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ABSTRACT 

Widespread fish clades that occur mainly or exclusively in fresh water represent a key target of 

biogeographical investigation due to limited potential for crossing marine barriers. Timescales 

for the origin and diversification of these groups are crucial tests of vicariant scenarios in which 

continental break-ups shaped modern geographic distributions. Evolutionary chronologies are 

commonly estimated through node-based palaeontological calibration of molecular phylogenies, 

but this approach ignores most of the temporal information encoded in the known fossil record of 

a given taxon. Here, we review the fossil record of freshwater fish clades with a distribution 

encompassing disjunct landmasses in the southern hemisphere. Palaeontologically derived 

temporal and geographic data were used to infer the plausible biogeographic processes that 

shaped the distribution of these clades. For seven extant clades with a relatively well-known 
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fossil record, we used the stratigraphic distribution of their fossils to estimate confidence 

intervals on their times of origin. To do this, we employed a Bayesian framework that considers 

non-uniform preservation potential of freshwater fish fossils through time, as well as uncertainty 

in the absolute age of fossil horizons. We provide the following estimates for the origin times of 

these clades: Lepidosireniformes [125–95 million years ago (Ma)]; total-group 

Osteoglossomorpha (207–167 Ma); Characiformes (120–95 Ma; a younger estimate of 97–75 

Ma when controversial Cenomanian fossils are excluded); Galaxiidae (235–21 Ma); 

Cyprinodontiformes (80–67 Ma); Channidae (79–43 Ma); Percichthyidae (127–69 Ma). These 

dates are mostly congruent with published molecular timetree estimates, despite the use of semi-

independent data. Our reassessment of the biogeographic history of southern hemisphere 

freshwater fishes shows that long-distance dispersals and regional extinctions can confound and 

erode pre-existing vicariance-driven patterns. It is probable that disjunct distributions in many 

extant groups result from complex biogeographic processes that took place during the Late 

Cretaceous and Cenozoic. Although long-distance dispersals shaped the distributions of several 

freshwater fish clades, their exact mechanisms and their impact on broader macroevolutionary 

and ecological dynamics are still unclear and require further investigation. 

 

Key words: historical biogeography, vicariance, long-distance dispersal, freshwater fishes, 

evolutionary timescales, palaeontology, fossil record. 
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I. INTRODUCTION 

Freshwater fishes are a fundamental component of the biosphere, constituting more than 20% of 

living vertebrate species (Nelson, Grande & Wilson, 2016). Extant freshwater fish clades with 
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intercontinental, disjunct distributions have long been model systems in historical biogeography, 

as seas and oceans represent a relatively strong barrier to their dispersal (Lundberg, 1993).  

Continental vicariance driven by Mesozoic breakup of Pangaea is a widely cited explanation 

for these disjunct distributions (e.g. Novacek & Marshall, 1976; Parenti, 1981; Greenwood, 

1983; Chakrabarty, 2004; Sparks & Smith, 2005; Inoue et al., 2009). Alternative scenarios 

involve more recent long-distance dispersals, via land (through transient land bridges or after 

continental collision) or sea. Despite obvious challenges, trans-oceanic dispersal has been 

increasingly proposed as the probable mechanism underlying the intercontinental distributions of 

several terrestrial and freshwater groups (e.g. de Queiroz, 2005; Poux et al., 2006; Pramuk et al., 

2008; Samonds et al., 2012), including some freshwater fish clades (Lundberg, 1993; McDowall, 

2002; Bonde, 2008; Friedman et al., 2013). Time is the critical variable in testing whether 

distributions matching those predicted by vicariance arose by this mechanism (Upchurch & 

Hunn, 2002; Donoghue & Moore, 2003). Vicariance can be ruled out if lineages with a disjunct 

distribution are too young to have been influenced by the corresponding geologic event (e.g. 

breakup between South America and Africa for a clade inhabiting both continents).  

Traditionally, fossils and their stratigraphic context have been the only source of information 

on evolutionary timescales relevant to vicariance hypotheses. In the last 20 years, advances in 

molecular clock methods have revolutionized the field of evolutionary biology (Ho & Duchêne, 

2014), and construction of a molecular time-calibrated tree is now the conventional approach for 

timing evolutionary events. However, fossils remain the principal source of time calibration for 

This article is protected by copyright. All rights reserved.



molecular trees, requiring a thorough understanding of the fossil record in order to select 

calibrations and appropriate parameters properly for timetree analysis (Parham et al., 2012). 

Alternative methods for estimating the time of origin of a group rely only on palaeontological 

and stratigraphic data (Strauss & Sadler, 1989; Marshall, 1997; Hedman, 2010), but are used less 

frequently than molecular clocks.  

Herein, we consider existing fossil and molecular evidence for the evolutionary timescale of 

freshwater fish clades with a widespread disjunct distribution that includes southern hemisphere 

landmasses. We use phylogenetic and palaeobiogeographic information to infer possible 

biogeographic patterns for these clades, and to evaluate whether vicariance associated with the 

Mesozoic breakup of Gondwana, dispersal, or both shaped their geographic distribution. We 

excluded taxa with a distribution limited to the northern hemisphere, as during the Mesozoic and 

Cenozoic North America and Eurasia were often connected by transient land bridges (e.g. the 

Beringian and Thulean land bridges; Brikiatis, 2014, 2016). Biotic exchanges between former 

Laurasian landmasses were relatively common in the late Mesozoic and Cenozoic and involved 

several freshwater fish taxa (see Cavin, 2017), including sturgeons (Choudhury & Dick, 1998), 

bowfins (Grande & Bemis, 1998), cypriniforms (Imoto et al., 2013) and pikes (Grande, 1999). 

While we cover both extant taxa with no (or limited) fossil record (Section II.1) and extinct 

taxa known only from the fossil record (Section II.2), particular attention is given to seven extant 

freshwater fish clades with more extensive fossil records: Lepidosireniformes (South American 

and African lungfishes), Osteoglossomorpha (bonytongues and allies), Characiformes (characins 
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and allies), Galaxiidae, Cyprinodontiformes (killifishes), Channidae (snakeheads) and 

Percichthyidae (Southern temperate perches). Most of these groups (with the notable exceptions 

of galaxiids and cyprinodontiforms) are usually classified as primary division freshwater fishes 

(Myers, 1938), an ecological term indicating low tolerance to salinity. Although widely used, 

Myers’ (1938) classification of freshwater fishes is purely qualitative, has no bearing on 

ancestral environmental adaptations (i.e. whether a group of freshwater fishes derives from 

freshwater or marine ancestors) and does not necessary reflect the dispersal abilities of a fish 

clade.  

For the seven focal clades listed above, we used the temporal distribution of their fossil record 

quantitatively to estimate their origin times, building upon the theoretical framework developed 

by Marshall (1997). This method utilizes an empirically derived fossil preservation potential 

function to assess, for a given taxon, the plausible extent of an early evolutionary history 

undetected by its fossil record (in other words, how much older than its oldest known fossil can a 

taxon plausibly be). By so doing, it accounts for non-uniform fossil preservation in time. 

Furthermore, we modified the method to consider uncertainty in the absolute age of fossil-

bearing deposits. The origin-time estimates derived with this method were then compared with 

the timescale of Gondwanan fragmentation to test for vicariant scenarios, and with published 

molecular estimates to check for congruency or discrepancy. 

 

II. FRESHWATER FISH CLADES WITH INTERCONTINENTAL DISTRIBUTIONS 
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(1) Extant taxa with disjunct distributions and no (or limited) fossil record 

Biogeographic hypotheses for clades with limited palaeontological records are generally assessed 

through phylogenies that are time-calibrated with fossils of other groups. Many freshwater fish 

clades with disjunct distributions fall under this category. 

 

(a) Mordaciidae and Geotriidae 

Southern hemisphere lampreys inhabit southern South America and southern Oceania. The four 

species in these groups are either anadromous or secondarily restricted to freshwater (Potter et 

al., 2015), suggesting high dispersal potential. Indeed, the monotypic Geotria inhabits river 

systems throughout southern South America, New Zealand and southern Australia, making it one 

of the most widespread freshwater fishes (Berra, 2007). The unresolved phylogenetic position of 

Geotria relative to mordaciids and northern hemisphere lampreys (Potter et al., 2015) and the 

lack of published timetrees for lampreys preclude further testing of biogeographic scenarios.  

 

(b) Atheriniformes 

Within atheriniforms (silversides), the Malagasy Bedotiidae is closely aligned to an Australasian 

group including Melanotaeniidae, Pseudomugilidae and Telmatherinidae. This relationship has 

been interpreted as evidence of Cretaceous vicariance between Indo-Madagascar and Austro-

Antarctica (Sparks & Smith, 2004). However, fossil-calibrated phylogenies identify an Eocene 

divergence between bedotiids and Australasian taxa (Campanella et al., 2015), contradicting the 
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vicariant hypothesis. Many silverside clades show repeated freshwater invasions by marine 

ancestors, and the last common ancestor of bedotiids and the Australasian clades was likely 

marine or at least euryhaline. Marine dispersal followed by freshwater invasion better explains 

the biogeographic pattern seen in this group (Campanella et al., 2015). 

 

(c) Synbranchidae 

Swamp eels occur in fresh and brackish waters of Central and South America, West Africa, East 

Asia, Indo-Malaysia and northern Oceania. Many synbranchids show broad salinity tolerance, 

and air breathing allows extensive survival out of water (Graham, 1997). Relationships within 

synbranchids are poorly known (Rosen & Greenwood, 1976). Nonetheless, a latest Cretaceous 

divergence of synbranchids from their closest living relatives (Near et al., 2013) and the 

intercontinental distributions of Monopteros and Ophisternon (Rosen & Greenwood, 1976) 

imply multiple long-distance dispersal events. 

 

(d) Mastacembelidae 

Spiny eels inhabit Indo-Malaysia and Africa, with one species restricted to the Middle East. 

Phylogenetic analyses support an Indo-Malayan origin for mastacembelids, followed by 

dispersal to the Middle East and from there to Africa during the Miocene (Day et al., 2017). This 

is congruent with the African invasion of several Asian mammals starting around 18 million 

years ago (Ma) (Koufos, Kostopoulos & Vlachou, 2005). 
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(e) Anabantidae 

Climbing gouramies contain the Indo-Malayan Anabas and three African genera. Anabas can 

tolerate long periods of air exposure, move on land, and traverse small obstacles (Davenport & 

Abdul Matin, 1990; Graham, 1997). A single fossil anabantid, Eoanabas thibetana, is known 

from late Oligocene deposits of central Tibet (Wu et al., 2017). The basal position of Eoanabas 

and Anabas within anabantids, as well as their affinity to several freshwater clades endemic to 

Southeast Asia (Betancur-R et al., 2017), implies an Indo-Malayan origin. Anabantid dispersal 

from Asia to Africa probably occurred during the second half of the Paleogene (Rüber, Britz & 

Zardoya, 2006). 

 

(f) Polycentridae 

Polycentrids include African and South American leaffishes. Collins, Britz & Rüber (2015) 

resolved the South American leaffishes as a clade within African leaffishes. There is no time-

calibrated phylogenetic analysis targeting polycentrids, but more inclusive timetrees suggest an 

Eocene divergence between South American leaffishes and the African Polycentropsis (Near et 

al., 2013). This would imply transoceanic dispersal from Africa to South America in the 

Paleogene, paralleling the well-known cases of monkeys and caviomorph rodents (Poux et al., 

2006). 
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(g) Gobioidei 

Among gobies, multiple lineages with marine ancestors colonized freshwater environments. 

Some of these (e.g. Milyeringidae, Butidae, Eleotridae, Sicydiinae) display disjunct 

intercontinental distributions. The fossil record of gobies extends to the early Eocene (Bannikov 

& Carnevale, 2016). However, the uncertain systematic position of early fossil gobies prevents 

an accurate estimate of the goby evolutionary timescale based exclusively on fossils (Bannikov 

& Carnevale, 2016). Molecular clock estimates indicate that crown gobies are Late Cretaceous–

Paleocene in age (Alfaro et al., 2018; Li et al., 2018). Among goby lineages with intercontinental 

distribution in freshwater environments, butids and eleotrids can thrive in a wide range of 

salinities, with some species inhabiting coastal marine habitats (Berra, 2007). Thus, marine 

dispersal is a likely explanation for their widespread distribution. Sycidiines have an 

amphidromous life cycle. Molecular data suggest a late Miocene origin in the western Pacific 

Ocean and arrival in Africa and the New World through current-driven westward marine 

dispersal (Keith et al., 2011). The most striking case is that of the blind cave gobies belonging to 

Milyeringidae, which includes two genera of obligate troglobic fishes: the Malagasy Typhleotris 

and Australian Milyeringa (Chakrabarty, Davis & Sparks, 2012). Chakrabarty et al. (2012) 

proposed a vicariant scenario with an Early Cretaceous origin of this group, but their molecular 

estimate for the divergence between Typhleotris and Milyeringa ranges from the Early 

Cretaceous to the Eocene. An Early Cretaceous origin for a goby subclade is in stark contrast not 

only with the known fossil record of gobies, but also with the fossil record of acanthomorphs as a 
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whole (Patterson, 1993). More recent studies place the origin of milyeringids firmly within the 

Cenozoic (Li et al., 2018). Although a recent milyeringid origin would imply at least one long-

distance dispersal event between Madagascar and Australia, such an event seems highly unlikely 

for troglobites with marked physiological limitations and very restricted habitat (Chakrabarty et 

al., 2012). The possibility of two independent invasions of the subterranean environment from 

extinct marine or brackish ancestors, followed by independent acquisition of characters typical to 

troglobic organisms (loss of functional eyes, loss of pigmentation, and so on), cannot be 

excluded and could explain the striking biogeographic pattern displayed by milyeringids. 

However, the lack of milyeringid fossils precludes further assessment of this hypothesis. 

