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ABSTRACT

A battery pack used in electrified vehicles consists of stacks of nominally identical

cells mechanically coupled through foams and spacers. Because of these repeated

substructures, the dynamic behavior of a pack is characterized by high modal den-

sity (HMD) regions with closely spaced natural frequencies. It is known that with

frequencies of excitation in such a HMD region, small commonly occurring structural

variations may lead to significant amplification of vibration responses in some cells

compared to responses of the nominal design. Intense vibration responses may lead

to high stresses and consequently lead to failure of the whole battery pack. Because

cells are connected in series, the battery pack fails when one of the cells fails. Conse-

quently, the maximum vibration response for cells is a key metric for the reliability

of the battery pack.

To characterize this dynamic behavior, it is necessary to conduct statistical analy-

ses by calculating the vibration response amplitudes for a range of parameters quan-

tifying these structural variations. Since it is time-consuming to conduct a single

simulation with full-order finite element models with given structural variation levels,

it is time prohibitive to conduct statistical analyses, which involve large numbers of

simulations. Moreover, since different arrangements of different types of spacers af-

fect the coupling of cells and are capable mitigating vibration responses of the battery

pack, it is essential to search the optimal arrangement of spacers in design process to

improve the reliability of battery packs. Since the optimization of the arrangement

of spacers involves considerable searching steps and the vibration response ampli-

tudes are calculated at each step, the simulation time is desired to be reduced. This

x



dissertation focuses on developing parametric reduced-order models (PROMs) to re-

duce the calculation time and enable statistical analyses and the optimization of the

arrangement of spacers.

The structural variations considered in this work are categorized into linear and

nonlinear variations. Three linear structural variations are considered: prestress vari-

ation (PreV), cell-to-cell variation (C2CV), and spacer-to-spacer variation (S2SV).

PreV comes from the preload applied on the battery pack. C2CV refers to each cell

that has different structural characteristics compared to its nominal design. S2SV

suggests different types of spacers. Two nonlinear structural variations are consid-

ered, which come from the nonlinear behavior in cells and foams. The modulus of

the elasticity of cells and foams, which include porous material, increase nonlinearly

due to the consumption of the porosity under deformation. PROMs are developed

to capture all these linear and nonlinear structural variations simultaneously and to

predict the vibration responses efficiently and accurately. The results predicted by

PROMs are validated by comparison with the full-order model.

The key contributions of this thesis are: (1) the development of novel PROMs

for simultaneously capturing linear structural variations including PreV, C2CV, and

S2SV, (2) the development of novel PROMs for capturing nonlinear behavior in cells

and foams, and (3) the statistical analyses and optimization of the arrangement of

spacers using PROMs. The statistical analyses show that the cell-to-cell variations

can drastically amplify the vibration response of a cell. Also, the vibration response

can be significantly mitigated with the optimized arrangement of spacers.
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CHAPTER I

Introduction

1.1 Introduction

1.1.1 Motivation

Automobiles using petroleum causes air pollution and have recently became a

global problem[1]. Also, the transportation sector highly depends on the petroleum,

whose supply-and-demand balance is straining, and therefore threatens economic

stability[2]. Electrified vehicles (EVs) have received considerable attention for their

potential of reducing petroleum consumption through efficiency improvements. EVs

require onboard battery packs to power their electric drive systems. It is of impor-

tance to investigate the design features that can enhance the reliability of a battery

pack as a power storage system. There are substantial research interest in perfor-

mance of battery packs[3, 4, 5, 6]. However, relatively little attention has been paid

to their structural dynamics.

Battery packs are subject to road and vehicle vibrations[7], which come from gen-

eral road surface unevenness, road surface aberrations[8], vehicle drivetrain system,

and internal combustion engine[9]. Due to these vibrations, it is necessary to evaluate

the fatigue life of battery packs in the initial stage of product design to guarantee its

reliability[10]. The impact of mechanical vibration on fatigue life has been studied
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extensively in literature[11, 12].

Vibration can cause fatigue damage of different kinds. In the worst case scenario,

the cells can burst.

It is known that vibration is one of major causes of battery pack failures[13]. Vi-

bration can cause fatigue damage of different kinds[14, ?]. In the worst case scenario,

the failures of battery packs may lead to severe accidents because the components of

rechargeable batteries make them highly flammable and have the potential to spread

quickly throughout battery packs which is known as thermal runaway[15, 16, 17].

Many battery fires and incidents used in EVs have been reported. It was reported

that in 2011, General Motor Chevrolet Volt Li-ion battery pack caught fire during the

National Highway Traffic Safety Administration crash-safty tests before GM recalled

approximately 8,000 Volts on the road[18]. It was also reported that in 2012, an

explosion of a prototype battery inside a GM laboratory blew at least one eight-inch

thick doors[19]. Five people received medical attention after the incident. In 2013, A

crash of a Tesla Model S triggered a fire in the EV’s battery pack and the company’s

stock price was down about 10% as a result[20].

The effect of vibration on battery packs is potentially a major cause of durability

failures[21]. It is known that even small structural variations in battery packs can

significantly amplify the vibration responses. A battery pack is constructed by stack-

ing dozens or even hundreds of nominally identical single cells connected in series

coupling through spacers in a spatially repeated layout. The battery pack with such

repeated substructures (single cell) features high modal density (HMD) in its natural

frequency plot, where bands/groups of natural frequencies can be very close to each

other[22, 23, 24, 25].

If the load-induced excitation acting on the battery pack has frequencies in a

HMD region, the forced responses may be amplified significantly due to small struc-

tural variations from the nominal design of the system[26]. In particular, the system
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can exhibit mode localization [27, 28], where the vibration energy is spatially concen-

trated in a small region of the structure because of the mechanical cross-talk between

cells. The mode localization phenomenon can drastically change the amplitude of

the vibration response and the location of maximum amplitude, and consequently

shortens the fatigue life and decreases the performance of the battery pack. Similar

phenomena are also observed in the field of turbomachinery[29, 30]. Because of the

high sensitivity of the vibration response of battery packs to small random variations

in their structural parameters, statistical methods are needed.

Structural variations in battery packs are classified into two categories: linear and

nonlinear structural variations. The linear structural variations are independent of

vibration responses of battery packs. The linear structural variations considered in

this work involve prestress variation (PreV), cell-to-cell variation (C2CV) at each cell,

and spacer-to-spacer variation (S2SV) at each spacer. PreV may exist due to different

preloads applied to battery packs during installation or variances in thermal stresses

resulting from environmental temperature or charge/discharge cycles. These effects

change the equivalent modulus of the elasticity of entire battery packs. Another type

of structural variation is the C2CV when different cells in battery packs have different

modulus of elasticity compared to the nominal design. Such C2CVs are usually the

result of variances in manufacturing process[31], or different state-of-charge in differ-

ent cells during charge/discharge cycles. The C2CV affects the equivalent modulus

of the elasticity of each individual cells[32].

Since small random PreV and C2CV are unavoidable in practice and can rad-

ically modify vibration responses, their effects need to be identified during design

process. Most commonly statistical analyses are employed to investigate the effect

of uncertainties by conducting large numbers of separate simulations with different

levels (and distributions) of structural variation as input. However, even a single

simulation may require significant computational effort and time for high fidelity full-
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order models, depending on the complexity and mesh density of the finite element

model (FEM) used. The computational time can be on the order of days of CPU

time. Consequently, a statistical analysis may be rendered impractical due to the

prohibitive simulation time involved. Additionally, the modes of a pack depend on a

nonlinear fashion on each cell’s structural variations.

The third type linear structural variation is S2SV. Different types of spacers have

different equivalent modulus of elasticity in finite element models (FEMs) and are

considered as structural variations between spacers. There are many types of spacer

designs for several objectives. First, battery pack spacers are designed to prevent

contact between terminals (positive electrode terminal or negative electrode terminal)

of adjacent single cells when a load is applied from outside to battery packs and thus

prevent short-circuiting of battery packs[33]. Also, cooling medium passages are

formed by interposing spacers made of metallic material between two adjacent single

cells. The battery packs are cooled by convection currents in these cooling medium

passages or by forcibly passing cooling medium therethrough[34, 35]. Spacers are also

designed for heating the battery pack due to its poor low-temperature performance.

The low temperature increases the internal impedance of batteries and reduces its

available energy[36]. Moreover, single cells, which are securely joined together through

spacers, must be firmly held to minimize dynamic effects on the vehicle’s handling[37,

38].

There are multiple spacers in a battery pack. Replacing any one of spacers from a

different type forms a new arrangement of spacers in the battery pack. Since different

arrangements of different types of spacers change the mechanical coupling between

cells, the vibration response of battery packs can be mitigated. Consequently, the

arrangement of spacers can be designed to lower the vibration response, which is a

key metric of reliability of battery packs. One of research problems is to optimize the

arrangement of spacers, which minimizes the vibration response of a battery pack.
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Since the vibration response may be a non-convex nonlinear function of the arrange-

ment of spacers, a genetic algorithm, which is a non-gradient optimization approach,

is employed to solve the optimization problem. However, the genetic algorithm may

involve multiple random search steps and initial search starting points, each of them

requires solving the time-prohibitive full-order model once.

The nonlinear structural variations depend on vibration responses of battery

packs. The nonlinear structural variations considered in this work are nonlinear

dynamic behavior in cells and foams and are modeled as nonlinear modulus of elas-

ticity. The foams and separators are porous polymeric layers. Nonlinear behav-

ior is observed in these polymers due to the consumption of the porosity under

deformation[39, 40, 41, 42, 43]. With the increasing deformation, densification of

the polymeric material contributes to the increase of modulus of the elasticity. Solv-

ing a nonlinear full-order model, which requires much more computational effort and

time than a linear one, becomes computationally impratical.

1.1.2 Background

Different reduction approaches have been studied in literature to reduce simulation

time. One popular approach is to represent the modes of system with structural vari-

ations in terms of a subset of nominal system modes (SNM)[44], which are defined as

the modes of the system without structural variations. The dynamic system matrices

(mass, damping, and stiffness) of the system with structural variations are projected

using SNM. This projection reduces the order of structural dynamic equations while

not requiring the calculation of modes of the system with structural variations. How-

ever, the SNM approach requires building and projection of system-level matrices for

given structural variations.

Another popular reduction approach is the component mode synthesis (CMS)[45,

46, 47, 48, 49, 50, 51, 52, 53]. CMS approach breaks down a large complex structural
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system into several smaller components, which are connected to each other through

interfaces. The order of the governing equations of each component is significantly

reduced by using CMS modes, which consist of constraint modes and truncated nor-

mal modes. The constraint modes are defined by producing a unit displacement on

each interface degree of freedom (DOF) with all other interface DOFs fixed. The

normal modes are defined as the vibration modes with all interface DOFs fixed, and

the truncated normal modes are determined according to the range of frequency of

interest. The component-level dynamic system matrices with structural variations are

projected on the CMS modes and are assembled through the interface by imposing

geometric compatibility and forming the reduced-order system-level matrices. CMS

frees the need to build and to project the system-level matrices, but it still needs to

build and project the component-level matrices for given structural variations. Also,

there is no reduction applied to the number of constraint modes, which is equal to the

degrees of freedom (DOFs) on the interfaces between substructures, and the number

increases when the mesh density of FEM increases. Consequently, the resulting num-

ber of reduced structural dynamic equations increases and the computational time

increases. To overcome the issue that the CMS model is dominated by the number

of constraint modes, Castanier et al. [54] developed a method to reduce the size of

the CMS model by performing an eigenanalysis on the constraint mode partitions of

the mass and stiffness matrices. These characteristic constraint modes may then be

truncated to yield a smaller model.

SNM and CMS, however, can only be used for a single realization of the model,

and is therefore not efficient when there are structural variations that require many

realizations. Thus, Balmés [55] introduced design-oriented models called parametric

reduced-order models (PROMs). PROMs consider mass and stiffness matrices as

functions of a single structural variation, and use interpolation to obtain the projected

mass and stiffness matrices in order to avoid building and projecting of matrices for
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given structural variations.

There are two levels of structural variations. One is global-level structural vari-

ations (such as those induced by prestress variations in the entire pack). The other

is component-level structural variations (such as variations in the state of charge of

cells, or temperature variations from cell to cell). Previous PROMs are designed to

capture system-level structural variations, but they have to be modified to capture

component-level variations. Lim et al. [56] developed the component mode mistun-

ing (CMM) method to capture structural variations in substructures. CMM was

developed for predicting the vibration response of mistuned bladed disks in turbo-

machinery. Single stage rotors of turbines consist of sectors that are repeated sub-

structures, and lead to high modal density. Thus, small structural variations in the

blades can significantly change the system-level vibration response. However, CMM

only captures component-level variations and not system-level variations. Hong et

al. [26] developed a method to simultaneously capture global-level and substructure-

level variations using interpolation combined with CMS. Nevertheless, their method

uses CMS and the computational time can be large if many interface DOFs exist.

Hong et al.[57, 58] developed next-generation parametric reduced-order models

(PROMs), which obtain the projected component-level matrices with both system-

level and component-level structural variations using interpolation. By using singular

value decomposition to condition the transformation matrix in the range of structural

variations, the next-generation PROMs are very efficient and accurate for analyzing

the vibration response with structural variations, such as thickness changes due to

design or damages in substructures. It frees the need to build and project component-

level matrices with structural variation. Also, this approach assembles projected

component-level matrices simply by addition. This frees the need to enforce geo-

metric compatibility at the interface as in the CMS approach. Moreover, constraint

modes are not employed for reduction in PROMs. Consequently, the reduced order
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of structural dynamic equations is independent of mesh density.

However, these methods were developed for reduction of linear systems wherein the

structural properties are independent of the system responses. As discussed before,

the material used for construction of cells and foams is nonlinear and their stiffness

and damping depends on the structural displacement. Nonlinear structural dynamic

equations may be solved using direct time integration (DTI) techniques[59]. DTI

approaches allow analysis of transient system responses but involves computationally

expensive calculation processes. Usually, only steady state periodic responses of the

structure are of interest in the analysis of vibration amplification due to structural

variation. The harmonic balance method (HBM)[60] is a well-known approach to

construct the nonlinear structural dynamic equations and to efficiently solve steady

state responses. HBM applies fast Fourier transform (FFT) algorithm to project the

nonlinear structural dynamic equations into the frequency domain, and the struc-

tural displacement is assumed to be the combination of the first few harmonic terms.

Nonlinear algebraic equations are constructed wherein the unknowns are the Fourier

coefficients of the FFT of the structural displacement. The system is solved using

Newton-Raphson method. HBM has been used to simulate bladed disks (blisks) with

nonlinear contacts such as blisks with ring dampers [61] and shrouds[62, 63].

1.1.3 Dissertation Outline

This dissertation focuses on developing new nonlinear PROMs which capture both

a global-level and multiple component-level structural variations simultaneously while

eliminating the need for CMS to significantly reduce the computational time needed to

create the low order models. Also, the new nonlinear PROMs integrate the nonlinear

hardening/softening effects of materials in battery cells and foams. The vibration

responses predicted using PROMs are validated using full-order FEMs. PROMs are

computationally efficient and accurate. They are used to conduct statistical analyses
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for system with random structural variations and are used for optimization of the

arrangement of spacers, which minimizes the vibration responses of battery packs

using a genetic algorithm.

