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Summary. Statistical modelling of functional magnetic resonance imaging data is challenging
as the data are both spatially and temporally correlated. Spatially, measurements are taken
at thousands of contiguous regions, called voxels, and temporally measurements are taken at
hundreds of time points at each voxel. Recent advances in Bayesian hierarchical modelling
have addressed the challenges of spatiotemporal structure in functional magnetic resonance
imaging data with models incorporating both spatial and temporal priors for signal and noise.
Whereas there has been extensive research on modelling the functional magnetic resonance
imaging signal (i.e. the convolution of the experimental design with the functional choice for the
haemodynamic response function) and its spatial variability, less attention has been paid to re-
alistic modelling of the temporal dependence that typically exists within the functional magnetic
resonance imaging noise, where a low order auto-regressive process is typically adopted. Fur-
thermore, the auto-regressive order is held constant across voxels (e.g. AR(1) at each voxel).
Motivated by an event-related functional magnetic resonance imaging experiment, we propose
a novel hierarchical Bayesian model with automatic selection of the auto-regressive orders of
the noise process that vary spatially over the brain. With simulation studies we show that our
model is more statistically efficient and we apply it to our motivating example.

Keywords: Auto-regression; Bayesian hierarchical modelling; Functional magnetic resonance
imaging; Imaging; Markov chain Monte Carlo methods

1. Introduction

In the analysis of functional magnetic resonance imaging (MRI) data a key challenge is deal-
ing with spatial and temporal correlation. Temporal correlation can arise from many sources,
including MRI scanner drift at very low frequencies, slow vascular or metabolic oscillations
that are of moderate to low frequency and other sources of noise such as breathing and heart-
beat. Simply ignoring these sources of temporal correlation may lead to increased false pos-
itive discoveries (Makni et al., 2006). To deal with these issues, a variety of approaches have
been proposed. One commonly used approach, namely prewhitening, works by estimating the
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temporal correlation and then decorrelating the noise by using the estimates (Bullmore et al.,
1996; Locascio et al., 1997). Besides these stationary time series models, non-stationary 1=f -
models have also been proposed (Zarahn et al., 1997; Bullmore et al., 2004). According to
Friston et al. (2000), prewhitening can produce an extraneous source of bias. Alternatively, a
band-pass filtering technique known as precolouring can be applied to the data first, followed
by statistical modelling that deals with the auto-correlation in the coloured data. For a review
and discussion of these approaches the reader is referred to Woolrich et al. (2001). Whereas
high pass filtering has proven to be beneficial in increasing the power of the statistical analysis,
the low pass filtering involved in colouring is considered controversial in that it tends to add
auto-correlation into the data (Skudlarski et al., 1999; Della-Maggiore et al., 2002).

Although accurate temporal modelling is important for estimation of the functional MRI
signal and, especially, its standard error, traditional approaches apply a temporal model at each
voxel, independently, i.e. they ignore spatial correlation. More specifically, this mass univariate
approach, which is considered to be the classical approach to the analysis of functional MRI
data, includes a smoothing step involving a spatial Gaussian filter that is applied to the data first
(Friston et al., 1995), followed by model estimation at each voxel, and then statistical inference
is based on random-field theory (Worsley and Friston, 1995) which is applied to adjust for mul-
tiplicity in the spatial domain. Although this approach remains the most common approach for
analysing functional MRI data it has been criticized on several grounds. For example, the Gaus-
sian kernel that is used to smooth the data must be prespecified and introduces artificial spatial
correlation into the data, similarly to how precolouring adds artificial temporal correlation. In
addition, this approach does not directly account for spatial correlation in the model.

Partly as a result of these criticisms, Bayesian models with spatially structured priors have
been proposed that allow for the calculation of posterior probability maps (PPMs) for activa-
tion. This Bayesian approach to inference is based on an explicit spatial model and does not
require smoothing the data with a Gaussian kernel; nor does it require the use of random-
field theory-based adjustments for multiplicity. A variety of spatiotemporal Bayesian models
have been proposed. One model that is widely used and implemented within the SPM software
(https://www.fil.ion.ucl.ac.uk/spm/) is the general linear model–auto-regression
(GLM–AR) model (Penny et al., 2003, 2005, 2007), The GLM–AR model assumes that the
data can be decomposed into two sources of variability. The first source is the product of the
design matrix for the functional MRI experiment convolved with a haemodynamic response
function and experimental factors, and the second source represents temporally correlated
noise that is modelled by using a low order AR structure. In addition, the regression coeffi-
cients and the AR coefficients vary across space and are assigned spatial smoothing priors.
Gössl et al. (2001) proposed a model where the data are decomposed into three sources: a
spatial stimulus, a deterministic trend and a white noise process. However, this modelling ap-
proach may not account for some higher frequency stochastic noise components. Woolrich
et al. (2004b) assumed that the temporal noise arises from both large-scale and small-scale
variation, and built a space–time simultaneous AR model that accounts for both scales of
variation. Methods focusing on spatial variable selection have also been proposed (see, for
example, Bezener et al. (2016), Lee et al. (2014) and Musgrove et al. (2016)), whereas Kim
et al. (2010) proposed a mixture-of-experts model to represent spatial activation clusters. Al-
though these models have some different characteristics which make the approaches unique,
most of them commonly assume a homogeneous, low order AR or AR moving average process
for the temporal noise. By homogeneous, we mean that the order of the AR or AR mov-
ing average process is assumed constant across all voxels. This assumption was also made in
Penny et al. (2003). However, as we demonstrate by using a simple empirical example in the
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next section, this homogeneous AR order assumption may be violated in real functional MRI
data.

