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The X-ray fluorescence data from X-ray microprobe and nanoprobe measure-

ments must be fitted to obtain reliable elemental maps. The most common

approach in many fitting programs is to initially remove a per-pixel baseline.

Using X-ray fluorescence data of yeast and glial cells, it is shown that per-pixel

baselines can result in significant, systematic errors in quantitation and that

significantly improved data can be obtained by calculating an average blank

spectrum and subtracting this from each pixel.

1. Background

Metals perform a multitude of functions inside cells. With the

development of third-generation synchrotron sources, it has

become possible to use X-ray fluorescence (XRF) to image

the elemental composition of individual cells with a resolution

of tens of nanometres (Pushie et al., 2014; Penner-Hahn, 2014;

Paunesku et al., 2006; Punshon et al., 2013; Ortega et al., 2009;

Vogt & Ralle, 2013; Zhao et al., 2014; West et al., 2014). XRF,

which can also be used with flow cytometry (Crawford et al.,

2016), is the only approach that can determine total metal

content independent of the chemical form of the metal and

its surrounding environment, making XRF an ideal tool for

interrogating the cellular metallome.

A variety of programs are in wide use at synchrotron

laboratories to perform the fitting that is necessary to obtain

quantitative elemental compositions from XRF data sets,

including: Axil (Vekemans et al., 1994), GeoPIXE/Dynamic

Analysis (Ryan et al., 2005), MAPS (Vogt, 2003), PyXRF (Li et

al., 2017) and PyMCA (Solé et al., 2007). While these programs

differ in detail, one common feature is that they all use some

form of background subtraction (see below for more details).

In the following, we show that, under certain conditions,

background subtraction can result in significant errors for

overlapping peaks. We describe a different approach to the

quantitative analysis of XRF data based on blank rather than

background removal and present a MATLAB program,

M-BLANK, to implement this approach.

1.1. XRF data analysis

A raw XRF spectrum records X-ray counts as a function of

energy, as described by equation (1),

XRFi ¼ Si þ Bi; ð1Þ

where Si is the signal counts, or characteristic X-rays, from the

sample and Bi is the background counts arising from every-
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thing else at each energy i. For an ideal detector, the signal Si

would be Gaussian with a peak width defined by the detector

resolution. In practice, the peak shape is distorted because of

incomplete charge collection (see the supporting information

for more detail on peak shapes). The background B may

include counts from elastic and inelastic scattering, sample

holder fluorescence, secondary fluorescence from the hutch,

and any detector dark current. For non-synchrotron excitation

sources, Bremsstrahlung radiation would also contribute to

the background.

The simplest analytical approach for XRF data is to sum all

the counts in a region of interest (ROI, i = a to b) corre-

sponding to a particular elemental emission,

XRF ¼
Pb

a

XRFi ¼
Pb

a

Si þ
Pb

a

Bi: ð2Þ

In principle, conversion from fluorescence counts to elemental

mass could be as simple as comparing this sum with the

corresponding sum for a standard after correcting each for the

background counts. In practice, the ROI approach will not

work for most samples because of peak overlap (Crawford,

Sylvain et al., 2018). For example, most energy-resolving

fluorescence detectors cannot distinguish the manganese K�
peak from the iron K� peak. For samples containing both, the

iron ROI will include some fraction of manganese counts and

vice versa; accurate quantitative analysis requires that the full

peak shape be fit.

For this reason, XRF spectra are typically fitted as the sum

of a background function together with one or more fluores-

cence peaks, often modeled as modified Gaussians, as illu-

strated in Fig. S1 in the supporting information (van Espen &

Lemberge, 2000; Campbell & Maxwell, 1997; van Grieken &

Markowicz, 2002). This approach depends on having an

accurate background function. Although scattering and dark-

current give a relatively smooth background, the background

also often contains discrete impurity peaks (Bos et al., 1984;

Gordon, 1982), making modeling of the XRF background

challenging. Most analytical packages, e.g. MAPS (Vogt,

2003), PyMCA (Solé et al., 2007), PyXRF (Li et al., 2017) and

Axil (Vekemans et al., 1994; Janssens et al., 1996), start with

calculating a smooth baseline (Vogt, 2003; Solé et al., 2007;

Janssens et al., 1996; Brunetti & Steger, 2000; Ren et al., 2014;

Yi et al., 2015). Conceptually, this amounts to replacing

equation (1) with equation (3),

XRFi ¼ Si þ Fi þ Li; ð3Þ

where the background, B, has been partitioned into a smooth

baseline, L, and one or more background fluorescence peaks,

F (e.g. from the sample holder or secondary fluorescence from

the hutch). Once fitted, L can be subtracted from the data,

leaving the fluorescence peaks (S and F) to be fitted. After

fitting, the background fluorescence, F, can be determined

from the signal in certain (e.g. cell free) regions of the sample.