In chapter 2, new nonlinear PROMs are proposed to capture PreV and C2CV

simultaneously. The transformation matrix, which is constructed using the modes at

two extreme PreV levels with zero C2CV for all cells, are conditioned using singular

value decomposition to eliminate linearly independent columns. The transformation

matrix is employed to reduce the order of system dynamic matrices. The stiffness

matrices with structural variations are obtained using linear interpolation with respect

to C2CV of each cell. Moreover, cells are mechanically coupled to each other through

spacers, and vibration of the battery pack is observed along the first plate-like modes

of each cell in the battery pack. The nonlinear behavior in cells are modeled in PROMs

based on the observation. The reduced-order nonlinear system dynamic equations are

solved using iterative method, and the solutions are validated using time-marching

method and algebraic solver.

In chapter 3, the effect of foams are considered and modeled in PROMs. Cells

are mechanically coupled to each other through both spacers and foams. Since the

change in stiffness of cells due to structural variations is highly affected by both PreV

and C2CV of each cell when foams are involved in the battery pack. The stiffness

matrices of cells with structural variations are obtained using bi-linear interpolation

with respect to PreV and C2CV. Furthermore, the nonlinear behavior in foams is

considered and modeled in the new nonlinear PROMs. Since the foams are often

polymeric material which are much softer than cells, the vibration of foams is domi-

nated by the two first plate-like modes - one from each neighboring cell. This is the

key to modeling the nonlinear behavior in foams. The vibration responses calculated

using PROMs are validated with full-order models.

In chapter 4, the effect of different types of spacers, which is considered as S2SV,
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is modeled in PROMs. Since the strain distribution on a cell is affected by the

stiffness of two neighboring spacers when prestress is applied to the battery pack, the

change in stiffness matrix of a cell due to structural variation is a function of four

parameters, PreV, C2CV, and two S2SVs of the neighboring spacers. Thus, quadra-

linear interpolation method with respect to these four parameters is employed to

obtained the stiffness matrix of a cell with structural variations. The method is

validated using full-order models. Moreover, the vibration response can be mitigated

for the battery pack by designing the arrangement of different types of spacers. The

optimal arrangement of spacers is produced using a genetic algorithm.

In chapter 5, conclusions and suggested future work are given.
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CHAPTER II

Parametric reduced-order models capturing

nonlinear behavior in cells

In this chapter, new nonlinear PROMs are proposed to capture both the system-

level and component-level structural variations. Also, the nonlinear behavior in cells

are modeled and integrated into PROMs. In Section 2.1, the sources that lead to the

change in the vibration response is introduced. In Section 2.2, PROMs capturing lin-

ear effects of prestress and cell-to-cell variations are described followed by an iterative

method to solve nonlinear forced response of PROMs. In Section 2.3, the structural

variations captured by the PROMs are related to a physical model of a battery pack

with different states of charge. In Section 2.4, dynamic characteristics of periodic

structures and an academic battery pack model are introduced. In Section 2.5, the

methods are demonstrated using computational studies of the academic battery pack

model. Finally, conclusions are summarized in Section 2.7.

2.1 High modal density and vibration response

Often battery packs are comprised of hundreds of nominally identical cells which

stack together and form repeated structures. The repeated structures exhibit high

modal density. Figure 2.1 shows the natural frequency versus the mode index for
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Figure 2.1: The natural frequency plot of the academic battery pack without foams
exhibits high modal density regions. (Noted that Fig. 3.2 shows a different
natural frequency plot because there are foams in the academic battery
pack.)

an academic battery pack which is described in detail in Section 2.4. The results

in Fig. 2.1 illustrate high modal density regions which result from the repeated cell

structure where there are many modes over a small frequency range. In general, a

battery pack has even more repeated cells, and the modal density is even greater.

The vibration response is affected by two types of structural variations: prestress

and C2CVs. The prestress variation (Fig. 2.2(a)) comes from the constraints/clamping

of battery packs or from thermal stresses resulting from temperature changes due to

a charge/discharge or an environmental temperature change [64, 65]. Due to the

internal structure of each cell, the prestress can change the equivalent modulus of

elasticity of the whole battery pack, and therefore affect the vibration response.

The other type of structural variation is C2CV (Fig. 2.2(b)). Some cells might

have slightly different modulus of elasticity which is inevitable due to manufacturing

tolerances. Even if all cells are manufactured identically, cells are charged and dis-

charged and have different states of charge over time which leads to different elastic

characteristics for individual cells during operation [32, 66].

Knowing what variations lead to an amplification of the maximum amplitude or a

change in the location of the maximum amplitude is very useful in the design process.

To gain this knowledge, a statistical analysis in the range of variations is required.

Efficient models must be used to perform this analysis since conventional full-order

12



Figure 2.2: Structural variations: (a) prestress variation and (b) cell-to-cell variation.

computations would be prohibitively expensive for thousands of variation cases.

The stiffness of the battery pack is generally affected linearly by the prestress and

C2CVs. However, there are also nonlinear material properties of the cell that affect

the vibration response. Here, we consider the stiffness of each cell as a nonlinear

function of strain. Cubic nonlinearity implies that stiffness varies with the square of

the displacement at the central node of each cell. Due to the high modal density, the

nonlinear effects also lead to large changes in the vibration response.

2.2 Methodology

To predict the vibration response with structural variations, the linear and non-

linear parts of the model are accounted for. The linear part includes both prestress

and C2CVs. The prestress and C2CVs are accounted for in two approaches applied

simultaneously. The nonlinear part captures the nonlinear material behavior of cells.

There are two elements to the construction of the fast yet accurate linear PROMs.
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The first element is the parameterization of the stiffness matrix. The parameterization

of the stiffness matrix reduces the reanalysis time because any variation in the level

of prestress and in the cell-to-cell properties (in the parameter range) can be applied

without a need for full-order finite element calculations. The second element is the

prediction of vibration responses using reduced-order models (ROMs) as opposed to

full-order models to reduce the calculation time.

The key to solving the nonlinear problem is the use of an iterative procedure in

the frequency domain while ignoring higher order harmonics. The iterative method

is similar to harmonic balance and drastically reduces the computational time as

compared to time marching approaches.

2.2.1 Linear PROMs

2.2.1.1 Model reduction

In general, structural dynamic equations for a linear proportionally damped sys-

tem can be written as

Mẍ+ βKp,s,LIẋ+Kp,s,LIx = F , (2.1)

where p represents the prestress level, s = [ s1 s2 . . . sNC
] is a vector which

contains the C2CV level si for each cell i (for i = 1, 2, . . . , NC), with NC being the

number of cells. M is the mass matrix of the battery pack, Kp,s,LI is the stiffness

matrix of the battery pack at prestress level p and C2CV level s, F is the excitation

force vector, β is the proportional damping coefficient, and x is the vector of physical

displacements with respect to the static equilibrium.

The first assumption used to construct PROMs of structures with high modal

density is that the modes φp,s at a given prestress level p and C2CV level s are

linear combinations of the modes at two extreme prestress cases with zero C2CVs
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s = 0 [44], i.e.

span (φp,s) = span

([
φpl,0 φpu,0

])
, (2.2)

where pl and pu represent the lower and upper extreme values of prestress variation.

One way to reduce the number of modes in Eq. 2.2 is to consider only modes

within a frequency range of interest. Consider that matrices φpl,0 and φpu,0 have

m modes (each) within this frequency range of interest. The general transformation

matrix TR
G for a structural variation (in the variation range) is defined as

TR
G =

[
φpl,0 φpu,0

]
. (2.3)

The general transformation matrix TR
G can be conditioned and reduced further

by using singular value decomposition. In general, some of the modes obtained at

prestress levels pl and pu can have almost linearly dependent columns. Singular value

decomposition can be applied to the general transformation matrix TR
G to compute

an orthogonal basis as

USV T = svd
(
TR
G

)
, (2.4)

where U and V are the left and right singular vectors, and S is a diagonal matrix

of singular values. The basis is obtained from a truncated set Ũ of the left singular

vectors corresponding to the largest singular values to obtain a new transformation

matrix expressed as

TR = Ũ . (2.5)

The choice of the cutoff point in terms of the magnitude of the singular values

affects the accuracy if it is chosen too high, but it does not affect the numerical

stability. Thus, the cutoff value can be estimated by a standard convergence study
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where calculations are done at ever lower cutoff values until convergence is obtained.

In this study, the corresponding singular values greater than 0.1% of the maximum

singular value are included in the transformation matrix. The final version of the

transformation used to convert physical coordinates into reduced-order coordinates

can be expressed as

x = TRq, (2.6)

where q is a vector of reduced-order coordinates. For different levels of prestress and

C2CVs, only a single transformation matrix TR is needed, and there is no need to

re-compute TR when p or s change.

Because the model of the battery pack can have millions of DOFs, to reduce the

computational time, the mass matrix, stiffness matrix, and force vector are projected

onto reduced-order coordinates by the transformation matrix TR as

MR = (TR)TMTR,

KR
p,s,LI = (TR)TKp,s,LIT

R,

FR = (TR)TF ,

(2.7)

and the equations of motion become

MRq̈ + βKR
p,s,LI q̇ +KR

p,s,LIq = FR. (2.8)

After the solution q in reduced-order coordinates is obtained, Eq. 2.6 can be used

to obtain the solution in full-order coordinates. Conducting the analysis in reduced-

order coordinates makes the PROMs very efficient for computing many realizations

for different structural variations.
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2.2.2 Parameterization

Because the prestress variation level p and the C2CV level s are small, one can

expand the stiffness matrix KR
p,s,LI at small values of p and s around zero to obtain

KR
p,s,LI = KR

0,0,LI +
∂KR

0,0,LI

∂p
p

+

NC∑
i=1

∂KR
0,0,LI

∂si
si +H.O.T.

(2.9)

where KR
0,0,LI is the stiffness matrix of the battery pack at prestress variation level

p = 0 and C2CV level s = 0. Because the prestress variation level p and the C2CV

level s are small, higher order terms in Eq. 2.9 are negligible.

To obtain the matrix
∂KR

0,0,LI

∂p
p in Eq. 2.9, assume that the change in stiffness matrix

due to small prestress variation is linearly dependent on the prestress variation level

p. Therefore, the term
∂KR

0,0,LI

∂p
p can be obtained through linear interpolation of p

between the two extreme values of prestress p = pl and p = pu, namely

∂KR
0,0,LI

∂p
p =

p− pl
pu − pl

(KR
pu,0,LI −K

R
pl,0,LI

), (2.10)

where the stiffness matrices Kpl,0,LI and Kpu,0,LI of the battery pack at two extreme

prestress levels p = pl and p = pu without C2CV are obtained from full-order FEMs,

and are projected on TR to obtain KR
pl,0,LI

and KR
pu,0,LI

.

Similarly, to obtain the matrix
∂KR

0,0,LI

∂si
si in Eq. 2.9, one can assume that the change

in stiffness matrix in cell i due to small C2CV is linearly dependent on the C2CV

level si. Therefore, the term
∂KR

0,0,LI

∂si
si can be obtained through linear interpolation

of si between zero C2CV level si = 0 and the extreme C2CV level si = su without

prestress variations, namely

∂KR
0,0,LI

∂si
si =

si − 0

su − 0
(KR

i,0,su,LI −K
R
i,0,0,LI), (2.11)
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where the stiffness matrix Ki,0,0,LI of cell i at zero prestress level p = 0 with zero

C2CV si = 0, and the stiffness matrix Ki,0,su,LI of cell i at zero prestress level p = 0

with an extreme C2CV level si = su are obtained from the full-order FEMs, and are

projected on TR to obtain KR
i,0,0,LI and KR

i,0,su,LI
. Equation 2.9 can be rewritten as

KR
p,s,LI = KR

0,0,LI +
p− pl
pu − pl

(KR
pu,0,LI −K

R
pl,0,LI

)

+

NC∑
i=1

si
su

(KR
i,0,su,LI −K

R
i,0,0,LI).

(2.12)

2.2.3 Nonlinear PROMs

2.2.3.1 Source of nonlinearity

The nonlinear behavior of cells may come from nonlinear material properties as

well as the internal structure of the cells. The nonlinear behavior changes the stiffness

of cells [40, 42]. Although the nonlinearity is weak, the change in stiffness due to

nonlinearity can still lead to significant vibration response change because of the high

modal density.

In this work, hardening in the stiffness of cells is considered when the strain

increases. Thus, the stiffness matrix Kp,s of the battery pack at a certain prestress

variation level p and a certain C2CV level s is a function of the strain ε. Assume the

battery pack is excited by low frequency harmonic forces, and based on the results

from the full-order analysis (Fig. 2.3 (a)), each individual cell moves mainly along

its first plate-like mode. Therefore, a single value of displacement xi,c at the central

node of cell i can determine the strain εi in cell i. Thus, the stiffness matrix Kp,s of
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Figure 2.3: (a) Vibration response of the battery pack. (b) The amplitude at the
central node of each cell is the largest. (c) The stiffness of cell varies with
strain.

each cell can be represented as

Kp,s(ε) = Kp,s([ ε1 . . . εNC
])

= Kp,s([ x1,c . . . xNC ,c
])

= Kp,s(xc),

(2.13)

where xc is a vector containing the displacement at the central node of each cell.

Next, one may expand the stiffness matrix by Taylor series at small values of xc

around zero to obtain

Kp,s(xc) = Kp,s(0) +

NC∑
i=1

∂Kp,s(0)

∂xi,c
xi,c

+

NC∑
i=1

NC∑
j=1

∂2Kp,s(0)

∂xi,c∂xj,c
xi,cxj,c +H.O.T.

(2.14)

where H.O.T. represents high order terms.
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The stiffness of cells varies with strain as shown in Fig 2.3(c). Because of sym-

metry, positive and negative values of xi,c contribute equally to the stiffness of cell

i. Thus, the odd order terms are neglected in Eq. 2.14. Because cells do not share

common elements, the strain in one cell does not directly affect the strain in another

cell. Hence ∂2Kp,s(0)

∂xi,c∂xj,c
= 0 for i 6= j. Also, the contribution of higher order terms is

negligible. Thus, the stiffness matrix can be approximated as

Kp,s(xc) ≈Kp,s(0) +

NC∑
i=1

∂2Kp,s(0)

∂x2
i,c

x2
i,c. (2.15)

The first term Kp,s(0) in Eq. 2.15 accounts for the linear stiffness matrix Kp,s,LI

in Eq. 2.1. The second term in Eq. 2.15 accounts for the nonlinear stiffness of each

cell, and is denoted by ∆κi,p,si,NL, so that

Kp,s(xc) ≈Kp,s,LI +

NC∑
i=1

∆κi,p,si,NLx
2
i,c. (2.16)

Note that the matrix ∆κi,p,si,NLx
2
i,c of cell i has the same size as Kp,s,LI and is zero

everywhere except at the DOFs corresponding to cell i.

The matrix ∆κi,p,si,NLx
2
i,c is a function of prestress level p and C2CV level si.

One can expand the matrix by multivariable Taylor series at small values of p and si

around zero to obtain

∆κi,p,si,NLx
2
i,c = ∆κi,0,0,NLx

2
i,c +

∂∆κi,0,0,NL
∂p

px2
i,c

+
∂∆κi,0,0,NL

∂si
six

2
i,c +H.O.T.

