 3H), 7.01 (d, J = 7.6 Hz, 1H), 6.98 - 6.92 (m, 2H), 4.67 - 4.54 (m, 3H), 3.85 

(s, 3H). 
13

C NMR (126 MHz, CDCl3) δ 162.93 (d, J = 246.7 Hz), 158.16, 152.49, 152.47, 140.69 

(d, J = 6.9 Hz), 135.47, 134.63, 130.74, 130.20 (d, J = 8.1 Hz), 130.05, 129.15, 122.77 (d, J = 2.8 

Hz), 114.48 (d, J = 21.1 Hz), 114.27 (d, J = 21.9 Hz), 100.24, 45.20 (d, J = 1.9 Hz), 33.57. HPLC 

Purity: 99% 
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6-(chloromethyl)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (4.1d)  

 

A flask under N2 charged with chloroacetic acid (12.76 g, 135 mmol) and 5-amino-1-methyl-N-

phenyl-1H-pyrazole-4-carboxamide (1.46 g, 6.75 mmol) was heated at 80°C until a homogenous 

melt was obtained.  Chloroacetyl chloride (1.352 mL, 16.88 mmol) was added dropwise and the 

mixture was stirred at 80°C for 1 hour.  The flask was then fitted with a reflux condenser and 

heated to 120°C overnight.  The next day the flask was removed from the oil bath and 

immediately poured into 100 mL water.  The mixture was stirred vigorously until cool to the 

touch then filtered yielding the titled compound as an off white solid (1.22 g, 4.44 mmol, 65.8 % 

yield). 
1
H NMR (400 MHz, CDCl3) δ 8.10 (s, 1H), 7.48 - 7.64 (m, 3H), 7.28 - 7.37 (m, 2H), 4.23 

(s, 2H), 4.05 (s, 3H) 

 

 

 

(E)-6-(3-fluorostyryl)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (258471) 
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 (4.1d) (250mg, 0.910 mmol) and Triethyl Phosphite (318 µl, 1.820 mmol) were dissolved in 

2mL DMF and heated to 150°C for 3 hours. The mixture was concentrated under vacuum and 

the crude residue was purified by flash chromatography (EA in Hex) yielding diethyl ((1-methyl-

4-oxo-5-phenyl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-6-yl)methyl)phosphonate  

as a yellow solid (250mg, 0.664 mmol, 73.0 % yield). 

A dry flask charged with 60% NaH in mineral oil (11.16 mg, 0.279 mmol) and diethyl 

((1-methyl-4-oxo-5-phenyl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-6-yl)methyl)phosphonate 

(100mg, 0.266 mmol) was cooled to 0°C and DMF was added by syringe. After stirring for 10 

min 3-fluorobenzaldehyde (0.031 ml, 0.292 mmol) was added by syringe and the flask was 

allowed to warm to RT.  After an hour the reaction went from yellow to brownish red and was 

complete by HPLC.  Water was added to precipitate product which was collected by filtration, 

washed with additional water and hexanes, and then recrystallized from hot ethanol yielding the 

titled compound as a yellow crystalline solid (50mg, 0.144 mmol, 54.3 % yield). MS (ESI): m/z 

347.1305 [M+H]
+ 

 
1
H NMR (500 MHz, CDCl3) δ 8.10 (s, 1H), 7.91 (d, J = 15.65 Hz, 2H), 7.53 - 

7.64 (m, 3H), 7.22 - 7.34 (m, 3H), 7.09 (d, J = 7.83 Hz, 1H), 7.02 (dt, J = 2.45, 8.31 Hz, 1H), 

6.96 (d, J = 9.78 Hz, 1H), 6.34 (d, J = 15.16 Hz, 2H), 4.10 (s, 3H) 
13

C NMR (126 MHz, CDCl3) 

δ 162.92 (d, J = 247.3 Hz), 158.17, 154.11, 151.05, 139.17, 137.23 (d, J = 7.5 Hz), 136.73, 

135.40, 130.38 (d, J = 8.4 Hz), 129.96, 129.54, 128.88, 123.80 (d, J = 2.6 Hz), 120.96, 116.75 (d, 

J = 21.5 Hz), 114.04 (d, J = 21.8 Hz), 104.23, 34.17. HPLC Purity: 97% 
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6-(3-Fluorophenethyl)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (258472) 

A solution of 258471 (40mg, 0.115 mmol) and 10% Pd-C (36.9 mg, 0.035 mmol) in 5mL 

methanol was degassed under vacuum and the flask backfilled with an H2 balloon.  The mixture 

was stirred vigorously for 2 hours then filtered through Celite and concentrated yielding the titled 

compound as a white solid (27mg, 0.078 mmol, 67.1 % yield). MS (ESI): m/z 349.1461 [M+H]
+ 

 

1
H NMR (400 MHz, CDCl3) δ 8.05 (s, 1H), 7.44 - 7.62 (m, 3H), 7.10 - 7.23 (m, 3H), 6.86 (t, J = 

8.41 Hz, 1H), 6.81 (d, J = 7.83 Hz, 1H), 6.74 (d, J = 10.17 Hz, 1H), 4.04 (s, 3H), 3.04 (t, J = 7.83 

Hz, 2H), 2.68 (t, J = 7.83 Hz, 2H) 
13

C NMR (101 MHz, CDCl3) δ 162.7, 158.9, 158.3, 150.8, 

142.8, 136.9, 135.1, 130.0, 129.8, 129.4, 128.4, 123.9, 115.3, 113.2, 104.0, 37.2, 34.1, 32.3. 

HPLC Purity: 95% 

 

 

 

 

6-((3-Fluorophenoxy)methyl)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(258079) 

 

To a dry vial charged with K2CO3 (55.3 mg, 0.400 mmol) and S4.1d (55 mg, 0.200 mmol) was 

added 1 mL DMF followed by 3-fluorophenol (0.027 mL, 0.300 mmol).  The vial was flushed 

with argon, sealed, and heated to 70°C for 3 h at which point the reaction was complete by 

HPLC.  The mixture was diluted with 20 mL water and extracted 2x with EtOAc.  The combined 

organics were washed 3x with brine and dried over sodium sulfate.  Removal of solvent yielded 
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a colorless oil which was subjected to flash (eluted at 40% EA/Hex) yielding the titled 

compound as a white crystalline solid (58mg, 0.166 mmol, 83 % yield). MS (ESI): m/z 351.1255 

[M+H]
+
   

1
H NMR (400 MHz, CDCl3) δ 8.10 (s, 1H), 7.43 - 7.55 (m, 3H), 7.28 (d, J = 7.04 Hz, 

2H), 7.12 - 7.21 (m, 1H), 6.66 (dt, J = 1.57, 8.22 Hz, 1H), 6.52 - 6.58 (m, 1H), 6.46 - 6.52 (m, 

1H), 4.71 (s, 2H), 4.02 (s, 3H) 
13

C NMR (101 MHz, CDCl3) δ 163.3, 158.7, 158.0, 153.9, 150.5, 

135.6, 135.4, 130.3, 129.8, 129.7, 128.5, 110.3, 108.7, 104.7, 102.6, 68.3, 34.3 HPLC Purity: 

98% 

 

 

 

6-(((3-Fluorophenyl)amino)methyl)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (258473) 

A flask was charged with 1 mL DMF, K2CO3 (151 mg, 1.092 mmol), KI (18.13 mg, 0.109 

mmol), S4.1d (150 mg, 0.546 mmol) and was briefly vacuum degassed and put under nitrogen at 

which point 3-fluoroaniline (0.063 ml, 0.655 mmol) was added by syringe.  The flask was heated 

at 50°C for 24 hours.  Water was added to precipitate the product which was collected by 

filtration yielding the titled compound as a light pink powder (177mg, 0.507 mmol, 93 % yield). 

MS (ESI): m/z 350.1415 [M+H]
+ 

 
1
H NMR (500 MHz, CDCl3) δ 8.07 (s, 1H), 7.54 - 7.65 (m, 

3H), 7.26 (d, J = 6.36 Hz, 2H), 7.07 (q, J = 7.83 Hz, 1H), 6.41 (t, J = 8.07 Hz, 1H), 6.29 (d, J = 

7.83 Hz, 1H), 6.18 (d, J = 11.25 Hz, 1H), 5.00 (br. s., 1H), 4.05 (s, 3H), 3.88 (d, J = 5.20 Hz, 2H) 

13
C NMR (126 MHz, CDCl3) δ 163.9, 157.9, 156.2, 150.3, 148.4, 135.6, 135.4, 130.4, 130.3, 

130.1, 128.3, 109.0, 104.8, 104.3, 99.9, 46.8, 34.3 HPLC Purity: 95% 
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6-(((3-Fluorophenyl)(methyl)amino)methyl)-1-methyl-5-phenyl-1H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (259123) 

 

A flask containing K2CO3 (24.72 mg, 0.179 mmol), MeI (9.40 µl, 0.150 mmol), 258473 (50mg, 

0.143 mmol), and 1mL DMF was heated to 50°C and stirred overnight.  The next day the 

mixture was diluted with water and extracted 2x with EtOAc.  The combined organic portion 

was washed 3x with brine, dried over sodium sulfate, and concentrated.  The crude mixture was 

purified by flash chromatography (EtOAc in Hex) and the product obtained was further purified 

by recrystallization from ethanol yielding the titled compound as a white solid (10mg, 0.028 

mmol, 19.23 % yield). MS (ESI): m/z 364.1568 [M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 8.05 (s, 

1H), 7.59 (t, J = 7.5 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.28 (d, J = 8.1 Hz, 2H), 7.10 (q, J = 7.9 

Hz, 1H), 6.41 (t, J = 8.3 Hz, 1H), 6.29 (dd, J = 16.8, 10.6 Hz, 2H), 4.16 (s, 2H), 3.87 (s, 3H), 

2.99 (s, 3H).
13

C NMR (126 MHz, CDCl3) δ 163.94 (d, J = 242.4 Hz), 158.37, 156.25, 150.80, 

150.59 (d, J = 10.6 Hz), 136.07, 135.24, 130.30, 130.07 (d, J = 10.3 Hz), 129.73, 128.15, 107.78 

(d, J = 2.3 Hz), 104.16, 103.66 (d, J = 21.5 Hz), 99.46 (d, J = 26.3 Hz), 55.73, 39.56, 33.91. 

HPLC Purity: 96% 
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6-(((3-Fluorophenyl)thio)methyl)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-

one (258475) 

 

S4.1d (60mg, 0.218 mmol), K2CO3 (45.3 mg, 0.328 mmol), 3-fluorobenzenethiol (0.025 ml, 

0.306 mmol) and 1mL DMF were stirred overnight at 50°C.  The product was precipitated by the 

addition of water and collected by filtration.  The filtrate was recrystallized from EtOH yielding 

the titled compound as a white crystalline solid (24mg, 0.066 mmol, 30.0 % yield). MS (ESI): 

m/z 367.1025 [M+H]
+ 

 
 1
H NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 7.49 - 7.60 (m, 3H), 7.28 - 

7.34 (m, 2H), 7.15 - 7.24 (m, 2H), 7.08 (d, J = 7.83 Hz, 1H), 6.92 (dt, J = 1.96, 8.41 Hz, 1H), 

3.95 (s, 3H), 3.86 (s, 2H) 
13

C NMR (101 MHz, CDCl3) δ 164.1, 163.9, 161.4, 158.2, 155.9, 

136.3, 135.3, 130.1, 129.9, 129.7, 128.9, 125.9, 117.2, 114.1, 104.3, 38.7, 34.1 HPLC Purity: 

97% 
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6-((1-(3-fluorophenyl)ethyl)thio)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-

one (262741) 

Prepared as described for 257723 in chapter 3. White solid. (106mg, 0.279 mmol, 67.9 % yield). 

MS (ESI): m/z 381.1182 [M+H]
+
  

1
H NMR (500 MHz, Chloroform-d) δ 7.99 (s, 1H), 7.60 - 7.45 

(m, 3H), 7.32 - 7.23 (m, 2H), 7.19 (dd, J = 4.8, 2.2 Hz, 1H), 7.17 (d, J = 8.3 Hz, 1H), 7.10 (dt, J = 

10.0, 2.1 Hz, 1H), 6.93 (td, J = 8.4, 2.5 Hz, 1H), 4.99 (q, J = 7.2 Hz, 1H), 3.98 (s, 3H), 1.67 (d, J 

= 7.0 Hz, 3H).
13

C NMR (126 MHz, Chloroform-d) δ 162.69 (d, J = 246.1 Hz), 161.07, 157.70, 

150.94, 144.96 (d, J = 7.4 Hz), 135.45 (d, J = 23.9 Hz), 135.38, 130.02, 129.96, 129.73 (d, J = 

9.7 Hz), 129.37 (d, J = 2.6 Hz), 123.07 (d, J = 2.9 Hz), 114.59 (d, J = 19.2 Hz), 114.42 (d, J = 

18.5 Hz), 102.92, 46.26, 34.10, 21.78.HPLC Purity: 99% 

 

 

 

 

1-methyl-5-phenyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(259122) 

 

Prepared as described for 257723 in chapter 3. White Solid (183 mg, 0.505 mmol, 65.2 % yield) 

MS (ESI): m/z 363.1278 [M+H]
+
 
1
H NMR (500 MHz, Chloroform-d) δ 7.99 (s, 1H), 7.64 - 7.45 
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(m, 3H), 7.42 - 7.35 (m, 2H), 7.34 - 7.22 (m, 4H), 7.18 (d, J = 6.9 Hz, 1H), 5.02 (q, J = 7.2 Hz, 

1H), 4.00 (s, 3H), 1.70 (d, J = 7.1 Hz, 3H). 
13

C NMR (126 MHz, Chloroform-d) δ 161.50, 

157.82, 151.05, 142.12, 135.64, 135.36, 129.93, 129.72, 129.65, 129.41, 129.38, 128.53, 127.56, 

127.52, 102.88, 46.89, 34.07, 21.97.  HPLC Purity: 98% 

 

 

 

 

(R)-1-methyl-5-phenyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(262548) 

 

To a flask under N2 charged with 3mL DCM and DMF (0.096 ml, 1.239 mmol) was added 

oxalyl chloride (0.102 ml, 1.161 mmol) dropwise by syringe.  The mixture was stirred for 15 

minutes at which point the solvent was removed and residual acid removed with an additional 

DCM chase.  The solid obtained was suspended in 3mL THF and cooled to 0°C and (S)-1-

phenylethanol (0.140 ml, 1.161 mmol) was added and stirred for ~1 minute until a homogenous 

solution was obtained.  TEA (0.324 ml, 2.323 mmol) and S4.1b (200 mg, 0.774 mmol) were 

added.  The mixture was stirred for 2h at which point the reaction was done by HPLC. The 

reaction was quenched with water and extracted 2x with ethyl acetate.  The combined organics 

were washed with brine, dried over sodium sulfate, and concentrated. The crude solid obtained 

was taken up in hot ethanol and the titled compound crystallized as a yellow solid upon cooling 

(156mg, 0.430 mmol, 55.6 % yield). HPLC Purity: 96%, >95% EE as determined by Chiral 
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HPLC (15% IPA in Hexanes, 1 mL/min, RT = 19 min). NMR and MS data were verified to be 

identical to the racemate.  

 

(S)-1-methyl-5-phenyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(262703) 

 

Prepared in the same manner as 262548 employing (R)-1-phenylethanol. (80mg, 0.221 mmol, 

28.5 % yield) HPLC Purity: 98%, >95% EE as determined by Chiral HPLC (15% IPA in 

Hexanes, 1 mL/min, RT = 16 min). NMR and MS data were verified to be identical to the 

racemate. 

 

 
 

6-((1-(6-chloropyridin-2-yl)ethyl)thio)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (264623) 

Prepared in a similar manner as 262548 from 1-(6-chloropyridin-2-yl)ethanol. Yellow solid. 

