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Abstract 

Genome instability, defined as an increased tendency of genome alteration, is the cause 

of many human diseases and conditions. It is a hallmark of human cancer and plays a role in 

aging and the development and function of the nervous system. Genome instability can manifest 

in several ways, including gaps and breaks at Common Fragile Sites (CFSs) and Copy Number 

Variants (CNVs). CFSs are sites on human metaphase chromosomes prone to forming gaps or 

breaks following replication stress. CNVs are submicroscopic genomic alternations that change 

the copy number of the affected region, also often following replication stress. The genome 

regions most prone to replication stress-induced CNVs, called “hotspots,” coincide with CFSs. 

In spite of their implications for human health, mechanisms leading to instability at CFSs 

and CNV hotspots are unclear. CFSs/CNV hotspots are AT-rich and late replicating, but those 

properties are not sufficient for the sites’ instability. DNA sequence at CFSs/CNV hotspots is 

shared among all cells, but instability is cell line-specific. We also found that while about 20% of 

the genome replicates late, hotspots only comprise 0.4% of the genome. Hence, instability at 

hotspots is determined by properties that vary between different cell lines and genomic regions. 

Transcription is one such property. We found that CFSs/CNV hotspots are enriched in 

large (>500kb), transcribed genes and that given a cell line’s transcription profile we can predict 

where CFSs/CNV hotspots will be in that cell line. I further show that abrogating expression of a 

large hotspot gene leads to a reduced number of aphidicolin-induced CNVs. These results 

established transcription of large genes as a determining factor for instability at hotspots.  



 xviii 

We propose that a conflict between transcription of large genes and DNA replication 

drives hotspot instability. I tested a model in which R-loops (RNA/DNA hybrids) create a 

physical interference for the replication fork and cause the fork to stall and initiate genomic 

alteration. R-loop manipulation by altering expression of RNase H1 had no significant effect on 

the frequency of APH-induced instability at hotspots, implying that R-loops do not play a central 

role in driving APH-induced CNVs, unlike a prior study showing that R-loop manipulation 

changes CFS instability. However, R-loop accumulation changes the location of breakpoints of 

these CNVs and change the frequency of the spontaneous CNVs, suggesting that R-loops may 

still play a role in both APH-induced and spontaneous CNV formation.    

In sum, the studies in this dissertation reveal that transcription of unusually large genes 

plays a pivotal role in instability at CFSs/CNV hotspots during replication stress, but not via an 

R-loop-associated mechanism. Nonetheless, R-loops threaten genome instability and affect CNV 

formation outside of hotspots. Future studies are necessary to explore other transcription-

replication conflict models at CFSs/CNV hotspots and further characterize R-loop induced 

CNVs. 
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Chapter 1 — Introduction 
 

Overview of Dissertation 

Genome instability refers to an increased frequency of mutations in the genome during 

the cell’s life cycle. Unsurprisingly, genome instability is involved in many human diseases and 

conditions. It is a hallmark of almost all human cancers and is thought to play a role in aging as 

well as development/function of the nervous system.  

There are many manifestations of genome instability, as the mutations leading to genome 

instability can change the primary DNA sequences, grossly rearrange the chromosome structure, 

or lead to loss/gain of chromosome(s). This dissertation will focus on two — Common Fragile 

Sites (CFSs) and Copy Number Variants (CNVs). 

There are also numerous known factors that contribute to genome instability, but this 

dissertation will mainly focus on two factors, replication and transcription, and how they 

potentially oppose each other to cause instability at certain places in the human genome. In 

particular, the dissertation will mostly focus on the antagonistic relationship between replication 

and transcription in the presence of replication stress. Replication stress inhibits DNA 

replication, slowing down or stalling DNA polymerase.  

Chapter 1 will provide an introduction to CFSs and CNVs, including what is currently 

known in the field, what remains to be investigated, and why the studies in this dissertation are 

relevant. Chapter 2 will focus on my contribution to our group’s recent Genome Research 

publication, in which we have demonstrated that transcription is a determining factor for the 
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instability at CFSs and CNV hotspots, and that we can predict where CNVs will occur based on 

the transcription profile. Chapter 3 expands on the findings from Chapter 2, where I show that 

knocking down transcription at a hotspot gene reduces the CNV frequency at the site compared 

to the isogenic, parental cell line. Chapter 4 explores a possible transcription-replication conflict 

mechanism at CFSs and CNV hotspots: Does transcription interfere with DNA replication by via 

R-loops? In Chapter 5, I summarize and discuss the results from Chapters 2, 3, and 4 and provide 

suggestions for future experiments.  

 

Common Fragile Sites 

CFSs are genomic regions that exhibit instability as gaps and breaks on metaphase 

chromosomes in presence of mild replication stress (Figure 1.1), which is generally defined as a 

condition that interferes with DNA replication and causes a slowing or stalling of DNA 

replication forks (Zeman and Cimprich 2013). CFSs make up a subset of fragile sites, and they 

are different from their counterpart, rare fragile sites, in frequency and genomic features. First, 

CFSs are present in all individuals whereas rare fragile sites are only present in less than 5% of 

the population (Zlotorynski et al. 2003). Second, all rare fragile sites are characterized by a 

repeat expansion, allowing us to predict which genomic regions are prone to instability 

(Sutherland 2003; Zlotorynski et al. 2003; Debacker and Kooy 2007). However, structural 

features of CFSs are not as clear, preventing researchers from predicting where CFSs will occur.  

Replication stress-inducing chemical agents, such as aphidicolin (APH), a DNA 

polymerase alpha inhibitor, and hydroxyurea (HU), a ribonucleotide reductase inhibitor, 

induce CFS instability (Glover et al. 1984; Arlt, Ozdemir, Birkeland, Wilson, et al. 2011; 

Glover et al. 2005). CFSs already replicate late in the cell cycle, and this timing is pushed even 



 3 

later, under replication stress (M. Le Beau 1998; Hellman et al. 2000; Palumbo et al. 2010). 

Furthermore, CFSs possess low-complexity A/T-rich sequences prone to forming non-B DNA 

structures that interfere with replication (H. Zhang and Freudenreich 2007; Hewett et al. 1998; 

Mishmar et al. 1998; Fungtammasan et al. 2012; Shah et al. 2010).  Based on these observations, 

it is hypothesized that CFS instability depends on DNA replication error.  

Since their discovery in 1984, CFS gaps and breaks were defined and mapped at low 

resolution on metaphase chromosomes using the accepted cytogenetic definitions of 

chromosome gaps and breaks, and they were mapped without the knowledge of the specific 

underlying DNA integrity or chromatin structure. The low-resolution nature of CFSs raises 

many questions, such as what do the gaps and breaks represent at the DNA sequence level?  

 

Copy Number Variants 

Copy number variants (CNVs) comprise another manifestation of genome instability. 

CNVs, as the name suggests, are submicroscopic alterations of the genome that change the copy 

number of the region. Unlike CFSs, which were mapped using low-resolution techniques, CNVs 

were defined and detected with new genomic technologies that enabled higher-resolution 

analyses, such as oligonucleotide microarrays and next generation sequencing. To date, 

researchers have mapped over 25,000 polymorphic CNVs, with a thousand CNVs larger than 

50kb long (Mills et al. 2011). CNVs can range from 50bp to over 1Mb in size (Mills et al. 2011; 

Girirajan, Campbell, and Eichler 2011), suggesting that CNVs are ubiquitous and play an 

important role in shaping the genomic landscape.  

There are two main classes of CNVs, recurrent and nonrecurrent. Both classes of CNVs 

arise from an improper replication mechanism. Recurrent CNVs arise from meiotic non-
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homologous allelic recombination (NAHR) that uses highly repetitive non-allelic sequences in 

the genome as substrates for homologous recombination (Hastings et al. 2009). This results in an 

incorrect exchange of genetic material, leading to reciprocal gains and losses on different alleles. 

The breakpoint junctions, which presumably mark where the initial DNA double-stranded break 

has occurred are “recurrent.” For recurrent CNVs, the breakpoints occur at the same genomic 

region for these CNVs, such as low-copy repeats or segmental duplications (Conrad, Bird, et al. 

2010; Conrad, Pinto, et al. 2010; Mills et al. 2011; Sharp et al. 2005; Dittwald et al. 2013), so 

their locations can be predicted based on DNA sequence.  

The breakpoints for nonrecurrent CNVs (often characterized with microhomologies, 

which are short homologous sequences) are unique for each CNV and can be highly complex 

(Arlt, Wilson, and Glover 2012; W. Gu, Zhang, and Lupski 2008; Hastings et al. 2009; Carvalho 

and Lupski 2016). Although these CNVs do tend to cluster at certain genomic regions (Arlt et al. 

2012; Wilson et al. 2015), it is more difficult to predict where these CNVs will occur unlike their 

recurrent CNVs. In addition, the mechanisms that form nonrecurrent CNVs are not as well 

described as for recurrent CNVs. Like CFSs, nonrecurrent CNVs are thought to form from 

different DNA replication errors since they are induced with low concentrations of replication 

stress-inducing drugs (Arlt et al. 2009; Arlt, Ozdemir, Birkeland, Lyons, et al. 2011; Wilson et 

al. 2015; Durkin et al. 2008). Our observations support the idea that CNVs have a replication-

error origin, as they are induced in normal human cells under mild replication stress caused by 

APH, HU, or even ionizing radiation (IR) (Arlt et al. 2009; Arlt, Ozdemir, Birkeland, Wilson, et 

al. 2011; Arlt et al. 2014).  

Once DNA replication is perturbed from replication stress, the replication fork is stalled 

and even collapsed, where a collapsed fork is defined as a fork that is unable to synthesize DNA 
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(Cortez 2015). The stalled/collapsed fork then can undergo one of a few different possible 

processes. First, the replication fork can restart correctly. Second, the fork can restart incorrectly 

via mechanisms like Microhomology-Mediated Break-Induced Replication (MMBIR) or fork 

stalling and template switching (FoSTeS) (Hastings et al. 2009). Third, the fork collapse could 

lead to DSBs, and the breaks can get repaired incorrectly via mechanisms like Microhomology-

Mediated End Joining (MMEJ) (Hastings et al. 2009; Arlt et al. 2012)(Figure 1.2). Of the three 

aforementioned scenarios, the latter two may lead to the nonrecurrent CNVs. Mechanisms 

leading to CNVs will be discussed in a later section.    

A study from our group has reported that NHEJ is not a key pathway for CNV formation, 

as CNVs were also induced in mouse embryonic stem cells in the presence or absence of XRCC4 

(Arlt et al. 2012), a key non-homologous end joining (NHEJ) protein. These observations 

support the idea that CNVs are created by DNA repair mechanisms when fork progression is 

impaired rather than incorrect repair, unless an alternative end-joining pathway such as MMEJ is 

involved.   

Nonrecurrent CNVs make up 40 to 70% of normal human CNVs and 79% of pathogenic 

CNVs (Conrad, Bird, et al. 2010; P. M. Kim et al. 2008; Vissers et al. 2009), and some of such 

pathogenic CNVs are associated cancer and neurodevelopmental disorders (Glover, Wilson, and 

Arlt 2017; D. I. Smith et al. 2006; C. L. Smith, Bolton, and Nguyen 2010). Hence, it is 

imperative to study what gives rise to the nonrecurrent CNVs to learn the preventive measures 

and progression of those diseases and disorders.  

For brevity, I will refer to the nonrecurrent CNVs simply as CNVs from this point on in 

this dissertation unless stated otherwise.  
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Sources of Replication Stress  

A number of different conditions can lead to replication stress. First, there are exogenous 

factors. APH, the drug that is commonly used in CFS and CNV studies to induce instability, is a 

reversible DNA polymerase α and δ inhibitor (IKEGAMI et al. 1978; Byrnes et al. 1976). DNA 

polymerase α is a DNA polymerase subunit that is involved in the DNA replication initiation for 

leading and lagging strands. Hydroxyurea induces replication stress by inhibiting ribonucleotide 

reductase, an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides 

(Adams, Berryman, and Thomson 1971; Skoog and NordenskjOLD 1971). X-ray and UV 

radiation create DNA lesions, which can act as a physical barrier to DNA polymerase if left 

unrepaired (Tubbs and Nussenzweig 2017).   

There are also endogenous factors leading to replication stress. Reactive oxygen species 

(ROS), natural byproducts in oxygen metabolism, are known to cause oxidative DNA damage, 

leading to DNA lesion and genome instability, as well as enhancing growth signaling, leading to 

replication stress (Cadet and Wagner 2013; Burhans and Weinberger 2007; Gaillard, García-

Muse, and Aguilera 2015). Secondary DNA structures formed at GC- or AT-rich regions and 

trinucleotide repeat expansions can also physically impede DNA replication fork progression 

(Mirkin and Mirkin 2007; BedingerS, Munng, and Alberts 1989; Burrow et al. 2010; Dillon et al. 

2013; Valton and Prioleau 2016; Thys et al. 2015). Finally, unrelieved supercoiling in the DNA 

can also induce replication stress by increasing the torsional stress on the DNA, leading to 

collapsed forks (Lisa Postow et al. 2001; L. Postow et al. 2001; Rodrigo Bermejo et al. 2009; 

Ray Chaudhuri et al. 2012; Jossen and Bermejo 2013; J. C. Wang 2002).  

In cancer, oncogene activation can also create replication stress by causing dysregulated 

replication and even re-replication of the DNA (Hills and Diffley 2014; Sarni and Kerem 2017). 
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DNA replication is usually tightly regulated so the cell replicates its DNA at the right time and 

only replicates it once during S phase (Li 1995; Machida, Hamlin, and Dutta 2005; Boye, 

Løbner-Olesen, and Skarstad 2000; Sclafani and Holzen 2007), as deregulated replication and re-

replication can lead to genome instability (Donley and Thayer 2013; Abbas, Keaton, and Dutta 

2013; Truong and Wu 2011; Blumenfeld, Ben-Zimra, and Simon 2017; Di Micco et al. 2006). 

Oncogene activation in cancer cells, however, can induce the bypassing those regulatory 

mechanisms. The activation of oncogenes HRASV12, MYC, and cyclin E increases origin firing 

(Kotsantis et al. 2016; Miron et al. 2015; Sankar, Kadeppagari, and Thimmapaya 2009), which 

can deplete nucleotide pools or increase topological stress on the DNA and induce replication 

stress (Beck et al. 2012; Poli et al. 2012; Bester et al. 2011; Pfister et al. 2015; Yang et al. 2014; 

R. Bermejo et al. 2007).  

 

Studying CNVs Using a Cell Culture System  

Our lab has developed a cell culture model system for monitoring the formation of CNVs 

that resemble the nonrecurrent CNVs seen in people (Arlt et al. 2009; Durkin et al. 2008; Arlt, 

Ozdemir, Birkeland, Lyons, et al. 2011). In our cell culture system (Figure 1.3), we grow cells in 

the presence of mild replication stress for a certain time period. The low drug concentration 

slows down DNA synthesis but does not completely arrest it, allowing cells to still divide 

during the APH treatment. It is important to ensure that the cells divide at least once during 

the treatment since CNVs may be DNA lesions that are incorrectly repaired and manifest 

themselves in the subsequent cell cycle (Hastings et al. 2009).  

The cells are then plated at low density so individual clonal populations (originated from 

single cells) are separated from one another. We pick the individual clonal populations and grow 
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the clones until harvesting the cells for their genomic DNA. The DNA is used for downstream 

analyses to detect CNVs. This cell culture experimental system allows us to more easily study 

the mechanism and the factors that could possibly lead to the CNVs in human population.  

When replication stress-inducing agents are added to the cells, CNV frequency is 

elevated throughout the human genome (Figure 1.4). Frequency is increased regardless of which 

type of replication stress was present; for example, both APH and HU induced CNVs in the cells 

even though the two chemicals stress the cells in a different manner (Arlt, Ozdemir, Birkeland, 

Wilson, et al. 2011).  

These experimentally induced CNVs share numerous defining characteristics with 

normal and pathogenic human CNVs in sizes and structural features, including the 

microhomologies at the breakpoint junctions, which are typical of almost all CNVs that arise in 

cancers and the majority of normal CNV variants and de novo CNV mutations (Korbel et al. 

2007; Mills et al. 2011; Lee, Carvalho, and Lupski 2007; Campbell et al. 2008; Conrad, Bird, et 

al. 2010; Vissers et al. 2009; Inoue et al. 2002; White et al. 2006).  

 

Paucity of Replication Origins at CFSs and CNV Hotspots 

Even though we observed CNVs across the entire genome with replication stress, some 

genomic regions were clearly more susceptible to the CNVs than others (Figure 1.4), such as 

LSAMP (3q13.31), AUTS2 (7q11.2), and WWOX (16q23.3). Such regions that were more 

susceptible to CNVs (specifically with more than five CNVs based on our dataset), were called 

“hotspots.”  Two recent studies from our group have highlighted how CNV hotspots are located 

in the same genomic regions as CFSs (Wilson et al. 2015; Arlt, Ozdemir, Birkeland, Wilson, et 

al. 2011). Both studies showed that almost all CNV hotspots coincide with previously identified 
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CFSs (Figure 1.5), suggesting that there is a link between the mechanisms that contribute to the 

two forms of instabilities. In fact, CFS gaps/breaks and CNVs are thought to be two different 

manifestations from one shared property, which is late replication.  

Both CFSs and CNV hotspots replicate late in the S phase, to a point that the part of the 

site remains un-replicated up to late G2 phase (Wilson et al. 2015; Minocherhomji et al. 2015; L 

Wang et al. 1999; M. Le Beau 1998; Palakodeti et al. 2004; Pelliccia et al. 2008). Because of this 

property, these sites are vulnerable to an incomplete replication to begin with, and replication 

stress makes CFSs and CNV hotspots even more vulnerable to incomplete replication and 

instability. 

 What makes CFSs and CNV hotspots replicate so late? These regions are known to 

exhibit replication origin scarcity, especially in the middle of the site. Using molecular combing 

approaches, Letessier et al showed that the CFSs (FRA3B and 3q13) have a paucity of active 

replication origins in the middle of the sites, rendering the center of the region more susceptible 

to instability. The authors also observed that CFS instability is cell-type specific. The study 

reported the only the cells that exhibited instability at certain CFSs showed paucity of active 

origins at the center of the sites, whereas cells that did not exhibit instability at the same CFSs 

did not show the same paucity of active origins.  

 

Dormant Origins to the Rescue 

The flanking portions of CFSs and CNV hotspots tend to replicate earlier than the middle 

of the sites, meaning that the replication forks have to travel from edges toward the middle 

(Wilson et al. 2015; Letessier et al. 2011; Mi. Debatisse, Achkar, and Dutrillaux 2006). With 

replication stress, the two forks traveling toward the middle of the sites may stall and collapse, 
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rendering the middle sensitive to incomplete replication (Wilson et al. 2015). Dormant origins 

may provide the cell’s line of defense for these situations. These origins are unused under normal 

conditions, such as the origins at the center of CFSs and CNV hotspots (Ge, Jackson, and Blow 

2007; Blow, Ge, and Jackson 2011; Alver, Chadha, and Blow 2014; D. McIntosh and Blow 

2012; Blow and Ge 2009). They are hypothesized to only fire to complete replication upon 

replication stress, thereby alleviating the effects of stalled or collapsed forks, especially when 

two neighboring forks stall (Figure 1.6). 

It is unclear whether the dormant origins are structurally different from the earlier-firing 

origins. Dormant origins are thought to be extra replication origin proteins that were loaded onto 

the DNA during G1 (Ge, Jackson, and Blow 2007; Blow and Ge 2009; Woodward et al. 2006; 

Debbie McIntosh and Blow 2012; Blow, Ge, and Jackson 2011). In G1 phase of the eukaryotic 

cell cycle, MCM2-7 helicase hexamer complex is loaded onto a protein complex comprised of 

ORC1-6, CDC6, and CDT1 on the DNA to form pre-replication complex (pre-RC) to mark the 

replication origins in preparation for S phase during a process called licensing (Lei and Tye 

2001; Nishitani and Lygerou 2018; Tsakraklides and Bell 2010). Not all the licensed origins are 

activated under the normal condition, as there is up to a 20-fold excess of MCM2-7 helicase 

loaded onto the DNA compared to the number of origins that actually fire during S phase (Ibarra, 

Schwob, and Méndez 2008; Ge, Jackson, and Blow 2007; Hyrien 2016; Woodward et al. 2006; 

Donovan et al. 1997). The limiting factor for origin activation is hypothesized to be CDC45, a 

protein that binds to pre-RC after the licensing in G1 to activate the replication origin during the 

S phase (Wong et al. 2011; Köhler et al. 2016; Pollok et al. 2007; Mantiero et al. 2011; Tanaka et 

al. 2011; Edwards et al. 2002), not the number of pre-RCs bound to the DNA.  
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Unsurprisingly, mutations in the pre-RC proteins leads to increased genome instability, 

diseases, and sometimes even death of the organism. Shima et al. have demonstrated that Mcm4 

null mice are embryonically lethal, but the Chao3 mutation in mouse Mcm4, which changes the 

amino acid phenylalanine to isoleucine at residue 345, results in a hypomorphic mutation. While 

Mcm4 null mice died before birth, more than 80% of Mcm4Chaos3/Chaos3 females died from 

mammary adenocarcinomas within 12 weeks of age.  Mouse Mcm4Chaos3/Chaos3 embryonic 

fibroblasts were more prone to chromosome breaks after aphidicolin treatment. Similarly, 

missense mutations in the ORC1, ORC4, ORC6, CDT1, and CDC6 protein cause Meier-Gorlin 

syndrome, which is a form of primordial dwarfism (Bicknell et al. 2011; de Munnik et al. 2012). 