(2.17)

Because the nonlinearity considered is weak, the effects of the prestress level p and

C2CV level si to the nonlinear stiffness are small. Also, the vibration displacement

xi,c is small. Therefore, in Eq. 2.17, px2
i,c and sx2

i,c are second order, and the terms

∂∆κi,0,0,NL

∂p
px2

i,c and
∂∆κi,0,0,NL

∂si
six

2
i,c are negligible. The other higher order terms in
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Eq. 2.17 are also negligible. Hence, the ∆κi,p,si,NLx
2
i,c in Eq. 2.17 is assumed to be

approximately equal to ∆κi,0,0,NLx
2
i,c. Equation 2.16 can be rewritten as

Kp,s(xc) ≈Kp,s,LI +

NC∑
i=1

∆κi,0,0i,NLx
2
i,c. (2.18)

2.2.3.2 Equivalent nonlinear stiffness matrix

Consider the equations of motion of the battery pack subject to a single harmonic

excitation

Mẍ+ βKp,s,LIẋ

+ (Kp,s,LI +

NC∑
i=1

∆κi,0,0,NLx
2
i,c)x

= F0 sin(ωt).

(2.19)

We assume that the response is dominated by a single harmonic term at the same

frequency as the excitation. Thus, the displacement of cell i can be written as

xi,c = Xi,c sin(ωt),

xi = Xi sin(ωt)

= Xi,cYi sin(ωt),

(2.20)

where xi,c and Xi,c are complex numbers representing the displacement and its am-

plitude of vibration at the central node of cell i. xi and Xi are complex vectors

containing displacements and amplitudes of vibration for all DOFs of cell i, and are

zero at all other DOFs, Yi is a vector which equals to xi/Xi,c, ω is the excitation

frequency.

Because the matrix ∆κi,0,0,NL of cell i is zero everywhere except at the DOFs of

cell i, the contribution of the nonlinear term ∆κi,0,0,NLx
2
i,cx in Eq. 2.19 is equal to
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∆κi,0,0,NLx
2
i,cxi, namely

∆κi,0,0,NLx
2
i,cx = ∆κi,0,0,NLx

2
i,cxi. (2.21)

Substituting Eqs. 2.20 into 2.21, the nonlinear term ∆κi,0,0,NLx
2
i,cxi in Eq. 2.21 can

be expressed as

∆κi,0,0,NLx
2
i,cxi

= ∆κi,0,0,NL (Xi,c sin(ωt))2Xi,cYi sin(ωt)

= ∆κi,0,0,NLX
3
i,c sin3(ωt)Yi

= ∆κi,0,0,NLX
3
i,c

(
3

4
sin(ωt)− 1

4
sin(3ωt)

)
Yi

= ∆κi,0,0,NL
3

4
X2
i,cxi

− 1

4
∆κi,0,0,NLX

2
i,cXi sin(3ωt).

(2.22)

Neglecting the high frequency term in Eq. 2.22, Eq. 2.19 becomes

Mẍ+ βKp,s,LIẋ

+ (Kp,s,LI +

NC∑
i=1

∆κi,0,0,NL
3

4
X2
i,c)x

= F0 sin(ωt).

(2.23)

To analyze the vibration response in reduced-order coordinates, the matrix ∆κi,0,0,NL

is projected on TR as

∆κRi,0,0,NL = (TR)T (∆κi,0,0,NL)TR. (2.24)

Equation 2.23 in reduced-order coordinates becomes
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MRq̈ + βKR
p,s,LI q̇

+

(
KR

p,s,LI +

NC∑
i=1

∆κRi,0,0,NL
3

4
X2
i,c

)
q

= FR
0 sin(ωt).

(2.25)

2.2.3.3 Iterative method

To solve the nonlinear dynamic equations in Eq. 2.25, time marching approaches

(e.g., ODE45 in Matlab) or algebraic solvers for nonlinear equations (e.g., FSOLVE

in Matlab) can be used, but are computationally expensive. To reduce the computa-

tional time, the following iterative method has been developed.

First, the equations of motion Eq. 2.8 are constructed for the linear system, and

the linear solution qLI in reduced-order coordinates is obtained. Before starting the

iterative method, the initial guess of the nonlinear solution qNL,1 is set to be the

linear solution qLI .

Next, qNL,k is used to update the equivalent nonlinear stiffness matrix KR
i,p,si,NL

for each cell i in Eq. 2.25 where k is the iteration number. qNL,k+1 is obtained by

solving the updated equations of motion (Eq. 2.25). Then, the nonlinear solution

qNL,k+1 and the nonlinear solution qNL,k are compared by calculating

ε =
‖qNL,k+1 − qNL,k‖

‖qNL,k‖
. (2.26)

The value of ε decreases at each iteration, and the process stops when ε is below a

desired value εmax. In this work, εmax is set to 1%. If εmax is too high, the solution

may not be converged. If εmax is too low, the computation is slower.
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2.2.3.4 Convergence of the iterative method

The iterative method might be unable to converge in some situations because

of numerical issues or because of the underlying assumption in Eqs. 2.22 may not

hold. For example, the vibration response may contain more than one single har-

monic term. In these cases, time marching approaches should be applied to solve

the nonlinear equations. However, solving nonlinear equations in the time domain

is computationally expensive. Therefore, to solve the nonlinear equations of motion,

the iterative approach is applied first. If the iteration approach cannot converge, an

algebraic solver is applied. If the algebraic solver cannot converge, then the time

marching approach is applied.

2.3 Physical model

The stiffness of the battery pack is affected by charge-discharge cycles. This is

because different states of charge lead to different levels of Li-ion intercalation [67],

and hence lead to different swelling levels and different mechanical properties of the

cells [68, 69]. The overall swelling leads to prestress variation in the battery pack, and

therefore changes the stiffness of the battery pack. The different Li-ion intercalation

levels in each cell change the mechanical properties of the anodes in the cells, and act

like C2CVs.

Therefore, even if the battery pack was already clamped on a vehicle and the

prestress and C2CVs of the pack were predetermined, the dynamic responses will

still change during charge-discharge cycles.

To predict vibration responses with PROMs, modes and stiffness matrices at two

extreme prestress variation levels are extracted from the full-order FEMs. However,

most commercial finite element analysis software cannot model the swelling caused

by states of charge of cells. Nevertheless, the swelling caused by temperature changes
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can be modeled by most commercial finite element analysis software. Therefore, a

virtual temperature is introduced to model the swelling caused by states of charge.

Figure 2.4: Relation between states of charge and swelling.

According to previous experiments [70, 71], the relationship between the state of

charge and the swelling of a battery cell studied here is shown on Fig. 2.4. Based on

the experimental data, the relation between the virtual temperature of each cell ∆Ti

and the Li-ion intercalation swelling can be obtained by using the relation

La(1 + γi) = αT∆Ti, (2.27)

where La is the thickness of the anode before swelling, γi is the relative change in

the thickness of anode of cell i due to Li-ion intercalation swelling, αT is the virtual

thermal expansion coefficient of the anode, and ∆Ti is the virtual temperature change

in cell i. Therefore, changes in states of charge of cells can be related to the prestress

on the battery pack. If the stiffness matrices at the two extreme levels of prestress

due to state of charge variations are known, the PROMs can be built with the states

of charge as input. The material properties with respect to states of charge were

measured in experiments. Thus, states of charges can relate to the C2CVs.

There can be temperature gradient field in a battery pack, where the cells at

the two ends of the battery pack have a lower temperature, while the cells at the

central part of the battery pack have a higher temperature. The temperature gradient

field can be modeled by using both the prestress variation and cell-to-cell variations.

The prestress variation comes from the thermal swelling as mentioned above. The
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Figure 2.5: The vibration responses at the central node of cell 10 affected by (a) pre-
stress variations due to changes in clamping, (b) prestress variations due
to changes in temperature, (c) cell-to-cell variations, and (d) nonlinearity
in material.

temperature may have effects on the modulus of elasticity of a cell; thus, each cell

may have a different level of cell-to-cell variation. Consequently, the temperature

gradient field in the battery pack can be modeled as the cell-to-cell variations.

2.4 Computational model

To demonstrate the proposed approaches, an academic battery pack model was

developed with 20 nominally identical cells as shown in Fig. 2.6(a). Each cell is

comprised of several components, including a positive current collector, a cathode, a

separator, an anode, a negative current collector, a case, and a spacer as shown in

Fig. 2.6(b). Cells are stacked together and mechanically coupled through the frames

(case and spacer).
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Figure 2.6: (a) Simplified battery pack model with 20 nominally identical cells. (b)
Each cell is comprised of several components.

Prestress loads are applied to the pack in the longitudinal direction to compress

the structure as shown in Fig. 2.2(a). To study the vibration of the pack due to

external loads, harmonic excitation forces are applied to the bottom of the battery

pack in the longitudinal direction. Forces are applied instead of displacements, but

displacements can be applied as well. The harmonic excitation frequencies are in

the range from 4.3 to 4.7 normalized frequency which is in the region of high modal

density shown in Fig. 2.1.

For prestress coming from clamping, one side of the battery pack is first fixed, and

the other side is compressed by a percentage of the length of the whole battery pack

along the longitudinal direction. For prestress coming from temperature, both sides

of the battery pack are fixed, and a temperature change is then applied to the whole

battery pack. In this work, the prestress ranges from 0% to 6%, and the temperature

change ranges from 0◦C to 80◦C.

To demonstrate the vibration response for different structural variation levels, the

vibration response amplitude at the central node of cell 10 is discussed. The central

node is chosen because the battery pack is excited by low frequency harmonic forces,
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and each individual cell moves similarly to its first fixed-boundary mode (Fig. 2.3 (a))

which has its largest displacement at the central node of the cell (Fig. 2.3 (b)).

To demonstrate the effects of prestress variations due to clamping on the vibration

response, 3 different levels of prestress, 0%, 3%, and 6%, are applied. Figure 2.5(a)

shows the effect of prestress variations to the vibration response at the central node

of cell 10. Because of the high modal density, even though the prestress variation

is small, the vibration responses still change drastically. To demonstrate the effects

of prestress variations due to changes in temperature, 3 different temperatures, 0◦C,

40◦C, and 80◦C are applied, and the vibration responses are shown in Fig. 2.5(b).

Figures 2.5(a) and (b) show that the vibration responses are significantly different for

each level of prestress and temperature.

Similarly, to demonstrate the effects of C2CVs, 2 different cases of modulus of

elasticity variations listed in Tab. 2.1 are applied to the academic battery pack model.

In this work, the C2CV level of each cell range from -10% to 10% of the nominal

modulus of elasticity and are applied to all components of cells, including positive

and negative current collectors, an anode, a cathode, and a separator. Results are

shown in Fig. 2.5(c). These 2 example cases show that even small variations in just

a few cells can cause large changes in the vibration response.

Table 2.1: Two cell-to-cell variation cases
Cell Case 1 Cell Case 2

1 5% 4 10%
5 -7% 7 -8%
12 1% 10 3%
16 3% 19 -5%

To demonstrate the effect of the weak nonlinearity, one can project the matrix

∆κi,0,0,NL on the first plate-like mode and obtain the scalar ∆κNi,0,0,NL. One can also

project the matrix ∆Ki,0,su,LI = Ki,0,su,LI−Ki,0,0,LI on the first plate-like mode of cell

i and obtain the scalar ∆KN
i,0,su,LI

where the C2CV level si is applied to all components

of cell i. Because ∆κNi,0,0,NL and ∆KN
i,0,su,LI

are scalar, they are proportional to each
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other, namely

∆κNi,0,0,NL =
µ

L2
∆KN

i,0,su,LI , (2.28)

where L is the thickness of the cell and µ is a dimensionless scalar determined by the

material properties of the cells.

Because vibration responses of the battery pack are dominated by the first plate-

like mode for each cell i, the modes φpl,0 and φpu,0 (used in transformation matrix

TR) are dominated by the first plate-like mode. Let TR
i be the matrix equal to TR

at the DOF of cell i and be zeros everywhere else. Because the modes are dominated

by the the first plate-like mode, TR
i can be written as

TR
i =

[
TR
i,1 . . . TR

i,m

]
≈

[
φi,Nρi,1 . . . φi,Nρi,m

]
= φi,N

[
ρi,1 . . . ρi,m

]
= φi,Nρi

(2.29)

where TR
i,j is the jth column of TR

i , φi,N is the first plate-like mode of cell i, ρi,j is

a scalar factor represents how much φi,N involves in TR
i,j, and ρi is a row vectors

collecting ρi,j.

Thus, the matrix ∆κRi,0,0,NL due to the weak nonlinearity in reduced-order coordi-

nates is proportional to the matrix ∆KR
i,0,su,LI

due to a small extreme C2CV level su
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in reduced-order coordinates (the C2CV is applied to all components of cell i), i.e.,

∆κRi,0,0,NL =
(
TR
i

)T
∆κi,0,0,NLT

R
i

≈ (φi,Nρi)
T ∆κi,0,0,NLφi,Nρi

= ρTi φ
T
i,N∆κi,0,0,NLφi,Nρi

= ρTi ∆κNi,0,0,NLρi

= ρTi
µ
L2 ∆KN

i,0,su,LI
ρi

≈ µ
L2 ∆KR

i,0,su,LI

(2.30)

µ
L2 = 0.002 in Eq. 2.24 and εmax = 1% are applied. Results are shown in Fig. 2.5(d)

and show the importance of small nonlinearity.

For the academic battery pack model, the frequency range of interest is from 4.3 to

4.7 normalized frequency, which contains the first high modal density region shown

in Fig. 2.1. Only the first 200 modes for each extreme prestress level are chosen

to capture the dynamic behavior in Eq. 2.3. After singular value decomposition, the

basis for the transformation matrix TR has 390 modes. By using TR for the academic

pack model in Eq. 2.5, the projected stiffness matrices are reduced to 390×390 while

the full-order matrices have a size of 159, 666× 159, 666.

2.5 Validation

2.5.1 Linear validation

The vibration response at the central node of cell 10 computed using the full-order

FEM and a PROM with prestress and C2CVs are plotted in Figs. 2.7(a) and (b). The

prestress variation level is 3%, and the distribution of C2CVs are listed in Tab. 2.1.

Figures 2.7(a) and (b) show that PROM predictions agree very well with the full-

order FEM results. The solid line indicates the full-order FEM predictions and the

dashed line indicates PROM predictions. The average computational time over a
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Figure 2.7: Validation results: (a) linear, cell 10, 3% prestress variation & case 1
cell-to-cell variation, (b) linear, cell 10, 3% prestress variation & case 2
cell-to-cell variation, and (c) nonlinear, cell 7, 3% prestress variation &
case 2 cell-to-cell variation.

frequency range for reanalysis using PROMs is 0.47 second and using full-order FEM

is 32.74 second. The average computational time is reduced by a factor of 69.66.

This computational gain can increase if a finer finite element mesh is used. That

is because the computational time of the full-order FEM increases with the mesh

density. However, the computational time of a PROM depends on the number of

modes selected, which is related to the physics of the system. The physics remains

the same when the mesh density is higher, and is captured by the same number of

PROM coordinates. Therefore, the computational gain is expected to be even greater

for more realistic FEMs of industrial battery packs.