 

(2) Fossil taxa with disjunct distributions 

Several cases of disjunct distributions in freshwater fishes are known exclusively from the fossil 

record. These fall into two broad categories: widespread extinct clades; or extant clades with 

present distribution restricted to only one landmass, but for which fossils are found on multiple 

continents. Most cases discussed here are associated with the opening of the South Atlantic, as 

Mesozoic and early Cenozoic freshwater deposits of South America and Africa are much better 

sampled than those of other southern landmasses.  

 

(a) †Mawsoniidae 
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Mawsoniids represent a primarily continental radiation of Mesozoic coelacanths. †Mawsonia and 

†Axelrodichthys have been found in South American and African deposits spanning from the 

Early Cretaceous to the Cenomanian (de Carvalho & Maisey, 2008). Persistence of these 

mawsoniid genera in South America and Africa during opening of the South Atlantic suggests 

vicariance. Post-Cenomanian mawsoniids are known only from Europe and Madagascar 

(Gottfried, Rogers & Rogers, 2004; Cavin, Valentin & Garcia, 2016), hinting at possible 

dispersals from Africa in the Late Cretaceous. Cretaceous mawsoniids are often found in 

brackish deposits and thus they could have had relatively high salinity tolerance and long-

distance dispersal potential. 

 

(b) Polypteridae 

Bichirs are an exclusively freshwater clade of early diverging actinopterygians that today occurs 

only in Africa, where their fossil record extends back to the Cenomanian (Gayet, Meunier & 

Werner, 2002; Grandstaff et al., 2012; Cavin et al., 2015; Cavin, 2017). Fragmentary polypterid 

remains from the Maastrichtian and Paleocene of Bolivia reveal a more widespread distribution 

of this group in the past (Gayet et al., 2002). Undescribed polypterid material from the Albian–

Cenomanian Alcântara Formation of Brazil (Candeiro et al., 2011) suggests polypterid presence 

in South America pre-dating South America–Africa breakup. However, the lack of a 

phylogenetic framework for fragmentary fossil polypterids precludes a reliable reconstruction of 

their biogeographic history. The recent recognition of scanilepiforms – known from Triassic 
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freshwater deposits of North America and Eurasia – as stem polypterids (Giles et al., 2017) 

suggests a Pangean distribution in the early Mesozoic, followed by vicariance and regional 

extinctions. 

 

(c) Lepisosteidae 

Gars, like the only other extant holostean lineage (the bowfin Amia), are now restricted to North 

America. Lepisosteids have a broad Late Cretaceous distribution, with North American, South 

American, European, Central Asian, African, Malagasy and Indian deposits yielding gar fossils 

of this age (Grande, 2010). The majority of the Late Cretaceous lepisosteid material is 

fragmentary and diagnostic only to family, so biogeographic scenarios are difficult to 

reconstruct. While extant gars are mainly freshwater fishes and most fossils are found in 

continental deposits, some living species are occasionally found in brackish and coastal marine 

environments (notably Atractosteus tristoechus, the Cuban gar; Grande, 2010). Moreover, the 

discovery of early lepisosteids in Late Jurassic marine deposits from Mexico (Brito, Alvarado-

Ortega & Meunier, 2017) suggests that high salinity tolerance might be primitive for the group. 

Marine dispersal probably played a major role in the widespread distribution of lepisosteids 

during the Cretaceous.  

 

(d) †Obaichthyidae and other lepisosteoids 
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Obaichthyids are the sister taxon to Lepisosteidae and consist of two Aptian–Cenomanian 

genera: †Obaichthys and †Dentilepisosteus. Like mawsoniid coelacanths, both genera are present 

in Brazilian and Moroccan continental and transitional deposits (Grande, 2010), suggesting 

vicariance during late stages of the opening of the South Atlantic. A similar pattern can be 

inferred for the basal lepisosteoids †Araripelepidotes and †Pliodetes from the Aptian of Brazil 

and Niger, respectively, which might be sister lineages (Cavin, 2010). 

 

(e) †Vidalamiinae 

Vidalamiins are a Cretaceous–early Paleogene clade of amiids closely related to the extant 

bowfin Amia. Within vidalamiins, †Calamopleurini occurs only in western Gondwana while 

†Vidalamiini has a broader distribution including North America, South America, Europe and 

the Middle East (Grande & Bemis, 1998; Brito, Yabumoto & Grande, 2008). While the 

geographic and temporal distribution of calamopleurine fossils is consistent with vicariance 

related to the rifting of South America and Africa, the biogeographic history of Vidalamiini 

appears more complex and likely involved marine dispersals. Vidalamiin fossils derive from 

continental and coastal marine deposits, and several species were likely euryhaline (Grande & 

Bemis, 1998). 

 

(f) †Archaeomenidae and †Luisiellidae 

This article is protected by copyright. All rights reserved.



Archaeomenids and luisiellids are poorly known freshwater stem teleost groups with a southern 

Gondwanan distribution (Sferco, López-Arbarello & Báez, 2015; Bean, 2017). The age of these 

taxa (†Archaeomenidae: Early Jurassic–Early Cretaceous; †Luisiellidae: Late Jurassic–Early 

Cretaceous) is consistent with a continuous Jurassic range encompassing South America, 

Antarctica and Australia [but see Su (1994) for a putative archaeomenid from the Early Jurassic 

of China].  

 

(g) †Cladocyclidae 

Cladocyclids include freshwater, brackish and coastal forms belonging to the primarily marine 

ichthyodectiforms, a clade of predatory stem teleosts. †Cladocyclus and †Chiromystus are both 

known from the Early–middle Cretaceous of South America and Africa (Martill et al., 2011; 

Cavin, Forey & Giersch, 2013), paralleling the pattern seen in mawsoniids, obaichthyids and 

vidalamiins. Additionally, †Cladocyclus is known from Albian continental deposits of Australia 

(Berrell et al., 2014) and possibly Italy (Signore et al., 2006). As cladocyclids are often found in 

lagoonal and coastal marine deposits, at least some species were probably euryhaline. Thus, their 

palaeobiogeographic distribution may have been shaped by a combination of dispersal and 

vicariance. 

 

(h) Chanidae 
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Milkfishes, an ostariophysan clade, include the living marine Chanos chanos and several extinct 

species, with some found in continental and transitional deposits. †Dastilbe and †Parachanos are 

of particular interest. These are found in Aptian–Albian deposits of Brazil and Central Africa, 

respectively (Fara, Gayet & Taverne, 2010), and could be sister taxa (Near, Dornburg & 

Friedman, 2014). †Dastilbe batai from the Aptian–Albian of Equatorial Guinea is poorly 

preserved and may belong to the genus †Parachanos (Dietze, 2007). Thus, the 

palaeobiogeographic distribution of †Dastilbe and †Parachanos at the end of the Early 

Cretaceous is consistent with vicariance associated with opening of the South Atlantic. Notably, 

†Parachanos is also known from Late Cretaceous deposits of Italy and Croatia (Fara et al., 

2010); long-distance dispersal from Africa could explain the post-Albian European distribution 

of this taxon, similar to mawsoniid coelacanths. Another freshwater chanid, †Nanaichthys from 

the Aptian of Brazil, reveals a possible trans-Tethyan dispersal event during the Early 

Cretaceous, as this genus appears to be closely related to the Berriasian–Barremian 

†Rubiesichthys and †Gordichthys from Spain (Amaral & Brito, 2012). 

 

(3) Extant taxa with disjunct distributions and known fossil record 

Evolutionary timescales, and associated biogeographic scenarios, for geographically widespread 

extant clades can be assessed by both molecular timescales and the temporal and geographic 

distribution of their fossils. Seven of these clades are covered in detail herein: 

Lepidosireniformes, Osteoglossomorpha, Characiformes, Galaxiidae, Cyprinodontiformes, 

This article is protected by copyright. All rights reserved.



Channidae and Percichthyidae (Fig. 1). For these taxa, we reviewed their fossil record focusing 

on biogeographically relevant fossils. Then, we used the stratigraphic distribution of their fossils 

to infer times of evolutionary origin in a Bayesian framework. Finally, biogeographic scenarios 

involving vicariance and dispersal were evaluated on the basis of our fossil-based estimates and 

published molecular timetrees. 

We did not include three clades prominently featured in the historical biogeography literature: 

Dipnoi, Siluriformes and Cichlidae. These groups (and the reasons for exclusion from this 

review) will be briefly discussed here. 

Dipnoi (crown lungfishes) includes Lepidosireniformes (South American Lepidosiren and 

African Protopterus) and Ceratodontiformes (the Australian Neoceratodus). Crown 

lepidosireniforms are discussed below in the context of the split between South America and 

Africa, but the early biogeographic history of crown lungfishes has been linked to vicariance and 

the progressive fragmentation of Gondwana (Cavin et al., 2007). The relationships of several 

Mesozoic lungfish genera relative to extant ones are still debated, leading to considerable 

uncertainty for the age of the dipnoan crown. Some phylogenetic studies recover all extinct 

Mesozoic genera as stem lungfishes, placing the origin of crown lungfishes in the Late Jurassic 

(Schultze, 2004). By contrast, other analyses find several early Mesozoic genera (e.g. 

†Ceratodus, †Arganodus, †Asiatoceratodus and †Gosfordia) within the lungfish crown (Cavin et 

al., 2007; Longrich, 2017). It has even been suggested that Permian lungfishes like †Gnathorhiza 

may be more closely related to Lepidosireniformes than to Neoceratodus (Kemp, Cavin & 
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Guinot, 2017), placing the minimum age for the origin of crown lungfishes to around 300 Ma. 

The identification of Triassic or Permian lungfishes as stem lepidosireniforms, coupled with their 

widespread geographic distribution, would strongly suggest a Gondwanan (if not Pangean) 

distribution of early crown lungfishes, followed by a series of vicariant events and local 

extinctions (Cavin et al., 2007). Little effort has been put into the development of a precise 

timescale for lungfish evolution from a molecular clock perspective, with recent estimates for 

crown lungfishes ranging from the Permian to the Late Jurassic (Irisarri et al., 2017). Because of 

the uncertain affinities of early Mesozoic lungfish genera, we do not estimate the age of crown 

lungfishes using quantitative biostratigraphical models here. However, lepidosireniforms are 

considered in this framework below. 

Siluriformes (catfishes) is a major clade of globally distributed otophysans that includes 

several thousand species. While phylogenetic analyses strongly support the South American 

endemics Loricarioidei and Diplomystidae as the earliest branching lineages in the siluriform 

tree (implying a South American origin for the group), deep-level relationships among other 

siluriforms – collectively grouped in Siluroidei – remain largely unknown (Betancur-R et al., 

2017). It is therefore not easy to identify biogeographically relevant nodes in the siluriform 

phylogeny (i.e. nodes corresponding to disjunct intercontinental distributions). The siluriform 

fossil record extends to the Late Cretaceous of South America (Gayet, 1990). However, these 

early fossils are fragmentary and cannot be confidently assigned to any extant lineage. Because 

of the uncertainties in siluriform systematics and in the affinities of the earliest siluriform fossils, 
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we refrain from discussing the siluriform fossil record and biogeography in detail here. However, 

there are indications of long-distance dispersal in siluriform evolutionary history. First, several 

lineages of catfishes are adapted to high-salinity environments, with Ariidae and Plotosidae 

including mostly coastal marine species (Berra, 2007). Specifically, ariids recolonized freshwater 

environments after marine dispersal several times during their history, achieving a worldwide 

distribution in tropical fresh waters (Betancur-R, 2010). More remarkably, molecular 

phylogenetics resolves the recently discovered Lacantunia enigmatica from Mexico as deeply 

nested within a diverse group of African catfishes (the ‘Big Africa’ clade) with strong statistical 

support (Lundberg et al., 2007). Molecular clock studies place origin of the ‘Big Africa’ clade 

during the Late Cretaceous (Lundberg et al., 2007). Thus, the presence of a member of this 

radiation in Mexico requires a biogeographic scenario that involves complex dispersal routes 

(Lundberg et al., 2007). A better understanding of siluriform historical biogeography will depend 

on the resolution of their deep-level phylogeny and on further analysis of the early fossil record 

of catfishes. 

Cichlidae (cichlids) is a model system for several fields in evolutionary biology, including 

historical biogeography. The ‘Gondwanan’ geographic distribution of cichlids (which includes 

the Neotropics, Africa, Madagascar and the Indian subcontinent) has been the focus of 

considerable attention among biogeographers. The topological congruence between cichlid 

phylogeny and Gondwanan fragmentation (with the Malagasy and Indian lineages branching first 

and the African clade being sister group to the South American one) has been often interpreted as 
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evidence for vicariance (Chakrabarty, 2004; Sparks & Smith, 2005). However, this argument 

does not take into account the timescale of cichlid evolution, which would be necessary to test a 

vicariant hypothesis. Topological patterns that appear to be consistent with a vicariant scenario 

may arise from dispersal events, a phenomenon called pseudo-congruence (Donoghue & Moore, 

2003). Most recent molecular-clock studies agree on a Late Cretaceous–Paleocene origin of 

crown cichlids, inconsistent with the vicariant scenario (Friedman et al., 2013; Matschiner et al., 

2017). Matschiner (in press) reviews more than 15 years of cichlid molecular-clock studies and 

their implications for the group’s biogeographic history. The oldest cichlid fossils are relatively 

recent, from middle Eocene deposits of Africa and South America (Murray, 2000a; Malabarba, 

Malabarba & López-Fernández, 2014). However, their derived anatomy suggests that a long 

portion of the early cichlid fossil record might be missing. Friedman et al. (2013) estimated the 

timing of cichlid origin based on the temporal distribution of their fossil record, using a 

comparable methodology to that applied here (see Section III). They found that, even when 

accounting for non-uniform fossil preservation through time, the estimated time of origin only 

extends to the Late Cretaceous (Campanian), around 77 Ma. While Friedman et al. (2013) refer 

to this estimate as the age for crown cichlids, it more conservatively marks divergence between 

South American and African cichlids, as every known cichlid fossil belongs to either Cichlinae 

(the Neotropical cichlid clade) or Pseudocrenilabrinae (the African cichlid clade). Nonetheless, 

even a Campanian age for the split between cichlines and pseudocrenilabrines would reject the 

hypothesis of vicariance and suggest a transatlantic dispersal event in the early history of 
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cichlids. Because of the amount of literature discussing vicariance and dispersal in cichlid 

biogeography under several different approaches, we do not consider this group in more detail 

here. 