 

Different Manifestations of Stalled and Collapsed Forks 

Studies in human cells have shown that replication stress induces the activation of 

dormant origins to compensate for the slow or stalled fork progression, and the lack of the 

dormant origin activation can result in higher genomic instability, such as the case of the origin 

paucity at CFSs. The late replication and origin paucity at CFSs and CNV hotspots can slow 

down and stall replication forks following replication stress, and the sites can then manifest into 

different forms of genome instability. The different consequences are detailed in the following 

sections (Figure 1.7).  

 

CFS Gaps and Breaks 

The defining consequences of incomplete replication at CFSs are the site-specific gaps 

and breaks on metaphase chromosome, which were previously thought to represent unreplicated 
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DNA. However, Minocherhomji et al. recently detailed the events that occur at CFSs during the 

G2 and M phases of the cell cycle and uncovered a novel mechanism of DNA replication error 

resolution. The study reported that after APH treatment, the passage of incompletely replicated 

DNA at CFSs into mitotic chromosomes serves as the trigger to activate a novel and distinct M 

phase DNA replication pathway called MiDAS (Mitotic DNA Synthesis).  

The authors identified a number of components of the MiDAS pathway, including the 

non-catalytic subunit of DNA Polymerase δ, POLD3. POLD3 is involved in break-induced 

replication (BIR) (Tumini et al. 2016), which is a DNA repair pathway similar to homologous 

recombination (HR) that involves strand invasion but only involves a break at one end instead of 

two (Malkova and Ira 2013; Anand, Lovett, and Haber 2013). Similarly, another study from the 

same group found that Rad52, another factor involved in BIR (Sotiriou et al. 2016), is important 

to MiDAS (Bhowmick, Minocherhomji, and Hickson 2016). These studies imply that BIR is 

involved in MiDAS.  

 

Ultrafine Anaphase Bridges 

If DNA replication is still not completed in early mitosis, the persistent unreplicated 

DNA at CFSs can lead to the formation of ultrafine anaphase bridges (UFBs), which look like 

threads of DNA that links CFS loci on the separating sister chromatids. UFBs are different from 

other anaphase bridges because they lack histones and cannot be visualized with conventional 

DNA dyes, such as DAPI (K. Chan, North, and Hickson 2007). Instead, UFBs are visualized by 

probing for proteins such as PLK1-interacting checkpoint helicase (PICH or ERCC6L), 

FANCD2, FANCI, and BLM69–71, which are important for the resolution of UFBs (Baumann et 

al. 2007; Biebricher et al. 2013; K. L. Chan and Hickson 2011).  
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Although UFBs can be observed with low-dose APH, their frequency is greatly increased 

after the depletion of MUS81, SMC2, or other proteins that are involved in MiDAS 

(Minocherhomji et al. 2015). Also, large p53-binding protein 1 (53BP1 or TP53BP1) foci co-

localize with CFSs in the subsequent G1 phase, demonstrating that UFBs at CFSs represent 

DNA that fails to complete replication in M phase (Minocherhomji et al. 2015). The fate and 

biological importance of UFBs are not completely understood, but they are hypothesized to have 

a role in genome instability, including generating DNA breaks, genome rearrangements, and 

chromosomal non-disjunction (Minocherhomji et al. 2015; Baumann et al. 2007).   

 

Incorrect Fork Start and DNA Repair Resulting in CNVs 

CNVs are thought to manifest when the stalled replication fork either starts incorrectly or 

repairs the resultant DSB incorrectly. One prevailing model, FoSTeS, proposes that the 3’ end of 

the stalled replication forks switch DNA templates in other replication forks using sequence 

microhomology in the templates (Lee, Carvalho, and Lupski 2007). The idea behind this model 

was initially observed in E. coli lac genes, where the data suggested that template switching, 

which initially was thought to only occur in a single replication fork, could occur between 

different, nearby forks (Slack et al. 2006).  Like the human CNVs, the E. coli genome 

rearrangements were marked by microhomologies at the breakpoints.  

Another prevailing model is MMBIR, which differs from the BIR discussed above in that 

the role of Rad51 is not as important (Hastings et al. 2009). In Rad51-dependent BIR, Rad51 

coats the resected ssDNA and aids the invasion of the 3’ end of the collapsed fork into a template 

to form a D-loop, where DNA replication eventually gets re-initiated (Pâques and Haber 1999; 

Bianco, Tracy, and Kowalczykowski 1998). The replication stress that induces CNV formation 
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may downregulate Rad51, but there have been studies reporting that BIR could occur with low 

Rad51 levels (Davis and Symington 2004; VanHulle et al. 2007), suggesting that BIR is still a 

possible mechanism for CNV formation. Also, MMBIR, as the name suggests, results in regions 

of microhomology at the breakpoint junctions. This also sets MMBIR different from the 

traditional BIR, as Rad51-mediated BIR requires longer regions of homology than 2-15bp, 

possibly around 100bp (Ira and Haber 2002; Mehta, Beach, and Haber 2017).  

Finally, the MMEJ model postulates that stalled replication forks collapse and create 

DSBs, which are repaired via MMEJ to create CNVs with microhomologies at the breakpoint 

junctions. MMEJ, sometimes called alternative NHEJ or back-up NHEJ, is unlike other end 

joining mechanisms like the classical NHEJ in that the process aligns the broken ends using 

microhomologies before joining the two ends (McVey and Lee 2008; H. Wang and Xu 2017). 

MMEJ was first observed in yeast, in which classical NHEJ-defective mutants still showed a low 

level of end joining marked by 8-10bp of microhomology (Ma et al. 2003). Like FoSTeS and 

MMBIR, MMEJ is error prone; the ends produced by DSBs are processed and resected before 

short stretches of microhomology are recognized for end joining (Sfeir and Symington 2015).  

 

Importance of Transcription in CFSs and CNV Hotspots  

Although late replication and origin scarcity are defining features for CFSs and CNV 

hotspots, it is not sufficient to cause instability at the sites since approximately 20% of the entire 

genome replicates late, but CNV hotspots only comprise 0.4% of the genome (Wilson et al. 

2015). Likewise, the AT-richness at CFSs is not sufficient for instability either since CFS 

instability is cell-type specific (Letessier et al. 2011; Le Tallec et al. 2013; Murano, Kuwano, and 
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Kajii 1989), meaning that shared characteristics like DNA sequence cannot be the sole 

determining factor.  

CFS and CNV hotspots are also preferentially located in coding regions of very large 

genes (D. I. Smith et al. 2006; Mai et al. 2007; M. Debatisse et al. 2012; Wilson et al. 2015), thus 

a possible determining factor is transcription. Several recent studies have reported that it is the 

transcription of these large genes that is crucial for CFS instability. Helmrich et al. focused on 

five large genes underlying CFSs (FHIT, IMMP2L, WWOX, CNTNAP2, and DMD) and 

demonstrated that the CFSs at the three transcribed genes (FHIT, IMMP2L, and WWOX) 

exhibited gaps and breaks after the APH treatment, but the other two un-transcribed sites did not 

(Helmrich, Ballarino, and Tora 2011). Wei et al. mapped 27 recurrent DSB clusters (RDCs), 

which were more prone to translocations after replication stress. All but one RDCs mapped to 

large genes (>400kb), and all but one RDCs were transcribed in the used cell line (P.-C. Wei et 

al. 2016).   

 

Transcription-Replication Collisions 

Currently, it is unclear how transcription is contributing to the instability at CFSs and 

CNV hotspots. We draw on what we know about these sites and propose that the instability at 

CFSs is due to a conflict between transcription and replication. Since transcription and 

replication occur on the same DNA template, if the two processes occur at the same time at the 

same region, conflicts are inevitable. This conflict between replication and transcription has been 

extensively studied in many different organisms — ranging from bacteria to humans — as the 

two processes are present and necessary in all forms of life.  
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Bacteria 

 Many studies have suggested that transcription is a natural impediment to replication as 

the two machineries can head-butt or the replication machinery (replisome) can collide with the 

transcription machinery from behind (Figure 1.7). Head-on collision occurs when the two 

machineries move toward each other, either causing a direct physical contact between the two 

machineries or halting two machineries due to the overwound DNA strands between them 

(Mirkin and Mirkin 2005b; Deshpande and Newlon 1996; Prado and Aguilera 2005).  

Co-directional collision occurs when the two machineries move in the same direction. 

Because replisomes move about 12-fold faster than RNA polymerase in bacteria, replisomes can 

collide with the transcription machinery from behind (Mirkin and Mirkin 2005b; Hwang and 

Kornberg 1992; Breier, Weier, and Cozzarelli 2005). The collision leads to a stalled replication 

fork and possibly causes some members of the replisomes to dissociate (Goranov et al. 2009; 

Su’etsugu and Errington 2011). The failure to resolve these conflicts induced by the collision can 

lead to genome instability in bacteria (Vilette, Ehrlich, and Michel 1995; Gan et al. 2011).   

  The bacterial genome has evolved so the majority of the transcribed genes are oriented in 

the same direction as the replisome movement, minimizing head-on collisions (Brewer 1988). 

Although co-directional collisions will occur, studies show that co-directional collisions are not 

as detrimental to the replication fork movement as head-on collisions (Mirkin and Mirkin 2005b; 

Vilette, Ehrlich, and Michel 1995). Hence, orienting most of the transcribed genes co-directional 

to the replisome movement would not eliminate all collisions but minimize the more harmful 

consequences.  
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Yeast 

 Unlike bacteria, eukaryotes have limited their DNA replication in the S phase of the cell 

cycle, which allows the cells to transcribe during the non-S phases to avoid conflicts between 

replisomes and transcription machinery. Transcription does occur during S phase, but generally 

the domains undergoing transcription are spatially separated from the domains going through 

replication (Wansink et al. 1994; X. Wei et al. 1998). 

Furthermore, eukaryotic replisomes and transcription machineries travel in similar speeds 

(Hiratani et al. 2008; Darzacq et al. 2007; Pérez-Ortín, Alepuz, and Moreno 2007; Singh and 

Padgett 2009; Veloso et al. 2014). These observations from previous studies imply that co-

directional collisions between replisomes and transcription machinery are less likely in 

eukaryotes, although such collisions were observed in budding yeast using in vivo recombination 

constructs (Prado and Aguilera 2005).  

Head-on collisions in budding yeast were also shown to be more detrimental than co-

directional collisions, consistent with the observations in bacteria (Prado and Aguilera 2005).  

Unlike the bacterial genome, the co-orientation bias of transcription and replication is not 

obvious in the yeast genome, but this may be explained by the compact nature of the genome 

(Hamperl and Cimprich 2016). The compact-ness makes it more likely that the replication and 

transcription machineries encounter each other in either direction, which does not create an 

evolutionary need for the genome to evolve to create the co-orientation bias (McGuffee, Smith, 

and Whitehouse 2013). However, the yeast genome does seem to have mechanisms to minimize 

head-on collisions in other ways, as the highly transcribed ribosomal DNA transcription unit in 

yeast contains a replication fork barrier at the 3’ end to prevent replication fork progression 

toward the transcription machinery (Brewer and Fangman 1988).  
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Humans 

Potential conflict between replisome and transcription machinery is not as well 

characterized in humans as in other organisms, but studies do imply that human cells also 

experience similar conflicts (Hamperl et al. 2017; Helmrich, Ballarino, and Tora 2011). In 

human cells treated with replication stress-inducing drugs, replication fork stalling is thought to 

preferentially occur at transcribed regions, suggesting that replisomes and transcription 

machinery have conflicts (Tuduri et al. 2009; Helmrich, Ballarino, and Tora 2011).  

In dividing cells, the large genes in the human genome are expected to take more than 

one complete cell cycle to be fully transcribed based on their length, the speed of the 

transcriptional machinery, and the average time it takes for a cell to complete a cell cycle 

(Helmrich, Ballarino, and Tora 2011). Consistent with the theme seen in other organisms, the 

human genome is organized such that replication and transcription tend to be oriented in the 

same direction (Petryk et al. 2016). The co-directional collisions are not as detrimental to the 

replication fork movement as head-on collisions in human cells as well (Hamperl et al. 2017). 

This observation supports the idea that head-on collisions are more detrimental for the genome 

than the co-directional collisions across species.  

 

Role of R-Loops in Transcription-Replication Conflict  

R-loops are RNA/DNA hybrids that rarely form as a result of transcription and are 

thought to form via “thread-back” model, when the nascent RNA invades the duplex DNA once 

it leaves RNAP (RNA polymerase). R-loops are natural intermediates during E. coli plasmid 

replication (Itoh and Tomizawa 1980), mitochondrial DNA replication (Xu and Clayton 1996; 
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Pohjoismäki et al. 2010), and immunoglobulin class switching (Reaban and Griffin 1990). In 

addition to these in vivo observations, R-loops were initially thought to be rare byproducts of 

transcription, but R-loops are now thought to play an important role in regulating gene 

expression. R-loops tend to cluster near the GC-rich 5’ and 3’ ends of transcribed genes and are 

associated with relevant histone marks to activate transcription or facilitate termination (Ginno et 

al. 2013).  

How R-loops regulate transcription is unknown, but recent studies have proposed that R-

loops induce epigenetic changes to regulate gene expression. Skourti-Stathaki et al. (2014) 

demonstrated that R-loops and H3K9me2 (a repressive mark) co-localize at the termination 

regions of coding genes, suggesting a potential functional link between the two (Skourti-

Stathaki, Kamieniarz-Gdula, and Proudfoot 2014); however, it is not clear whether R-loops 

recruit the epigenetic signature or the other way around. Another study has proposed that R-loop 

accumulation at the 5’ UTR either recruits H3K4me3 (an active mark) or protects the promoter 

from DNA methyltransferases to activate transcription, suggesting that R-loops may recruit the 

histone marks (Ginno et al. 2012).  

Although R-loops have regulatory roles, they are also a threat to genome integrity. Groh 

et al. showed that R-loops form in the repeat expansion of FXN (GAA repeats) and FMR1 (CGG 

repeats) genes, which are associated with Friedreich ataxia (FRDA) and Fragile X syndrome 

(Campuzano et al. 1996; Kremer et al. 1991; S. Yu et al. 1991; Verkerk et al. 1991; Oberlé et al. 

1991), respectively. The R-loop accumulation led to H3K9me2 upregulation at least in FXN, 

silencing the gene and contributing to the pathology of FRDA (Groh et al. 2014).  

In addition, the structure itself can be vulnerable to DNA damage, leading to mutations. 

The ssDNA in R-loops is vulnerable to various enzymes like AID, an enzyme that initiates the 
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class switch recombination (Muramatsu et al. 2000; Revy et al. 2000; Petersen-Mahrt, Harris, 

and Neuberger 2002; Chaudhuri et al. 2003; Dickerson et al. 2003; Pham et al. 2003), and 

XPF/XPG, two enzymes involved in the nucleotide excision repair pathway (NER) (Zotter et al. 

2006; Houtsmuller et al. 1999; Mone et al. 2004). The breaks in the ssDNA may result in DSBs, 

which could incorrectly resolve into genome rearrangements like CFS gaps/breaks and CNVs.   

Additionally, R-loops are hypothesized to stabilize the RNAP during head-on replication-

transcription collisions since RNA/DNA hybrids are more stable than DNA/DNA or RNA/RNA 

duplexes (Roberts and Crothers 1992; Lesnik and Freier 1995; Chien and Davidson 1978). Thus 

when there is a conflict between the replisome and transcription machinery (especially during a 

head-on collision), the transcription machinery cannot be ejected from the DNA because of the 

stable R-loop (Figure 1.8), thereby dissociating the replisome. Helmrich et al (2011) showed a 

link between CFS instability and R-loops; the authors detected R-loops in the middle of 

FRA3B/FHIT, unlike in the middle of Cyclin B1, a non-CFS/hotspot gene. The R-loop 

accumulation was exacerbated upon APH addition and even further upon knockdown of 

RNASEH1, an enzyme that resolves R-loops. RNASEH1 knockdown increased the instability at 

three CFSs (FRA3B, FRA16D, and FRA7K) and vice versa. These data imply that R-loops form 

in middle of the CFS genes with replication stress, and R-loop accumulation increases CFS 

instability.  

 

CFS and CNV Hotspot Genes Are Clinically Relevant 

Based on the existing models, we propose that transcription poses a risk for instability in 

replicating cells, which could lead to various human diseases and disorders. A number of genes 

underlying CFSs and CNV hotspots in cultured cells correspond to clinically relevant human 
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genes. Curiously, many of the largest human genes are important for neuronal development and 

function (Wilson et al. 2015; P.-C. Wei et al. 2016). Wei et al. has shown that many DSB-

mediated translocation and other genome rearrangement hotspots are in genes with neuron-

specific functions. Consistent with this observation, deletion CNVs within AUTS2, 

IMMP2L, NRXN1, and CNTNAP2 are linked to autism spectrum disorder, intellectual disability, 

and other psychiatric disorders (Mefford et al. 2010; Beunders et al. 2013; Nagamani et al. 2013; 

Maestrini et al. 2010; Gregor et al. 2011; Tucker et al. 2014; Friedman et al. 2008; Elia et al. 

2010; Mikhail et al. 2011; Veerappa et al. 2013).  

Many previous studies also have reported deletions of CFSs and CNV hotspots, such as 

FRA3B and FRA16D (underlying genes are FHIT and WWOX, respectively), in cancer cell lines 

and primary cancer samples (Saldivar, Shibata, and Huebner 2010; Iliopoulos et al. 2006; M. M. 

Le Beau et al. 1998; Kuroki et al. 2002; Paige et al. 2001; Siprashvili et al. 1997), leading to 

thinking that many of the underlying large genes are tumor suppressor genes. The induced 

deletion CNVs are also found in numerous human cancers including gastrointestinal tract, 

cervical, lung, and breast, and according to a meta-analysis of The Cancer Genome Atlas 

database, 22 out of the 70 focal deletion regions are located in the large genes (Glover, Wilson, 

and Arlt 2017).   

In addition, CFSs and CNV hotspots can facilitate cancer development by providing 

preferential sites for viral DNA integration. FRA3B, one of the most extensively studied CFSs, 

contains a human papilloma virus (HPV-16) integration site in human cervical carcinoma (Wilke 

et al. 1996). In addition, Hu et al. has found that HPV integration site junctions were 

characterized with microhomology, which is also present in CNV breakpoint junctions; the 
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authors proposed that viral integration uses the same FoSTeS/MMBIR pathways that are thought 

to drive CNV formation (Hu et al. 2015).  

The distribution of the induced CNVs is strikingly similar to that observed in cancers and 

in some individuals with autism and intellectual disability (Glover, Wilson, and Arlt 2017; 

Beunders et al. 2013), suggesting some type of replication stress is driving instability. As 

discussed in an earlier section, in cancer cells, a possible source of in vivo replication stress is 

oncogene activation. Oncogene activation can lead to deregulated DNA replication and 

accumulation of R-loops and reactive oxygen species (Gaillard, García-Muse, and Aguilera 

2015). Previous studies have shown that aberrant activation of cyclin E or HRASV12 increases 

instability at some known CFSs and CNV hotspots but also at a number of unique sites (Miron et 

al. 2015) and that cyclin E overexpression can lead to genomic instability (Jones et al. 2013; 

Ekholm-Reed et al. 2004).   

 

Other Fragile Sites and CNVs  

The models and properties presented so far are the most relevant for a subset of the most 

unstable CFSs and CNV hotspots. CNVs in hotspots comprise a large portion of all detected 

CNVs (more than 40%), but the majority of CNVs are still in non-hotspot regions (Wilson et al. 

2015). It is not clear how these non-hotspot CNVs form, although it is possible that the same 

mechanism for hotspot can apply to these CNVs since regions with one to five CNVs are still 

significantly enriched in transcribed large genes (Wilson et al. 2015).  

 As stated above, there are other types of fragile sites and CNVs that were not as 

extensively covered in this chapter. Based on what is known so far, the mechanisms for rare 

fragile sites and recurrent CNVs are different from the mechanisms for CFSs and nonrecurrent 



 23 

CNVs. Rare fragile sites, which are characterized by repeat expansions, are thought to occur 

based on the DNA replication perturbations from DNA secondary structures (Zlotorynski et al. 

2003; Sutherland 2003; Schwartz, Zlotorynski, and Kerem 2006). Recurrent CNVs, 

characterized by low-copy repeats, are thought to arise via NAHR (Hastings et al. 2009).   

