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Summary. Quantile estimation has attracted significant research interest in recent years. How-
ever, there has been only a limited literature on quantile estimation in the presence of incomplete
data. We propose a general framework to address this problem. Our framework combines the
two widely adopted approaches for missing data analysis, the imputation approach and the in-
verse probability weighting approach, via the empirical likelihood method.The method proposed
is capable of dealing with many different missingness settings. We mainly study three of them:
estimating the marginal quantile of a response that is subject to missingness while there are
fully observed covariates; estimating the conditional quantile of a fully observed response while
the covariates are partially available; estimating the conditional quantile of a response that is
subject to missingness with fully observed covariates and extra auxiliary variables. The method
proposed allows multiple models for both the missingness probability and the data distribution.
The resulting estimators are multiply robust in the sense that they are consistent if any one
of these models is correctly specified. The asymptotic distributions are established by using
empirical process theory.
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1. Introduction

The population mean of a response variable provides an important central measure of the re-
sponse, whereas the population median is an important alternative that is robust to potential
outliers. The quantiles, a generalized concept of median, are capable of providing not only central
features but also the tail properties of the response distribution (Koenker, 2005). Under mild
conditions, the quantile function uniquely determines the underlying distribution (Shorack,
2000). Quantiles provide a more complete picture of the response and are especially useful in
the presence of outliers or when the distribution of the response is heavy tailed. A commonly
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encountered challenge in quantile-related analysis is the presence of missing values in the col-
lected data. The most straightforward solution, the complete-case analysis ignoring subjects
with missing data, usually leads to substantial bias and/or undermines study efficiency, espe-
cially when the rate of missingness is high. There is a large literature dealing with missing data;
see, for example, Little and Rubin (2002), Tsiatis (2006), Kim and Shao (2013) and references
therein. However, most of the existing methods focus on mean estimation.

Imputation (e.g. Rubin (1987, 1996)) is a widely adopted approach for dealing with missing
data. In a quantile regression setting, Yoon (2010) proposed an imputation method where the
missing responses are substituted by values drawn from the conditional quantile function of the
response at given values of regressors. Chen and Yu (2016) considered an imputation method to
deal with missing responses based on semiparametric quantile regression. To deal with missing
covariates, Wei et al. (2012) developed an iterative imputation procedure assuming that the
missingness depends only on the observed covariates. Estimating equations were used by Wei
and Yang (2014) to produce consistent linear quantile estimation in the presence of missing
covariates through an expectation–maximization type of algorithm. Yang et al. (2013) proposed
a fractional hot deck imputation based on non-parametric kernel regression.

Inverse probability weighting (IPW) (e.g. Horvitz and Thompson (1952) and Robins et al.
(1994)) is another popular approach for handling missing data. In quantile regression for lon-
gitudinal data with non-ignorable dropouts, Lipsitz et al. (1997) considered a set of estimating
equations weighted by the inverse of the estimated probability of dropout. Yi and He (2009)
investigated a similar method under different model assumptions focusing on median regres-
sion. For quantile regression with missing covariates, Sherwood et al. (2013) took the IPW
approach to study healthcare cost data. Under a non-ignorable missingness mechanism, Zhao
et al. (2013) proposed an augmented IPW method to estimate the distribution function and
quantiles of a response variable. Sun et al. (2012) developed an IPW-based method for quantile
regression for competing risks data when the failure type is prone to missing values. To handle
missing response and/or partially missing covariates, Chen et al. (2015) proposed to estimate
the probability of missingness non-parametrically.