 

III. MATERIALS AND METHODS 

(1) Estimation of origin times of focal clades using their fossil occurrences 

We derived fossil-based estimates of the dates of origin for the seven fish groups mentioned 

above (Lepidosireniformes, Osteoglossomorpha, Characiformes, Galaxiidae, 

Cyprinodontiformes, Channidae and Percichthyidae) and for some of their sub-clades. Our 

method is based on the number and distribution through time of known stratigraphic horizons 

that yielded fossils belonging the group of interest. This approach builds upon the theoretical 

framework developed by Marshall (1997), which accounts for non-uniform fossil preservation 

and recovery through time by using an empirically derived function of recovery potential. We 

combined this framework with the Bayesian probability estimate for the extension of observed 

stratigraphic ranges developed by Strauss & Sadler (1989) to calculate 95% credibility intervals 

(CIs) for the origin times of focal clades.  

 

(a) Bayesian probability estimate for the extension of observed stratigraphic ranges 

This article is protected by copyright. All rights reserved.



Strauss & Sadler (1989) were the first to propose a Bayesian estimate for stratigraphic CIs for a 

given focal group. They derived the posterior density function of the endpoint 𝜃 of a 

stratigraphic range given the data 𝑥 as: 

ℎ(𝜃|𝑥) =
(𝑛 − 2)[(𝜃 − 𝑦)−𝑛+1 − 𝜃−𝑛+1]

𝑢𝑛
              [1]  

where y is the age of the last observed fossil (last appearance datum), n is the number of fossil 

horizons and 𝑢𝑛 is a factor calculated by the equation: 

𝑢𝑛 = (𝑧 − 𝑦)−𝑛+2 − (1 − 𝑦)−𝑛+2 − 𝑧−𝑛+2 + 1           [2]  

with z being the age of the first observed fossil (first appearance datum). The posterior density 

function given above is valid for each 𝜃 larger than z and smaller than a prior upper bound; 𝜃, y 

and z are rescaled to have the prior upper bound equal to 1. This formula assumes a uniform 

prior distribution of the fossil horizons bounded between 0 and 1, a condition that is almost 

always violated by the empirical fossil record. 

The Bayesian point estimator of 𝜃 [that is, the mean of Equation (1)] is given by: 

(𝑛 − 2)𝑢𝑛−1
(𝑛 − 3)𝑢𝑛

+
𝑦[(𝑧 − 𝑦)−𝑛+2 − (1 − 𝑦)−𝑛+2]

𝑢𝑛
           [3]  

 

(b) Extension to non-random distributions of fossil horizons 

In order to relax the strong assumption of uniform distribution of fossil horizons, we utilized the 

logical framework, introduced by Marshall (1997), of a preservation and recovery potential 

function. Marshall (1997) extended the use of stratigraphic confidence intervals for non-random 
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distributions of fossil horizons by reframing the problem in terms of recovery potential rather 

than time. Given a function representing preservation and recovery potential over time, the area 

under this function between the age of the first observed fossil and the age of the last observed 

fossil corresponds to the duration of the focal clade (in units of preservation potential). The 

confidence limit for the origin time of this clade is the point at which the area under the 

preservation potential function between the first appearance and that point is equal to the 

duration of the lineage in units of preservation potential multiplied by a scaling factor that 

reflects the number of distinct fossil occurrences and the desired level of confidence.  

Friedman et al. (2013) applied this framework to Strauss & Sadler’s (1989) Bayesian estimate to 

account for heterogeneity through time in the fossil record of freshwater fishes. They measured 

𝜃, y and z of Equations (1–3) in terms of summed preservation potential and not in terms of time. 

In order to calculate the area under the preservation potential function easily, geological time 

was divided into time bins, with each bin being assigned a value equal to the proportion between 

the number of fossil horizons that yielded fossils of the group of interest and the total number of 

fossil horizons. Doing this, a uniform distribution of fossil horizons is assumed only within each 

time bin, and not throughout the entire fossil record. Posterior distributions, Bayesian point 

estimates and 95% CIs were then calculated in terms of accrued preservation potential, and later 

converted in terms of absolute time in light of their empirical function for preservation potential.  

Herein, we applied the same method employed in Friedman et al. (2013) with a few adjustments. 

We corrected the script of Friedman et al. (2013) by adding a term that was missing in their 
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calculation of 𝑢𝑛 [Equation (2)]. However, we ascertained that this had no significant effect on 

the results, as that term is several orders of magnitude smaller than the resulting origin time 

estimate. We also employed a different empirical preservation potential function, the main 

difference being the use of time bins of 1 million years (Myr) each rather than corresponding to 

chronostratigraphic epochs (see Section III.3). Finally, we considered uncertainty in the absolute 

age of fossil horizons. 

 

(c) Extension to uncertain absolute age of fossil horizons 

Uncertainty in the absolute age of fossil horizons was considered by generating 1000 replicates 

for each Bayesian time-estimate analysis. In each replicate, every horizon was assigned an age 

randomly drawn from a uniform distribution bounded by minimum and maximum age of the 

chronostratigraphic stage (or stages) corresponding to that horizon. The absolute ages for 

chronostratigraphic epochs and stages were taken from the ICS International Chronostratigraphic 

Chart (v. 2016/12). Median and two-tailed 95% confidence intervals for the Bayesian estimates 

on origin times (summarized by their 95% CIs) were then calculated among the replicates. 

 

(2) Assembly of fossil occurrence data sets 

Fossil occurrences for the seven focal clades were compiled through a comprehensive literature 

search (see online Supporting information, Tables S1–S7). Different stratigraphic formations (or 

localities in cases of no formalized stratigraphy) were treated as different sampling horizons. The 
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age of each horizon (to stage level, when possible) was assigned according to the literature. 

Marine fossil occurrences of the focal clades were pruned from the analysis, as accounting for 

marine deposits throughout the fossil record could heavily bias the recovery potential function. 

 

(3) Estimation of the empirical recovery potential function 

The recovery potential function used to account for non-uniformity in fossil preservation and 

recovery through time was derived empirically using a list of stratigraphic horizons (formations 

and/or localities) with the potential to yield fossils belonging to the group of interest. For every 

freshwater fish clade analysed here, this criterion was satisfied by non-marine deposits that 

yielded fish fossils. A list of non-marine deposits that yielded fish fossils was compiled through a 

literature search and implemented with records from the Paleobiology Database (PBDB; 

https://paleobiodb.org). The beginning of the Permian (around 299 Ma) was chosen as the upper 

limit for the age of fossil horizons: this represents the prior upper bound on the Bayesian 

estimates for the origin times of the focal clades. This is a conservative prior, as it does not 

artificially exclude vicariance scenarios; moreover, the oldest fossils belonging to the analysed 

clades come from the Middle Jurassic (around 167 Ma). Although some molecular clock 

estimates place the origin of total-group Osteoglossomorpha in the Carboniferous (e.g. Inoue et 

al., 2009), a Carboniferous origin for any crown-teleost clade is in strong disagreement with the 

fossil record (Arratia, 2015; Friedman, 2015).  
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The list of non-marine fossil fish deposits comprised a total of 935 unique horizons, ranging 

from the early Permian to the Holocene (Table S8). Fossil horizons were subdivided into seven 

broad, continental-scale geographic areas (North and Central America; South America; Europe 

and Western Asia; Africa and Arabian Peninsula; Northeastern Asia; Indo-Malaya; Oceania). For 

each clade, only fossil horizons from relevant geographic areas (i.e. areas in which the clade is 

either present today or was present in the past according to the fossil record) were included 

(Table 1). The discrete recovery potential function was built by dividing geologic time into bins 

of 1 Myr each, with every bin being assigned a value equal to the total number of fossil horizons 

present in that time interval. In so doing, uniform recovery potential was assumed within each 

time bin. 

All calculations were performed in R version 3.4.1 (R Core Team, 2017). The script is 

available as Appendix S1. 

 

IV. RESULTS AND DISCUSSION 

Table 2 summarizes the ages of origin of the freshwater fish clades considered here, as estimated 

from the stratigraphic distribution of fossil occurrences. Range estimates encompass uncertainty 

in fossil horizon age (i.e. they span from the lower confidence interval of the lower CI of the 

posterior distribution to the upper confidence interval of the upper CI of the posterior 

distribution). 
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Results for seven focal clades are discussed below in the context of their fossil record and 

geographic distribution. Comparisons with molecular timescales permit a comprehensive view of 

the biogeographic history for each group at a continental scale. 

 

(1) Lepidosireniformes (South American and African lungfishes) 

Lepidosireniformes (sensu Otero, 2011) includes two living genera, the South American 

Lepidosiren (one extant species) and the African Protopterus (four extant species). Molecular 

and morphological data support monophyly of the group (e.g. Betancur-R et al., 2013; Criswell, 

2015). Lepidosireniform fossils comprise mainly tooth plates and jaw fragments, with some 

exceptions (Table S1) (Silva Santos, 1987). Crown lepidosireniforms are distinguished on the 

basis of tooth plate characters (Otero, 2011; Longrich, 2017). Like modern species, fossils of the 

group are restricted to South America and Africa (Fig. 2). The oldest fossils of Lepidosiren 

derive from the Late Cretaceous El Molino Formation (Maastrichtian of Bolivia; Schultze, 1991) 

and Vilquechico Formation (?Coniacian–Maastrichtian of Peru; Arratia & Cione, 1996). 

†Protopterus nigeriensis from the Cenomanian Wadi Milk Formation of Sudan might represent 

the oldest African crown lepidosireniform (Claeson et al., 2014). However, Longrich (2017) did 

not find conclusive evidence for assigning this species or other Late Cretaceous–Eocene African 

fossils to Protopterus, and it is not clear whether they belong within the lepidosireniform crown. 

Leaving aside possible polyphyly of the genus (when including fossils), Protopterus is 

represented in the African record by up to eight different species (six extinct) and hundreds of 
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specimens without specific attribution, ranging from the Late Cretaceous to the Holocene (Otero, 

2011). 

Extant Protopterus and Lepidosiren are strictly freshwater (Berra, 2007) and deposits yielding 

fossils of these genera are generally freshwater or estuarine (Cavin et al., 2007). Past work cites 

these environmental associations as supporting a vicariant model for the South American–

African distribution of Lepidosireniformes (Lundberg, 1993; Otero, 2011). The early Late 

Cretaceous age of the first crown lepidosireniform fossils is consistent with vicariance. Some 

Mesozoic (and many Paleozoic) lungfishes outside Lepidosireniformes are known from marine 

deposits, leading some to hypothesize primitive marine habits and independently acquired 

freshwater adaptations among the living lungfish genera (Schultze, 1991). However, most (if not 

all) of the marine Mesozoic fossils probably represent remains of freshwater animals that have 

been reworked into marine deposits (Cavin et al., 2007). 

 

(a) Fossil-based estimate of origin times 

The origin of crown Lepidosireniformes is hereby estimated to occur between the Aptian and the 

Cenomanian (124.9–95.1 Ma; median point estimate: 103.5 Ma); this overlaps with 

fragmentation of Western Gondwana (South America + Africa; Heine, Zoethout & Müller, 

2013). Our fossil-based age estimate is consistent with molecular divergence times between 

Protopterus and Lepidosiren (estimates centered around 112–96 Ma; Broughton et al., 2013; 

Giles et al., 2017). The limited suite of dental characters used for the systematics of extinct 

This article is protected by copyright. All rights reserved.



lepidosireniforms results in some ambiguity in the placement of some fossil remains. The 

possible exclusion of Late Cretaceous taxa like †Protopterus nigeriensis from the genus 

Protopterus (Longrich, 2017) could strongly impact the fossil-based estimate of the age of origin 

for the group, making it substantially younger. Nonetheless, the currently known timescale for 

lepidosireniform origin and evolution (based on fossil and molecular data) does not reject the 

vicariance hypothesis. The disjunct distribution of extant Lepidosireniformes can probably be 

considered as the genuine product of an ancient vicariant event. 

 

(2) Osteoglossomorpha (bonytongues and allies) 

Osteoglossomorpha is one of the earliest diverging lineages of modern teleosts (Arratia, 1999; 

Near et al., 2012), comprising 246 living species distributed across the Americas, Africa, the 

Indo-Malayan region and Australia (Nelson et al., 2016). The osteoglossomorph fossil record is 

rich (Table S2), with more than 80 extinct species, and expands the present distribution of the 

group to Europe and Northeastern Asia (Wilson & Murray, 2008) (Fig. 3).  

Morphological and molecular data strongly support osteoglossomorph monophyly, but 

interpretations of intrarelationships (reviewed in Hilton, 2003) have changed considerably over 

time. Current classifications recognize six main lineages (Nelson et al., 2016): Hiodontiformes 

(the sister group to all other living osteoglossomorphs; Hilton, 2003), Pantodontidae, 

Notopteridae, Gymnarchidae, Mormyridae and Osteoglossidae (grouped together as 

Osteoglossiformes). 
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The oldest articulated osteoglossomorph fossils belong to †Paralycoptera and derive from the 

Late Jurassic Lai Chi Chong Formation of Hong Kong and Fenshuiling Formation of Shandong, 

China (Tse, Pittman & Chang, 2015). The phylogenetic placement of †Paralycoptera is 

uncertain. Some analyses place it on the osteoglossomorph stem (Wilson & Murray, 2008) and 

others recover it as a crown osteoglossiform (Li & Wilson, 1999; Zhang, 2006). Fossil 

squamules from the Anoual Formation of Morocco could push back the earliest 

osteoglossomorph occurrence in the fossil record to the Middle Jurassic (early Bathonian; 

Haddoumi et al., 2016). The otolith-based genus †Archaeglossus (Schwarzhans, 2018) from the 

marine Middle–Late Jurassic of England might also represent an early osteoglossomorph. The 

presence of early Mesozoic osteoglossomorphs in marine sediments would not be completely 

unexpected, as crown teleosts probably originated in marine environments (Betancur-R, Ortí & 

Pyron, 2015). Early Cretaceous deposits from Northeastern Asia (Russia, Mongolia, China, 

Korea and Japan) yield numerous early osteoglossomorphs (Wilson & Murray, 2008). Many of 

these fossils belong to the abundant †Lycoptera or closely related stem osteoglossomorphs (Li & 

Wilson, 1999). However, some of these Asian genera (e.g. †Huashia, †Kuntulunia, 

†Xixiaichthys) are unstable in phylogenetic analyses (Li & Wilson, 1999; Zhang, 2006; Wilson 

& Murray, 2008).  