Furthermore, Barlow et al. recently identified a novel class of fragile sites called Early-

Replicating Fragile Sites (ERFSs), which replicate early in the cell cycle, are preferentially 

located at repetitive elements and at CpG dinucleotides (i.e. promoters), and not enriched in large 

genes unlike CFSs. However, both ERFSs and CFSs are increased in instability upon replication 

stress, ATR knockdown, and oncogenic stress. In addition, ERFSs and CFSs are both associated 

with transcription, as more than 86% of ERFS-associated genes are among the highest 

transcribed genes (Barlow et al. 2013). Although the exact mechanism for ERFS is yet to be 

elucidated, Barlow and colleagues proposed that the persistent damage at ERFSs could carry into 

the next G1 stage of the cell cycle, becoming a preferential site for translocation with sites of 

AID damage.  

 

Rationale for Dissertation 

 Maintaining genome stability is crucial for an organism’s viability. The two forms of 

genome instability discussed above, CFSs and CNVs, are involved with many human diseases 

and conditions. Yet, the mechanisms that lead to the instability at CFSs and CNV hotspots are 

currently unclear. Recent efforts have characterized CFSs and CNV hotspots in a genome-wide 

fashion in order to elucidate what makes them relatively unstable compared to other parts of the 

genome. Understanding their unique features will help generate more hypotheses about how 

CFSs and CNV hotspots become unstable.  
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Investigating the relationship between replication and transcription at these sites may 

shed light to the mechanism. Proper and complete replication is crucial for maintaining stability, 

but the transcription of large genes at these sites can potentially interfere with the replication 

process. Future experiments should focus on uncovering the relationship between replication and 

transcription at CFSs and CNV hotspots. Uncovering the relationship will not only grant us an 

insight into what leads to instability at these sites, but what is required to maintain the genome 

integrity to prevent human diseases and conditions that are induced by the instability.  
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Figures 

 
Figure 1.1. CFSs are sites that exhibit instability as gaps and breaks on metaphase chromosomes. FRA16D and 
FRA3B are two well-characterized CFSs on human chromosomes 16 and 3, respectively. Adapted from Durkin and 
Glover (2008).  

 

 

 

Figure 1.2. Possible mechanisms for nonrecurrent CNVs. Upon replication stress, replication fork may stall and even 
collapse, creating DSB(s). When the collapsed fork does not restart correctly via FoSTeS or MMBIR, or if the DSB 
is repaired incorrectly through MMEJ, nonrecurrent CNVs may result.  

 



 26 

 

 

Figure 1.3. Cell culture system can be used to study nonrecurrent CNVs. Cells are first exposed to mild replication 
stress for a defined amount of time. Afterward, the cells are plated at low density to isolate clonal populations. 
Clonal populations are picked, and the genomic DNA is extracted for downstream applications such as microarrays. 

 

 

Figure 1.4. Replication stress induces CNVs across the human genome. Each shape represents one observed 
incidence of a CNV. Green triangles represent spontaneous CNVs that were observed with no replication stress. 
Blue squares represent CNVs induced by APH. Red circles represent CNVs induced by HU. Duplication CNVs are 
on top of the chromosome ideograms, and deletion CNVs are on the bottom. Some genomic regions were more 
prone to CNVs than others. Adapted from Arlt et al (2011).  

 

Expose cells to 
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Figure 1.5. CFSs and CNV hotspots are the same loci.  (A) Out of nine hotspots in human fibroblast cell line 090, 
only one hotspot (9p21.3) did not show any gaps or breaks. (B) CNVs on Chromosome 3 are denoted as red circles 
on top of the chromosome ideogram, CFSs as red squared on the bottom. The metaphase chromosome shows a 
break at 3q13.31, where the LSAMP gene is located. Adapted from Wilson et al (2015). 
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Figure 1.6. Dormant origins fire to ensure complete replication when two neighboring replication forks stall. (A) 
When one fork stalls, a neighboring fork travels further than usual to converge with the stalled fork. (B) When two 
neighboring forks stall, the DNA between the forks remains unreplicated. (C) When there are no stalled forks, the 
flanking origins fire and the forks converge before the dormant origin fires. (D) When two neighboring forks stall 
and there is a dormant origin between the forks, it fires to complete replicating the region that might otherwise be 
unreplicated, as in (B). Adapted from Blow, Ge, and Jackson (2011).  
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Figure 1.7. Stalled or collapsed replication forks can be resolved in several ways. Top left: A successful restart and 
completion of replication leads to an intact, normal genome. Top right: If unreplicated regions persist through late S 
phase, replication may be completed as late as M phase via mitotic DNA synthesis (MiDAS), resulting in a CFS gap 
or break. Bottom right: If the unreplicated DNA is not resolved and persists to anaphase, ultrafine anaphase bridges 
can form at these sites. Bottom left: If the stalled or collapsed forks are repaired or restarted through an error-prone 
mechanism, genome rearrangements like CNVs can occur.  
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Figure 1.8. R-loops stabilize RNAP during transcription-replication machinery collisions. (A) Co-directional 
collision, which occurs when the replisome collides with the RNAP from behind, ejects the protein from the DNA 
template. (B) Similarly, even when there’s an R-loop behind the RNAP, the replisome can still eject the protein. (C) 
In a head-on collision, neither RNAP nor replisome can proceed, which stalls both enzymes before RNase H 
resolves the R-loop and let the replisome eject RNAP and proceed. Adapted from Lin and Pasero (2017).  
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Tables 

 

Table 1.1. Large genes in CNV hotspots are associated with various human diseases. (a) The table provides 
examples of genes with human disease-associated CNVs and is not exhaustive. (b) Gene sizes are from the Ensembl 
annotation. (c) Abbreviations: ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder; ID, 
intellectual disability. (d) CNV counts are from combined 090 and HF1 fibroblast data. e: CNV counts are from 
mES cell data. Adapted from Wilson et al (2015).  
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Chapter 2 — Genome Instability Can Be Predicted from Nascent Transcription Profile 

 

Summary 

Instability at CNVs and CFSs are distinct forms of structural chromosome instability 

followed by replication inhibition. Although they share a common induction mechanism, it is not 

known how CNVs and CFSs are related or why some genomic loci are much more prone to their 

occurrence. In Wilson et al., we compared large sets of de novo CNVs and CFS gaps/breaks to 

each other and to overlapping genomic features. We found that CNV hotpots and CFSs occurred 

at the same human loci in the same cultured cell line. Bru-seq, a nascent RNA sequencing 

method, further showed that the CNV hotpots (>5 CNVs in a region) and corresponding CFSs 

were enriched in large, transcribed genes in both human and mouse cells. I show in this chapter 

that nascent transcription profile of a particular cell line can be used to predict the sites of 

instability in the same cell line, in which the transcription of the large underlying gene was the 

determining factor for CFS and CNV hotspot instability. Unlike most transcribed genes, the 

hotspot genes replicate late and organize deletion and duplication CNVs into their transcribed 

and flanking regions, respectively, implying that the conflict between transcription and 

replication might be responsible for the mechanism leading to instability. Altogether, the results 

indicate that the transcription of large genes drives the locus- and cell-type-specific genomic 

instability upon replication stress, resulting in both CNVs and CFSs. 
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Introduction 

Recently, our group used large datasets of experimentally induced CNVs to characterize 

the genomic features contributing to CNV and CFS formation and their distribution profiles 

(Arlt, Ozdemir, Birkeland, Wilson, et al. 2011; Wilson et al. 2015). We compared the genomic 

locations between CNV hotspots (defined as regions with five or more CNVs) and CFSs in two 

cell lines, TERT-immortalized human fibroblasts called 090 and mouse embryonic stem cells. 

We observed that both forms of genome instability occur at the same loci in a given cell line.  

The CNV hotspots and CFSs tend to replicate very late in the cell cycle, as about half of 

all hotspots replicated in G2 (Figure 2.1); however, late replication alone does not explain why 

these regions were especially susceptible for CNV formation or CFS expression. About 20% of 

the entire human fibroblast genome replicates in G2, but not all of these regions are hotspots; in 

fact, hotspots/CFSs comprise only about 0.4% of the entire human genome. In addition, not all 

cell types show instability at the same hotspots and CFSs (Letessier et al. 2011), implying that 

there is a cell-type-specific factor rather than commonly shared characteristics (i.e. DNA 

sequence) that contributes to the instability at these sites. For example, DNA sequence alone 

cannot be a determining factor for CNVs and CFSs since all cell types share the same DNA 

sequence.  

Since transcription profiles can vary widely across different cell types, we reasoned that 

transcription could be the determining factor — in particular, transcription of large genes. It was 

known that CFSs overlapped with large genes (Mai et al. 2007; D. I. Smith et al. 2006; M. 

Debatisse et al. 2012), so predictably, the hotspots also overlapped with large genes. But in 

addition to correlating hotspots to large genes, we combined our previous CNV data and nascent 
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transcription data (Bru-seq) on 090 cells and demonstrated a strong association between large, 

active transcription unit (TU) and CNV hotspots.  

Bru-seq is a novel technique that maps nascent RNAs using bromouridine (BrU) tagging 

(Paulsen et al. 2014). The BrU-labeled RNA is pulled down with anti-BrdU antibodies and then 

is used for construction of cDNA libraries for high throughput sequencing (Figure 2.2). Unlike 

the traditional RNA-seq, Bru-seq sequences nascent RNAs, not mature RNAs — doing so 

reveals the entire span of the TU, not just the exons (Paulsen et al. 2014). In addition, Bru-seq 

differs from other nascent RNA sequencing techniques, such as GRO-seq (Global Run-On 

Sequencing), such that the BrU labeling occurs in vivo, bypassing the need to isolate the nuclei 

for the nuclear run-on step (Core, Waterfall, and Lis 2008; Paulsen et al. 2013). In addition, other 

nascent RNA sequencing techniques cannot be used to sequence nascent transcripts in altered 

environments (e.g. environmental stimuli or stress) since the techniques work well at optimized 

experimental conditions.  

The CNV hotspots showed almost an 80% overlap with a large active TU (larger than 

500kb) on average (Figure 2.3). Conversely, 11 out of 12 large active TU (larger than 1 Mb) 

overlapped with a CNV (Figures 2.4). Together, the two correlations show that the active TU 

length is a robust cell-type-specific predictor of locus instability under replication stress — as 

size of TU increases, so does the instability of the corresponding region. 

We hypothesized that due to the strong association between large active TU and large 

genes, that we could choose a hotspot gene based on the Bru-seq profile. Here, I tested whether I 

could predict where the deletion CNVs and CFSs will occur solely based on the nascent 

transcription profile in a cell line with no prior CFS or CNV data.  
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Results 

To determine whether our observations establish a predictive model for CNV and CFS 

formation under replication stress, we performed a prospective study of a distinct human 

fibroblast cell line called HF1 for which we have reported detailed Bru-seq descriptions, but no 

prior CNV or CFS data. Like 090, HF1 is a TERT-immortalized normal human fibroblast line. 

However, Bru-seq revealed differences in their transcriptional profiles (Figure 2.5), including 

their active TUs larger than 1Mb (Table 2.1). The difference in their transcriptional profile 

presumably stems from the fact that 090 and HF1 are both human fibroblasts, but they have a 

different origin. 090 is a normal skin fibroblast cell line from a 37-year-old female (Arlt et al. 

2009) whereas HF1 is a normal foreskin fibroblast cell line from an infant (Paulsen et al. 2013).    

Some differences between the transcriptional profiles of the two fibroblasts were on-or-

off differences, but others were one line expressing a much longer isoform of a gene. Based on 

these differences, we predicted that HF1 would fail to show CNVs at the most intense hotspot in 

090, LSAMP (3q13.31), since HF1 did not express the gene. Conversely, we predicted that HF1 

would show CNVs at its much longer 1.6-Mb DAB1 isoform (1p32.1), unlike 090, which 

expresses only a shorter isoform (<500kb).   

I performed SNP microarray analysis on 14 HF1 clones treated with 0.4 µM APH to 

detect CNVs (Table 2.2). For genes whose long isoforms were expressed in both HF1 and 090, 

15 de novo CNVs were seen in 14 HF1 clones, and 20 CNVs in 171 treated 090 cell clones. In 

contrast, we detected only one CNV in the seven genes for which HF1 had a much shorter or no 

TU, compared to 65 CNVs in 090 clones (P = 1.4 × 10−7 by Fisher’s exact test). As we predicted, 

we saw no CNVs at LSAMP in any of the 14 HF1 clones and no CNVs at DAB1 in any of the 

171 090 clones.  
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To increase statistical power at LSAMP and DAB1, I scored an additional 36 HF1 cell 

clones for loss-of-heterozygosity (LOH) at one informative SNP in the middle of the 

LSAMP gene and six informative SNPs in along the length of the DAB1 gene (Figure 2.6A and 

B). The LOH indicates a deletion CNV at one of the two alleles. Since the SNPs were 

informative, I was able to utilize Restriction Fragment Length Polymorphism (RFLP) to detect 

the LOH in each clone. The presence of only restriction-enzyme cleavable or un-cleavable 

products indicated LOH and the presence of a deletion CNV (Figure 2.6C), subsequently 

confirmed by Sanger sequencing (Figure 2.6D). 

Consistent with our hypothesis, I detected no LOH events indicative of deletion CNVs in 

the un-transcribed HF1 LSAMP gene, for a total of zero out of 100 HF1 LSAMP alleles with 

CNVs (P = 0.018) (Figure 2.6A and E) In contrast, we detected two HF1 CNVs at DAB1 (P = 

0.051) in 50 HF1 cell clones (Figure 2.6B and E). Thus, we were able to use the Bru-seq data to 

correctly predict that DAB1 has a high risk for CNVs in HF1, a cell line with no prior CNV data. 

Moreover, 090 fibroblasts had CNV hotspots and large TUs at both AUTS2 (7q11.2) and 

the nearby MAGI2 (7q21.11) genes, while HF1 showed CNVs and a large TU only 

at MAGI2 (Table 2.2 and Figure 2.6F). We therefore predicted that both of these 7q loci would 

be fragile in 090, but that only MAGI2 would be fragile in HF1. This prediction seemed to be 

confirmed on G-banded chromosomes (Figure 2.6G), but these metaphases lacked the resolution 

required to define the precise band at which all 7q11–q21 breaks occurred. We therefore 

performed metaphase FISH using BAC probes specific to AUTS2 and MAGI2 (Figure 2.6H). 

Because CFS loci are larger than BAC probes, a CFS will have FISH signals immediately 

adjacent to, or split by, different breaks. 090 demonstrated this CFS FISH pattern at 

both AUTS2 (28 breaks in 188 Chromosome 7 homologs) and MAGI2 (16 breaks in 188 
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Chromosome 7 homologs). Consistent with predictions, HF1 only had CFS expression 

at MAGI2 (21 breaks in 300 Chromosome 7 homologs) (Figure 2.6I). 

 

Discussion 

The question we initially sought to answer was why certain genomic loci are more 

susceptible to CNVs and CFSs under replication stress. We divided CNV regions into groups 

ranging from singletons (regions with only one CNV) to hotspots (regions with five or more 

CNVs). Although the correlation between large TUs and hotspots is the strongest, the association 

of transcription with CNV formation in all three groups (Fig. 2.3) indicates there is a spectrum of 

risk for locus instability — a risk that involves transcription.  

Previous studies have also implicated transcription in genome instability (Helmrich et al. 

2013; Hamperl et al. 2017; De Septenville et al. 2012; Mirkin and Mirkin 2005a; N. Kim and 

Jinks-Robertson 2012). But how does transcription contribute to genome instability? Does the 

mechanism involve a possibly antagonistic relationship between transcription and replication? 

Our future experiments focus on how transcription and impaired replication may interact and 

lead to structural rearrangements. For our CNV mechanism model, we draw upon two existing 

models of CNV formation — Fork Stalling and Template Switching (FoSTeS) and MMBIR 

(Hastings et al. 2009; Lee, Carvalho, and Lupski 2007; F. Zhang et al. 2010). We predict that de 

novo breakpoint junctions at stalled replication forks are created by invasion of nascent DNA 

strands into ectopic locations characterized by microhomology.  

In addition, a mathematical model predicts probability of fork failure at a locus is 

dependent on the distance that a fork must travel (N) divided by the median distance that forks 

travel prior to stalling (Ns) (Newman et al. 2013). Based on this equation, inhibiting replication 
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with replication stress decreases Ns and leads to increased fork failures, FoSTeS/MMBIR events, 

and ultimately, CNV formation genome-wide. 

We extend this logic and propose that increased instability risk within active TUs very 

likely reflects a transcription-dependent increase in fork failure due to replication-transcription 

collisions, R-loops that impede fork progression, or fork slowing in transcribed chromatin 

(Figure 2.7B). In particular, R-loops have shown to play a role in instability at CFSs, presumably 

by stabilizing the transcription machinery and leading to replication fork failures. Recent studies 

have shown that accumulation of R-loops can trigger DNA damage response and replication 

stress can increase the number of R-loops, suggesting that R-loops play a role in genome 

instability.  

Replication and transcription cannot be independent factors since both processes use the 

same DNA template. Transcription and replication timing are linked, and our study provides an 

especially powerful comparison by using Bru-seq to monitor transcription of nascent mRNAs, 

not mature mRNAs, without relying on existing gene annotations since the data reveals the entire 

span of the transcription unit.  

The large TUs display disproportionately increased frequencies of spontaneous and 

replication-stress-induced CNVs and CFSs. In our model, named Transcription-Dependent 

Double-Fork Failure (TrDoFF), a double-fork failure (concurrent stalling of two converging 

replication forks) leads to unreplicated DNA between them. The resolution of unreplicated 

regions in late S or even G2 phase by error-prone replication restart would lead to CNV 

formation via FoSTeS/MMBIR (Hastings et al. 2009; Lee, Carvalho, and Lupski 2007; F. Zhang 

et al. 2010; W. Gu, Zhang, and Lupski 2008). 
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The TrDoFF model stems from findings that large TUs correspond to late-replicating 

domains in which forks proceed inward from the boundaries — this will make the middle of 

large active TUs especially susceptible to instability, which is what we have observed in our cell 

lines. Although it is known that CFSs and CNV hotspots often replicate late (M. Le Beau 1998; 

Mi. Debatisse, Achkar, and Dutrillaux 2006), it is the act of transcribing late-replicating DNA 

that is especially dangerous to the stability of these loci. In other words, late replication alone 

does not dictate whether a region is unstable; late replication and large active TU dictate the 

instability at these sites.  

An implication of the TrDoFF model is that large TUs organize the locations of fork 

failures in a manner consistent with CNV formation. This is predicted by the FoSTeS/MMBIR 

model, in which the template switching across the unreplicated DNA will lead to deletions and 

the switching toward already replicated DNA will lead to duplications (Verdin et al. 2013; 

Hastings et al. 2009) (Figure 2.7B). Thus, our observations indicate that active large TUs are not 

only the causative factor for CNVs in the TrDoFF model, but also the determining factor for 

their profile and distribution. The replication delay was the most severe in the middle of large 

TUs, which implies that origins are scarce in the middle and the forks will stall surrounding the 

middle of the gene — leading to deletions in the middle of the gene and duplications flanking the 

gene. The scarcity of origins in the middle of large TUs is consistent with observations in 

selected CFSs, where firing of late origins that typically remain dormant but fire under 

replication stress (Figure 2.7A).  

The pre-replication complexes (pre-RCs) are only licensed in G1 and must remain bound 

for firing to occur in S-phase. Movement of RNA polymerase through an origin can sweep away 

a pre-RC, as demonstrated in yeast (Snyder, Sapolsky, and Davis 1988; Lõoke et al. 2010). We 
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thus suggest that dormant origins do not rescue TrDoFFs at CNV hotspots/CFSs because the 

transcription of the gene has persisted into S and removed those pre-RCs before they can be 

utilized (Fig 2.7B). Since the genes are so large, it is conceivable that they are transcribed in S, a 

characteristic unique to these large genes. Most genes are transcribed in G1, presumably to avoid 

the transcription-replication conflict.  

The TrDoFF model, however, does not exclude other forms of transcription-replication 

conflict (e.g. R-loops). It is possible that the other forms are also contributing to the instability at 

the hotspots, as seen in previous studies looking at the role of R-loops in CFS expression and 

DNA damage response (Aguilera and García-Muse 2012; Sollier and Cimprich 2015). In 

Chapter 4, I tested whether manipulating R-loops changes CNV profiles at the hotspots and 

genome-wide.  

In our study so far, two different human fibroblast cell lines with different Bru-seq 

profiles were used to associate large active TUs and genome instability, A potential criticism of 

this approach is that the two cell lines, although they are both human fibroblasts, are still 

different cell lines. Other differences between the two human fibroblast cell lines might be 

contributing to the different CNV profiles, not necessarily the differences in transcription. In 

Chapter 3, I addressed this by creating a mutant cell line that does not express the long isoform 

of a hotspot gene and comparing the CNV frequency between the mutant cell line and the 

isogenic, parental cell line.  
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Materials and Methods 

Cell Lines and Culture Conditions 

Culturing human 090 fibroblast cell line has been described previously (Arlt et al. 

