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Key Points: 

• We review existing practices for assessing geomagnetic index prediction models and 
recommend a "standard set" of metrics 

• Along with fit performance metrics that use all data-model pairs in their formulas, event 
detection performance metrics are recommended 

• Other aspects of metrics assessment best practices, limitations, uncertainties, and 
geomagnetic index caveats are also discussed 

 

AGU Index Terms: Category 

• 7924 Forecasting  in 7900 SPACE WEATHER 

• 7959 Modeling in 7900 SPACE WEATHER 

• 7954 Magnetic storms in 7900 SPACE WEATHER 
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• 4305 Space weather in 4300 NATURLA HAZARDS 

• 4318 Statistical analysis  in 4300 NATURAL HAZARDS 
 

Keywords: 
Space weather, geomagnetic indices, metrics, statistical analysis, forecasting, ROC curve 
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Abstract 
Geomagnetic indices are convenient quantities that distill the complicated physics of some 
region or aspect of near-Earth space into a single parameter. Most of the best-known indices are 
calculated from ground-based magnetometer data sets, such as Dst, SYM-H, Kp, AE, AL, and 
PC.  Many models have been created that predict the values of these indices, often using solar 
wind measurements upstream from Earth as the input variables to the calculation. This document 
reviews the current state of models that predict geomagnetic indices and the methods used to 
assess their ability to reproduce the target index time series.  These existing methods are 
synthesized into a baseline collection of metrics for benchmarking a new or updated 
geomagnetic index prediction model. These methods fall into two categories: (1) fit performance 
metrics such as root mean square error (RMSE) and mean absolute error (MAE) that are applied 
to a time-series comparison of model output and observations; and (2) event detection 
performance metrics such as Heidke Skill Score and probability of detection (POD) that are 
derived from a contingency table that compares model and observation values exceeding (or not) 
a threshold value. A few examples of codes being used with this set of metrics are presented, and 
other aspects of metrics assessment best practices, limitations, and uncertainties are discussed, 
including several caveats to consider when using geomagnetic indices. 

Plain Language Summary 
One aspect of space weather is a magnetic signature across the surface of the Earth. The creation 
of this signal involves nonlinear interactions of electromagnetic forces on charged particles and 
can therefore be difficult to predict.  The perturbations that space storms and other activity 
causes in some observation sets, however, are fairly regular in their pattern.  Some of these 
measurements have been compiled together into a single value, a geomagnetic index. Several 
such indices exist, providing a global estimate of the activity in different parts of geospace. 
Models have been developed to predict the time series of these indices, and various statistical 
methods are used to assess their performance at reproducing the original index. Existing studies 
of geomagnetic indices, however, use different approaches to quantify the performance of the 
model. This document defines a standardized set of statistical analyses as a baseline set of 
comparison tools that are recommended to assess geomagnetic index prediction models. It also 
discusses best practices, limitations, uncertainties, and caveats to consider when conducting a 
model assessment. 

 

1. Introduction 
Geomagnetic indices are compilations of a set of similar measurements to produce a 

single parameter, a time series of the magnitude of disturbance in some part of geospace. They 
are highly convenient for distilling complicated phenomena down to an activity value, often 
being global in their integrative nature of the underlying physical processes. Because they are 
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systematically calculated with well-known methodologies, they are comparable between events, 
even ones separated by decades. While the original motivation was summarizing observations 
and reducing data volume (e.g., Mayaud, 1980), they are now used as a proxy for some aspect of 
geomagnetic activity. 

Most geomagnetic indices are derived from ground-based magnetometer observations.  
For instance, the polar cap index, PC (Troshichev et al., 1988; see also Stauning, 2013), is known 
as an estimate of the electric field across the polar cap. The auroral electrojet indices AL and 
AU, and their difference, AE, are all distilled from a dozen or so high-latitude stations (e.g., 
Davis & Sugiura, 1966; see also Ka mide & Kokubun, 1996; Gjerloev, 2012; Ka mide & 
Rostoker , 2004), providing an estimate of the plasma flows and electric currents in this part of 
the ionosphere from the closure of field-aligned currents (region 1, region 2, or the substorm 
current wedge). Kp is derived from 3-h intervals of 13 midlatitude magnetometer measurements 
(Bartels et al., 1939) and is a measure of global geomagnetic activity. As Kp strongly responds to 
the motion of the inner edge of the plasma sheet, it is often used as an estimate of convection 
strength (e.g., Volland, 1975; see also Thomsen, 2004).  Dst and SYM-H (Sugiura , 1964; see 
also Iyemor i, 1990; Iyemor i et  al ., 1992), often used interchangeably (see, e.g., the comparisons 
by Katus & Liemohn, 2013; Love & Gannon, 2009; Wanliss & Showalter, 2006), are derived 
from 4 to 10 low-latitude magnetometer stations, and is an index that captures the dynamics of 
inner magnetospheric current systems and large-scale magnetospheric currents. Please see the 
reviews by Rostoker (1972), Mayaud (1980), Murayama (1982), and Menvielle et al. (2011) for 
a complete description of geomagnetic indices. Dst if often used to define the geomagnetic 
storms and their phases (Sugiura & Chapman, 1960), while other indices or combinations of 
them may be used depending on the considered magnetospheric phenomenon (Borovsky, 2014; 
Borovsky & Shprits, 2017). 

Because of their convenience as a single time series, these indices are often cited as 
measures of space weather activity. In fact, they are regularly used as input values to drive some 
numerical models. For example, Kp has been used in several different ways as an input to inner 
magnetosphere models, such as for the large-scale electric field description in drift physics 
models (e.g., Maynard & Chen, 1975; see also Fok et al., 1995; Jordanova et al., 1996; Liemohn 
et al., 1999, 2001; Ganushkina et al., 2001), for plasmapause locations (e.g., Carpenter & 
Anderson, 1992; see also Moldwin et al., 2002; O'Brien & Moldwin, 2003), for ULF wave 
activity (e.g., Brautigam & Albert, 2000; Brautigam et al., 2005; Ozeke et al, 2014), and whistler 
mode chorus and hiss wave activity (e.g., Agapitov et al., 2015; Orlova et al., 2014, 2016; 
Spasojevic et al., 2015). Even though they are used as a crude proxy to unmodeled physical 
processes, they are part of our understanding of space physics and an integral aspect of space 
weather modeling and forecasting. 

Much time and effort has been devoted to the prediction of geomagnetic indices.  The 
output of each new model is, of course, tested against an index for one or more intervals.  These 
studies, however, take different approaches to that validation task. That is, while many papers 

This article is protected by copyright. All rights reserved.



 6 

have assessed the performance of a given geomagnetic index prediction model, there is no 
standard for this assessment.  It is proposed here to establish a baseline set of statistical analysis 
metrics for benchmarking a geomagnetic index prediction model. This metrics set will be useful 
from both scientific and operational perspectives. For science, it will be useful for assessing 
model capabilities and identifying where and under what circumstances model improvements are 
needed. For operations, it will be useful for assessing model skill for serving those affected by 
space weather conditions. 

In early 2017, the space weather community organized into working groups to address 
this issue of metrics for space weather models.  This effort culminated in a CCMC-LWS 
workshop in April 2017 (Community Coordinated Modeling Center – Living With a Star 
International Forum for Space Weather Capabilities), at which many hours of discussion led to 
community consensus on various issues of space weather forecasting capabilities (see the 
assessment website).  One of the working groups focused on the metrics related to geomagnetic 
indices.  This document presents the output of that working group, presenting a review of 
existing geomagnetic index models, a baseline set of metrics for assessing new or updated index 
models, and a few examples of this statistical toolkit applied to geomagnetic index prediction 
models. Many acronyms are used throughout this paper and a full list of definitions is provided 
in Table S1. 