The oldest definitive crown osteoglossomorph is †Yanbiania wangqinica, a hiodontiform 

from the Aptian–Albian Dalazi Formation of China (Li & Wilson, 1999). Fossil hiodontiforms 

are also known from Late Cretaceous deposits in North America and Asia (Newbrey et al., 2013; 
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Brinkman, Newbrey & Neuman, 2014), but extant Hiodon is restricted to North America. 

Among Osteoglossiformes, pantodontids, gymnarchids and mormyrids are endemic to Africa, 

and have a meagre fossil record in African Cenozoic deposits (Wilson & Murray, 2008). 

Notopterids show a disjunct distribution, with two African and two Indo-Malayan genera. 

Notopterid fossils are limited to otoliths from the latest Maastrichtian of India (Nolf, Rana & 

Prasad, 2008) and a few articulated specimens from the Eocene–Oligocene of Sumatra 

(Sangkarewang Formation; Sanders, 1934; de Smet & Barber, 2005). †Palaeonotopterus 

greenwoodi from the early Late Cretaceous (Cenomanian) Kem Kem Beds of Morocco was 

originally interpreted as a notopterid (Forey, 1997), but it probably represents a basal member of 

the clade that groups together Notopteridae, Mormyridae and Gymnarchidae (Wilson & Murray, 

2008). Nonetheless, †Palaeonotopterus demonstrates that key divergences within crown 

osteoglossiforms had occurred by 100 Ma. 

Extant osteoglossids comprise two sub-clades, each with an intercontinental distribution: 

Arapaiminae (sensu Forey & Hilton, 2010) inhabits South America (Arapaima) and Africa 

(Heterotis), while Osteoglossinae is distributed across South America (Osteoglossum), Southeast 

Asia and northern Australia (Scleropages). Osteoglossid fossils are known from every continent 

(except Antarctica) and show a higher diversity of the group in the past. †Chanopsis lombardi 

from the late Early Cretaceous (Aptian–Albian) Loia and Bokungu formations of the Democratic 

Republic of Congo (DRC) could represent the oldest member of Osteoglossidae (Taverne, 2016). 

Although †Chanopsis shows features characteristic of some osteoglossid sub-groups (e.g. lateral 
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expansion of the anterior end of the frontal) it lacks definitive osteoglossid synapomorphies 

(Forey & Hilton, 2010) and has never been included in a formal phylogenetic analysis. Other 

putative early osteoglossids include †Laeliichthys from the Aptian of Brazil and †Paradercetis 

from the Late Cretaceous of DRC; both taxa have been assigned to Arapaiminae and feature 

prominently in discussions about the biogeography of the clade (Taverne, 1979; Lundberg, 

1993). However, characters suggesting a relationship between Laeliichthys and Arapaiminae 

might be plesiomorphies or homoplasies (Forey & Hilton, 2010), while †Paradercetis is known 

from a poorly preserved skull roof without any clear osteoglossomorph features (A. Capobianco, 

personal observation of MRAC RG 10.970). It is advisable to exclude these taxa from 

discussions about osteoglossid evolution and biogeography pending further study. †Laeliichthys 

and †Paradercetis aside, jaw fragments from the Maastrichtian El Molino Formation of Bolivia 

could represent the oldest arapaimines (Gayet et al., 2001). Osteoglossine fossils are rare, but 

articulated specimens of Scleropages from the early–middle Eocene of China (Xiawanpu and 

Yangxi formations; Zhang & Wilson, 2017) lie outside the current geographic range of the 

genus. Perhaps unexpectedly, worldwide marine deposits of Paleocene–early Eocene age yield 

the highest diversity of fossil osteoglossids (e.g. †Brychaetus, †Furichthys, †Heterosteoglossum, 

†Magnigena, †Opsithrissops; Bonde, 2008; Forey & Hilton, 2010). Taverne (1979) grouped 

some of the marine osteoglossids with the freshwater Phareodus in Phareodontinae. However, 

†Magnigena and †Opsithrissops do not seem to be closely related to †Brychaetus (Forey & 

Hilton 2010), implying multiple marine invasions. Reexamination of early Cenozoic 
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osteoglossids (including marine forms) is necessary to untangle the complex evolutionary and 

biogeographic history of Osteoglossidae. 

Extant osteoglossomorphs are restricted to fresh waters, with notopterids occasionally found 

in brackish environments (Berra, 2007). Thus, their distribution (encompassing all southern 

landmasses except for Antarctica) has been the subject of various biogeographic hypotheses 

(Nelson, 1969; Greenwood, 1973; Lundberg, 1993; Wilson & Murray, 2008). Africa has been 

proposed as the osteoglossomorph centre of origin (in a dispersalist scenario) due to the presence 

of every major extant osteoglossomorph lineage (except Hiodontidae; Darlington, 1957). 

However, the fossil record shows the highest diversity of Late Jurassic–Early Cretaceous 

osteoglossomorphs in northeastern Asia. Whether this pattern is due to an Asian origin or to 

geographical bias in the continental sedimentary record is not clear. Another scenario 

(Kumazawa & Nishida, 2000) involves a widespread Pangaean distribution during the Permian–

Triassic for which there is no palaeontological evidence despite a wealth of fossil fishes of this 

age (Romano et al., 2016). Cavin (2017) proposed a Laurasia–Gondwana vicariant event during 

the Jurassic corresponding to the divergence between the Laurasian Hiodontiformes and the 

Gondwanan Osteoglossiformes. The highly unstable phylogenetic position of several basal 

osteoglossomorphs (and possibly osteoglossiforms) from the Cretaceous and early Paleogene of 

North America and Asia (Murray et al., 2018) makes this hypothesis difficult to evaluate at 

present. 
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The cosmopolitan distribution (encompassing North and South America, Africa, Europe, 

continental Asia, Indo-Malaya and Australia) of marine osteoglossomorphs and †Phareodus-like 

freshwater osteoglossids in the early Paleogene suggests a role for long-distance marine dispersal 

(Bonde, 2008; Wilson & Murray, 2008). Thus, the disjunct modern distribution of Arapaiminae 

and Osteoglossinae could be explained by marine dispersal followed by colonization of 

freshwater environments. 

 

(a) Fossil-based estimate of origin times 

The fossil-based estimate for total-group Osteoglossomorpha ranges from the Late Triassic to the 

Middle Jurassic (Rhaetian–Bathonian: 206.9–167.0 Ma; median point estimate: 182.4 Ma), 

suggesting an early ghost lineage extending for up to 40 Myr. The time of origin of total-group 

Osteoglossomorpha is closely linked to the origin of the teleost crown, as either 

osteoglossomorphs or elopomorphs (or a clade including both) represent the sister group to all 

other living teleosts (Arratia, 2010; Dornburg et al., 2014; Hughes et al., 2018). The age 

discordance between the oldest crown-teleost fossils, found in Late Jurassic deposits (except for 

some very fragmentary Middle Jurassic remains; Haddoumi et al., 2016), and molecular clock 

estimates, which range from the Late Carboniferous to the Late Triassic (Near et al., 2012; 

Broughton et al., 2013; Dornburg et al., 2014), has been called the ‘teleost gap’ (Near et al., 

2012). It represents one of the most striking differences between fossil and molecular timescales 

that still remains partially unexplained. Incompleteness of the fossil record and failure to 
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recognize early crown-teleost fossils are not sufficient explanations for this phenomenon (Sallan, 

2014), and specific choices of calibration points for molecular phylogenies play some role 

(Friedman, 2015; Giles et al., 2017). The fossil-based estimate derived here for total-group 

Osteoglossomorpha partially bridges that gap, possibly extending the origin of this group as far 

back as the latest Triassic. Still, a significant difference of at least 15–40 Myr remains, 

suggesting the need for a revision of molecular clock studies focused on broad-scale teleost 

relationships. 

While total-group Osteoglossomorpha is old enough to have been affected by the breakup of 

Gondwana (and even Pangea), the abundance of basal osteoglossomorphs in areas not occupied 

by living lineages (northeastern Asia) or with low present-day diversity (North America) 

suggests a complex history where dispersal and/or local extinction might have played a 

fundamental role. Moreover, at least three subclades that are deeply nested within 

Osteoglossomorpha (Notopteridae, Osteoglossinae, Arapaiminae) show disjunct distributions. 

The sparse fossil record of notopterids indicates that the group was already present in the Indian 

subcontinent by the end of the Cretaceous, but it cannot be used to derive an informative 

estimate for its time of origin. Molecular estimates of divergence between African and Asian 

notopterids show considerable variation (from the Late Jurassic to the Late Cretaceous; Inoue et 

al., 2009; Lavoué, 2016). Thus, neither an Africa–India vicariance scenario nor a sweepstakes 

dispersal from Africa to India across the Mozambique Channel can be confidently rejected on the 

basis of the present evidence. 
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The fossil record of Arapaiminae and Osteoglossinae gives a minimum latest Cretaceous and 

early Eocene age for these two clades, respectively. However, derivation of probabilistic fossil-

based estimates of their origin times is complicated by inadequate understanding of the 

relationships of fossil osteoglosssids (Forey & Hilton, 2010). Nonetheless, it is possible to 

estimate an age for Osteoglossidae as a whole. The fossil-based estimate for osteoglossid origin 

varies greatly depending on the inclusion or exclusion of †Chanopsis: Early Cretaceous and even 

the latest Jurassic (Tithonian–Albian: 154.4–103.2 Ma; median point estimate: 124.0 Ma) with 

†Chanopsis, or most of the Late Cretaceous (Aptian–Campanian: 113.0–72.1 Ma; median point 

estimate: 82.8 Ma) excluding this genus. It is clear that the phylogenetic placement of 

†Chanopsis has broad implications on the reconstruction of the early evolutionary history of the 

group, and a phylogenetic reassessment of this taxon is badly needed. Despite the differences in 

the fossil-based origin times inferred here relative to the position of †Chanopsis, both estimates 

are approximately consistent with molecular dates for crown Osteoglossidae (Early Cretaceous; 

Broughton et al., 2013). These dates are old enough to allow for a significant role of continental 

vicariance, particularly involving South America–Africa drift and the fragmentation of the South 

America–Antarctica–Australia block, in the biogeographic history of the clade. However, the 

complex distributional pattern of extant and fossil osteoglossids (Wilson & Murray, 2008; 

Lavoué, 2016) and the presence of marine forms in the fossil record strongly suggest that 

dispersal has been a fundamental process during osteoglossid evolution.  
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(3) Characiformes (characins and allies) 

Characiformes is a major clade of otophysans containing more than 2000 species, making it one 

of the most diverse freshwater fish lineages (Nelson et al., 2016). Extant characiforms are 

restricted to freshwater environments of Africa and South and Central America, with one species 

in the southwestern USA (Fig. 4).  

Numerous morphological characters support characiform monophyly (Wiley & Johnson, 

2010), including the presence of multicuspid teeth in the jaws (lost in predators like Hepsetus 

and Salminus; Fink & Fink, 1981). The species-poor African Citharinoidei and species-rich 

Neotropical and African Characoidei represent the principal characiform lineages. Surprisingly, 

some molecular work questions characiform monophyly (Chen, Lavoué & Mayden, 2013; 

Chakrabarty et al., 2017), but other analyses suggest these results are spurious (Arcila et al., 

2017).  

Isolated teeth are the most common characiform fossils (Table S3) (Malabarba & Malabarba, 

2010; Gaudant, 2014). These are sufficiently diagnostic to support a characiform attribution but 

often inadequate for more precise placements. The oldest putative characiform fossil teeth come 

from the Cenomanian of Morocco (Ifezouane Formation; Dutheil, 1999) and Sudan (Wadi Milk 

Formation; Werner, 1994). These occurrences would demonstrate presence of the group in 

Africa shortly after tectonic separation from South America. However, their attribution to 

characiforms has been challenged and they might instead represent ginglymodian multicuspid 

teeth, common in Cretaceous continental deposits of Africa, India and China (Cavin, 2017). The 
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African record also yields the oldest articulated characiform, †Eocitharinus macrognathus from 

the middle Eocene Mahenge Formation (Lutetian of Tanzania; Murray, 2003b; this is also the 

earliest known citharinoid). Alestidae, an African subclade of Characoidei, has a relatively 

abundant fossil record that spans the Cenozoic. Teeth of Hydrocynus appear in late Paleocene–

early Eocene deposits of Algeria (Hammouda et al., 2016). Possible alestid fossils from the 

Oligocene Baid Formation of Saudi Arabia (Micklich & Roscher, 1990) and Eocene and middle 

Miocene deposits of southwestern Europe (Gaudant, 2014) indicate a broader distribution of this 

clade in the past. Fragmentary material from the Maastrichtian Maevarano Formation of 

Madagascar has been tentatively referred to Characiformes (Ostrowski, 2012), but requires 

further study. 

The Maastrichtian El Molino Formation of Bolivia is the oldest horizon yielding characiform 

fossils in South America, which today is home to the greatest diversity of characiforms (Gayet, 

1991). Various tooth morphologies are present in these latest Cretaceous Bolivian deposits, 

indicating that the diversification of modern lineages (characids, serrasalmids and possibly 

acestrorhynchids) was underway by the end of the Late Cretaceous (Gayet et al., 2001, 2003). 