The imputation and the IPW approaches require modelling the data distribution and the
probability of missingness respectively. Properties of the corresponding estimators hold true
only if the corresponding model is correctly specified. Thus, most existing methods are vulnera-
ble to model misspecification. Non-parametric modelling may help to reduce the risk of model
misspecification. However, it is often impractical because of the curse of dimensionality. There-
fore, methods that are robust against model misspecification are highly desired. In the literature
of mean regression with missing data, augmented IPW (AIPW) is a popular method (Robins
et al., 1994; Tsiatis, 2006), where both the probability of missingness and the data distribution
are modelled. The resulting estimator is consistent if either model is correct and is called doubly
robust. Recently, an even more robust method has been proposed: the so-called multiply robust
(MR) method (Han and Wang, 2013; Chan and Yam, 2014; Han 2014a,b, 2016a,b; Chen and
Haziza, 2017), where multiple models for the probability of missingness and/or the data distri-
bution can be accounted for, and estimation consistency of the point estimator is guaranteed
if any one model is correct. However, the current MR methods were developed in the context
of mean regression only and do not directly apply to quantile estimation. The major contribu-
tion of this paper is to propose a general framework for quantile estimation with missing data.
Our general framework combines both the imputation and the IPW approaches to estimate
the marginal or conditional quantiles of the response under a variety of practically important
missing data settings. All the resulting estimators are MR. Compared with mean regression,
dealing with quantiles is much more difficult since the parameters of interest are no longer esti-
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mated by using smooth functions of the data, and thus existing methods and results cannot be
simply translated. This complexity is in both the implementation and theoretical investigations.
Similarly to Wei et al. (2012) and Chen et al. (2015), our framework is capable of dealing with
independent but non-identically distributed error terms.

An MR method is appealing in many studies where multiple working models may exist. An
example is in high dimensional data analysis where there are a large number of fully observed
auxiliary variables. In such a case model building for the probability of missingness and the data
distribution relies on variable selection techniques that require some tuning parameters. Dif-
ferent levels of tuning may result in different working models. Although the tuning parameters
may be selected on the basis of some criteria, e.g. the generalized information criterion (Fan and
Tang, 2013), such a selection brings additional uncertainty in the working model specification
and usually does not lead to one model that rules out the possibility of all others. A more natural
approach, which was discussed in Robins et al. (2007), is to postulate multiple models, each with
different subsets of auxiliary variables and possibly different link functions. Another example
is whether to model the distribution of a variable in the original scale or after a transformation,
if the former is highly skewed and the latter is approximately normal. In this case two work-
ing models, one for the original scale and one for the transformed scale, may be postulated.
For both of the aforementioned examples, our proposed method provides an innovative way of
combining multiple working models into estimation.

Our development relies on the empirical likelihood method (Owen, 1988, 2001; Qin and
Lawless, 1994), which has been successfully applied to address missing data problems and has
attracted considerable research interest (e.g. Wang and Rao (2002), Qin and Zhang (2007),
Chen et al. (2008), Qin et al. (2008, 2009), Wang and Chen (2009), Tan (2010), Han and Wang
(2013), Chan and Yam (2014) and Han (2014a, b, 2016a)). However, the existing literature
mainly focuses on mean estimation with missing data. Another contribution of this paper is
to demonstrate the effectiveness of the empirical likelihood method in quantile estimation with
missing data. To derive the asymptotic distributions of our proposed estimators, the non-smooth
estimating functions are dealt with via empirical process theory (e.g. van der Vaart and Wellner
(1996) and Kosorok (2008)).

The rest of the paper is organized as follows. In Section 2, after a brief review of the imputation
and the IPW approaches, we present our proposed method. Section 3 establishes the asymptotic
properties. Section 4 contains simulation studies to evaluate the finite sample performance of
the method proposed. A real data analysis is provided in Section 5. Section 6 gives some dis-
cussions. Technical details are provided in Appendix A. The simulation results are given in the
on-line supplementary material. R code that was used for our simulation studies can be found at
http://www-personal.umich.edu/∼peisong/R-code/quantile-estimation-
with-missing-data/missing covariates.R. The AIDS Clinical Trials Group (ACTG)
175 data that were used for our data application can be found in the R package speff2trial.