One of the most common baseline calculations uses a peak-

stripping function (van Grieken & Markowicz, 2002). Each

channel, n, of the spectrum is compared with its two neigh-

boring channels, n � 1; if the intensity at channel n is greater

than the mean intensity of channels n � 1 then the intensity at

channel n is set to the mean intensity of its two neighbors.

Performed iteratively, this process results in peak-stripping

and creates a baseline passing through local minima. For the

remainder of this article, we use ‘baseline’ to refer to ‘per pixel

baseline’ (i.e. a baseline that is calculated independently for

each pixel without any a priori knowledge of whether the pixel

represents sample or blank).

There are a number of alternatives for background removal.

For example, the statistics-sensitive non-linear iterative peak-

clipping SNIP) algorithm (Ryan et al., 1988) is widely used.

This algorithm has a smoothing window with a width that is

indirectly proportional to the total counting statistics within a

region. This acts to smooth low-count regions (e.g. the tran-

sition elements for the data in this article) while leaving high-

count regions [e.g. calcium (4 keV) and below] alone. After

the spectrum is smoothed the data are then processed using

an iterative peak-stripping (or clipping) algorithm. Another

common approach is to use some sort of filtering, such as the

top-hat filter (Schamber, 1977) which is widely used in energy-

dispersive X-ray spectrometer (EDS) software (Schamber,

2009). This is a linear filter which removes background at the

expense of spectral distortion. However, by applying the same

filter to both the data and the standards, it is possible to

recover accurate quantitation. As such filtering is not widely

used in synchrotron XRF fitting programs, we have restricted

our comparison to baseline-fitting algorithms.

1.2. Blank subtraction

Rather than baseline subtraction, we have taken the

approach of blank subtraction. This is possible because our

XRF images inevitably contain some cell-free regions. The

cell-free regions include contributions from the background

fluorescence [F in equation (3)] but not from the sample. We

calculated the mean X-ray fluorescence spectrum from these

regions in order to define a blank which can be subtracted,

instead of a baseline, directly from equation (2), leaving only

the signal.

In order to be valid, this approach depends on the blank

being uniform. As shown in Fig. S2, we find excellent unifor-

mity aside from small variations in the silicon signal, which

arises from the Si3N4 substrate upon which the cells are

mounted. The variation in the silicon signal is somewhat larger

than would be expected from counting statistics; it most likely

represents small variations in the thickness of the Si3N4 since

cellular debris from damaged cells would have to form a

relatively thick layer (>1 mm) to significantly attenuate the Si

K� fluorescence. Based on these observations, it would be

possible for these data to use a single blank, averaged over all

of the non-cell regions of all of the images [and such obser-

vations are in agreement with Fig. 1(a)]. However, we have

instead calculated a blank for each image, using the cell-free

pixels in that image; we believe that this is best practice when

possible.

We describe a program, M-BLANK, that implements the

blank-subtraction approach and demonstrate that it provides
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better accuracy, avoiding systematic errors associated with

baseline subtraction. In some cases, M-BLANK also provides

better precision than baseline-fitting programs. In order to

compare blank and baseline-analysis procedures, we present

here two specific cases where the XRF data for yeast and glial

cells were analyzed by both methods. In addition to being

important model systems, both yeast (Wang et al., 2014;

Crawford & Penner-Hahn, 2018; Crawford et al., 2016;

Crawford, 2015; Zhao et al., 2015; Dima et al., 2017; Ballo et al.,

2017) and glial cells (Al-Ebraheem et al., 2016; Busse et al.,

2017; Ide-Ektessabi et al., 2002; Stamenković et al., 2017) have

been studied extensively using X-ray fluorescence. As such,

the artifacts demonstrated here may be more broadly repre-

sented across the biological XRF literature.