Complete fossils of South American characiforms (including bryconids, curimatids, triportheids 

and several characid lineages) are known from the Eocene–Oligocene Entre-Corregos Formation 

and the Oligocene Tremembé Formation of southeastern Brazil (Malabarba, 1998; Weiss, 

Malabarba & Malabarba, 2014).  
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The recent discovery of putative characiform dentaries and vertebral centra from late 

Campanian North American deposits (Dinosaur Park and Kaiparowits formations) greatly 

extends the known geographic range of the group and implies an elaborate biogeographic 

scenario (Newbrey et al., 2009; Brinkman et al., 2013). Although the dentaries show an 

interdigitating hinge joint at the symphysis (a character thought to be unique to characiforms), 

these identifications should be approached with caution given the limited material. Characiforms 

also appear in the European fossil record by the end of the Cretaceous, with teeth found in 

Maastrichtian deposits in France and Romania (Grigorescu et al., 1985; Otero, Valentin & 

Garcia, 2008). There are no extant European characiforms, but fossils are found throughout the 

Cenozoic (including articulated specimens; Gaudant, 1980), with the youngest examples from 

the latest Miocene (Gaudant, 2014).  

Extant characiforms are strictly freshwater (with isolated brackish records; Lundberg, 1993), 

and all known fossils come from freshwater or at most brackish deposits. However, marine Early 

and Late Cretaceous fossils from Europe and South America (†Salminops, †Sorbinicharax and 

†Santanichthys) have been aligned with characiforms in the past (Gayet, 1985; Taverne, 2003; 

Filleul & Maisey, 2004), leading to hypotheses of a marine origin for Characiformes and of 

better dispersal abilities in early characiforms than might be predicted from modern forms 

(Calcagnotto, Schaefer & DeSalle, 2005; Otero et al., 2008). Restudy of †Salminops and 

†Sorbinicharax failed to find evidence that these genera are even otophysans (Mayrinck, Brito & 

Otero, 2015; Mayrinck et al., 2017). †Santanichthys is better interpreted as a basal member of 

This article is protected by copyright. All rights reserved.



Otophysi or Ostariophysi rather than a stem characiform (Malabarba & Malabarba, 2010). Thus, 

a marine origin of Characiformes is not supported by palaeontological and phylogenetic data.  

Two factors further complicate attempts to reconstruct characiform biogeographic history. 

First, extant African characiforms belong to three distinct clades (Citharinoidei, Alestidae and 

the monotypic Hepsetidae). Second, characiform fossils are found in areas outside their present 

distribution (Fig. 4). Several non-mutually exclusive hypotheses have been formulated to explain 

the presence of three different characiform lineages in Africa: a single vicariant event between 

Africa and South America when characiforms were already diversified, followed by extinction of 

several African lineages to account for the rarity of sister pairs between extant American and 

African clades; multiple vicariant events associated with the diachronous split between South 

America and Africa; and trans-oceanic dispersal events from South America to Africa, usually 

associated with the questionable hypothesis of a marine ecology in early characiforms 

(Lundberg, 1993; Malabarba & Malabarba, 2010). Evaluating these proposals without a well-

supported phylogenetic framework for Characiformes is prohibitive; in fact, apart from the basal 

split between Citharinoidei and Characoidei, there is no agreement across different analyses 

about the relationships among major characiform lineages (see Dahdul, 2010). Arcila et al. 

(2017) recently recovered a single African characoid clade, with a strongly supported sister-

group relationship between Hepsetidae and Alestidae. Given the low support for most other basal 

nodes within Characoidei, an alternative hypothesis with a diverse South American characoid 

clade nested within an African radiation cannot be excluded a priori. Under this scenario, only 
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one event (either a pre-drift dispersal, or a post-drift oceanic dispersal, or a vicariant event) 

would be necessary to explain the current distribution of characiforms. Characiform fossils found 

in Europe and North America are difficult to interpret in a biogeographic framework, as their 

phylogenetic affinities are unclear. It has been proposed that European characiforms, which are 

mainly found in Maastrichtian, early Eocene, Oligocene and middle Miocene deposits, are the 

result of multiple waves of immigration, presumably from Africa, instead of a single 

colonization of the continent (Gaudant, 2014). The North American Campanian fossils, if 

confirmed as characiforms, hint at possible dispersals from South America or Europe (there is 

evidence for both routes from early Campanian terrestrial vertebrates; Newbrey et al., 2009; 

Cavin, 2017). The widespread distribution of characiforms in the latest Cretaceous may suggest 

multiple long-distance dispersal events during the biogeographic history of the clade. 

 

(a) Fossil-based estimate of origin times 

The fossil-based divergence time estimate for characiforms depends heavily on the inclusion or 

exclusion of the Cenomanian fossil teeth from northern Africa. When including these putative 

characiform occurrences, our estimate is consistent with a vicariant scenario involving the South 

America–Africa split, as the origin of the clade is estimated as Albian–Cenomanian (119.8–95.1 

Ma; median point estimate: 102.5 Ma). This is generally congruent with molecular clock 

estimates for the age of crown Characiformes (mostly ranging from 120 to 80 Ma; Near et al., 

2012; Betancur-R et al., 2015). Without Cenomanian occurrences, our estimate shifts forwards in 
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time by around 20 Myr to the Late Cretaceous (Cenomanian–Campanian: 97.3–75.1 Ma; median 

point estimate: 83.4 Ma), rejecting the vicariant scenario. Thus, a careful taxonomic 

reassessment of the Cenomanian multicuspid teeth from the Ifezouane and Wadi Milk formations 

could substantially impact the reconstruction of characiform biogeographic history. Particular 

caution should be applied when interpreting these results for two main reasons besides 

uncertainty on Cenomanian occurrences: the phylogenetic position of most early characiform 

fossils is unknown, so placement in the crown rather than on the stem is not assured; and the 

divergence between Citharinoidei and Characoidei may not correspond to a South America–

Africa split, if South American characoids are nested within an African radiation. In this last 

case, the divergence between South American and African characiforms would have occurred 

later than the citharinoid–characoid split. Considering these two factors, together with the 

inclusion of Cenomanian fossils, our older estimate is more likely to be a conservative test of the 

vicariant scenario (i.e. it is likely to be an overestimate of true divergence time rather than 

underestimate). If we exclude the doubtful Cenomanian fossils, some of the oldest known 

characiforms – from Maastrichtian and Paleocene deposits – are unambiguous members of 

modern lineages that are deeply nested within characiform phylogeny (Gayet et al., 2001, 2003). 

Hence, our younger estimate is more likely to be an underestimate of the true age of characiform 

origin. The apparent absence in the fossil record of early crown characiforms and the sudden 

appearance of several derived lineages in the Maastrichtian–Paleocene could be the result of 

different phenomena, which are not mutually exclusive: an early evolutionary history 
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characterized by low diversification rates, followed by rapid diversification from the 

Maastrichtian onwards; the lack of appropriate depositional settings in the fossil record to 

recover Late Cretaceous characiforms; or a high degree of endemism before a rapid geographic 

expansion at the end of the Late Cretaceous (less likely under a vicariant scenario).  

The fossil-based estimate for the origin of the African Alestidae could at most extend to the 

latest Cretaceous (Maastrichtian–Ypresian: 72.1–53.1 Ma; median point estimate: 60.4 Ma), 

significantly postdating the separation of South America and Africa. A stable phylogenetic 

placement of alestids (and of the other African characoid taxon, Hepsetidae) is needed before 

interpreting this result in light of a biogeographic scenario. Nonetheless, the timescale of alestid 

evolution is consistent with the emergence of modern characiform lineages during the 

Maastrichtian–Paleocene. The fossil record of characiforms in Europe hints at multiple dispersals 

of alestids from Africa during the Cenozoic, a pattern found in other non-marine vertebrates 

(Koufos et al., 2005; Tabuce & Marivaux, 2005). 

 

(4) Galaxiidae (galaxiids) 

Galaxiidae includes more than 50 species of freshwater and diadromous fishes inhabiting 

temperate regions of the southern hemisphere (southern South America, South Africa, Australia, 

New Zealand and New Caledonia) (Fig. 5). Both morphological and molecular phylogenies 

strongly support galaxiid monophyly (McDowall & Burridge, 2011; Burridge et al., 2012).  
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The galaxiid fossil record is restricted to Miocene lacustrine deposits of New Zealand (Table 

S4) (McDowall & Pole, 1997; Lee, McDowall & Lindqvist, 2007). The earliest examples belong 

to †Galaxias effusus from the early Aquitanian Foulden Hills Diatomite (Lee et al., 2007). The 

Maastrichtian †Stompooria rogersmithi from freshwater deposits of South Africa was originally 

described as a galaxiid (Anderson, 1998). Although these specimens are articulated, subsequent 

study indicates they are too poorly preserved to permit precise taxonomic identification (Wilson 

& Williams, 2010). Significantly, †Stompooria differs from living galaxiids in several features, 

including the presence of scales (McDowall & Burridge, 2011).  

Because of their peculiar distribution and the complex life cycle of some species, galaxiids 

have been at the centre of a long-standing debate concerning the relative contributions of 

vicariance and sweepstakes dispersal [see McDowall (2010) for a review]. While most galaxiids 

are exclusively freshwater, at least 11 species are diadromous (i.e. they migrate between fresh 

waters and sea during their life cycle; McDowall, 2007). Some diadromous species show broad 

distributions (e.g. Galaxias maculatus occurs in Australia, New Zealand, Chatham Islands, 

southern South America and Falkland Islands; McDowall, 1972), implying that open seaways are 

not a barrier to their dispersal. Diadromy has been lost many times during galaxiid evolution, 

indicated by phylogenetic studies and by the existence of landlocked populations of otherwise 

diadromous species (Allibone & Wallis, 1993; Waters & Wallis, 2001). Time-calibrated total 

evidence analyses imply a complex scenario of vicariant events associated with the early 

divergences followed by multiple marine dispersals since the Oligocene (Burridge et al., 2012). 
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Moreover, ancestral life-history reconstructions show that diadromy cannot be rejected as the 

ancestral state for most of the nodes corresponding to disjunct geographic distributions (Burridge 

et al., 2012). 

 

(a) Fossil-based estimate of origin times 

The fossil-based estimate for the origin time of galaxiids is extremely broad and spans the whole 

Mesozoic and most of the Cenozoic (235.0 – 21.2 Ma; median point estimate: 97.1 Ma), failing 

to give insight into their biogeographic history. This is a consequence of the very low number of 

distinct stratigraphic horizons in which galaxiid fossils have been found (only four when 

excluding †Stompooria). Published timetrees place the origin of crown Galaxiidae in the Late 

Cretaceous–early Paleogene, with a very long stem lineage extending to the Early Cretaceous 

(Burridge et al., 2012; Betancur-R et al., 2017). 

Fossil Galaxias from the early Miocene of Otago show that galaxiids were present there 

shortly after the Oligocene ‘drowning’ event that almost completely submerged New Zealand 

[Cooper & Cooper, 1995; Landis et al., 2008; see Sharma & Wheeler (2013) for a critique of this 

scenario]. This is consistent with the total-evidence analysis of Burridge et al. (2012), which 

indicates that the earliest New Zealand galaxiid clades diverged from their sister groups around 

the Oligocene–Miocene boundary. Thus, the presence of several lineages of galaxiids in New 

Zealand is better explained through multiple long-distance dispersal events. 
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(5) Cyprinodontiformes (killifishes and allies) 

Cyprinodontiformes comprises more than 1200 species occurring in the Americas, the 

Mediterranean region, Africa and Southeast Asia and living predominantly in freshwater and 

brackish environments. Cyprinodontiform monophyly – and its division into two subclades with 

approximately equal modern diversity: Aplocheiloidei and Cyprinodontoidei – is strongly 

supported by morphological and molecular studies (Parenti, 1981; Setiamarga et al., 2008). 

However, phylogenetic relationships among major killifish lineages (especially within 

Cyprinodontoidei) differ wildly across studies, with recent molecular phylogenies challenging 

the monophyly of long-standing taxa like Cyprinodontidae and Poeciliidae (Pohl et al., 2015). 

European and North American cyprinodontoids dominate the cyprinodontiform fossil record 

(Table S5). Very few fossil occurrences are known from Africa and South America, and none 

from Madagascar, India and Southeast Asia (Fig. 6). The oldest fossils referred to 

Cyprinodontiformes come from the Maastrichtian El Molino Formation of Bolivia (Gayet, 

1991). These articulated, poorly preserved specimens do not exhibit typical cyprinodontiform 

synapomorphies of the caudal skeleton (Arratia & Cione, 1996). The El Molino fossils could 

represent a very basal lineage of killifishes or small-bodied freshwater fishes unrelated to 

killifishes. Undescribed material from the middle Eocene Lumbrera Formation of Argentina was 

listed as an indeterminate poeciliid by Arratia & Cione (1996). The earliest definitive 

cyprinodontiform fossils come from early Oligocene (Rupelian) deposits of Europe (Spain, 

France, Switzerland and Germany) and are represented by articulated specimens (Gaudant, 1982; 
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Frey, Maxwell & Sánchez-Villagra, 2016). Numerous killifish species were present in Europe by 

the end of the Oligocene, probably representing every major living lineage of Old World 

cyprinodontoids (Aphanius-like cyprinodontids, valenciids and procatopodine poeciliids; Costa, 

2012). The European genera Aphanius and Valencia have fossil records that extend to the early 

and middle Miocene, respectively (Reichenbacher & Kowalke, 2009; Gaudant et al., 2015). 