Instead of formulating the model at each voxel and then adopting spatial smoothing priors
for parameters across voxels, another branch of research is based on vector AR processes; see
Harrison et al. (2003). This approach enables time-lagged dependence across voxels and spatial–
temporal interaction but fitting these models across a large number of voxels is computationally
intractable and low rank approximations must be used. These models are also useful for studying
effective brain connectivity, where one time course is used to predict the other (Castruccio et al.,
2016; Chang and Glover, 2010). Another line of work chooses to model the temporal noise as
a 1=f long memory process and applies discrete wavelet transforms towards fitting the model
(see, for example, Jeong et al. (2013), Bullmore et al. (2004), Fadili and Bullmore (2002) and
Meyer (2003)). Although this approach seems promising, our focus in this paper will be with
modelling short-term memory by using the classical AR process and spatial priors. The reason
that we choose to work with the AR process is because of its mathematical amenability and
simplicity, and its wide use in various areas of science. A novel aspect of our work is that we
allow the data to determine the order of the AR process at each voxel, borrowing strength from
neighbouring voxels. The AR order is determined by using ideas from Bayesian spatial variable
selection as we expect neighbouring voxels to have similar temporal structure.

Computation is an important issue when considering Bayesian spatial–temporal models for
functional MRI data. Although the main focus of this paper lies with the development of a
new model, another aspect of this work is the comparison of fully Bayesian and approximate
Bayesian computation methods. Because of the computational burden that is associated with
fitting models to high dimensional brain imaging data, approximate Bayesian methods have
received considerable attention in the neuroimaging literature. One such method is variational
Bayes (VB) inference (Penny et al., 2003, 2007; Woolrich et al., 2004a). As there are currently
no theoretical results quantifying the accuracy of VB methods (in contrast with Markov chain
Monte Carlo (MCMC) sampling which is justified by large sample theory of stationary Markov
chains), the evaluation of VB models must be performed case by case. In some cases, the per-
formance of VB models can be quite good and in other cases it can be quite poor. In addition
to the implementation of our new model based on a suitably designed MCMC sampler, we also
develop an MCMC algorithm to sample from the posterior of the original GLM–AR model.
We then compare our model with both the VB implementation of the GLM–AR model (using
SPM code) and our MCMC implementation of the GLM–AR model. Our studies indicate that
under a low signal-to-noise (SNR) ratio the accuracy of MCMC sampling outperforms VB
methods according to several criteria.

1.1. Motivating example
Our motivating example comes from a single subject in a functional MRI experiment examining
a face repetition stimulus. The experiment involves the presentation of either famous faces or
non-famous faces with each type of face presented two times. Convolving this experiment design
with the canonical haemodynamic response function and its time and dispersion derivatives
leads to a design matrix with 12 columns plus one extra column for an intercept term in the
regression model. After performing the necessary preprocessing steps as described in Penny
et al. (2005), we fit a simple linear regression at each of the voxels. After obtaining the residuals
from each voxel-specific fit, we fit an AR process up to order 12 for each voxel by using the ar
function in R (R Core Team, 2018). The Akaike information criterion AIC is used to estimate
the true AR orders. Fig. 1 is a pictorial representation of the results.
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Fig. 1 AIC-estimated AR orders (the upper AR order bound is set to 12): (a) sagittal view; (b) coronal view;
(c) axial view; (d) AR order

Fig. 1 shows considerable variability in the estimated AR order across voxels. Although most
of the estimated AR orders are 4 or less, higher orders up to 12 are selected at some of the
voxels. Furthermore, these estimated AR orders tend to show some extent of spatial clustering.
If, as is often done, we simply model the data by using a homogeneous low order AR process,
then the voxels with higher AR orders will be incorrectly modelled, and this inaccuracy in the
modelling of temporal noise will have an effect on the inference on the covariates of interest (via
underestimated standard errors), resulting in potentially false inferences about brain activation.
To address this issue, we propose a spatially varying AR order (SVARO) model, where the
AR orders vary spatially across the brain. This is made possible by adopting a spike-and-slab
prior with a stochastic search variable selection scheme. Spatial clustering of AR orders is
incorporated by imposing an Ising prior (Ising, 1925) as the latent indicator for the spike-and-
slab prior. We update the latent indicators by using the Swendsen–Wang algorithm (Swendsen
and Wang, 1987) alternating with Gibbs sampling in our MCMC algorithm. To avoid the phase
transition problem that is associated with the Ising model, we derive theoretical bounds as in
Li et al. (2015) and use these bounds to prevent critical slowing of the algorithm. We compare
our model with the GLM–AR model of Penny et al. (2007) (implemented under two schemes:
our self-written MCMC sampler and the VB algorithm that is available in the SPM software)
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in terms of mean-squared error (MSE) and sensitivity. We conduct these comparisons by using
two simulation studies and then compare results on the motivating data set.