2. Prior Assessment of Index Prediction Models 
There are essentially three main groupings of "global" geomagnetic indices from ground-

based magnetometers.  The first set is the low-latitude indices, specifically Dst and SYM-H, 
responding to the large-scale current systems in geospace.  The second class is the mid-latitude 
Kp index, in a class by itself because it is a unique index with a distinct calculation scheme, yet 
has been demonstrated to be useful as an organizer of geomagnetic activity.  The third category 
is the high-latitude indices, most notably AL, AU, and AE, which are measures of ionospheric 
current systems in the auroral region.  In the following subsections, the history of models that 
predict these indices is briefly presented and discussed. 

2.1.  Dst and SYM-H 
Table 1 lists the studies, grouped by model in order of the year of their first publication, 

that included a predictive model for Dst/SYM-H and a quantitative assessment of the accuracy of 
the comparison.  The second column gives a very brief description of the numerical approach 
used to calculate the index and the third column lists some of the key metrics discussed in the 
papers for the model performance in reproducing one of these indices. In this last column, 
HWHM is half-width at half maximum of a distribution of data-model differences, R is the 
Pearson linear correlation coefficient, RMSE is the root mean square error, ARV is the average 
relative variance, PE is prediction efficiency, HSS is Heidke Skill Score, NRMSE is normalized 
root mean square error, POD is probability of detection, and ME is mean error. 
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One of the first studies to predict the low-latitude magnetic disturbance was Burton et al. 
(1975), who didn't actually predict Dst but a similarly comprised collection of magnetometer 
signals from around the globe.  We refer to the ordinary differential equation they adopted as the 
Burton Equation, and numerous other prediction schemes have followed this methodology 
(Fenrich & Luhmann, 1998; O'Brien & McPherron, 2000a; Temerin & Li, 2002; Wang et al., 
2003). A more advanced version of this approach was presented by Horton and Doxas (1996), 
who expanded it to a full "circuit diagram" set of 8 differential equations.  Two of the ouputs 
from this model are analogous to Dst/SYM-H and AL, and have been successfully used to 
predict these indices (e.g., Mays et al., 2009). Also in this category is the severe space weather 
event determination model of Balan et al. (2017), who based their model on the same solar wind 
input parameters as were used in the Burton Equation. 

Neural networks have been used for Dst/SYM-H prediction.  This is a broad category and 
there are several different algorithms within this category. For example, both Lundstedt and 
Wintoft (1994) and Bala et al. (2009) used a time delay neural network algorithm while Wu and 
Lundstedt (1997) adopted the Elman neural network approach. Revallo et al. (2014) also used the 
Elman neural network method but instead of feeding the solar wind values straight into the code, 
they filtered them first with a time-integrative function.  As seen in the metrics column of Table 
1, most of these approaches are very good at reproducing indices. 
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Table 1. Dst and SYM-H prediction models and key metrics of the comparison 
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Another numerical approach is the autoregressive moving average model of Billings and 
Voon (1986), of which the NARMAX version of this technique (Nonlinear Autoregressive 
Moving Average Model With Exogenous Inputs) was applied to predict geospace indices like 
Dst by Boaghe et al. (2001).  This uses an equation set of specified combinations of the input 
variables, back one or more time intervals (again, specified), and then iteratively determines the 
optimal coefficients for each term. The initial equation can have dozens of free parameters but, 
usually, there are only a few dominant terms in the final model. A related method is that of 
Klimas et al. (1998), who used a local-linear prediction analogue method to forecast Dst. 

With the Gonzalez et al. (1994) classification of driver parameters for storms, as defined 
by Dst, models have been developed that predict Dst active times with these criteria.  Saiz et al. 
(2008) employed several modified versions of the Gonzalez et al. (1994) thresholds, and Zhang 
and Moldwin (2015) created a probabilistic forecast technique for activity. Tsubouchi and Kubo 
(2010) also used these criteria to determine storm start and end times, then developing a 
probabilistic forecasting model for when the next storm should occur. Not only the occurrence or 
the severity of a storm was considered as relevant in the forecasting process, but also the 
remaining time for quiet state after a storm. This phase was commonly modeled as an 
exponential recovery, but during severe storms Dst often recovers faster (e.g., Dasso et al., 2002; 
Liemohn & Kozyra, 2005). The model of Aguado et al (2010) proposed an analytical expression 
for the recovery phase of intense storms based in a hyperbolic function. 

A rather different approach is the Anemomilos method of Tobiska et al. (2013).  This 
technique correlated solar flare intensity and location of the flare on the solar disk to the average 
Dst perturbations up to a few days later.  Because many intense storms are driven by 
interplanetary coronal mass ejecta launched from the Sun along with a flare (e.g., Zhang et al., 
2007), this simplistic method works quite well at capturing the daily mean changes of Dst. 

A final group of modeling approaches to be mentioned here are the first-principles-based 
numerical models of geospace that compute a synthetic Dst/SYM-H time series.  These include 
regional models, such as the Hot Electron and Ion Drift Integrator code (e.g., Liemohn et al., 
2004; Ilie et al., 2012) that solves the gyration- and bounce-averaged kinetic equation for the 
phase space density of hot (~keV) charged particles in the inner magnetosphere.  HEIDI has been 
run for all of the intense storms of solar cycle 23 (1996-2005), from which comparative metrics 
have been calculated (e.g., Liemohn & Jazowski, 2008, Liemohn & Katus, 2012). There are 
several other models like HEIDI that also calculate Dst/SYM-H from an integral of the particle 
phase space densities (e.g., Jordanova et al., 1998; Khazanov et al., 2003; Ganushkina et al., 
2012; Fok et al., 2014), but the Dst values from these codes have only been qualitatively 
compared against the observed values. Another approach is with a set of coupled codes, such as 
the Space Weather Modeling Framework (SWMF, see Toth et al., 2012), that includes a 
magnetohydrodynamic model for the global magnetospheric structure, an inner magnetospheric 
drift physics model, and an ionospheric electrodynamics solver.  Haiducek et al. (2017) used this 
code to simulate the entire month of January 2005, conducting a set of metrics comparisons 
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against SYM-H, AE, and Kp as calculated from the SWMF model suite.  Similarly, Liemohn et 
al. (2018) have assessed the output from the experimental real-time SWMF simulations being 
run at the Community Coordinated Modeling Center (CCMC), for which are now several years 
of output available. Yet another study of this kind is Morley et al. (2018), who varied upstream 
inputs to the SWMF to assess ground-based magnetometer comparisons with respect to solar 
wind uncertainties.  These first-principles codes are, in general, not as good at reproducing the 
low-latitude index time series as the other codes mentioned above, which are especially 
formulated and optimized for index prediction.  They produce a far richer output set, however, 
that includes plasma and field parameters across a large spatial domain. 

Note that a "Dst challenge" was conducted by CCMC (Rastätter et al., 2013) as part of 
the 2008–2009 GEM Metrics Challenge. They presented results of 30 different model 
configurations for four storm events (ranging from a minor storm to a super storm). Specifically, 
these models were: 1) three-dimensional (3-D) MHD models of the magnetosphere coupled to an 
ionosphere electrodynamics solver such as the SWMF (Tóth et al. 2005), the Open Geospace 
General Circulation Model (OpenGGCM) (Raeder et al., 2001), and the Coupled 
Magnetosphere-Ionosphere-Thermosphere (CMIT) model (Lyon et al., 2004; Wiltberger et al., 
2004; Merkin and Lyon, 2010); 2) kinetic ring current models such as the Ring Current-
Atmosphere Interactions Model with Self-Consistent Magnetic Field (RAM-SCB) (Jordanova et 
al., 1994; 2010; Zaharia et al., 2006) and the Rice Convection Model (RCM) (Harel et al., 1981; 
Wolf et al., 1991; Toffoletto et al., 2003); and 3) Dst-specification models such as the Impulse 
Response Function with 96 lags (IRF96) of Weigel (2010), an analytic formula called BFM 
(Burton et al. 1975; Feldstein 1992; Murayama 1982); and the University of Sheffield 
(NARMAX) algorithm (Billings et al., 1989). Rastätter et al. (2013) considered a number of 
different metrics, including prediction efficiency (PE), log spectral distance, correlation 
coefficient (R), modeling yield, and timing error. Different models and settings performed the 
best in each of these categories. To visualize the model performance, the scores for each run for 
the individual events were shown in 2-D plots (i.e., PE - R) space). It was found that the 
magnetosphere model runs filled a large area in PE-R space (PE > –11, R > –0.15), while most 
ring current model runs were clustered much closer to the ideal PE score (PE > –2) with a 
smaller range in R (R > 0.2). The Dst specification models were very close to perfect in PE and 
R except for the weakest, isolated-substorm event that proved difficult for all the models. Model 
outputs from this study, together with the observational data, are available on the CCMC web 
site (http://ccmc.gsfc.nasa.gov, under “Metrics and Validation” and then “GEM Challenge”). 