2. Consequences of per-pixel baseline subtraction

Ideally, baselines should be insensitive to signal details [i.e. L

in equation (3) should not depend on S or F ]. In contrast, we

find baselines can be quite sensitive, as illustrated in Fig. 1(a).

The calculated baselines for the XRF from cell (black) and

blank (red) pixels are quite different. Even more striking is the

pixel-to-pixel variation (gray and pink lines). This variability

reflects the sensitivity of the fitted baseline to even small

changes in elemental composition.

It is noteworthy that the calculated baselines for blank

pixels are systematically lower than those for cell pixels. This

happens because cell pixels, but not blank pixels, have

significant counts from phosphorus, sulfur and potassium

(peaks at �2.0, 2.3 and 3.3 keV), resulting in the former

having significantly higher baselines than the latter. This

difference is large enough that the baseline amplitudes alone

give a good reproduction of the budding yeast cell in this

sample [Fig. 1(b): budding refers to the asexual reproduction

in some yeast, where the new cell is formed as an outgrowth or

‘bud’ from the parent cell]. An elevated baseline such as that

in Fig. 1(b) causes a decrease in the apparent intensity from

the ‘cell’ pixels since a larger baseline is subtracted from cell

pixels than from the non-cell pixels [this is the black region

in Fig. 1(b)]. Consequently, the apparent silicon and chlorine

signals (that is, the measured signals minus the fitted per-pixel

baselines) are smaller for the cell-containing pixels than they

are for the non-cell regions. This results in an apparent

decrease in chlorine concentration in the cell-containing

regions [see Fig. 1(c)]. This is not only biologically suspect

[cells typically have mM chloride concentrations (Fraústo da

Silva & Williams, 1993), although these can vary depending on

growth conditions] but is also at odds with the clear obser-

vation [Fig. 1(a)] that the cell pixel has slightly more chlorine

counts than the non-cell pixel. The latter point can be seen by

comparing the cell pixel (black line, �19 counts s�1 at the

maximum in the chlorine K� peak) with the non-cell pixel (red

line, �9 counts s�1 at the maximum in the chlorine K� peak).

This behavior can be understood from equation (3): since

Lblank < Lcell, the correction XRFi � Li over-corrects the

data by Lcell � Lblank. If Lcell � Lblank is larger than the actual

chlorine fluorescence, the cell pixels

appear to have less chlorine than the

blank pixels, giving an apparent nega-

tive chlorine concentration [Fig. 1(c)].

In contrast, M-BLANK gives physiolo-

gically reasonable chlorine concentra-

tions [Fig. 1(d), the integrated areal

chlorine signal of �0.10 mg cm2 gives

an estimated cellular concentration of

4.5 mM assuming a cellular diameter

of 6 mm].

Sample-dependent variation in base-

line appears to affect only the chlorine

quantitation for the cell in Fig. 1 (silicon

is also affected, but this is not biologi-

cally relevant). However, the effect is

likely to occur any time that there are

two adjacent peaks with significantly

different amplitudes. For example, this

artifact may account for the apparent

decrease in calcium content that was

seen for cell pixels having high potas-

sium concentrations in a study of the

effect of chemical fixation on cellular

composition (Jin et al., 2017).

This artifact also occurs for glial-cell

images. Fig. 2(a) shows sulfur and

chlorine images obtained using blank

correction (M-BLANK) and per-pixel
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Figure 1
Effect of baseline variation on chlorine quantitation. (a) Representative XRF signals from
individual cell (black) and blank (red) pixels with the calculated blank from this image (cyan) and
multiple images (blue). Individual per-pixel baselines for all of the pixels are shown in gray and
pink; baselines for the two pixels where the XRF is shown are the black and red dashed lines. The
black arrow indicates the position of the chlorine peak. (b) Integrated baseline amplitude at the
chlorine K� peak � 50 eV. (c) Quantitation for chlorine using per-pixel baseline correction,
showing an apparent decrease in chlorine signal in the cell relative to the background (after
removing the background, this would give an apparent negative chlorine concentration). (d)
Quantitation for chlorine using M-BLANK. Black and red squares in (b)–(d) identify the pixels
used in (a). The scale bar represents 2 mm.



baseline correction (MAPS). These

samples were contaminated with small

sodium chloride crystals, as a result of

the sample-preparation method. The

crystals give sharp spikes in the chlorine

distribution which perturb the per-pixel

baseline for that pixel, causing that

pixel’s baseline to be higher than it

would be otherwise. When this happens,

the per-pixel baseline correction over-

corrects the sulfur signal, with the result

that there are wells in the sulfur distri-

bution (i.e. pixels with negative

apparent sulfur concentration). This can

be seen, for example, by comparing the

chlorine and sulfur values marked

by the white arrows; blank-corrected

images do not contain this artifact.