(150mg, 0.377 mmol, 59.4 % yield). MS (ESI): m/z 398.0836 [M+H]
+ 

  
1
H NMR (500 MHz, 

CDCl3) δ 7.99 (s, 1H), 7.60 (t, J = 7.8 Hz, 1H), 7.57 - 7.50 (m, 3H), 7.35 (d, J = 7.6 Hz, 1H), 

7.31 - 7.27 (m, 1H), 7.24 - 7.16 (m, 2H), 5.08 (q, J = 7.3 Hz, 1H), 3.95 (s, 3H), 1.67 (d, J = 7.3 



195 

 

Hz, 3H). 
13

C NMR (126 MHz, CDCl3) δ 162.76, 160.94, 157.70, 150.83, 150.76, 139.31, 135.47, 

135.37, 130.08, 129.37, 129.33, 122.89, 119.81, 102.81, 47.87, 34.02, 20.50. HPLC Purity: 99% 

 

 

 
 

6-((1-(6-fluoropyridin-2-yl)ethyl)thio)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (264624) 

 

 

Prepared in a similar manner to 262548 using 1-(6-fluoropyridin-2-yl)ethanol prepared as 

previously described.
154

 White solid (45 mg, 0.118 mmol, 24.98 % yield) MS (ESI): m/z 

382.1135 [M+H]
+ 

  
1
H NMR (500 MHz, CDCl3) δ 8.02 - 7.96 (m, 1H), 7.73 (q, J = 8.3 Hz, 1H), 

7.57 - 7.47 (m, 3H), 7.33 - 7.27 (m, 2H), 7.24 - 7.19 (m, 1H), 6.81 (dd, J = 8.1, 2.8 Hz, 1H), 5.08 

(dd, J = 4861.1, 7.2 Hz, 1H), 3.96 (s, 3H), 1.68 (d, J = 7.3 Hz, 3H).13C NMR (126 MHz, CDCl3) 

δ 163.04 (d, J = 240.6 Hz), 161.12, 160.55 (d, J = 12.9 Hz), 157.70, 150.86, 141.60 (d, J = 7.8 

Hz), 135.44, 135.39, 130.07, 129.78 (d, J = 3.8 Hz), 129.35, 118.83 (d, J = 4.3 Hz), 108.15 (d, J 

= 36.9 Hz), 102.85, 47.47, 34.02, 20.42.  HPLC Purity: 97% 
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1-methyl-5-phenyl-6-((2-phenylpropan-2-yl)thio)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(263057) 

 

To a slurry of S4.1b (75 mg, 0.290 mmol) and prop-1-en-2-ylbenzene (0.038 ml, 0.290 

mmol) in DCM at 0°C was added TFA (0.224 ml, 2.90 mmol) dropwise.  The resulting 

homogenous solution was stirred for 30 min at 0°C and 30 min at RT.  The reaction was diluted 

with DCM and washed with saturated bicarb.  The organic portion was dried over sodium sulfate 

and concentrated.  The crude product was purified by flash (eluting around 40-50% EtOAc in 

Hex) yielding a white solid. (65mg, 0.173 mmol, 59.5 % yield) MS (ESI): m/z 377.1434 [M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 7.91 (s, 1H), 7.62 - 7.50 (m, 5H), 7.31 (t, J = 7.6 Hz, 2H), 7.25 - 

7.14 (m, 3H), 3.71 (s, 3H), 1.89 (s, 6H). 
13

C NMR (126 MHz, CDCl3) δ 160.48, 157.80, 150.72, 

145.95, 135.76, 135.19, 129.82, 129.65, 129.43, 127.91, 126.59, 126.28, 102.90, 54.87, 33.99, 

29.71. HPLC Purity: 95% 
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1-methyl-5-phenyl-6-((1-phenylpropyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(262704) 

 

White solid. (110mg, 0.292 mmol, 75 % yield) MS (ESI): m/z 377.1321 [M+H]
+
  

1
H NMR (500 

MHz, CDCl3) δ 7.99 (s, 1H), 7.58 - 7.46 (m, 3H), 7.37 - 7.32 (m, 2H), 7.30 (t, J = 7.7 Hz, 2H), 

7.28 - 7.22 (m, 2H), 7.17 (d, J = 7.2 Hz, 1H), 4.77 (dd, J = 9.1, 6.1 Hz, 1H), 4.00 (s, 3H), 2.16 - 

2.02 (m, 1H), 1.97 - 1.83 (m, 1H), 0.92 (t, J = 7.3 Hz, 3H). 
13

C NMR (126 MHz, CDCl3) δ 

161.60, 157.83, 151.02, 140.91, 135.72, 135.34, 129.90, 129.70, 129.63, 129.42, 129.36, 128.40, 

128.08, 127.46, 102.86, 53.65, 34.03, 29.25, 12.29. HPLC Purity: 98% 

 

 

1-methyl-6-((2-methyl-1-phenylpropyl)thio)-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-

one (263639) 

Prepared from (1-bromo-2-methylpropyl)benzene
155

 as described for 257723 in chapter 3.  White 

solid (29mg, 0.074 mmol, 28.1 % yield) MS (ESI): m/z 413.1418 [M+H]
+
  

1
H NMR (500 MHz, 

CDCl3) δ 7.95 (d, J = 1.1 Hz, 1H), 7.60 - 7.46 (m, 3H), 7.35 - 7.26 (m, 5H), 7.25 - 7.20 (m, 1H), 

7.16 (d, J = 7.8 Hz, 1H), 4.74 (d, J = 7.8 Hz, 1H), 3.96 (s, 3H), 2.14 (dtt, J = 7.2, 6.8 Hz, 1H), 

1.04 (d, J = 6.7 Hz, 3H), 0.85 (d, J = 6.7 Hz, 3H). 
11

C NMR (126 MHz, CDCl3) δ 161.57, 157.86, 

150.95, 140.89, 135.87, 135.29, 129.88, 129.70, 129.64, 129.43, 129.37, 128.61, 127.98, 127.13, 

102.81, 59.22, 34.04, 33.39, 21.07, 20.57. HPLC Purity: 99% 
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1-methyl-5-phenyl-6-(1-phenylethoxy)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (262561) 

 

60% NaH in mineral oil (7.89 mg, 0.197 mmol) was added to a solution of 1-phenylethanol 

(0.026 ml, 0.214 mmol) in DMF at 0°C. The mixture was stirred for 10 min at which point 1-

methyl-6-(methylsulfonyl)-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (50mg, 0.164 

mmol) was added and the mixture was allowed to warm to room temperature and stirred 

overnight.  The mixture was diluted with water and extracted 2x with EtOAc.  The combined 

organics were washed 3x with brine, dried over sodium sulfate, and concentrated.  The crude 

residue was purified by flash (EtOAc and Hexanes) yielding the titled compound as a white solid 

(5mg, 0.014 mmol, 8.79 % yield). MS (ESI): m/z 347.1504 [M+H]
+
  

1
H NMR (500 MHz, 

CDCl3) δ 7.97 (s, 1H), 7.60 - 7.44 (m, 3H), 7.28 (dd, J = 10.4, 7.1 Hz, 4H), 7.14 (d, J = 7.0 Hz, 

3H), 6.20 (q, J = 6.6 Hz, 1H), 3.90 (s, 3H), 1.50 (d, J = 6.6 Hz, 3H). 
13

C NMR (126 MHz, 

CDCl3) δ 158.07, 154.93, 151.02, 141.03, 135.55, 135.21, 129.23, 128.72, 128.48, 128.44, 

128.39, 128.02, 125.70, 109.99, 101.91, 33.77, 22.59. HPLC Purity: 96% 

 

2,4,6-Trichloronicotinaldehyde (S4.3b) 
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A hot, oven-dried flask was charged with S4.3a (5 g, 27.4 mmol), vacuum purged, and backfilled 

with N2, at which point 50mL anhydrous THF was added by syringe.  The flask was cooled to -

78°C and nBuLi (2.6M in Hexanes, 10.96 ml, 27.4 mmol) was added by syringe down the side 

of the flask over 10 min. The green solution was stirred for 10min before adding ethyl formate 

(dried over sodium sulfate, 2.90 ml, 35.6 mmol) dropwise by syringe over 10 minutes.  The 

mixture was stirred for 1 h and then removed from the cooling bath and cold quenched with 5mL 

saturated aqueous ammonium sulfate. The mixture was concentrated and taken up in ethyl 

acetate and washed with water. The aqeous portion was back extracted and the combined 

organics were washed with brine and dried over sodium sulfate yielding a yellow solid upon 

concentration that was used in the next step without further purification (product will slowly 

sublime in vacuo) (5.98 g, 28.4 mmol, 104 % yield). 
1
H NMR (500 MHz, CDCl3) δ 10.42 (d, J = 

1.1 Hz, 1H), 7.46 (d, J = 1.0 Hz, 1H). 

 

4,6-Dichloro-1-methyl-1H-pyrazolo[4,3-c]pyridine (S4.3c) 

A flask under N2 was charged with S4.3b (5.72 g, 27.2 mmol) dissolved in 150mL Abs. EtOH 

using a sonicator. Triethylamine (11.37 ml, 82 mmol) was added and the flask was cooled to -

40°C at which point methylhydrazine (1.574 ml, 29.9 mmol) was added by syringe. The flask 

was allowed to gradually warm to RT over 2 h then stirred at RT for an additional 3 h. The 

reaction was concentrated and taken up in ethyl acetate and washed 2x with 1N HCl and 1X with 

brine, dried over magnesium sulfate, and concentrated.  The crude residue was purified by flash 

affording the titled compound as a yellow solid (1.83 g, 9.06 mmol, 33.3 % yield). 
1
H NMR (500 

MHz, CDCl3) δ 8.10 (s, 1H), 7.28 (s, 1H), 4.05 (s, 3H). 
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6-chloro-1-methyl-1H-pyrazolo[4,3-c]pyridin-4(5H)-one (S4.3d) 

A microwave vessel was charged with S4.3c (1.83 g, 9.06 mmol) and 10mL 10% NaOH. The 

vessel was heated in a microwave synthesizer for 30 minutes at which point the mixture was 

acidified with conc. HCl and the resulting precipitate collected by filtration affording the titled 

compound as a white solid (1.48 g, 8.06 mmol, 89 % yield).
 1

H NMR (500 MHz, DMSO-d6) δ 

7.98 (s, 1H), 6.87 (s, 1H), 3.89 (s, 3H). 

 

6-((3-Fluorobenzyl)thio)-1-methyl-1H-pyrazolo[4,3-c]pyridin-4(5H)-one (S4.3e) 

A microwave tube was charged with S4.3d (300 mg, 1.634 mmol), DIPEA (1.142 ml, 6.54 

mmol), (3-fluorophenyl)methanethiol (0.404 ml, 3.27 mmol), and 3mL n-Butanol.  The 

headspace was purged with Ar and the tube was capped and heated to 170°C in a microwave 

synthesizer for 48 h.  Upon cooling a white precipitate formed which was collected by filtration 

and washed with water and hexanes to afford the titled compound (300mg, 1.037 mmol, 63.5 % 

yield).
1
H NMR (500 MHz, DMSO-d6) δ 11.37 (br. s., 1H), 7.95 (s, 1H), 7.31 - 7.41 (m, 1H), 

7.16 - 7.25 (m, 2H), 7.09 (t, J = 8.56 Hz, 1H), 6.67 (s, 1H), 4.38 (s, 2H), 3.88 (s, 3H) 



201 

 

 

6-((3-Fluorobenzyl)thio)-1-methyl-5-phenyl-1H-pyrazolo[4,3-c]pyridin-4(5H)-one (258469) 

A flask was charged with 2mL DCE, Pyridine (0.028 ml, 0.346 mmol), TEMPO (29.7 mg, 0.190 

mmol), S4.3e (50mg, 0.173 mmol), Cu(II)OAc hydrate (6.90 mg, 0.035 mmol), phenylboronic 

acid (42.1 mg, 0.346 mmol), and 3Å molecular seives and stirred under air for 24 h at RT.  The 

mixture was filtered with celite and the filter pad washed with DCM.  The filtrate was washed 

with 1N HCl and brine, dried over sodium sulfate, and concentrated.  The crude mixture was 

purified by flash (Elutes at 60% EtOAc in Hexanes) affording the titled compound as a white 

solid (32mg, 0.088 mmol, 50.7 % yield). MS (ESI): m/z 366.1066 [M+H]
+
  

1
H NMR (400 MHz, 

CDCl3) δ 8.09 (s, 1H), 7.45 - 7.55 (m, 3H), 7.23 - 7.31 (m, 3H), 7.04 (d, J = 7.43 Hz, 1H), 6.94 - 

7.01 (m, 2H), 6.20 (s, 1H), 3.99 (s, 2H), 3.91 (s, 3H), 
13

C NMR (101 MHz, CDCl3) δ 162.8, 

159.0, 144.9, 143.2, 137.6, 136.9, 130.3, 129.6, 129.3, 124.6, 115.9, 115.0, 111.5, 90.8, 38.5, 

35.8. HPLC Purity: 95% 

 

2-chloro-7-methyl-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one (S4.3g) 

To a flask charged with 10mL THF and 60 wt.% NaH (117 mg, 2.93 mmol) under N2 at 0°C was 

added S4.3f (500mg, 2.66 mmol) dissolved in 10mL THF by syringe.  The flask was stirred at 

0°C for an hour at which point MeI (183 µl, 2.93 mmol) was added by syringe.  The flask was 

allowed to gradually warm to RT overnight and the next day the solvent was removed and the 
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residue was treated with 20mL 2N NaOH and refluxed overnight.  The product was precipitated 

by addition of conc. HCl, filtered, and washed with water and hexane.  To afford the titled 

compound as a white solid (415mg, 2.260 mmol, 85 % yield).
1
H NMR (400 MHz, DMSO-d6) δ 

12.83 (br. s., 1H), 7.10 (d, J = 2.74 Hz, 1H), 6.45 (d, J = 3.13 Hz, 1H), 3.66 (s, 3H).  

 

2-((3-Fluorobenzyl)thio)-7-methyl-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one (S4.3h) 

A pressure tube was charged with S4.3g (100mg, 0.545 mmol), DIPEA (0.190 ml, 1.089 mmol), 

(3-fluorophenyl)methanethiol (0.101 ml, 0.817 mmol) and 1mL abs. EtOH. The headspace was 

purged with Ar and the tube was heated to 100°C overnight.  Upon cooling a white precipitate 

formed which was collected by filtration and washed with an additional 1mL ice cold EtOH to 

afford the titled compound as a white solid (110mg, 0.380 mmol, 69.8 % yield). 
1
H NMR (400 

MHz, DMSO-d6) δ 12.12 (s, 1H), 7.41 - 7.24 (m, 3H), 7.06 (ddt, J = 9.5, 7.5, 2.1 Hz, 1H), 6.97 

(d, J = 3.4 Hz, 1H), 6.35 (d, J = 3.3 Hz, 1H), 4.45 (s, 2H), 3.70 (s, 3H). 

 

2-((3-Fluorobenzyl)thio)-7-methyl-3-phenyl-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one 

(258470) 

A flask was charged with S4.3h (50mg, 0.173 mmol), phenylboronic acid (23.18 mg, 0.190 

mmol), Cu(II)OAc hydrate (51.8 mg, 0.259 mmol), pyridine (28.0 µl, 0.346 mmol), 3Å 
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molecular sieves and 2mL DCM and stirred at RT under air for 5 days.  The mixture was filtered 

through celite and the pad washed with additional DCM.  The filtrate was washed with 1N HCl 

and brine before drying over sodium sulfate and concentrating.  The crude residue was taken up 

in hot EtOH and the titled compound recrystallized as a white solid upon cooling (25 mg, 0.068 

mmol, 39.6 % yield). MS (ESI): m/z 366.1073 [M+H]
+
  1H NMR (500 MHz, CDCl3) δ 7.66 - 

7.41 (m, 3H), 7.33 - 7.22 (m, 3H), 7.18 - 7.08 (m, 2H), 6.94 (td, J = 8.7, 2.5 Hz, 1H), 6.80 - 6.71 

(m, 1H), 6.67 - 6.61 (m, 1H), 4.34 (s, 2H), 3.80 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 162.67 

(d, J = 245.7 Hz), 162.41, 159.18, 155.59, 146.87, 139.27, 136.39, 129.93 (d, J = 8.2 Hz), 

129.70, 129.55, 129.49, 124.71 (d, J = 2.9 Hz), 123.06, 116.20, 114.35 (d, J = 21.1 Hz), 104.59, 

102.96, 36.60 (d, J = 2.0 Hz), 31.52. 

 

2-((3-fluorobenzyl)thio)-3-phenylimidazo[5,1-f][1,2,4]triazin-4(3H)-one (259010) 

Ethyl 1-amino-1H-imidazole-5-carboxylate (4.4b) (12mg, 0.077 mmol), prepared as previously 

described,
156

 was dissolved in dry DMF to which isothiocyanatobenzene (10.16 µl, 0.085 mmol) 

was added.  The reaction was stirred under N2 overnight.  The next day, 60 wt.% NaH (6.19 mg, 

0.155 mmol) was added and the mixture was stirred for 2 h, at which point the flask was chilled 

to 0°C and 3-fluorobenzyl bromide (10.44 µl, 0.085 mmol) was added.  The mixture was stirred 

overnight.  The reaction was diluted with brine and extracted with ethyl acetate.  The organic 

portion was dried over sodium sulfate and the solvent removed.  The crude product was purified 

by Flash (Eluting 50-70% EtOAc in Hexanes) yielding the titled compound as a colorless residue 
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(14mg, 0.040 mmol, 51.4 % yield). MS (ESI): m/z 353.0870 [M+H]
+
  

1
H NMR (500 MHz, 

CDCl3) δ 8.11 (s, 1H), 7.91 (s, 1H), 7.59 - 7.47 (m, 3H), 7.33 - 7.25 (m, 3H), 7.12 (d, J = 7.7 Hz, 

1H), 7.05 (d, J = 9.4 Hz, 1H), 6.96 (t, J = 8.8 Hz, 1H), 4.26 (s, 2H). 
13

C NMR (126 MHz, CDCl3) 

δ 162.71 (d, J = 246.7 Hz), 153.51, 153.22, 137.36 (d, J = 7.6 Hz), 133.72, 133.52, 130.48, 

130.20 (d, J = 8.4 Hz), 129.93, 129.74, 129.49, 124.95 (d, J = 3.2 Hz), 118.02, 116.24 (d, J = 

22.2 Hz), 114.95 (d, J = 21.0 Hz), 36.59. HPLC Purity 98%  

 

6-chloro-1-methyl-5-phenyl-1H-pyrazolo[4,3-c]pyridin-4(5H)-one (S4.5a) 

A dry flask was charged with 25mL DCE, 3Å molecular sieves, phenylboronic acid (1.966 g, 

16.12 mmol), S4.3d (1.48 g, 8.06 mmol), copper(II) acetate hydrate (0.322 g, 1.612 mmol), and 

pyridine (1.304 ml, 16.12 mmol).  The flask was vacuum purged and backfilled with an O2 

balloon and stirred vigorously for 3 d. The crude reaction mixture was filtered with Celite and 

the filter pad washed with DCM.  The filtrate was washed with sat. aq. NH4Cl and dried over 

sodium sulfate.  Following concentration, the crude residue was washed with 10mL diethyl ether 

yielding an orange solid which was taken forward without further purification (1.05 g, 4.04 

mmol, 50.2 % yield).  