The metrics quoted in Table 1 are not always directly comparable because the studies 
might have used different forecast windows for the comparison.  Some are nowcast or even 
historical event reanalysis studies, others are one time step ahead, while some studies predict the 
index up to days in the future. In particular, models that include past observed values of the 
predictand will result in high scores for most performance metrics for one-step-ahead predictions 
if the auto-correlation is high, like for Dst. Therefore, caution should be taken in reading Table 1 
and making judgments about the performance of any particular model. 
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2.2.  Kp 
Table 2 lists studies that have presented models reproducing the Kp index. The list of 

such models is significantly shorter than that for Dst/SYM-H. As in Table 1, the second column 
gives a brief description of the numerical approach and the third column lists some key metrics 
from the comparison. There are a few new metrics in this table that were not used in Table 1. 
Specifically, Gilbert SS is the Gilbert Skill Score, MAE is the mean absolute error, FAR is the 
false alarm ratio, and TSS is the True Skill Score. 

Like for Dst, neural networks have been used for Kp models. Boberg et al. (2000) used a 
neural network with time delays, the Wing et al. (2005) model used two methods, the 
multilayered feedforward network and a recurrent network, and Bala et al. (2009) used a 
feedforward neural network. These are among the best at predicting Kp several hours ahead. 

Another type of model is to use a small number, perhaps even just one, ground-based 
magnetometer station to nowcast the global Kp index value.  This was done by Takahashi et al. 
(2001), finding high correlation values even for a prediction based on a single station. 

A version of the NARMAX model has been applied to the Kp index by Ayala Solares et 
al. (2016). They found that the simplified version, the NARX model, without the moving average 
input values but rather with direct input of single-time solar wind values, performed slightly 
better for Kp than the NARMAX version of the code. 
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Table 2. Models predicting Kp and key metrics of the comparison 

 

 

Another approach is an empirical model for the relationship between Kp and solar wind 
input values. This was done by Savani et al. (2017), who coupled the output from a solar wind 
prediction model to this Kp prediction formula.  The model does reasonably well at capturing 
high-Kp space weather events, with no false alarms in their test interval. 

There is one first-principles model that has produced Kp and for which metrics have been 
calculated, the SWMF.  For the month of January 2005, Haiducek et al. (2017) assessed the 
ability of three versions of the SWMF to reproduce Kp. 

As with Dst/SYM-H, the metrics listed in Table 2 might not be directly comparable with 
each other.  Some of the studies are historical reanalysis assessments, others are nowcasts, and 
the prediction models could be one time step (3 hours, in the case of Kp) or more. Care should be 
taken in judging one model against another in this table. 

2.3.  AE, AL, and AU 
Table 3 lists the studies that have produced a model for predicting the high-latitude 

indices of AE, AL, and/or AU.   
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Table 3.  Models that predict AE, AL, or AU and their key metrics 

 
 

There were a number of prediction algorithms created for these indices in the early 
1980s.  Clauer et al. (1981) used a linear impulse response function for AL and AU, Baker et al. 
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(1981) correlated AE against two solar wind coupling functions, and Holzer and Slavin (1982) 
compared time-integrals of the solar wind coupling functions with AL. This last study produced 
the largest correlation coefficients, indicating that an hour or two of integrated input is all that is 
needed to accurately predict this index. 

Goertz et al. (1993) created an AL prediction model from magnetotail observations.  
While they only tested it on a small interval, the correlation was high, indicating that such 
measurements have potential for the prediction of this index. 

Several of the models mentioned above also predict one or more of these indices. The 8-
differential-equation model of Horton and Doxas (1996) produces a output that can be 
considered a synthetic AL value.  Gleisner and Lundstedt (2001) adopted their neural network 
model for AE prediction, Bala et al. (2009) used their neural net for AE forecasts, Amariutei and 
Ganushkina (2012) used the ARMAX model for predicting AL, Zhang and Moldwin (2015) 
included AE in their probabilistic forecast of geomagnetic activity, and Haiducek et al. (2017) 
computed AL from the SWMF model results. 

There are a few similarly formulated but different models listed in Table 3. Two of these 
include neural network approaches for AE (Takalo & Timonen, 1997; Pallocchia et al., 2008).  
Another is the Minimal Substorm Model (Morley et al., 2007), which calculates AL based on 
solar wind inputs distilled into two components, an unloading DP1 portion and a directly-driven 
DP2 part.  Finally, there is the AL prediction model of Li et al. (2007), which is based on the 
Temerin and Li (2002) Dst prediction model approach. 

As with the other tables, the metrics listed in Table 3 might not be directly comparable 
against each other. Caution is advised in assessing one model against another based on the 
listings in Table 3. 

2.4.  Other Indices 
Prediction methods have also been developed for a few other geomagnetic indices that do 

not fit into the three categories listed above. For example, both Cade et al. (1995) and Shen et al. 
(2002) calculated a relationship between Dst and AL/AE, finding relatively high correlation 
between these indices.  Boyle et al. (1997) developed a prediction scheme for the cross polar cap 
difference of the ionospheric electric potential, basing it on solar wind input values.  Borovsky 
(2014) used canonical correlation analysis for geospace system prediction.  This uses several 
geospace system parameters, including Kp and SYM-H, and several solar wind input parameters, 
to determine a set of best-fit linear combinations of both the solar wind input and the geospace 
output.  A solar parameter, the F10.7 solar radio flux, is regularly used as a proxy for the extreme 
ultraviolet photon flux from the Sun to the Earth. It is especially useful for the ionosphere-
thermosphere research community, and Henney et al. (2012) developed an F10.7 prediction 
scheme that yields forecasts up to 7 days in advance. 

This article is protected by copyright. All rights reserved.



 16 

Some of the studies mentioned above also calculated other geomagnetic indices and 
computed data-model comparison metrics. Specifically, along with Kp, Devos et al. (2014) 
includes a prediction algorithm for F10.7. Using the SWMF model suite, Haiducek et al. (2017) 
simulated the northern and southern hemisphere cross polar cap potential and compared with an 
observation-based estimate of this value. 

3. The Baseline Assessment Metrics 
As seen from the above-listed studies, there is no single set of metrics used by 

geomagnetic index predictive-model developers to benchmark their codes. Model verification 
and validation is an important aspect of development; Jolliffe and Stephenson (2012) give three 
main reasons for conducting quantitative assessments of models. The first is administrative – 
documenting the improvement of modeling capabilities over time.  The second is economic – 
users of models want to optimize the return on their product development investment and offer 
the best service (in this case, predictions of various aspects of geomagnetic activity, as captured 
by indices) to their clients.  The third is scientific – understanding the input conditions and 
expected output values for which a model has high or low performance capabilities reveals 
strengths and weaknesses of the underlying methodology, and possibly also about the physical 
processes governing index response. 