The rest of the paper is organized as follows: in Section 2 we present our model and MCMC
sampling scheme. We present results from our simulation studies in Section 3, followed by the
analysis of the face repetition data set in Section 4. Lastly, we provide a discussion and outline
some possible directions for future work in Section 5.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679876/series-
c-datasets

2. The spatially varying auto-regressive order model

First, we shall define the model likelihood and then specify the spatial and temporal priors.
Then we discuss our posterior sampling scheme, including the construction of bounds for the
hyperpriors that we use for the Ising priors that are used for variable selection; lastly we discuss
inference based on posterior probability maps.

2.1. Model likelihood
We let P denote the maximum allowable order of the AR process at every voxel and let K

denote the number of regression coefficients at each voxel. Using similar notation to that in
Teng et al. (2016), for voxel n .n = 1, : : : , N/, we let yn denote the observed time series of
length T . For simplicity, our model is specified conditionally on the first P observations at
each voxel so that the likelihood function is constructed on the basis of the model for the
remaining T − P observations in the time series. We let X denote the .T − P/ × K design
matrix, wn denote the K-dimensional vector of regression coefficients at voxel n and en de-
notes the corresponding error term. Define the vector yn ≡y1:T ,n, the entire time series observed
at voxel n. The hierarchical model is specified in several stages. The first stage is a general linear
model:

yP+1:T ,n =Xwn + en, .1/

where we emphasize again the implicit conditioning on y1:P ,n .n = 1, : : : , N/. Let Ẽn denote
the embedded error (or lagged prediction) matrix of dimension .T −P/×P , with t, p element
.yP+1:T ,n −Xwn/[t−p] where the notation [i] denotes the ith index of the vector. Let zn ≡zP+1:T ,n
denote a vector of independent and identically distributed mean 0 Gaussian random variables
with precision λn. The second stage is then an AR model at each voxel:

en = Ẽnan + zn .2/

where an is a vector of AR coefficients for the time series at voxel n.
Letting c denote a constant term, the log-likelihood for voxel n is

ln =−λn

2

T∑
t=P+1

.ytn −xtwn − ẽtnan/2 + T −P

2
log.λn/+ c, .3/

where xt is the .t −P/th row of the design matrix X and ẽtn is the .t −P/th row of Ẽn.
Summing this log-likelihood over the number of voxels, n, we obtain the overall log-likelihood:
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l=
N∑

n=1

{
−λn

2

T∑
t=P+1

.ytn −xtwn − ẽtnan/2 + T −P

2
log.λn/+ c

}
: .4/

2.2. Spatial prior
At the next level of the model we specify a spatial smoothing prior for the regression coefficients
W = .w1, : : : , wN/, a K ×N matrix, with kth row Wk,:. Following Penny et al. (2005), we assume
that the prior for W takes the form

π.W/=
K∏

k=1
π.Wk,:/, .5/

Wk,: ∼N{0, α−1
k .STS/−1}, k =1, : : : , K: .6/

A priori the regression coefficients within voxels are independent (5) whereas, spatially, the kth,
k = 1, : : : , K, regression coefficients (across voxels) are modelled dependently through an N-
dimensional multivariate normal distribution (6). Here S is known as a Laplacian matrix. The
nth diagonal term of this matrix is equal to the corresponding number of first-order neighbours
of the voxel n. All off-diagonal terms are 0 except for −1 in off-diagonal elements .n, j/ and
.j, n/ if voxel j is a neighbour of voxel n, for n = 1, : : : , N. This form for the prior accommo-
dates spatial smoothing while also being sparse and convenient to work with computationally.
Also, note that each regression coefficient is smoothed independently of one another and this
smoothness is controlled by αk. In the SPM12 software this prior is referred to as the low res-
olution tomography prior. Ultimately, what is of primary interest in studies of brain activation
is a posterior probability of some function of these regression coefficients, and this posterior
probability is computed at each voxel to produce PPMs (see Penny et al. (2005)). The precision
parameter in distribution (6), αk, is assigned a conditionally conjugate hyperprior distribution:

αk
IID∼ gamma.q1, q2/, k =1, : : : , K: .7/

2.3. Temporal prior
The key difference between our model and the model of Penny et al. (2007) lies in our modelling
of the temporal noise. Rather than assuming that AR orders are homogeneous across the brain
(we refer the readers to Teng et al. (2016) and Penny et al. (2007) for model details), we allow for
variability in the order of the AR processes across voxels. In addition, we adopt a spatial prior for
this variability under the assumption that the order of the AR processes of neighbouring voxels
will be similar and that their coefficients will also be similar. Specifically, for each voxel n and AR
order p, p=1, : : : , P , we assign the latent indicator variable γpn to the pth AR coefficient apn,
such that, given γpn .p=1, : : : , P ; n=1, : : : , N/, apn will be conditionally independent. γpn will
take value 1 if the pth AR coefficient is non-zero at voxel n and will take the value 0 otherwise.
Conditionallly on γpn, apn will either have a normal distribution or unit mass at 0. This is
commonly referred to as the spike-and-slab prior (George and McCulloch, 1993; Mitchell and
Beauchamp, 1988), though we note that our formulation is a spatial spike-and-slab prior and
that this prior is assigned to the coefficients of the AR process governing the temporal noise:

π.a |γ/=∏
n

∏
p

π.apn |γpn/,

π.apn |γpn/=γpnφ.apn; 0, τ−1
p /+ .1−γpn/I0.apn/:
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Here, φ.·; a, b/ is the probability density function of a normal distribution with mean a and
variance b and I0.·/ is the indicator function that its argument equals 0, and γpn is the binary
indicator. τp is the precision of the normal component and is again given a gamma prior τp ∼
gamma.r1, r2/.

The advantages of introducing such a prior are threefold: first, the coefficients in the AR
process at each voxel that lack support from the data can be effectively removed from the
model. This enables us to infer which AR coefficients are present in which voxels. Second, the
number of voxels with large AR orders is non-zero but expected to be small, which is an aspect
of this prior that can be controlled by tuning the hyperparameters. Third, for some of the voxels
it is possible that some AR coefficients are 0 whereas others are non-zero. For example if the AR
order at a particular voxel is 5, the second and third coefficient may be 0 whereas the fourth and
fifth are non-zero. The model proposed is sufficiently flexible to allow for this behaviour, since
we have a total of P independent Ising processes: one for each possible p∈{1, : : : , P}. Note that
this enables voxels to have independent temporal error structures when γpn =0 for all p.

There are of course other model selection techniques that could have been considered. For
example a type of Bayesian lasso could have been used as an alternative to the spike-and-slab
prior. Wang et al. (2007) have applied the lasso to the selection of AR processes, and for the
Bayesian lasso we refer to Schmidt and Makalic (2013). A recent alternative prior known as the
non-local prior for variable selection has been proposed by Johnson and Rossell (2012) that has
desirable consistency properties and yields smaller prediction errors in large sample settings. A
review of Bayesian priors that can be employed for model selection is presented in O’Hara and
Sillanpää (2009).

We assume that the indicator processes are independent across the set {1, : : : , P}: π.γ/ =
ΠP

p=1π.γp/, where γp = .γp1, : : : , γpN/T. The simplest variable selection model would assume
that γpn follows a Bernoulli distribution (George and McCulloch, 1993). Here, to borrow in-
formation across neighbours, we choose to use the Ising prior (Ising, 1925) independently for
each p=1, : : : , P :

π.γp/∝ exp{β0p

∑
n

γpn +β1p

∑
n1∼n2

I.γpn1 =γpn2/}, .8/

where β0p and β1p are two hyperparameters controlling the sparsity and smoothness of the
binary latent field respectively. Larger values of β0p result in less sparsity and larger values
of β1p result in more smoothness. One issue with the Ising model that requires some care is
the choice of hyperparameters. When β1p take values near the phase transition boundary, the
mixing of an MCMC sampler will suffer from a critical slowdown (Stanley et al., 1987). To
avoid the phase transition boundary, we adopt an analytical approach similar to Li et al. (2015)
to quantify the value for the bounds of both β0p and β1p. An outline of the bound derivation is
given below in Section 2.5.

2.4. Posterior sampling scheme
Most parameter updates that are related to the posterior sampling of our model can be accom-
plished via Gibbs sampling. One exception is the update to the latent indicators γp, p=1, : : : , P .
For each γp we use the Swendsen–Wang algorithm alternating with Gibbs sampling (Johnson
et al., 2013). This strategy, i.e. mixing Swendsen–Wang updates with Gibbs updates for γp, has
proved successful in improving the mixing of the Markov chain sampler and results in faster
block updates in various studies (Higdon, 1998).
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2.5. Bound construction for the Ising model hyperparameters
The hyperparameters in the Ising priors play a vital role in posterior estimation. Without careful
selection, we are faced with mixing issues that are associated with ‘phase transition’ (Stanley
et al., 1987). There are various approaches to sampling such hyperparameters. Johnson et al.
(2013) estimated them by using path sampling and Gelman and Meng (1998) and Shu et al.
(2015) proposed a Monte Carlo expectation–maximization algorithm to obtain a point estimate
of the hyperparameters, but these procedures are too time consuming for functional MRI data
and our model, considering that we need to estimate P independent Ising fields and thousands
of voxels. Smith and Fahrmeir (2007) proposed to update the hyperparameters and binary
indicators together, but this approach still suffers from the potential possibility of sampling over
the phase transition boundary. Here, we adopt an approach that is similar to that considered
in Li et al. (2015) and construct some theoretical bounds to prevent phase transition. The
resulting hyperparameter values are then chosen as fixed values within the estimated bounds.
This procedure turns out to work well in our analysis and studies.