 

6-mercapto-1-methyl-5-phenyl-1H-pyrazolo[4,3-c]pyridin-4(5H)-one (S4.5b) 

A flask containing 6-chloro-1-methyl-5-phenyl-1H-pyrazolo[4,3-c]pyridin-4(5H)-one (1.05 g, 

4.04 mmol), Na2S (400 mg, 4.4 mmol) and 20mL DMF was rigorously deoxygenated under 
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vacuum, backfilled with N2 and heated to 140°C for 12 h. The reaction was diluted with 1N HCl 

and EtOAc forming an emulsion.  The entire mixture was filtered, affording the titled compound 

as a white solid (620mg, 2.410 mmol, 59.6 % yield).
 1

H NMR (400 MHz, DMSO-d6) δ 7.97 (s, 

1H), 7.55 – 7.42 (m, 3H), 7.25 (d, J = 7.3 Hz, 2H), 6.89 (s, 1H), 3.87 (s, 3H). 

 

 

2-((1-Methyl-4-oxo-5-phenyl-4,5-dihydro-1H-pyrazolo[4,3-c]pyridin-6-yl)thio)-2-

phenylacetic acid (S4.5c) 

 

To a suspension of S4.5b (180 mg, 0.700 mmol) and K2CO3 (135 mg, 0.979 mmol) in 3mL DMF 

was added ethyl 2-bromo-2-phenylacetate (147 µl, 0.839 mmol).  The mixture was stirred at RT 

overnight.  The next day the mixture was diluted with water and extracted 2x with EtOAc.  The 

combined organics were washed 3x with brine, dried over sodium sulfate, and concentrated.  The 

crude mixture was purified by flash (Eluting at 50% EtOAc in Hexanes) to afford ethyl 2-((1-

methyl-4-oxo-5-phenyl-4,5-dihydro-1H-pyrazolo[4,3-c]pyridin-6-yl)thio)-2-phenylacetate  

as a white solid (213mg, 0.508 mmol, 72.6 % yield). 
1
H NMR (500 MHz, CDCl3) δ 8.10 (s, 1H), 

7.56 - 7.46 (m, 3H), 7.34 - 7.23 (m, 7H), 6.47 (s, 1H), 4.69 (s, 1H), 4.23 - 4.02 (m, 2H), 3.93 (s, 

3H), 1.18 (t, J = 7.1 Hz, 3H). 

A slurry of ethyl 2-((1-methyl-4-oxo-5-phenyl-4,5-dihydro-1H-pyrazolo[4,3-c]pyridin-6-

yl)thio)-2-phenylacetate (213 mg, 0.508 mmol) in 2mL 1N LiOH and 3mL THF was stirred for 2 
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hours at which point the reaction was complete by HPLC.  Following removal of THF, the 

mixture was acidified with 1N HCl and extracted 3x with EtOAc.  The combined organics were 

washed with brine, dried over sodium sulfate, and concentrated to afford the titled compound as 

a white solid (202mg, 0.516 mmol, 102 % yield). 

 

 

1-Methyl-5,7-diphenyl-1H-pyrazolo[3,4-d]thieno[2,3-b]pyridine-4,8(5H,7H)-dione (263861) 

S4.5c (138 mg, 0.353 mmol) was dissolved in 5mL DCM and cooled to 0°C under nitrogen at 

which point (COCl)2 (0.037 ml, 0.423 mmol) and DMF (2.73 µl, 0.035 mmol) were added 

sequentially.  The mixture was stirred for 10 minutes at 0°C and then allowed to warm to room 

temperature and left overnight.  The next day the solvent was removed and the residue was 

purified by flash (EA in Hex) to yield (90mg, 0.241 mmol, 68.4 % yield) as an oily white solid. 

MS (ESI): m/z 374.0956 [M+H]+  
1
H NMR (500 MHz, CDCl3) δ 8.17 (s, 1H), 7.63 - 7.53 (m, 

3H), 7.44 - 7.34 (m, 5H), 7.34 - 7.28 (m, 2H), 4.97 (s, 1H), 4.48 (s, 3H).
13

C NMR (126 MHz, 

CDCl3) δ 192.45, 171.74, 158.04, 138.91, 138.16, 136.11, 134.16, 130.45, 130.00, 129.20, 

128.86, 128.53, 128.34, 110.79, 101.00, 58.53, 41.37. HPLC Purity: 96%. 
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3-((1-Methyl-4-oxo-5-phenyl-4,5-dihydro-1H-pyrazolo[4,3-c]pyridin-6-yl)thio)-3-

phenylpropanoic acid (S4.5d)  

Cinnamic acid (535 mg, 3.61 mmol) was heated to 70°C in a sealed tube with 1mL 33% 

HBr/HOAc overnight.  The next day the reaction was diluted with DCM and washed with water 

and brine, dried over sodium sulfate, and concentrated affording a white solid.  The solid 

dissolved in 10mL DMF to which S4.5b (620mg, 2.410 mmol) and sodium bicarbonate (304 mg, 

3.61 mmol) were added.  After 2 h the thiol was all dissolved and the reaction was complete by 

HPLC and the reaction was neutralized with a couple drops of conc. HCl.  The DMF was 

removed in vacuo and the crude product was purified by flash (5-10% MeOH in DCM) yielding 

the titled compound as a yellow oil. (670mg, 1.652 mmol, 68.6 % yield).
 1

H NMR (500 MHz, 

CDCl3) δ 8.04 (d, J = 0.9 Hz, 1H), 7.52 – 7.40 (m, 3H), 7.32 – 7.19 (m, 5H), 7.13 (d, J = 7.0 Hz, 

2H), 6.53 (s, 1H), 4.48 (t, J = 7.2 Hz, 1H), 3.86 (s, 3H), 2.97 – 2.83 (m, 2H). 

  

 

1-Methyl-5,7-diphenyl-7,8-dihydropyrazolo[3,4-d]thiopyrano[2,3-b]pyridine-4,9(1H,5H)-

dione (263645) 
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To a dry pressure tube was added a suspension of S4.5d (630mg, 1.554 mmol) in 10mL DCE.  

Methanesulfonic anhydride (541 mg, 3.11 mmol) was added and the headspace was flushed with 

N2 and the tube sealed.  The tube was heated to 70°C for 2 h.  The next day the reaction was 

diluted with DCM and washed with saturated Sodium Bicarbonate and brine before drying over 

sodium sulfate and concentrating.  The crude brown oil was purified by flash (Elutes around 50% 

EA/Hex) yielding the product as a white-yellow foam (250mg, 0.645 mmol, 41.5 % yield). MS 

(ESI): m/z 388.1114 [M+H]
+
   

1
H NMR (400 MHz, CDCl3) δ 8.17 (s, 1H), 7.57 - 7.46 (m, 3H), 

7.40 - 7.30 (m, 5H), 7.29 - 7.21 (m, 3H), 4.66 (dd, J = 12.6, 4.5 Hz, 1H), 4.19 (s, 3H), 3.31 - 3.11 

(m, 2H).13C NMR (101 MHz, CDCl3) δ 189.64, 159.55, 157.89, 141.28, 137.06, 136.73, 135.76, 

130.17, 129.87, 129.77, 129.20, 129.15 (d, J = 1.1 Hz), 129.08, 127.79, 112.19, 105.21, 46.86, 

45.66, 42.30. HPLC Purity: 99% 

 

9-hydroxy-1-methyl-5,7-diphenyl-5,7,8,9-tetrahydropyrazolo[3,4-d]thiopyrano[2,3-

b]pyridin-4(1H)-one (S4.5e) 

NaBH4 (5.86 mg, 0.155 mmol), and 263645 (50 mg, 0.129 mmol) were added to 1mL abs. EtOH 

at 0°C.  The mixture was stirred for 30 minutes at the same temperature then quenched with 

saturated aqueous NH4Cl.  The mixture was concentrated and taken up in EtOAc, washed with 

water and brine, dried over sodium sulfate, and concentrated  to afford the titled compound 

(mixture of diastereomers) as a white solid (42mg, 0.108 mmol, 84 % yield). 
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1-Methyl-5,7-diphenyl-5,7-dihydropyrazolo[3,4-d]thiopyrano[2,3-b]pyridin-4(1H)-one 

(263867) 

To a solution of S4.5e (24mg, 0.062 mmol) and InCl3 (1.363 mg, 6.16 µmol) in 1mL DCM was 

added chlorodiphenylsilane (0.022 mL, 0.123 mmol).  The mixture was stirred for 2 hours at 

room temperature at which point the mixture was concentrated and purified by flash (Eluting at 

70% EA/Hex) to yield the titled compound as a yellow solid (14mg, 0.038 mmol, 61.2 % yield). 

MS (ESI): m/z 372.1162 [M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 8.12 (s, 1H), 7.53 - 7.47 (m, 

1H), 7.47 - 7.40 (m, 2H), 7.38 - 7.34 (m, 2H), 7.34 - 7.27 (m, 4H), 7.13 (dt, J = 7.7, 2.3 Hz, 1H), 

7.03 (dd, J = 9.8, 1.7 Hz, 1H), 5.81 (dd, J = 9.8, 4.8 Hz, 1H), 4.87 (dd, J = 4.8, 1.7 Hz, 1H), 4.21 

(s, 3H). 
13

C NMR (126 MHz, CDCl3) δ 158.29, 143.28, 141.58, 138.56, 138.02, 136.92, 129.44, 

129.40, 129.39, 129.23, 128.79, 128.75, 128.40, 128.09, 123.47, 118.72, 112.30, 101.99, 45.63, 

39.57. HPLC Purity: 99% 

 

 

2-(1-Bromoethyl)pyridine  

2-ethylpyridine (1.067 ml, 9.33 mmol), AIBN (0.153 g, 0.933 mmol), and NBS (1.744 g, 9.80 

mmol) were refluxed in 20mL of CCl4 for 1 h. The reaction was cooled and filtered and the solid 

was taken up in DCM and filtered again.  The filtrate was washed with saturated aqueous sodium 
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bicarbonate and brine before drying over sodium sulfate and concentrating.  The resulting orange 

oil was carried forward without further purification.  

 

1-Methyl-5-phenyl-6-((1-(pyridin-2-yl)ethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one  

(263118) 

Prepared from 2-(1-Bromoethyl)pyridine in a manner similar to 257723 in chapter 3. White solid 

(56mg, 0.154 mmol, 39.8 % yield) MS (ESI): m/z 364.1225 [M+H]
+
  

1
H NMR (500 MHz, 

CDCl3) δ 8.55 (d, J = 4.8 Hz, 1H), 8.00 (s, 1H), 7.64 (t, J = 7.7 Hz, 1H), 7.57 – 7.45 (m, 3H), 

7.40 (d, J = 7.8 Hz, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.22 (d, J = 6.5 Hz, 1H), 7.16 (t, J = 6.2 Hz, 

1H), 5.14 (q, J = 7.2 Hz, 1H), 3.96 (s, 3H), 1.73 (d, J = 7.1 Hz, 3H). 13C NMR (126 MHz, 

CDCl3) δ 161.52, 161.07, 157.78, 150.96, 149.52, 136.66, 135.53, 135.37, 129.96, 129.75, 

129.38, 122.34, 121.76, 102.83, 48.47, 34.00, 20.95. HPLC Purity: 99% 

 

3-(1-Bromoethyl)pyridine 

Prepared in a similar manner to 2-(1-Bromoethyl)pyridine. The resulting orange oil was carried 

forward without further purification. 
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1-Methyl-5-phenyl-6-((1-(pyridin-3-yl)ethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(263119) 

Prepared from 3-(1-Bromoethyl)pyridine in a manner similar to 257723 in chapter 3. White solid 

(90mg, 0.248 mmol, 64.0 % yield) MS (ESI): m/z 364.1225 [M+H]
+
  

1
H NMR (500 MHz, 

CDCl3) δ 8.72 (d, J = 2.2 Hz, 1H), 8.49 (d, J = 4.8 Hz, 1H), 7.99 (s, 1H), 7.70 (d, J = 7.9 Hz, 

1H), 7.59 – 7.47 (m, 3H), 7.29 – 7.21 (m, 2H), 7.18 (d, J = 7.1 Hz, 1H), 5.01 (q, J = 7.3 Hz, 1H), 

3.99 (s, 3H), 1.68 (d, J = 7.3 Hz, 3H). 
13

C NMR (126 MHz, CDCl3) δ 160.67, 157.61, 150.85, 

149.37, 148.81, 138.32, 135.47, 135.37, 134.47, 130.10, 129.79, 129.72, 129.37, 129.35, 123.49, 

102.96, 44.04, 34.20, 21.59. HPLC Purity: 99% 

 

4-(1-bromoethyl)pyridine 

Prepared in a similar manner to 2-(1-Bromoethyl)pyridine. The resulting orange oil was carried 

forward without further purification. 

 

1-methyl-5-phenyl-6-((1-(pyridin-4-yl)ethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(263650) 
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Prepared from 4-(1-Bromoethyl)pyridine in a manner similar to 257723 in chapter 3. White solid 

(31mg, 0.085 mmol, 29.4 % yield). MS (ESI): m/z 364.1229 [M+H]
+
 
1
H NMR (500 MHz, 

CDCl3) δ 8.55 (d, J = 4.9 Hz, 2H), 7.99 (s, 1H), 7.61 - 7.48 (m, 3H), 7.36 - 7.30 (m, 2H), 7.29 - 

7.22 (m, 1H), 7.23 - 7.15 (m, 1H), 4.95 (q, J = 7.3 Hz, 1H), 3.95 (s, 3H), 1.64 (d, J = 7.3 Hz, 3H). 

13
C NMR (126 MHz, CDCl3) δ 160.55, 157.58, 151.66, 150.79, 150.04, 135.43, 135.41, 130.15, 

129.79 (d, J = 9.4 Hz), 129.35 (d, J = 3.2 Hz), 122.37, 102.95, 45.48, 34.10, 21.20. HPLC Purity: 

99% 

 

1-methyl-5-phenyl-6-((1-(pyrimidin-5-yl)ethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-

one (263640) 

S4.1b (75mg, 0.290 mmol), 5-(1-iodoethyl)pyrimidine (95 mg, 0.407 mmol), and  K2CO3 (60.2 

mg, 0.436 mmol) were stirred at room temperature in 2mL DMF overnight.  The next day the 

mixture was diluted with water and extracted 2x with ethyl acetate.  The combined organic 

portion was washed 3x with brine and dried over sodium sulfate.  The crude solid obtained upon 

concentration was recrystallized from hot ethanol yielding the titled compound as a white solid 

(41mg, 0.113 mmol, 38.7 % yield). MS (ESI): m/z 387.1010 [M+H]
+
  

1
H NMR (500 MHz, 

CDCl3) δ 9.10 (s, 1H), 8.82 (s, 2H), 7.99 (s, 1H), 7.61 - 7.49 (m, 3H), 7.30 - 7.23 (m, 1H), 7.21 - 

7.15 (m, 1H), 4.94 (q, J = 7.6 Hz, 1H), 3.98 (s, 3H), 1.68 (d, J = 7.4 Hz, 3H).13C NMR (126 

MHz, CDCl3) δ 160.07, 157.69, 157.41, 155.97, 150.67, 136.63, 135.42, 135.25, 130.29, 129.91, 

129.80, 129.34, 103.07, 41.63, 34.31, 21.05.  
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tert-butyl(3-ethylphenoxy)dimethylsilane 

3-Ethylphenol (1 g, 8.19 mmol), TBS-Cl (1.357 g, 9.00 mmol), and imidazole (1.226 g, 18.01 

mmol) were stirred overnight in 10mL DMF. Diluted with 25mL water and extracted with 25mL 

Ethyl acetate.  The organic portion was dried over sodium sulfate and the solvent was removed.  

The crude oil was filtered through a pad of silica using ~5% EA in Hex yielding (1.8 g, 7.61 

mmol, 93 % yield) as a colorless oil. 

 

(3-(1-bromoethyl)phenoxy)(tert-butyl)dimethylsilane  

A suspension of tert-butyl(3-ethylphenoxy)dimethylsilane (1.8 g, 7.61 mmol), benzoyl peroxide 

(0.277 g, 1.142 mmol), and NBS (1.355 g, 7.61 mmol) in 15mL CCl4 was refluxed for 3 h.  The 

mixture was cooled, filtered and the filtratewas diluted with DCM and washed with water and 

brine before drying over sodium sulfate.  The mixture was concentrated and the resulting residue 

was filtered through a pad of silica eluting with hexanes yielding the titled compound as a 

colorless oil (1.2 g, 3.81 mmol, 50.0 % yield).
1
H NMR (500 MHz, CDCl3) δ 7.19 (t, J = 7.9 Hz, 

1H), 7.01 (d, J = 7.6 Hz, 1H), 6.92 (d, J = 2.1 Hz, 1H), 6.75 (dd, J = 8.1, 2.4 Hz, 1H), 5.15 (q, J = 

6.9 Hz, 1H), 2.02 (d, J = 6.9 Hz, 3H), 1.00 - 0.95 (s, 9H), 0.21 (s, 6H). 
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6-((1-(3-((tert-butyldimethylsilyl)oxy)phenyl)ethyl)thio)-1-methyl-5-phenyl-1H-

pyrazolo[3,4-d]pyrimidin-4(5H)-one  

 

Prepared in a manner similar to 257723 in chapter 3. Yellow oil. (195mg, 0.396 mmol, 82 % 

yield)  

 

6-((1-(3-hydroxyphenyl)ethyl)thio)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-

one (263117)  

To an HDPE vial was added 6-((1-(3-((tert-butyldimethylsilyl)oxy)phenyl)ethyl)thio)-1-methyl-

5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (195 mg, 0.396 mmol) dissolved in 3mL THF.   