Because the model is producing an output that, ideally, should exactly match an observed 
index time series, the Pearson correlation coefficient has been used extensively. One metric 
alone, however, is not enough to assess the accuracy of a model, especially given the fact that 
different users of the same model might want different performance capabilities and standards. 
For an index predictor, the general desire of both the model developer and user is an 
improvement of the existing model's performance. The modeler, however, has made choices in 
creating the prediction scheme: what input parameters to use, what functional form to assume for 
the causal relationship, what statistical methods to employ to get coefficients, even what time 
intervals to use for training and validation.  For example, the user of a model's prediction may 
care about one or more of the following: its ability to predict extreme events; its long-lead-time 
forecasting ability; its accuracy for reanalysis of past events; or its ability to minimize false 
alarms.  That is, each user will want a model that works for a particular comparison at an 
accuracy standard they have specified. 

Here, we define and describe a standard list of statistical analysis metrics that is 
recommended for any geomagnetic index prediction model. While this is a limited and tractable 
set, it covers a broad range of possible metrics choices (see, for instance, Hogan and Mason, 
2012; Morley et al., 2018). Each one has been selected because it assesses a certain aspect of the 
data-model comparison. Note that this is a minimum set for everyone to use; additional statistics 
can and should be used depending on the specific application for which the model is being 
developed. 
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The baseline set of metrics proposed here is a combination of two categories of values.  
The first set consists of "fit performance assessments" that include each data-model pair in the 
considered time interval. The second set is the "event performance assessments" that measure 
how well the model reproduces the timing and intensity of geomagnetic activity across a range of 
thresholds. 

3.1. Fit performance metrics 
The metrics in this category are as follows: linear fit parameters of intercept and slope, A 

and B; R, the Pearson correlation coefficient; root mean square error, RMSE; mean absolute 
error, MAE; the mean error, ME; and the prediction efficiency, PE. The modeled and observed 
time series are one-dimensional comparisons that do not require specialized multi-dimensional 
comparison algorithms. Let us quickly define each of these and defend their selection in the 
baseline set. 

Because the model (M) is predicting an observed index (O), the relationship should be 
linear and thus the intercept (A) and slope (B) are direct measures of the performance of the 
model. While the relationship should be checked visually by plotting M versus O, the equation of 
interest is this: 

  (1) 

and nearly all calculation software includes functions for computing the A and B coefficients.  A 
perfect prediction should have a zero offset and a unity slope. The offset A reveals a model bias 
at the lowest observational values (specifically, when the observational value is zero) and the 
slope B quantifies whether the trend of the model results with increasing observational values 
keeps pace with the observed increase or under- or overshoots it. Uncertainties can and should be 
calculated on A and B (e.g., Taylor, 1997, Chapter 8; Sheskin, 2007, pp. 1241-1243), like this: 

            (2) 

where σM is the standard deviation of the model values and N is the number of data-model pairs. 
These are often converted to fractional or percent uncertainties with a division by A and B, 
respectively. Note that these uncertainty values in equation (2) assume that the error distribution 
is Gaussian and that each error source is independent.  If this is not the case, then a bootstrap 
method (e.g., Reiff, 1990) can be used by randomly selecting a subset of data, calculating A and 
B, and repeating this hundreds of times to generate a distribution of A and B values, from which 
a spread can be calculated. 
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The Pearson linear correlation coefficient, R, is commonly used to indicate how well the 
model predicts the trends of the index. It is calculated as the data-model covariance divided by 
the standard deviations of each set: 

  (2) 

The value ranges between -1 and 1, which indicate perfect anticorrelation or correlation where 
all of the data-model pairs lie along a straight line.  The significance of an R value is dependent 
on N, with a probability of an R value occurring by chance of less than 0.05 being called 
significant and a probability less than 0.01 called highly significant. The significance of this 
probability statistic is necessary but not sufficient for a high-quality linear fit, because for large 
N these probabilities are met even for R values close to zero. In addition to the significance 
check, R should also be above a user-defined threshold that means the specified requirement for 
the application. This is usually at least 0.5, perhaps even 0.7 or even 0.9, to convince users that 
the model is performing well. 

The next two metrics, root mean square error, RMSE, and mean absolute error, MAE, 
reveal how well the model captures the range of values of the index. The RMSE (e.g., Wilks, 
2006, chapter 8) is 

  (3) 

Because of the square term inside the summation, highlights the data-model pairs with larger 
differences contribute more to this error than in the MAE.  This is often during active times when 
the index and, presumably, the error, are farther from zero than during quiet times. The MAE, 
however, defined as 

  (4) 

does not include this square term and therefore emphasizes the "usual state" of the index (i.e., no 
extra weighting to the active times). Note that the MAE is sometimes referred to as the absolute 
relative error, ARE.  Each reveals something important about the data-model comparison, one 
weighting the active times when the errors are often larger and the other weighting the quiet 
times for which there are usually far more data-model pairs. Depending on the user's final 
application of the model, either of these could be the more valuable metric.  

Another to go along with these two is the mean error, ME, which is a difference of the 
means of the observed and modeled values, including the sign (e.g., Wilks, 2006, chapter 8):   
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  (5) 

This tells you the bias between the two number sets. ME above zero shows that, on average, the 
model overpredicts the data, while a score below zero shows that the model underpredicts the 
observed values, on average.  

The final metric in this set is the prediction efficiency, PE (this the “Case I” skill score 
considered by Murphy, 1988). Skill scores are defined by comparing the model against a 
specified reference forecast. In the case of prediction efficiency, the reference model is the 
average of the data: 

  (6) 

The PE is related to the Average Relative Variance (ARV) by PE=1-ARV, and the ARV 
represents the fraction of the variance in the data that is predicted by the model. Because active 
times create a long one-sided tail on the measured geomagnetic indices, models that are even 
somewhat capable of reproducing this activity will have a positive PE score. That said, the PE 
quantifies the model's overall accuracy at reproducing the time variation of the observed index, 
weighting the active times more heavily than the quiet times in this assessment.   

 In addition, the PE formula is valuable because the observational mean in the 
denominator can be swapped out for any reference model time series. It is no longer PE at that 
point, which has the specific meaning of defining the model's capability relative to the observed 
climatological average. Rather, when this value is swapped out, equation (6) becomes the 
prediction efficiency relative to an existing modeling capability (Murphy, 1988). 

It is useful to discuss normalization of the above-mentioned quantities. Some of these 
metrics, in particular RMSE, MAE, and ME, are reported not as calculated above but instead as a 
value relative to a parameter of observed index set. The common choices for normalization are 
the observed index mean or standard deviation, but it could also be a function of the data range, 
such as the median, the interquartile distance (the 75% quartile value minus the 25% quartile 
value), or even the full range of the data (maximum minus minimum value). This kind of 
normalization puts the metric in the context of the observed values in the chosen interval.  If the 
data span the typical range of the index values, then this extra calculation is not particularly 
helpful.  Normalization is sometimes useful, however, when the observed values cover an 
exceptionally large or unusually small range of index values. When this is the case, then 
normalization can help put the data-model comparisons in the proper perspective. 
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3.2. Event detection performance metrics 
Across a month, year, or solar cycle, the time series of a geomagnetic index value is far 

more often near the quiet-time average than perturbed into an active state.  For example, for Dst, 
a histogram of values shows that only 5% are below -50 nT.  That is, storm intervals are a small 
part of the total database and so the quiet time state dominates the curve fitting, including for 
data-model comparison metrics in the previous subsection. It is the active state intervals, 
however, that are often the times when users want a model to perform well.  In fact, the user 
might not care about the quantitative difference between the modeled and observed values, as 
long as the model output indicated that an event was occurring. An analysis based on when the 
data and/or model values have reached an active state, therefore, overcomes the issue of quiet 
time dominance in the fit performance statistics. 