2. The method proposed

The method proposed is developed under three commonly encountered scenarios:
(a) estimating the marginal quantile of a response that is subject to missingness while there

are fully observed covariates;
(b) estimating the conditional quantile of a fully observed response while the covariates are

partially available;
(c) estimating the conditional quantile of a response that is subject to missingness with fully

observed covariates and extra auxiliary variables.
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To facilitate the presentation, we first review the imputation and the IPW approaches in scenario
(a). Although in the existing literature on quantile estimation these two approaches are most
often described for quantile regression with missing data, which corresponds to scenarios (b)
and (c), the ideas are more straightforwardly demonstrated in scenario (a) for estimating the
marginal quantile. This is also one reason why our development starts with scenario (a). The
method proposed can be easily generalized to other scenarios that are different from the three
discussed in this paper, such as estimating the conditional quantile of a partially observed
response while some covariates are fully observed and others are not, with or without additional
auxiliary variables.

2.1. A review on imputation and inverse probability weighting approaches
Let Y denote the response of interest that is subject to missingness, X a vector of covariates
and R the indicator of observing Y (R=1 if Y is observed and R=0 otherwise). The observed
data are n independent and identically distributed copies of .R, RY , XT/. We assume that Y is
missing at random (Rubin, 1976), which is a commonly adopted missingness mechanism in the
literature:

P.R=1|Y , X/=P.R=1|X/: .1/

For now we focus on estimating q0.τ /=Qτ .Y/= inf{y :P.Y � y/ � τ}: the τ th marginal quantile
of Y where 0 < τ < 1. For ease of notation, we write q0.τ / to be q0 hereafter.

The imputation approach models f.Y |X/, the conditional density of Y given X. Under the
missingness at random (MAR) mechanism, this model can be fitted on the basis of subjects
with Y observed (complete-case analysis). With the estimated f.Y |X/, we can then take a set
of random draws at the given X for a subject with missing Y as the imputed responses for this
subject: {Ŷ

l
X : l=1, : : : , L}. The imputation estimator of q0 is the solution to

1
n

n∑
i=1

{
Riψτ .Yi −q/+ .1−Ri/

1
L

L∑
l=1

ψτ .Ŷ
l
Xi

−q/

}
≈0,

whereψτ .r/=τ−I.r<0/ and we use ‘≈’ as in Chen et al. (2015) to indicate that the exact solution
may not exist because of the non-smoothness of the function ψτ . The imputation estimator is
consistent only if f.Y |X/ is correctly modelled.

The IPW approach models the probability in equation (1), denoted by π.X/ hereafter. With
π.X/ estimated by π̂.X/, the IPW estimator solves

1
n

n∑
i=1

Ri

π̂.Xi/
ψτ .Yi −q/≈0,

and is consistent only if π.X/ is correctly modelled. To improve estimation efficiency of the IPW
estimator, we may also consider the AIPW estimator solving

1
n

n∑
i=1

[
Ri

π̂.Xi/
ψτ .Yi −q/−

{
Ri

π̂.Xi/
−1

}
1
L

L∑
l=1

ψτ .Ŷ
l
Xi

−q/

]
≈0,

where an augmentation term is added to extract more information from the observed covariates.
The AIPW estimator was originally proposed in the context of mean estimation (Robins et al.,
1994). In addition to potential gains in efficiency, the AIPW estimator is consistent if either
π.X/ or f.Y |X/ is correctly modelled: a property known as double robustness (e.g. Bang and
Robins (2005)).
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2.2. Estimation of marginal quantiles
Our goal is to combine the imputation and the IPW approaches to improve the robustness of
estimation consistency against possible model misspecifications further. In practice, since the
true data-generating process is usually unknown, multiple models for both π.X/ and f.Y |X/

may be postulated and none rules out the possibility of others. Specifically, let P ={πj.X;αj/ :
j = 1, : : : , J} and F = {f k.Y |X;γk/ : k = 1, : : : , K} denote collections of models for π.X/ and
f.Y |X/ respectively, where αj and γk are the corresponding parameters. Our proposed method
provides a novel way to combine these models simultaneously so that the resulting estimator is
consistent if any one model is correctly specified.

Let m =Σn
i=1Ri be the number of subjects with data completely observed. Without loss of

generality, these subjects are indexed by i=1, : : : , m. Our method is composed of the following
steps.

Step 1: calculate α̂j, j =1, : : : , J , by maximizing the binomial likelihood
n∏

i=1
πj.Xi;αj/Ri{1−πj.Xi;αj/}1−Ri :

Step 2: calculate γ̂k, k =1, : : : , K, by maximizing Πn
i=1f k.Yi |Xi;γk/Ri .