To construct the bounds, we first write out the posterior conditional density with respect to
γp:

π.γp | ·/∝ exp
{

β0p

N∑
n=1

γpn +β1p

∑
n1∝n2

I.γpn1 =γpn2/+
N∑

n=1

T∑
t=1

−λn

2

(
etn −

P∑
j=1

ẽtnjajn

)2}
: .9/

In our model, where multiple AR orders exist across space, it is natural to assume that

(a) there are relatively few time series with large AR order and
(b) π.γp �=0 | ·/>π.γp =0 | ·/ for small p.

On a three-dimensional lattice, selected voxels give rise to the greatest number of neighbouring
pairs when they form a cube. Therefore, following Li et al. (2015), the approximate locations
of the voxels selected are obtained by using cubes. Let πp denote those voxels whose pth AR
coefficient is non-zero. Let Vp = [.πpN/1=3] where [x] is the greatest integer less than x. Then, for
a cube containing V 3

P voxels, there are 3V 2
p.Vp −1/ neighbouring pairs. On the basis of this we

derive

β0p

N∑
n=1

γpn +β1p

∑
n1∼n2

I.γpn1 =γpn2/=β0pV 3
p +3β1pV 2

p.Vp −1/, .10/

for the pth latent Ising image. According to assumption (a) for large p (typically p > 8) β0p +
3β1p < 0. According to assumption (b) for small p (typically p < 4),

N∑
n=1

T∑
t=1

−0:5λn

(
etn −

P∑
j=1,j �=p

ẽtnjajn

)2

�
N∑

n=1

T∑
t=1

−0:5λn

(
etn −

P∑
p=1

ẽtnjajn

)2

+β0p

N∑
n=1

γpn +β1pI.γpn1 =γpn2/: .11/

Reorganizing this by moving the first term on the right-hand side to the left-hand side produces

N∑
n=1

T∑
t=1

−0:5λn

{(
etn −

P∑
j=1,j �=p

ẽtnjajn

)2

−
(

etn −
P∑

j=1
ẽtnjajn

)2}

� β0p

N∑
n=1

γpn +β1pI.γpn1 =γpn2/: .12/
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The two terms in the curly brackets on the left-hand side can be considered as one with and
without ẽtnpapn. Thus, it can be approximately considered as the residual sum of squares of
an AR when the pth coefficient apn is included or excluded in the model. Let R2

pn denote this
coefficient of determination; then we have

β0p

N∑
n=1

γpn +β1p

∑
n1∼n2

I.γpn1 =γpn2/ � −0:5
N∑

n=1

T∑
t=1

R2
pn

1−R2
pn

: .13/

Combined with equation (10), we have

β0pV 3
p +3β1pV 2

p.Vp −1/ � −0:5πpNT
R2

pn

1−R2
pn

: .14/

As an example, let the number of voxels equal 56526: that of the real data that we analyse
below. Suppose, for example, for the pth AR coefficient we set πp =0:1 and that 5% of the total
variation can be explained by the inclusion of the pth AR coefficient, apn. From inequality (14)
we then have the bound β0p +2:83β1p � −9:26.

Note that inequality (14) just gives a range of values for the hyperparameters, rather than
providing the values directly. In practice, the exact values of hyperparameters are largely deter-
mined by the researcher, which should be combined with one’s prior experience and an initial
analysis of the data. We suggest obtaining such values on the basis of some exploratory ad hoc
approaches, e.g. a linear regression at each voxel followed by fitting an AR process. Then the esti-
mated AR orders can be used as a reference when determining the hyperparameters in the Ising
model. This method has turned out to work well empirically as we demonstrate in Section 4.

2.6. Posterior probability maps
A primary emphasis on functional MRI data analysis is inference for activation. For Bayesian
modelling of functional MRI data this is typically achieved via PPMs. Let cTwn denote a contrast
of interest of the regression coefficients. A PPM is a map of the posterior probability of activation
for each voxel: Pr.cTwn > δe|y/. Here δe is a prespecified activation threshold, e.g. a value that
corresponds to 1% of the global mean value. Thus, a PPM looks at the probability of the contrast
cTwn being greater than activation threshold δe, given the data.

To determine activation in the brain formally, we can look at a thresholded PPM. This is
obtained by exerting a second threshold, namely a probability threshold δp, onto the original
PPM. Thus, a voxel is considered activated if Pr.cTwn >δe|y/>δp. This δp reflects the confidence
of the inference and usually takes a value above 0:9 (e.g. 0:95 or 0:99). This process discretizes the
PPM into null and activated voxels and is commonly used in summarizing a Bayesian analysis
for brain activation.