70% HF in pyridine (250 µl, 10.15 mmol) was added and the vial was sealed under N2 and left 

overnight.  The next morning the reaction was diluted with 15mL water and extracted with 

EtOAc.  The organic portion was washed with saturated aqueous sodium bicarbonate and brine 

then dried over sodium sulfate and concentrated yielding the titled compound as a white solid 

(123mg, 0.325 mmol, 82 % yield). MS (ESI): m/z 379.1218 [M+H]
+
  

1
H NMR (500 MHz, 

DMSO-d6) δ 9.43 (s, 1H), 8.04 (s, 1H), 7.59 - 7.53 (m, 1H), 7.53 - 7.48 (m, 2H), 7.38 (d, J = 7.6 

Hz, 1H), 7.33 - 7.26 (m, 1H), 7.10 (t, J = 7.8 Hz, 1H), 6.83 (d, J = 7.7 Hz, 1H), 6.78 (s, 1H), 6.63 

(dd, J = 8.1, 2.4 Hz, 1H), 4.94 (q, J = 7.0 Hz, 1H), 3.97 (s, 3H), 1.64 (d, J = 7.0 Hz, 3H).
13

C 
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NMR (126 MHz, DMSO-d6) δ 161.31, 157.80, 157.30, 150.87, 143.59, 136.14, 135.10, 130.26, 

130.07, 129.98, 129.95, 118.52, 114.93, 114.74, 102.80, 46.84, 34.34, 22.09. HPLC Purity: 98% 

 

1-(1-bromoethyl)-2-methoxybenzene 

1-ethyl-2-methoxybenzene (0.311 ml, 2.203 mmol), NBS (412 mg, 2.313 mmol), and AIBN 

(72.3 mg, 0.441 mmol) were suspended in 5mL CCl4 and refluxed for 3 h.  The mixture was 

cooled and filtered.  The filtrate was washed with sat. sodium carbonate and brine, then dried 

over sodium sulfate and concentrated to afford the titled compound as a colorless oil which was 

used in the next step without further purification (520mg, 2.418 mmol, 110 % yield).   

 

6-((1-(2-methoxyphenyl)ethyl)thio)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-

one (263351) 

Prepared from 1-(1-bromoethyl)-2-methoxybenzene in a manner similar to 257723 in chapter 3.  

White solid. MS (ESI): m/z 393.1383 [M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 8.00 (s, 1H), 7.61 

- 7.43 (m, 3H), 7.33 (d, J = 7.6 Hz, 1H), 7.30 - 7.25 (m, 1H), 7.25 - 7.18 (m, 2H), 6.90 (t, J = 7.7 

Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 5.45 (q, J = 7.2 Hz, 1H), 3.98 (s, 3H), 3.85 (s, 3H), 1.69 (d, J = 

7.1 Hz, 3H). 
13

C NMR (126 MHz, CDCl3) δ 162.17, 157.95, 156.54, 151.18, 135.77, 135.34, 

129.94, 129.81, 129.62 (d, J = 4.8 Hz), 129.40 (d, J = 2.2 Hz), 128.62, 127.98, 120.63, 110.74, 

102.76, 55.52, 41.03, 33.78, 21.14. (60 mg, 0.153 mmol, 52.7 % yield) HPLC Purity: 98% 
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1-(1-Bromoethyl)-3-methoxybenzene  

Prepared in a similar manner as 1-(1-bromoethyl)-2-methoxybenzene from 1-ethyl-3-

methoxybenzene prepared as previously described.
157

 Colorless oil. (550mg, 4.04 mmol, 99 % 

yield) 

 

6-((1-(3-Methoxyphenyl)ethyl)thio)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-

one (263353) 

Prepared from 1-(1-bromoethyl)-3-methoxybenzene in a manner similar to 257723 in chapter 3. 

White solid. (29mg, 0.074 mmol, 25.4 % yield). MS (ESI): m/z 393.1383 [M+H]
+
  

1
H NMR 

(500 MHz, CDCl3) δ 8.00 (s, 1H), 7.60 - 7.43 (m, 3H), 7.27 (d, J = 6.7 Hz, 1H), 7.23 (t, J = 8.1 

Hz, 1H), 7.21 - 7.17 (m, 1H), 6.97 (d, J = 7.6 Hz, 1H), 6.95 - 6.90 (m, 1H), 6.78 (d, J = 8.4 Hz, 

1H), 4.99 (q, J = 7.2 Hz, 1H), 4.00 (s, 3H), 3.79 (s, 3H), 1.70 (d, J = 7.2 Hz, 3H). 
13

C NMR (126 

MHz, CDCl3) δ 161.49, 159.62, 157.82, 151.04, 143.66, 135.62, 135.36, 129.93, 129.68 (d, J = 

9.5 Hz), 129.53, 129.38 (d, J = 5.0 Hz), 119.84, 113.81, 112.35, 102.88, 55.22, 46.85, 34.08, 

21.91.  HPLC Purity: 98%  

 

1-(1-Bromoethyl)-4-methoxybenzene  
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Prepared in a similar manner as 1-(1-bromoethyl)-2-methoxybenzene from 1-ethyl-4-

methoxybenzene prepared as previously described.
158

 Colorless oil. (490mg, 2.278 mmol, 103 % 

yield) 

 

6-((1-(4-Methoxyphenyl)ethyl)thio)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-

one (263352) 

Prepared from 1-(1-Bromoethyl)-4-methoxybenzene in a manner similar to 257723 in chapter 3. 

White solid. (38mg, 0.097 mmol, 33.3 % yield) MS (ESI): m/z 393.1381 [M+H]
+
  

1
H NMR (500 

MHz, CDCl3) δ 8.01 (s, 1H), 7.61 - 7.40 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 7.28 - 7.24 (m, 1H), 

7.18 (d, J = 6.6 Hz, 1H), 6.83 (d, J = 8.4 Hz, 2H), 5.00 (q, J = 7.1 Hz, 1H), 4.02 (s, 3H), 3.78 (s, 

3H), 1.71 (d, J = 7.1 Hz, 3H). 
13

C NMR (126 MHz, CDCl3) δ 161.69, 158.95, 157.85, 151.09, 

135.65, 135.37, 133.82, 129.88, 129.65 (d, J = 9.4 Hz), 129.37 (d, J = 5.7 Hz), 128.66, 113.87, 

102.87, 55.25, 46.44, 34.06, 21.98. HPLC Purity: 96%  

 

5-(4-(Hydroxymethyl)phenyl)-1-methyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (263642) 



218 

 

S4.6a (250 mg, 1.183 mmol), and (4-aminophenyl)methanol (146 mg, 1.183 mmol) were stirred 

in 2mL DMF for 1 h.  The flask was cooled in an ice bath and 60 wt.% NaH (99 mg, 2.485 

mmol) was added.  The mixture was stirred for 30 min at 0°C and 1 h at RT.  The reaction was 

quenched with a few drops of Sat. NH4Cl and diluted with water and ethyl acetate (Aq. Layer 

pH=7). The organic layer was discarded and the aqueous layer was acidified with 1N HCl and 

extracted 2x with EtOAc.   The combined organics were washed 3x with brine, dried over 

sodium sulfate and concentrated. The crude sulfide was dissolved in 2mL DMF to which K2CO3 

(164 mg, 1.183 mmol) and (1-bromoethyl)benzene (0.161 ml, 1.183 mmol) were added.  The 

mixture was stirred for 2 h and diluted with water and extracted 2x with EtOAc.   The combined 

organics were washed 3x with brine and dried over sodium sulfate and concentrated.  The crude 

was purified by flash (eluting 50% EtOAc in Hexanes) yielding the product as a white solid.  

(100mg, 0.255 mmol, 21.53 % yield) MS (ESI): m/z 393.1380 [M+H]
+
  

1
H NMR (500 MHz, 

CDCl3) δ 7.95 (d, J = 3.0 Hz, 1H), 7.46 (dd, J = 8.1, 2.0 Hz, 1H), 7.41 (dd, J = 8.1, 1.9 Hz, 1H), 

7.37 (d, J = 8.2 Hz, 2H), 7.32 - 7.25 (m, 3H), 7.22 (dd, J = 7.5, 1.9 Hz, 2H), 7.13 (dd, J = 8.1, 2.2 

Hz, 1H), 5.00 (q, J = 7.1 Hz, 1H), 4.65 (d, J = 3.3 Hz, 2H), 3.97 (d, J = 1.7 Hz, 3H), 3.38 (d, J = 

24.4 Hz, 1H), 1.69 (dd, J = 7.2, 1.3 Hz, 4H). 
13

C NMR (126 MHz, CDCl3) δ 161.70, 158.05, 

151.06, 143.53, 142.09, 135.26, 134.33, 129.25, 128.54, 127.88 (d, J = 7.7 Hz), 127.57, 127.52, 

102.79, 64.08, 46.94, 34.06, 21.97.  HPLC Purity: 96% 
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5-(4-(aminomethyl)phenyl)-1-methyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one hydrochloride (264203) 

 

DIPEA (200 µl, 1.147 mmol), and Ms-Cl (74.5 µl, 0.955 mmol) were added sequentially by 

syringe to a solution of 263642 (300mg, 0.764 mmol) in 1.5mL DCM at -10°C.  The mixture 

was stirred for 10 min then taken out of the cooling bath and stirred for 3 h. The reaction was 

diluted with DCM and washed with water and brine before drying the organic portion over 

sodium sulfate and concentrating to yield 4-(1-methyl-4-oxo-6-((1-phenylethyl)thio)-1H-

pyrazolo[3,4-d]pyrimidin-5(4H)-yl)benzyl methanesulfonate as a colorless oil (347mg, 0.737 

mmol, 96 % yield).  

A degassed solution of NaN3 (24.87 mg, 0.383 mmol) and 4-(1-methyl-4-oxo-6-((1-

phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-5(4H)-yl)benzyl methanesulfonate (150 mg, 

0.319 mmol) was stirred in 2mL DMF at 60°C overnight.  The next day the mixture was diluted 

with water, and extracted 2x into EtOAc.  The combined organics were washed 3x with brine 

and dried over sodium sulfate.  The crude was purified by flash (eluting around 60% EA/Hex) to 

yield 5-(4-(azidomethyl)phenyl)-1-methyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one  

 as a white foam (62mg, 0.149 mmol, 46.6 % yield). 
1
H NMR (400 MHz, CDCl3) δ 8.00 (s, 1H), 

7.48 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 8.5 Hz, 1H), 7.38 (d, J = 7.6 Hz, 2H), 7.34 - 7.27 (m, 3H), 

7.22 - 7.17 (m, 1H), 5.02 (q, J = 7.2 Hz, 1H), 4.47 (s, 2H), 4.00 (s, 3H), 1.71 (d, J = 7.2 Hz, 3H). 

5-(4-(azidomethyl)phenyl)-1-methyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (62mg, 0.149 mmol) was taken up in 3mL THF to which polystyrene 

bound triphenylphosphine (Sigma Aldrich, 3mmol/g, .3mmol) and a few drops of water was 

added.  The mixture was agitated on an orbit shaker for 2 days at which point 1 mL of water was 
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added. The mixture was filtered after an hour and the resin washed with DCM.  The filtrate was 

concentrated and purified by flash (5% MeOH/94% DCM/1% TEA) to yield a yellow oil.  The 

product was additionally purified by C18 flash (30%-50% ACN in Water, 0.1% TFA) to yield 

the TFA salt as an oil.  Residue was taken up in Ethyl Acetate and washed with sat. sodium 

carbonate.  The organic portion was concentrated, taken up in EtOH, treated with a few drops 

Conc. HCl and then concentrated again to yield the tiled compound as a yellow residue (7 mg, 

0.016 mmol, 11.01 % yield). MS (ESI): m/z 392.1542 [M+H]
+
 
1
H NMR (500 MHz, Methanol-

d4) δ 7.96 (s, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 7.9 Hz, 1H), 

7.40 - 7.32 (m, 3H), 7.29 (t, J = 7.4 Hz, 2H), 7.22 (t, J = 7.3 Hz, 1H), 5.07 (q, J = 6.9 Hz, 1H), 

4.21 (s, 2H), 3.99 (s, 3H), 1.71 (d, J = 6.9 Hz, 3H). 
13

C NMR (126 MHz, Methanol-d4) δ 161.48, 

158.37, 151.06, 141.70, 136.38, 135.21, 134.48, 130.19 (d, J = 4.2 Hz), 130.05 (d, J = 3.7 Hz), 

128.23, 127.32, 127.18, 102.33, 46.97, 42.44, 33.01, 20.76.  HPLC Purity 98% 

 

 

5-(4-(methoxymethyl)phenyl)-1-methyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (263862) 

To a solution of 263642 (133mg, 0.339 mmol) in 3mL dry DMF at 0°C was added 60 wt.% NaH 

(13.55 mg, 0.339 mmol).  MeI (42.4 µl, 0.678 mmol) was added immediately and the mixture 

was stirred for 10 min then allowed to warm to RT and stirred for 1 h.  The reaction was diluted 
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with water and extracted 2x with EtOAc. The combined organics were washed 3x with brine and 

dried over sodium sulfate.  The crude product was purified by flash (eluting around 50% EtOAc 

in Hexanes) to yield the titled compound as a colorless oil which solidified over several days 

(45mg, 0.111 mmol, 32.7 % yield). MS (ESI): m/z 407.1533 [M+H]
+
   

1
H NMR (500 MHz, 

CDCl3 ) δ 7.96 (s, 1H), 7.50 (dd, J = 8.1, 1.9 Hz, 1H), 7.45 (dd, J = 8.1, 1.9 Hz, 1H), 7.41 - 7.35 

(m, 2H), 7.33 - 7.27 (m, 2H), 7.27 - 7.21 (m, 2H), 7.17 (dd, J = 8.1, 2.3 Hz, 1H), 5.01 (q, J = 7.2 

Hz, 1H), 4.53 (s, 2H), 3.99 (s, 3H), 3.45 (s, 3H), 1.70 (d, J = 7.2 Hz, 3H).
13

C NMR (126 MHz, 

CDCl3 ) δ 161.56, 157.82, 151.03, 142.13, 140.38, 135.30, 134.80, 129.36, 129.34, 128.57, 

128.52, 128.50, 127.55, 127.51, 102.83, 73.99, 58.55, 46.89, 34.06, 21.98. HPLC Purity: 96% 

 

4-(1-Methyl-4-oxo-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-5(4H)-

yl)benzaldehyde (S6.4b) 

A solution of 263642 (500mg, 1.274 mmol) and Dess-Martin periodinane (648 mg, 1.529 mmol) 

was stirred in 10mL DCM overnight.  The next day, 1mL sat. aq. sodium bicarbonate was added 

and the mixture vigorously stirred for 1 h then filtered.  The organic portion of the filtrated was 

washed with water and brine then dried over sodium sulfate and concentrated to afford the titled 

compound as a white solid. (300mg, 0.768 mmol, 60.3 % yield). 
1
H NMR (500 MHz, DMSO-d6) 

δ 10.06 (s, 1H), 8.06 (dd, J = 8.1, 1.9 Hz, 1H), 8.04 (s, 1H), 8.02 (dd, J = 8.1, 2.0 Hz, 1H), 7.66 

(dd, J = 8.1, 2.1 Hz, 1H), 7.56 (dd, J = 8.1, 2.1 Hz, 1H), 7.45 – 7.39 (m, 2H), 7.30 (dd, J = 8.4, 

6.8 Hz, 2H), 7.25 – 7.13 (m, 1H), 5.06 (q, J = 7.1 Hz, 1H), 3.96 (s, 3H), 1.66 (d, J = 7.1 Hz, 3H). 
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1-methyl-5-(4-((methylamino)methyl)phenyl)-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (264200) 

To a flask charged with 1mL MeOH and S6.4b (50 mg, 0.128 mmol) was added 33% 

methylamine in EtOH (0.032 ml, 0.256 mmol) and titanium isopropoxide (0.038 ml, 0.128 

mmol) by syringe.  The starting material gradually went into solution, and then a white 

precipitate formed over the course of an hour.  At this point NaBH4 (7.27 mg, 0.192 mmol) was 

added and the mixture was stirred for 15 minutes at which point the reaction was once again 

homogenous and the starting material was consumed by HPLC.  The mixture was diluted with 

water and extracted 3x with ethyl acetate.  The combined organic portion was washed with brine 

and dried over sodium sulfate.  Upon concentrating, 45mg of an oily residue was obtained which 

was taken up in 1mL Et2O  and a few drops of hexane was added until the mixture became 

slightly cloudy.  Upon cooling in the freezer, a precipitate formed which was collected by 

filtration yielding the titled compound as a white solid (9mg, 0.022 mmol, 17.33 % yield). (ESI): 

m/z 406.1693 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 7.99 (s, 1H), 7.49 (dd, J = 8.1, 2.0 Hz, 1H), 

7.44 (dd, J = 8.1, 1.9 Hz, 1H), 7.38 (d, J = 7.1 Hz, 2H), 7.30 (t, J = 7.5 Hz, 2H), 7.25 - 7.18 (m, 

2H), 7.13 (dd, J = 8.1, 2.3 Hz, 1H), 5.01 (q, J = 7.2 Hz, 1H), 3.99 (s, 3H), 3.83 (s, 2H), 2.51 (s, 

3H), 1.83 (br. s, 1H), 1.70 (d, J = 7.2 Hz, 3H). 
13

C NMR (126 MHz, CDCl3) δ 161.62, 157.85, 
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151.04, 142.13 (d, J = 2.2 Hz), 135.34, 134.27, 129.33, 129.28, 129.26, 128.50, 127.53, 127.51, 

102.86, 55.55, 46.87, 36.21, 34.04, 21.95. HPLC Purity 96% 

 

 

5-(4-((dimethylamino)methyl)phenyl)-1-methyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (264201) 

 

Prepared in a similar manner to 264200 using 5.6M dimethylamine in EtOH. (52mg, 0.124 

mmol, 48.4 % yield) (ESI): m/z 420.1849 [M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 7.98 (s, 1H), 

7.47 (dd, J = 8.1, 1.9 Hz, 1H), 7.42 (dd, J = 8.1, 2.0 Hz, 1H), 7.40 - 7.34 (m, 2H), 7.33 - 7.27 (m, 

2H), 7.25 - 7.18 (m, 2H), 7.12 (dd, J = 8.1, 2.3 Hz, 1H), 5.01 (q, J = 7.1 Hz, 1H), 3.99 (s, 3H), 

3.49 (s, 2H), 2.29 (s, 6H), 1.70 (d, J = 7.2 Hz, 3H). 
13

C NMR (126 MHz, CDCl3) δ 161.67, 

157.84, 151.06, 142.20, 141.17, 135.34, 134.31, 130.10, 130.02, 129.19, 129.17, 128.51, 127.53, 

127.51, 102.89, 63.89, 46.87, 45.59, 34.05, 21.99. HPLC Purity: 96% 

 

 

5-(4-(2-hydroxyethyl)phenyl)-1-methyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (263863) 
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S4.6a (200mg, 0.947 mmol) and 2-(4-aminophenyl)ethanol (130 mg, 0.947 mmol) were stirred 

in 5 mL DMF for 2 h at which point the reaction was cooled to 0°C and 60 wt.% NaH (76 mg, 

1.894 mmol) was added.  The mixture was stirred at the same temperature for 30 min then 

allowed to warm to RT and stirred for 2 h.  The mixture was diluted with 1N HCl and extracted 

2x with EtOAc.  The combined organics were washed with brine and dried over sodium sulfate 

before concentrating and suspending the solid in 2.5 mL DMF and adding K2CO3 (196 mg, 1.420 

mmol) and (1-bromoethyl)benzene (0.129 ml, 0.947 mmol).  The mixture was stirred at RT 

overnight.  The following day the mixture was diluted with water and extracted 2x with EtOAc.  