2009, 2011, 2012, and 2014). The HF1 human foreskin fibroblast cell line is the same as used in 

descriptions of Bru-seq (Paulsen et al. 2013). HF1 cells were cultured in MEM supplemented 

with 15% FBS, PenStrep, L-Glutamine, and non-essential amino acids.  

 

Bru-seq  

Bru-seq methods were previously described (Paulsen et al. 2013). Human 090 fibroblasts 

were processed by growing cells in the absence or presence of 0.4μM APH for 24 hours, 

exposing them to Bromouridine (BrU) for 30 min in the same media, immunoprecipitating 

labeled RNAs, constructing strand-specific RNA-seq libraries, sequencing using Illumina HiSeq, 

and mapping reads to the reference genome (hg19 build).  

 

De novo CNV Creation and Analysis 

Inducing CNVs in 090 cells have been described previously (Arlt et al. 

2009, 2011, 2012, 2014). The CNVs were detected using Illumina HumanOmni1 and 

HumanOmni2.5 BeadChip SNP microarrays and NimbleGen 12 × 270k array comparative 

genome hybridization (aCGH) with the help from the University of Michigan Sequencing Core. 

To create replication stress-induced CNVs in HF1 cells, cells were treated with 0.4 µM 

APH for 72 hours, followed by a 24-hour recovery period before plating at low density for 

single-cell clones. Cells were plated at a density of 100-200 cells per 10-cm culture dish and 

http://genome.cshlp.org/content/25/2/189.full#ref-3
http://genome.cshlp.org/content/25/2/189.full#ref-3
http://genome.cshlp.org/content/25/2/189.full#ref-4
http://genome.cshlp.org/content/25/2/189.full#ref-5
http://genome.cshlp.org/content/25/2/189.full#ref-6
http://genome.cshlp.org/content/25/2/189.full#ref-3
http://genome.cshlp.org/content/25/2/189.full#ref-3
http://genome.cshlp.org/content/25/2/189.full#ref-4
http://genome.cshlp.org/content/25/2/189.full#ref-5
http://genome.cshlp.org/content/25/2/189.full#ref-6
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individual clones isolated using cloning rings after 10-14 days and expanded. Genomic DNA 

was isolated using Qiagen’s Blood and Tissue kit. De novo CNVs were detected using the 

HumanOmni2.5 BeadChip with the help from the University of Michigan Sequencing Core. 

We designed PCR primers flanking informative SNPs that conferred a RFLP using 

primers and restriction enzymes listed in Table 2.3. We designed the PCR primers below to flank 

the informative SNPs in both 090 and HF1 fibroblasts. PCR was performed on genomic DNAs 

isolated using the Gentra PureGene kit from APH-treated HF1 cell clones, followed by digestion 

with the indicated restriction enzymes and agarose gel electrophoresis.  

The number of 090 CNV alleles detected by microarray and HF1 CNV alleles detected 

by microarray or SNP PCR were compared using Fisher’s exact test relative to the total number 

of alleles tested. 

 

CFS Analysis and FISH 

CFS breakage was induced by exposure of 090 or HF1 fibroblasts to 0.4µM APH for 24 

to 36 hours prior to cell harvest for metaphase chromosome preparations. Cells were fixed onto 

slides for Giemsa banding or FISH. Chromosome breaks and gaps were analyzed in 100 

metaphases from each cell line. At selected loci, the locations of fragile site breaks were refined 

using BAC FISH probes obtained from BlueGnome (RP5-837C9 and RP11-479M23) hybridized 

to metaphase spreads.  
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Figures 

 

Figure 2.1. CNV hotspots replicate late compared to rest of the genome. Human fibroblast replication timing data 
for the entire human genome, regions with one, two to four, or more than five CNVs. The numbers on the y-axis 
represents the average percentage of the regions in each category that was replicating at each cell cycle stage.  

 

 

 

Figure 2.2. A schematic diagram summarizing Bru-seq workflow.  
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Figure 2.3. CNV hotspots correspond to active large transcription units. The 090 CNV hotspots are enriched for TUs 
larger than 500 kb (shown in red), shown by the significant deviation from the randomly generated data (shown in 
black).  

 

 

 

Figure 2.4. CNV hotspots correspond to large active TUs. The large TUs in 090 are enriched for CNVs (shown in 
red), demonstrated by the significant deviation from the randomly generated data (shown in black).  
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Figure 2.5. MA plots comparing human 090 to HF1 fibroblasts. Each dot represents one gene. Red dots represent 
genes with a significant inter-sample difference as determined by DESeq (Anders and Huber 2010) at a false 
discovery rate of 0.05).  
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Figure 2.6. Cell-type-specific prediction of unstable loci at active large transcription units. (A, B) Chromosome 
region profiles, for genes LSAMP and DAB1, respectively, with CNVs colored by their detection in either 090 or 
HF1 fibroblasts. CNVs are drawn as horizontal bars. The number of CNVs overlapping each genome bin is plotted 
as a gray histogram: positive CNV counts, duplications/gains; negative counts, deletions/losses. Bru-seq 
transcription data are plotted as follows: positive RPKM, forward transcription; negative RPKM, reverse 
transcription. Genes are shown as Ensembl transcripts: green lines, forward gene orientations; red lines, reverse 
orientations. Diamonds mark the positions of SNP RFLPs interrogated in HF1. (C) BccI digestion of SNP 
rs79114629 PCR products for HF1 parental cells and two APH-treated clones lacking (a and b) and containing (c 
and d) a deletion CNV. (D) Sequence analysis of clone c demonstrating LOH at SNP rs79114629. (E) Allele counts 
for LSAMP and DAB1, where 090 counts only include CNVs from treated clones detectable by the HF1 RFLP 
analysis. (F) Portions of 090 and HF1 Bru-seq transcription data relevant to CFS analysis at 7q11.22–q21.11, 
showing differential transcription of AUTS2. (G) Examples of G-banded chromosomes demonstrating breaks at 
7q11.22 in 090 (top) and 7q21.11 in HF1 (bottom). (H) Representative FISH on DAPI stained chromosomes using 
probes to AUTS2 (green, middle) and MAGI2 (red, right). 090 shows breaks at both loci in a single chromosome 
(top), while HF1 shows a break at MAGI2 (bottom). (I) Summary of 090 and HF1 CFS breaks with respect 
to AUTS2 and MAGI2 FISH probes. 
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Figure 2.7. Model for CFS and CNV formation at active large transcription units. (A) Replication fork failures, even 
double-fork failures, can usually be rescued by the firing of late “dormant” origins. (B) The Transcription-
dependent Double-Fork Failure (TrDoFF) model for extreme locus instability under replication stress proposes two 
mutagenic properties of active large TUs: (1) that they promote simultaneous failure of two converging forks, e.g., 
through the formation of R-loops; and (2) that they create large late-replicating domains where pre-RC eviction by 
prolonged transcription into S-phase prevents late origin firing. CFS breaks and deletion CNVs arise in the resulting 
unreplicated DNA, within the span of the TU, while duplications arise on the flanks, likely by template switching 
(red arrows). 
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Tables 

 

Table 2.1. CNVs in transcription units larger than or equal to 1Mb in 090 and HF1 fibroblasts 
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Table 2.2. List of APH-induced CNVs in HF1 

 

 

 

Table 2.3. List of primers and restriction enzyme used for RFLP analysis at each informative SNP for LSAMP and 
DAB1 genes. 
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Notes and Contributions 

This chapter is an adaptation of a prior publication: Wilson TE, Arlt MF, Park SH, 

Rajendran S, Paulsen M, Ljungman M, and Glover TW. 2015. Large transcription units unify 

copy number variants and common fragile sites arising under replication stress. Genome Res 

25(2): 189-200.  

I contributed to the generation of Figure 2.6A-E and all the Tables. Thomas Wilson did 

the bioinformatics, including the Bru-seq analysis and the association studies between CNV 

hotspots, large TUs, and replication timing. Martin Arlt performed FISH for 090 and HF1 cells 

and generated Figure 2.6F-I. Michelle Paulsen was responsible for conducting the wet lab 

portion of Bru-seq. The model in Figure 2.7 was a collaborative effort.  
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Chapter 3 — Knocking Down Transcription of a Large Gene Reduces Instability at the 
Same Locus 

 

Summary 

Although nonrecurrent CNVs are important in normal human genetic variation and 

disease, the molecular mechanisms that lead to their formation is unclear. Treating cells with 

replication stress-inducing chemicals leads to de novo CNVs throughout the genome, but they 

are often clustered at specific genomic regions. The sites that are more prone to instability, called 

hotspots, were found to be late replicating and enriched in >500kb transcribed genes that are 

associated with various human diseases, such as cancer and neurodevelopmental disorders. 

Between the late replication and transcription of large underlying genes, transcription was the 

determining factor for CNV hotspot instability. The instability was cell-type-specific, in which 

the site was only unstable in cell lines that express a long isoform of the underlying gene. In this 

chapter, I expand on this observation and compare APH-induced CNV frequency at a hotspot 

gene, FHIT, between a wild-type cell line and two mutant cell lines with FHIT transcription 

knocked down by a promoter deletion. Both FHIT knockdown mutant cell lines showed reduced 

APH-induced deletion CNV frequency throughout FHIT compared to that of wild-type, although 

APH did induce deletion CNVs in both the wild-type and the mutant cells at NLGN1, another 

hotspot gene. This demonstrates that the transcription of the large gene is indeed the determining 

factor for instability at the locus and underscores the importance of monitoring transcription 

profiles during progression of cancer or development to predict which sites will be the most 

prone to genome instability.   
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Introduction 

The study covered in Chapter 2 demonstrated a robust association between large active 

TUs and CFSs/CNV hotspots. It also showed that the presence of a large TU is the determining 

factor for whether a CFS/CNV hotspot is unstable or not, allowing us to predict the sites of 

instability based on nascent transcription profiles. 

 The caveat of the comparison made in Chapter 2 and previous CFS/CNV hotspot studies 

is that the analysis compared two different cell lines with many differentially expressed genes. 

Although both 090 and HF1 cells were both human fibroblasts, perhaps the differences in their 

CFS and CNV profiles were due to other differences between the cell lines, such as chromatin 

states, not their transcription profiles.  

 To address this issue, I used the CRISPR-Cas9 technology and created two mutant cell 

clones with a deletion spanning the promoter and the transcriptional start site of a CFS/hotspot 

gene. Comparing CFS and CNV hotspot instability between the promoterless mutant clones with 

the isogenic wild-type (WT) addresses that problem. In addition, I used two independently arisen 

mutant clones to account for off-target effects from the CRISPR-Cas9 modification.  

I used the GM11713 mouse-human somatic cell hybrid cell line and FHIT gene for this 

experiment. GM11713 (A9+3) cell line is a mouse A9 fibroblast cell line that contains one copy 

of human chromosome 3 tagged with a neomycin resistance gene (NeoR) (Ning et al. 1992). 

FHIT is a large gene (~1.5Mb long) that is located on human chromosome 3 at a well-

characterized CFS called FRA3B. The long isoform of FHIT is expressed in GM11713 and is a 

known CNV hotspot in this cell line (Durkin et al. 2008). CNVs in FHIT have been observed in 

various types of human cancers (Liming Wang et al. 2017; Miyawaki et al. 2012; Karras et al. 

2016; Joo et al. 2013; Saldivar, Shibata, and Huebner 2010; Saldivar et al. 2012).  
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We chose to work with GM11713 cells for several reasons. First, GM11713 cells were 

used in a previous study from our group for CNV studies. Durkin et al. (2008) characterized 

APH-induced deletion CNVs at FHIT in GM11713 cells and showed that the CNVs are clustered 

in the middle of the gene (Figure 3.1), resembling the deletion CNVs we observed in hotspots of 

human fibroblast cells and mES cells.  

Second, GM11713 cells have an advantage over other cell lines with respect to genome 

editing. The cells have only one copy of human chromosome 3, so only one copy of the human 

FHIT promoter had to be deleted to knock down the transcription of the gene. Although the 

CRISPR-Cas9 technology can be used to modify both alleles, the efficiency of biallelic 

modification is lower compared to efficiency of a monoallelic modification (Canver et al. 2014; 

X. Wang et al. 2015; Y. Wu et al. 2017).  

Third, since GM11713 cells only have one copy of FHIT, deletion CNVs in FHIT were 

easier to detect. In a normal diploid cell, a deletion CNV usually results in LOH; however, in 

GM11713, a deletion CNV means going from one to zero copies, rather than two to one. This 

allowed us to more easily measure the percentage of cells that had undergone a deletion CNV in 

a population using droplet digital PCR (ddPCR), a novel and sensitive technology that enables 

absolute quantification of nucleic acids in the sample (Hindson et al. 2011). Using ddPCR, if 

20% of the GM11713 cells have a deletion CNV at FHIT, there is a 20% reduction in the probe 

signal, as opposed to a 10% reduction in signal in a biallelic cell line.  

In this chapter, I describe my strategies to knock down FHIT transcript in GM11713 cells 

and to measure deletion CNVs quickly and reliably in a cell population using ddPCR. Using 

these two strategies, I provide additional evidence that transcription of the underlying large gene 

is the determining factor for CNV hotspot instability.   
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Results 

Generating Mutant Cell Lines with No Human FHIT Promoter 

CRISPR-Cas9 technology was used to delete the FHIT promoter in GM11713. Two 

guide RNAs (gRNAs) were designed to target two sites surrounding the gene’s transcriptional 

start site (TSS). The target sites were chosen such that deletion of the region between the two 

sites would remove the RefSeq-annotated TSS, some of the CpG islands, sites with the H3K27ac 

mark, and transcription factor-binding sites, which are either characteristics of mammalian 

promoters or active transcription (Antequera 2003; Creyghton et al. 2010; Z. Wang et al. 2008) 

(Figure 3.2A and B). We reasoned that ‘such a deletion would render the promoter silent and 

unable to initiate transcription even at a cryptic TSS, while leaving the deletion hotspot ~500 kb 

away fully intact. 

Clones with successful deletion of the promoter were identified using PCR (Figure 3.2C), 

in which the flanking primers amplify differently sized products for the WT (no deletion; 

2873bp) and promoterless mutant clones (deletion at the FHIT promoter; 717bp assuming the 

end joining occurs at the two cut sites with no resection). The two mutant clones, clone 1 (2-23) 

and clone 2 (2-36), were further confirmed with Sanger sequencing (Figure 3.2D and E). The 

two clones showed a 2-bp difference at the breakpoint junction, indicating that they arose 

independently. Both clones were used for subsequent analyses to control for possible CRISPR 

off-target effects.  

Before using the two promoterless mutants for our CNV experiment, we confirmed that 

the two mutants had no gross rearrangements in FHIT via PCR assays spanning the gene, with 

assays targeting 7 exons and 1 intron in the gene (Figure 3.2F). The two clones were intact for all 
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PCR assays, ranging from the second intron to the last exon (Figure 3.2F and Table 3.1), 

demonstrating that no unexpected internal deletions had occurred. 

Confirming Knockdown of FHIT Transcription 

RT-qPCR and Bru-seq were performed to confirm FHIT is knocked down in the two 

promoterless mutants. RT-qPCR was performed with three different primers targeting different 

parts of the mature FHIT mRNA in case there were multiple isoforms of the transcript. For all 

three primers, transcription was below the level of detection in both clones 1 and 2 (Figure 3.4A). 

Bru-seq, which sequences nascent RNAs (Paulsen et al. 2013), was also performed on the two 

mutants and WT. The sequencing results were consistent with the RT-qPCR data, in which 

neither mutant showed transcription at FHIT, not even a shorter isoform (Figure 3.4B).  

Because GM11713 also carries the mouse FHIT ortholog, we ran the RT-qPCR products 

on an agarose gel, sequenced the products, and aligned Bru-seq reads to hg38 and mm10 

separately. We confirmed that the RT-qPCR products and the sequencing reads were from 

human FHIT (Supplemental Figures 3.1A-C), including that GM11713 was found to not express 

murine Fhit.  

 

Design of a ddPCR assay for population CNV detection at FHIT  

 We used ddPCR to measure the percentage of cells with a deletion CNV at exon 5, which 

is near the middle of the gene and is a region where most deletion CNVs occur (Figure 3.1). We 

designed two ddPCR probes. To establish a control/reference probe to be used for normalization, 

we first performed low-coverage whole-genome paired-end sequencing of GM11713 and the two 

promoterless clones and used read count depth to estimate the copy number of all parts of mouse 

genome and human chr3. We found that the mouse chromosomes were rearranged and present at 
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widely varying copy numbers; however, the genome-wide chromosome copy number was highly 

reproducible between the parental GM11713 and two promoterless clones, suggesting a limited 

amount of ongoing genomic instability. Based on this information I designed a reference probe 

targeting a region in mouse chromosome X that has one copy based on the next-generation 

sequencing data on GM11713 (Supplemental Figure 3.2 and Table 3.2). 

The second probe was a test probe targeting near exon 5 of FHIT. The test and reference 

probes were labeled with different fluorophores to enable multiplexing. Thus, in a GM11713 

population in which no cell (or below detection limit of ddPCR) had a deletion at exon 5, the 

ratio of FHIT exon 5 to mouse chromosome X should be 1. Any ratio less than 1 suggests that 

some percentage of cells carry a deletion near exon 5, or possibly a gain of copies of murine 

chrX, but as noted above we had no reason to anticipate the latter change.  

I first applied this assay to WT GM11713 cells treated with 0.6uM APH to test its 

validity. According to data in Durkin et al. (2008), 23.3% of APH-treated clones carried a 

deletion CNV crossing where the position of the FHIT ddPCR test probe. The ddPCR 

measurement was consistent with the previous dataset, showing 28.5% reduction in the ratio 

(Supplemental Figure 3.3) in the APH-treated population but not in untreated population.  

 

Knockdown of Transcription Reduces Deletion CNVs  

Clones 1, 2, and WT cells were treated with 0.6uM APH to induce deletion CNVs at 

FHIT, and we used ddPCR to measure the percentage of cells carrying a deletion near exon 5. 

The WT, again, showed a comparable reduction in test to reference ratio (19.5%) to previous 

data, whereas neither of the mutants showed a significant reduction (Figure 3.3A), consistent 

with my hypothesis. To examine whether the deletion CNVs in the promoterless mutants may 
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have shifted toward one end of FHIT or another, I designed additional test probes targeting the 5’ 

and 3’ ends of the gene. The probes were designed such that in APH-treated WT, there will be no 

detectable percentage of cells with deletions. The APH-treated promoterless mutants also did not 

show significant reduction at the ends (Figure 3.3B and C).  

I next designed and performed a ddPCR assay at exon 4 of NLGN1, another CNV hotspot 

gene on human chromosome 3 in GM11713 (Arlt et al. 2009) whose transcription was 

unaffected the FHIT promoter deletion, as expected (Supplemental Figure 3.3). The NLGN1 

ddPCR assay showed that APH did induce deletion CNVs at NLGN1 in all three cell lines at 

similar levels, demonstrating that the lack of APH-induced deletion CNVs in clones 1 and 2 was 

specific to FHIT (Figure 3.3D).  

To examine the frequency and distribution of FHIT CNVs in more detail, I isolated 

clones from untreated and APH-treated clones 1, 2, and WT populations to detect deletion CNVs 

with PCR. Primers were designed and used throughout FHIT and surrounding genomic regions 

(Table 3.4), but we particularly targeted the two introns surrounding exon 5 to increase the 

likelihood of detecting a deletion CNV (Durkin et al. 2008). Since FHIT has large introns, I 

focused on the two flanking introns and exon 5, which covered approximately one-third of the 

annotated gene length (Figure 3.4A).     

For the APH-treated group, I analyzed 18 clones for clone 1, 16 clones for clone 2, and 

32 clones for GM11713. For both promoterless mutants, no deletions were detected with the 

PCR assays. Ten deletions were detected in APH-treated GM11713, which was significantly 

higher (P≤0.05) than in both mutants (Figure 3.4B). Eight of the nine deletions spanned across 

where the ddPCR test probe amplify, which was comparable to the proportion we detected with 

ddPCR (15.6% versus 23.3%). Two deletions spanned beyond FHIT, at least approximately 



 59 

1.5Mb distal from the gene. In the untreated group, there were no detected deletions in FHIT for 

any of the tested clones, and there was no significant difference between the two mutants and the 

WT (Figure 3.4C).  

 

Discussion  

In this chapter, I have addressed a limitation of the experiments in Chapter 2 and tested 

whether manipulating transcription of a large underlying gene could alter APH-induced CNV 

frequency at the region. The presented data show that turning off transcription of large 

underlying gene reduces instability at the same locus, providing further evidence that 

transcription of the large gene is the determining factor for CNV hotspot instability.  