Step 3: calculate q̂k
L, k =1, : : : , K, as an imputation estimator of q0 by solving

1
n

n∑
i=1

[
Riψτ .Yi −q/+ .1−Ri/

1
L

L∑
l=1

ψτ{Yl
i .γ̂

k/−q}
]

≈0,

where {Yl.γk/ : l=1, : : : , L} denotes a set of random draws of size L from f k.Y |X;γk/.
Step 4: for the complete cases i=1, : : : , m, calculate weights

ŵi = 1
m

1

1+ ρ̂TĝL
1i.α̂, q̂L, γ̂/

, .2/

where ρ̂ minimizes

Fn.ρ/=−1
n

n∑
i=1

Ri log{1+ρTĝL
1i.α̂, q̂L, γ̂/}: .3/

Here α̂T ={.α̂1/T, : : : , .α̂J /T}, γ̂T ={.γ̂1/T, : : : , .γ̂K/T}, q̂T
L = .q̂1

L, : : : , q̂K
L /,

ĝL
1i.α̂, q̂L, γ̂/T =

(
π1

i .α̂1/− θ̂
1
.α̂1/, : : : ,πJ

i .α̂J /− θ̂
J
.α̂J /,

1
L

L∑
l=1

ψτ{Yl
i .γ̂

1/−q̂1
L}

− η̂1
L.q̂1

L, γ̂1/, : : : , − 1
L

L∑
l=1

ψτ{Yl
i .γ̂

K/− q̂K
L }− η̂K

L .q̂K
L , γ̂K/

)
,

θ̂
j
.αj/= 1

n

n∑
i=1

π
j
i .αj/

and

η̂k
L.q, γk/= 1

n

n∑
i=1

[
1
L

L∑
l=1

ψτ{Yl
i .γ

k/−q}
]
:

Searching for ρ̂ in this step is a convex minimization problem and can be easily implemented
by using the algorithm given in Han (2014b).
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Step 5: calculate the estimator q̂L
MR by solving

m∑
i=1

ŵiψτ .Yi −q/≈0:

In step 1, let α̂j →p α
j
Å as n →∞. Then, πj.X;αj

Å/ =π.X/ only if πj.X;αj/ is a correctly
specified model for π.X/. In step 2, the calculation is based on the complete cases, which is
justified by the MAR mechanism. Let γ̂k →p γk

Å as n→∞. Then, f k.Y |X;γk
Å/=f.Y |X/ only

if f k.Y |X;γk/ is a correctly specified model for f.Y |X/. In step 3, let q̂k
L →p qk

Å as n→∞. Note
that qk

Å does not depend on L. Then, qk
Å =q0 only if f k.Y |X;γk/ is a correctly specified model

for f.Y |X/.
Step 4 calculates a set of weights {wi : i=1, : : : , m} on the complete cases. These weights ac-

count for all the postulated models simultaneously, as seen from the expression of ĝL
1i.α̂, q̂L, γ̂/.

The derivation of these weights is based on the following rationale. For any function b.X/ where
the relevant expectations exist, it is easy to verify that

E.w.X/[b.X/−E{b.X/}]|R=1/=0, .4/

where w.X/=π.X/−1. We take b.X/ to be πj.X;αj/ and ak.X;γk/=Ek{ψτ .Y −q0/ |X;γk}=
τ −Pk.Y < q0 |X;γk/, j =1, : : : , J and k =1, : : : , K, where Ek.· |X;γk/ and Pk.· |X;γk/ are the
conditional expectation and the conditional probability under the density f k.Y |X;γk/. Using
these particular functions as b.X/ and the α̂j, γ̂k and q̂k

L from steps 1, 2 and 3 respectively, a
sample version of result (4) may be constructed as

wi �0 .i=1, : : : , m/,
m∑

i=1
wi =1,

m∑
i=1

wiĝL
1i.α̂, q̂L, γ̂/=0:

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.5/

Here the conditional expectation E{w.X/.·/ |R=1} is estimated by putting a discrete probability
measure {wi : wi � 0 for i=1, : : : , m and Σm

i=1wi =1} on the complete cases, the unconditional
expectation E.·/ is estimated by the unweighted sample average over the whole sample and
Ek.· |X;γk/ is estimated by averaging over the L random draws taken from f k.Y |X;γk/. Since
{wi : i=1, : : : , m} is a discrete probability measure, it is natural to consider the ŵi that maximize
Πm

i=1wi under the constraints in expression (5). This is the typical formulation of an empirical
likelihood problem, and the solution is given by equation (2) (Qin and Lawless, 1994; Owen,
2001) with ρ̂ solving

1
m

m∑
i=1

ĝL
1i.α̂, q̂L, γ̂/

1+ρTĝL
1i.α̂, q̂L, γ̂/

=0:

Since ρ̂ must also satisfy 1 + ρ̂TĝL
1i.α̂, q̂L, γ̂/ > 0 for i= 1, : : : , m to make ŵi positive, it is easy

to see that ρ̂ is actually the minimizer of the convex function Fn.ρ/ in equation (3). Following
Han (2014b), it can be shown that the minimizer of Fn.ρ/ exists and is unique if 0 is inside the
convex hull of {ĝL

1i.α̂, q̂L, γ̂/ : i=1, : : : , m}, which is true at least when n is large because of the
moment equality (4). Thus, step 4 usually has very good numerical performance. Refer to Chen
et al. (2002) for more discussion on the implementation and the convergence of the algorithm.

Our proposed estimator in step 5 has the same structure as the IPW estimator with weight
ŵi in replacement of 1=π̂.Xi/. The calculation of ŵi does not distinguish models for π.X/ and
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f.Y |X/, but rather treats them equally as functions of X. When one model is correctly specified,
ŵi does account for this information and leads to consistency of q̂L

MR. For the IPW estimator,
because of IPW, the numerical performance can be quite unstable when the estimated values of
π.X/ for some complete cases are close to 0. Our proposed estimator considerably mitigates this
issue. The maximization of Πm

i=1wi greatly prevents the occurrence of extreme weights, and thus
leads to more stable numerical performances. A formal numerical investigation of this property
for mean regression can be found in Han (2014b).

Computationwise, step 3 has the same computational complexity as the imputation method
and step 5 has the same complexity as the IPW method. Compared with the imputation and
the IPW approaches, the only additional computation that is needed in our procedure is step 4,
which is a convex minimization and thus is not computationally complex. Step 4 can be easily
implemented by using a Newton–Raphson-type algorithm (Han, 2014b).

2.3. Quantile regression with missing covariates
We now consider quantile regression with missing covariates. In this case, our parameter of
interest β0.τ / is defined by Qτ .Y |X/=XTβ0.τ /, where Qτ .Y |X/= inf{y :P.Y � y |X/ � τ} is
the τ th conditional quantile of Y given X. For ease of notation, we write β0.τ / to be β0. Now, Y

is fully observed but certain components of X are subject to missingness. Write X = .XT
1 , XT

2 /T,
where X1 is always observed and X2 may be missing. Let R be the indicator of observing X2. Then
the observed data are n independent and identically distributed copies of .R, Y , XT

1 , RXT
2 /. The

MAR mechanism becomes P.R=1 |Y , X/=P.R=1 |Y , X1/. Let π.Y , X1/ denote this probabil-
ity and f.X2 |Y , X1/ the conditional density of X2 given Y and X1. Again, assume that there are
two sets of models P ={πj.Y , X1;αj/ : j =1, : : : , J} and F ={f k.X2 |Y , X1;γk/ : k =1, : : : , K}
for π.Y , X1/ and f.X2 |Y , X1/ respectively.