The combined organics were washed 3x with brine and dried over sodium sulfate.  The crude 

solid was purified by flash (Eluting at 50% EtOAc in Hexanes) to afford the titled compound as 

a white foam (125 mg, 0.308 mmol, 32.5 % yield). MS (ESI): m/z 407.1536 [M+H]
+
  

1
H NMR 

(500 MHz, CDCl3) δ 7.99 (s, 1H), 7.42 - 7.36 (m, 3H), 7.37 - 7.27 (m, 3H), 7.27 - 7.21 (m, 1H), 

7.19 (dd, J = 8.0, 2.3 Hz, 1H), 7.11 (dd, J = 8.0, 2.3 Hz, 1H), 5.02 (q, J = 7.2 Hz, 1H), 3.99 (s, 

3H), 3.90 (q, J = 5.7, 5.2 Hz, 2H), 2.93 (t, J = 6.6 Hz, 2H), 1.71 (d, J = 7.2 Hz, 3H). 
13

C NMR 

(126 MHz, CDCl3) δ 161.60, 157.91, 151.04, 142.07, 140.80, 135.34, 133.82, 130.39, 130.34, 

129.36, 129.33, 128.52, 127.56, 127.53, 102.84, 63.21, 46.91, 38.96, 34.05, 21.92. HPLC Purity 

97% 

 

5-(4-(2-methoxyethyl)phenyl)-1-methyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (263864) 
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Prepared from 263863 in a similar manner to 263862. Colorless oil. (54mg, 0.128 mmol, 49.7 % 

yield) MS (ESI): m/z 421.1689 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 7.96 (s, 1H), 7.43 - 7.36 

(m, 3H), 7.36 - 7.27 (m, 3H), 7.27 - 7.21 (m, 1H), 7.18 (dd, J = 8.1, 2.3 Hz, 1H), 7.10 (dd, J = 

8.1, 2.3 Hz, 1H), 5.01 (q, J = 7.1 Hz, 1H), 3.99 (s, 3H), 3.66 (t, J = 7.0 Hz, 2H), 3.38 (s, 3H), 

2.96 (t, J = 7.0 Hz, 2H), 1.71 (d, J = 7.2 Hz, 3H).
13

C NMR (126 MHz, CDCl3) δ 161.68, 157.85, 

151.03, 142.16, 141.10, 135.30, 135.28, 133.64, 130.15 (d, J = 7.6 Hz), 129.18 (d, J = 4.5 Hz), 

128.51, 127.53, 102.85, 73.06, 58.70, 46.87, 35.94, 34.04, 21.95. HPLC Purity: 97% 

  

 

 

tert-butyl 4-(1-methyl-4-oxo-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-5(4H)-

yl)phenethylcarbamate (S4.7a) 

Tert-butyl 4-aminophenethylcarbamate (prepared as previously described
152

, 290mg, 1.227 

mmol) was added to a solution of S6.4a (259 mg, 1.227 mmol) in 5mL DMF.  After stirring for 2 

h the mixture was cooled to 0°C and 60 wt.% NaH (54.0 mg, 1.350 mmol) was added.  The 

reaction was stirred at the same temperature for 15 min then allowed to warm to RT and stirred 

for 2 h.  The flask was cooled to 0°C and (1-bromoethyl)benzene (184 µl, 1.350 mmol) was 

added by syringe.  The flask was warmed to RT and stirred for 1 h at which point the solvent was 

removed in vacuo.  The residue was taken up in EtOAc and washed with water and brine before 

drying over sodium sulfate and concentrating.  The crude residue was purified by flash (Eluting 
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at 60% EtOAc in Hexanes) then further purified by taking up the solid in 30mL hot EtOH, 

adding 5mL water, and allowing the mixture to cool to RT affording the titled compound as a 

white crystalline solid (330mg, 0.653 mmol, 53.2 % yield). 
1
H NMR (500 MHz, CDCl3) δ 8.00 

(s, 1H), 7.39 (d, J = 7.6 Hz, 2H), 7.37 - 7.28 (m, 3H), 7.25 - 7.22 (m, 1H), 7.19 (dd, J = 8.2, 2.2 

Hz, 1H), 7.11 (dd, J = 8.1, 2.3 Hz, 1H), 5.02 (q, J = 7.2 Hz, 1H), 4.62 (s, 1H), 4.00 (s, 3H), 3.49 - 

3.29 (m, 2H), 2.88 (t, J = 6.9 Hz, 2H), 1.71 (d, J = 7.2 Hz, 3H), 1.45 (s, 9H). 

 

tert-butyl methyl(4-(1-methyl-4-oxo-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-

5(4H)-yl)phenethyl)carbamate (S4.7b) 

To a solution of S4.7a (48mg, 0.095 mmol) in 1 mL DMF at 0°C was added 60 wt.% NaH (4.94 

mg, 0.123 mmol).  The mixture was stirred under N2 at the same temperature for 30 min at which 

point MeI (7.12 µl, 0.114 mmol) was added by syringe.  The mixture was stirred for an hour at 

RT then quenched with a few drops of sat. Aq. NH4Cl and concentrated in vacuo.  The residue 

obtained was taken up in water and extracted 3x with EtOAc.  The combined organics were 

washed 3x with brine and dried over sodium sulfate.  The crude residue was purified by flash 

(Eluting around 50% EA in Hex) to yield the titled compound as a white foam (35mg, 0.067 

mmol, 70.9 % yield). 
1
H NMR (400 MHz, CDCl3) δ 7.97 (s, 1H), 7.42 - 7.14 (m, 8H), 7.10 (d, J 

= 7.8 Hz, 1H), 5.00 (q, J = 7.1 Hz, 1H), 3.98 (s, 3H), 3.47 (br.s, 2H), 2.98 - 2.72 (m, 4H), 1.70 

(d, J = 7.1 Hz, 3H), 1.45 (s, 9H). 
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5-(4-(2-Aminoethyl)phenyl)-1-methyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one hydrochloride (264205) 

S4.7a (105 mg, 0.208 mmol) was dissolved in 1mL DCM to which 1mL TFA was added.  The 

mixture was stirred overnight then concentrated in vacuo.  The residue was taken up in 1:3 conc. 

HCl and EtOH and evaporated 3 times to exchange TFA salt for HCl to afford the titled 

compound as an off white solid (70mg, 0.158 mmol, 76 % yield). (ESI): m/z 406.1695 [M+H]
+
 

1
H NMR (500 MHz, DMSO-d6) δ 8.01 (s, 1H), 7.91 (br. s, 3H), 7.44 - 7.39 (m, 3H), 7.39 - 7.27 

(m, 4H), 7.26 - 7.19 (m, 2H), 5.03 (q, J = 7.1 Hz, 1H), 3.95 (s, 3H), 3.11 (p, J = 5.3 Hz, 2H), 2.96 

- 2.88 (m, 2H), 1.66 (d, J = 7.1 Hz, 3H). 
13

C NMR (126 MHz, DMSO- d6) δ 161.26, 157.34, 

150.84, 142.33, 139.55, 135.10, 134.70, 130.19, 130.12, 128.96, 128.06, 127.94, 102.77, 46.86, 

39.92, 34.34, 33.16, 21.95.  HPLC Purity: 98% 

 

  

 

1-methyl-5-(4-(2-(methylamino)ethyl)phenyl)-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one hydrochloride (264207) 
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S4.7b (120mg, 0.231 mmol) was dissolved in 1mL DCM and 1mL TFA.  The mixture was 

stirred for 2 h at which point the starting material was consumed by TLC.  The reaction was 

concentrated and the residue taken up in sat. aq. sodium bicarbonate and extracted 3x into 

EtOAc.  The combined organics were washed with brine, and dried over sodium sulfate.  A few 

drops of 4N HCl in dioxane were added and the mixture was concentrated to yield the titled 

compound as a white solid (105mg, 0.230 mmol, 100 % yield). 

(ESI): m/z 420.1853 [M+H]
+
 
 1
H NMR (500 MHz, DMSO-d6) δ 9.09 (s, 2H), 8.01 (s, 1H), 7.45 - 

7.40 (m, 3H), 7.37 (dd, J = 8.1, 2.0 Hz, 1H), 7.35 - 7.27 (m, 3H), 7.26 - 7.20 (m, 2H), 5.02 (q, J = 

7.1 Hz, 1H), 3.95 (s, 3H), 3.17 (dq, J = 10.9, 6.3, 5.9 Hz, 2H), 3.02 (dd, J = 10.0, 6.5 Hz, 2H), 

2.56 (t, J = 5.3 Hz, 3H), 1.65 (d, J = 7.1 Hz, 3H).
13

C NMR (126 MHz, DMSO-d6) δ 161.27, 

157.32, 150.84, 142.37, 139.50, 135.09, 134.67, 130.20 (d, J = 6.5 Hz), 130.15, 128.95, 128.06, 

127.92, 102.77, 49.02, 46.86, 34.35, 32.76, 31.48, 21.97. HPLC Purity: 98% 

 

5-(4-(2-(dimethylamino)ethyl)phenyl)-1-methyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (264206) 

264205 (62mg, 0.140 mmol) was dissolved in 2mL DCE and treated with DIPEA (0.025 ml, 

0.140 mmol), stirred for 5 min, then 37% aq. formaldehyde (0.031 ml, 0.421 mmol) and acetic 

acid (0.024 ml, 0.421 mmol) were added sequentially.  The mixture was stirred for 10 min at 

which point sodium triacetoxyborohydride (89 mg, 0.421 mmol) was added and the mixture was 

stirred overnight.  The next day the mixture was diluted with 10% aq. Na2CO3 and extracted 
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with EtOAc.  The organic portion was washed with brine, dried over sodium sulfate, and 

concentrated to yield the pure product as an off white foam (59mg, 0.136 mmol, 97 % yield). 

(ESI): m/z 434.2009  [M+H]
+
 
 1

H NMR (500 MHz, CDCl3) δ 7.99 (s, 1H), 7.37 (ddd, J = 15.8, 

8.3, 1.8 Hz, 3H), 7.33 - 7.28 (m, 3H), 7.25 (d, J = 8.9 Hz, 1H), 7.16 (dd, J = 8.1, 2.3 Hz, 1H), 

7.08 (dd, J = 8.1, 2.3 Hz, 1H), 5.01 (q, J = 7.1 Hz, 1H), 3.99 (s, 3H), 2.89 - 2.80 (m, 2H), 2.65 - 

2.52 (m, 2H), 2.32 (s, 6H), 1.71 (d, J = 7.2 Hz, 3H).
13

C NMR (126 MHz, CDCl3) δ 161.69, 

157.86, 151.04, 142.47, 142.14, 135.35, 133.42, 129.98, 129.90, 129.18, 129.15, 128.50, 127.53, 

127.52, 102.87, 61.08, 46.86, 45.47, 34.17, 34.03, 21.93. HPLC Purity: 98% 

 
 

4-(1-methyl-4-oxo-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-5(4H)-

yl)benzonitrile (264202) 

Prepared from 4-aminobenzonitrile in a similar manner to S4.7a affording the titled compound as 

a white solid (50mg, 0.129 mmol, 15.76 % yield). (ESI): m/z 388.1225 [M+H]
+
 
 1
H NMR (400 

MHz, CDCl3) δ 7.99 (s, 1H), 7.83 (ddd, J = 8.2, 2.0, 0.6 Hz, 1H), 7.79 (ddd, J = 8.1, 2.0, 0.6 Hz, 

1H), 7.42 (ddd, J = 8.1, 2.2, 0.6 Hz, 1H), 7.39 - 7.35 (m, 2H), 7.35 - 7.29 (m, 3H), 7.27 (d, J = 

7.7 Hz, 1H), 5.04 (q, J = 7.2 Hz, 1H), 4.01 (s, 3H), 1.73 (d, J = 7.2 Hz, 3H). 
13

C NMR (101 

MHz, CDCl3) δ 160.20, 157.34, 150.88, 141.55, 139.74, 135.44 (d, J = 2.8 Hz), 133.55 (d, J = 

6.9 Hz), 130.69, 128.65, 127.83, 127.44, 117.81, 114.08, 102.61, 47.28 (d, J = 8.1 Hz), 34.22, 

21.94. HPLC Purity: 99%  
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5-(4-ethynylphenyl)-1-methyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-

one (264626) 

Prepared from 4-aminobenzonitrile in a similar manner to S4.7a affording the titled compound as 

a yellow solid. (117mg, 0.303 mmol, 32.0 % yield) (ESI): m/z 387.1276 [M+H]
+
 
 1

H NMR (500 

MHz, CDCl3) δ 7.99 (s, 1H), 7.64 (dd, J = 8.2, 1.8 Hz, 1H), 7.60 (dd, J = 8.2, 1.9 Hz, 1H), 7.38 

(d, J = 7.1 Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.28 - 7.22 (m, 2H), 7.15 (dd, J = 8.2, 2.2 Hz, 1H), 

5.02 (q, J = 7.1 Hz, 1H), 4.00 (s, 3H), 3.17 (s, 1H), 1.71 (d, J = 7.0 Hz, 3H).
13

C NMR (126 MHz, 

CDCl3) δ 161.08, 157.62, 150.99, 141.93, 135.83, 135.39, 133.42 (d, J = 9.6 Hz), 129.51 (d, J = 

2.9 Hz), 128.57, 127.64, 127.46, 124.07, 102.77, 82.53, 79.01, 47.01, 34.09, 21.97. HPLC Purity: 

98% 

 

 

 

2-(oxetan-3-ylmethyl)-5-phenyl-6-((1-phenylethyl)thio)-2H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one  (262547) 
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S4.8a (100mg, 0.409 mmol), K2CO3 (141 mg, 1.023 mmol), and (1-bromoethyl)benzene (55.9 

µl, 0.409 mmol) were stirred in 2mL DMF at room temperature for 1 h. Oxetan-3-ylmethyl 

methanesulfonate (prepared as previously described
136

), 68.0 mg, 0.409 mmol) was added by 

syringe and the mixture was heated to 60°C overnight.  The next morning the mixture was 

diluted with water and extracted 2x with EtOAc.  The combined organic portions were washed 

3x with brine, dried over sodium sulfate, and concentrated.  The crude residue was purified by 

flash (Eluting at 60% EtOAc in Hex) yielding the titled compound as a colorless oil (26mg, 

0.062 mmol, 15.18 % yield).  MS (ESI): m/z 419.1537 [M+H]
+
  1H NMR (500 MHz, CDCl3) δ 

8.06 (s, 1H), 7.56 - 7.40 (m, 3H), 7.35 (d, J = 7.6 Hz, 2H), 7.31 - 7.25 (m, 3H), 7.24 - 7.14 (m, 

2H), 5.18 (q, J = 7.0 Hz, 1H), 4.87 (t, J = 7.2 Hz, 2H), 4.57 (d, J = 7.5 Hz, 2H), 4.54 (q, J = 5.7 

Hz, 2H), 3.66 (h, J = 6.9 Hz, 1H), 1.75 (d, J = 7.0 Hz, 3H). 
13

C NMR (126 MHz, CDCl3) δ 

160.53, 158.69, 158.62, 141.62, 135.57, 129.82, 129.62, 129.59, 129.56, 129.51, 128.62, 128.54, 

127.70, 127.48, 105.00, 74.46, 55.80, 46.52, 35.38, 22.10. HPLC Purity: 99% 

 

2-(oxetan-3-yl)-5-phenyl-6-((1-phenylethyl)thio)-2H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(263052) 

Prepared in a similar manner to 262547 employing 3-bromooxetane. White Solid. (14mg, 0.035 

mmol, 8.45 % yield) MS (ESI): m/z 405.1381 [M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 8.19 (s, 

1H), 7.55 - 7.42 (m, 3H), 7.36 (d, J = 7.6 Hz, 2H), 7.31 - 7.26 (m, 3H), 7.25 - 7.16 (m, 2H), 5.57 

(p, J = 6.9 Hz, 1H), 5.26 - 5.18 (m, 3H), 5.09 (t, J = 7.3 Hz, 2H), 1.77 (d, J = 6.9 Hz, 3H). 
13

C 
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NMR (126 MHz, CDCl3) δ 160.97, 158.63, 141.50, 135.49, 129.87, 129.61, 129.54, 129.53, 

128.57, 127.96, 127.70, 127.52, 105.33, 76.86, 76.82, 56.78, 46.58, 22.15. HPLC Purity: 98% 

 

 

2-(oxetan-3-yl)-5-phenyl-6-((1-(pyridin-2-yl)ethyl)thio)-2H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (263646) 

 

A dry flask was charged with S4.8a (250mg, 1.023 mmol), K2CO3 (424 mg, 3.07 mmol), 2-(1-

bromoethyl)pyridine (190 mg, 1.023 mmol), and 3mL DMF.  The mixture was stirred for 1 h= at 

RT at which point 3-bromooxetane (0.127 ml, 1.535 mmol) was added before heating the 

mixture to 80°C.  After 48 hours the mixture was diluted with water and extracted 2x with 

EtOAc,   The combined organic portion was washed 3x with brine and dried over sodium sulfate.  