The two mutant cells with FHIT transcription knockdown possessed a significantly lower 

number of APH-induced deletion CNVs at middle of FHIT (to an undetectable level) compared 

to the unedited WT. In addition, neither mutant showed a detectable amount of deletion CNVs at 

the 5’ and 3’ ends of FHIT, suggesting that the absence of transcription did not shift the CNVs 

toward one end of the gene or the other. The APH did still induce instability at another hotspot 

gene, NLGN1, in the two mutants, demonstrating that the APH still affected the cells in an 

expected way at another hotspot, but not at FHIT.  

Analyzing individual APH-treated clones further illustrated that the two promoterless 

mutants had significantly fewer deletion CNVs compared to the WT throughout FHIT. Neither 

mutant had any deletion CNVs in the two introns surrounding exon 5, which is where at least one 

endpoint of all 17 deletion CNVs from Durkin et al. (2008) study were located. Together with 

the ddPCR data, the PCR data imply that the two mutants had no detectable CNVs across the 

entire gene span. These data are remarkable for the large distance of the CNV suppression effect 
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relative to the position of the promoter deletion, which indicates that the comparatively small 

2kb deletion we introduced altered a functional property of a much larger region of human chr3.  

That property is almost certainly FHIT transcription. 

Using two independently generated promoterless mutants for same experiments 

addressed the potential off-target effects of CRISPR-Cas9. This was particularly important for 

validating our findings since several recent studies have reported on the pitfalls of using 

CRISPR-Cas9, specifically emphasizing the introduction of numerous unanticipated off-target 

mutations and alterations (Anderson et al. 2018; Fu et al. 2013; Cho et al. 2014; Kosicki, 

Tomberg, and Bradley 2018). Nonetheless, for our study CRISPR did provide a straightforward 

method to delete almost a 2-kb region in the genome, effectively turning off transcription at 

FHIT. This dual-gRNA deletion method has also been successfully used in other studies using 

different model organisms (Bauer, Canver, and Orkin 2015; Zheng et al. 2014; Aparicio-Prat et 

al. 2015; X. Chen et al. 2014; Zhao et al. 2016), so it could be useful in various genetic studies 

investigating loss-of-function genes and genetic elements.   

This study also demonstrates that ddPCR is a useful technology for CNV analysis in a 

population of cells. The traditional method of analyzing CNVs requires analyzing individual 

clones (e.g. SNP microarrays and PCR), which could be extremely time-consuming. If a specific 

region of interest is known, ddPCR allows in a quicker CNV detection on a population level, 

bypassing the cloning step. The ddPCR near exon 5 of FHIT and PCR analysis of individual 

clones show that the ddPCR results are consistent with the more traditional methods.   

 The two mutants generated during this study are valuable tools in further characterizing 

the role of transcription at CNV hotspots. Although the study further validated the importance of 

transcription in hotspot instability, the mechanistic role of transcription is still unknown. Based 
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on the TrDoFF model from Chapter 2, one possible future direction is comparing the origin 

activity between the two mutants and WT. In the light of transcription-replication conflicts and 

genome instability, it will be intriguing to investigate whether the absence of transcription 

changes origin activity in middle of the underlying large gene. For instance, is the replication 

timing at FHIT different in the promoterless mutants? If so, it would be interesting to determine 

whether transcription alters replication timing and origin activity by ejecting the licensed origins, 

by interfering with origin firing, or by another mechanism.  

 Finally, the implications of this study demonstrate the need to monitor the static and 

evolving transcription profiles during the progression of diseases and development to predict 

which sites will be the most prone to genome instability. During both cancer progression and 

normal development, cells go through rounds of division. If large genes are also transcribed in 

actively dividing cells, the corresponding sites become susceptible to genome instability since 

the risk of double-fork failures increase (Wilson et al. 2015). Studies have reported focal 

deletions at large genes in various tumors (Beroukhim et al. 2010; Zack et al. 2013; Bignell et al. 

2010; Rajaram et al. 2013; Glover, Wilson, and Arlt 2017), and some of these deletions are 

hypothesized to be early events and are known tumor suppressor genes, thus potentially 

impacting the progression of the disease (Lai et al. 2010; Guler et al. 2005; Dagmar et al. 1997; 

Finnis et al. 2005; Glover, Wilson, and Arlt 2017).  

 Similarly, large genes relevant for development, particularly neuronal development, are 

at high risk for instability. Several studies have reported deletions and DSB clusters at large 

genes that are important for neuronal development (P.-C. Wei et al. 2016; Wilson et al. 2015; 

Glover, Wilson, and Arlt 2017; D. I. Smith et al. 2006). Wei et al. in particular have shown that 

24 out of 27 recurrent DSB clusters are located in large genes linked to neuronal development 
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and function, and nearly all are linked to neurodevelopmental or psychiatric disorders, such as 

autism-spectrum disorder, schizophrenia, bipolar disorder, and intellectual disability.  

 Overall, the experimental evidence in this study provides a definitive demonstration of 

the importance of local transcription in CNV hotspot instability and can help elucidate the 

patterns of genome instability in actively dividing cells. However, the exact role of transcription 

is unclear and still needs further investigation. In Chapter 4, I explore one possible contributing 

factor — R-loops.  

 

Materials and Methods 

Cell Lines 

GM11713 human-mouse somatic cell hybrids were cultured and maintained as described 

in Durkin et al (2008).  

 

Next Generation Sequencing of GM11713 

 GM11713 genomic DNA was isolated using Qiagen’s Gentra PureGene Cell kit. The 

sequencing libraries were prepared by the University of Michigan Sequencing Core staff, and the 

samples were run on Illumina HiSeq 4000 using the paired end 150-cycle. The reads were 

aligned to both hg38 and mm10 builds to accommodate for the genomic nature of GM11713. 

Copy numbers were determined related to a “lowest common denominator” region on chrX, 

which had a copy number of one.  
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Generating FHIT Promoterless Mutant Cell Lines  

CRISPR-Cas9  

Guide RNAs (gRNAs) surrounding the FHIT promoter region were designed using 

CRISPRdirect (Naito et al. 2015) and CHOPCHOP (Montague et al. 2014; Labun et al. 2016). 

The gRNA oligos were synthesized by Integrated DNA Technologies. See Table 3.3 for gRNA 

sequences.  

We integrated the gRNA oligos into pSpCas9(BB)-2A-GFP plasmids (Addgene cat. no. 

48138) using the protocol in Ran et al. 2013. Once the oligos were integrated and confirmed via 

Sanger Sequencing, the plasmids were transfected into GM11713 using Lipofectamine 2000 

(Thermo Fisher cat. no. 11668027) using the manufacturer’s instructions. See Table 3.3 for 

primers to confirm successful integration. 

To select for cells that have successfully undergone transfection and FHIT promoter 

deletion, we followed the protocol in a previous study with the following modifications (Bauer, 

Canver, and Orkin 2015). 48 hours post-transfection, the top 3% GPF+ cells were sorted using 

iCyt’s Synergy Cell Sorting System at the University of Michigan’s Flow Core. The sorted cell 

population was plated in a single well in a 96-well plate for recovery.  

When wells were confluent, approximately 50 cells were plated per well in a 24-well 

plate. These populations were screened with primers flanking the two gRNA target sites (Table 

3.1) to see which populations contain the promoterless mutants. Primers were designed using 

Primer3Plus based on hg38 build. Genomic DNA was extracted using Qiagen’s Gentra 

PureGene Cell kit.  

The screening PCR was performed using Phusion enzyme from New England BioLabs 

Inc. (cat. no. M0530), using the reaction condition provided by the company using 0.2uM for 
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each primer and 3% DMSO (v/v). The PCR cycling condition consisted of an initial denaturation 

at 98°C for 30 seconds followed by 35 cycles of 98°C for 5 seconds, 60°C for 10 seconds, and 

72°C for 30 seconds, final extension at 72°C for 5 minutes, and hold at 4°C.  

The confirmed populations were plated at low dilution (50-100 cells per 10cm dish), and 

individual clones were picked approximately one week afterward for another round of PCR 

screening using the same flanking primers that were used to screen the populations. We 

confirmed the two candidate promoterless mutants (Clone 1: 2-23 and Clone 2: 2-36) with the 

flanking primers using Sanger sequencing at the University of Michigan sequencing core.  

 

RT-qPCR 

 The total RNA was isolated using Qiagen’s RNeasy mini kit (cat. no. 74104). Then the 

RNA was reverse transcribed to complementary DNA using the High-Capacity cDNA Reverse 

Transcription kit from Thermo Fisher (cat. no. 4368814), and qPCR was performed using 

Qiagen’s QuantiTect SYBR green PCR kit (cat. no. 204143) and Applied Biosystems 7500 Real-

Time PCR system. The cycling conditions were 50°C for 10 minutes, then 95°C for 15 minutes, 

followed by 40 cycles of 15 seconds at 94°C, 30 seconds at 60°C, then 30 seconds at 72°C. 

Mouse ActB was as a control gene to calculate ΔΔCt values. See Table 3.1 for primer 

information.   

 

Bru-seq 

 Bru-seq was performed as described in Paulsen et al. The sequencing reads were aligned 

to both human build (hg38) and mouse build (mm10), separately, to ensure that the human FHIT 

reads are specifically aligning to human FHIT, not mouse Fhit.  



 65 

 

Inducing and detecting deletion CNVs 

APH treatment 

GM11713 cells were treated with 0.6uM APH (Sigma-Aldrich cat. no. A0781) for 72 

hours to induce the CNVs followed by a 24-hour recovery period in the absence of APH. During 

the 72-hour treatment period, the media was changed every 24 hours to provide fresh APH. After 

recovery, some of the cells were plated at low dilution to collect clones, and some were collected 

for DNA extraction. Genomic DNA of the population was isolated using Qiagen’s Gentra 

PureGene kit for both ddPCR and clone analyses.    

 

ddPCR  

ddPCR was performed using the Bio-Rad QX200 system. The Taqman ddPCR assays 

were designed using Bio-Rad’s Droplet Digital PCR assay tool online, using the FAM/HEX 

fluorophore combination for multiplexing. The test assays were labeled with FAM, and the 

reference assay was labeled with HEX. See Table 3.3 for sequence of the amplicons.  

The reactions were set up using the ddPCR Supermix for Probes (No dUTP) (cat. no. 

1863023) as described in manufacturer’s instructions. The genomic DNA was digested with 

HindIII for at least two hours at 37°C prior to PCR, and 2uL of the digestion reaction directly 

added to each PCR reaction.  
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Detecting Deletion CNVs in FHIT using PCR 

PCR primers that were used to detect deletion CNVs were designed using Primer3 based 

on hg38 build (Table 3.1). PCRs were carried out using native Taq polymerase from Thermo 

Fisher (cat. no.18038042), following the company’s instructions using 0.2uM of each primer, 

0.2mM dNTPs, and 1.5mM MgCl2. The PCR cycling condition consisted of an initial 

denaturation at 94°C for 3 minutes followed by 40 cycles of 94°C for 45 seconds, 58 to 65°C for 

30 seconds, and 72°C for 30 seconds to 1 minute, final extension at 72°C for 5 minutes, and hold 

at 4°C. Deletions were detected by running the PCR amplicons on an agarose gel, where an 

absence of the product was considered as a deletion.  
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Figures 

 

 

Figure 3.1. APH-induced and spontaneous deletion CNVs at FHIT in GM11713 cells. CEN: Centromeric and TEL: 
Telomeric. The numbered vertical lines represent exons. Adapted from Durkin et al (2008).  
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Figure 3.2. Mutants with deletion in FHIT promoter were generated using CRISPR-Cas9 and were confirmed by 
PCR and Sanger sequencing. (A) A schematic describing how the promoterless mutants were generated. Two 
gRNAs (gRNAs 1 and 2) surrounding the TSS (Transcriptional Start Site) and promoter were transfected into 
GM11713, inducing DSBs indicated by the red arrows. Mutants that deleted the region between the two break sites 
were detected using the green PCR primers flanking the break sites. See Table 3.1 for gRNA sequences and primer 
sequences. (B) A screenshot from USCS Genome Browser showing the PCR products from the green flanking 
primers from (A), deleted promoter region in light red box, and various features of the region, including CpG 
islands, histone marks, and transcription factor binding sites. Coordinates are in hg38 build. (C) A picture of an 
agarose gel showing PCR amplicons generated by the green flanking PCR primers from (A). PCR product sizes are 
722bp (Clone 1), 720bp (Clone 2), and 2873bp (WT). (D and E) Sanger sequencing results showing the deletion 
breakpoints in clones 1 and 2. The red and blue segments show the two flanking segments that were joined to create 
the promoter deletion, and the black, underlined nucleotide represents a region of microhomology. (F) PCR assays 
were performed throughout the FHIT gene for the two mutants and WT to confirm there are no gross 
rearrangements or deletions. Aqua dots represent PCR assays, vertical purple lines exons, and light purple box the 
annotated FHIT gene. Name of PCR assays from left to right: Exon 10, Exon 9, Exon 8, Exon 7, Exon 6, Exon 5, 
Exon 4, and Intron 2. See Table 3.2 for primer information. 
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Figure 3.3. Promoterless mutants do not express FHIT. (A and B) Clones 1 and 2 show almost no FHIT 
transcription, shown by three RT-qPCR assay targeting different parts of FHIT mRNA (B) and Bru-seq (C). 
Statistical analyses were performed using a student’s T-test. *: P≤0.05 and **: P≤0.005. See Table 3.3 for primer 
information.  
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Figure 3.4. Transcription knockdown at FHIT reduces instability at the gene at a population level. (A) ddPCR results 
show that APH-treated clones 1 and 2 did not have significantly more deletion CNVs near exon 5 of FHIT compared 
to the untreated controls, whereas APH-treated WT had significantly more deletion CNVs than the untreated control. 
The ratio represents the average of three biological replicates, and the error bars represent the standard deviation 
among the replicates. Statistical analyses were performed using a student’s T-test. ns: P>0.05 and *: P≤0.05. (B and 
C) The two mutants and WT had no significant level of deletion CNVs near the 3’ and 5’ ends of FHIT compared to 
the untreated controls. Statistical analyses were performed using a student’s T-test. ns: P>0.05. (D) Clone 1, clone 2, 
and WT show significant amount of APH-induced deletion CNVs at exon 4 of NLGN1 compared to the untreated 
controls. Statistical analyses were performed using a student’s T-test. *: P≤0.05.  
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Figure 3.5. Transcription knockdown at FHIT reduces instability at the gene at clonal level. (A) Diagram showing 
the distribution of deletion CNVs. Aqua dots represent the location of each PCR assay, vertical purple lines 
represent exons in FHIT, horizontal magenta lines represent deletion CNVs, and the light purple box shows the 
annotated FHIT gene. The span of the deletion CNVs were determined with PCR assays, in which ends of each 
CNV on the diagram are defined as the location of the last PCR assay that shows a deletion before the next 
immediate PCR assay shows an intact genomic region. The PCR assays used are as follows, from distal to proximal: 
Tel 3, Tel 2, Tel 1, Exon 10, Exon 6, Intron 5-5, Intron 5-4, Intron 5-3, Exon 5, Intron 4-5, Intron 4-4, Intron 4-7, 
Intron 4-1, Exon 4, Intron 2, Intron 1. See Table 3.1 for primer information. (B and C) Tables summarizing the 
number of clones that either did not have or had a deletion CNV in FHIT. Statistical analyses between each mutant 
and WT were performed with Fisher’s exact test for 2x2 table. *: P≤0.05.   
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Tables 

 

Table 3.1. Sequences of gRNAs that were used to delete the FHIT promoter and primers that were used to screen 
and confirm the promoterless mutant clones. The red sequences represent the 20-nt guide sequence for each gRNA. 

 

 

Table 3.2. Primers that were used to verify the absence of gross genome rearrangements in FHIT for two 
promoterless mutant clones.  
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Table 3.3. qPCR primers that were used to confirm that FHIT is not expressed in the two promoterless clones.      

 

 

Table 3.4. ddPCR assays that were used to measure deletion CNVs at FHIT and NLGN1.  
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Table 3.5. Primers that were used to detect deletion CNVs at FHIT. 
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Supplemental Information 

 

Supplemental Figure 3.1. Examination of the murine Fhit reveals that it is not expressed in GM11713, which 
additionally reveals that human FHIT Bru-seq reads do not align to mouse Fhit gene.   

 

 

Supplemental Figure 3.2. Next-generation sequencing shows that certain regions on mouse chrX has copy number of 
one. Red arrows mark the location of the ddPCR reference probe.  
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Supplemental Figure 3.3. 0.6uM APH treatment induces deletion CNVs near exon 5 of FHIT in about 20% of 
GM11713 population. Statistical analysis was performed with a student’s T-test. *:P≤0.05.  

 

 

Supplemental Figure 3.4. NLGN1 expression was unaffected by FHIT promoter knockout.  
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Chapter 4 — R-Loops Affect Both APH-Induced and Spontaneous CNVs 

 

Summary 

R-loops, a three-stranded nucleic acid structure composed of RNA/DNA hybrids and 

associated non-template ssDNA, that play a role in regulating gene expression, are also known to 

promote genome instability, such as DNA damage arising at sites of R-loop accumulation. Yet, 

how R-loops induce DNA damage at their physical location is unclear. A recent study has shown 

that R-loops contribute to CFS instability, in which an increased level of R-loops increased the 

instability and a reduced level of R-loops decreased it. In this Chapter, I investigate the potential 

role of R-loops in CNV formation and show that the APH-induced CNV frequency at CNV 

hotspots does not change with changing R-loop abundance, in contrast to published CFS results. 

However, changing R-loop abundance did significantly change the distribution of APH-induced 

CNV breakpoints. With R-loop accumulation, CNV breakpoints were more frequently located in 

GC-rich regions and near ends of transcripts, which are known signatures of R-loop-enriched 

regions, relative to wild-type cells. The opposite trend was observed with reduced level of R-

loops. Taken together, these data suggest that R-loops influence the initial site of fork 

stalling/collapse and DSBs that lead to APH-induced CNVs. In addition, changing the R-loop 

abundance changed the overall frequency of spontaneous CNVs, which is consistent with 

previous observations that R-loops contribute to DNA damage that may lead to consequent 

genome rearrangements. This change in spontaneous CNV frequency provides further evidence 

that R-loops play an important role in genome instability.   
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Introduction 

Chapter 2 introduced the TrDoFF model, which suggested that the transcription of the 

large underlying genes at CNV hotspots interferes with DNA replication to induce instability.  

Chapter 3 provided further evidence that transcription of large hotspot genes is crucial for CNV 

formation by demonstrating that knocking down transcription of a large gene reduced deletion 

CNVs at the region. The outstanding question still is — what is transcription doing to induce the 

instability?  

One mechanistic possibility suggested by the literature is R-loop formation in large 

genes. R-loops are three-stranded nucleic acid structures with RNA/DNA hybrids and the 

associated ssDNA that form in vivo as natural intermediate structures, such as during E. coli 

plasmid replication, mitochondrial DNA replication, and immunoglobulin class switching 

(Aguilera and García-Muse 2012). Aside from these situations, R-loops were initially thought to 

be rare byproducts of transcription, but several recent studies have highlighted the role of R-

loops in regulating gene expression. R-loop mapping using various methods, such as DRIP 

(DNA/RNA-immunoprecipitation)-seq, have shown that R-loops are preferentially located at 

GC-rich regions of gene promoters (i.e. CpG islands) and terminating regions (i.e. G-rich 

sequences near the 3’UTR) to aid transcription activation and termination (Ginno et al. 2013).  

How R-loops regulate transcription is currently unknown, but recent studies have 

proposed that R-loops may induce epigenetic changes. A study by Skourti-Stathaki et al (2014) 

demonstrated that R-loops and H3K9me2 co-localize, suggesting a potential functional link 

between the two; however, it is not clear whether R-loops recruit the epigenetic signature or the 

other way around. Another study proposed that R-loop accumulation at the 5’ UTR either 
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recruits H3K4me3 or protects the promoter from DNA methyltransferases to activate 

transcription (Ginno et al. 2012).  

Despite their importance in regulating gene expression, R-loops, when aberrant, are 

detrimental. Interfering with enzymes that resolve R-loops (e.g. RNase H1, RNase H2, 

Senataxin, and Aquarius) can lead to R-loop accumulation and lethal effects. RNase H1 

knockout causes embryonic lethality in mice due to failed mitochondrial DNA replication 

(Cerritelli et al. 2003), RNase H2 mutations in humans result in Aicardi-Goutieres syndrome 

(Crow et al. 2006), and senataxin (SETX) mutations are associated with early-onset amyotrophic 

lateral sclerosis (Y.-Z. Chen et al. 2004). Both RNase H2 and SETX mutations contribute to 

genome instability, such as DNA damage and translocations (Pizzi et al. 2015; Cohen et al. 2018; 

Lee-Kirsch, Wolf, and Günther 2014; Lavin, Yeo, and Becherel 2013).  

