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Abstract 

Zooplankton and phytoplankton are key members on which aquatic systems are 

supported. Cultivation of phytoplankton and zooplankton in motor oil contaminated tanks that 

simulate synthetic crude oil impacts the survival of the zooplankton Cladocera through 

consumption of hydrocarbons and potentially limits photosynthesis in algal communities. This 

was tested through subjecting water samples from Douglas Lake and Lake Huron with highly 

concentrated amounts of plankton to different oil concentrations (500ppm and lOOOppm). Counts 

of living Cladocera were taken for 4 days, and each tank was sampled and analyzed for 

hydrocarbon and chlorophyll content within plankton. Results revealed amounts of hydrocarbon 

consumed in experimental tanks and suggested lower levels of chlorophyll consumption in the 

same tanks, implying reduced ability of phytoplankton to photosynthesis and increased 

zooplankton death as a result of starvation. 
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Introduction 

The Straits of Mackinac are outlined as the 1 Okm passageway of water that separates 

Michigan's upper peninsula from the lower and acts as an open connection between Lake 

Michigan and Lake Huron (Schwab, 2016). With an average depth of 20 m and width of 6 km at 

its narrowest point, the Straits provide a free exchange of both goods being hauled on shipping 

freighters and water carried by currents up to 70km into the main bodies of each lake (Anderson 

and Schwab, 2013). Current direction oscillated between lakes about every 2 to 3 days and flow 

can reach 1 m/s, with volumetric net flow of up to 80,000 m3/s (Anderson and Schwab, 2013). 

As a result of this connection, Lake Michigan and Lake Huron function as a singular lake instead 

of two, together containing almost 8% of the world's surface freshwater supply (Anderson and 

Schwab, 2013). Because of this, each lake plays an important role in the water quality, ecology, 

economic gains, and potential contamination of the other. Much of the area surrounding the 

Straits relies upon ecosystem services provided by the Great Lakes such as increased tourism and 

fishing in order to thrive. 

To the West of the Mackinac Bridge that spans Michigan's peninsulas lies Enbridge Inc. 

Line 5 oil pipeline, which sits in the benthos and transports up to 20 million gallons of light 

crude oil, light synthetic crude oil, and natural gas beneath the waters of the Straits each day 

(Alexander and Wallace, 2013). As the pipeline ages, there is increased awareness and 

investigation of how a potential oil leak in this critical area would impact the surrounding area 

and the magnitude of the burden this would place on the ecosystem (Perhar, 2014). It is theorized 

that spills occurring in freshwater retain oil in sediments for up to as many as 5 years due to 

reduced energy in comparison to wave action found in coastal marine environments, amplifying 

the threat to Straits (Bhattacharyya et al. 2002). 
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Zooplankton and phytoplankton play a pivotal role within this ecosystem, functioning as 

primary and producers and consumers that support a larger food chain (Saiz et al. 2007). 

Understanding how intake of hydrocarbon from oil affects zooplankton impacts both how these 

chemicals could be bioaccumulated by larger organisms as well as inform how a clean-up 

procedure is chosen following an oil spill (Klerks et al. 2003; Lotufo, 1998). 

Materials and Methods 

Zooplankton Collection 
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Zooplankton, phytoplankton, and water were collected from Douglas Lake and Lake 

Huron at Cheboygan (Fig.I). The experiment was run twice, one time for each site where 

zooplankton were collected. Starting at 9:00 am, team members stood at the end of piers at each 

site and cast plankton nets three times before rinsing nets by dipping them into lake water 

vertically, and emptying water concentrated with zooplankton into buckets. Procedure was 

repeated until 9 liters of zooplankton concentrate was collected. 126 liters of non-concentrated 

water was collected as well. Nine 10 gallon tanks were each filled with fourteen liters of 

normally concentrated water and one liter of highly concentrated. One stone aquarium bubbler 

was connected to each tank to oxygenate organisms. Used motor oil functioned as substitute for 

crude oil due to its similar chemical properties (Payne et al. 1995). The experiment took place in 

a temperature controlled room kept at approximately 20 °C. Experiments were kept close to 

north facing windows to provide ample sunlight to phytoplankton in the tanks. 