The negative correlation between

apparent sulfur and chlorine concen-

tration for baseline-corrected data can

also be seen in the scatter plot of sulfur

versus chlorine counts [Fig. 2(b)]. Since the chlorine in these

samples is largely an artifact of sample preparation, one would

not necessarily expect there to be any correlation between

sulfur and chlorine. That is, there is no reason to expect the

sodium chloride crystals to form at positions of low or high

sulfur. This is what is observed for the blank-corrected data. In

contrast, the baseline-corrected data show a strong negative

correlation between the apparent sulfur and chlorine

concentrations, consistent with our interpretation that high

chlorine concentration leads to over-correction, and thus

lower than expected apparent sulfur concentration.

Although baseline distortion is particularly severe for

adjacent peaks with very different amplitudes (e.g. potassium

and chlorine), it is unlikely to be limited to these. This

phenomenon could occur any time that amplitude variation in

one peak causes a significant change in the fitted baseline, for

example in studies of copper/zinc or arsenic/selenium inter-

actions, or in studies of silver and cadmium, where the L

emission lines overlap with the chlorine and potassium K�
lines.

The examples in Figs. 1 and 2 both result from the distor-

tions that occur when two adjacent elements have very

different concentrations. However, the phenomenon of base-

line distortion is a more general problem. In Fig. 3, the per-

pixel baseline and blank-corrected concentrations are

compared for yeast cells. At high concentrations, both

methods give similar results. However, at low concentrations,

the lower-Z elements [Fig. 3(d)] show systematically

decreased concentrations for per-pixel baseline correction

relative to blank correction. We attribute this to baseline

distortions similar to those shown in Fig. 1. This can be

modeled by rewriting equation (3) to compare the baseline-

corrected signal [left-hand side of equation (4)] with the

blank-corrected signal (right-hand side),

ðXRFi � LiÞcell � ðXRF� LÞblank ¼ XRFi;cell � XRFblank:

ð4Þ

If the apparent mass calibrations between the two techniques

are identical and baselines in cell pixels [Li in equation (4)]

and in blank regions [L in equation (4)] are identical,

equation (4) will be true. Otherwise, we find instead

XRFibaseline corrected
¼ mXRFiblank corrected

��L; ð5Þ

where �L = Li;cell � Lblank and m is the ratio

ðmassbaseline correctedÞ=ðmassblank correctedÞ. Equation (5) is the

functional form representing the fitted masses from baseline

correction as a function of blank correction. Dividing both

sides of equation (5) by XRFiblank corrected
, this can be rearranged

to equal

yi ¼ m�
�

xi

; ð6Þ

where

xi ¼
XRFiblank corrected

maxðXRFblank correctedÞ
; yi ¼

XRFibaseline corrected

XRFiblank corrected

;

and
� ¼

�L

maxðXRFblank correctedÞ

with yi having units identical to m, and xi and � being frac-

tional masses relative to the maximum fitted value for the

given element [e.g. for Fig. 3(a) this is sulfur]. In equation (6),

the mass and baseline are normalized to the maximum in

order to facilitate comparison between elements that are

present at very different levels (see below).

If � is zero then a plot of equation (6) will yield a constant-

value curve at m. If the per-pixel baseline over compensates

(� > 0), the ratio, yi, will asymptotically approach m (the ratio

of calibration terms) from underneath, as seen for the low-Z
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Figure 2
Chlorine and sulfur in glial cells. (a) Apparent chlorine (top) and sulfur (bottom) quantitation for
glial cells as a result of blank correction (left) and per-pixel baseline correction (right). (b)
Correlation plots (in units of counts s�1) for sulfur plotted as a function of chlorine for blank (*)
and per-pixel baseline (�) correction. The intensity bars are in counts s�1 and the scale bar
represents 10 mm.



elements [Fig. 3(d)]. Alternatively, if the per-pixel baseline

under compensates (� < 0), the ratio, yi, will asymptotically

approach m (the ratio of calibration terms) from above, as

seen for the transition elements [Fig. 3(e)].