This type of assessment is called event detection performance and is based on the 
formation of a contingency table. By defining an index value as an "event threshold," both the 
observed and model index time series can be compared against this threshold to determine if 
either was in an event state. Sometimes these are considered at the highest time cadence 
available and other times the event state determination is done over a longer window of time, 
checking for event status among a set of values, declaring event detection if one of the values is 
beyond the threshold (or, depending on the application, some proportion of the values).  The 
value pairs (or windows) are then classified as hits, misses, false alarms, and correct negatives 
(defined here as H, M, F, and N, respectively). These are also called, in the same order, true 
positives, false negatives, false positives, and true negatives. Various quantities can be calculated 
from these, and a few of these quantities have been selected as the baseline set for geomagnetic 
index model assessment.  Specifically, the chosen metrics are the Heidke Skill Score, the 
Probability of Detection, the Probability of False Detection, the False Alarm Ratio, and the 
Contingency Table Bias. By varying the threshold from a very low/quiet value to a very 
high/disturbed value, you get a set of scores for each of these quantities, which reveal how well 
the model captures the "events" in the observed index across a wide range of "event" definition. 

The Heidke Skill Score (HSS), from Heidke (1926), condenses the entire contingency 
table into a single measure of the performance with the exclusion of predictions from random 
chance: 

  (7) 

HSS has a perfect score of one, when all of the values are either hits or correct negatives (i.e., 
when M=F=0).  Values of zero or below indicate that the model has no skill in predicting events 
of that threshold.  The lowest value for HSS is -1, which occurs when no time is correctly 
modeled and all of the values are evenly distributed between misses and false alarms (i.e., when 
H=N=0 and M=F). While there are several other contingency table skill scores available, this one 
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has many useful features (see, e.g., Hogan and Mason, 2012).  First off, it is truly equitable, 
meaning that a random forecast or constant forecast will have a score of zero. It also has the 
added benefits of being bounded, linear, and transpose symmetric.  Finally, it is devised so that a 
biased model cannot obtain a perfect score.  In short, it is a commonly used distillation of the 
entire contingency table into a meaningful single quantity. 

The next is the Probability of Detection (POD). POD, only using half of the contingency 
table, gives the fraction of observed events that were captured by the model: 

  (8) 

It is sometimes referred to as the hit rate. POD ranges from 0 to 1, with higher values being 
better. If the user is concerned about reproducing all of the real events, then POD is the quantity 
to maximize. 

A related metric is the Probability of False Detection (POFD), which uses the other half 
of the contingency table. It gives the fraction of the times when the observed index was not in the 
event state but the model was in event state. 

  (9) 

Like POD, POFD ranges from 0 to 1.  Because F is one of the two off-diagonal table entries that 
represent a poor prediction, low POFD numbers are better. If the user is concerned about never 
"crying wolf" then POFD model development should focus on minimizing this parameter.  
POFD is sometimes called the false alarm rate, but that name will not be used because it has the 
same acronym as the false alarm ratio, to be discussed next. A related metric used in the space 
weather literature is the forecast ratio, RF, which is simply the ratio of hits to false alarms 
(Weigel et al., 2006); this metric is intended for users interested in the economic utility of a 
forecast and is related to the value score (Wilks, 2001). 

A metric that combines these two terms but still uses only half of the contingency table is 
the False Alarm Ratio (FAR). It is defined like this: 

  (10) 

Like POFD, it ranges from 0 to 1 with values near zero being better. Because N can be quite 
large for geomagnetic indices, which spend a lot of time at quiet levels and only occasionally 
exhibit excursions to active values, the FAR highlights the false alarms relative to the correct hits 
rather than the correct negatives.  The denominator is often much smaller for the FAR compared 
to the POFD, so this value is usually the larger of the two. Designing a model to minimize POFD 
will also minimize FAR.  
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A final metric to discuss here is the Frequency Bias (FB). FB, or sometimes just "bias," is 
defined like this: 

  (11) 

It is a measure of the contingency table that ranges from zero (no model values classified as 
events) to infinity (no data values classified as events). FB values above one show that false 
alarms are more prevalent, indicating the model overpredicts the data for this threshold, while 
values under 1 shows that misses are more prevalent, revealing that the model underpredicts the 
observed values for a given threshold.  FB does not yield any information about the skill of the 
model for the given threshold, rather it quantifies the diagonal asymmetry of the contingency 
table. 

 For all of the parameters discussed above, they should be calculated not just for a single 
activity threshold choice but for a range of threshold values.  This will reveal the model 
performance at capturing any kind of event interval, whether the threshold is a low, medium, or 
high one. Calculating at least 10 thresholds yields a curve that quantifies this relationship for 
each of the metrics described here. 

Another plot that is part of the baseline set of calculations to perform as part of the event 
detection assessment is the Receiver Operating Characteristic (ROC) curve (ROC can also stand 
for relative operating characteristic), first used in Britain in 1940 by the Royal Air Force for 
radar signal processing (Carter et al., 2016). The ROC curve plots POD on the y axis and POFD 
on the x axis, for all threshold values. The unity slope line represents no skill for the model, so a 
ROC curve above this line is desirable.  In fact, the model can be optimized to move the ROC 
curve towards the upper-left corner of the plot space; that is, better models will maximize the 
"area under the curve." A ROC curve below the unity slope line means that the model is worse 
than random sampling of the index at event detection (for those event threshold values that fell 
below the unity slope line). More on the history of the ROC curve can be found in Ekelund 
(2011) while Berrar and Flach (2012) provide additional caveats to ROC curve interpretation. 

Uncertainties can be placed on these contingency table values.  Both Agresti and Coull 
(1998) and Hogan and Mason (2012) provide thorough discussions of uncertainties on 
performance measures, including a reasonable set of parameter variances, S2. The uncertainties 
in Hogan and Mason (2012) rely on the assumption that the time series is the model time series 
does not have any significant discontinuities or secular trends within the time interval of interest 
(true for most models) and that successive model outcomes are independent (which is not the 
case with many models). Stephenson (2000) also provides a robust discussion of confidence 
intervals and uncertainties for forecast metrics, arguing that, for many skill scores, the sampling 
distribution is nearly impossible to determine analytically and therefore analytical uncertainty 
estimates are also challenging. The bootstrap method described above is a alternative method to 
determining uncertainties, sampling with replacement and recalculating the metrics many times 
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(typically more than 1000 iterations).  Note that there are other confidence interval calculations 
that can be performed, such as the Wald interval or the Agesti-Coull interval. 

3.3. Additional Performance Assessment Best Practices 
For the metrics discussed above, this does not have to dominate a new study's results 

section. In its most compact form, it is simply a "benchmarking" subsection within a longer 
study.  There are several additional points that should be brought up about implementing the 
standard set of metrics defined above for new geomagnetic index models, discussed below. 

One choice that all modelers must make is the set of observations against which the 
model should be tested.  No predetermined event list or interval is specified as part of this 
metrics definition. Such selections are often interesting to the community only for a few years, 
after which new events and intervals become the preferred comparison set.  In addition, some 
researchers might want to assess their model against only quiet times, or only storm times, only 
substorm times, or other requirements based on expected usage.  Furthermore, some may argue 
for active-time event lists as the preferred comparison set while others think that a long-time-
span interval, one that includes both quiet and active periods, is more appropriate. In short, 
mandating specific times would not be helpful unless we covered all possible activity parameter 
combinations for all possible geomagnetic indices.  It is proposed that the baseline metrics set 
matters more than the specific interval. Researchers should discuss why they chose the interval 
they are using and the geomagnetic activity qualities of that interval. A good alternative to using 
just one specific time interval for testing or validation is to use the K-fold cross-validation 
procedure (e.g., Jonathan et al., 2000), which ensures that the training and the validation sets 
have a similar distribution of events in terms of geomagnetic activity (the training set is used to 
build a model, and the validation set is used to validate or test a model). 