2.5.2 Nonlinear validation

The linear and nonlinear vibration responses at the central node of cell 7 with PreV

and C2CV in the frequency range of interest are shown in Fig. 2.7. The dashed line

shows the linear response, the dashdot line shows the nonlinear response computed

by the iterative method, the solid line shows the nonlinear response computed by

the algebraic solver, and circles show the nonlinear response computed by the time
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Figure 2.8: (a) Linear and (b) nonlinear statistical analyses for 1,000 cell-to-cell vari-
ation cases.

marching method. Because the time marching approach is very time-consuming, only

amplitudes at a few frequencies are provided. The maximum nonlinear amplitude

drops about 12.4% compared to the linear response. By setting εmax to 1%, the errors

in the results between the iterative method and the time marching method are below

3% in this simulation, but the computational time of the iterative method is much

shorter than the time marching approach. In this work, the average computation

time over a frequency range for reanalysis using iterative method is 0.2 seconds, using

the algebraic solver is 180 seconds, and using the time marching method is 13,000

seconds. The average computational time is reduced by a factor of 65,000 comparing

the iterative method and the time marching method.

The results computed by the algebraic solver and the iterative method also agree

very well. The algebraic solver is computationally slower than the iterative method,

but still much faster than the time marching method.
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2.6 Statistical analysis

In the battery pack, a single cell with intense vibrations may lead to the failure of

the whole battery pack. Thus, the maximum response level for any cell in a battery

pack is a key reliability metric. However, in order to consider the effects of random

structural variations, a statistical analysis is needed. Thus, a Monte Carlo simulation

was performed using the 390-DOF PROMs to predict the vibration response for 1,000

C2CV cases. For each single C2CV case, the average C2CVs over the 20 cells was

zero and was within ±10% of the nominal modulus of elasticity. Harmonic forces over

the frequency range from 4.3 to 4.7 normalized frequency were applied to the bottom

of the battery pack along the longitudinal direction.

Figures 2.8(a) and (b) show the results of linear and nonlinear Monte Carlo sta-

tistical analyses. Let X0,i denotes the maximum amplitude at the central node of cell

i over the frequency range for the nominal C2CV case, Xstd,i denotes the standard

deviation of the maximum amplitude at the central node of cell i over the frequency

range for 1,000 C2CV cases, and Xmax,i denotes the maximum of the maximum am-

plitude at the central node of cell i over the frequency range for 1,000 C2CV cases.

In Fig. 2.8, at cell i, the lower bar shows X0,i, the middle bar shows X0,i +Xstd,i, and

the upper bar shows Xmax,i.

The results in Fig. 2.8 show that the C2CVs can lead to higher response levels for

all cells as compared to the nominal case. In the linear case, the increase of the am-

plitude of cell 10 is almost 80% compared to the nominal case. Therefore, neglecting

the effect of C2CVs might lead to a serious underprediction of the maximum stress,

and thus an overprediction of the battery pack reliability. In the nonlinear case, the

largest amplitude of cell 10 increases by 20.7% compared to the linear case. Thus,

the nonlinear effects cannot be neglected either.
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2.7 Conclusions

The structural dynamics of battery packs used in electrified vehicles are affected

by PreV, C2CV, and sometimes nonlinear material properties. The battery pack is

comprised of nominally identical cells which exhibit high modal density. The vibra-

tion response can change drastically because of the high modal density that causes

vibration localization. Analysis of the vibration response of the pack with structural

variations and nonlinear materials is essential for fatigue life predictions. Although

statistical analyses are required to understand the effects of structural variations,

typical FEMs of industrial battery packs can easily have millions of DOFs, and thus

statistical analyses is computationally prohibitive.

To overcome this difficulty, an accurate and computationally efficient numerical

method was developed to predict the vibration response with structural variations

and nonlinear materials. A simplified academic battery pack with 20 nominally iden-

tical cells is used to demonstrate the proposed approach. The linear PROMs were

developed based on 2 key assumptions: (1) modes of the structure with structural

variations are linear combinations of modes at the two extreme PreV levels and no

C2CV, and (2) the stiffness of the structure with variations can be expressed as an

interpolation based on stiffness matrices at the extreme PreV and C2CV levels. The

nonlinear PROMs are developed based on the assumption that the nonlinearity is

weak.

By reducing the order of the model and interpolating the stiffness matrices,

PROMs can be generated efficiently, and full-order analysis can be avoided. The

159,666-DOF system in this work was reduced to a 390-DOF system by a single trans-

formation matrix. Such low order models cannot be constructed by other existing

methods like CB-CMS or sub-structuring. Also, by solving the nonlinear equations

using an iterative method, the nonlinear vibration response was obtained efficiently.

In addition, for linear system, the vibration responses predicted from the PROMs
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match very well those from the full-order FEM. However, the simulation time was

reduced by a factor of 69.66. For nonlinear system, the vibration responses predicted

from the iterative method also match very well with those from the time marching

approach. However, there is a reduction in simulation time by a factor of 65,000

compared to time-marching.

Moreover, in the presented work, the PROMs simultaneously capture the effects

of the PreV variation in the overall system, the C2CV in each cell, and nonlinear

material properties of the cells. The statistical analyses show that the amplitude of

the cells can be drastically changed due to small structural variations.
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CHAPTER III

Parametric reduced-order models capturing

nonlinear behavior in foams

In this chapter, augmented nonlinear PROMs are developed for battery packs,

which simultaneously capture the effects of linear structural variations as well as the

nonlinear behavior in both cells and foams. In Sec. 3.1, the effects of structural vari-

ations on the dynamic responses of battery packs in a HMD region are discussed. In

Sec. 3.2, formulation of augmented nonlinear PROMs for modeling structural varia-

tions and nonlinear behavior of materials are described. In Sec. 3.3, numerical results

calculated from the dynamic simulation of PROMs and full-order models are com-

pared. In Sec. 3.4, statistical analyses are performed and used to illustrate the effect

the linear and nonlinear structural variations. Finally, the conclusions of this study

are presented in Sec. 3.5.

3.1 Effect of High Modal Density

To demonstrate the ideas proposed in this paper, an academic FEM of a battery

pack was designed as shown in Fig. 3.1(a). This model is comprised of 20 nomi-

nally identical cells. Fig. 3.1(b) shows that each cell is comprised of several different

components, including positive and negative current collectors, a cathode, an anode,
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a separator, and a case. The cells are stacked together and mechanically coupled

through foams and spacers.

Figure 3.1: (a) The academic battery pack model. (b) A cell is comprised of positive
and negative current collectors, an anode, a cathode, a separator, and a
case. (c) Constraints applied to the two ends of the pack (red circles),
and harmonic force is applied to the bottom and two sides of the pack
along y-direction (blue circles and arrows).

The battery pack usually contains hundreds of cells. The cells are stacked to-

gether, and the battery pack is comprised of these repeated substructures. Due to

this spatially periodic construction, the natural frequency plot of the battery pack

exhibits HMD regions as shown in Fig. 3.2. The normalized frequencies are calculated

through dividing natural frequencies by its lowest natural frequency. In general, the

higher the number of repeated cells in the pack is, the wider the HMD region is. If

excitation frequencies lie in a HMD region, a small structural variation can lead to

drastic changes in vibration responses.

The PreV level of battery packs is defined as how much the overall length of the
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Figure 3.2: The natural frequency plot of the academic battery pack with foams ex-
hibits high modal density regions. (Noted that Fig. 2.1 shows a different
natural frequency plot because there is no foam in the academic battery
pack.)

battery pack pack in y-direction shown in Fig. 3.1(a) is shorter than the nominal

design due to preload. For example, the battery pack, whose length in y-direction

is shorter than the nominal design by 5% due to preload, has PreV level equals to

5%. The effects of PreV on the vibration responses of battery packs are discussed in

literatures[57, 72]. The C2CV level of a cell is defined as the variational percentage

on modulus of elasticity of the cell compared to its nominal design. For example, a

cell, whose modulus of elasticity is 5% higher than the nominal design, has C2CV

level equals to 5%. The C2CV level is randomly generated from normal distribution,

where the mean is 0% and the standard deviation is chosen to be 3.33% to make

99.7% of C2CV levels that are in the range of -10% to 10% as shown in Fig 3.3.

Fig. 3.4 shows the effect of different C2CV cases applied to the nominal design of

the academic battery pack model. The excitation is a single harmonic force applied to

the bottom and two sides of the battery pack model, which is constrained at the two

ends as shown in Fig. 3.1(c). The excitation frequency indicated by red horizontal

rectangular area in Fig. 3.2 lies in the first HMD region.

Fig. 3.4(a) shows vibration responses of each separator in the battery pack. The
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Figure 3.3: Distribution of cell-to-cell variation levels.

Figure 3.4: The effect of cell-to-cell variations.

separators are chosen to show vibration responses because they are at the central node

of each cell and are representative of vibration response of cells. The peak amplitude

of vibration response is observed at the central node of each cell, and the vibration

response of a cell is dominated by its first plate-like mode. In the nominal case, the
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amplitude of vibration are in the small-large-small pattern from one end to the other

end of the battery pack. However, in case 1 and case 2, the patterns have changed.

Fig. 3.4(b) shows the amplitude of vibration at the central node of cell 10 through a

frequency range. The frequency and amplitude of the peak change significantly due

to C2CV.

The nonlinear material properties in cells and foams are considered in FEM. The

modulus of elasticity of an element Eel is assumed to be a quadratic function of

strain of the element εel as shown in Fig. 3.5. The strain of the element εel can be

approximated as the equivalent strain εeq gives the same strain energy density U [73].

εel = εeq =

√
2U

Eel(εeq)
=

√
xTel

Kel(εeq)

Eel(εeq) · Vel
xel (3.1)

where Eel is the modulus of elasticity of the element and is a function of εeq, xel is

a vector of displacement at DOFs of the element, Kel is the stiffness matrix of the

element and a function of εeq, and Vel is the volume of the element. Because Kel is

proportional to Eel, Eq. 3.1 can to be evaluted at zero strain,

εel = εeq =

√
xTel

Kel,LI

Eel,LI · Vel
xel (3.2)

where Kel,LI is the linear stiffness matrix evaluated at zero strain, and Eel,LI is the

modulus of elasticity evaluated at zero strain. Since Eel is assumed to be a quadratic

function of εel, Kel is also a quadratic function of εel,

Kel =
Kel,LI

Eel,LI

(
Eel,LI + ξelε

2
el

)
= Kel,LI +

Kel,LI

Eel,LI
ξelε

2
el

(3.3)

where ξel is the nonlinear coefficient of element material properties, Kel,LI is the linear

part of stiffness matrix, and ∆Kel,NL is the nonlinear part of stiffness matrix. Denote
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the nonlinear part of stiffness of matrix of element as ∆Kel,NL.

∆Kel,NL ≡
Kel,LI

Eel,LI
ξelε

2
el ≡ ∆κel,NLε

2
el (3.4)

Figure 3.5: The stiffness increases when the strain increases.

Fig. 3.6(a) compares vibration responses with and without nonlinear structural

variations. The linear structural variations refer to PreV and C2CV, which are inde-

pendent of εel . In contrast, the nonlinear structural variations refer to the variations

depending on εel. Fig. 3.6(b) shows that the peak amplitude of vibration is lowered

about 30% due to nonlinearity.

For the vibration of a cell along its first plate-like mode, the strain distribution

of the cell can be captured by the modal amplitude α as shown in Fig. 3.7. This

observation is the key to constructing nonlinear PROMs because the stiffness matrix

of the cell can be represented as function of a single parameter α .
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Figure 3.6: The effect of nonlinear material.

Figure 3.7: The strain distribution of a cell vibrating along different amplitudes of
the plate-like mode is a function of the modal amplitude α

3.2 Methodology

3.2.1 Structural Dynamic Equations

The structural dynamic equations of the battery pack can be represented as

Mẍ+Cẋ+Kẋ = f (3.5)
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where M is mass matrix, C is damping matrix, K is stiffness matrix, f is external

excitation force vector, and x is displacement vector.

The battery pack is subjected to structural variations. The PreV level p varies

between a lower bound pl and an upper bound pu. The C2CV level si of cell i varies

between a lower bound sil and an upper bound siu. The vectors sl and su represent

the collection of the lower and upper bounds of C2CV levels for all cells. The vector s

represents the collection of the C2CV levels for all cells. The nominal case is defined

as p = pl and s = 0.

p ∈
[
pl pu

]
, pl ≤ pu

s ∈
[
sil siu

]
, sil ≤ 0 ≤ siu

sl =


s1l

...

sNcl

 , su =


s1u

...

sNcu

 , s =


s1

...

sNc


(3.6)

where Nc is the number of cells.

The stiffness matrix K is a function of linear structural variations and nonlinear

dynamic behavior in cells and foams. The linear structural variations are assumed to

be small. The nonlinear parts of stiffness matrix are assumed to be independent of

linear structural variations. With these two assumptions, K is approximated as

K ≈Kp,s,LI + ∆KC,NL + ∆KF,NL (3.7)

where Kp,s,LI is the stiffness matrix capturing linear structural variations at PreV

level p and C2CV level s, ∆KC,NL is the stiffness matrix capturing nonlinear dynamic

behavior in cells, and ∆KF,NL is the stiffness matrix capturing nonlinear dynamic

behavior in foams.

Assume that the damping matrix C is proportional to the stiffness matrix. The
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proportional damping coefficients of all components are equal except foams, which

are assumed to have a higher damping coefficient. βf denotes the damping coefficient

of foams, and βg denotes the damping coefficient of all other components. C can be

represented as

C =βgKp,s,LI + (βf − βg)
KF10%,p,s,LI −Kp,s,LI

10%

+ βg∆KC,NL + βf∆KF,NL

≈βgKp,s,LI + (βf − βg)
KF10%,p,0,LI −Kp,0,LI

10%

+ βg∆KC,NL + βf∆KF,NL

(3.8)

whereKF10%,p,s,LI is the stiffness matrix for the system with all foams having stiffness

10% higher than the nominal design of foams at PreV level p and C2CV level s. The

purpose of the term (βf−βg)
KF10%,p,s,LI−Kp,s,LI

10%
is to replace the contribution of foams

in βgKp,s,LI from βg to βf . Since C2CV and the 10% stiffness change of foam are both

small, KF10%,p,s,LI −Kp,s,LI is approximated to be KF10%,p,0,LI −Kp,0,LI in Eq. 3.8.

The structural dynamic equations of battery packs can have tens of thousands of

DOFs depending on the complexity and mesh density of FEM. To reduce the order

of structural dynamic equations, several reduction techniques are employed.

3.2.2 Order Reduction

The transformation matrix TR is constructed to reduce the order of structural

dynamic equations. The first assumption is that vibration responses at PreV level

p and C2CV level s can be captured by the truncated modes φp,s whose natural

frequencies are close to the frequency range of interest. Moreover, assume that the

truncated modes φp,s are linear combinations of truncated modes φpl,0 at PreV level

pl and C2CV level 0 and truncated modes φpu,0 at PreV level pu and C2CV level 0,
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i.e.

span(φp,s) = span(

[
φpl,0 φpu,0

]
) (3.9)

The assumption in Eq. 3.9 is valid when the frequency range of interest is in a high

modal density region and structural variations are small. The general transformation

matrix TR
G is defined as

TR
G =

[
φpl,0 φpu,0

]
. (3.10)

Because the PreV bounds pl and pu are close, the modes φpl,0 and φpu,0 can

have approximately linearly independent columns. Gauss-Jordan elimination (rref

command in Matlab) is employed to eliminate these columns in TR
G .

TR = rref(TR
G ) (3.11)

The order of structural dynamic equations is reduced by projection using x =

TRq.