Killifishes also appear in the Oligocene of North America (Coatzingo Formation of Mexico; 

Guzmán, 2015), and the genus Fundulus is first found in early Miocene (Burdigalian) deposits of 

Nevada (Lugaski, 1977). Other extant killifish genera (Cyprinodon and several goodeids) have 

been found in Pliocene and Pleistocene deposits of the southern USA and Mexico (Smith, 1981; 

Miller & Smith, 1986). Only one fossil aplocheiloid species has ever been formally described 

(†Kenyaichthys kipkechi from the late Miocene Lukeino Formation of Kenya; Altner & 

Reichenbacher, 2015). Several fossil aplocheiloid specimens are also known from the Oligocene 

Daban Formation of Somalia (Van Couvering, 1982), but remain undescribed. These two cases 

represent the only examples of fossil killifishes in Sub-Saharan Africa. 

Several killifishes live in brackish environments, and some fundulids and cyprinodontids 

inhabit coastal marine settings (Berra, 2007). Nonetheless, the widespread distribution of 

cyprinodontiforms has been interpreted as a ‘reduced Pangaean’ distribution by Parenti (1981, p. 

534), who argued that the origin of Cyprinodontiformes should extend to the Late Triassic. 

Similarly, the origins of both cyprinodontids and aplocheiloid killifishes have been hypothesized 

to have occurred in the Late Jurassic–Early Cretaceous based on modern geographic distributions 
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(Parker & Kornfield, 1995; Murphy & Collier, 1997). Others emphasized the high salinity 

tolerance shown by several cyprinodontiforms in arguing for marine dispersal, with a South 

American origin and successive dispersals to Africa during the Late Cretaceous to early 

Paleogene (Lundberg, 1993; Briggs, 2003).  

Traditional classifications place Old World cyprinodontoids in three unrelated lineages, but 

molecular phylogenies resolve them as a clade nested within an American radiation (Pohl et al., 

2015). This topology implies only one event (either vicariance or long-distance dispersal) to 

explain the presence of cyprinodontoids on both sides of the Atlantic.  

Recent phylogenies of Aplocheiloidei indicate that African and Indo-Malayan 

cyprinodontoids are sister lineages (Furness et al., 2015; Pohl et al., 2015), contradicting a 

hypothesized South American and African clade (Murphy & Collier 1997). The branching order 

of major clades within Aplocheiloidei is incongruent with the sequence of Gondwanan breakup, 

suggesting that a purely vicariant scenario is overly simplistic. Unfortunately, the scant 

aplocheiloid fossil record provides few temporal and biogeographic constraints. 

 

(a) Fossil-based estimate of origin times 

Cyprinodontiformes (with the inclusion of the El Molino fossils) is estimated to originate during 

the Late Cretaceous (Campanian–Maastrichtian: 80.0–67.0 Ma; median point estimate: 70.7 Ma), 

whereas its major sub-clade Cyprinodontoidei probably appeared during the early-middle Eocene 

(Ypresian–Lutetian: 54.8–42.0 Ma; median point estimate: 46.3 Ma).  
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The fossil-based time estimate for Cyprinodontiformes rejects the vicariant hypothesis for this 

group, as South America, Africa and the Indo-Malagasy block were already separated from each 

other by seaways during the Campanian–Maastrichtian (Ali & Aitchison, 2008; Granot & 

Dyment, 2015). This timescale agrees with recent molecular studies that put the origin of 

killifishes in the Late Cretaceous (Near et al., 2013; Matschiner et al., 2017). However, this 

result should be treated with caution for two reasons. First, the fossil-based estimate is strongly 

reliant on the Maastrichtian El Molino Formation material, whose cyprinodontiform affinity is 

dubious at best; the next oldest occurrence is around 20 Myr younger than the El Molino fossils. 

Additionally, the taxonomic distribution of fossil cyprinodontiforms among the two main sub-

clades – Cyprinodontoidei and Aplocheiloidei – is extremely uneven, so that the two 

aplocheiloid occurrences in the Oligocene–Miocene do not contribute to the time estimate 

derived here. Thus, a time estimate focused only on the cyprinodontoid fossil record may be 

more reliable than a cyprinodontiform estimate. 

The estimated age for Cyprinodontoidei strongly rejects the vicariant hypothesis by placing 

cyprinodontoid origin in the early–middle Eocene. This is congruent with some molecular 

estimates (Near et al., 2013; Betancur-R et al., 2017), but significantly younger than others 

(Matschiner et al., 2017). In any case, a latest Cretaceous–early Paleogene origin for this 

transatlantic clade strongly suggests a key role of long-distance dispersal in its biogeographic 

history.  
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A higher probability of long-distance dispersal events in killifishes compared to other 

freshwater fishes should be expected on the basis of remarkable physiological, behavioural and 

life-history traits, including not only high salinity tolerance, but also a facultative amphibious 

lifestyle, desiccation-resistant eggs and developmental diapause, that are present in at least some 

members of this group (Turko & Wright, 2015; Furness, 2016). In this regard, killifishes could 

represent a valuable biogeographic model system to study the timing and directionality of rare 

biotic exchanges among geographically separated landmasses during the last 80 Myr.  

 

(6) Channidae (snakeheads) 

The freshwater, predatory Channidae includes two extant genera: Parachanna (Western and 

Central Africa) and Channa (Indo-Malayan region and East Asia) (Fig. 7). Together with 

anabantoids (gouramies and allies), snakeheads are labyrinth fishes (Anabantiformes = 

Anabantoidei + Channoidei; Wiley & Johnson, 2010). This group is characterized by the 

presence of the suprabranchial organ, an accessory air-breathing apparatus (Wiley & Johnson, 

2010). Channid monophyly is supported by numerous morphological synapomorphies (Wiley & 

Johnson, 2010; Murray, 2012) and molecular phylogenetic analyses (e.g. Li, Musikasinthorn & 

Kumazawa, 2006).  

The earliest snakehead fossils come from middle Eocene (Lutetian) deposits of Indo-Pakistan 

and consist mainly of cranial material (Table S6) (Khare, 1976; Murray & Thewissen, 2008). 

The channid affinity of these middle Eocene fossils is clear, but their exact relationships to 

This article is protected by copyright. All rights reserved.



modern lineages is unclear. Fragmentary fossils of Parachanna appear in late Eocene (early–

middle Priabonian) formations of Egypt and Libya (Murray et al., 2010a; Otero et al., 2015). 

More complete cranial remains and isolated vertebrae are known from the latest Eocene–earliest 

Oligocene Jebel Qatrani Formation in the Fayum Depression (Murray, 2012). Fossil snakeheads 

are also found in early–middle Miocene deposits of Europe and Central Asia, areas with no 

extant channids (e.g. Gaudant & Reichenbacher, 1998; Kordikova, Heizmann & Pronin, 2003). 

Better-preserved specimens are needed to determine whether European fossils belong to 

Parachanna or Channa (Gaudant, 2015). The range expansion of Channa into East Asia appears 

to have happened relatively recently, as the oldest snakehead remains in this region come from 

early Pleistocene deposits of China (Liu & Su, 1962).  

Snakeheads are currently restricted to freshwater environments, although at least one species 

(Channa punctata) has moderate salinity tolerance and can thrive in brackish waters (Dubey et 

al., 2016). Fossil snakeheads are usually found in freshwater deposits, although some of the 

earliest representatives of the group come from estuarine/transitional deposits (Subathu and 

Birket Qarun formations of India and Egypt, respectively; Khare, 1976; Murray et al., 2010a). 

Channids are facultatively amphibious, can survive outside of water for days in a humid 

environment and are capable of short bursts of overland movement (Chew et al., 2003). Thus, 

channids probably have good dispersal potential over the mainland, but they are limited by other 

environmental factors including water salinity and atmospheric humidity. It has been 

hypothesized that the geographic distribution of channids has been strongly controlled by 
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climatic variables (precipitation and temperature), and that their presence in Europe and Central 

Asia during the early–middle Miocene and recent invasion of East Asia reflect broad-scale 

changes in Eurasian atmospheric circulation patterns (Böhme, 2004).  

Two biogeographic scenarios have been proposed for channids. The first involves an origin in 

the Indo-Malayan region, followed by dispersal to Africa (Briggs, 1995). Although a late 

Miocene–early Pliocene age has been previously hypothesized for this dispersal event (Böhme, 

2004), Parachanna fossils in late Eocene–early Oligocene deposits of northern Africa set a 

minimum age of around 40 Ma (Murray, 2012). The second scenario postulates a vicariant event 

between the Indo-Malagasy block and the rest of Gondwana during the Late Jurassic–Early 

Cretaceous (Li et al., 2006). 

Regardless of scenario, the fossil record of channids implies dispersal to Europe by 20 Ma. 

Gaudant (2015) proposed Africa as the source of immigration on the basis of 

palaeobiogeographic affinities between Europe and Africa during the early–middle Miocene. 

Specifically, European fossil channids have been found in association with specimens of alestid 

characiforms, a group now restricted to Africa. However, a phylogenetic appraisal of the 

European channids is needed to distinguish between African and Asian origins. 

 

(a) Fossil-based estimate of origin times 

The fossil-based estimate for the origin of Channidae ranges from the Late Cretaceous to the 

Eocene (Campanian–Lutetian: 78.7–43.1 Ma; median point estimate: 53.2 Ma), long after the 
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separation of the Indian subcontinent from continental Africa. Thus, it rejects the hypothesis of 

Early Cretaceous vicariance associated with the Parachanna–Channa divergence. Instead, this 

date is consistent with the hypothesis of origin in the Indian (or Indo-Malagasy) subcontinent, 

followed by dispersal into Africa before the late Eocene. Although the exact timing of initial 

collision between India and continental Asia is still debated (ranging between 50 and 35 Ma; Ali 

& Aitchison, 2008; Najman et al., 2010), the fossil record of terrestrial mammals shows a strong 

signal of biotic exchange between Southeast Asia and Africa in the middle Eocene (Tabuce & 

Mariveaux, 2005). It is possible that channid dispersal to Africa was coeval with this mammalian 

exchange.  

Because of ambiguities concerning Eocene fossils from Indo-Pakistan, it is unclear whether 

our estimate pertains to the channid crown or total group. We therefore compare our results to 

molecular estimates for both clades. Only studies that used mitochondrial data and/or 

calibrations based on vicariance hypotheses found origin times significantly older than the fossil-

based estimate (Li et al., 2006; Wang & Yang, 2011). Other studies provide relatively broad 

estimates that overlap with the fossil-based one and are consistent with a dispersal-to-Africa 

scenario (e.g. Adamson, Hurwood & Mather, 2010; Matschiner et al., 2017). Surprisingly, none 

of these molecular timetrees has sufficient scope to estimate the origin time of channids 

accurately, as they are either focused on channids with sparse outgroup sampling, or they 

encompass the whole teleost tree and include only few channid species. A time-calibrated 

phylogeny focused on Anabantaria (the clade comprising synbranchiforms and anabantiforms; 
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Betancur-R et al., 2017) would be needed to assess the timescale of anabantiform – and channid 

– origin and diversification properly. Because most anabantarian lineages are endemic to the 

Indo-Malayan region, it is possible that this clade originated in the isolated Indian subcontinent 

during the Late Cretaceous. An anabantarian timetree would be necessary to test this hypothesis. 

 

(7) Percichthyidae (South American and Australian temperate perches) 

Percichthyidae includes more than 20 species of perch-like freshwater fishes, distributed across 

Australia and southern South America (Fig. 8). Molecular phylogenies show that Percichthyidae 

sensu Johnson (1984) is polyphyletic, with the catadromous Percalates distantly related to other 

percichthyids (e.g. Near et al., 2013; Lavoué et al., 2014). Thus, we use the term Percichthyidae 

to contain members of the group as historically construed minus Percalates (i.e. sensu Betancur-

R et al., 2017). Percalates and percichthyids share several morphological features, to the point 

that Percalates has been synonymized to the percichthyid genus Macquaria in the past 

(MacDonald, 1978); consequently, the fossil record of percichthyids is difficult to evaluate. New 

morphological studies are needed to identify percichthyid synapomorphies permitting correct 

taxonomic identification of perch-like fossil fishes found in freshwater sediments of southern 

continents. In fact, various fossil specimens reported in the literature as percichthyids have been 

referred to the non-percichthyid Percalates (Hills, 1934).  

The Maastrichtian El Molino Formation of Bolivia yields the oldest putative percichthyid 

fossils (Table S7), including the articulated anterior half of a skeleton referred to the genus 
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Percichthys (Gayet & Meunier, 1998). Other articulated percichthyid specimens have been found 

in deposits from the early–middle Eocene of Argentina and the Oligocene of Brazil, and in the 

early Miocene Río Pedregoso Formation of Chile (originally interpreted as late Paleocene in age; 

Arratia, 1982; Pedroza et al., 2017). These fossils show a broader distribution of percichthyids in 

South America, where they are today restricted to the southernmost tip of the continent. 

Percichthyid fossils are also found in Australia, with the oldest examples being at least early–

middle Miocene in age (Hills, 1946; Turner, 1982). Two scales from the early Miocene 

Bannockburn Formation of New Zealand show some similarities with those of percichthyids 

(McDowall & Lee, 2005). Although the material is too scant for precise taxonomic 

identification, none of the extant freshwater fishes of New Zealand shows a comparable scale 

morphology, suggesting the existence of an extinct lineage of perch-like fishes in New Zealand. 

Berra (2007) assigned Percichthyidae to Myers’ ‘peripheral division’ of freshwater fishes. 

However, this classification stemmed from the inclusion of the catadromous Percalates in the 

group. Excluding Percalates from Percichthyidae, extant percichthyids occur almost exclusively 

in freshwater environments (with a few species rarely recorded in estuaries; Arratia, 1982). 

Additionally, percichthyid fossils are only found in freshwater deposits. Chen et al. (2014) 

recovered an antitropical clade of temperate freshwater fishes, named Percichthyoidea, uniting 

the North American centrarchids and elassomatids, the East Asian sinipercids, and percichthyids. 

They proposed a freshwater origin for percichthyoids and a complex biogeographic history to 

account for its distribution. However, other studies place marine taxa (like Enoplosus) as deep 
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branches within this broader clade (Near et al., 2013; Betancur-R et al., 2017), hinting at a 

marine origin followed by freshwater invasions: one in the northern hemisphere and another in 

the southern hemisphere, leading to percichthyids. 