Perhaps the harmful effects of R-loop accumulation are not surprising since it is a 

potential source of genome instability. The ssDNA associated with the RNA/DNA hybrid in the 

R-loop is vulnerable to DNA-modifying enzymes, including AID (Basu et al. 2011; Chiarle et al. 

2011), which can lead to single-nucleotide mutations. The ssDNA is also susceptible to 

nucleases that cause single-stranded breaks (SSBs), such as XPG and XPF (Tian and Alt 2000). 

The SSBs could ultimately resolve into DSBs (Figure 4.1). The resulting DSBs are presumably 

processed via different DNA repair mechanisms to induce different manifestations of genome 

instability. The DSBs resulting from R-loop accumulation are thought to contribute to the 

translocation of MYC to the S region of Ig loci to cause sporadic Burkitt’s lymphoma (Boerma et 

al. 2009; K. Yu et al. 2003; Duquette et al. 2005). It is also possible that the DSBs can act as a 

substrate for break-induced replication (BIR), a highly error-prone DNA replication that uses the 

3’ overhang to invade a homologous region to repair a DSB (Malkova and Ira 2013).  
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Furthermore, several DNA repair factors were found to be associated with R-loop 

accumulation, again suggesting that R-loops and genome instability are closely linked. 

BRCA1/2, important factors for homologous recombination, were found to increase R-loop 

accumulation when depleted (Bhatia et al. 2014; Hatchi et al. 2015). Similarly, FANCD2, an 

important factor in the Fanconi-Anemia pathway, was also found to be important in removing R-

loops. FANCD2-deficient murine cells had more R-loop accumulation, γH2AX foci 

(phosphorylated H2AX histone protein, a biomarker for DNA double-stranded breaks), and 

DNA strand breaks than the control cells (García-Rubio et al. 2015). Replication stress and R-

loop accumulation are also linked, as APH-treated cells had a higher global level of R-loops 

(Sollier et al. 2014).   

R-loop accumulation also has been reported to affect CFS instability. Helmrich et al. 

demonstrated R-loops at CFSs affect the instability at CFSs. Upon RNASEH1 knockdown, R-

loops accumulated in the middle of three CFS genes (FHIT, IMMP2L, and WWOX), making the 

region more prone to instability in the knockdown cells compared to control cells. Upon 

RNASEH1 overexpression, the authors saw the opposite. The R-loop accumulation can interfere 

with DNA replication because RNA/DNA hybrids are thermodynamically more stable than 

DNA/DNA hybrids (Roberts and Crothers 1992; Gyi et al. 1998; Chien and Davidson 1978), 

thus causing a roadblock for the replication fork and resulting in CFS instability. The implication 

of the proposed model is that large genes are more susceptible to the R-loop associated fork 

stalling because the RNAP has a longer mRNA tail, which is thought to produce a more stable R-

loop than a RNAP at a shorter gene. Length is one of the factors that affect the stability of R-

loops, in which shorter length results in lower stability (Lesnik and Freier 1995; Landgraf, Chen, 
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and Sigman 1995); however, whether the R-loops at the long genes are actually larger than those 

at shorter genes remains uninvestigated.      

The relationship between R-loops and CNVs has not been studied yet. In this chapter, I 

present our data to support three claims. First, R-loop manipulation has no effect on the 

frequency of the APH-induced CNVs at the hotspots, contrary to the CFS data from Helmrich et 

al. Second, the APH-induced CNVs upon RNASEH1 knockdown are preferentially located at 

either 5’ or 3’ ends of a transcript and GC-rich regions, and vice versa. Finally, R-loop 

manipulation alone affects the frequency of spontaneous CNVs. We present a model in which R-

loop accumulation at both ends of the transcript shifts the distribution of APH-induced CNV 

breakpoints toward the ends, and resolving those R-loops does the opposite. In addition, the data 

in this Chapter provides evidence that over-resolution of R-loops reduces the number of 

spontaneous CNVs, and R-loop accumulation may change the structure of the spontaneous 

CNVs.  

 

Results 

Generating RNASEH1 Knockdown and Overexpression Clones 

 For all the experiments in this Chapter, I worked with hTERT-immortalized normal 

human fibroblast cells line, HF1 for two main reasons. First, it is a normal human fibroblast cell 

line instead of a tumor cell line, which can exhibit high incidences of genome rearrangements 

during routine culturing and maintenance (Muff et al. 2015; Frattini et al. 2015; Orth et al. 1994; 

Kasai et al. 2016). Second, we have Bru-seq, CFS, and CNV data for this cell line from previous 

studies (Paulsen et al. 2013; Wilson et al. 2015), so we knew what HF1 cells’ transcription 
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profile looked like, and we had an idea of where the CNV hotspots were located before we began 

these experiments.   

 RNase H1 is an enzyme that resolves R-loops by cleaving the phosphodiester bond in the 

RNA strand of the RNA/DNA hybrid. Helmrich et al. transiently knocked down or 

overexpressed the RNase H1 enzyme to study the effect of R-loops on CFS instability. We found 

that the HF1 cell line, however, has low transfection efficiency (<50%), implying that the 

majority of the cells will not knock down or overexpress the enzyme. Hence, we chose to virally 

transduce these cells with a Tet-On inducible construct called pTRIPZ for both the knockdown 

and overexpression. 

 The pTRIPZ construct (Supplemental Figure 4.1) is a Tet-On inducible system, in which 

integrants of this construct express Turbo RFP and shRNA-mir upon the addition of doxycycline. 

In the proprietary shRNA-mir design, the 22-nt dsRNA sequence contains 19-nt of the loop 

sequence from human microRNA-30 (miR-30). There are also 125-nt miR-30 flanking 

sequences surrounding the sequence. This design creates sites for Dicer and Drosha processing 

during the RNA interference process and increases knockdown efficiency and stability (Boden et 

al. 2004; Silva et al. 2005). The Tet-On inducible RNASEH1 shRNA knockdown clones were 

generated via viral transduction as described in Materials and Methods. 

The RNASEH1 overexpression construct was generated by replacing the shRNA-mir and 

Turbo RFP with a RNASEH1 cDNA sequence, using AgeI and MluI restriction enzymes 

(Supplemental Figure 4.1). The overexpression clones were generated also with viral 

transduction, as described in Materials and Methods.  
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Confirming RNASEH1 Knockdown and Overexpression in Transduced Clones 

I first confirmed the validity of the Tet-On system by measuring RFP expression in the 

cells with scrambled control and knockdown shRNA constructs, since doxycycline drives 

shRNA expression via the linked TurboRFP gene (Supplemental Figure 4.2A and B). 

Fluorescence microscopy showed that adding 100ng/mL of doxycycline activates the inducible 

system after 48 hours (Supplemental Figure 4.2). I did not measure RFP expression in the cells 

with empty and overexpression constructs since in the overexpression construct, the Turbo RFP 

gene and shRNA-mir cassette was replaced with RNASEH1 cDNA (Supplemental Figure 4.1 and 

Materials and Methods).  

I then performed RT-qPCR to confirm that RNASEH1 mRNA expression was reduced in 

the knockdown clones and increased in the overexpression clones. For both clones, the relative 

RNASEH1 mRNA expression was measured after 48 hours of 100ng/uL doxycycline treatment. 

Figure 4.2A shows that the mRNA was successfully targeted, with ~75% knockdown compared 

to scrambled control. For the overexpression clone, the additional of doxycycline raised the 

mRNA level almost 75-fold compared to the empty control (Figure 4.2B). Next, I used Western 

Blot to confirm that the RNASEH1 protein was also predictably altered using the same 

experimental conditions. For both clones, the addition of doxycycline clearly increased or 

decreased RNASEH1 protein levels compared to the control (Figure 4.2C). 

Given the lethal phenotype associated with Rnaseh1-knockout mice, I also conducted a 

cell growth assay with the RNASEH1 knockdown mutants to see whether the knockdown slows 

cell growth. I did not perform the cell growth assay with the overexpression since RNASEH1 

overexpression is not associated with any cellular toxicity or diseases to date. The RNASEH1 

knockdown mutants showed no significant difference in growth compared to the scrambled 
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control, with and without doxycycline and APH treatment (Supplemental Figure 4.3). I also saw 

no apparent toxic effects of the doxycycline treatment for both scrambled and knockdown 

clones.   

 

RNASEH1 Manipulation Changes Global Level of R-Loops  

I performed S9.6 immunofluorescence (IF) assay to measure the effect of the RNASEH1 

knockdown and overexpression on the global level of R-loops. S9.6 antibody recognizes the 

RNA/DNA heteroduplex structure and is commonly used to detect R-loops (Boguslawski et al. 

1986). Knockdown of RNASEH1 is known to increase the global level of R-loops whereas 

RNASEH1 overexpression reduces the level of R-loops, at least in yeast and in murine 

mitochondria (Wahba et al. 2011; Lima et al. 2016). The S9.6 immunofluorescence assay 

showed the normalized nuclear S9.6 signal was significantly increased upon RNASEH1 

knockdown (Figure 4.3A and B). The S9.6 signal was significantly reduced upon in vitro 

addition of RNase H for both clones, suggesting that the signal is specific to R-loops.  

However, we saw the opposite of what we expected for the overexpression constructs. 

Instead of a reduced S9.6 signal, we detected a significant increase in signal (Figure 4.3C and D). 

Similar to the knockdown experiment, the S9.6 signal decreased with adding RNase H; however, 

the strong nucleolar signals persisted even with in vitro addition of RNase H.  

 

RNASEH1 Manipulation Does Not Change APH-Induced CNV Structure, Overlap at Large 

Genes, or Size 

 Next, I used the RNASEH1 knockdown and overexpression clones assess whether R-

loops play a role in APH-induced CNV formation, at CNV hotspots or genome-wide. For all 
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clones, whether treated with APH or not, doxycycline was present throughout the entire 

treatment period since drug removal abolishes the RNASEH1 mRNA knockdown or 

overexpression (Supplemental Figure 4.5A-D). The scrambled and empty control cells also were 

treated with doxycycline during the entire treatment period to control for any unanticipated effect 

doxycycline might have on CNVs.  

 The CNVs were induced, detected, and compiled as described in Materials and Methods. 

The final, complete lists of de novo CNVs from two replicates of the knockdown experiment and 

one replicate of the overexpression experiment are in the Appendix (Appendix 1-8). The two 

replicates of the knockdown experiment were set up slightly differently (Supplemental Figure 

4.6A and B), but comparing the resultant CNVs from the two replicates revealed no 

overwhelming reason for us to believe that the two protocols yielded significantly different 

results (Supplemental Figures 4.7A-D). I included the separate tables for each replicate in the 

Appendix (Appendix 9-12). The following analyses were all performed using the combined list 

of CNVs from both knockdown experiments.  

The first hypothesis I tested was that RNASEH1 knockdown would induce more overall 

CNVs, and RNASEH1 overexpression fewer CNVs, since in Helmrich et al. RNASEH1 

knockdown increased the number of breaks per cell and vice versa. I investigated whether there 

was a significant change in the number of APH-induced CNVs per clone between the control 

cells and knockdown or overexpression clones. There was no significant change in the number of 

induced CNVs per clone in either experiment (Figure 4.4A).  

Because Helmrich et al. showed that RNASEH1 manipulation changes CFS instability, I 

tested the hypothesis that RNASEH1 knockdown would induce more CNVs at the CNV hotspots, 

with RNASEH1 overexpression reducing CNVs. Because our CNV database on HF1 is limited, I 



 89 

utilized the large (>500kb) genes as a surrogate for asking whether the CNVs were located in a 

hotspot or not (Wilson et al. 2015). I used the breakpoints of each CNV to determine whether a 

CNV was located in a transcribed large gene based on Bru-seq results from previous studies 

(Paulsen et al. 2013). I compared the number of CNVs that had at least one of its breakpoints in a 

large gene between the control and knockdown clones by constructing a 2x2 contingency table. 

There was no significant difference (Figure 4.4B). There was also no significant difference 

between control and overexpression clones (Figure 4.4C).   

I then asked whether there were any qualitative differences between the APH-induced 

CNVs in the knockdown or overexpression clones compared to the control. Categorizing the 

CNVs into deletion or duplication and comparing the numbers in a 2x2 contingency table 

revealed that there was no significant difference between the control cells and the RNASEH1 

knockdown clones as well as control and overexpression clones (Figure 4.4D and E). Finally, I 

compared the sizes of the APH-induced CNVs between the control cells and the knockdown or 

overexpression clones. Again, there was no significant difference (Figure 4.4F). The median size 

of the APH-induced CNVs ranged from 86kb to 162kb, similar to the median size reported in our 

previous study (Arlt, Ozdemir, Birkeland, Wilson, et al. 2011).  

 

RNASEH1 Manipulation Changes Distribution of APH-Induced CNV Breakpoints 

CNV hotspots are known to be AT-rich compared to rest of the genome, whereas R-loops 

are known to accumulate in GC-rich regions (Ginno et al. 2013). Thus, if R-loops contribute to 

CNV formation, the CNV breakpoints, which are thought to be near the initial break sites, may 

be located in GC-rich regions. To test this hypothesis, I measured the average percentage of GC 

content in the 20kb window surrounding each breakpoint, 10kb on each side (Figure 4.5A) using 
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the UCSC genome browser’s gc5Base. The 20kb window was roughly decided based on the fact 

that the average distance between probes in the Illumina SNP arrays (~2kb) and the largest 

reported resection length at a DSB site in human cells, which was about 3.5kb (Zhou et al. 2014), 

suggesting that the initial break site could be anywhere within a 5.5kb window on both side of 

the breakpoint, totaling to approximately 11kb. The GC content percentage at the breakpoints 

was significantly different between the control and the mutants. Consistent with the hypothesis, 

the breakpoints in knockdown clones were located at regions with higher percentage of GC 

content (Figure 4.5B). In converse, the breakpoints in the overexpression clones were located in 

lower percentage GC content (Figure 4.5B).  

R-loops are also known to accumulate near TSSs (Transcription Start Sites) and TTSs 

(Transcription Terminator Sites) (Ginno et al. 2012; Ginno et al. 2013; Sanz et al. 2016; Skourti-

Stathaki, Kamieniarz-Gdula, and Proudfoot 2014), so I hypothesized that the APH-induced CNV 

breakpoints are preferentially located near the ends of transcripts in knockdown clones. The 

previous studies have used gene annotations to mark TSSs and TTSs, but for my analyses I used 

the boundaries of transcription units (TUs) defined by Bru-seq on the HF1 cells (Wilson et al. 

2015) rather than boundaries of gene annotations since previous studies also show that especially 

for the 3’ end, the R-loop accumulation is not surrounding the end defined by gene annotation; 

rather, the cluster occurs past the 3’ end, presumably because transcriptional activity does not 

cleanly stop at the end of the gene/transcript.  

Significantly more APH-induced CNV breakpoints were located within the 20kb window 

surrounding the TU boundaries in the knockdown mutant compared to the control (Figure 4.5C). 

On the contrary, significantly fewer APH-induced CNV breakpoints were located near the TU 

boundaries in the overexpression mutants compared to in the control cells (Figure 4.5D).  
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RNASEH1 Manipulation Changes Spontaneous CNV Frequency and Size 

 I hypothesized that RNASEH1 knockdown by itself would increase the CNV frequency, 

given the link between R-loop accumulation and genome instability (Aguilera and García-Muse 

2012; Sollier and Cimprich 2015). However, the knockdown alone did not induce more 

spontaneous CNVs compared to the control (Figure 4.6A). There was also no significant 

difference between the control cells and the knockdown cells for most of the formerly mentioned 

analyses — structure, overlaps at large genes, breakpoint signature, and location at ends of 

transcripts (Figure 4.6B-E). However, the CNV size in the knockdown mutants was significantly 

smaller than that of the control cells (Figure 4.6F).  

 I also hypothesized that RNASEH1 overexpression would decrease CNV frequency since 

previous studies have demonstrated that RNASEH1 overexpression reverses the damaging effects 

from RNASEH1 knockdown. The overexpression of RNASEH1 significantly reduced the CNV 

frequency compared to the control, with only one detected CNV out of eight clones (Figure 

4.7A). In other analyses, the CNV in overexpression mutant was not significantly different from 

the spontaneous CNV in the control cells (Figure 4.7B-E). The size comparison between the 

CNVs in control cells and overexpression mutant could not be performed because there was only 

one CNV in the overexpression mutant.  

 

Discussion  

The increasing amount of work linking R-loops with various forms of genome instability 

prompted us to investigate the role of R-loops in CNV formation. In particular, the study by 

Helmrich et al. showed that the level of R-loops directly correlated with CFS instability, 
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suggesting that R-loops may also impact CNV frequency at the hotspots. The Tet-On inducible 

RNASEH1 knockdown and overexpression mutant cell lines were valuable tools for such 

question, as I was able to manipulate RNASEH1 expression, and therefore R-loop abundance, in 

a controlled manner.  

Although it is assumed that RNASEH1 overexpression induces a global reduction in R-

loops, the S9.6 IF assay suggested otherwise. It is possible that the RNASEH1 overexpression 

showed an increase in S9.6 signal because of the antibody’s cross-reactivity with other proteins. 

A recent study has demonstrated that S9.6 antibody recognizes a low level of various proteins 

even in the absence of the RNA/DNA hybrids in the sample (Cristini et al. 2018). It is not known 

whether the RNASEH1 protein is one of the proteins recognized by the S9.6 antibody, but the 

persistence of strong S9.6 signal in the nucleolus even after the RNase H treatment is consistent 

with the idea that the S9.6 antibody recognized the RNASEH1 protein aggregates in the 

nucleolus. Several studies have shown that endogenous and overexpressed RNASEH1 protein 

localizes in nucleoplasm, nucleolus, and mitochondria (Shen et al. 2017; Suzuki et al. 2010; H. 

Wu et al. 2013; Cerritelli et al. 2003). An alternative assay is necessary to confirm the reduction 

of R-loops in RNASEH1 overexpression mutants, such as assays using D5H6, another antibody 

that recognizes RNA: DNA hybrids (Shen et al. 2017; Molès et al. 2017), or gel mobility assay 

(K. Yu et al. 2006).  

Unlike what we expected based on the published CFS results in Helmrich et al., neither 

form of RNASEH1 manipulation significantly changed the CNV frequency at large, transcribed 

genes. There are a couple of potential explanations for this discrepancy. First, the Helmrich et al. 

study looked at only three CFSs (FRA3B, FRA7K, and FRA16D), so perhaps the trend they 

observed at these particular CFSs is not a generalized trend for all CFSs or CNV hotspots. 
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Second, although they share mechanistic links like late replication, CFSs and CNVs might be 

formed through distinct mechanisms. A recent review from our group posits that CFS gaps and 

breaks that represent uncondensed areas in the metaphase chromosome after MiDAS 

(Minocherhomji et al. 2015), while CNVs are thought to form through an incorrect fork restart or 

an incorrect DNA repair mechanism (Glover, Wilson, and Arlt 2017). What R-loops do to 

exacerbate instability at CFSs may not apply to CNV formation.  

Finally, it is possible that R-loops still play the same role in CNV formation but 

RNASEH1 manipulation alone was not enough to influence the CNV frequency. R-loops are 

resolved by various additional enzymes, such as RNase H2, Aquarius, and Senataxin, hence it is 

possible additional manipulation is necessary before we see an effect on CNV frequency at the 

hotspots, unlike at CFSs. A crucial future experiment would that would begin to address some of 

these conjectures would be to measure CFS instability in our mutant cells to confirm that we also 

observe a change in CFS instability upon RNASEH1 knockdown and overexpression, as in 

Helmrich et al. In sum, it is crucial for us to measure CFS instability in the RNASEH1 

knockdown and overexpression clones.  

Nonetheless, RNASEH1 knockdown and overexpression were enough to significantly 

change the distribution of the APH-induced CNV breakpoints. The two tested factors, GC 

content percentage and the proximity to the ends of transcripts, were chosen specifically since 

they are associated with physical locations of R-loops (Ginno et al. 2013; Ginno et al. 2012; Sanz 

et al. 2016; Skourti-Stathaki, Kamieniarz-Gdula, and Proudfoot 2014). It is known that R-loops 

as associated with several forms of genome instability, so it is possible that the sites of R-loop 

accumulation become more prone to fork stalling and DSBs, which become the new sites that 

become extremely susceptible to template switching and misrepair. This model implies that 
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under replication stress, the initial events leading to the template switching or misrepair 

preferentially occur at the ends of the transcripts (where R-loops are located), possibly even at 

the large genes underlying CFSs and CNV hotspots, which goes against the model proposed in 

Helmrich et al.  

The overexpression of RNASEH1 significantly reduced the spontaneous CNV frequency, 

suggesting that R-loops also play a role in spontaneous CNV formation. The previously proposed 

model might help explain this result, in which R-loops induce DSBs at its sites of accumulation 

but the genome is protected from the breaks when they are resolved. However, the model is not 

consistent with the results from the knockdown of RNASEH1, in which the R-loop accumulation 

did not significantly increase the spontaneous CNV frequency. A technical explanation is that we 

need to analyze more CNVs to achieve significance. One possible biological explanation, as 

mentioned above, is that knocking down RNASEH1 alone is not quite enough to see an effect, if 

any. More replicates are necessary to confirm this observation.  