Experimental Procedure 

1500 ml of used motor oil was added to three of the tanks to create a 1000 ppm 

concentration of oil in the tanks. This was repeated to three more tanks with 750 ml to make tank 
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concentrations of 500 ppm of oil. The last three tanks functioned as control tanks with no added 

motor oil in order to account for potential organism death resulting from factors apart from 

organism death. Disposable pipettes were used to take 15 ml samples from each tank. Samples 

were placed in clear petri dishes with a centimeter sized grid drawn on the back. Organisms 

found within each square of the grid were classified, moving from the square at the upper left 

comer then moving to the square to the right until the entire sample was counted. Initial counts 

of organisms were taken before any motor oil was added. Motor oil was added and counts were 

taken once every day for three days. Counts categorized organisms into Cladocera, Copepoda, 

Rot(fera, and other and differentiated between if organisms in each category appeared to living 

or dead. Phytoplankton was also counted. After the allotted 4-day period, water samples were 

taken from each tank using a baster and contained in Nalgene bottles before running chemical 

analysis. 

Chemical Analysis 

4 

Zooplankton was separated from water samples through fiberglass filters and analyzed 

for amounts of hydrocarbon and chlorophyll within the zooplankton to determine food and oil 

uptake. Hydrocarbon content and chlorophyll were detected from separate sample filters using 

gas chromatography. 

Statistical Analysis 

Each of the two trials was analyzed separately for statistics and each treatment of 

differing oil concentration was averaged for counts of living organisms. A linear regression was 

used to compare the average living counts of Cladocera to the concentration of oil they were 

exposed to. Cladocera were used because they were frequently samples during both test runs 

whereas other categories of zooplankton were not as abundant or even present in all samples 
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alive or dead. The assumptions of an ANOV A were tested using a Q-Q plot and a test of 

homogeneity of variances. An ANOVA was used to compare the mean of the natural log of 

hydrocarbons in the control and two treatment samples, and a Tukey post hoc test was used to 

identify significant differences. This process was repeated for testing the mean of natural log 

chlorophyll content. A p-value of 0.05 was used in all tests. 

Results 

Trial I Douglas Lake 
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We observed a negative relationship between living Cladocera per mL and the 

concentration of oil, excluding counts from day 3, and this trend was not significant (Fig.2). The 

mean of hydrocarbon content from the two experimental groups was significantly higher than the 

control (Tukey 500ppm p=.044, lOOOppm p=.028), through no discernable difference between 

content in the 500ppm and lOOOppm samples (Tukey p=.926) (Fig.3). The mean of chlorophyll 

content from the two experimental trials was lower than that of the control group, but ultimately 

were not statistically different from the control or from each other in the ANOV A test (p=.268) 

(Fig.4). 

Trial 2 Lake Huron 

Similarly, trial 1 results, there was a negative relationship between living Cladocera per 

mL and the concentration of oil in tank for all days expect day 3, where we observed a positive 

relationship though none of these relationships were statistically significant (Fig.5). Like trial 1, 

the mean of hydrocarbon content from the two experimental groups was significantly higher than 

the control group (Tukey 5000ppm p=.010, lOOOppm p=.042), though there was no statistic 

difference between the two experimental tanks (Tukey p=.471) (Fig.3). The mean chlorophyll 
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content was lower than that of the control mean, and the differences bordered on statistical 

significance using an ANOV A test (p=.062) (Fig.4). 

Discussion 

6 

Since Lake Douglas highly eutrophic compared to Lake Huron we expected the living 

counts of C/adocera to be less in trial 1 than trial 2 due to early onset suffocation (Lind and Lind, 

1993). While overall number of Cladocera counted was much higher in the Douglas Lake trial 

than the Lake Huron trial, the results followed the same trend. Though results from both tanks 

were not significant for the relationship between living Cladocera per mL and oil content the 

observable trend followed prediction of increased oil correlating to a decrease in living 

organisms found. The slightly higher counts from the control group on day 0 when no oil had 

been added may have been due to inconsistencies when counting or inconsistence concentration 

of organism density in the water when water was first transfer to each tank. Since water was 

homogenized and alternately poured in each of the 9 tanks in random order, it is likely that bias 

during sample counting impacted the results. In order to combat this bias, counters could have 

been given samples instead of collecting them in order to make counts blind and reduce inflation 

of control counts. A possible explanation of how there was an observed positive relationship 

between alive Cladocera per rnL and oil content could be that increased movement of Cladocera 

toward light in an attempt to escape oil made them both easier to identify as alive and counted 

multiple times due to their high mobility across the viewing area, inflating counts. 