MRq̈ +CRq̇ +KRq̇ = fR (3.12)
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where

MR = (TR)TMTR

CR = (TR)TCTR

= (TR)T (βgKp,s,LI + (βf − βg)
KF10%,p,0,LI −Kp,0,LI

10%

+ βg∆KC,NL + βf∆KF,NL)TR

= βgK
R
p,s,LI + (βf − βg)

KR
F10%,p,0,LI −KR

p,0,LI

10%

+ βg∆K
R
C,NL + βf∆K

R
F,NL

KR = (TR)TKTR

= (TR)T (Kp,s,LI + ∆KC,NL + ∆KF,NL)TR

= KR
p,s,LI + ∆KR

C,NL + ∆KR
F,NL

fR = (TR)Tf

(3.13)

3.2.3 Derivation of Linear PROMs

The reduced-order stiffness matrix KR
p,s,LI at PreV level p and C2CV level s in

Eq. 3.13 can be expanded by Taylor series around s = 0.

KR
p,s,LI = KR

p,0,LI +
Nc∑
i=1

∂KR
p,si,LI

∂si
si +H.O.T.

≈KR
p,0,LI +

Nc∑
i=1

∂KR
p,si,LI

∂si
si

(3.14)

where H.O.T. are high order terms and are negligible because si is small.

To obtain KR
p,0,LI in Eq. 3.14, one first constructs the stiffness matrices Kpu,0,LI

and Kpl,0,LI at the extreme PreV levels pu and pl without C2CV using finite element

analyses and project the stiffness matrices using TR.

Kpu,0,LI = (TR)TKpu,0,LIT
R

Kpl,0,LI = (TR)TKpl,0,LIT
R

(3.15)
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For any PreV level p between pu and pl, linear interpolation is employed to obtain

KR
p,0,LI .

KR
p,0,LI =

p− pl
pu − pl

(KR
pu,0,LI −K

R
pl,0,LI

) +KR
pl,0,LI

(3.16)

Similarly, to obtain stiffness matrices
∂KR

p,si,LI

∂si
si in Eq. 3.14, one obtain the stiffness

matrices Kpl,sil,LI , Kpl,siu,LI , Kpu,sil,LI , and Kpu,siu,LI at the extreme PreV levels and

C2CV levels using finite element analyses. Then, these four stiffness matrices are

projected using TR.

KR
pl,sil,LI

= (TR)TKpl,sil,LIT
R

KR
pl,siu,LI

= (TR)TKpl,siu,LIT
R

KR
pu,sil,LI

= (TR)TKpu,sil,LIT
R

KR
pu,siu,LI

= (TR)TKpu,siu,LIT
R

(3.17)

Because there are two linear structural variations, p and si, are involved in the

stiffness matrix
∂KR

p,si,LI

∂si
si, two steps of linear interpolation are employed. The first

step is the linear interpolation of stiffness matrices with respect to PreV level.

∆KR
p,sil,LI

=
p− pl
pu − pl

(KR
pu,sil,LI

−KR
pl,sil,LI

)

∆KR
p,siu,LI

=
p− pl
pu − pl

(KR
pu,siu,LI

−KR
pl,siu,LI

).

(3.18)

The second step is the linear interpolation of stiffness matrices with respect to C2CV

level.
∂KR

p,si,LI

∂si
si =

si
siu − sil

(∆KR
p,siu,LI

−∆KR
p,sil,LI

). (3.19)

The terms KR
p,0,LI and

∂KR
p,si,LI

∂si
si in Eq. 3.14 can be obtained using linear inter-

polations instead of running time-consuming finite element analyses. Furthermore,

the linear interpolations are conducted in the reduced-order coordinate which make

PROMs be computationally efficient.

To obtainKR
F10%,p,0,LI in Eq. 3.13, one first obtains the stiffness matricesKF10%,pu,0,LI
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and KF10%,pl,0,LI at the extreme PreV levels without C2CV using finite element anal-

yses where the stiffness of foams are 10% higher than the nominal design of foams

and project them using TR.

KF10%,pu,0,LI = (TR)TKF10%,pu,0,LIT
R

KF10%,pl,0,LI = (TR)TKF10%,pl,0,LIT
R

(3.20)

Similar to Eq. 3.16, linear interpolation is employed to obtain the stiffness matrix

KR
F10%,p,0,LI at PreV level p and C2CV level 0.

KR
F10%,p,0,LI =

p− pl
pu − pl

(KR
F10%,pu,0,LI −K

R
F10%,pl,0,LI

)

+KR
F10%,pu,0,LI

(3.21)

The reduced-order linear damping matrix CR
p,s,LI can be represented as

CR
p,s,LI = βgK

R
p,s,LI + (βf − βg)

KR
F10%,p,0,LI −KR

p,0,LI

10%
(3.22)

One can use PreV level p and C2CV level s as input to construct KR
p,s,LI and CR

p,s,LI

and form the linear part of reduced-order structural dynamic equations in Eq. 3.12.

MRq̈ +CR
p,s,LI q̇ +KR

p,s,LI q̇ = fR (3.23)

Linear vibration responses can be solved using Eq. 3.23.

3.2.4 Derivation of Nonlinear PROMs

The modulus of elasticity of an element of cells and foams is assumed to be a

quadratic function of strain of the element. Since the stiffness matrix of an element

linearly depends on the modulus of elasticity of the element, it’s also a quadratic

function of strain of the element. Denote Kel as the stiffness matrix of an element
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and εel as strain of the element .

Kel(εel) = Kel,LI + ∆κel,NLε
2
el

(3.24)

where Kel the stiffness matrix of an element, and εel is strain of the element which

can be evaluated using Eq. 3.2.

3.2.4.1 Nonlinear Cells

Figure 3.8: Deconstruct modes into static deformation ΦS
Ci

and plate-like mode φNCi

multiplied by participation factor ρi.

The first plate-like mode of each cell dominating vibration responses is observed in

Fig. 3.4(a) and Fig. 3.6(a). Denote the vibration response at DOFs of cell i as xCi
and

modes at DOFs of cell i as TR
Ci

in TR. Because the first plate-like mode dominates,

the modes TR
Ci

can be deconstructed into two parts as shown in Fig. 3.8, the static

deformation ΦS
Ci

and the plate-like mode φNCi
multiplied by the participation factor

ρi which represents how much the first plate-like mode is involved in each column of

TR
Ci

.

xCi
= TR

Ci
q ≈

(
ΦS
Ci

+ φNCi
ρi
)
q (3.25)

The first plate-like mode φNCi
is obtained by employing zero displacement constraints

at DOFs of boundaries of single cell FEM of cell i without linear and nonlinear struc-

tural variations. The static deformation ΦS
Ci

is obtained by employing displacements

along the modes TR
Ci

at DOFs of boundaries of the single cell FEM and calculating
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the corresponding displacement at internal DOFs. From Eq. 3.25,

TR
Ci
−ΦS

Ci
≈ φNCi

ρi (3.26)

Multiply both sides by (φNCi
)TKCi,LI , whereKCi,LI is the stiffness matrix of the single

cell FEM.

(φNCi
)TKCi,LI(T

R
Ci
−ΦS

Ci
) ≈ (φNCi

)TKCi,LIφ
N
Ci
ρi (3.27)

Denote Λi = (φNCi
)TKCi,LIφ

N
Ci

which represents the eigenvalue of the first plate-like

mode. The participation factor ρi can be calculated by

ρi ≈ Λ−1
i (φNCi

)TKCi,LI(T
R
Ci
−ΦS

Ci
) (3.28)

In Eq. 3.25, because the plate-like mode φNCi
ρi dominates, the static deformation

ΦS
Ci

is negligible.

xCi
≈ φNCi

ρiq = φNCi
αi

αi ≡ ρiq
(3.29)

where αi is a scalar variable which represents the modal amplitude of the first plate-

like mode of cell i. The vibration response xel,Ci
at DOFs of an element of cell i

becomes

xel = xel,Ci
≈ φNel,Ci

αi (3.30)

where φNel,Ci
is the first plate-like mode at DOFs of an element in cell i. Substitute

Eq. 3.30 into Eq. 3.2 and Eq. 3.4, one can obtain

∆Kel,Ci,NL ≡ ∆κel,Ci,NLε
2
el,Ci

=∆κel,Ci,NL

(φNel,Ci
)TKel,Ci,LIφ

N
el,Ci

Eel,Ci
· Vel,Ci

α2
i

≡∆κ̄el,Ci,NLα
2
i

(3.31)
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where Ci denotes cell i, ∆Kel,Ci,NL is the nonlinear part of stiffness matrix of an

element of cell i in Eq. 3.4, and ∆κ̄el,Ci,NL is a constant matrix with respect to εel,Ci
.

The nonlinear part of stiffness matrix ∆KCi,NL can be constructed by assembling

∆Kel,Ci,NL for all elements of cell i.

∆KCi,NL =
∑
el

∆Kel,Ci,NL

=
∑
el

∆κ̄el,Ci,NLα
2
i = ∆κ̄Ci,NLα

2
i

(3.32)

Because αi is identical for all elements of the single cell FEM, it can be pulled out of

the assembly in Eq. 3.32.

In Eq. 3.32, ∆KCi,NL for a given displacement can be obtained using finite element

analyses of the single cell FEM of cell i where the element stiffness matrices are

updated using Eq. 3.2. By employing displacement along the first plate-like mode

φNCi
on the single cell FEM with modal amplitude ᾱ, ∆κ̄Ci,NL can be obtained using

Eq. 3.32.

∆κ̄Ci,NL =
1

ᾱ2
∆KCi,NL|αi=ᾱ

(3.33)

Knowing ∆κ̄Ci,NL in Eq. 3.32, ∆KCi,NL can be obtained for given αi without using

a full-order model.

∆KR
C,NL in Eq. 3.13 capturing the nonlinear behavior of cells can be obtained by

projecting and summing up the nonlinear part of stiffness matrices for all cells for

given αi.

∆KR
C,NL =

Nc∑
i=1

(TR
Ci

)T∆KCi,NLT
R
Ci

=
Nc∑
i=1

(TR
Ci

)T∆κ̄Ci,NLα
2
iT

R
Ci

=
Nc∑
i=1

∆κRCi,NL
α2
i

(3.34)
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3.2.4.2 Nonlinear Foams

By following similar strategy of modeling nonlinear behavior in cells, the nonlinear

behavior in foams is modeled. The difference between modeling cells and foams is

that foams are much softer material than cells. Consequently, the deformation of

a foam is dominated by the two neighboring cells as shown in Fig. 3.9. With the

assumption that the vibration response of a cell is dominated by its first plate-like

mode, the vibration response of a foam is dominated by the first plate-like modes of

two neighboring cells.

Figure 3.9: Apply the displacement along the plate-like modes with 3 different set of
amplitudes (a), (b), and (c).

Denote the vibration response at DOFs of foam l as xFl
and modes at DOFs of

foam l as TR
Fl

in TR. Because there are two first plate-like modes dominate, the modes

TR
Fl

are deconstructed into three parts, the static deformation ΦS
Fl

, the participation

factor ρl and the first plate-like mode φNFl
of cell l at DOFs of foam l, and the

participation factor ρl+1 and the first plate-like mode φNFl+1
of cell l + 1 at DOFs of

foam l.

xFl
= TR

Fl
q ≈

(
ΦS
Fl

+ φNFl
ρl + φNFl+1

ρl+1

)
q (3.35)

In Eq. 3.35, since the first plate-like modes φNFl
ρl and φNFl+1

ρl+1 dominate, the
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static deformation ΦS
Fl

is negligible.

xFl
≈ φNFl

ρlq + φNFl+1
ρl+1q = φNl αl + φNl+1αl+1

αl = ρlq

αl+1 = ρl+1q

(3.36)

where αl and αl+1 are scalar variables which represent modal amplitudes. The vibra-

tion response xel,Fl
at DOFs of an element of foam l becomes

xel,Fl
≈ φNel,Fl

αl + φNel,Fl+1
αl+1 (3.37)

where φNel,Fl
and φNel,Fl+1

are the first plate-like modes from cell l and cell l + 1 at

DOFs of an element of foam l. Substitute Eq. 3.37 into Eq. 3.2 and Eq. 3.4, one can

obtain

∆Kel,Fl,NL =∆κel,Fl,NLε
2
el,Fl

=∆κel,Fl,NL

(φNel,Fl
)TKel,Fl,LIφ

N
el,Fl

Eel,Fl
· Vel,Fl

α2
l

+∆κel,Fl,NL

(φNel,Fl+1
)TKel,Fl,LIφ

N
el,Fl+1

Eel,Fl
· Vel,Fl

α2
l+1

+∆κel,Fl,NL

(φNel,Fl
)TKel,Fl,LIφ

N
el,Fl+1

Eel,Fl
· Vel,Fl

2αlαl+1

≡


∆κ̄1,el,Fl,NLα

2
l

+∆κ̄2,el,Fl,NLα
2
l+1

+∆κ̄3,el,Fl,NLαlαl+1



(3.38)

where Fl denotes foam l, ∆Kel,Fl,NL is the nonlinear part of stiffness matrix of an ele-

ment of foam l in Eq. 3.4, and ∆κ̄1,el,Fl,NL, ∆κ̄2,el,Fl,NL, and ∆κ̄3,el,Fl,NL are constant

matrices with respect to εel,Fl
.

The nonlinear part of stiffness matrix ∆KFl,NL can be constructed by assembling

53



∆Kel,Fl,NL for all elements of foam l.

∆KFl,NL =
∑
el

∆Kel,Fl,NL

=
∑
el


∆κ̄1,el,Fl,NLα

2
l

+∆κ̄2,el,Fl,NLα
2
l+1

+∆κ̄3,el,Fl,NLαlαl+1



=


∆κ̄1,Fl,NLα

2
l

+∆κ̄2,Fl,NLα
2
l+1

+∆κ̄3,Fl,NLαlαl+1



(3.39)

In Eq. 3.39, ∆KFl,NL for a given displacement can be obtained using full-order

model of the single foam FEM of foam l where the element stiffness matrices are

updated using Eq. 3.2. By employing displacement along the first plate-like modes

φNFl
and φNFl+1

on the single foam FEM with three modal amplitude cases:

(αl, αl+1) =


( ᾱ , 0 )

( 0 , ᾱ )

( ᾱ , ᾱ )

(3.40)

∆κ̄1,Fl,NL, ∆κ̄2,Fl,NL, and ∆κ̄3,Fl,NL are obtained using Eq. 3.39.

∆κ̄1,Fl,NL =
1

ᾱ2
∆KFl,pl,0,NL| αl=ᾱ

αl+1=0

∆κ̄2,Fl,NL =
1

ᾱ2
∆KFl,NL| αl=0

αl+1=ᾱ

∆κ̄3,Fl,NL =
1

ᾱ2

 ∆KFl,NL| αl=ᾱ
αl+1=ᾱ

−∆κ̄1,Fl,NLᾱ
2 −∆κ̄2,Fl,NLᾱ

2


(3.41)

Knowing ∆κ̄1,Fl,NL, ∆κ̄2,Fl,NL, and ∆κ̄3,Fl,NL in Eq. 3.39, ∆KFl,NL can be obtained
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for given αl and αl+1 without using full-order model.

∆KR
F,NL in Eq. 3.13 capturing the nonlinear behavior of foams can be obtained

by projecting and summing up the nonlinear part of stiffness matrices for all foams

for given αi.