The mixture was purified by flash (60% EtOAc in Hex) yielding the mostly pure product as the 

later peak.  The product was recrystallized from ethanol to obtain the titled compound as a white 

solid (45mg, 0.111 mmol, 10.84 % yield). MS (ESI): m/z 406.1340 [M+H]
+
  

1
H NMR (500 

MHz, CDCl3) δ 8.51 (d, J = 4.3 Hz, 1H), 8.19 (s, 1H), 7.60 (td, J = 7.7, 1.9 Hz, 1H), 7.54 - 7.42 

(m, 3H), 7.40 (d, J = 7.8 Hz, 1H), 7.28 (dt, J = 7.7, 1.8 Hz, 1H), 7.19 (dt, J = 7.2, 2.0 Hz, 1H), 

7.12 (ddd, J = 7.6, 4.9, 1.2 Hz, 1H), 5.65 - 5.47 (m, 1H), 5.33 (q, J = 6.9 Hz, 1H), 5.21 (q, J = 6.2 

Hz, 2H), 5.08 (td, J = 7.4, 1.5 Hz, 2H), 1.78 (d, J = 7.0 Hz, 3H).
13

C NMR (126 MHz, CDCl3) δ 
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161.14, 160.59, 158.64, 158.58, 149.59, 136.65, 135.36, 129.89, 129.67, 129.64, 129.60, 129.54, 

128.00, 122.44, 122.31, 105.30, 76.87, 76.83, 56.77, 48.08, 21.49. HPLC Purity 97% 

 

2-(oxetan-3-yl)-5-phenyl-6-((1-(pyridin-3-yl)ethyl)thio)-2H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (264627) 

 

Prepared in a similar manner to 263646 White solid. (100mg, 0.247 mmol, 12.05 % yield) MS 

(ESI): m/z 406.1335 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 8.68 (d, J = 2.3 Hz, 1H), 8.47 (dd, J 

= 4.8, 1.6 Hz, 1H), 8.19 (s, 1H), 7.69 (dt, J = 8.0, 2.0 Hz, 1H), 7.56 - 7.45 (m, 3H), 7.30 - 7.24 

(m, 1H), 7.22 (dd, J = 7.9, 4.8 Hz, 1H), 7.18 (dt, J = 8.2, 1.8 Hz, 1H), 5.65 - 5.46 (m, 1H), 5.29 - 

5.13 (m, 3H), 5.09 (td, J = 7.5, 1.3 Hz, 2H), 1.74 (d, J = 7.1 Hz, 3H). NOE at 5.6 when 

irradiating at 8.19. 
13

C NMR (126 MHz, CDCl3) δ 160.13, 158.50, 158.40, 149.30, 148.71, 

137.73, 135.33, 135.07, 130.04, 129.68, 129.60, 129.58, 129.52, 127.97, 123.33, 105.34, 76.81, 

56.82, 43.75, 21.54. HPLC Purity: 99% 

 

 

Diethyl 2-methyl-2-(4-oxo-5-phenyl-6-((1-phenylethyl)thio)-4,5-dihydro-2H-pyrazolo[3,4-

d]pyrimidin-2-yl)malonate (S4.8b) 
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To a solution of S4.8a (1g, 4.09 mmol) and K2CO3 (1.414 g, 10.23 mmol) in 25mL DMF under 

N2 was added (1-bromoethyl)benzene (0.557 ml, 4.09 mmol) by syringe. The mixture was stirred 

at RT for 1 h. Diethyl 2-bromo-2-methylmalonate (0.857 ml, 4.50 mmol) was added by syringe 

and the mixture was heated to 50°C overnight at which point the reaction was complete by 

HPLC. The mixture was diluted with water and extracted 3x with EtOAc.  The combined 

organics were washed 3x with brine and dried over sodium sulfate.  The crude oil was purified 

by flash (Gradient from 25-30% EtOAc in hexanes) to yield the titled compound as a clear 

colorless oil.(1.76 g, 3.38 mmol, 83 % yield) 
1
H NMR (400 MHz, CDCl3) δ 8.41 (d, J = 1.1 Hz, 

1H), 7.56 - 7.40 (m, 3H), 7.33 (d, J = 7.3 Hz, 2H), 7.30 - 7.14 (m, 6H), 5.21 (q, J = 6.9 Hz, 1H), 

4.40 - 4.20 (m, 4H), 2.26 (d, J = 1.1 Hz, 3H), 1.78 - 1.69 (m, 3H), 1.45 - 1.05 (m, 6H). 

 
 

2-(1,3-dihydroxy-2-methylpropan-2-yl)-5-phenyl-6-((1-phenylethyl)thio)-2H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (S4.8c) 

 

Note: REACTION PRODUCES POTENT THIOL SMELL. A dry flask under N2 charged with 

NaBH4 (0.481 g, 12.71 mmol) and 20mL anhydrous dimethoxyethane was cooled in an ice bath.  

Bromine (0.305 ml, 5.93 mmol) was dissolved in 2mL dimethoxyethane and added to the 

mixture dropwise by syringe. After complete addition, the reaction was removed from the 

cooling bath and stirred for 30 minutes at which point the solution was colorless with white 
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NaBr precipitate. The flask was cooled in an ice/brine bath and S4.8b (1.47g, 2.82 mmol) 

dissolved in 10mL dimethoxyethane was added by syringe.  The mixture was kept in the bath for 

1 h then allowed to warm to room temperature and stirred for 24 h.  The reaction mixture was 

added dropwise to 200mL ACN then 5mL of water was added slowly followed by 5mL 1N HCl. 

The mixture was allowed to sit for 1 hour at which point ethyl acetate and 10mL water were 

added and two layers formed.  Sodium sulfate was added to saturate the aqueous solution and the 

organic portion decanted off.  The aqueous portion was extracted again with ethyl acetate.  The 

combined organic portions were dried over sodium sulfate and concentrated. The residue was 

taken up in DCM and dried with additional sodium sulfate and then loaded onto silica and 

purified by flash (80% EtOAc in Hexanes) to afford the titled compound as a white solid 

(303mg, 0.694 mmol, 24.58 % yield). 
1
H NMR (400 MHz, CDCl3) δ 8.32 (d, J = 0.6 Hz, 1H), 

7.56 - 7.42 (m, 2H), 7.35 (d, J = 7.3 Hz, 3H), 7.32 - 7.25 (m, 3H), 7.25 - 7.14 (m, 2H), 5.26 - 

5.08 (m, 1H), 4.09 - 3.60 (m, 4H), 1.76 (d, J = 7.0 Hz, 3H), 1.60 (s, 3H). 

 

 

3-hydroxy-2-methyl-2-(4-oxo-5-phenyl-6-((1-phenylethyl)thio)-4,5-dihydro-2H-

pyrazolo[3,4-d]pyrimidin-2-yl)propyl 4-methylbenzenesulfonate (S4.8d) 

A flask under N2 charged with S4.8c (303 mg, 0.694 mmol) in 6mL THF was cooled to -78°C.  

nBuLi (278 µl, 0.694 mmol) 2.5M in hexanes was added and the mixture was stirred for 1 h. Ts-

Cl (132 mg, 0.694 mmol) in 1mL THF was added and the reaction was stirred for 30 min at -
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78°C and then allowed to warm to RT.  The reaction was quenched with sat. aq. NH4Cl, diluted 

with water and extracted 2x with EtOAc.  The combined organics were washed with brine and 

dried over sodium sulfate and concentrated.  The crude mixture was purified by flash (Eluting at 

50% EtOAc in Hexanes) to afford the titled compound as a white foam (140mg, 0.237 mmol, 

34.1 % yield). 
1
H NMR (400 MHz, CDCl3) δ 8.19 (d, J = 5.3 Hz, 1H), 7.68 (t, J = 8.6 Hz, 2H), 

7.59 - 7.38 (m, 3H), 7.38 - 7.06 (m, 9H), 5.12 (qd, J = 7.0, 2.3 Hz, 1H), 4.51 (dd, J = 10.3, 4.4 

Hz, 1H), 4.37 (dd, J = 10.2, 1.9 Hz, 1H), 3.95 (dd, J = 6.6, 2.9 Hz, 2H), 3.71 (t, J = 6.5 Hz, 1H), 

2.41 (d, J = 17.6 Hz, 3H), 1.73 (t, J = 7.8 Hz, 3H), 1.64 (s, 3H). 

 

2-(3-methyloxetan-3-yl)-5-phenyl-6-((1-phenylethyl)thio)-2H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (264199) 

To a dry pressure tube charged with S4.8d (140 mg, 0.237 mmol) in 2mL at 0°C was added 

nBuLi (2.5M in Hexanes, 0.114 ml, 0.284 mmol) in THF.  The mixture was stirred for 20 min 

then heated to 65°C overnight. The next morning the reaction was not complete by HPLC so the 

flask was cooled to 0°C and another portion of nBuLi (2.5M in Hexanes, .05 ml, 0.125 mmol) 

was added.  The mixture was heated to 80°C for 4 hours at which point it was complete by 

HPLC and was quenched by adding a few drops of water then concentrated.  The residue was 

taken up in water and ethyl acetate. The organic portion was washed with brine and dried over 

sodium sulfate and concentrated.  The crude residue obtained was purified by flash (Eluting at 

45% EtOAc in Hex).  The white solid obtained was further recrystallized from hot ethanol to 
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yield the titled compound as white needles (40mg, 0.096 mmol, 40.3 % yield). MS (ESI): m/z 

406.1340 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 8.17 (s, 1H), 7.56 - 7.41 (m, 3H), 7.35 (d, J = 

7.6 Hz, 2H), 7.31 - 7.25 (m, 3H), 7.25 - 7.15 (m, 2H), 5.29 (t, J = 5.9 Hz, 2H), 5.23 (q, J = 6.9 

Hz, 1H), 4.72 (d, J = 6.5 Hz, 2H), 2.04 (s, 3H), 1.77 (d, J = 7.0 Hz, 3H).
13

C NMR (126 MHz, 

CDCl3) δ 160.84, 158.77, 158.36, 141.44, 135.54, 129.84, 129.63, 129.60, 129.56, 129.52, 

128.57, 127.70, 127.51, 126.17, 105.23, 81.35 (d, J = 5.0 Hz), 62.37, 46.51, 24.44, 22.18. NOE 

observed for oxetane and methyl protons at δ 5.29 and 2.04 respectively when irradiating 

pyrazole proton at δ 8.17. HPLC Purity 99% 
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Chapter 5 Future Directions and Conclusions 

5.1. New and Proposed CM39 Analogs with Improved Property Forecast 

Index 

 

As discussed in Chapter 4, there was an unfavorable trend of better in vivo exposure for 

compounds with high cLogP. According to the Property Forecast Index (PFI, ChromLogD7.4 + # 

aromatic rings), the high aromatic ring count combined with the lipophilicity of these compounds 

suggests a low probability of success in preclinical drug development. We do not currently have 

the capabilities to measure ChromLogD7.4 to calculate the actual PFI. Assuming our cLogP 

results are predictive of this value, a PFI of (7-9) is typical for most analogs in the CM39 series 

(3-5 is optimal). (Because all of the key compounds in this series are uncharged at pH 7.4, by 

definition cLogP=cLogD7.4) Our series exhibits the difficulties with aqueous solubility and 

clearance associated with compounds with PFI >5. Undesirable properties such as promiscuity, 

CYP450 inhibition, and high plasma protein binding are also associated with high PFI values, 

although these may be of less concern when developing proof-of-concept probes.  Reducing the 

cLogP alone to reach the desired PFI of 4-5 would require reducing the ChromLogD7.4 to < 1, 

substantially reducing the probability of cell permeability.  Therefore, reducing the number of 

aromatic rings and a more modest reduction in lipophilicity likely represents the best strategy to 

reach the desired PFI range.  
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Figure 5.1 Overlay of ALDH Inhibitors in ALDH1A1 Active Site. 

(Top Left) Overlay of 258083 (PDB ID: 5DUM), and CM053 (4WPN) bound in the 

ALDH1A1 active site. (Top Right) Overlay of 258083 (PDB ID: 5DUM), and NCT-506 

docking pose. (Bottom) Structures of depicted compounds (Unpublished work, courtesy 

Hurley and Neamati labs.)  

 

Examining the overlay of 258083 and CM053 ALDH inhibitors in Figure 5.1 indicates 

the potential to replace the benzyl pendant with an appropriate non-aromatic hydrogen bond 

acceptor to engage W178.  In CM053 and NCT-506 the amide and sulfonamide moieties 

overlay in the space occupied by the fluorobenzyl pendant.  

 Before we had obtained crystal structures for the CM39 series beyond the lead 

compound, I enumerated and docked a small virtual library looking for replacements of the 

benzyl pendant. This effort afforded amide 258476 (See Table 5.1). To expedite docking, these 
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analogs were docked using the CM39-like binding mode as a template. Based on our SAR, the 

strong preference for lipophilic groups in the active site near the catalytic cysteine and hydrogen 

bond donors near W178 indicates it is more likely that the binding mode flipped to orient the 

amides toward W178.  Although this compound was approximately 20-fold less potent than 

259122, the 2.6 unit decrease in cLogP drove the lipophilic ligand efficiency with respect to 

ALDH1A1 up by over 1 unit. The potent inhibition of 1A3 indicated the promise of similar 

compounds to potently inhibit ALDH with much improved predicted ADME properties. Because 

of its 3 aromatic rings and cLogP = 1.9, 258476 attained a much more favorable PFI of 4.9 

(assuming cLogP = ChromLogD7.4). Consistent with this, aqueous solubility was 10-fold better 

than 259122.  Analogs designed around the structure of 258476 indicated that the selectivity 

profile was easily manipulated to afford our desired Pan-ALDH1A inhibition profile (263056). 

Assuming that these compounds adopt a similar binding mode to 258083, the position of the 

carbonyl is not optimal.  Based on the overlays in Figure 5.1, the carbonyl should be four atoms 

away from the thiol rather than two as it is in all the analogs in Table 5.1.  In light of these 

promising preliminary findings, future work should focus on finding optimal new non-aromatic 

thiol substituents to achieve potent ALDH inhibition and reduce the PFI.  Based on visual 

analysis of the active site, some proposed analogs are presented in Figure 5.2.  Most should be 

accessible from alkyl halides in 1-2 steps. Virtual library enumeration and docking of 

commercially available alkyl halides would be prudent to discover additional, less obvious 

motifs.   
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Table 5.1 Characterization of Non-Aromatic Thiol Substituents 

 

CMPD 

No. R
2 

ALDH 
a
IC50 or 

b
% 

Control at 20 µM 

ADME Characterization 

1A1 1A2 1A3 
c
Aq. 

Sol 

cLogP 
d
LLE 

259122 

 

0.13 

±0.03 

 

0.11 

±0.02 

 

0.073 

±0.005 

 

8 

 

4.5 2.5 

259009 

 

21 

±3 

3.5 

±0.4 

0.9  

±0.2 

 1.4 3.3 

258476 

 

3.31 

±0.07 

0.93 

±0.07 

 

0.19 

±0.03 

 

81 1.9 3.6 

259008 

 

1.8 

±0.1 

4.9 

±0.2 

0.25 

±0.02 

75 2.4 3.3 

263053 

 

96% 

 

73% 

 

 

52% 

 

60 2.0  

263054 

 

65% 

 

71% 

 

47% 

 

 1.5  

263056 

 

16% 

 

25% 

 

14% 

 

 3.4  
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263055 

 

23% 

 

46% 

 

 

64% 

 

 2.9  

262901 

 

26% 34% 24%  4.1  

Values are expressed as 
a 
Mean ± SEM (n=3),

b
Mean (N=3) 

c 
Thermodynamic 

solubility analysis was performed by Analiza Inc. using quantitative nitrogen 

detection. (www.analiza.com) 
d 

LLE = Lipophilic Ligand Efficiency (1A1 

pIC50 – cLogP). (Unpublished work, courtesy of Hurley lab) 

 

 

Figure 5.2 Proposed Thiol Substituents 

 

5.2. Attempted Development of Proteolysis Targeting Chimeras 

(PROTACS) and Future Directions 

 

Targeting proteins of interest for degradation by recruiting E3 ligases using chimeric 

ligands is a relatively new technology which allows for extremely potent cellular activity. By 

holding the protein target and an E3 ligase recruiting protein (e.g. Cereblon or pVHL) in close 

proximity, the chimeras promote ubiquitination and subsequent degradation of the protein.  Once 

the protein has been ubiquitinated, the chimeric ligands are able to disassociate and bind to 

another protein molecule, theoretically enabling profound protein inhibition with sub-

http://www.analiza.com/
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stoichiometric (fewer molecules of ligand than target protein) quantities of the ligand.
159-160

 

Targeting the BET bromodomain proteins in this fashion has been particularly fruitful, affording 

degraders with cellular efficacy at 0.01 nM, and impressive in vivo antitumor activity at 

1mg/kg.
161

  

I attempted to create ALDH degraders by creating a chimera of the potent ALDH 

inhibitor 257723 and the Cereblon ligand linalidomide as shown in Figure 5.3 with variable 

length polyethylene glycol linkers. As linalidomide is commercially available and VHL ligands 

require multi-step syntheses, I chose to begin with linalidomide for synthetic ease. Due to the 

unstable chiral center in linalidomide, I chose not to use the alkyl-branched linker to avoid the 

final product containing an inseparable mixture of diastereomers. The crystal structures of 

258085 and 262548 indicated that the linker should be projected into solvent as desired and not 

significantly impact affinity; however, regardless of the linker length, these compounds were 10-

fold less potent inhibitors of ALDH in the enzyme assays. The Neamati lab performed western 

blots demonstrating that these compounds also did not show any degradation of ALDH1A1 or 

1A3 proteins at 30 µM. Although the exact parameters necessary to promote degradation are as-

of-yet unknown and likely to be target dependent, most examples of successful degraders 

maintain < 100 nM IC50 for their respective targets.
159-161

 Presumably, a PROTACS ligand must 

be potent enough to achieve sufficient residence time on the target to effectively recruit the E3 

ligase complex. It is also possible that some protein targets are not susceptible to ubiquitination 

by a particular E3 ligase complex.  