Regardless of the event list or intervals chosen for the test comparison, there is a specific 
requirement that should be met. Specifically, the comparison set should be large enough to 
contain hundreds, if not thousands, of data values. A minimum cutoff is that there should be at 
least 10 values in both the hits and correct negatives bins for all threshold values used in defining 
the ROC curve, and there should be at least 10 distinct threshold levels along the ROC curve, for 
which the number of hits and correct negatives changes by at least one, if not several, per level.  
So, an absolute minimum is ~100 values in the comparison set. However, several hundreds or 
even thousands of data-model pairs would be better, to allow for more threshold settings and a 
smoother curve set for the event performance. 

Most models use as inputs measurements from the Advanced Composition Explorer, 
ACE, or more generally, the OMNI database of upstream values, which includes measurements 
from satellites prior to the ACE era.  Usage of the new solar wind monitor, the Deep Space 
Climate Observatory, DSCOVR, would be advantageous, not only for the sake of comparison 
but also because of its higher time resolution plasma data. For reproducibility, model 
assessments should be specific about the input data and time intervals used in both the training 
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and testing of the model, preferably even saving these input values with the model output at a 
permanent data repository that provides a digital object identifier for the files. 

Note that the range of observed index values included in both the training set and the 
comparison is important. If users of space weather modeling tools want to understand the 
usefulness of an index prediction model, operational code output must be placed in the context of 
what was used to create it and test it. For example, the empirical function of O’Brien and 
McPherron (2000a) between Dst and solar wind Ey “is restricted to Dst > -150 nT” (quoted from 
the abstract), and therefore predictions of larger storms with this model should be understood to 
be extrapolations of the model validity and therefore subject to larger uncertainty and caution in 
decision-making by users. 

Uncertainty calculations have been given for some of the baseline metric quantities. For a 
few, one can even calculate a standard deviation.  For others, though, the bootstrap method and 
cross-validation is useful for determining uncertainties (e.g., Huber 1981; Michaelsen, 1987; 
Efron & Tibshirani, 1993; Reiff, 1990) and used in several space physics data-model comparison 
studies (e.g., Jorgensen et al., 2004; Liemohn & Katus, 2012; Katus et al., 2013). 

4. Application of the Standardized Assessment Set 
We will show some examples of index prediction models using the standard assessment 

metrics.  The first model assessment is of WINDMI. This is an independent simulation 
conducted at the CCMC, with no input from the model developers.  Another example is by a user 
of a code, the UPOS Kp prediction model, not the original model developers.  A third example is 
output from a physics-based ring current model, RAM, with the simulations conducted by the 
current set of developers for this model.  Note that another study that used a very similar set of 
metrics for a geomagnetic index comparison is Liemohn et al. (2018), who analyzed the accuracy 
of the experimental real-time simulations of the Space Weather Modeling Framework being 
conducted by CCMC. It is also useful to note that metrics similar to those discussed in this paper, 
especially the “event detection performance metrics,” were applied to studies that evaluated 
Geospace models for use in operations by NOAA’s Space Weather Prediction Center (Pulkkinen 
et al. 2013; Glocer et al., 2016). 

4.1.  Dst and AL from the WINDMI low-dimensional geospace model 
WINDMI, the solar wind interaction with the magnetosphere and ionosphere model 

(Horton & Doxas, 1996; Spencer et al., 2007), is a set of eight differential equations that 
characterizes geospace as a nonlinear electrical circuit.  After scaling, two of those parameters 
are interpreted as equivalent to the Dst/SYM-H time series and the AL time series.  Mays et al. 
(2009) assessed the performance of WINDMI for a set of substorm intervals with a few different 
metrics, finding that the Newell et al. (2008) solar wind-geospace coupling function works best 
as an input parameter for this code.  This model is quick to execute and available for "instant 
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runs" at the CCMC, making it an ideal code to use as an example model for this new 
standardized set of geomagnetic index performance metrics. 

The code was run at CCMC for the entire year of 2014.  This is the last complete year for 
which Dst/SYM-H final values are available (as opposed to provisional or real-time values) at 
the time the runs were conducted. Using the ACE Level 2 solar wind data set with the Newell 
coupling function, WINDMI was run for the entire year and simulated values of Dst/SYM-H and 
AL were produced every minute.  These were compared against the SYM-H index and 
provisional AL index from the Kyoto World Data Center. Figure 1 shows the time series for 
these two comparisons, with the observed indices in black and the WINDMI results in red.  It is 
seen that there is a systematic offset in the values, evident in both panels, with the quiet-time 
WINDMI output consistently lower (more negative) than the indices. 

The fit performance metrics are listed in the first two data columns of Table 4.  Over half 
a million data-model pairs were included in the calculations. The results are quite similar for 
both SYM-H and AL, so the comparisons will be described together. Regarding the linear fit 
values, the model is more negative (i.e., more active, for these two indices) for index values near 
zero, but the slope of the fit is less than one, so the running average of the model values 
eventually crosses that of the data, with the data being more negative for large negative values of 
the index.  The correlation coefficient is positive but only 0.66 (for both indices, coincidentally).  
The ME values are negative, indicating that the observations are more negative than the model. 
The RMSE and MAE values are slightly larger than the ME magnitudes, indicating that the bias 
of the model is smaller than the variation of the model around the observed values. For the 
selected interval, the PE values are negative for both indices. As seen in Figure 1, this is because 
the largest values for the modeled index values are slightly negative, around -20 nT for SYM-H 
and -50 for AL.  These offsets make the comparisons during quiet times quite poor, which is 
seen in these fit performance metrics that take into account all values across the entire time 
interval. 
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Figure 1.  Times series values for the WINDMI model (red curves) against the (a) SYM-H and 
(b) AL indices (black curves) for the year 2014. The units of the y axes are in nanoTeslas. 

 

Table 4. Fit performance statistics of the example comparisons 
 WINDMI 

SYM-H 
WINDMI 

AL 
UPOS Kp 
Estimation 

RAM-SCB 
SYM-H 

Number of values in comparison 525,600 525,600 99,842 44,639 
Intercept of the linear fit -21.5 nT -135 nT 0.35 -7.8 nT 
Slope of the linear fit 0.55 nT/nT 0.48 nT/nT 0.85 0.54 nT/nT 
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Pearson correlation coefficient (R) 0.66 0.66 0.86 0.68 
Root mean square error (RMSE) 20.9 nT 127 nT 0.73 15.8 nT 
Mean absolute error (MAE) 18.3 nT 108 nT 0.54 12.2 nT 
Mean error (ME, or bias) -17.6 nT -87.4 nT -0.08 1.56 nT 
Prediction efficiency (PE) -1.08 -0.10 0.73 0.45 

 

Figures 2a and 2b show the ROC curves for these two indices. The ROC curves are well 
above the unity slope line, indicating that the model is much better than random chance at 
reproducing events (large negative excursions) in the observed time series. This is in contrast to 
the relatively low PE score; the model does fairly well as predicting active time events. 

 

 

Figure 2. ROC curves for the comparisons of (a) WINDMI SYM-H, (b) WINDMI AL, (c) UPOS 
Kp, and (d) RAM-SCB SYM-H. 
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Figure 3a-3j give the HSS, POD, POFD, FAR, and FB for the WINDMI comparisons 
against the observed SYM-H and AL indices.  For both indices, HSS hovers near zero for most 
threshold values but the POD is above 0.5 for most thresholds and the POFD is below 0.5 for 
most threshold values.  The FAR is relatively high, indicating that there are more false alarms 
than hits when the model predicts an event.  The frequency bias is large for both indices for near-
zero thresholds, but for AL it drops to below one for the active-time thresholds (indicating more 
misses than false alarms for these thresholds). 

This is an interesting comparison because the ROC curves show that the model has some 
skill at capturing events in SYM-H and AL, but the prediction efficiency, which is a skill score 
against the mean value of the observations, is not particularly good for either index. This touches 
on the issue of what a user might want from a prediction model and the need to examine more 
than one metric when assessing model performance. 