Applying equation (6), we see that the behavior for sulfur is

especially complex. Not only do we see a nonzero value for �,

we see eight different sub-populations, or groupings in the

plot, with each one of these groupings indicating a different

distinct distortion, or � [Fig. 3(a)].

Since the data comprising Fig. 3 came from multiple yeast

images, it is possible that the different populations arose from

differential treatment of the per-pixel baselines across samples

caused by variable background continuums. Such a scenario

would allow for the comparison within a single image but

make it difficult to compare across images. To test for this

possibility, we color-coded the eight sub-populations and used

these colors to redraw the original images [Fig. 3(a), inset

images]. From these data, it is obvious that the different sub-

populations correspond to different regions within each cell.

This is inconsistent with image-to-image variability; rather,

this suggests that the sub-populations arise from sample-

dependent baseline distortions, �, which are systematically

reproduced across all of the samples.

The variability shown in Fig. 3 makes it difficult to compare

sulfur content when per-pixel baseline correction is used. An

example of a difficulty arising from this artifact can be seen by

comparing points a, b and c [Fig. 3(a)],

corresponding to cell border, cell

periphery just beyond the border and

bud, respectively. These points have

identical sulfur concentrations when

fitted using blank correction. In

contrast, the sulfur concentration that is

determined using per-pixel baseline

subtraction varies significantly from

point to point; the baseline-corrected

values at points a, b and c are 82, 65 and

49%, respectively, of those determined

with blank subtraction. Not only does

this artifact interfere with quantitation,

it can also make identification of cell

boundaries, especially for budding cells,

more difficult.

Each of the eight sub-populations

from Fig. 3(a) was fit using equation (6)

to solve for each population’s � value

while constraining m (the ratio of cali-

bration terms should not change) to be

constant across all eight populations.

For nonzero �, the errors within a sub-

population (i.e. deviation of yi from 1)

will always get worse as the concentra-

tion decreases. Equation (6) can be

rewritten to solve for the limiting xi

value, xi(lim), above which the error

remains below some threshold. Equa-

tion (7) gives these limiting values for a

5% threshold [the absolute value sign in equation (7) is

necessary to account for the possibility that � could be nega-

tive; see the supporting information for the derivation],

xiðlimÞ �
20 j�j

m
; �> 0: ð7Þ

For each sub-population, equation (7) was used to calculate

the limits of xi for which the baseline-subtracted estimate will

be within 5% of m, and these values have been tabulated in

the inset table of Fig. 3(a). For sub-population 1 we see that

the baseline over-compensates by 1.2% of the maximum sulfur

(i.e. � = 0.012) and that the two approaches will not agree for

sulfur concentrations that are <24% of the maximum sulfur

value. Unfortunately, sub-population 1 does not persist much

beyond xi = 0.1, and consequently the baseline-subtracted

value is never within 5% of the blank-corrected data.

Although sub-populations 3–7 have average errors that are

somewhat smaller than those for sub-populations 1 and 2 (i.e.

average yi closer to 1), even the former never get within 5% of

the blank-corrected data.

The different distinct regions, or sub-populations, arise from

variations in the fitted per-pixel baselines caused by over-

lapping emission lines in high-statistics regions of the X-ray

fluorescence spectrum. Since it is caused by overlapping

emissions in high-statistics regions, the SNIP (Ryan et al.,

1988) algorithm will not avoid this. This can be seen by
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Figure 3
Comparison of per-pixel baseline and blank removal. (a) Ratio of per-pixel to blank-corrected fits
for sulfur. Seven sub-populations (see the supporting information) are color coded on both the
scatter plot and images. Black lines: fits to equation (6). (b) Representative per-pixel baselines for
each sub-population (1–7) and blank pixels (0); the black line marks the sulfur K� emission
centroid. (c) Histograms of fitted sulfur concentrations for each sub-population. Solid = blank
corrected; dash = per-pixel baseline corrected. (d) Comparison of per-pixel and blank removal for
low-Z elements. (e) Comparison for transition metals. Solid red lines in (d) and (e) are a ratio of 1;
dashed red lines mark the apparent asymptote.