3. Simulation study

To evaluate the performance of our model, we make comparisons with the standard GLM–AR
spatial model. One implementation of this model that we make comparisons with is the VB
method that is available in the SPM12 software. Another implementation is our self-written
MCMC sampler for the same model. Although the accuracy of VB models has been verified in
a setting with high SNR by Teng et al. (2016), under low SNR, MCMC sampling outperforms
VB models according to certain metrics. This will be illustrated presently. Henceforth, we shall
refer to the VB implementation and MCMC implementation of the GLM–AR model as PVB
and PMCMC respectively.
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3.1. Simulation design
Our design matrix consists of two columns (K = 2); the first column is the experimental de-
sign (fashioned after the face repetition data set) convolved with the canonical haemodynamic
response function and the second column is the intercept. The parameters of interest, corre-
sponding to the experimental design (one at each voxel), are generated under a mean 0 multivari-
ate normal distribution, W1,: ∼N{0, .10STS/−1=2}, whereas the intercepts are generated under
a mean 100 multivariate normal distribution, W2,: ∼N{100, .10STST/−1=2}. The model noise
will have a precision of λn = 0:1 .n= 1, : : : , N/. This corresponds to a fairly small SNR, where
the temporal noise will play a greater role in the data. In what follows, we shall carry out two
simulations. In the first case the data will be simulated under our model, and in the second case
the data will be generated under the standard spatial GLM–AR model. In these two simulations,
we investigate the estimation accuracy of the slopes, W1,·, intercepts, W2,·, and AR coefficients
(ap, p=1, : : : , P), and we also examine whether the difference in inference for these coefficients
will lead to a possible difference in the final inference on brain activation. All simulations are
based on 100 replicate data sets, and we perform the simulations on a two-dimensional axial
slice of the brain.

3.2. Simulation 1
The purpose of this first simulation study is twofold. First, since we are generating the data under
our model, we are testing our model under an ideal situation to determine its statistical properties
and to ensure that the algorithm is coded correctly. Second, we compare our model with the
standard spatial GLM–AR model under the situation where the AR order and coefficients
vary spatially as we have seen empirically (see Fig. 1). For the GLM–AR model we use the
commonly used assumption that the AR order is small and set it to 1. Here we simulate the
AR parameters under our SVARO model, i.e. from the Ising priors. When simulating data we
assume that the largest possible AR order at each voxel is 8; however, it could be as small as 0.
The precision parameters are set as τp = 400 .p = 1, : : : , P/. For simplicity, we assume that all
AR orders are generated spatially according to the same values for the hyperparameters of the
Ising model, i.e. β0p =−0:2 and β1p =0:3. The AR order in PMCMC and PVB are set to P =1
as is standard practice. We note here that the GLM–AR model is misspecified and we expect
that its performance will suffer regardless of which posterior sampling algorithm is used. We
could have set the AR order to 8 for the GLM–AR model, but this is never done in practice and
assumes knowledge of the true maximum value. For our SVARO model, we allow the order to
be as large as 12 and let the algorithm determine spatially which of the 12 AR coefficients are
set to 0 and which enter the model via the variable selection mechanism.

We compare the SVARO with the PVB and PMCMC models in estimating the first AR
coefficient. As shown in Fig. 2, the SVARO model shows little error compared with the truth,
indicating that our model has captured the AR parameter quite well. In contrast, PMCMC and
PVB exhibit more bias, indicating a lack of fit for the temporal noise. Note that we are displaying
the SVARO estimate only for the first AR coefficient for simplicity and direct comparison; the
other AR coefficients are well estimated as well.

Table 1 summarizes the average MSE, MSE, for various parameters. These summaries are
obtained by averaging the MSE of the corresponding parameters across all the voxels and
over simulation replicates. It is clear that the SVARO model has the smallest MSE for these
three parameters. In addition, PMCMC outperforms PVB in estimating the coefficient of the
haemodynamic response W1·, which is the primary parameter on which inference is based. This
finding is in line with our previous findings in Teng et al. (2016), where we found that a low
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Fig. 2 (a) True first AR coefficients, and difference maps between the true AR coefficients and the estimated
posterior mean from the (b) SVARO, (c) PMCMC and (d) PVB models: the posterior means are averaged
over the 100 replicated simulation data sets

SNR is one setting where MCMC sampling outperforms VB models for this particular model
(GLM–AR). We also calculate and present the log-pseudomarginal likelihood LPML, averaged
over simulations (Gelfand and Dey, 1994) in Table 1. The SVARO model has a larger LPML
than the MCMC implementation of GLM–AR, indicating a better model fit. Note that LPML
cannot be obtained from the VB algorithm. In terms of timing, the SVARO algorithm takes 108
min with 10000 iterations following 10000 burn-in iterations, PMCMC takes 11 min with the
same number of iterations and PVB is the fastest at 1 min computation time.

We next investigate how the differences that are observed for the individual parameters will
impact the overall inference of interest. A sensitivity plot is presented in Fig. 3, which is obtained
by plotting the average sensitivity against a range of marginal posterior probability thresholds
from 0:9 to 1. We choose this range because it covers those values that are most often used in
practice.



532 M. Teng, F. S. Nathoo and T. D. Johnson

Table 1. MSE, log-pseudomarginal likelihood LPML and timing for
the three models†

Method MSE LPML Timing (min)

W1,: W2,: a1

SVARO 0.478 0.030 0.001 −1842902 108
PMCMC 113% 135% 509% −1926620 11
PVB 199% 138% 510% — ‡ 1

†MSE is calculated by averaging the MSE in each voxel and over sim-
ulation replicates. The MSE values for PMCMC and PVB are relative
to those in the SVARO model.
‡Not applicable.