 

(a) Fossil-based estimate of origin times 

Because of the relatively poor percichthyid fossil record, our fossil-based time estimate for 

percichthyid origin spans most of the Cretaceous, from the Barremian to the Maastrichtian 

(127.4–69.1 Ma; median point estimate: 87.6 Ma). Strikingly, it is significantly older than 

molecular clock estimates, which indicate a Paleocene–Oligocene origin for crown 

Percichthyidae (Near et al., 2013; Chen et al., 2014; the oldest known percichthyid fossils pre-

date the upper bound of this range). Moreover, the South American clade including the genera 

Percichthys and Percilia appears to be nested within the Australian radiation (Lavoué et al., 

2014). This is in contrast with the early appearance of South American percichthyids, including 

extinct species attributed to Percichthys. Two hypotheses can be proposed to explain this 

discrepancy. First, published molecular-clock analyses underestimate the divergence times of the 

main lineages within Centrarchiformes (like Percichthyidae), due to the inadequate fossil 

calibrations. Second, the early South American fossil percichthyids may not be percichthyids at 

all, but rather more closely related to Percalates or to another lineage of perch-like fishes. 

Detailed anatomical studies of percichthyids and their relatives are needed to identify diagnostic 

characters for determining the relationship of these fossils. 
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Although circum-Antarctic deep water circulation was established only around 31 Ma 

(Lawver & Gahagan, 2003), geophysical and palaeopalynological evidence suggest that the 

seaway between east Antarctica and Australia formed by the beginning of the Paleocene 

(Woodburne & Case, 1996; Bowman et al., 2012). Thus, the Maastrichtian age of the Bolivian 

percichthyid fossils would suggest that early percichthyids would have been able to disperse 

overland between South America and Australia via Antarctica. It is possible that the Percichthys 

+ Percilia clade diverged from other percichthyids because of a vicariant event caused by 

submersion of the South Tasman Rise and the separation of Australia from Antarctica during the 

Paleocene. 

 

V. HISTORICAL BIOGEOGRAPHY OF WIDESPREAD FRESHWATER FISH 

CLADES 

(1) Biogeographic patterns and the origin of modern geographic distributions 

General patterns concerning the biogeographic history of widespread freshwater fishes can be 

gathered from the individual study cases presented here. Continental vicariance cannot be 

rejected for some of these clades: lepidosireniforms, osteoglossomorphs, characiforms and 

percichthyids (Fig. 9). However, osteoglossomorphs and characiforms are probably characterized 

by a complex biogeographic history that involved several long-distance dispersals as well as 

continental vicariance and that has been partially concealed by regional extinctions. In fact, the 

fossil record of these two groups greatly expands their present geographic distribution, 
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highlighting the importance of palaeontological data in reconstructing the biogeographic history 

of extant organisms. While the fossil record of galaxiids does not capture their early evolutionary 

history, molecular clock studies suggest a similar pattern of early vicariance followed by long-

distance dispersals, although on a more recent timescale. Among all the extant clades examined 

here, crown lepidosireniforms are probably the only group whose continental geographic 

distribution has been driven purely by a strict vicariant event: separation of South American and 

African landmasses. By contrast, cyprinodontiforms and channids are likely much younger than 

any major continental breakup that might have affected their geographic distribution. Thus, their 

intercontinental distribution is probably the result of multiple dispersal events, either overland 

(channids) or transoceanic (cyprinodontiforms).  

There is no doubt that the progressive breakup of Gondwana had a massive impact on the 

geographic distribution of terrestrial and freshwater organisms living at the time of these 

geologic events. However, it seems that, at least for freshwater fishes, the pre-existing 

background of vicariance-driven distributions has been progressively eroded through time by 

extinctions and intercontinental dispersals. In fact, while the separation of South America and 

Africa corresponds to several vicariant events that can be inferred from the Aptian–Cenomanian 

fossil record of these continents (involving mawsoniids, lepisosteoids, amiids, cladocyclids and 

chanids; see Section II.2), lungfishes are the only freshwater fishes inhabiting both continents 

today for which the same process can be confidently identified as the primary cause of their 

present disjunct distribution. Together, the evidence presented here strongly suggests that rare 
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intercontinental dispersals can have a significant effect on biogeographic patterns across 

continents. The relevance of long-distance dispersals in freshwater fish biogeography highlighted 

here parallels a growing literature supporting a prominent role of these events in the 

biogeographic history of a wide variety of terrestrial and freshwater organisms (de Queiroz, 

2005; Gamble et al., 2011; Pyron, 2014; Rota, Peña & Miller, 2016; Scheben et al., 2016). 

 

(2) Oceanic dispersal in freshwater fishes 

While in some cases marine intercontinental dispersal of freshwater organisms could be 

explained by marine ancestry (e.g. osteoglossids), there is no evidence for past adaptations to 

open marine environments in several freshwater clades for which an oceanic dispersal event 

likely happened (e.g. cichlids, killifishes, synbranchids). The exact mechanisms by which 

transoceanic dispersal of freshwater fishes could happen are difficult to evaluate because this 

kind of dispersal is rare and relatively improbable (although it becomes almost inevitable over 

geological timescales). Proposed mechanisms (not mutually exclusive) include formation of 

giant freshwater plumes following catastrophic events like typhoons or tropical river floods; 

rafting of large chunks of soil and vegetation [see Houle (1998) for dispersal of terrestrial 

vertebrates, but these ‘floating islands’ might include puddles of fresh water as well]; ‘stepping-

stone’ dispersal across island arches (Gilpin, 1980; however, this mechanism may be unfeasable 

for freshwater organisms); or bird-mediated zoochory of fish eggs (Hirsch et al., in press). 

Strikingly, most freshwater fish taxa for which transoceanic dispersal has been inferred possess 
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peculiar physiological or behavioural adaptations (e.g. high salinity tolerance, drought-resistant 

eggs, air-breathing and amphibious lifestyle) that might have increased their chance of surviving 

such an improbable journey. A similar pattern is also seen in terrestrial vertebrates for which 

sweepstakes dispersal has been inferred. For example, small body size, arboreal habits and 

heterothermy are common features of mammals that survived transoceanic journeys (Kappeler, 

2000; Nowack & Dausmann, 2015), while drought- and salinity-resistant eggs and adhesive 

fingers are probably some of the adaptations that allowed geckos to disperse multiple times 

across oceans and to colonize oceanic islands (Gamble et al., 2011). In this sense, while long-

distance dispersals have a stochastic nature, we would expect a strong phylogenetic component 

for these events, which should be clustered within clades possessing those traits mentioned 

above. Among freshwater fishes examined here, the only exception to this general pattern seems 

to be represented by the poorly studied polycentrid leaffishes (see Section II.1), thus encouraging 

further investigation of this clade’s natural history. 

 

(3) Congruence and discrepancy between the fossil record and molecular divergence-time 

estimates 

The fossil-based age estimates inferred herein for several clades of widespread freshwater fishes 

are generally congruent with molecular timescales published in the last 10 years (Fig. 10). This is 

a striking result, as these two different approaches draw upon semi-independent data: although 

time calibration of molecular phylogenies commonly employs fossil data, these are usually 
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limited to a very small subset of the known fossil record of a clade (Parham et al., 2012). 

Moreover, molecular timescales of some taxa are often estimated using exclusively external 

fossil calibrations – that is, fossils belonging to other, closely related taxa. As a result, there is 

very minor overlap between the data informing our fossil-based age estimates and the data 

informing evolutionary timescales in molecular phylogenies. Yet, for several taxa 

(Lepidosireniformes, Osteoglossidae, Characiformes, Cyprinodontiformes, Cyprinodontoidei, 

Channidae), the fossil-based timescales inferred in this study are not significantly different from 

published molecular ones, providing support for the evolutionary timescales presented here. 

Deviations are worth discussing, as they might highlight problematic issues in either of these 

approaches for estimating evolutionary timescales. The origin of Percichthyidae estimated here is 

significantly older than corresponding molecular estimates; this may be due to the 

misidentification of some articulated specimens from the Maastrichtian El Molino Formation as 

belonging to the genus Percichthys (see Section IV.7). The most striking discrepancy is 

represented by the age that we derived for total-group Osteoglossomorpha (latest Triassic–

Middle Jurassic), which is significantly younger than most recent molecular estimates. This 

relates to a broader discrepancy between the oldest crown teleost fossils (Middle–Late Jurassic) 

and the age of crown teleosts inferred by molecular clock studies: the so-called ‘teleost gap’ 

(Near et al., 2012). While the use of rapidly evolving molecular markers and misidentified fossil 

calibrations can yield unrealistically old estimates for the crown teleost radiation, correcting for 

these factors still results in an inferred Permo-Triassic origin of crown teleosts (Dornburg et al., 
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2014; Giles et al., 2017). The wealth of stem teleosts found in Middle Triassic–Middle Jurassic 

formations (Arratia, 2015; López-Arbarello & Sferco, 2018) suggests that it should not be 

impossible (at least theoretically) to find crown teleost fossils in deposits of that age. 

Incompleteness of the fossil record can only partially account for this gap. According to our 

fossil-based estimates, even when accounting for non-uniform fossil preservation potential 

through time it would be very unlikely to find any stem osteoglossomorph fossils older than 207 

Ma. However, it should be noted that this estimate is based on the temporal distribution of non-

marine deposits, which is likely not appropriate when trying to derive age estimates for the 

earliest divergences in the teleost tree, as the early evolutionary history of teleosts probably 

occurred in marine environments (Betancur-R et al., 2015; Guinot & Cavin, 2018). In summary, 

the gap between the earliest molecular divergence estimates within crown teleosts and the oldest 

crown teleost fossils can be only partially explained by an incomplete fossil record or by failure 

to recognize crown teleosts among known Triassic fossils. It is possible that high heterogeneity 

in the rates of molecular evolution at the base of the teleost radiation or biased effective 

calibration prior densities are responsible for pushing molecular estimates towards older dates, 

but more studies about the impact of prior specification on the molecular timescale of early 

teleost evolution are needed to test these hypotheses. 

 

(4) Limitations of the stratigraphic approach to infer origin times and test biogeographic 

hypotheses 
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The stratigraphic approach utilized here presents several limitations. Firstly, at least 15–20 

distinct fossil horizons are needed in order to obtain an informative range of age estimates, 

meaning a range that is precise enough not to encompass several geologic periods and to provide 

some insight on evolutionary timescales. Several clades have a very limited fossil record and are 

often concentrated in a few distinct fossil horizons, as in the cases of galaxiids and percichthyids. 

Additionally, many of the estimates derived here rely heavily on the correct taxonomic 

identification of the oldest known representatives of a clade. This can be particularly problematic 

when the oldest putative fossils of a clade are very fragmentary (e.g. teeth, scales or isolated 

otoliths, as in lepidosireniforms, osteoglossomorphs and characiforms) or when, even with better 

preserved articulated fossils, their phylogenetic affinities are dubious (e.g. El Molino 

cyprinodontiforms and percichthyids, or of the putative osteoglossid Chanopsis). While a 

possible solution to the former could be to restrict the analysis to articulated fossils only, with the 

preservation potential function based upon fossil horizons that can yield articulated specimens 

(Friedman et al., 2013), this approach ignores considerable information coming from microfossil 

assemblages and, more importantly, drastically lowers the number of distinct stratigraphic 

horizons from which the focal clade is known.  

Another possible issue stems from the phylogenetic interpretation of the results of this type of 

analysis – in other words, the phylogenetic node to which an age estimate pertains. We believe 

that it is more appropriate to refer this estimate to the least inclusive clade containing all the 

fossils considered in the analysis (see Section II.3 for an example involving cichlids).  
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While we used the estimated origin time of widespread freshwater fish clades as a test of a 

simple vicariant scenario for each of these clades, it is clear that our approach is very limited in 

scope and can only test whether the evolutionary timescale of the group of interest is compatible 

with the timescale of relevant continental breakups. Model-based biogeographic analyses that 

include fossil taxa in a phylogenetic framework, allow for heterogeneity in dispersal rates 

through time, and constrain vicariant events to the known timescales of underlying geologic 

events are needed to reconstruct the biogeographic history of these clades in more detail. While 

significant progress has been made towards the development of complex biogeographic models 

[Ronquist & Sanmartín, 2011; Matzke, 2014; but see Ree & Sanmartín, 2018 for a critique of the 

Dispersal–Extinction–Cladogenesis + Jump dispersal (DEC+J) model], two major challenges 

remain: the inclusion of fossil taxa in a ‘total-evidence’ phylogeny (Ronquist, Lartillot & 

Phillips, 2016), which requires the collection of morphological data for both extant and extinct 

taxa – a complex and time-consuming task that requires high levels of taxon-specific expertise; 

and the lack of models accounting for taphonomic biases and the incomplete nature of the fossil 

record in phylogeny-based biogeographic reconstruction software. It is worth noting that 

fragmentary fossil specimens that can be assigned to broad clades but are not sufficiently 

diagnostic to permit finer taxonomic resolution can often provide invaluable geographic and 

temporal information. These specimens have very few informative morphological characters, so 

they will likely be ignored in any phylogeny-based biogeographic reconstruction [although see 

Silvestro et al. (2016) for a way to estimate biogeographic parameters using fossil data without 
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phylogenies, and Cau (2017) for an approach towards specimen-level phylogenetics in 

palaeontology]. Consequently, even a qualitative assessment of the geographic and temporal 

distribution of fossils belonging to a certain clade – including fragmentary specimens – has the 

potential to greatly improve our understanding of its biogeographic history.  

 

(5) Future directions 

Stressing the importance of the fossil record in biogeographic reconstruction, we hope that 

further attention will be directed towards ways of integrating fossil data into analytically explicit 

biogeographic reconstructions. Ultimately, a better understanding of the early biogeographic 

history of freshwater fishes will come from detailed morphological studies able to solve the 

systematics of some key fossil taxa. For example, the Maastrichtian El Molino Formation in 

Bolivia records the first occurrence of several freshwater fish lineages that still occur in South 

American freshwater environments (Gayet, 1991; Gayet et al., 2001), and thus represents one of 

the oldest fossil fish assemblages with a modern taxonomic composition in southern landmasses. 