 

Materials and Methods 

Cell lines 

HF1 human immortalized fibroblast cells were cultured as described in Wilson et al 

(2015).  
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Generating and Confirming RNASEH1 Knockdown and Overexpression Cell Lines 

Preparing Constructs and Transduction 

To generate Tet-On inducible RNASEH1 knockdown HF1 cell line, the cells were virally 

transduced with one of the pTRIPZ human RNASEH1 knockdown constructs from GE Life 

Sciences. We have transduced cells with one of the four RNASEH1 knockdown constructs: 

V2THS_242087, V2THS_32362, V3THS_365743, and V3THS_365744. Among the four 

transduced populations, cells with V3THS_365744 construct were used for knockdown 

experiments. Cells were also transduced with a scrambled shRNA pTRIPZ plasmid for control.  

To generate Tet-On inducible RNASEH1 overexpression HF1 cell line, we first digested 

an empty pTRIPZ plasmid using AgeI and MluI (Supplemental Figure 4.1). The RNASEH1 

cDNA was amplified using Origene’s pCMV6-AC-RNaseH1 plasmid (cat. no. SC319446) using 

primers with AgeI and MluI overhangs (see Table 4.1) using Phusion enzyme from New 

England BioLabs (cat. no. M0530). The PCR cycling condition consisted of an initial 

denaturation at 98°C for 30 seconds followed by 35 cycles of 98°C for 5 seconds, 58°C for 10 

seconds, and 72°C for 30 seconds, final extension at 72°C for 5 minutes, and hold at 4°C. 

The PCR product was completely digested with MluI-HF using overnight incubation and 

partially digested with AgeI-HF. The digestion reaction was cleaned up using Qiagen’s PCR 

purification kit, and the eluted DNA brought up to 100uL total containing water and NEB’s 

CutSmart Buffer (1x final concentration), and this tube was labeled “A.” 20uL of “A” was added 

to tubes labeled “B,” “C,” and “D,” and 10uL of “A” was added to tube “E.” 1uL of AgeI was 

added to the remaining “A.” Then 10uL of “A” was diluted in “B,” 10uL of new “B” was diluted 

in “C,” and so on. All five tubes were incubated at 37°C for exactly 2 minutes and were pooled 

into one tube. We used Qiagen’s PCR purification kit to purify the digested products and ran 
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them out on an agarose gel to isolate the correctly sized product. Zymoclean Gel DNA Recovery 

Kit (cat. no. D4002) was used to extract the product from the gel.  

The eluted PCR product was ligated to the AgeI and MluI-digested empty pTRIPZ 

plasmid using T4 DNA ligase from Thermo Fisher (cat. no. 15224017) following manufacturer’s 

instructions. The HF1 cells were virally transduced with either an overexpression construct that 

was confirmed with Sanger sequencing or an empty control pTRIPZ construct. See Table 4.1 for 

primers that were used to confirm the integration of RNASEH1 cDNA.  

The University of Michigan Vector Core provided both empty and scrambled shRNA 

TRIPZ plasmid and helped with the transduction. After transduction, the integrants were selected 

using 0.5ug/mL Puromycin (Sigma cat no. P8833) for 10-14 days, until all non-integrants died, 

and plated at low dilution (200 cells per 10cm dish) to isolate individual clones.  

 

Checking for RFP+ Cells 

Both scrambled and RNASEH1 knockdown cells were seeded in 6-well plates. 

Doxycycline-treated cells were treated with 100ng/uL of the drug for 48 hours, and they were 

supplied with fresh media and drug after 24 hours. The cells were visualized using Nikon Eclipse 

Ti, and images were acquired with the NIS-Elements Basic Research software.  

 

RT-qPCR and Western Blot 

The cells were treated with 100ng/mL doxycycline (Sigma Aldrich cat. no. D9891) for 48 

hours before we assessed RNASEH1 knockdown or overexpression. For RT-qPCR, the total 

RNA was isolated using Qiagen’s RNeasy mini kit (cat. no. 74104). The total RNA was reverse 

transcribed to complementary DNA using the High-Capacity cDNA Reverse Transcription kit 
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from Thermo Fisher (cat. no. 4368814), and qPCR was performed using Qiagen’s QuantiTect 

SYBR green PCR kit (cat. no. 204143) and Applied Biosystems 7500 Real-Time PCR system. 

The cycling conditions were 50°C for 10 minutes, then 95°C for 15 minutes, followed by 40 

cycles of 15 seconds at 94°C, 30 seconds at 50°C, then 30 seconds at 72°C. ACTB was used as a 

control gene to calculate the ΔΔCt values. See Table 4.2 for primer sequences.  

For Western Blot, proteins were detected using Abcam’s anti-RNase H1 mouse 

monoclonal antibody (cat. no. ab56560), diluted 1:1000, or Neomarker’s anti-alpha tubulin 

mouse monoclonal antibody (cat. no. MS-581-P), diluted 1:4000, and goat anti-mouse IgG 

(H+L) secondary antibody conjugated to HRP from Thermo Fisher (cat no. 62-6520), diluted 

1:4000. The proteins were detected using either SuperSignal West Pico PLUS Chemiluminescent 

Substrate (Thermo Fisher cat. no. 34577) or Pierce ECL Western Blotting Substrate (Thermo 

Fisher cat. no. 32209).  

 

Cell Count Assay 

Both scrambled and RNASEH1 knockdown cells were seeded in 6-well plates, 50,000 

cells in each well. Each condition had two technical replicates. The day after seeding, I 

trypsinized the cells and used the Countess Automated Cell Counter and the Countess Cell 

Counting Chamber Slides (Thermo Fisher cat. no. C10228) to measure the number of cells for 

the Day 0 time point. These Day 0 trypsinized cells were not re-seeded. Except the untreated 

cells, the remaining cells were treated with 100ng/uL doxycycline and/or 0.4uM APH for 72 

hours. The cells were supplied with fresh drug(s) every 24 hours. At the end of the 72-hour 

treatment period, the cells were trypsinized for the Day 3 time point. The number of cell 

divisions was calculated with the following formula:  
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log2(
Number of cells at Day 3
Number of cells at Day 1

) 

 

S9.6 Immunofluorescence Assay 

30,000 HF1 cells were seeded in 12-well plates on round cover slips (Fisher cat. no. 12-

545-100). On the next day, they were treated with 100ng/mL doxycycline for 48 hours. 

Immediately after the 48-hour doxycycline treatment, the cells were fixed using 100% ice-cold 

methanol for 10 minutes on ice. The cells were then washed twice with PBS with 0.05% Tween-

20 (v/v) (PBST) and permeabilized with ice-cold acetone for 1 minute on ice. After fixing and 

permeabilization, the negative control cells were treated with RNase H from New England 

Biolabs (cat. no. M0297) overnight at 37°C in a humid chamber to prevent drying. RNase H was 

diluted to 5U/mL in PBS, with RNase H buffer added to 1x final concentration.  

The fixed cells were blocked with PBST supplemented with 5% normal goat serum (v/v) 

(Thermo Fisher cat. no. 10000C). The cells were then incubated with S9.6 antibody from 

Kerafast (cat no. ENH001), using 1:25 dilution, at 37°C for 1 hour in PBST with goat serum and 

washed three times with PBST. The cells were then incubated with the goat anti-mouse 

secondary antibody conjugated to Alexa Fluor 488 from Thermo Fisher (cat. no. A11001), using 

1:100 dilution, at 37°C for 1 hour in PBST with goat serum. The coverslips were mounted onto 

the slides using SlowFade Gold Antifade Mountant with DAPI from Thermo Fisher (cat. no. 

S36938).  

The images were obtained through Nikon’s NIS-Elements Advanced Research software, 

using Nikon Eclipse Ti microscope. Using ImageJ (version 1.51), I used the DAPI signal to 
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create a mask of the nucleus. The nuclear S9.6 signal was determined by measuring the S9.6 

signal in the nuclear mask. The DAPI signal in the nuclear mask also was used to normalize the 

nuclear S9.6 signals. The dot-plot graph was generated with GraphPad’s Prism software.  

 

Inducing CNVs 

For the first replicate of the knockdown, the cells were treated with both 100ng/mL 

doxycycline and 0.4uM APH for 72 hours, providing fresh dose of drugs and media every 24 

hours. Cells were then given 24 hours of recovery in absence of the drugs before they were 

plated at a low dilution (200-250 cells per 10cm dish) to isolate individual clones.  

For the second repetition of knockdown, the cells were first treated with 100ng/mL 

doxycycline for 48 hours to induce knockdown of RNASEH1. Afterward, cells were treated with 

either 100ng/mL doxycycline alone or 100ng/mL doxycycline and 0.4uM APH for another 72 

hours. Cells then recovered for 24 hours and were plated for clones.  

The overexpression experiment was carried out like the second repetition of the 

knockdown, in which the cells were first treated with doxycycline for 48 hours and then treated 

with either doxycycline alone or doxycycline and 0.4uM APH for 72 hours.  

 

Detecting de novo CNVs 

Genomic DNA was extracted from individual clones using Qiagen’s Blood and Tissue 

kit. De novo CNVs were detected using the HumanOmni2.5 BeadChip at the University of 

Michigan Sequencing Core. I used an in-house CNV detecting algorithm called MSVTools, 

which detects de novo CNVs by comparing the log-R ratio and B allele frequency deviations to a 

“reference” sample (the sample that resembles what the majority of samples looks like) and a 
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sample that most closely resembles what the sample in question looks like to avoid calling the 

same CNV in multiple samples. CNVs that were detected in multiple samples were not 

considered unique and were not included in the final list of de novo CNVs or subsequent 

analyses.  

The final list of unique de novo CNVs was cross-checked with the results from Illumina’s 

Genome Studio software’s plugin called “cnvPartition 3.2.0,” which detects CNVs and estimates 

the resulting copy number.    

 

Analyzing the CNV Dataset 

Comparing Total Number of CNVs 

The p-values for the total numbers of CNVs among the different samples were calculated 

using Poisson statistics, using three different test methods (Krishnamoorthy and Thomson 2002; 

K. Gu et al. 2008). The largest p-values from the three tests were used to report statistical 

significance.  

 

Comparing Deletions/Duplications Ratio 

CNVs were considered deletion CNVs if the rearrangement resulted in a loss of a copy 

number from the reference, regardless of the actual resultant copy number. Similarly, CNVs that 

resulted in a gain of a copy number were considered duplication CNVs. The p-values for 

deletions/duplications ratios of different samples were calculated using a 2x2 contingency table 

with Fisher’s Exact Test.   
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Deciding Whether Breakpoints Overlap Large Genes 

Using the genomic coordinates for each breakpoint that were estimated by MSVTools 

algorithm, I categorized each CNV as either overlapping large (>500kb) genes or not. To be 

categorized as a CNV that overlaps a large gene, at least one of its breakpoints needed to lie 

within the annotated large gene, regardless of the relative location within the gene. Ensembl gene 

annotations were used to identify the start and the end of the genes. The p-values were calculated 

using a 2x2 contingency table with Fisher’s Exact Test.  

 

Calculating and Comparing Average Percentage of GC Content at Breakpoints 

The average percentage of GC content at each breakpoint was calculated for the flanking 

10kb regions surrounding the breakpoint using the UCSC Genome Browser’s gc5Base, which 

calculates GC content percentage in each 5-base bin and calculates the mean percentage for the 

entire queried region. As stated in the Results section, the 20kb-window was decided based on 

the average distance (~2kb) between probes in the SNP array I used for this experiment and the 

largest reported resection length during a DSB processing, which is about 3.5kb in human cells 

(Zhou et al. 2014). CNVs smaller than 20kb were not used for this analysis. The dot-plot graph 

was generated using GraphPad Prism, and Mann-Whitney Test was used to calculate the p-

values.  
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Comparing CNV Sizes 

The CNV sizes were calculated based on the breakpoint coordinates from MSVTools. 

The dot-plot graph was generated using GraphPad Prism, and Mann-Whitney Test was used to 

calculate the p-values. 

 

Deciding Whether Breakpoints Are Located at Ends of Transcripts 

Like the former analyses, I used the breakpoint coordinates from MSVTools. The 

boundaries for each transcript unit were identified based on Bru-seq data for HF1 cells (Paulsen 

et al. 2013). Similar to calculating the GC content percentage, I queried the flanking 10kb 

regions surrounding each breakpoint to see whether the breakpoint is located within the 20kb-

window of the transcript boundaries.  Bru-seq transcription units were used to assess breakpoint 

locations rather than gene annotations.  
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Figures 

 

Figure 4.1. R-loop processing may lead to DSBs via various mechanisms. (A) The endonucleases XPF and XPG can 
excise the RNA/DNA hybrid of an R-loop. The single-stranded break (SSB) may resolve into a DSB either by 
structure-specific endonucleases via TC-NER (in purple) or by replication fork, which can also involve various 
structure-specific endonucleases. (B) XPF and XPG may also recognize both strands of an R-loop and generate a 
DSB. (C) Alternatively, both XPF/XPG and TC-NER endonucleases may act at the same time, where the TC-NER 
machinery may be recruited to R-loops during replication, and nucleases including XPF/XPG may generate a DSB. 
Adapted from Sollier and Cimprich (2015). 
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Figure 4.2. RNASEH1 is knocked down or overexpressed in an inducible manner in cells that were transduced with 
the corresponding Tet-On constructs. (A and B) RT-qPCR shows that treating cells with 100ng/mL doxycycline for 
48 hours reduces or increases RNASEH1 mRNA levels in knockdown or overexpression mutants, respectively. 
Statistical analyses were performed using a student’s T-test. ns: P>0.05, *: P≤0.05, and **: P≤0.0001. (C) Western 
blot shows that RNASEH1 protein levels are also reduced or increased upon doxycycline treatment in knockdown or 
overexpressed mutants, respectively.    
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Figure 4.3. Manipulating RNASEH1 changes global R-loop levels. (A) Representative images showing results of 
S9.6 immunofluorescence assay. Scr: Scrambled shRNA control and KD: RNASEH1 knockdown. (B) Quantitation 
of S9.6 immunofluorescence assay. Nuclear S9.6 intensity was normalized by DAPI intensity. Statistical analyses 
were performed using Mann-Whitney test. *: P≤0.0001. (C) Representative images showing results of S9.6 
immunofluorescence assay. Empty: Empty construct control and Over: RNASEH1 overexpression. +RNH are 
control samples treated with RNase H after methanol fixation. (D) Quantitation of S9.6 immunofluorescence assay. 
Statistical analyses were performed using Mann-Whitney test. *: P≤0.05 and **: P≤0.0001. 
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Figure 4.4. Neither RNASEH1 knockdown nor overexpression changes overall CNV frequency (A), location in large 
(>500kb) genes (B and C), deletion to duplication ratio (D and E), and CNV size (F). Poisson statistics were 
performed for comparing the overall CNV frequency as described in Materials and Methods. Fisher’s Exact Test for 
2x2 contingency table was used for (B) through (E). Mann-Whitney test was performed for (F). ns: P≥0.05. 
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Figure 4.5. R-loops change the breakpoint locations in APH-induced CNVs. (A) shows an example of the breakpoint 
analysis. 20kb window surrounding each breakpoint (in red arrow) was analyzed for GC content and proximity to 
ends of TU. In the top panel, the blue trace represents raw Bru-seq data, and red box represents the predicted TU, 
with ends of the boxes representing TU boundaries. This particular breakpoint example would score “yes” for being 
at the end of the TU. (B) Average GC content % at breakpoints significantly differs between control cells and 
knockdown and overexpression clones. Statistical analysis was done using Mann-Whitney test. *: P<0.05. (C) The 
fraction of breakpoints within 10kb of ends of TUs for APH-induced CNVs was significantly higher in the 
knockdown clones. (D) The fraction of breakpoints at the ends of TU’s was significantly lower in the 
overexpression clones.  
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Figure 4.6. R-loops change spontaneous CNV frequency and size. (A) The overall frequency for spontaneous CNVs 
is significantly lower for RNASEH1 overexpression clones. On the other hand, knockdown clones did not have 
significantly more CNVs. The spontaneous CNVs in knockdown clones were not significantly deviant from the 
control cells in number of CNVs that overlap with large genes (B), deletion: duplication ratio (C), average GC 
content % (E), and number breakpoints at the ends of transcribed genes (F).  The spontaneous CNVs in knockdown 
clones were significantly bigger than the ones in the control cells (median size: 52kb vs. 110kb). The p-values were 
calculated using Fisher’s Exact Test for 2x2 contingency table for (A) – (C) and (F) and using Mann-Whitney test 
for (D) and (E). ns: P≥0.05 and *: P<0.05.  
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Tables 

 

Table 4.1. PCR primers that were used to amplify RNASEH1 cDNA from the donor plasmid (pCMV6-AC-
RNASEH1) and primers that were used to confirm that RNASEH1 cDNA was successfully integrated into the Tet-
On inducible expression plasmid (pTRIPZ).   

 

 

 

Table 4.2. qPCR primers that were used to measure relative RNASEH1 mRNA expression. 
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Supplemental Information  

 

Supplemental Figure 4.1. A map of pTRIPZ. Red arrows mark AgeI and MluI recognition sites, which were used to 
replace the cassette with RNASEH1 cDNA in the overexpression construct. Adapted from Yu et al (2016). 

 

 

 

Supplemental Figure 4.2. A 48-hour treatment with 100ng/mL doxycycline turns on the Tet-On system in both 
scrambled control and RNASEH1 knockdown cells as assessed by detection of Turbo-RFP by fluorescence 
microscopy. 
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Supplemental Figure 4.3. There is no significant difference in cell growth between scrambled control and RNASEH1 
knockdown clones (KD) for all four treatment conditions after 72 hours. NT: untreated, Dox: doxycycline only, 
APH: APH only, and Dox and APH: Both doxycycline and APH. 

 

 

Supplemental Figure 4.4. RT-qPCR shows that knockdown (KD) clones (A) and overexpression (OE) clones (B) 
lose the doxycycline-induced effect after 72 hours post drug removal.   
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Supplemental Figure 4.5. RNASEH1 knockdown (A and B) and overexpression (C and D) persist through APH 
treatment. Statistical analyses were performed using a student’s T-test. ns: P>0.05, *: P≤0.001, and **: P≤0.0001. 
Scrambled: Scrambled control, KD: Knockdown clone, Empty: Empty control, OE: Overexpression clone. 
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Supplemental Figure 4.6. The two replicates for RNASEH1 knockdown CNV experiments were set up differently. In 
the first replicate (A), either doxycycline or doxycycline and APH were added to the cells for 72 hours, followed by 
24 hours of recovery before the cells were plated for clone isolation, In the second replicate (B), doxycycline was 
added first for 48 hours, then doxycycline +/- APH were added for an additional 72 hours, followed by 24 hours of 
recovery. The overexpression experiment was set up following the timeline in (B). 
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Supplemental Figure 4.7. There are no apparent differences between the two replicates of RNASEH1 knockdown 
experiment in overall CNV frequency and deletion to duplication CNV ratio (A and B), the number of CNVs 
overlapping with large genes (C and D), and size (E and F).   
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Chapter 5 — Conclusions and Future Directions 

 

Overview  

Genome instability is a threat to an organism’s genome integrity, as it is associated with a 

myriad of human diseases and conditions including cancer, neurodevelopmental disorders, and 

aging. Identifying the causes and mechanisms of genome instability is essential for 

understanding the aforementioned diseases and conditions, as well as understanding the genomic 

dynamics in a normal cell. Among numerous genome rearrangements resulting from genome 

instability, this dissertation focused on instability at CFSs and CNV hotspots. Recent reports, 

including ones from our group, have increasingly demonstrated the importance of replication-

transcription conflicts in the instability at these sites, in which transcription interferes with 

replication and may cause fork stalling/collapse and DSBs (Wilson et al. 2015; Helmrich, 

Ballarino, and Tora 2011; Pomerantz and O’Donnell 2010b; M. Debatisse et al. 2012; Aguilera 

and García-Muse 2012; De Septenville et al. 2012).  

Data from Chapter 2 demonstrate the predictability of the instability at the sites based on 

the transcription profile for the particular cell line used in the study. Based on the cell line’s 

nascent transcription alone, I was able to predict where deletion CNVs would form in the human 

fibroblast cell line, HF1, which has no prior CNV data. I detected two deletion CNVs in DAB1, 

whose 1.5Mb isoform is expressed in the cell line. In addition, I demonstrated that transcription 

of the large genes is the determining factor for instability. We chose two human fibroblast cells 

(HF1 and 090) that have different expression patterns at two large genes to test whether that state 
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of transcription is correlated to CNV frequency at the site. I found that the presence of 

transcription determined whether the large genes were unstable or not. Combining the data from 

previous studies and the data in the Chapter, we propose the TrDoFF model, in which the late-

replicating nature of CFSs and CNV hotspots combined with the transcription of the large 

underlying genes render the regions especially susceptible to double-fork failures, leading to 

incorrect fork restarts and misrepair, leading to CFS gaps/breaks and CNVs.  