∆KR
F,NL =

Nf∑
l=1

(TR
Fl

)T∆KFl,NLT
R
Fl

=

Nf∑
l=1

(TR
Fl

)T


∆κ1,Fl,NLα

2
l

+∆κ2,Fl,NLα
2
l+1

+∆κ3,Fl,NLαlαl+1

TR
Fl

=

Nf∑
l=1


∆κR1,Fl,NL

α2
l

+∆κR2,Fl,NL
α2
l+1

+∆κR3,Fl,NL
αlαl+1



(3.42)

where Nf is the number of foams.

3.2.4.3 Equivalent Nonlinear Stiffness Matrix for Cells

In Eq. 3.5, assume that the force f is a single harmonic excitation with amplitude

F and frequency ω, and the vibration response xCi
at DOFs of cell i has only a single

harmonic term with amplitude XCi
,

f = F sinωt

xCi
= XCi

sinωt

(3.43)

Consequently, the modal amplitude in Eq. 3.29 is a single harmonic term and can be

represented as

xCi
≈ φNCi

αi = φNCi
Ai sinωt (3.44)
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where

αi = Ai sinωt (3.45)

Ai is the amplitude of αi. Substitute Eq. 3.32, xCi
in Eq. 3.43, and αi in Eq. 3.45

into the nonlinear part of stiffness matrix at DOFs of cell i in Eq. 3.5.

∆KCi,NLxCi

= ∆κ̄Ci,NLα
2
ixCi

= ∆κ̄Ci,NLA
2
i sin2 ωtXCi

sinωt

= ∆κ̄Ci,NLA
2
iXCi

sin3 ωt

(3.46)

Expand sin3 ωt and neglect the higher frequency term sin(3ωt)), one can obtain

∆KCi,NLxCi

= ∆κ̄Ci,NLA
2
iXCi


3

4
sinωt

+
1

4
sin(3ωt)


≈ ∆κ̄Ci,NLA

2
iXCi

(
3

4
sinωt

)
=

3

4
∆κ̄Ci,NLA

2
iXCi

sinωt

=
3

4
∆κ̄Ci,NLA

2
ixCi

(3.47)

The equivalent stiffness matrix ∆KEq,Ci,NL of cell i can be defined as

∆KEq,Ci,NL ≡
3

4
∆κ̄Ci,NLA

2
i

(3.48)
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Substitute Eq. 3.48 into Eq. 3.34.

∆KR
Eq,C,NL ≡

Nc∑
i=1

(TR
Ci

)T∆KEq,Ci,NLT
R
Ci

=
Nc∑
i=1

(TR
Ci

)T
3

4
∆κ̄Ci,NLA

2
iT

R
Ci

=
3

4

Nc∑
i=1

∆κ̄RCi,NL
A2
i

(3.49)

In Eq. 3.34, αi and ∆KR
C,,NL are functions of time t. In contrast, in Eq. 3.49, Ai

and ∆KR
Eq,C,,NL are independent of time t but with an coefficient 3

4
. By using the

equivalent stiffness strategy, the nonlinear part of stiffness matrix of cells in the

system equations Eq. 3.12 can be constructed using time-independent stiffness matrix

∆KR
Eq,C,NL.

3.2.4.4 Equivalent Nonlinear Stiffness Matrix for Foams

Similar to the derivation of the equivalent nonlinear stiffness matrix for cells,

Eq. 3.36 can be rewritten as

xFl
= XFl

sinωt (3.50)

where

αl = Al sinωt

αl+1 = Al+1 sinωt

(3.51)

Substitute Eq. 3.39, Eq. 3.50, and Eq. 3.51 into the nonlinear part of stiffness matrix

at DOFs of foam l in Eq. 3.5. The equivalent stiffness matrix ∆KEq,Fl,NL of foam l

can be defined as

∆KEq,Fl,NLxFl
≡3

4


∆κ̄1,Fl,NLA

2
l

+∆κ̄2,Fl,NLA
2
l+1

+∆κ̄3,Fl,NLAlAl+1

xFl
. (3.52)
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Substitute Eq. 3.52 into Eq. 3.42.

∆KR
Eq,F,NL =

Nf∑
l=1

(TR
Fl

)T∆KEq,Fl,NLT
R
Fl

=

Nf∑
l=1

(TR
Fl

)T
3

4


∆κ̄1,Fl,NLA

2
l

+∆κ̄2,Fl,NLA
2
l+1

+∆κ̄3,Fl,NLAlAl+1

TR
Fl

=
3

4

Nf∑
l=1


∆κ̄R1,Fl,NL

A2
l

+∆κ̄R2,Fl,NL
A2
l+1

+∆κ̄R3,Fl,NL
AlAl+1



(3.53)

Note that ∆KR
Eq,F,NL is independent of time t.

3.2.5 Construction of PROMs

There are two parts of PROMs, the linear and nonlinear parts. To construct

PROMs, both parts need finite element analyses. However, once PROMs are built,

there is no need to conduct full-order model again to predict vibration responses.

To construct the linear PROMs, eight different cases of structural variation are

employed to the battery pack FEM, and the corresponding stiffness matrices and
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modes are calculated.

p = pl, s = 0, regular foams

p = pu, s = 0, regular foams

p = pl, s = sl, regular foams

p = pu, s = sl, regular foams

p = pl, s = su, regular foams

p = pu, s = su, regular foams

p = pl, s = 0, 10% stiffer foams

p = pl, s = 0, 10% stiffer foams

→Kpl,0,LI , φpl,0

→Kpu,0,LI , φpu,0

→Kpl,sl,LI

→Kpu,sl,LI

→Kpl,su,LI

→Kpu,su,LI

→KF10%,pl,0,LI

→KF10%,pu,0,LI

(3.54)

Next, the transformation matrix TR is constructed using Eq. 3.10 and Eq. 3.11. The

stiffness matrices in Eq. 3.54 are then projected using TR.

The stiffness matrix KR
p,s,LI and the damping matrix CR

p,s,LI at a given PreV level

p and C2CV level s can be obtained by linear interpolation in Eq. 3.16, Eq. 3.18,

Eq. 3.19, and Eq. 3.21. Finally, the linear structural dynamic equations Eq. 3.23 are

constructed.

To construct the nonlinear PROMs for cell i, the displacement along the plate-like

mode with modal amplitude ᾱ is employed on the single cell FEM, and the corre-

sponding ∆κ̄Ci,NL is calculated using Eq. 3.33. Similarly, to construct the nonlinear

PROMs for foam l, the displacement along the plate-like modes is employed on the

two neighboring cells og foam l, and the corresponding ∆κ̄1,Fl,NL, ∆κ̄2,Fl,NL, and

∆κ̄3,Fl,NL are calculated using Eq. 3.41. The stiffness matrix KR and damping ma-

trices CR are built using Eq. 3.13 and the nonlinear structural dynamic equations

Eq. 3.12 can be constructed and solved.
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3.2.6 Iterative Method

The steady state vibration responses can be solved using the reduced-order struc-

tural dynamic equations Eq. 3.12. Time marching approaches, such as ODE45 in

Matlab, can be used to solve the nonlinear structural dynamic equations but are

computationally expensive. To improve the computational efficiency, the following

iterative method has been developed.

To initiate the iterative method, the linear vibration response is solved using of

the linear structural dynamic equations Eq. 3.23. Assume that the excitation fR and

vibration response qLI in the reduced-order coordinate are single harmonic terms.

fR = FR sin(ωt)

qLI = QLI sin(ωt)

(3.55)

where FR is the amplitude of fR, and QLI is the amplitude of qLI and is a vector of

complex numbers. The amplitude of vibration response QLI can be solved by

QLI =
(
KR

p,s,LI − ω2MR + jCR
p,s,LI

)−1
FR (3.56)

Denote Qr as the solution solved in each iteration in the iterative method where the

subscript r represents the iteration counts. QLI is used as the initial guess for the

solution of the nonlinear structural dynamic equations.

For each iteration, the current solution Qr is employed to update αi for all cells

using Eq. 3.29.

αi = ρiQr (3.57)

Since αi is a complex number, the amplitude Ai can be obtained by

Ai =
√
αHi αi. (3.58)

60



Knowing Ai, the equivalent stiffness matrix ∆KR
Eq,C,NL capturing the nonlinear dy-

namic behavior in cells can be updated using Eq. 3.49. For the system with nonlinear

foams, the equivalent stiffness matrix ∆KR
Eq,F,NL capturing the nonlinear dynamic

behavior in foams can be updated using Eq. 3.53. Next, the overall stiffness matrix

KR and damping matrix CR are updated using Eq. 3.13. The updated solution Qr+1

can be solved using Eq. 3.12.

Qr+1 =
(
KR − ω2MR + jCR

)−1
FR (3.59)

As the iteration proceeds, the new solution Qr+1 and old solution Qr are compared.

σr =
‖Qr+1 −Qr‖
‖Qr‖

(3.60)

The ratio σr decreases at each iteration and the solution Qr gradually converges to

the true vibration response. The iteration stops when σr meet the criteria σmax.

σr ≤ σmax (3.61)

The choice of σmax is critical. If σmax is too low, the iterative method takes many

iterations to converge. If σmax is too high, the solution Qr may not converge to the

true solution.

3.3 Validation

To demonstrate the proposed approaches, the academic battery pack model de-

scribed in Fig. 3.1 is used. The FEM of the academic battery pack has about 180,000

DOFs. In contrast, PROMs have only 36 DOFs. In Eq. 3.6, the lower and upper

bounds of PreV level are pl = 0% and pu = 6%. Also, the lower and upper bounds of

C2CV level are sil = −10% and siu = 10%. The number of cells is Nc = 20, and the
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number of foams is Nf = 19. To solve the nonlinear structural dynamic equations,

the convergence criteria is chosen to be σmax = 0.1%.

3.3.1 Linear Validation

Figure 3.10: The linear validation results for system with prestress variation and
cell-to-cell variations. The results calculated using full-order model and
PROMs are compared.

To validate PROMs with linear structural variations, the PreV level is chosen to

be at p = 3%, which is at the middle of its lower and upper bounds. The C2CV level

is randomly generated from −10% to 10% with normal distribution and zero mean

as shown in Fig 3.3. Fig. 3.10 shows the linear vibration responses calculated using

PROMs (orange dashed line) and full-order model (red solid line). The amplitude of

the vibration response at the central node of cell 10 is measured. Fig. 3.10 shows that

the vibration response predicted by PROMs follows the response predicted by the full-

order model very well. The error of the peak value is only about 1%. However, the

computational time is very different . Tab. 3.1 shows the average computational time

for the full-order model and PROMs to predict the vibration response at a frequency.

The average computational gain of linear case is 1,674 and can increase if the mesh

of FEM becomes finer. It is because the computational time of the full-order model
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Table 3.1: Average computational time of linear system
Full PROMs

Linear 385(s) 0.23(s)

increases with the mesh density. However, the computational time of PROMs depends

on the number of modes selected, which is related to the physics of the system. If

physics of the system remains the same but the mesh become finer, the number of

modes selected is still the same. Thus, the computational time for PROMs remains

similar, but the time for the full-order model is expected to be increased. Therefore,

the computational gain increases.

3.3.2 Nonlinear Validation

To validate PROMs with both linear and nonlinear structural variations simulta-

neously, the same linear structural variations as in the linear validation are employed,

and 3 different cases of nonlinear structural variations are discussed. Similar to the

linear validation, the amplitude of the vibration response at the central node of cell 10

is measured. Fig. 3.11 shows nonlinear vibration responses calculated using PROMs

(blue dashed line) and full-order model (green dotted line), and the linear vibration

response (red sold line). Fig. 3.11(a) shows the vibration response of system with

nonlinear cells. Fig. 3.11(b) shows the vibration response of system with nonlinear

foams. And Fig. 3.11(c) shows the vibration response of system with both nonlin-

ear cells and foams simultaneously. The errors between PROMs prediction and the

full-order model results at the peak of the vibration results are less than 1%. The

average computational time shown in Tab. 3.2 are very different between full-order

model and PROMs.

Table 3.2: Average computational time of nonlinear system
Full PROMs

Nonlinear 3240(s) 2.33(s)
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Figure 3.11: The nonlinear validation results for system with (a) nonlinear cells, (b)
nonlinear foams, (c) and nonlinear cells and foams.

Fig. 3.11 also shows that the effects of nonlinear cells and foams to the vibration

responses are significant. In this example, Fig. 3.11(a) shows that peak value is

lowered about 10% for system with nonlinear cells. However, Fig. 3.11(b) shows that

peak value is lowered about 50% for system with nonlinear foams. It’s a coincidence

in this example that the effect of nonlinear foams has greater impact on the vibration

response than nonlinear cells. There are many factors affect the amplification factor of
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the peak value of vibration responses for the nonlinear system. First, the amplification

factor is different cell-by-cell. Also, different C2CV cases show different amplification

factors. Moreover, the effect of nonlinearity are affected by the nonlinear coefficient

ξel described in Eq. 3.3.

3.4 Statistical Analysis

The battery pack is comprised of stacking cells and exhibits high modal density.

When the excitation frequency is in a high modal density region, small structural

variations in cells can amplify the vibration response in some cells. Because the

intense vibration response in a single cell may lead to the failure of the whole battery

pack, the maximum vibration response for any cell in a battery pack is a key reliability

metric.

Because C2CV level is random, statistical analyses are needed and Monte Carlo

simulations are performed with 1,000 C2CV cases. The same single harmonic force

is employed at the academic battery pack FEM. For each C2CV case, the vibration

responses at the central node of each cell are collected, and the corresponding maxi-

mum vibration response χi of cell i over the range of excitation frequency is calculated

for each cell. The circled peak values in Fig. 3.10 and Fig. 3.11 show examples of the

maximum vibration response of cell 10. Next, the average and standard deviation of

χi over 1,000 C2CV cases are calculated.

Fig. 3.12 illustrates the Monte Carlo simulation results. Fig. 3.12(a) shows the

results of linear system and Fig. 3.12(b) shows the results of system with nonlinear

cells and foams simultaneously. The values of χi for each random C2CV case is

marked as cyan asterisk. The red circles represent the average χi over 1,000 C2CV

cases, and the standard deviations plus their average values are labeled. The green

vertical bars represent χi of the nominal system.

Fig. 3.12 shows that the C2CV lead to the amplification of vibration responses
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Figure 3.12: The Monte Carlo simulation results of 1,000 random cell-to-cell variation
cases. (a) Linear system (b) System with nonlinear cells and foams.

compared to the nominal system. Fig. 3.12(a) shows that the maximum amplification

factor at cell 10 is more than 50% compared to the nominal case. Fig. 3.12(b) also

shows about 20% maximum amplification factor at cell 10. Therefore, neglecting

the effect of C2CV might lead to a serious underprediction of the maximum stress,

and thus an overprediction of the battery pack reliability. The overall amplification

factors for the nonlinear system are significantly smaller than the one for the linear

system in this example. Thus, neglecting the effect of nonlinearity might also lead to

incorrect prediction of vibration responses.

With the nonlinearity, the vibration responses are mitigated. Also, the ampli-

fication effects of vibration response due to cell-to-cell variations are mitigated as
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shown in Fig. 3.12 where the spread range of cyan stars of the nonlinear system are

much narrower than the linear system. It is because the stiffness of cells and foams

increases with deformation and the deformation is suppressed; thus, the amplification

of vibration responses are mitigated.