Moreover, it is one of the very few freshwater fish communities known from around the 

Cretaceous–Paleogene boundary in the southern hemisphere. Yet, despite the biogeographic and 

palaeoenvironmental importance of these fossils, the systematic position of the El Molino fishes 

(including those for which articulated specimens are known) is still highly uncertain.  

Time-calibrated phylogenetic trees based mainly (if not exclusively) on molecular data will 

remain, for the foreseeable future, the primary way to derive evolutionary timescales for a group 
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of organisms and thus test alternative biogeographic hypotheses. Accuracy and precision of 

molecular timescales strongly depend on the choices made for time calibration (Duchêne, 

Lanfear & Ho, 2014). The fossil-based estimates derived here for the origin of widespread 

freshwater fish taxa could be used in future studies as calibration priors for the relevant nodes, 

with the advantage that soft maximum bounds were objectively inferred from the temporal 

distribution of the fossil record and not arbitrarily decided (as often happens in node calibrations; 

Bromham et al., in press). The use of analytically derived calibration distributions removes a 

layer of subjectivity in the process of molecular dating and can potentially yield timescales that 

better reflect what we know from the palaeontological record [see also Hedman (2010) and 

Matschiner et al. (2017) for different approaches to deriving fossil-based origin time 

distributions]. 

Comparing separate molecular evolutionary timescales across freshwater fish taxa can be 

problematic because available analyses are usually focused on specific clades. These commonly 

differ in the methods employed, in the kind of data analysed and in prior assumptions – which, in 

the case of Bayesian dating, include priors on distribution of node times, branch-rates and 

calibration distributions, among others. Thus, it might be expected that different studies do not 

show comparable timescales, making the task of building a comprehensive timescale of 

biogeographic evolution in freshwater fishes particularly challenging. While substantial progress 

has been made towards the reconstruction of a fish timetree encompassing every major fish 

lineage (Near et al., 2012; Betancur-R et al., 2017), these studies are not targeted towards the 
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reconstruction of intercontinental biogeographic patterns and so they lack several key taxa and 

internal nodes. A possible solution could be to perform a ‘fish-wide’ time-calibrated 

phylogenetic analysis that specifically targets every biogeographically relevant freshwater taxon, 

in order to derive a unified timescale of continental-scale biogeographic events across freshwater 

fishes. 

Finally, among freshwater fishes, descendants of past long-distance dispersals play a 

fundamental role in freshwater communities and can be subject to spectacular radiations, as in 

the cases of cichlids in the Neotropics, galaxiids in New Zealand and killifishes in Africa. 

Several recent studies suggest that ecological opportunity through invasion of new adaptive 

zones – including colonization of new geographic areas – can influence diversification patterns 

(e.g. Burbrink & Pyron, 2010; Burress & Tan, 2017). However, the impact of long-distance 

dispersal events on macroevolutionary dynamics – including diversification rates and modes – 

and continental-scale biotic assemblages is still largely unexplored.  

 

VI. CONCLUSIONS 

(1) Vicariance and dispersal both played crucial roles in structuring the distribution of modern 

freshwater fishes. However, even when clades are old enough to have experienced continental 

vicariance, the pre-existing vicariance-driven distribution is often confounded and eroded 

through time by successive dispersals and regional extinctions during the Late Cretaceous and 

Cenozoic. The only known examples of present-day disjunct intercontinental distributions 

This article is protected by copyright. All rights reserved.



consistent with pure vicariance are South American and African lungfishes (Lepidosireniformes) 

and, possibly, Southern temperate perches (Percichthyidae).  

(2) The evidence presented here shows that oceanic long-distance dispersal likely happened in 

several freshwater fish taxa. This complements recent studies stressing the importance of long-

distance dispersal in terrestrial lineages. However, the means by which oceanic dispersal by 

freshwater fishes is achieved, and the impact of these rare events on macroevolutionary 

dynamics are still relatively unknown and could represent important future areas of investigation 

in biogeographic research. 

(3) Fossils can provide invaluable temporal, geographic and environmental information that can 

be used to reconstruct the biogeographic history of a clade. Specifically, fossil data can expand 

the present geographic distribution of a clade and reveal past dispersal or vicariant events that 

have been obscured by regional extinction. Moreover, fossils can show that extinct members of a 

clade had environmental tolerances differing from modern species. For example, while all living 

osteoglossomorphs are restricted to freshwater habitats, several fossil osteoglossomorphs were 

found in marine deposits of Paleocene–early Eocene age all over the world, suggesting a 

substantial role of marine dispersal in the past (if not present) geographic distribution of the 

group.  

(4) Methods to infer origin times using the temporal distribution of the known fossil record of a 

clade complement time-calibrated molecular phylogenies as means to establish evolutionary 

timescales. Fossil-based estimates can be compared with molecular estimates and, when conflicts 
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between the two arise, can point out problematic issues in either evaluation of the fossil record or 

the methods used to infer molecular timetrees. Fossil-based age ranges can be also used to 

calibrate relevant nodes on molecular phylogenies, avoiding the necessity to specify user-

defined, subjective calibration parameters. 
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IX. SUPPORTING INFORMATION 

Additional supporting information may be found in the online version of this article. 

Table S1. Detailed list of known fossil Lepidosireniformes (Sheet1) and list of horizons 

(formations or localities) yielding lepidosireniform fossils (Sheet2).  

Table S2. Detailed list of known fossil Osteoglossomorpha (Sheet1) and list of horizons 

(formations or localities) yielding osteoglossomorph fossils (Sheet2). 

Table S3. Detailed list of known fossil Characiformes (Sheet1) and list of horizons (formations 

or localities) yielding characiform fossils (Sheet2). 

Table S4. Detailed list of known fossil Galaxiidae (Sheet1) and list of horizons (formations or 

localities) yielding galaxiid fossils (Sheet2). 
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Table S5. Detailed list of known fossil Cyprinodontiformes (Sheet1) and list of horizons 

(formations or localities) yielding cyprinodontiform fossils (Sheet2). 

Table S6. Detailed list of known fossil Channidae (Sheet1) and list of horizons (formations or 

localities) yielding channid fossils (Sheet2). 

Table S7. Detailed list of known fossil Percichthyidae (Sheet1) and list of horizons (formations 

or localities) yielding percichthyid fossils (Sheet2). 

Table S8. List of post-Carboniferous non-marine horizons (formations or localities) yielding fish 

fossils.  

Appendix S1. R script estimating origin times based on the number and distribution through 

time of fossil occurrences.  
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 North 
and 

Central 
America 

South 
America 

Europe 
and 

Western 
Asia 

Africa 
and 

Arabian 
Peninsula 

North-
Eastern 

Asia 

Indo-
Malaya 

Oceania 

Lepidosireniformes  X  X    
Osteoglossomorpha X X X X X X X 
Osteoglossidae X X X X X X X 
Characiformes X X X X    
Alestidae   X X    
Galaxiidae  X  X   X 
Cyprinodontiformes X X X X  X  
Cyprinodontoidei X X X X    
Channidae   X X X X  
Percichthyidae  X     X 

 

Table 1. Biogeographic areas selected for each of the analysed clades to build their empirical 

preservation potential function. X indicates areas in which the clade is either present today or 

was present in the past according to the fossil record. 
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 Replicates lower 

95% 

Median point 

estimate 

Replicates upper 

95% 

Lepidosireniformes 

 95.05 103.51 124.93 

Total-group Osteoglossomorpha 

 167.03 182.44 206.89 

Osteoglossidae (without Chanopsis) 

 72.07 82.85 112.96 

Osteoglossidae (with Chanopsis) 

 103.22 123.96 154.42 

Characiformes (with Cenomanian occurrences) 

 95.08 102.47 119.84 

Characiformes (without Cenomanian occurrences) 

 75.07 83.40 97.30 

Alestidae 

 53.13 60.37 72.10 

Galaxiidae 

 21.15 97.13 235.02 

Cyprinodontiformes 

 67.02 70.72 79.97 

Cyprinodontoidei 

 42.02 46.27 54.77 

Channidae    

 43.08 53.19 78.70 

Percichthyidae    

 69.10 87.59 127.39 

 

This article is protected by copyright. All rights reserved.



Table 2. Fossil-based estimates for the time of origin of widespread freshwater fish clades 

considered in this study. Columns indicate lower 95% confidence interval of the lower credibility 

interval (CI) of the Bayesian posterior distribution, median point estimate, and upper 95% 

confidence interval of the upper CI of the Bayesian posterior distribution, respectively. Values 

result from 1000 replicates accounting for uncertainty in absolute age of fossil horizons. All 

numbers are in units of million years ago (Ma). 
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Figure legends 

 

Fig. 1. Family-level time-calibrated molecular phylogeny of extant non-tetrapod Osteichthyes 

(bony fishes), modified from Betancur-R et al. (2015). The seven clades of widespread 

freshwater fishes that represent the focus of this review are highlighted in orange, while other 

extant clades with a disjunct distribution in the southern hemisphere that are discussed in the text 

are highlighted in aquamarine. Coloured bands indicate the timeframe of the Western–Eastern 

Gondwana break-up and the South America–Africa break-up. 

 

Fig. 2. Histogram showing the temporal distribution of distinct stratigraphic horizons bearing 

fossils of crown Lepidosireniformes. Each time bin is 5 million years (Myr) in width. The inset 

displays the present-day geographic distribution of Lepidosireniformes (in blue), as well as the 

main localities in which lepidosireniform fossils have been found (orange dots). Extant 

geographic ranges for Figs 2–8 were taken from Berra (2007). Photograph of West African 

lungfish (Protopterus annectens) from Wikimedia Commons. 

 

Fig. 3. Histogram showing the temporal distribution of distinct stratigraphic horizons bearing 

fossils of total-group Osteoglossomorpha. Each time bin is 5 million years (Myr) in width. The 

inset displays the present-day geographic distribution of Osteoglossomorpha (in blue), as well as 
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the main localities in which osteoglossomorph fossils have been found (orange dots). Photograph 

of Lokundi mormyrid (Hippopotamyrus castor) modified from Sullivan et al. (2016). 

 

Fig. 4. Histogram showing the temporal distribution of distinct stratigraphic horizons bearing 

fossils of Characiformes. Each time bin is 5 million years (Myr) in width. The hatched rectangle 

represents the doubtful occurrences of characiforms teeth in Cenomanian deposits of Africa. The 

inset displays the present-day geographic distribution of Characiformes (in blue), as well as the 

main localities in which characiform fossils have been found (orange dots). Photograph of 

striped headstander (Anostomus anostomus) by J. Armbruster from Wikimedia Commons. 

 

Fig. 5. Histogram showing the temporal distribution of distinct stratigraphic horizons bearing 

fossils of Galaxiidae. Each time bin is 5 million years (Myr) in width. The inset displays the 

present-day geographic distribution of Galaxiidae (in blue), as well as the main localities in 

which galaxiid fossils have been found (orange dots). Photograph of spotted galaxias (Galaxias 

truttaceus) by N. Litjens from Wikimedia Commons. 

 

Fig. 6. Histogram showing the temporal distribution of distinct stratigraphic horizons bearing 

fossils of Cyprinodontiformes. Each time bin is 5 million years (Myr) in width. The inset 

displays the present-day geographic distribution of Cyprinodontiformes (in blue), as well as the 
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main localities in which cyprinodontiform fossils have been found (orange dots). Photograph of 

an African killifish (Nothobranchius kilomberoensis) from Wikimedia Commons. 

 

Fig. 7. Histogram showing the temporal distribution of distinct stratigraphic horizons bearing 

fossils of Channidae. Each time bin is 5 million years (Myr) in width. The inset displays the 

present-day geographic distribution of Channidae (in blue), as well as the main localities in 

which channid fossils have been found (orange dots). Photograph of giant snakehead (Channa 

micropeltes) from Wikimedia Commons. 

 

Fig. 8. Histogram showing the temporal distribution of distinct stratigraphic horizons bearing 

fossils of Percichthyidae. Each time bin is 5 million years (Myr) in width. The inset displays the 

present-day geographic distribution of Percichthyidae (in blue), as well as the main localities in 

which percichthyid fossils have been found (orange dots). Photograph of nightfish (Bostockia 

porosa) by the Australian Museum from Wikimedia Commons. 

 

Fig. 9. Fossil-derived timescale for the origin of the focal clades considered in this review. 

Galaxiidae is not included because its estimate was not informative (see Section IV.4). The 

timescale for characiform origin shown here and in Fig. 10 is the older estimate from this study 

(i.e. including Cenomanian occurrences; see Section IV.3). The dot indicates the median point 

estimate, while the bar encompasses the range of estimates when accounting for both non-
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uniform distribution of the fossil record and uncertainty in the age of fossil horizons. As in Fig. 

1, coloured bands indicate the timeframe of the Western–Eastern Gondwana breakup (in light 

ocre) and the South America–Africa breakup (in light green). The horizontal axis represents 

time, with scale provided in million years ago (Ma). Paleogeographic maps are taken from 

Scotese (2014). Blue boxes refer to the age of the palaeogeographic reconstructions relative to 

the timescale. 

 

Fig. 10. Comparison between fossil-derived estimates (in orange) and recently published 

molecular estimates (in grey) for the origin times of: 1, Lepidosireniformes; 2, total-group 

Osteoglossomorpha; 3, Characiformes; 4, Cyprinodontiformes; 5, Channidae; 6, Percichthyidae. 

Molecular estimates for channids refer to stem Channidae (see Section IV.6). Galaxiidae is not 

included because its fossil-based estimate was not informative (see Section IV.4). The dot 

indicates the point estimate, while the bar (when present) encompasses 95% confidence or 

credibility interval. The horizontal axis represents time, with scale provided in million years ago 

(Ma).  
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