comparing representative baselines for each sub-population

[Fig. 3(b)]. Instead of a smooth, monotonic baseline, there are

peaks at�2 and�2.6 keV (corresponding to K� emissions for

phosphorus and chlorine, respectively, still present at varying

degrees for the different baselines). As a consequence of these

peaks, baseline subtraction consistently underestimates the

amount of sulfur, but this underestimation is systematically

different for each of the different sub-populations. This

negative correlation between apparent sulfur concentration

and phosphorus and chlorine concentration is equivalent to,

although smaller than, that shown in Fig. 2. Even for the data

in Fig. 3, the percent error in sulfur concentration can become

significant as the amount of sulfur decreases. Only for blank

pixels (sub-population 0), where there is no phosphorus,

chlorine or potassium background, do baseline and blank

subtraction agree [Fig. 3(c)]. A similar negative correlation is

seen between the apparent chlorine concentration and the

potassium concentration when using baseline subtractions

(see Fig. S3).

Although they are not as numerous and well resolved, sub-

populations are also seen for phosphorous, potassium and

calcium [see Fig. 3(d)]. In addition to these errors in accuracy,

the presence of sub-populations will decrease the precision of

baseline-corrected data, since different sub-populations have

different apparent baselines [as discussed above for points a, b

and c in Fig. 3(a)].

In contrast to the lower-Z elements, ratio plots of the

transition metals [Fig. 3(e)] do not show any systematic

distortion at low concentration. The reason is twofold. First,

there is very minimal overlap of the elemental emissions for

these samples. This means there is very minimal baseline

distortions of a given element by neighboring elements (e.g.

Mn and Fe). Second, the energy region of the X-ray fluores-

cence spectrum corresponding to the transition elements is a

very low statistics region. This results in many baselines that

are essentially equal to 0 for most of the elements. There is,

however, a small systematic error, with ðXRFbaseline correctedÞ=
ðXRFblank correctedÞ asymptotically approaching, from above,

values that are 3–10% greater than 1. We attribute this to a

similar, but smaller, distortion in the baseline for the

elemental standards.

3. Non-negativity

In addition to the improved quantitation discussed above, an

advantage of M-BLANK is that it avoids artifacts that can

result from non-negativity constraints. While non-negativity

constraints are not an essential part of a per-pixel baseline

correction, they are widely used in order to avoid parameter

correlation (e.g. non-physical minima with alternating large

positive and large negative amplitudes for adjacent peaks).

They should not, however, be used with blank-corrected

data as presented here with M-BLANK (see the supporting

information for further discussion). The inability to use non-

negativity constraints has the unanticipated benefit of allowing

blank-corrected fitting in M-BLANK to avoid certain false-

positive signals. Even if an element is not present in the

sample, attempts to fit the peaks for this element will inevi-

tably give occasional positive signals as a result of random

noise, particularly for small signals in the presence of large

signals. One such example is the detection of mM cadmium in

the presence of mM potassium (Fig. S4). As shown in Fig. S5,

the use of non-negativity constraints can give false positives

under such conditions, an artifact which does not affect

M-BLANK. In addition, of course, the linear least-squares fits

used in M-BLANK are much faster than non-linear least

squares that are required for non-negativity.

4. Experimental details

Experimental details and calculation procedures are available

in the supporting information.

5. Conclusions

We have demonstrated that per-pixel baseline subtraction can

introduce artifacts in the apparent concentration of dilute

elements, particularly when there are strong fluorescence

peaks nearby, and have shown that this is important under

biologically relevant conditions. We showed examples

comparing M-BLANK with MAPS, but have found compar-

able results with other programs, including PyMCA and

PyXRF (data not shown). M-BLANK, a MATLAB program

which uses the background-subtraction methodology

described here, is available on request from the authors. In

addition to being both more accurate and more precise, blank

subtraction has the additional advantage of permitting linear-

least-squares fits, as compared with the non-linear fitting that

is required by the non-negativity constraints typically used

with baseline removal. This allows for much faster fitting and

is more easily adapted to real-time analysis.

6. Related literature

The following citations refer to references used in the

supporting information: Carter et al. (2010).
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