4.2.  Kp from the UPOS Kp Estimation Model 
The UPOS Kp Estimation model was developed as part of the University Partnering for 

Operational Support (UPOS) project by the Applied Physics Laboratory of Johns Hopkins 
University following the method of Takahashi et al. (2001). This model produces an estimate of 
Kp every hour from magnetometer observations.  For model assessment, we use definitive Kp 
values produced by GFZ Potsdam. Definitive Kp is produced every three hours and the Kp 
analysis tool produces output every hour. Thus, the question of how to relate the two quantities 
must be considered. Kp is intrinsically only defined over a three-hour window (see Section 2.2), 
so the approach taken here is to assign the Kp value for a given three-hour period to each hour 
within the period. 

We performed analysis of model outputs from 1 October 2001 through 29 July 2013 
allowing coverage of a complete solar cycle. At a 3-h cadence, this results in almost a hundred 
thousand data-model pairs in the comparison. Table 1 provides the fit performance values and 
Figures 2c and 3k-3o show the event performance for the model.  The values for r and PE are 
high, at 0.86 and 0.73, respectively.  Both the RMSE and MAE are below one, i.e., the variation 
of the model around the data is usually within one Kp unit increment.  The discrete nature of Kp 
makes the linear fit more qualitative than for other indices, but they still convey performance 
information, which for the UPOS model appears to be very reasonable.   In Figure 2c, the ROC 
curve for this model is well above the unity slope line. All of the other event statistics (in the 
third column of Figure 3) are quite good across most of the threshold values, but they start to 
deviate to slightly worse values near a threshold value above Kp of 8. 

4.3.  SYM-H from the RAM-SCB drift physics model 

The ring current‐atmosphere interactions model (RAM) developed by Jordanova et al. 
(1994, 1996) was first employed to simulate the effects of adiabatic drifts and collisional losses 
on the major ring current ions H+, O+, and He+ using a centered dipole magnetic field model and 
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the analytical Volland-Stern (VS) (Volland, 1973; Stern, 1975) convection and corotation 
potential model. The 4-dimensional simulation domain of RAM is specified by radial distance in 
the equatorial plane, magnetic local time (MLT), energy, and equatorial pitch angle. RAM can 
couple with the 3-dimensional self-consistent magnetic field (SCB) (Zaharia et al., 2004; 
Zaharia, 2008) as well as having an implementation of a self-consistent electric field coupling 
(RAM-SCBE; Yu et al., 2017). As noted by Jordanova et al. (2018), a simplified version of 
RAM with the same components as its early implementation has been developed for near-real 
time operations, using a dipole magnetic field and the VS electric field model, with the particle 
flux at the outer boundary being driven by data when available and by a statistical model 
(Denton et al. 2015, 2016) when data are not available. This model configuration is robust and 
computationally inexpensive. To demonstrate the robustness of the model we simulated the 
month of January 2005, following Haiducek et al. (2017), using data from the LANL (Los 
Alamos National Laboratory) geosynchronous satellites to specify the outer flux boundary. 

 

 

Figure 3.  Event performance metrics for the comparisons of (first column, a-e) WINDMI SYM-
H, (second column, f-j) WINDMI AL, (third column, k-o) UPOS Kp, and (fourth column, p-t) 
RAM-SCB SYM-H.  

 

The set of metrics for assessment given in section 3 have been calculated for the SYM-H 
index. The simulation is as described above, where the SYM-H is calculated using a Biot-Savart 
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integration, and the SYM-H is provided by the World Data Center for Geomagnetism in Kyoto. 
Both series are given at 1-minute resolution, giving us 44639 data points in each series. We 
perform a linear regression using ordinary least squares to obtain the linear fit parameters giving 
a slope of 0.538, an intercept of -7.77 and a Pearson correlation coefficient of 0.684. The 
accuracy of the model is measured by MAE and RMSE, giving 12.2 nT and 15.8 nT, 
respectively. The model tends to slightly over predict Sym-H, with an ME of 1.56 nT. The 
prediction efficiency is 0.452, representing a 45.2% improvement in skill over a prediction of the 
sample mean. These metrics are summarized in Table 1. We note that the reported accuracy of 
this SYM-H prediction is comparable to the operational configuration of the SWMF reported for 
this same month by Haiducek et al. (2017) and that the RAM predictions are less biased. 

The event performance metrics are shown in Figures 2 and 3.  The ROC curve for the 
RAM comparison is in Figure 2d, which, like the other models, is above the unity slope line, 
indicating that the model has some skill in reproducing active times. The other event metrics are 
shown in Figures 3p – 3t.  Of note are that the HSS peaks for moderate storm events, reaching a 
value above 0.5 and that FB hovers close to unity for nearly all threshold levels. 

5. Discussion 
Thus far, a summary of existing geomagnetic index prediction models has been 

presented, a standardized set of metrics has been defined, and three models have undergone 
calculations of these metrics for different intervals. 

As discussed in section 3, these metrics were chosen because they each assess a particular 
aspect of model performance. We encourage all new and updated models to undergo the full set 
described above, and then discuss the performance of the model with respect to each of these 
metrics.  This is a recommendation, not a requirement, and while the full set of metrics is 
encouraged for all new or improved index prediction models, there are certainly some metrics 
that will be more suitable for particular needs than others and perhaps not all models need to be 
evaluated with the full set. 

That is, models should be created with potential users in mind, perhaps even identified. 
Each of those potential or real users will have specific needs for index prediction performance.  
One example is that a user might only care about accuracy during the extreme events and not 
during quiet times. In this case, RMSE is more important than r, MAE, or PE; the event 
performance is, in general, more relevant for the user than the fit performance; and even within 
that, the metric values for the "big event" thresholds are more the assessments of higher interest 
than the rest of the curves. Maximizing this subset of the standard set of metrics is what best 
suits that user's needs, even if the model is not particularly good for other metrics. 

An example of this is that some geomagnetic indices are suitable as input drivers for 
understanding and predicting ionospheric disturbances. Users interested in this application 
should tailor their performance assessment of an index prediction model for this purpose. One 
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factor to consider is how precisely the indices are able to indicate magnitude of expected 
ionospheric disturbances. For example, Borovsky and Denton (2006) summarize different 
geospace responses depending on the type of solar wind structure causing the activity. While Dst 
and SYM-H are good indices for monitoring intense storm activity, other geomagnetic indices 
are better for less intense disturbance (see, for example, Borovsky & Shprits, 2017).  Specifically 
for ionospheric disturbances, Buresova and Lastovicka (2017) noted a shift in which 
geomagnetic index is most relevant for ionospheric prediction. Because of this usage of indices 
as drivers, it is recommended that discussions occur between the ionospheric community and 
those developing models to predict geomagnetic indices.  This would be very useful and 
important for improving both forecasts of geomagnetic indices and ionospheric disturbances. 

Regarding model development, O'Brien (2006) discusses the limits on complexity of 
geomagnetic index predictor models.  He lays out the situation as an example application of 
Occam's razor – only add complexity to a model (e.g., a new parameter) if it significantly 
improves the fit. There is also a robust discussion in Osthus et al. (2014) on parameter estimates 
for regression models and multicollinearity. The main point is that when input variables are 
correlated with each other the interpretation of the model parameters gets difficult.  This is 
something to consider when developing or modifying a code. 

In assessing a new or improved model, it should be remembered that the input parameters 
to the model have uncertainties associated with each data stream. These uncertainties might vary 
with time, usually being larger during more active solar wind conditions. The uncertainties can 
also be larger during very quiet conditions, when the signal starts approaching the noise level of 
the instrument.  It is also important to note how the measurements are propagated from the 
upstream spacecraft to the Earth's magnetopause, including an understanding of input ambiguity 
due to the spacecraft distance from the Sun-Earth line.  This input uncertainty is in addition to 
the uncertainties mentioned in section 3 above, and should be propagated through the calculation 
(e.g., Taylor, 1997, ch. 3).  While this error propagation can be done mathematically, 
systematically or randomly varying inputs around the observed data stream can quantify the 
sensitivity of the prediction model to uncertainties in specific input parameters.   