In terms of the underlying activation threshold, we use two thresholds: the true value of the
contrast that corresponds to the top 10% and top 5% of all voxels. Thus, corresponding to a
certain activation threshold and a certain probability threshold, the higher the sensitivity, the
better the model is in terms of capturing activation. Again, a notable difference is observed when
comparing the three methods, with the SVARO model giving the uniformly highest sensitivity
across the entire range of probability thresholds and PVB resulting in the lowest sensitivity.
PMCMC is better than PVB but still underperforms relatively to SVARO.

We plot the PPMs in Fig. 4, which depicts the locations of the true activations and the
PPMs from the SVARO model. In addition, differences in the probability maps comparing the
SVARO with the PMCMC and PVB methods are also depicted. Again, the SVARO model
appears to perform the best in producing the highest posterior probabilities for regions that are
truly activated. PMCMC is similar to the SVARO model but its probabilities on those activated
regions are slightly lower than those from the SVARO model, especially near the boundary of
activated regions. PVB underperforms compared with the other two approaches by providing
greater posterior probability on null locations while providing smaller posterior probability on
activated locations.

3.3. Simulation 2
In this simulation study we compare the performance of our model under model misspecification
against the correctly specified GLM–AR model by using the two algorithms PMCMC and PVB.
Here we simulate data under the competing GLM–AR model. The AR coefficients are simulated
by using the low resolution tomography prior and the AR order is set to 1 for every voxel, which
is a typical assumption that is used when analysing functional MRI data. The prior precision,
tau1 is set at 400. The maximum AR order that is allowed for our model is set at 12.

Table 2 shows the average MSE summaries of the estimators. When data are simulated under
the competing model, the SVARO model still exhibits good performance in terms of average
MSE for the two regression parameters, suffering only a slight loss of efficiency compared with
the GLM–AR model using the PMCMC algorithm. Nevertheless, the average LPML indicates
that, overall, the SVARO model fits the simulated data better than does the GLM–AR model.
It is worth mentioning that PVB again underperforms relatively to PMCMC in terms of the
haemodynamic response parameter and the AR coefficient.

Fig. 5 presents the sensitivity curves. Although the data were simulated under a constant order
AR assumption, the SVARO method demonstrates similar sensitivity to that of PMCMC. The
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Fig. 3 Thresholded sensitivity curves for the three methods SVARO ( ), PMCMC ( ) and PVB
( ) with two activation thresholds: (a) activation threshold corresponds to the top 10% of the parameter
estimates; (b) top 5%
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Fig. 4 (a)True activation map ( , activated voxels), and PPMs of activation obtained by using (b) the SVARO,
(c) SVARO–PMCMC and (d) SVARO–PVB models: (c) and (d) reflect the difference of the two alternative
approaches relative to the SVARO model

sensitivity curve for PVB is uniformly smaller than the other two because of the inaccurate
estimation of the haemodynamic response parameter.

Overall, these simulation studies show that our SVARO model is more efficient from a statis-
tical point of view than the GLM–AR model when the data display heterogeneous AR orders
across the image—a situation that we believe is more common than not. They also show that
our model does not suffer much in terms of statistical efficiency when the AR order is small and
homogeneous across the image.

4. Analysis of face perception functional magnetic resonance imaging data

We turn our focus back to the face repetition data set that originally motivated our model devel-
opment and compare results from the two models and three algorithms. In this analysis we use
the complete experimental design consisting of famous faces, repeated twice, and unfamiliar
faces, repeated twice. These four design vectors are then convolved with the canonical haemo-
dynamic response function as well as its time and dispersion derivatives. An intercept term is
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Table 2. MSE, LPML and computation time for the three methods†

Method MSE LPML Timing (min)

W1,: W2,: a1

SVARO 0.502 0.031 0.003 −1817287 206
PMCMC 99% 97% 54% −1875900 11
PVB 167% 98% 49% —‡ 1

†MSE is calculated by averaging the MSE over voxels and simulation
replicates. The MSE-values for PMCMC and PVB are relative to those
in SVARO.
‡Not applicable.

also added to the final design matrix for a total of 13 covariates. We allow an AR order up to
a maximum of P =12 when fitting the SVARO model, and an AR.3/ model for the GLM–AR
model using both the PMCMC and the PVB algorithms. Although the choice of an AR.3/

model for the last two approaches may seem arbitrary, this is exactly the justification for the use
of the SVARO model where such an arbitrary assumption need not be made. We consider data
that are collected on a single subject in what follows.

Preprocessing steps are applied to the data prior to fitting the Bayesian models. All functional
images are aligned to the first image by using a six-parameter rigid body transformation. Then
slice timing correction is performed to set the standard acquisition time as the 12th slice. Im-
ages are spatially normalized to a standard echo planar imaging image. The global mean g is
computed and each time series is divided by 100=g to represent a percentage of g. Finally, a high
pass filter with cut-off frequency of 1=128 Hz is applied to the data and design matrix to remove
low frequency signals that arise through MRI scanner drift.

Fig. 6 presents the distribution of estimated posterior modal AR orders from our model
across voxels. The most frequent order is the zero order, or no auto-correlation in the time
series, accounting for approximately 35% of the voxels. Interestingly, the next highest is order
8, with 9.4% of the voxels. Overall, roughly 51% of the voxels exhibit an AR order that is
greater than 3. The existence of these higher orders and the variability in the orders is in general
agreement with our exploratory analysis of the face repetition data set (see Section 1.1) and
indicates the necessity of our proposed model.