3.5 Conclusions

The battery packs used in electrified vehicles are comprised of repeated stacking

cells. The system with repeated substructures exhibits high modal density, and thus

a small structural variation in the system can lead to drastically changes in vibra-

tion responses. There are two types of structural variations. The linear structural

variations considered here are the PreV and the C2CV, and the nonlinear structural

variations come from the nonlinear dynamic behavior in cells and foams.

Because the vibration response of battery packs is an essential metric for the

fatigue life and reliability, the statistical analysis is required to investigate the ef-

fect of random structural variations. However, typical full-order model can easily

have millions of DOFs, and thus statistical analyses is computationally prohibitive.

Thus, PROMs are proposed to overcome this difficulty. PROMs can accurately and

efficiently predict vibration responses of battery packs with multiple structural vari-

ations simultaneously.

PROMs are developed based on the assumptions that (1) the vibration modes

of the system with structural variations are the linear combination of modes of the

system at two extreme PreV levels, (2) the stiffness matrices of the system with

structural variations can be obtained by linear interpolation of stiffness matrices at

extreme PreV and C2CV levels, (3) the modulus of elasticity of a nonlinear element

is a quadratic function of strain of the element, (4) the vibration response of a cell

is dominated by the first plate-like mode of the cell, and (5) foams are much softer

than the two neighboring cells.
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Once PROMs are built, to predict the vibration response of the battery pack with

structural variations, the full-order model can be avoided, and statistical analyses are

enabled. The effect of nonlinear dynamic behavior in cells and foams are captured

in the nonlinear structural dynamic equations. The nonlinear vibration responses

can be efficiently solved using the iterative method. The average simulation time of

linear PROMs is 1,674 times faster than the full-order model, and time of nonlinear

PROMs is 1,392 times faster. The errors at the peak values of the vibration response

are about 1% between PROMs and full-order model. The Monte Carlo analysis shows

that the linear and nonlinear responses are amplified due to small C2CV. Also, the

effects of nonlinearity should be considered for the prediction of vibration responses.
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CHAPTER IV

Optimization of arrangement of spacers using

parametric reduced-order models

In this chapter, different types of spacers are considered as S2SV and are captured

by PROMs. Adjusting the arrangement of different types of spacers in the battery

pack changes the mechanical coupling between cells and hence may mitigate vibration

responses. The optimized arrangement of different types of spacers is found using a

genetic algorithm, and the vibration response is lowered. In Sec. 4.1, the academic

battery pack model is introduced. In Sec. 4.2, formulation of PROMs for modeling

structural variations including PreV, C2CV, and S2SV are described. In Sec. 4.3,

numerical results calculated from the dynamic simulation of PROMs and full-order

models are compared. The effects of S2SV are discussed using statistical analyses. In

Sec. 4.4, the optimization of the arrangement of spacers is performed, and the results

are shown. Finally, the conclusions of this study are presented in Sec. 4.5.

4.1 Academic Battery Pack FEM

The academic battery pack FEM, which constitutes 20 nominally identical cells

and 19 nominally identical spacers, in Fig. 4.1(a) is proposed to demonstrate the idea

of PROMs. Each cell has several components including positive and negative current
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collectors, a cathode, an anode, a separator, and a case as shown in Fig. 4.1(c). The

cells couple to each other through spacers and foams. The stiffness of spacers is

assumed to be much higher than cells, while the stiffness of foams is assumed to be

much lower than cells. The academic battery pack is constrained at both ends of

the pack as shown in Fig. 4.1(b). The excitation is a single harmonic force and is

employed along the y-direction at two sides and bottom of the battery pack.

Figure 4.1: (a) The academic battery FEM which constitutes 20 nominally identi-
cal cells and 19 nominally identical spacers. (b) Constraint and forcing
nodes. (c) A cell is comprised of positive and negative current collectors,
a cathode, an anode, a separator, and a case. Cells couples to each other
through spacers and foams.

Fig. 4.2 shows the natural frequency plot which exhibits high modal density regions

due to repeated substructures in the academic battery pack. The frequency of the

excitation force lies in the range of the first high modal density region as shown in

the red rectangular in Fig. 4.2. Small structural variations employed at such system

lead to significant vibration response change[26, 72].
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Figure 4.2: The academic battery pack shows high modal density regions due to re-
peated substructures.

The modulus of elasticity of elements of a cell is considered to be affected by the

prestress applied to the battery pack and the C2CV level of the cell. Because a cell

is sandwiched between two spacers as shown in Fig. 4.3. Because spacers are much

harder than cells, the strain distribution of a cell highly depends on the S2SV levels

of two adjacent spacers (e.g. the modulus of elasticity of cell i depends on S2SV levels

of spacer i and i− 1). In contrast, the effect from foams to cells is negligible because

foams are much softer than cells. This is the key to constructing PROMs with PreV,

C2CV, and S2SV simultaneously. Note that the modulus of elasticity of elements of a

spacer is assumed to only depend on its S2SV level and PreV level, and independent

of the C2CV levels of the adjacent cells because cells are much softer than spacers.

For this research, only two types of spacers, type 1 and type 2, with different modulus

of elasticity are considered.

4.2 Methodology

4.2.1 Structural Dynamic Equations

The battery pack is subjected to structural variations. The PreV level p varies

between a lower bound pl and an upper bound pu. The C2CV level si of cell i varies
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Figure 4.3: The modulus of elasticity of elements of cell i is affected by S2SVs of
spacer i and i− 1.

between a lower bound sil and an upper bound siu. Since there are only two types

of spacers, the S2SV level zi of spacer i is either zil or ziu. The vectors sl and su

represent the collection of the lower and upper bounds of C2CV levels for all cells.

The vector s represents the collection of the C2CV levels for all cells. The vectors

zl and zu represent the collection of the two types of S2SV levels for spacers. The

vector z represents the collection of the S2SV levels for all spacers. The nominal case

is defined as p = pl, s = 0, and z = zl.

p ∈
[
pl pu

]
, pl ≤ pu

s ∈
[
sil siu

]
, sil ≤ 0 ≤ siu

z = zil or ziu , zil ≤ ziu

sl =


s1l

...

sNcl

 , su =


s1u

...

sNcu

 , s =


s1

...

sNc



zl =


z1l

...

zNsl

 , zu =


z1u

...

zNsu

 , z =


z1

...

zNs

 ,

(4.1)
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where Nc is the number of cells and Ns is the number of spacers.

The structural dynamic equations of the battery pack can be represented as

Mẍ+Cp,s,zẋ+Kp,s,zẋ = f (4.2)

where M is mass matrix, Cp,s,z and Kp,s,z are damping and stiffness matrices at

PreV level p, C2CV level s and S2SV level z, f is external excitation force vector,

and x is displacement vector.

The damping matrix C is assumed to be proportional to the stiffness matrix. The

proportional damping coefficients of all components are equal except foams, which

are assumed to have a higher damping coefficient. βf denotes the damping coefficient

of foams, and βg denotes the damping coefficient of all other components. C can be

represented as

Cp,s,z =βgKp,s,z + (βf − βg)
KF10%,p,s,z −Kp,s,z

10%

≈βgKp,s,z + (βf − βg)
KF10%,p,0,zl −Kp,0,zl

10%

(4.3)

where KF10%,p,s,z is the stiffness matrix for the system with all foams having stiffness

10% higher than the nominal design of foams at PreV level p, C2CV level s and S2SV

z. The purpose of the term (βf −βg)
KF10%,p,s,z−Kp,s,z

10%
is to replace the contribution of

foams in βgKp,s,z from βg to βf . Since C2CV and the 10% stiffness change of foam

are both small , and foams are much softer than other components in the battery

pack, KF10%,p,s,z −Kp,s,z is approximated to be KF10%,p,0,zl −Kp,0,zl in Eq. 4.3.

The structural dynamic equations of battery packs can have tens of thousands of

DOFs, depending on the complexity and mesh density of FEM. To reduce the order

of structural dynamic equations, several reduction techniques are employed.
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4.2.2 Order Reduction

The transformation matrix TR is constructed to reduce the order of structural

dynamic equations. The first assumption is that vibration responses at PreV level

p, C2CV level s, and S2SV level z can be captured by the truncated modes φp,s,z

whose natural frequencies are close to the frequency range of interest. The second

assumption is that the truncated modes φp,s,z are linear combinations of four sets of

truncated modes at different extreme PreV, C2CV, and S2SV levels

span(φp,s,z) = span(

[
φpl,0,zl φpu,0,zl φpl,0,zu φpu,0,zu

]
). (4.4)

The assumption in Eq. 4.4 is valid when the frequency range of interest is in a high

modal density region and structural variations are small. The general transformation

matrix TR
G is defined as

TR
G =

[
φpl,0,zl φpu,0,zl φpl,0,zu φpu,0,zu

]
. (4.5)

Because the structural variations are small, the modes φpl,0,zl , φpu,0,zl , φpu.0,zu ,

and φpu,0,zu can have approximately linearly independent columns. Gauss-Jordan

elimination (rref command in Matlab) is employed to eliminate these columns in TR
G

TR = rref(TR
G ). (4.6)

The order of structural dynamic equations is reduced by projection using x = TRq

MRq̈ +CR
p,s,zq̇ +KR

p,s,zq̇ = fR, (4.7)
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where

MR = (TR)TMTR

CR
p,s,z = (TR)TCp,s,zT

R

= (TR)T (βgKp,s,z + (βf − βg)
KF10%,p,0,zl −Kp,0,zl

10%
)TR

= βgK
R
p,s,z + (βf − βg)

KR
F10%,p,0,zl

−KR
p,0,zl

10%

KR
p,s,z = (TR)TKp,s,zT

R

fR = (TR)Tf

(4.8)

4.2.3 Derivation of PROMs

The stiffness matrix KCi,p,si,zi,zi−1
of cell i is a function of four parameters, PreV

level p, C2CV level si, and S2SV level zi and zi−1 of the adjacent spacers. It only

has values at DOFs of cell i of Kp,s,z and is zeros elsewhere as shown in Fig. 4.4.

Similarly, the stiffness matrix KSi,p,zi of spacer i is a function of two parameters,

PreV level p and S2SV level zi. It only has values at two off-diagonal blocks at DOFs

of the spacer i of Kp,s,z and is zeros elsewhere as shown in Fig. 4.4.

Figure 4.4: Definitions of KCi
and KSi

.
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The change in stiffness matrix ∆KCi,p,si,zi,zi−1
of cell i due to C2CV and S2SV

levels and the change in stiffness matrix ∆KSi,p,zi of spacer i due to S2SV levels are

defined as

∆KCi,p,si,zi,zi−1
= KCi,p,si,zi,zi−1

−KCi,p,0,zl

∆KSi,p,zi = KSi,p,zi −KSi,p,zl .

(4.9)

The order of ∆KCi,p,si,zi,zi−1
and ∆KSi,p,zi can be reduced by projection using TR

∆KR
Ci,p,si,zi,zi−1

= (TR)T∆KCi,p,si,zi,zi−1
TR

∆KR
Si,p,zi

= (TR)T∆KSi,p,ziT
R.

(4.10)

The reduced-order stiffness matrix KR
p,s,z of the battery pack in Eq. 4.8 can be rep-

resented as the summation of the stiffness matrix considering only PreV KR
p,0,0, the

change in stiffness matrices of cells ∆KR
Ci,p,si,zi,zi−1

due to C2CV and S2SV, and the

change in stiffness matrices of spacers ∆KR
Si,p,zi

due to S2SV

KR
p,s,z = KR

p,0,zl
+

Nc∑
i=1

∆KR
Ci,p,si,zi,zi−1

+
Ns∑
i=1

∆KR
Si,p,zi

. (4.11)

The stiffness matrix KR
p,0,zl

in Eq. 4.11 can be expanded by Taylor series with

respected to PreV level p.

KR
p,0,zl

= KR
pl,0,zl

+
∂KR

pl,0,zl

∂p
(p− pl) +H.O.T., (4.12)

where H.O.T. represents high order terms and are negligible since p − pl is assumed

to be small, and the term
∂KR

pl,0,zl

∂p
can be obtained using linear interpolation.

KR
p,0,zl

≈KR
pl,0,zl

+
KR

pu,0,zl
−KR

pl,0,zl

pu − pl
(p− pl), (4.13)

where the stiffness matrices KR
pu,0,zl

and KR
pl,0,zl

at the extreme PreV levels pu and
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pl are obtained using finite element analyses followed by projection using TR.

KR
pu,0,zl

= (TR)TKpu,0,zlT
R

KR
pl,0,zl

= (TR)TKpl,0,zlT
R

(4.14)

Following similar strategy, ∆KR
Ci,p,si,zi,zi−1

in Eq. 4.11, which is a function of four

parameters with small variations, can be obtained using quadra-linear interpolation.

∆KR
Ci,p,si,zi,zi−1

can be represented using a quadra-linear function.

∆KR
Ci,p,si,zi,zi−1

≈
[

1 p si . . . sizizi−1 psizizi−1

]


KR
Ci,1

KR
Ci,2

...

KR
Ci,15

KR
Ci,16


, (4.15)

where KR
Ci,j

for j = 1 16, which are unknown coefficient matrices, can be solved by

plugging in 16 different sets of parameters (p, si, zi, zi−1), where the value of each

parameter is either its lower and upper bound, to Eq. 4.15.



KR
Ci,1

KR
Ci,2

...

KR
Ci,15

KR
Ci,16


= B−1

Ci



∆KR
Ci,pl,sil,zil,zi−1,l

∆KR
Ci,pu,sil,zil,zi−1,l

...

∆KR
Ci,pl,siu,ziu,zi−1,u

∆KR
Ci,pu,siu,ziu,zi−1,u


, (4.16)
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where BCi
is a 16-by-16 matrix

BCi
=



1 pl sil . . . zil zi−1,l

1 pu sil . . . zil zi−1,l

...

1 pl siu . . . siuziuzi−1,u plsiuziuzi−1,u

1 pu siu . . . siuziuzi−1,u pusiuziuzi−1,u


. (4.17)

After knowing KR
Ci,j

vectors, ∆KR
Ci,p,si,zi,zi−1

can be obtained using Eq. 4.15 for given

(p, si, zi, zi−1) values within their bounds.

Similarly, ∆KR
Si,p,si

is a function of two parameters with small variations, can

be obtained using bi-linear function. ∆KR
Si,p,si

can be represented using a bi-linear

function.

∆KR
Si,p,zi

≈
[

1 pi zi zizi−1

]


KSi,1

KSi,2

KSi,3

KSi,4


, (4.18)

where KSi,j for j = 1 4, which are unknown coefficient matrices, can be solved by

plugging in 4 different sets of parameters p, zi at their extreme values to Eq. 4.18



KR
Si,1

KR
Si,2

KR
Si,3

KR
Si,4


= B−1

Si



∆KR
Si,pl,zil,zi−1,l

∆KR
Si,pu,zil,zi−1,u

∆KR
Si,pl,ziu,zi−1,l

∆KR
Si,p,ziu,zi−1,u


(4.19)
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where BSi
is a 4-by-4 matrix

BSi
=



1 pl zil plzil

1 pu zil puzil

1 pl ziu plziu

1 pu ziu puziu


. (4.20)

After knowing KR
Si,j

vectors, ∆KR
Si,p,zi

can be obtained using Eq. 4.18 for given (p, zi)

values within their bounds.