It should be noted that hemispheric bias exists in most ground-based geomagnetic 
indices.  Compared to the southern hemisphere, the northern hemisphere has a higher land 
coverage percentage and a larger population, which has resulted in far more ground-based 
magnetometer observatories in this half of the world.  Therefore, there is a northern-hemisphere 
bias to most indices derived from ground-based magnetometers. While these metrics do not 
directly address this issue, the point should be acknowledged and index users should consider 
themselves cautioned about inferring physical processes from such times series. It is also 
important to note that ground-based magnetic indices are sensitive to the location of the 
magnetometer stations. For example, the auroral electrojet moves in latitude, so a set of stations 
at even a slightly different latitude would result in a different times series for these indices that 
represent the strength of auroral currents (see, e.g., Newell and Gjerloev, 2011). 
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Similarly, there is a systematic bias implicit in ground-based magnetometer data from the 
local induced currents just below the Earth's surface.  This is different around each observatory, 
yet only some indices take this influence into account when combining data from the stations. 
Again, this metrics set does not directly address this issue; it something about which 
geomagnetic index users should be aware. 

The timing of the model value relative to the observed index value is important.  
Specifically, Dst and Kp have a 1-hour and 3-hour cadence to their time series and represent 
variation of the magnetic field on the ground within fixed, not sliding 1-hour and 3-hour 
intervals, respectively. Sometimes, however, modelers assign a specific time to each of the 
values of a given index, rather than considering indices as corresponding to an interval in time. 
Furthermore, some models generate index predictions at a much higher cadence than the index 
time series. The choice of this timestamp can cause ambiguity in data-model comparisons, since 
the information used as an input to a predictive model depends on which part of the 1-hour (for 
Dst) or 3-hour interval (for Kp) is chosen as a timestamp (e.g., the beginning, the middle, or the 
end of the interval). Care must be taken when comparing model with observation when the index 
is compiled over a relatively long (~hour or more) interval. 

Figure 4 illustrates this ambiguity on an example of a) nowcast and b) forecast 3 hours 
ahead of the Kp index. If the timestamp of Kp is chosen at the beginning of the 3-hour interval, 
then to issue a prediction for the interval of 0-3 hours ahead (Figure 4a) the solar wind 
information available until the beginning of that interval should be used (indicated by the dark-
grey shaded region). However, if the timestamp of Kp is chosen at the end of the interval, the 
information during the current Kp interval in addition to the information until hour 0 should be 
used for the prediction (indicated by the light-grey shaded region). While both models may be 
referred to as a nowcast, they are different in their predictive capabilities since they use different 
information to issue predictions. Figure 4b illustrates this issue for the case of 3 hours ahead 
prediction. To avoid that ambiguity in the definition of prediction horizons, models for the same 
prediction horizon should use input information available until the same point in time. It should 
be clearly indicated for which specific time interval in the future or past the prediction is made 
and what information (prior to which part of the 1-hour or 3-hour interval for Dst and Kp 
respectively) is used to issue predictions. An example of possible nomenclature for the prediction 
of Kp for the intervals of 0-3 and 3-6 hours ahead is shown in Figure 4c and 4d, respectively. 
Here, a model that uses information prior to the current time (hour 0) to predict Kp for 0-3 hours 
ahead is called “a model predicting the Kp index for the interval of 0-3 hours ahead” (Figure 4c), 
and a model that uses information prior to the current time to predict Kp for the 3-6 hours 
interval is called “a model predicting Kp for the interval of 3-6 hours ahead” (Figure 4d). The 
same can be applied to any t-t+3 hours ahead prediction. In these terms, a model that uses the 
information shown by the light-grey shaded region in Figure 4a would be called “a model 
predicting Kp for the interval -3-0”. In summary, a model, including its input values, should 
align with the time cadence and intervals of the index so that values are truly comparable.   
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Figure 4. Examples of possible ambiguity in the definitions of prediction horizons caused by 
selecting different timestamps of the model relative to the timing of the Kp index for a) nowcast 
and b) forecast for 3 hours ahead, and suggested definitions of prediction horizons based on 
intervals for c) 0-3 hours ahead and d) 3-6 hours ahead prediction. 

 

6.  Conclusion 
Geomagnetic indices provide single-value distillations of expansive data sets and 

complex physics.  While they are not particularly useful for deciphering specific processes or for 
informing decision-making at the local level, they can be very helpful in understanding general 
activity levels in different regions of geospace. Many researchers have undergone the task of 
developing models for predicting these indices, as summarized in section 2 above.  While 
developers and users are usually quite careful in their quantitative assessments of each model, 
there is no accepted set of metrics for benchmarking a new code that seeks to reproduce the time 
series of a geomagnetic index. 

Section 3 presents a baseline set of metrics that quantify the fit performance and event 
detection abilities of a model.  The parameters are easily calculated and examine a number of 
different aspects about the model.  It is recommended as a minimum collection of metrics that 
should be calculated and analyzed for each new model or model upgrade. 
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A few best practice procedures were discussed for conducting a performance assessment 
of a geomagnetic index prediction model. No set time interval is specified for testing a new 
model. This is left up to the developer or user, depending on their planned implementation of the 
code. For statistical robustness, it is advised that at least hundreds, if not thousands, of data-
model value pairs be used in the comparison.  It was suggested that uncertainties be calculated 
and examined, to understand the possible variation in each performance metric due to systematic 
or random errors in the observations or modeling approach. 

Three examples were given of different geomagnetic index models undergoing this 
regimen of metrics assessment.  No conclusions about the quality of these models are drawn 
from these values; these are simply examples that others can repeat. There are, however, 
significant differences in the performance of these models that highlight the need for a broad mix 
of metrics when assessing a prediction model. 

A number of caveats and limitations to geomagnetic index prediction and usage were 
discussed. One is that models should be developed with potential users in mind and design the 
tool to produce output that best suits the requirements for that application. It is noted that there 
are several known issues with geomagnetic indices, in particular their northern hemispheric bias 
and possible offsets due to ground conductivity.  There is also the issue of timing when making a 
data-model comparison against a geomagnetic index, especially Kp with its 3-hour cadence. 

The selected metrics, best practice advice, and caveats are summarized as follows: 

• Recommended fit performancemetrics: linear fit intercept and slope, Pearson 
correlation coefficient, root mean square error, mean absolute error, mean error, 
and prediction efficiency 

• Recommended event detection performance: Heidke Skill Score, probability of 
detection, probability of false detection, false alarm ratio, frequency bias (all as a 
function of threshold setting), and a receiver operating characteristic curve 

• Recommended interval selection: no set interval, but hundreds, if not thousands of 
data values should be used in the metrics assessment 

• Recommended solar wind input values: none but specify which satellite and data 
product version is used for repeatability, and note the uncertainty in these input 
values and propagate the error through the model results 

• Recommended uncertainty calculations: encouraged but not demanded 

• Recommended emphasis among the metrics: each metric quantifies only a 
particular aspect of the data-model comparison, so keep the end-use in mind when 
conducting and interpreting a model assessment 

• Recommended model development philosophy: only add complexity to a model if 
it significantly improves the metrics of particular interest 
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• Recommended caveat to geomagnetic index interpretation: systematic bias exists 
in ground-based magnetometer data – northern hemispheric bias, influences of 
local induced currents in the Earth, and the relative timing of observed and 
modeled index production – which could confound interpretation of results 

This standard set of metrics can be used in a number of ways.  The first is that a model 
developer can run their geomagnetic index prediction tool through this set of metrics to provide a 
baseline performance assessment of the model.  A second use would be for a user of a particular 
model to conduct these tests, independent of the developer, to understand the accuracy, 
applicability, and limitations of the chosen model for their specific needs. A third possibility is 
that a user without a preselected model could use some or all of these metrics to select the most 
appropriate tool for their application.  We hope that this standard set of metrics is useful for the 
space weather research and operations communities. 
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