Next, we compare models or algorithms with respect to a particular contrast of interest,
namely the effect of fame, i.e. famous faces versus unfamiliar faces. The estimated posterior
mean and standard deviation (SD) maps for the fame contrast are displayed in Fig. 7. Although
the posterior SD estimated from the SVARO and PMCMC models are very close, the esti-
mated posterior means are different between the two approaches. Also, the estimated SD that
is obtained from PVB shows apparent discretization. This is due to a graph partitioning that is
incorporated in the algorithm for computational speed (Penny et al., 2007). It is clear that the
boundaries of these graph-partitioned regions have substantially larger estimated SD than do
the interior locations. The posterior mean of PVB also seems to exhibit artefacts at the partition
boundaries, though the effect is not as pronounced. The estimated LPML is −4:66×107 under
our proposed model and is −4:82 × 107 under the GLM–AR model with MCMC sampling.
According to this model selection criterion, our proposed model is preferred.

Finally, we look at the effect of fame by using thresholded PPMs. The activation threshold
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Fig. 5 Thresholded sensitivity curves for the three methods SVARO ( ), PMCMC ( ) and PVB
( ) with two activation thresholds: (a) activation threshold corresponds to the top 10% of the parameter
estimates; (b) top 5%
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Fig. 6 Histogram of the estimated posterior modal AR order from the SVARO model across all voxels for
the face repetition data set

is set to 0:2% of the global mean value, and the probability threshold is set to 0:95. Fig. 8
shows the activation regions projected onto the cerebral cortex surface. We can see that there is
a match in terms of a majority of activation regions inferred from the SVARO and PMCMC
models. A closer look reveals that PMCMC tends to make more scattered predictions across
the posterior regions of the brain. The numbers of activation regions from PVB are far greater
than the number that is obtained from the other two approaches and are more widely dispersed
across the brain. From our simulation study results, we suspect that these scattered activated
regions are likely to be false positive results.

The main parameters of interest are the regression parameters corresponding to the haemo-
dynamic response function for the four experimental tasks. We use Geweke (1984) diagnostics
along with false discovery rate correction for dependent variables (Benjamini and Yekutieli,
2001) to determine convergence of our model. Although there is a multivariate version of the
Geweke diagnostic, our parameter space is too large for this method. Out of the four parameters
for each of the 56526 voxels (a total of 226104 parameters), 99:89% of the parameters converged
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(a) (b) (c)
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Fig. 8 Activation maps for fame contrast: (a)–(c) anterior view; (d)–(f) posterior view; (a), (d) activation
(white) from the SVARO model; (b), (e) activation from PMCMC; (c), (f) activation from PVB

to their posterior distributions. In terms of computation time, PVB took about 1 h, PMCMC
took 1 day and the SVARO model took about 1 week of computation. Much of our MCMC
algorithm is amenable to parallel programming, which is an avenue for further development.

5. Discussion

In this paper, we have developed a Bayesian hierarchical model, SVARO, that allows the AR
order to vary spatially across the brain, with the orders themselves displaying a certain level of
spatial clustering based on an Ising model. We compared our proposed model with a self-written
MCMC sampler for the standard GLM–AR model and the VB implementation for the same
model. The results are interesting; under a low SNR ratio, the VB method seems to suffer from
variance overestimation, leading to a larger MSE than those of the other two methods. It is
likely that, as temporal noise increases, a more vital role is played by the AR correlation that
increases the posterior correlation between different parameters and this makes the mean field
assumption underlying the VB approximation less accurate.

We have shown that our model outperforms the GLM–AR model not only in terms of accu-
racy and sensitivity, but also according to formal model selection based on the LPML-criterion.
Through an application of our proposed model and through an exploratory analysis, we have
shown that the typical constant low order AR assumption can be violated in real functional
MRI data. It is very likely that this issue, seen in the face repetition data set, is also present in
other functional MRI data sets.
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There is a computational price to be paid for gaining the flexibility that we have proposed in
our model. Our model takes a longer time to run than either implementation of the GLM–AR
algorithm. This is mostly due to the estimation of the varying AR orders and the associated
greater number of parameters to estimate. However, as previously mentioned, there are elements
of our MCMC algorithm that are amenable to parallel programming. This will be investigated
in future work.

Whereas we have based our model specification on a set of independent Ising processes,
one for each possible order of the AR process, another approach would be to assume a Potts
model for the orders of the AR coefficients. A Potts model, combined with a Dirichlet process
prior for parameters, has been investigated for selecting covariates of interest in brain imaging
(Johnson et al., 2013). Here we can apply it also to the selection of AR orders to yield a more
parsimonious, yet still flexible, model. Investigation of hyperparameter estimation in the Ising
model and the use of alternative spatial models is also of interest, as is increasing the scope of
our comparison of methods to include wavelet approaches that focus on long memory errors,
or vector AR models (Harrison et al., 2003).
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