KR
p,s,z in the reduced-order system dynamic equations Eq. 4.7 can be obtained

using Eq. 4.11 by linear interpolation Eq. 4.13, bi-linear interpolation Eq. 4.18, and

quadra-linear interpolation Eq. 4.18 for given structural variations. CR
p,s,z, which can

be obtained using Eq. 4.8, is also required to construct Eq. 4.7. The stiffness matrices

KF10%,p,0,zl in Eq. 4.8 can be obtained using linear interpolation with respect to p.

One first obtains the stiffness matrices KF10%,pu,0,zl and KF10%,pl,0,zl at the extreme

PreV levels using finite element analyses where the stiffness of foams are 10% higher

than the nominal design of foams and project them using TR

KR
F10%,pu,0,zl

= (TR)TKF10%,pu,0,zlT
R

KR
F10%,pl,0,zl

= (TR)TKF10%,pl,0,zlT
R

. (4.21)

Similar to Eq. 4.13, linear interpolation is employed to obtain the stiffness matrix

KR
F10%,p,0,zl

at PreV level p

KR
F10%,p,0,zl

=
p− pl
pu − pl

(KR
F10%,pu,0,zl

−KR
F10%,pl,0,zl

)

+KR
F10%,pu,0,zl

. (4.22)
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4.3 Validation

To demonstrate the proposed approaches, the academic battery pack model de-

scribed in Fig. 4.1 is used. The FEM of the academic battery pack has about 180,000

DOFs. In contrast, PROMs have only 72 DOFs. In Eq. 4.1, the lower and upper

bounds of PreV level are pl = 0% and pu = 6%. The lower and upper bounds of

C2CV level are sil = −10% and siu = 10%. The lower and upper bounds of S2SV

level are zil = 0% and ziu = 50%. The number of cells is Nc = 20, and the number of

spacers is Ns = 19.

Figure 4.5: The cell-to-cell variation level distribution.

To validate PROMs with linear structural variations, the PreV level is chosen to

be at p = 3%, which is at the middle of its lower and upper bounds. The C2CV level

is randomly generated from −10% to 10% with normal distribution and zero mean

as shown in Fig 4.5. Since there are 19 spacers, a random integer number, which is

randomly generated with uniform distribution with in 1 ∼ 219 as shown in Fig. 4.6,

is binarized to generated 19 S2SV levels for each S2SV case.

Since the vibration response of cells in the battery pack are dominated by the first

plate-like mode[72], the maximum amplitude of the vibration of each node occurs at

the central node of each cell. Fig. 4.7 shows the vibration response at the central

node of cell 10 calculated using PROMs (orange dashed line) and full-order FEM
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Figure 4.6: The spacer-to-spacer variation level distribution.

(red solid line). Fig. 4.7 shows that the vibration response predicted by PROMs

follows the response predicted by the full-order model very well. The error of the

peak value is only about 1.44%. However, the computational time is very different .

Tab. 4.1 shows the average computational time for the full-order model and PROMs

to predict the vibration response at a frequency.

Table 4.1: Average computational time
Full PROMs

Linear 420(s) 0.13(s)

Figure 4.7: Vibration response calculated using PROMs and full-order FEM with
PreV, C2CV, and S2SV.
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The average computational gain of linear case is 3,230 and can increase if the mesh

of FEM becomes finer. It is because the computational time of the full-order model

increases with the mesh density. However, the computational time of PROMs depends

on the number of modes selected, which is related to the physics of the system. If

physics of the system remains the same but the mesh become finer, the number of

modes selected is still the same. Thus, the computational time for PROMs remains

similar, but the time for the full-order model is expected to be increased. Therefore,

the computational gain increases.

4.4 Optimization

Since cells are mechanically coupled to each other through spacers, the arrange-

ment of different types of spacers can change the vibration response of the battery

pack. There are 19 spaces for 2 types of spacers in the academic battery pack and

therefore there are 219 S2SV cases, which represent combinations of the arrangement

of spacers. The simulation of an arrangement of spacer needs significant computa-

tional effort and time using full-order model, thus PROMs are employed to predict

the vibration response. Monte Carlo simulations are performed using PROMs with

1,000 S2SV cases to demonstrate the effect of the arrangement of spacers.

For each S2SV case, the vibration response at the central of each cell are collected,

and the corresponding maximum value ξi of cell i over the range of excitation fre-

quency is calculated for each cell. The circled peak value in Fig. 4.7 shows an example

of ξ10. Next, the average and standard deviation of ξi for i = 1 ∼ Nc over 1,000 S2SV

cases are calculated, and the results are shown in Fig. 4.8.

The battery pack fails if one of cells fails since cells are connected in series. The

cell which has the maximum vibration response has the highest possibility of failure.

Consequently, the objective is to minimize ξi over 20 cells. Mathematically, the cost
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Figure 4.8: Statistical analysis for 1,000 spacer-to-spacer variation cases.

function is written as

minimize
z

: max
i=1∼Ns

ξi(z)

Subject to : zi = {zil, ziu}, i = 1 ∼ Ns

(4.23)

The cost function max
i=1∼Ns

ξi(z) represents the maximum vibration response over 20

cells over a frequency range. The variable z represents the arrangement of spacers.

zi is either zil or ziu since each spacer is either type 1 or type 2.

Because the cost function is a non-convex and nonlinear function of the variable

z with discrete-valued variables, a genetic algorithm which is a non-gradient based

method is employed to search for the optimized solution. Since the genetic algorithm

is based on random search, the optimization problem is solved for eight times and the

best solution is obtained among the eight optimized solutions. A single optimization

problem solved using a genetic algorithm may require tens of thousands of simulations

due to random search. The simulation time for the optimization problem is reduced

using PROMs. Fig. 4.9(a) shows the best solution where the first 14 spacers are type

1 and the last 5 spacers are type 2. Fig. 4.9(b) compares the vibration response at
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the central node of cell 10 between nominal and the best arrangements of spacers.

The peak of the vibration response drops 8.5% with the best arrangement.

Figure 4.9: (a) The optimized arrangement of spacers. (b) The vibration response at
cell 10 with nominal and optimized arrangement of spacers.

The vibration response can be significantly amplified due to small structural vari-

ations when the frequency of excitation lies in a high modal density region. Fig. 4.10

shows the Monte Carlo simulations of vibration response for the battery pack with

1,000 cases of random C2CV. Similar to Fig. 4.8, the vibration response at the central

of each cell is measured and the corresponding maximum value ξi is calculated for all

cells. Fig. 4.10(a) shows the results for battery pack with nominal arrangement of

spacers, while Fig. 4.10(b) shows the results with optimized arrangement. The aver-

age value and standard deviation of ξi are marked on Fig. 4.10 are generally reduced

due to the optimized arrangement of spacers, which reduces the risk of failure of cells.
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Figure 4.10: Statistical analysis for 1,000 cell-to-cell variation cases with (a) nominal
and (b) optimized arrangement of spacers

4.5 Conclusion

The battery pack constitute a plural of nominally identical cells, which mechani-

cally coupled to each other through spacers and foams. The natural frequency plot of

the battery pack shows high modal density regions because of repeated substructures.

A small structural variation may cause significant change in vibration response when

the frequency of excitation lies in a high modal density region. The small structural

variations considered here are PreV, C2CV, and S2SV.

Because the vibration response of battery packs is an essential metric for the

fatigue life and reliability, the statistical analysis is required to investigate the effect

of random structural variations. Also, the arrangement of different type of spacers can

mitigate the vibration response and the optimized arrangement can be solved using

a genetic algorithm which requires solving the vibration response multiple times for
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different arrangement of spacers in the random search process. However, typical

full-order model can easily have millions of DOFs, and thus multiple simulations are

computationally prohibitive. Thus, PROMs are proposed to overcome this difficulty.

PROMs can accurately and efficiently predict vibration responses of battery packs

with PreV, C2CV, and S2SV simultaneously. Once PROMs are built, to predict the

vibration response of the battery pack with structural variations, the full-order model

can be avoided. The average simulation time of PROMs is 3,230 times faster than

the full-order model.

The Monte Carlo analysis of the battery pack with random S2SV shows that the

arrangement of different types of spacers can lower the vibration response. Moreover,

the average vibration response for the battery pack with random C2CV is also lowered

with the optimized arrangement of spacers. PROMs, which predict vibration response

with random structural variations efficiently, improves the design capability of battery

packs and shorten the time of design process.
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CHAPTER V

Summary and future works

5.1 Summary

Battery packs are widely used on EVs and experience road and vehicle vibrations

which shorten the fatigue life of battery packs. The amplitude of vibration response

is a key factor of reliability of battery packs. Battery packs are comprised of multiple

nominally identical cells and show high modal density in their natural frequency

plot. An academic battery pack model which is comprised of 20 cells was introduced

to demonstrate high modal density regions. In Chap 2, the academic battery pack

without foams was investigated. In Chap 3 and 4, the academic battery pack with

foams was studied.

The vibration response of a battery pack with small structural variations may

change significantly when the frequency of excitation applied to the battery pack lies

in a high modal density region compared to the nominal design of the battery pack.

The structural variations considered in this dissertation includes linear and nonlinear

variations. The linear variations involve PreV, C2CV, and S2SV, where stiffness

matrices of elements in the FEM of battery packs are independent of deformation.

In contrast, the nonlinear behavior in cells and foams exhibit hardening effects of

material property in deformed elements of FEM of battery packs. The structural

variations have significant influence on the vibration response of battery packs and
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their effect needs to be identified in the design process of battery packs. The structural

variations are random in a range and requires statistical analyses. However, even a

full-order model analysis, which is required for a given structural variation case, is

computationally prohibitive.

PROMs, which capture both linear and nonlinear structural variations simultane-

ously, are developed to reduce computational time of full-order analysis while main-

taining high accuracy. PROMs obtain stiffness matrices of components with linear

structural variations using interpolation. The nonlinear behavior in cells and foams

is modeled in PROMs based on the observation that the vibration responses of the

battery pack are dominated by the first plate-like mode of each cell.

With PROMs as a design tool, statistical analyses were performed to discuss that

effects of small random structural variations are not negligible. The results show

that maximum amplitudes of vibration responses of each cell in a frequency range

can be amplified drastically, and the location of maximum vibration amplitude in

academic battery packs can change from one cell to another. The results also show

that different arrangements of spacers can mitigate vibrations responses of battery

packs. Consequently, an optimization of the arrangement of spacers was performed

using PROMs to minimize the vibration response of the battery pack.

In Chapter II, the proposed nonlinear PROMs was used to capture the PreV

of the battery pack, the C2CV of each cell, and the nonlinear behavior in cells.

Since cells are mechanically coupled through spacers and the stiffness matrices of

cells are dependent on C2CV, the stiffness matrix of a cell was obtained using linear

interpolation with respect to C2CV of that cell. The order of the system dynamic

equations with structural variations was reduced by the transformation matrix, which

was constructed from modes from two extreme cases of PreV levels. The nonlinear

PROMs was built based on the observation that cells essentially vibrate along their

first plate-like modes, while the strain distribution of a cell is a function of a single
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parameter, the modal amplitude of its first plate-like mode. The nonlinear PROMs

was solved using the iterative method, which was validated by using a time-marching

method and an algebraic solver.

In Chapter III, the effect of foams were modeled. The FEMs of the battery pack

were re-designed with cells mechanically coupled through spacers and foams. Since

stiffness matrices of cells are dependent on both PreV and C2CV when foams are

involved, the stiffness matrix of a cell is obtained using bi-linear interpolation with

respect to PreV and C2CV. The key to constructing nonlinear PROMs is based on

the observation that foams are often made of polymeric material which is much softer

than cells. Consequently, the vibration responses of foams are dominated by the two

first plate-like modes of neighboring cells - one from each cell. The vibration responses

predicted using nonlinear PROMs were validated using full-order models.

In Chapter IV, the effect of spacers was considered. Since spacers may have dif-

ferent equivalent stiffness, according to their design and material, PROMs capture

this effect by considering different types of spacers as S2SV. The mechanical coupling

between cells varies when different types of spacers are placed between cells, leading

to changes in the vibration response of battery packs. Since stiffness matrices of

cells are dependent on four parameters: PreV, C2CV, and two S2SVs of neighbor-

ing spacers, the stiffness matrix of a cell was obtained using a unique quadra-linear

interpolation with respect to these four parameters. Since the vibration response is

a key metric of reliability of battery packs, the goal is to minimize the vibration re-

sponse. The arrangement of different types of spacers was chosen as the variable for

the optimization problem with the vibration response as the cost function. Since the

vibration response is a non-convex nonlinear function of the arrangement of spacers

and the variables of the optimization problem are discrete numbers, a genetic algo-

rithm was employed to solve the optimization problem. The genetic algorithm is a

random random search approach which requires an extensive number of simulations;
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hence, PROMs were applied to reduce the simulation time. The optimal solution was

shown to reduce the vibration response of the academic battery packs.

5.2 Future work

Based on the work reported in this dissertation, some ideas for future research

may be considered.

1. Extension of PROMs capturing first few plate-like modes

Nonlinear PROMs developed in Chapter III show good accuracy and speed for

predicting vibration responses of battery packs with nonlinear material in cells

and foams. However, the vibration response may not be dominated by only the

first plate-like mode or just one plate-like mode depending on the force excita-

tion and the boundary conditions applied to the battery pack. Consequently,

PROMs can be improved by including more plate-like modes. To include more

plate-like modes, Eq. 3.29 and Eq. 3.36 can be rewritten so that the vibra-

tion response can be approximated as the summation of static deformation and

multiple plate-like modes multiplied by a participation factor matrix. This pro-

vides nonlinear PROMs with a capability of capturing vibration responses with

various types of boundary conditions and force excitation, while only slightly

increasing the computational time.

2. Extension of PROMs capturing more types of spacers

In Chapter IV, PROMs capturing two different types of spacers considered as

S2SV were developed, and a genetic algorithm was applied to find the optimal

arrangement of spacers. However, there are more than two types of spacers and

the vibration responses of battery packs may be further minimized when more

types of spacers are used. To capture more types of spacers, modes from more

cases of extreme structural variation levels may need to be included when con-
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structing the transformation matrix. The quadra-linear interpolation may need

to be modified to a higher order interpolation. Additionally, the cost function

of the optimization problem in Chapter IV was formulated without PreV and

C2CV. In future studies, the effect of PreV and C2CV can be considered into

the cost function.

3. Verification of PROMs on a industrial battery pack model

In this dissertation, an academic battery pack model with 20 nominally identical

cells was used. However, battery packs used in industry may include dozens or

even hundreds of cells with more sophisticated structures. Compared to PROMs

applied to the academic battery pack, PROMs applied to a more complicated

system may show an even larger reduction in computational time, and the

optimal arrangement of spacers may lower the vibration response even more.

4. Explore the physical explanation of the optimized of arrangement of spacers

and provide design guidance to the industry

The optimized arrangement of spacers in Fig. 4.9 shows the left 14 spacers are

type 1 and the other spacers are type2. Is the ratio 14:9 remains a constant for a

system with more cells? Is the optimized arrangement of spacers affected by the

range of forcing frequency? Can we find a general design rule for the optimized

arrangement of spacers? PROMs can be applied to explore the connection

between the arrangement of spacers and the vibration response of battery packs.
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