One caveat of the experiments and data presented in Chapter 2 is that I used two different 

cell lines to reach the conclusion about transcription’s determining role in CNV formation. Data 

from Chapter 3 address this caveat. I deleted the promoter of FHIT, a hotspot gene, using the 

CRISPR-Cas9 technology to knockdown the transcriptional activity at the gene and showed that 

the transcription knockdown reduced CNV frequency at FHIT compared to the unedited, 

parental cell line. This data expands on the model presented in Chapter 2 and underscore the 

pivotal role of transcription in CNV formation. In addition, the transcription knockout mutants 

are valuable tools in exploring other replication-transcription conflict mechanisms at CFSs and 

CNV hotspots.  

However, questions about the exact role of transcription still remain. I explored a 

potential mechanism of the replication-transcription conflict in Chapter 4, in which R-loops 

might create a barrier for DNA replication forks, thereby causing fork stalling and collapse. 

According to a previous study, R-loop accumulation led to higher CFS instability, especially 

rendering the middle of the site susceptible to transcription-replication collisions (Helmrich, 

Ballarino, and Tora 2011). I manipulated R-loop abundance by either knocking down or 

overexpressing RNASEH1 and analyzed the effect on APH-induced CNVs at the hotspots. 

However, the data revealed a change in breakpoint signatures in APH-induced CNVs when R-
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loop abundance was changed, suggesting that R-loops contribute to fork stalling/collapse in 

presence of replication stress, and this changes where the breaks occur.  

In addition, reducing the level of R-loops resulted in a reduction in the spontaneous CNV 

frequency, which is consistent with previous reports linking R-loops with genome instability 

(Sollier and Cimprich 2015; Aguilera and García-Muse 2012). Previous studies have shown that 

R-loop accumulation increases genome instability by causing DNA damage and inducing DNA 

damage response/gross chromosomal rearrangements, all of which are reversed when the level of 

R-loops is reduced (Amon and Koshland 2016; García-Pichardo et al. 2017; Herrera-Moyano et 

al. 2014; Gómez-González et al. 2011; Bhatia et al. 2014; García-Rubio et al. 2015; Herrero, 

Marı, and Moreno 2013). Furthermore, the total number of APH-induced gaps and breaks on 

metaphase chromosomes was reduced with reduced R-loop abundance (Helmrich, Ballarino, and 

Tora 2011).  

Interestingly, R-loop accumulation significantly reduced the size of the spontaneous 

CNVs, and showed more duplications than deletions (at a non-significant level). It is possible 

that the R-loop accumulation does not induce more spontaneous CNVs, but changes the 

mechanism of how the CNVs form. Future experiments should focus on further characterizing 

both APH-induced CNVs and spontaneous CNVs in the RNASEH1 knockdown and 

overexpression mutants to improve on the interpretations and hypotheses proposed later in this 

Chapter.  

 

 Exploring Different Transcription-Associated Models for CNV Formation 

As mentioned earlier, an increasing number of studies have focused on transcription as a 

potential source of genome instability, especially in the context of replication-transcription 



 124 

conflict. Replication and transcription cannot be independent factors since both processes use the 

same DNA template, thus the cell must have ways to minimize the conflict between the two 

processes.   

Cells have evolved to minimize the conflict in various ways, such as organizing the 

genome so the transcriptional direction is aligned with replication. Yet studies have shown that 

conflicts still occur and cause damage to the genome. Our data from Chapter 2 and 3 provide 

evidence that transcription of large genes is the determining factor for instability at CFSs and 

CNV hotspots. Based on previously proposed models (e.g. dormant origin and collision models) 

and properties of CFSs and CNV hotspots, we propose with our TrDoFF model that at CFSs and 

CNV hotspots, the middle of the regions are especially susceptible to instability because the 

transcription’s interference with DNA replication origin activity is the most severe in the center. 

TrDoFF model specifically posits that transcription actually strips licensed origins off the DNA 

template (Snyder, Sapolsky, and Davis 1988; Lõoke et al. 2010) and reduces the number of 

available origins, thus reducing origin activity at the CFSs and CNV hotspots. The reduced 

origin activity is predicted to increase the risk of fork stalling/collapse, thereby leading to CNV 

formation through erroneous mechanisms like FoSTeS, MMBIR, and MMEJ.  

The R-loop model for CFS instability gives a different role to transcription. The R-loop 

model draws upon the implications of replication-transcription collision model, in which the 

collision between replication and transcription machineries put the complexes at a stalemate. The 

collision cannot be resolved unless one of the machineries is ejected from the DNA strand and 

makes way for the remaining machinery to proceed. At least in E. coli, a study has shown that 

replication machineries can eject the transcription machineries during a head-on collision when 

the RNAP-DNA complex is not stable (Pomerantz and O’Donnell 2010a).  
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Conversely, if the RNAP-DNA complex was stable, the replication machinery might not 

be able to push through the collision and complete replication. RNA/DNA hybrids are more 

thermodynamically stable than dsDNA (Roberts and Crothers 1992; Chien and Davidson 1978; 

Gyi et al. 1998). If the R-loops at the large genes are longer stretches of the stable RNA/DNA 

hybrids, the replication machinery may not be able to remove the RNAP, and the replication fork 

may stall/collapse and lead to CNVs via mechanisms mentioned earlier.   

Are the two models, TrDoFF and R-loops model, mutually exclusive? The TrDoFF 

model predicts that that the likelihood of double-fork failure depends on two factors, which are 

the distance forks need to travel (N) and the distance the fork has traveled before stalling (Ns). 

Since the likelihood is a function of N/Ns, factors that reduce the distance the fork has traveled 

increases the likelihood, such as aphidicolin and possibly R-loops; hence, R-loops are compatible 

with the assumptions of the TrDoFF model. However, what contributes to the increase in N or 

reduction in Ns remains unclear.  

The two mechanisms that might increase the likelihood, origin scarcity and R-loops, 

mainly differ on the required timings of replication and transcription. The detail about when 

transcription ejects licensed origins in the TrDoFF model implies that transcription proceeds 

through the middle of the gene before replication does. On the other hand, the R-loop model 

suggests that transcription and replication are occurring at the same time since the two 

machineries have to collide. Assessing the relative timing of replication and transcription in high 

resolution in the same cell line will help elucidate which model is more accurate. The 

transcription timing assay in Helmrich et al. has limitations since the authors only analyzed two 

fractions of S phase cells (early and late S), which may not be enough resolution to deconstruct 

and analyze the relative timing of transcription and replication. In addition, using RT-qPCR to 
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measure transcription activity has caveats since even if the primers are designed to probe pre-

mRNAs, the assay is still not directly measuring transcriptional activity.    

However, the two models are not mutually exclusive; the main limitation for the 

proposed approaches are that they are population-based, and therefore we are making 

assumptions about events in individual cells based on the results. Do the replication timing data 

imply that every cell is replicating the middle of CNV hotspot late in the cell cycle? And in each 

cell, when does transcription occur and how does that compare to the same cell’s replication 

timing? Unless we utilize single-cell technology, we will not be able to answer these questions 

accurately.  In addition, Chapter 4 has demonstrated that R-loops possibly contribute to fork 

stalling and collapsing to induce CNVs, so perhaps what the future experiments also should 

focus on is refining the model so it is more consistent with the existing dataset.  

The promoterless mutants generated in Chapter 3 could be valuable tools in testing the 

two models. According to TrDoFF, the absence of transcription will maintain the dormant 

origins in the middle of the hotspot gene, which will fire when replication stress-inducing drugs 

are added to the cells. The R-loop model, on the other hand, does not predict that the replication 

timing will change with replication stress in absence of transcription. 

 

R-Loops and Genome Instability 

Nonetheless, R-loops still may contribute to CNV formation even if the replication 

timing experiment reveals that dormant origins are fired in the promoterless clones. The data 

from Chapter 4 of this dissertation support the idea that R-loops contribute to CNVs possibly in 

other ways besides collision.  
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The exposed ssDNA in the R-loop structure is known to be susceptible to various 

enzymes, such as AID, XPF, and XPG, which induces SSBs that can ultimately become DSBs 

via various mechanisms and lead to the consequences of genome instability (Sollier and 

Cimprich 2015), including CFS gaps/breaks and CNVs. In Chapter 4, overexpressing RNASEH1 

(thus over-resolving R-loops throughout the genome) significantly reduced the number of 

spontaneous CNVs in the cells. This is consistent with prior studies that demonstrated that the 

reduction of R-loop abundance is associated with less DNA Damage Response and different 

genome rearrangements (Cerritelli et al. 2003; Gan et al. 2011; Huertas and Aguilera 2003; 

Hraiky, Raymond, and Drolet 2000; García-Rubio et al. 2015).  

 Curiously, the RNASEH1 knockdown did not induce significantly more CNVs, but the 

CNVs were smaller in size and seem to have lower deletion to duplication ratio, possibly 

suggesting that although the knockdown may not induce more CNVs, but changes the profile in 

size and structure. The lower deletion to duplication ratio (albeit not reaching significance) was 

particularly striking since APH-induced CNVs tend to be biased toward deletion CNVs, and the 

bias even exists for spontaneous CNVs. Sequencing across the breakpoint junctions of these 

CNVs may help in identifying which other mechanism (if different) led to their formation. One 

possible mechanism that fits the characteristics of the CNVs is BIR, which is known to generate 

duplications in human cells at sites of DNA damage (Costantino et al. 2014).  

Chapter 4 also revealed that the breakpoints of the APH-induced CNVs shift when 

RNASEH1 is knocked down or overexpressed. In the knockdown cells, the CNV breakpoints 

tended to be in regions that share the same characteristics as regions enriched with R-loops, and 

the opposite was observed for the overexpression cells. These results imply that the initial fork 

stall and collapse and/or DSBs occur at regions that are enriched with R-loops, and this location 
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bias increases with more R-loops. The breakpoints of the spontaneous CNVs did not show this 

bias, at least for the knockdown clones (since no comparisons could be made for the 

overexpression clones due to low number of spontaneous clones), which suggests that this bias is 

specific for APH-induced CNVs.  

What happened between the R-loop accumulation and the template switching or DSB 

generation is unclear. Are the DSBs result of breaks in the ssDNA in the R-loops, independent of 

replication forks? Or did the fork stall and collapse near the ends of the transcripts because of the 

stable R-loops, similar to the ideas proposed in the R-loops model? Similar to the spontaneous 

CNVs, breakpoint junction sequencing may help identify the mechanism leading up to the DSBs 

or template switching; for example, is there microhomology at the breakpoint junctions of these 

CNVs that suggests mechanisms like FoSTeS, MMBIR, or MMEJ?  

 

Reflecting on Experimental Procedures in This Dissertation 

In Chapter 3, I utilized the CRISPR-Cas9 technology to generate two promoterless 

mutants. I used two independently risen promoterless mutants for same experiments to address 

the potential off-target effects of CRISPR-Cas9, which have been a focus of several recent 

papers (Anderson et al. 2018; Fu et al. 2013; Cho et al. 2014; Kosicki, Tomberg, and Bradley 

2018). Unlike typical uses of CRISPR (e.g. introducing small indels with NHEJ or replacing a 

sequence with HR), which utilizes one gRNA, I used two gRNAs to delete the promoter region. 

Although I needed to add extra steps to enrich the population with the deletion mutants, the 

CRISPR technology did provide a straightforward method to delete almost a 2-kb region in the 

genome, efficiently turning off transcription at FHIT. Similarly, this method could be useful in 

studying the functions of other genetic elements by deleting them and studying the phenotype.  
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I also used ddPCR in Chapter 3 for CNV analysis in a population of cells. The traditional 

method of analyzing CNVs requires analyzing individual clones using methods like SNP 

microarrays and PCR, which could be extremely time-consuming. Since we can now guess 

where CNV hotspots might be and know that the middle of the hotspots is the most unstable, we 

can use ddPCR to query the middle of the gene in a treated population without going through the 

time-consuming cloning, expanding, and harvesting steps. ddPCR could be extremely useful 

when wanting to quickly test what effect different conditions and manipulations have on CNV 

frequency at a hotspot gene.  

 The CNV analyses in Chapter 4 required me to work with several layers of uncertainty. 

Since the CNVs were detected using SNP arrays, the exact breakpoint junction could not be 

located. The Illumina SNP array has about 1.7 million probes for the human genome, which 

means that on average, each probe is about 2kb apart. Thus, the estimated breakpoints from 

MSVTools may be off by approximately 2kb even if the initial calling was accurate. In addition, 

DSBs are sometimes resected before they are repaired, and this resection in human cells could be 

as large as 3.5kb (Zhou et al. 2014).    

 

Future Directions 

Immediate future experiments should focus on filling the gaps in the presented data to 

make them more robust evidence to support our models. First, we can investigate the effect of 

transcription knockdown in CFS instability and replication timing using the promoterless 

mutants generated in Chapter 3.  Second, we should look at CFS instability in the RNASEH1 

knockdown and overexpression clones to confirm that we are getting data that are consistent with 

the results presented in Helmrich et al. and that the difference in the data are due to biological 
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reasons, not technical reasons. Third, we must repeat some parts of the CNV experiments in 

Chapter 4. In particular, the overexpression experiment must be repeated since my conclusions in 

this dissertation were based on one replicate. I will also be interested to see the knockdown 

experiment repeated for the doxycycline-only treatment to test whether the RNASEH1 

knockdown alone actually induces more CNVs and/or change the CNV profile and size since the 

small number of CNVs in this discussion might have not been enough to make the true effect 

more obvious. Last, the CNV breakpoint junctions for RNASEH1 knockdown and 

overexpression clones should be characterized further to see if the CNVs are similar to APH-

induced CNVs in the control cells, and if not, start identifying the mechanisms that led to the 

formation of those CNVs.  

 The potential long-term future experiments are further characterizing the relationship 

between APH-induced CNVs in the RNASEH1 knockdown clones to R-loops. In this 

dissertation, I analyzed the CNVs using two characteristics of R-loop-enriched regions, high GC-

content and proximity to ends of transcripts. The obvious next step will be to actually measure 

the association between the CNVs and R-loops themselves, using techniques like DRIP-seq, and 

couple that dataset with other datasets that measure genome dynamics, such as Repli-seq 

(Hansen et al. 2010), to get more accurate picture of how R-loops are detrimental to genome 

integrity with respect to its relationship with DNA replication and DNA repair mechanisms. 

Furthermore, it will be relevant to observe what effects RNASEH1 had on nascent transcription 

profile. The analyses performed in Chapter 4 assumed that neither RNASEH1 knockdown nor 

overexpression changed the Bru-seq profile. A study by Lima et al. has demonstrated that 

Rnaseh1 knockout in mice induced a change in the transcriptome in murine hepatocytes, 

particularly in genes relevant to mitochondrial function (Lima et al. 2016).  
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 Finally, since the R-loop model and the TrDoFF model are not mutually exclusive, more 

studies should be done to explore the TrDoFF model further. One possible experiment is 

mapping licensed origins in different stages of the cell cycle and/or characterizing the relative 

replication and transcription timing.  

 

Larger Implications of This Dissertation 

Many of the hotspot genes are clinically relevant, as they are associated with numerous 

types of human cancer and neurodevelopmental disorders (Wilson et al. 2015). In many 

instances, the genomic rearrangements of the gene disrupt the gene’s function, serving as the 

etiology for the onset and the progression of the disease. Other times, the instability at these 

genes renders the sites susceptible to viral integration. The distribution of CNVs observed in 

tumors and autism patients has a striking resemblance to the distribution of induced CNVs in our 

cell culture system (Glover, Wilson, and Arlt 2017; Beunders et al. 2013), suggesting that the 

findings using our cell culture model can be used to study what causes the instability in people. 

Additional investigations of the mechanism, such as uncovering the exact role of transcription at 

large gene in CFS/CNV hotspot instability, can help researchers predict the sites of extreme 

instability and learn to possibly prevent it in the context of diseases.  

Although about 40% of all induced CNVs are located in the hotspots (Wilson et al. 

2015), the majority of CNVs are not in the hotspots. Most of our efforts so far have been focused 

on studying the mechanisms that lead to CNVs at the hotspots because they are the sites of 

extreme instability. Although the same mechanism (e.g. TrDoFF model) may apply to non-

hotspot CNVs formation, it is possible that these CNVs are formed with a different mechanism 

altogether. Our data from Chapter 4 suggest R-loops may also play a role in CNV formation, and 
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along with a number of other studies that have reported the relationship between R-loops and 

various aspects of genome instability (Aguilera and García-Muse 2012; Sollier and Cimprich 

2015), they can perhaps help to explain how some of these non-hotspot CNVs occur. 

Furthermore, further investigations will also help identifying casual factors and potential 

preventive measures for R-loop-associated human diseases.  
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Appendix 
 

 

Table A.1. List of unique, de novo CNVs in Scrambled control + doxycycline clones. SAMPLE: Sample name, 
CHROM: Chromosome, START & END: Breakpoint coordinates, SPAN: Size of the CNV, LOSS/GAIN: Denotes 
whether the CNV is a loss (deletion) or a gain (duplication).  
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Table A.2. List of unique, de novo CNVs in Scrambled control + doxycycline and APH clones. SAMPLE: Sample 
name, CHROM: Chromosome, START & END: Breakpoint coordinates, SPAN: Size of the CNV, LOSS/GAIN: 
Denotes whether the CNV is a loss (deletion) or a gain (duplication).  
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Table A.3. List of unique, de novo CNVs in RNASEH1 knockdown + doxycycline clones. SAMPLE: Sample name, 
CHROM: Chromosome, START & END: Breakpoint coordinates, SPAN: Size of the CNV, LOSS/GAIN: Denotes 
whether the CNV is a loss (deletion) or a gain (duplication). 
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Table A.4. List of unique, de novo CNVs in RNASEH1 knockdown + doxycycline and APH clones. SAMPLE: 
Sample name, CHROM: Chromosome, START & END: Breakpoint coordinates, SPAN: Size of the CNV, 
LOSS/GAIN: Denotes whether the CNV is a loss (deletion) or a gain (duplication). 
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Table A.5. List of unique, de novo CNVs in Empty control + doxycycline clones. SAMPLE: Sample name, 
CHROM: Chromosome, START & END: Breakpoint coordinates, SPAN: Size of the CNV, LOSS/GAIN: Denotes 
whether the CNV is a loss (deletion) or a gain (duplication). 
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Table A.6. List of unique, de novo CNVs in Empty control + doxycycline and APH clones. SAMPLE: Sample 
name, CHROM: Chromosome, START & END: Breakpoint coordinates, SPAN: Size of the CNV, LOSS/GAIN: 
Denotes whether the CNV is a loss (deletion) or a gain (duplication). 

 

 

Table A.7. List of unique, de novo CNVs in RNASEH1 overexpression + doxycycline clones. SAMPLE: Sample 
name, CHROM: Chromosome, START & END: Breakpoint coordinates, SPAN: Size of the CNV, LOSS/GAIN: 
Denotes whether the CNV is a loss (deletion) or a gain (duplication). 
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Table A.8. List of unique, de novo CNVs in RNASEH1 overexpression + doxycycline and APH clones. SAMPLE: 
Sample name, CHROM: Chromosome, START & END: Breakpoint coordinates, SPAN: Size of the CNV, 
LOSS/GAIN: Denotes whether the CNV is a loss (deletion) or a gain (duplication). 
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Table A.9. List of unique, de novo CNVs in Scrambled control clones in the first replicate of the knockdown 
experiment. SAMPLE: Sample name, CHROM: Chromosome, START & END: Breakpoint coordinates, SPAN: 
Size of the CNV, LOSS/GAIN: Denotes whether the CNV is a loss (deletion) or a gain (duplication). The APH-
treated clones are in red.  
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Table A.10. List of unique, de novo CNVs in Scrambled control clones in the second replicate of the knockdown 
experiment. SAMPLE: Sample name, CHROM: Chromosome, START & END: Breakpoint coordinates, SPAN: 
Size of the CNV, LOSS/GAIN: Denotes whether the CNV is a loss (deletion) or a gain (duplication). The APH-
treated clones are in red. 
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Table A.11. List of unique, de novo CNVs in RNASEH1 knockdown clones in the first replicate of the knockdown 
experiment. SAMPLE: Sample name, CHROM: Chromosome, START & END: Breakpoint coordinates, SPAN: 
Size of the CNV, LOSS/GAIN: Denotes whether the CNV is a loss (deletion) or a gain (duplication). The APH-
treated clones are in red. 
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Table A.12. List of unique, de novo CNVs in RNASEH1 knockdown clones in the second replicate of the 
knockdown experiment. SAMPLE: Sample name, CHROM: Chromosome, START & END: Breakpoint 
coordinates, SPAN: Size of the CNV, LOSS/GAIN: Denotes whether the CNV is a loss (deletion) or a gain 
(duplication). The APH-treated clones are in red. 
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