The biotinylated probe 264441 (Chapter 2) maintained the ALDEFLUOR potency 

observed for 673A, suggesting that the linker attachment point used in 264441 does not reduce 

ALDH potency and that the probe maintains good cell permeability. In light of these 
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observations, 673A-based PROTACS (Figure 5.3) may have a better chance at effectively 

degrading ALDH. Additionally, considering its slow substrate/reversibly covalent mechanism, 

673A may be better suited to achieve the residence time necessary to promote degradation. In 

fact, the first proof-of-concept studies in the development of PROTACS used a covalent system; 

Halo-tagged pVHL ligand was used to promote degradation of a Halo-Tag fusion protein.
162

 If 

the rate determining step in the turnover of 673A is the hydrolysis of the thioester, then 673A can 

only dissociate as the acid.  For this reason, it is unlikely that sub-stoichiometric quantities of the 

chimera could eradicate ALDH; however, reduction of the fairly high efficacious concentration 

of 673A is still possible. If ALDH inhibition is diminished for this probe, appending a methoxy 

meta to the aldehyde (see 223960 in Chapter 2) might provide additional potency at the expense 

of ALDH2 selectivity.  

 

Figure 5.3 257723-Linalidomide Chimeras and Proposed 673A-Linalidomide Chimera. 

(IC50s courtesy of Hurley lab) 

 

5.3. Selective Inhibitors Based on ALDH1A2 Crystal Structure 6B5H 
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Recently the first high-quality crystal structure of ALDH1A2 was published.
98

 As shown in 

Figure 5.4, one notable difference between the ALDH1A active sites is that the lipophilic Ile304 

sidechain in 1A1 corresponds to a polar Threonine in 1A2/1A3.  This residue is situated 4 Å 

from the 3-position of the pyrazole in the 262548 crystal structure. To explore the impact of this 

discrepancy on isoform selectivity, I synthesized C-3 substituted CM39 analogs as shown in 

Table 5.2. The C-3 methyl 263865 did indeed promote 1A1 selectivity as we predicted based on 

the lipophilic isoleucine present in 1A1. If the methyl was binding close enough with the Ile/Thr 

site to impart this selectivity, then we did not predict that the ethyl (264621) would be tolerated. 

Ethyl analog 264621 was essentially equipotent, but slightly more selective against 1A3. An 

alternative explanation for the 1A3 selectivity of these analogs is that the C-3 substituents are 

causing a reversion to the CM39-like binding mode which may be disfavored by 1A2/1A3. The 

C-3 substituents would project into solvent in this binding mode, consistent with the flat SAR we 

observed. To date, we have no crystal structures of pan-inhibitors which are bound in the CM39-

like binding mode. The amine substituted analog 264622, designed to be 1A2/1A3 selective by 

engaging the threonine as mentioned above, was a modestly potent 1A1/1A3 selective inhibitor, 

which also might indicate a change in binding mode. Future crystallography studies with these 

inhibitors could provide useful information in how to exploit C-3 substituents to alter isoform 

selectivity.  
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Figure 5.4 Overlay of 1A1 and 1A2 Crystal Structure 

Unpublished 1A1-262548 (teal) structure overlaid with 1A2 

structure (PDB ID: 6B5H, purple). (A) Ile 304 4Å from 3-

position of the pyrazole corresponds to Threonine in 1A2. 

(Unpublished work, courtesy Hurley lab) 
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Table 5.2 C-3 Substituted Pyrazole Analogs 

 

CMPD No. R
1
 

ALDH 
a
IC50 or 

b
% 

Control at 5 µM 

1A1 1A2 1A3 

259122 -H 0.13 

±0.03 

0.11 

±0.02 

0.073 

±0.005 

263865 -Methyl 0.22 

±0.05 

71% 2.4 

±0.4 

264621 -Ethyl 0.27 

±0.05 

>5 >5 

264622 -NH2 0.62 

±0.05 

48% 0.93 

±0.08 

Values are expressed as 
a 
Mean ± SEM (n=3),

b
Mean (N=3) 

(Unpublished work, courtesy of Hurley lab) 

 

5.4. Future Evaluation of Analogs and Project Conclusion 

 

One of our key hypotheses throughout the project has been the necessity of pan-

ALDH1A inhibitors to provide broad spectrum efficacy in a multitude of cell lines with variable 

ALDH isoform expression. Currently, the Buckanovich lab is evaluating a panel of pan-

inhibitors, and single isoform 1A1 and 1A3 selective inhibitors in two 1A3 high lines (OVCAR5 

and PEO1) and one 1A1 high line (OV90). Activity in ALDEFLUOR, CD133
+
 and cisplatin 

synergy assays is being determined. We hope to demonstrate that: 1) pan inhibitors are effective 

in the 3 assays in all cell lines, 2) that selective inhibitors for a particular isoform are effective in 

a cell line primarily expressing that isoform, and 3) that the selective inhibitors are ineffective in 
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cell lines primarily expressing a different isoform.  This ideal outcome would validate the 

mechanistic link between chemosensitization and CD133
+ 

depletion and ALDH inhibition for 

this compound series. Additionally it would demonstrate the utility of our selective probes as an 

alternative to siRNA knockdown for assessing the role of a particular ALDH isoform in a 

biological system. The Buckanovich lab also plans to assess more compounds in spheroid assays 

given the more stem-like phenotype and elevated ALDH expression exhibited by many cell lines 

under these conditions, as discussed in Chapter 3. Compounds with adequate in vivo exposure 

and efficacy in pending chemosensitization assays will be advanced to xenograft studies.  

5.5. Chemistry 

 

Scheme 5.1 Synthesis of Non-Aromatic Thiol Substituents
a
  

 

 

Reagents and Conditions
a
: (a) K2CO3, S4.1b, DMF; (b) 1N LiOH, THF; (c) dimethylamine-

HCl, HATU, DIPEA, DCM (d) R-X, K2CO3, DMF. 
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Amides 259008-9 and 258476 were synthesized from commercially available esters followed by 

hydrolysis and HATU coupling as depicted in Scheme 5.1. Other S-substituents were 

synthesized in one step from S4.1b and commercially available alkyl halides.  

Scheme 5.2 Synthesis of 257723-Linalidomide Degraders
a
 

 

 

a
Reagents and conditions: (a) S5.2c-e, K2CO3, KI, DMF, 70°C; (b) Ps-PPh3, I2, imidazole; (c) 

linalidomide, K2CO3, DMF, 70°C. 

 

As shown in Scheme 5.2 synthesis of the 257723-linalidomide degraders began by 

alkylation of 257901 with the appropriately functionalized ethoxy-ethanols S5.2c-e. Subsequent 

Appel iodination and displacement by linalidomide afforded the chimeric ligands 263643, 

263644, and 263818. 
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Scheme 5.3 Sythesis of C-3 Substituted Analogs
a 

 

Reagents and Conditions: (a) PhNCS, NaH, (1-bromoethyl)benzene, DMF, 0-20C; (b) H2SO4, 

EtOH, 100°C, Sealed tube; (c) Trityl-Cl, DIPEA, DCM; (d) TFA, DCM.  

 

As shown in Scheme 5.3 synthesis of C-3 alkyl substituted analogs began with 

aminopyrazoles S5.3a-b prepared as previously described.
163

 NaH mediated the addition of the 

amine into phenyl isothiocyanate, at which point the resulting thiourea cyclized spontaneously. 

Adding (1-bromoethyl)benzene to the reaction mixture at this point afforded the C-3 methyl and 

ethyl analogs. Synthesis of 264622 began with the pyrazole S5.3c prepared as previously 
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described.
164

 Solvolysis of the nitrile under acidic conditions in ethanol afforded ester S5.3d. 

Exploiting the steric bulk of the trityl protecting group, regioselective protection of the C-3 

amine was accomplished, affording S5.3e which afforded pyrazolopyrimidinone S5.3f upon 

treatment with phenyl isothiocyanate, NaH, and (1-bromoethyl)benzene. Finally TFA mediated 

removal of the trityl afforded 264622. 

 

5.6. Experimental Procedures 
 

 

N,N-dimethyl-2-((1-methyl-4-oxo-5-phenyl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-6-

yl)thio)acetamide (259009) 

6-mercapto-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (200mg, 0.774 mmol), 

ethyl 2-bromoacetate (0.094 ml, 0.852 mmol), and K2CO3 (161 mg, 1.161 mmol) in 1mL DMF 

were stirred for 1 h. The ester was precipitated with water and redissolved in 10mL 3:3:1 

THF/1N LiOH/EtOH and stirred for 1 h. The volatiles were removed and the residue taken up in 

water and washed 1x with EtOAc which was discarded.  The aqueous layer was acidified with 

1N HCl then extracted 3x with EtOAc.  The combined organics were washed with brine and 

dried yielding a white solid. This white solid (170mg) and HATU (225 mg, 0.591 mmol) were 

added to a flask and dissolved in 3mL DMF and cooled to 0°C before adding DIPEA (282 µl, 

1.612 mmol). 10 min later dimethylamine HCl (46.0 mg, 0.564 mmol) was added.  The flask was 
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left in cooling bath to gradually warm to RT over several hours. The next day, the mixture was 

diluted with brine and extracted into EtOAc.  The organic portion was dried and solvent removed.  

Purified by Flash (Elutes around 90% EA), the recrystallized from EtOAc, then Purified by flash 

again affording the titled compound as a white solid (20mg, 0.058 mmol, 10.84 % yield). MS 

(ESI): m/z 344.1175 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 8.01 (s, 1H), 7.63 - 7.50 (m, 3H), 

7.35 - 7.29 (m, 2H), 4.06 (s, 2H), 3.95 (s, 3H), 3.16 (s, 3H), 2.99 (s, 3H). 
13

C NMR (126 MHz, 

CDCl3) δ 166.60, 161.51, 157.58, 150.75, 135.32, 135.29, 130.14, 129.77, 129.30, 102.80, 37.58, 

36.23, 35.94, 33.85. 

 

 

 

N,N-dimethyl-2-((1-methyl-4-oxo-5-phenyl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-6-

yl)thio)propanamide (258476)  

 

Prepared in a similar manner to 259009. White solid. (29mg, 0.081 mmol, 26.2 % yield) (ESI): 

m/z 359.1327 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 8.02 (s, 1H), 7.48 - 7.59 (m, 3H), 7.20 - 

7.33 (m, 2H), 4.89 (q, J = 7.34 Hz, 1H), 3.96 (s, 3H), 3.21 (s, 3H), 3.00 (s, 3H), 1.54 (d, J = 6.85 

Hz, 3H)  
13

C NMR (126 MHz, CDCl3) δ 170.7, 161.6, 157.6, 150.9, 135.5, 135.3, 130.2, 129.9, 

129.7, 129.4, 129.2, 103.0, 43.2, 37.5, 36.2, 33.9, 17.4. 
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N,N-dimethyl-2-((1-methyl-4-oxo-5-phenyl-4,5-dihydro-1H-pyrazolo[3,4-d]pyrimidin-6-

yl)thio)butanamide (259008)  

 

Prepared in a similar manner as 259009. White solid. (29mg, 0.078 mmol, 25.2 % yield) (ESI): 

m/z 372.1485 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 8.01 (s, 1H), 7.62 - 7.43 (m, 3H), 7.40 - 

7.14 (m, 2H), 4.87 (t, J = 7.1 Hz, 1H), 3.96 (s, 3H), 3.22 (s, 3H), 3.00 (s, 3H), 2.09 - 1.96 (m, 

1H), 1.93 - 1.78 (m, 1H), 1.01 (t, J = 7.4 Hz, 3H). 
13

C NMR (126 MHz, CDCl3) δ 170.21, 161.84, 

157.62, 150.83, 135.46, 135.32, 130.14, 129.88, 129.77, 129.38, 129.22, 102.96, 48.85, 37.65, 

36.13, 33.95, 25.88, 11.95. 

 

 
 

1-methyl-6-((1-methyl-2-oxopiperidin-3-yl)thio)-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (263053) 

 

3-bromo-1-methylpiperidin-2-one (37.2 mg, 0.194 mmol), 6-mercapto-1-methyl-5-phenyl-1H-

pyrazolo[3,4-d]pyrimidin-4(5H)-one (50mg, 0.194 mmol), and K2CO3 (26.8 mg, 0.194 mmol) 

were stirred overnight in 1mL DMF. The product was precipitated by addition of water and 

filtered.  The precipitate was taken up in hot ethanol and the titled compound crystallized as a 
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white solid. (16mg, 0.043 mmol, 22.37 % yield) (ESI): m/z 370.1333 [M+H]
+ 1

H NMR (500 

MHz, CDCl3) δ 8.01 (s, 1H), 7.60 - 7.41 (m, 3H), 7.37 - 7.29 (m, 1H), 7.25 (d, J = 6.4 Hz, 1H), 

4.61 (t, J = 6.5 Hz, 1H), 3.94 (s, 3H), 3.41 - 3.27 (m, 2H), 2.95 (s, 3H), 2.42 - 2.28 (m, 1H), 2.25 

- 2.13 (m, 1H), 2.08 - 1.96 (m, 1H), 1.96 - 1.77 (m, 1H).
13

C NMR (126 MHz, CDCl3) δ 166.33, 

161.04, 157.73, 150.84, 135.45, 130.05, 129.87, 129.68, 129.59, 129.29, 102.93, 50.00, 47.85, 

35.46, 33.95, 28.64, 21.52. 

 

1-methyl-6-((1-methyl-2-oxopyrrolidin-3-yl)thio)-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one  

Prepared in a similar manner to 263053. (27mg, 0.076 mmol, 39.2 % yield). (ESI): m/z 356.1177 

[M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 8.02 (s, 1H), 7.59 - 7.46 (m, 3H), 7.36 - 7.29 (m, 1H), 

7.28 - 7.21 (m, 1H), 4.55 (t, J = 8.4 Hz, 1H), 3.95 (s, 3H), 3.51 - 3.36 (m, 2H), 2.89 (s, 3H), 2.83 

- 2.71 (m, 1H), 2.24 (dq, J = 15.3, 7.8 Hz, 1H) 
13

C NMR (126 MHz, CDCl3) δ 170.14, 160.91, 

157.61, 150.80, 135.48, 135.33, 130.18, 129.94, 129.64, 129.62, 129.24, 103.02, 47.37, 46.90, 

33.96, 30.43, 26.84. 
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1-methyl-6-((2-oxocyclohexyl)thio)-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

263056 

Prepared in a similar manner to 263053. White Solid (34mg, 0.096 mmol, 49.6 % yield) MS 

(ESI): m/z 355.1223 [M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 7.98 (s, 1H), 7.56 - 7.48 (m, 3H), 

7.35 - 7.30 (m, 1H), 7.23 (dt, J = 5.8, 2.8 Hz, 1H), 4.61 (dd, J = 11.5, 5.3 Hz, 1H), 3.91 (s, 3H), 

2.61 (dt, J = 13.4, 4.5 Hz, 1H), 2.53 - 2.42 (m, 2H), 2.11 (ddt, J = 12.8, 6.3, 2.9 Hz, 1H), 1.95 (dt, 

J = 12.4, 3.8 Hz, 1H), 1.89 - 1.67 (m, 3H).
13

C NMR (126 MHz, CDCl3) δ 204.81, 160.89, 

157.67, 150.76, 135.60, 135.34, 130.10, 129.90, 129.68, 129.47, 129.24, 102.89, 56.78, 41.66, 

33.99, 33.86, 27.70, 25.36. 

 

 

 

1-methyl-6-((2-oxocyclopentyl)thio)-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(263055) 

Prepared in a similar manner to 263053. Off white solid (37mg, 0.109 mmol, 56.2 % yield) MS 

(ESI): m/z 341.1068 [M+H]
+
 
1
H NMR (500 MHz, CDCl3) δ 8.02 (s, 1H), 7.57 - 7.50 (m, 3H), 

7.35 - 7.26 (m, 2H), 4.15 (t, J = 9.5 Hz, 1H), 3.95 (s, 3H), 2.68 - 2.56 (m, 1H), 2.47 (dd, J = 18.9, 

8.7 Hz, 1H), 2.34 (dt, J = 18.9, 9.4 Hz, 1H), 2.24 - 2.08 (m, 2H), 1.98 (p, J = 9.7, 9.2 Hz, 1H). 

13
C NMR (126 MHz, CDCl3) δ 212.37, 160.45, 157.59, 150.69, 135.49, 130.19, 129.85, 129.72, 

129.48, 129.34, 103.11, 51.85, 37.02, 34.21, 30.08, 20.75. 
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6-(cyclohexylthio)-1-methyl-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one (262901) 

Prepared in a similar manner to 263053. White solid. (42mg, 0.123 mmol, 45.5 % yield) MS 

(ESI): m/z 341.1432 [M+H]
+
  1H NMR (500 MHz, CDCl3) δ 8.02 (s, 1H), 7.56 - 7.47 (m, 3H), 

7.29 - 7.20 (m, 2H), 3.97 (s, 3H), 3.88 - 3.76 (m, 1H), 2.18 - 2.01 (m, 2H), 1.83 - 1.70 (m, 2H), 

1.69 - 1.60 (m, 1H), 1.53 - 1.35 (m, 4H), 1.33 - 1.25 (m, 1H). 13C NMR (126 MHz, CDCl3) δ 

162.12, 157.98, 151.16, 135.93, 135.37, 129.80, 129.61, 129.39, 102.76, 46.42, 33.78, 32.51, 

26.12, 25.59. 