Hydrocarbon results were expected and indicate that Cladocera eventually consumed oil 

likely attached to algae instead of dying from affixation before any foreign chemicals entered 

these organisms. Since there was no significant difference between the 500ppm treatment and the 
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1 OOOppm in either trial, it may have been valuable to run the experiment with a lower amount of 

oil in order to define a concentration level at which Cladocera were able to avoid consuming 

hydrocarbons. 

Though not statistically significant, the reduced amount of chlorophyll consumed 

in the samples from both trials could have been the consequence of Cladocera trying to consume 

as little as possible from their detection of a chemical substance or because Cladocera were 

killed before they had the opportunity to eat as much as individuals in the control tanks. In a 

study of the effect of crude oil contamination on chlorophyll production of plants it was found 

that chlorophyll content of leaves grown in oil was lower than that of control plants (Baruah et 

al. 2014). If algae in the two treatments was unable to photosynthesize, Cladocera could have 

been limited by unavailability of a food supply as oil limited algae growth. 

Though further testing would be required to understand how the toxicity of oil altered the 

relationship between the primary producers and primary consumers in this system, the results 

suggest a multi-tiered reduction in survival and function in at least two trophic levels. The 

question of how a release of oil into a freshwater system might affect other players in the system 

even higher up the trophic scale could be further investigated and highly valuable to 

understanding potential ecosystem threats. 
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Tables and Figures 

Figure 1. Map of zooplankton sampling sites (red circles) in the northern lower 
peninsula of Michigan. The location of Pipeline 5 is represented by the red line. 

10 



Hydrocarbon in Lake Systems 

..J 

~ 
.2:: 
ro 
~ 
Q) 
0 
0 
-0 
ro 

(.) 

80 DayO 

70 

60 

50 

40 

30 

20 
10 

0 

35 Day2 

30 

25 

20 

15 

10 

5 

0 

• 

• 
• 

• 

• 
• 
• 

40 Day 1 
35 

30 • 25 
20 • 
15 

10 • 
5 • 
0 

35 Day 3 • 30 

25 

20 

15 • 
10 

5 

0 .---.----.-~.---r-...... --.~..----.----.---
~ ~~~~~~~~~~ ~~~~~~~~~~~ 

"" 'Ii <;" 1>1 ~,.., ~,.., '\" 'O" «>" .._cs "'" "'" "'" b.'-' <>" ro" '\'-' 'h" <»" ...,_<:S' 

Oil Treatment (ppm) 

11 

Figure 2. Regression from initial run of the experiment (Douglas Lake) of living 
Cladocera in each oil exposure, Oppm, 500ppm, and I OOOppm. Black squares represent 
the amount of living Cladocera (y-axis) to the oil exposure amounts (x-axis) for each tank 
per day. 

Ci 0 L 0 .s 
(/J -1 -1 c: 
0 
€ -2 -2 !9 e 

-3 -3 "'O 
>. 
J: 

ffi -4 -4 

Q) 

~ .5 -5 
0 .,.... 

-6 -6 8' 
...J 0 500 1000 0 500 1000 

Oil Treatment (ppm) 

Figure 3. Box plots comparing the mean natural log of hydrocarbons (y-axis) found in the 
control and two experimental treatments (x-axis). Douglas Lake (LO) is on the left and Lake 
Huron (LH) on the right. Standard error whiskers are shown for each treatment. 
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Figure 4. Box plots comparing the mean natural log of chlorophyll (y-axis) found in the 
control and two experimental treatments (x-axis). Douglas Lake (LD) is on the left and Lake 
Huron (LH) on the right. Standard error whiskers are shown for each treatment. 
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Figure 5. Regression from second run of the experiment (Cheboygan Harbor) of living 
Cladocera in each oil exposure, Oppm, 500ppm, and 1 OOOppm. Black squares represent 
the amount of living Cladocera (y-axis) to the oil exposure amounts (x-axis) for each tank 
per day. 
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