 

1,3-dimethyl-5-phenyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(263865) To a solution of ethyl 5-amino-1,3-dimethyl-1H-pyrazole-4-carboxylate
163

 (250mg, 

1.365 mmol) in 2.5mL DMF at 0°C was added NaH (82 mg, 3.41 mmol). The mixture was 

stirred for 10 minutes under N2 at which point isothiocyanatobenzene (0.163 ml, 1.365 mmol) 

was added by syringe. The mixture was stirred for an additional 20 min at which point it was 

allowed to warm to room temperature and stir for 1 h.  The mixture was cooled to 0°C again and 

(1-bromoethyl)benzene (0.186 ml, 1.365 mmol) was added by syringe and the mixture was 

allowed to gradually warm to RT overnight.  Some of the cyclized thiophenol intermediate 
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remained so (1-bromoethyl)benzene (0.186 ml, 1.365 mmol) was added to the solution at 0°C 

and then the mixture was stirred for another hour at RT.  The mixture was diluted with ethyl 

acetate and washed 1x with water and 3x with brine.  The organic portion was dried over sodium 

sulfate and concentrated yielding a yellow solid.  The crude solid was taken up in hot ethanol and 

the pure product crystallized as a white solid upon cooling. (190mg, 0.505 mmol, 37.0 % yield) 

MS (ESI): m/z 377.1427 [M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 7.56 - 7.45 (m, 3H), 7.41 - 7.35 

(m, 2H), 7.33 - 7.21 (m, 4H), 7.20 - 7.16 (m, 1H), 5.01 (q, J = 7.2 Hz, 1H), 3.92 (s, 3H), 2.52 (s, 

3H), 1.70 (d, J = 7.1 Hz, 3H). 
13

C NMR (126 MHz, CDCl3) δ 161.24, 158.58, 151.50, 146.24, 

142.16, 135.63, 129.80, 129.62, 129.55, 129.44, 129.41, 128.49, 127.51, 100.97, 46.76, 33.59, 

21.95, 13.36.  

 

 

 

 

3-ethyl-1-methyl-5-phenyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 

(264621) 

Prepared in a similar manner to 263865 to yield a white solid. (37mg, 0.095 mmol, 6.23 % yield) 

MS (ESI): m/z 391.1588 [M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 7.55 - 7.44 (m, 3H), 7.40 - 7.35 

(m, 2H), 7.33 - 7.21 (m, 4H), 7.21 - 7.16 (m, 1H), 5.01 (q, J = 7.2 Hz, 1H), 3.93 (s, 3H), 2.90 (q, 

J = 7.6 Hz, 2H), 1.70 (d, J = 7.2 Hz, 3H), 1.31 (t, J = 7.5 Hz, 3H).
13

C NMR (126 MHz, CDCl3) δ 

161.16, 158.28, 151.92, 151.63, 142.21, 135.71, 129.76, 129.62, 129.55, 129.46, 129.43, 128.49, 
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127.51, 100.26, 46.75, 33.59, 21.95, 21.62, 13.17  

 

Ethyl 3,5-diamino-1-methyl-1H-pyrazole-4-carboxylate (S5.3d) 

 

3,5-diamino-1-methyl-1H-pyrazole-4-carbonitrile
164

(S5.3c) (200mg, 1.458 mmol), H2SO4 (.2 ml, 

3.75 mmol), and 1mL ethanol were heated overnight in a sealed tube at 100C.  The next day 

0.5mL water was added and the tube was heated to 100°C for 30 minutes at which point it was 

added to saturated sodium carbonate and extracted 3x wtih ethyl acetate.  The combined organics 

wased with brine, dried over sodium sulfate, and concentrated.  The crude was purified by flash 

(2.5% MeOH in DCM) yielding the product as a white solid. (100mg, 0.543 mmol, 37.2 % yield) 

1H NMR (400 MHz, DMSO-d6) δ 5.98 (s, 2H), 4.95 (s, 2H), 4.12 (q, J = 7.1 Hz, 2H), 1.22 (t, J 

= 7.1 Hz, 3H). 

 

Ethyl 5-amino-1-methyl-3-(tritylamino)-1H-pyrazole-4-carboxylate 

 

Ethyl 3,5-diamino-1-methyl-1H-pyrazole-4-carboxylate (95mg, 0.516 mmol), Trityl-Cl (144 mg, 

0.516 mmol), and DIPEA (0.108 ml, 0.619 mmol) were stirred for 2 days at RT in DCM.  When 
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complete by TLC, the volitiles were removed and the reaction was purified by flash (0-50% EA 

in Hex) affording the titled compound as a white foam. (138mg, 0.324 mmol, 62.7 % yield) 

1
H NMR (500 MHz, DMSO-d6) δ 7.33 - 7.06 (m, 15H), 4.12 (q, J = 6.8, 6.4 Hz, 2H), 1.23 - 1.09 

(m, 3H). 

1-methyl-5-phenyl-6-((1-phenylethyl)thio)-3-(tritylamino)-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (S5.3f) 

 

Prepared in a similar manner to 263865 to afford the titled compound as a yellow oil (70mg, 

0.113 mmol, 64.2 % yield). 
1
H NMR (500 MHz, CDCl3) δ 7.77 - 7.04 (m, 27H), 6.42 (s, 1H), 

5.00 (q, J = 7.1 Hz, 1H), 3.56 (s, 3H), 1.72 (d, J = 7.2 Hz, 3H). 

3-amino-1-methyl-5-phenyl-6-((1-phenylethyl)thio)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-

one  

Stirred at RT in 1mL TFA and 1mL DCM for 3 h.  The solvent was removed and the residue was 

taken up in sat. NaHCO3 and extracted 3x with DCM.  The combined organics were washed with 

brine and dried over sodium sulfate. Crude residue was purified by flash (Eluting at 60% EtOAc 

in Hex) affording the titled compound as a white solid. (11mg, 0.029 mmol, 60.2 % yield) MS 

(ESI): m/z 378.1384 [M+H]
+
  

1
H NMR (499 MHz, CDCl3) δ 7.55 - 7.45 (m, 3H), 7.40 - 7.35 (m, 

2H), 7.32 - 7.21 (m, 4H), 7.20 - 7.16 (m, 1H), 4.99 (q, J = 7.1 Hz, 1H), 4.47 (s, 2H), 3.78 (s, 3H), 

1.69 (d, J = 7.2 Hz, 3H).
13

C NMR (126 MHz, CDCl3) δ 161.64, 158.48, 150.65, 150.40, 142.12, 

135.37, 129.83, 129.61, 129.54, 129.50, 129.47, 128.49, 127.50, 90.78, 46.77, 33.11, 21.93.  
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6-((3-fluorobenzyl)thio)-1-(2-(2-hydroxyethoxy)ethyl)-5-phenyl-1H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (S5.2a n=1) 

Prepared according to (Chapter 3, Method B). Yellow Oil. (140mg, 0.318 mmol, 44.8 % yield) 

1
H NMR (500 MHz, CDCl3) δ 8.03 (d, J = 1.4 Hz, 1H), 7.55 - 7.47 (m, 3H), 7.31 - 7.20 (m, 3H), 

7.11 (d, J = 7.7 Hz, 1H), 7.06 (d, J = 9.6 Hz, 1H), 6.92 (d, J = 7.9 Hz, 1H), 4.52 (t, J = 5.5 Hz, 

2H), 4.30 (s, 2H), 3.95 (t, J = 5.6 Hz, 2H), 3.67 (t, J = 4.5 Hz, 2H), 3.61 - 3.53 (m, 2H), 3.01 (s, 

1H). No NOE when irradiating peak at 8.03 

 

6-((3-fluorobenzyl)thio)-1-(2-(2-iodoethoxy)ethyl)-5-phenyl-1H-pyrazolo[3,4-d]pyrimidin-

4(5H)-one (S5.2b n=1) 

I2 (113 mg, 0.445 mmol), and PS-PPh3 (ALDRICH 3mmol/g, 160mg) were added to a vial along 

with 2mL THF and stirred via orbital shaker for 15 minutes.  Imidazole (32.5 mg, 0.477 mmol) 

was added followed by (S5.2a n=1) (140mg, 0.318 mmol) dissolved in 2mL THF.  The mixture 

was stirred by orbital shaker overnight.  The next day an equal portion of PPH3, I2 and 

Imidazole were added and the mixture stirred for an additional 3 days.  The mixture was filtered 
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and diluted with ethyl acetate before washing with sat. sodium thiosulfate and brine and drying 

over sodium sulfate and concentrating.  The yellow oil obtained was used without further 

purification (100mg, 0.182 mmol, 57.2 % yield)  

 

 

3-(4-((2-(2-(6-((3-fluorobenzyl)thio)-4-oxo-5-phenyl-4,5-dihydro-1H-pyrazolo[3,4-

d]pyrimidin-1-yl)ethoxy)ethyl)amino)-1-oxoisoindolin-2-yl)piperidine-2,6-dione  (263643) 

3-(4-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione (188 mg, 0.727 mmol), K2CO3 (50.2 mg, 

0.363 mmol), and 6-((3-fluorobenzyl)thio)-1-(2-(2-iodoethoxy)ethyl)-5-phenyl-1H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (100mg, 0.182 mmol) were added to a pressure vial and stirred at 70C for 

24hr.  The mixture was diluted with water and extracted 2x with ethyl acetate.  The organic 

porition was washed with brine and dried over sodium sulfate.  The concentrated crude residue 

was purified by 2 successive flash columns (80-100% EA/Hex).  (20mg, 0.029 mmol, 16.15 % 

yield) colorless oily solid. (ESI): m/z 704.2066 [M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 8.06 (s, 

1H), 7.55 - 7.46 (m, 2H), 7.46 - 7.39 (m, 1H), 7.36 - 7.19 (m, 5H), 7.13 (d, J = 7.7 Hz, 1H), 7.10 

(dt, J = 9.6, 2.1 Hz, 1H), 6.95 (td, J = 8.5, 2.5 Hz, 1H), 6.81 (dd, J = 7.4, 1.4 Hz, 1H), 5.15 (dd, J 

= 13.1, 5.4 Hz, 1H), 4.60 - 4.41 (m, 2H), 4.34 (s, 2H), 4.23 (d, J = 15.6 Hz, 1H), 4.12 (d, J = 15.6 

Hz, 1H), 4.05 - 3.81 (m, 4H), 3.58 - 3.51 (m, 1H), 3.51 - 3.43 (m, 1H), 2.90 (ddd, J = 17.6, 4.6, 

2.7 Hz, 1H), 2.78 (ddd, J = 18.0, 13.1, 5.6 Hz, 1H), 2.27 - 2.15 (m, 1H), 2.15 - 2.07 (m, 1H). 
13

C 
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NMR (126 MHz, CDCl3) δ 171.12, 170.14, 169.89, 162.81 (d, J = 246.3 Hz), 161.88, 157.97, 

151.44, 141.65, 138.67 (d, J = 7.8 Hz), 135.67, 135.57, 132.40, 130.26, 130.20, 129.83 (d, J = 

2.4 Hz), 129.51, 129.45, 129.37, 126.47, 124.89 (d, J = 2.9 Hz), 118.15, 116.20 (d, J = 21.9 Hz), 

114.70 (d, J = 21.2 Hz), 114.25, 103.17, 68.53, 67.66, 52.55, 47.49, 45.22, 39.22, 37.01, 32.11, 

22.80. 

6-((3-fluorobenzyl)thio)-1-(2-(2-(2-hydroxyethoxy)ethoxy)ethyl)-5-phenyl-1H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (S5.2a n=2) 

 

Prepared in a similar manner to(S5.2a n=1). Yellow oil. (110mg, 0.227 mmol, 32.0 % yield) 

1H NMR (500 MHz, Chloroform-d) δ 8.03 (s, 1H), 7.54 - 7.43 (m, 3H), 7.30 - 7.19 (m, 3H), 

7.11 (d, J = 7.7 Hz, 1H), 7.06 (dt, J = 9.7, 2.1 Hz, 1H), 6.92 (td, J = 8.4, 2.5 Hz, 1H), 4.52 (t, J = 

5.9 Hz, 2H), 4.31 (s, 2H), 3.97 (t, J = 5.9 Hz, 2H), 3.66 (t, J = 4.5 Hz, 2H), 3.63 (dd, J = 6.3, 3.0 

Hz, 2H), 3.60 (dd, J = 5.7, 2.7 Hz, 2H), 3.52 (t, J = 4.5 Hz, 2H), 2.42 (s, 1H). 

 

 
 

6-((3-fluorobenzyl)thio)-1-(2-(2-(2-iodoethoxy)ethoxy)ethyl)-5-phenyl-1H-pyrazolo[3,4-

d]pyrimidin-4(5H)-one (S5.2b n=2) 
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Prepared in a similar manner as(S5.2b n=2). Yellow oil.(135mg, 0.227 mmol, 100 % yield). 

Taken forward without further purification. 

 

  
 

3-(4-((2-(2-(2-(6-((3-fluorobenzyl)thio)-4-oxo-5-phenyl-4,5-dihydro-1H-pyrazolo[3,4-

d]pyrimidin-1-yl)ethoxy)ethoxy)ethyl)amino)-1-oxoisoindolin-2-yl)piperidine-2,6-dione 

(263643) 

 

Prepared in a manner similar to 263644. (48mg, 0.066 mmol, 30.2 % yield) (ESI): m/z 748.2328 

[M+H]
+
  

1
H NMR (500 MHz, CDCl3) δ 7.99 (s, 1H), 7.51 - 7.39 (m, 3H), 7.29 - 7.16 (m, 5H), 

7.11 - 7.06 (m, 1H), 7.03 (dt, J = 9.6, 2.1 Hz, 1H), 6.90 (td, J = 9.0, 1.8 Hz, 1H), 6.76 (dd, J = 7.4, 

1.4 Hz, 1H), 5.14 (dd, J = 13.4, 5.1 Hz, 1H), 4.48 (t, J = 5.8 Hz, 2H), 4.27 (s, 2H), 4.19 (d, J = 

15.7 Hz, 1H), 4.09 (d, J = 15.7 Hz, 1H), 4.03 - 3.85 (m, 4H), 3.60 - 3.46 (m, 6H), 2.88 (ddd, J = 

17.6, 4.9, 2.6 Hz, 1H), 2.77 (ddd, J = 17.9, 13.3, 5.3 Hz, 1H), 2.20 (qd, J = 13.1, 4.7 Hz, 1H), 

2.12 - 2.02 (m, 1H).
13

C NMR (126 MHz, CDCl3) δ 171.18, 170.05, 169.88, 162.63 (d, J = 246.2 

Hz), 161.55, 157.79, 151.19, 141.61, 141.60, 138.50 (d, J = 7.5 Hz), 135.56, 135.44, 132.23, 

130.13, 130.07, 129.70 (d, J = 1.7 Hz), 129.34, 129.31, 126.26, 117.90, 115.99 (d, J = 21.7 Hz), 

114.54 (d, J = 21.0 Hz), 113.86, 102.93, 70.45, 69.76, 68.80, 67.51, 52.43, 46.91, 45.09, 39.04, 

36.80 (d, J = 1.9 Hz), 31.97, 22.64.  
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3-(4-((2-(2-(2-(2-(6-((3-fluorobenzyl)thio)-4-oxo-5-phenyl-4,5-dihydro-1H-pyrazolo[3,4-

d]pyrimidin-1-yl)ethoxy)ethoxy)ethoxy)ethyl)amino)-1-oxoisoindolin-2-yl)piperidine-2,6-

dione (263818) 

 

Prepared in a similar manner as 263643. Yellow Foam. (34mg, 0.044 mmol, 33.9 % yield)
 
(ESI): 

m/z 770.2758 [M+H]
+
 
 1
H NMR (500 MHz, Chloroform-d) δ 8.02 (s, 1H), 7.54 - 7.46 (m, 3H), 

7.31 - 7.20 (m, 5H), 7.11 (d, J = 7.6 Hz, 1H), 7.07 (dt, J = 9.6, 2.1 Hz, 1H), 6.93 (td, J = 8.4, 2.6 

Hz, 1H), 6.80 (dd, J = 7.4, 1.3 Hz, 1H), 5.18 (dd, J = 13.3, 5.1 Hz, 1H), 4.51 (t, J = 5.9 Hz, 2H), 

4.31 (s, 2H), 4.23 (d, J = 15.6 Hz, 1H), 4.12 (d, J = 15.5 Hz, 1H), 4.00 (t, J = 6.0 Hz, 2H), 3.95 (t, 

J = 5.9 Hz, 2H), 3.90 (br. s, 2H), 3.67 - 3.48 (m, 10H), 2.92 (ddd, J = 17.6, 4.6, 2.6 Hz, 1H), 2.80 

(ddd, J = 17.9, 13.4, 5.4 Hz, 1H), 2.25 (qd, J = 13.2, 4.5 Hz, 1H), 2.14 - 2.07 (m, 1H). 13C NMR 

(126 MHz, Chloroform-d) δ 171.10, 170.02, 169.78, 162.67 (d, J = 246.4 Hz), 161.46, 157.70, 

151.11, 141.52, 138.50 (d, J = 7.6 Hz), 135.59, 135.48, 132.30, 130.16, 130.09, 129.75 (d, J = 

3.6 Hz), 129.36, 129.33, 126.28, 124.78 (d, J = 2.9 Hz), 117.88, 116.02 (d, J = 21.9 Hz), 114.57 
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(d, J = 21.0 Hz), 113.98, 102.98, 70.55, 70.50, 70.32, 69.78, 68.92, 67.53, 52.41, 46.94, 44.98, 

39.06, 36.85, 32.01, 22.70.  
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