For this problem, our method is composed of steps that are similar to those discussed in
Section 2.2. Step 1 and step 2 still calculate α̂j and γ̂k respectively, but now based onπj.Y , X1;αj/

and f k.X2 |Y , X1;γk/ instead. Step 3 now calculates β̂k
L as an imputation estimator of β0 by

solving

1
n

n∑
i=1

[
RiXiψτ .Yi −XT

i β/+ .1−Ri/
1
L

L∑
l=1

Xl
i.γ̂

k/ψτ{Yi −Xl
i.γ̂

k/Tβ}
]

≈0,

where Xl.γk/={XT
1 , Xl

2.γk/T}T and Xl
2.γk/ denotes the lth random draw from f k.X2|Y , X1;γk/,

l=1, : : : , L. Step 4 still calculates weights ŵi on complete cases i=1, : : : , m, but with ĝL
1i.α̂, q̂L, γ̂/

replaced by

ĝL
2i.α̂, β̂L, γ̂/T =

(
π1

i .α̂1/− θ̂
1
.α̂1/, : : : ,πJ

i .α̂J /− θ̂
J
.α̂J /,

1
L

L∑
l=1

Xl
i.γ̂

1/ψτ{Yi −Xl
i.γ̂

1/Tβ̂1
L}

− η̂1
L.β̂1

L, γ̂1/, : : : ,
1
L

L∑
l=1

Xl
i.γ̂

K/ψτ{Yi −Xl
i.γ̂

K/Tβ̂K
L }− η̂K

L .β̂K
L , γ̂K/

)
,

where β̂T
L ={.β̂1

L/T, : : : , .β̂K
L /T}, πj

i .αj/=πj.Yi, X1i;αj/,

θ̂
j
.αj/= 1

n

n∑
i=1

π
j
i .αj/,

η̂k
L.β, γk/= 1

n

n∑
i=1

[
1
L

L∑
l=1

Xl
i.γ

k/ψτ{Yi −Xl
i.γ

k/Tβ}
]
:
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Step 5 calculates our proposed estimator β̂L
MR by solving

m∑
i=1

ŵiXiψτ .Yi −XT
i β/≈0:

For the current problem, ĝL
2i.α̂, β̂L, γ̂/ in step 4 is constructed by taking b.Y , X1/ in the equal-

ity E.π.Y , X1/−1[b.Y , X1/ − E{b.Y , X1/}] |R = 1/ = 0 to be πj.Y , X1;αj/ and ak.Y , X1;γk/ =
Ek{Xψτ .Y −XTβ0/ |Y , X1;γk}, with α̂j, γ̂k and β̂k

L from steps 1, 2 and 3 plugged in.

2.4. Quantile regression with missing responses
Finally we consider quantile regression of Y on X where Y is subject to missingness and X is fully
observed. The parameter of interest β0.τ / is still defined by Qτ .Y |X/=XTβ0.τ /. When the full
data vector is .Y , XT/ and Y is missing at random, a simple complete-case analysis leads to a con-
sistent estimator of β0. Therefore, we consider a more complex yet practically more important
setting where, in addition to Y and X, some auxiliary variables S are also available. These auxil-
iary variables are usually not of main study interest and thus do not enter the quantile regression
model Qτ .Y |X;β/. However, they can help to explain the missingness mechanism and to build a
more plausible model for the conditional distribution of Y . The observed data are now n indepen-
dent and identically distributed copies of .R, RY , XT, ST/. The MAR mechanism becomes P.R=
1 |Y , X, S/=P.R=1 |X, S/. Let π.X, S/ denote this probability and f.Y |X, S/ the conditional
density of Y given X and S. Again, assume that there are two sets of models P ={πj.X, S;αj/ :
j =1, : : : , J} and F ={f k.Y |X, S;γk/ : k =1, : : : , K} for π.X, S/ and f.Y |X, S/ respectively.

Similarly, we can follow the previous steps to derive our proposed estimator. Step 1 and step 2
still calculate α̂j and γ̂k respectively, but now based on πj.X, S;αj/ and f k.Y |X, S;γk/ instead.
Step 3 now calculates β̂k

L as an imputation estimator of β0 by solving

1
n

n∑
i=1

[
RiXiψτ .Yi −XT

i β/+ .1−Ri/
1
L

L∑
l=1

Xiψτ{Yl
i .γ̂

k/−XT
i β}

]
≈0, .6/

where {Yl.γk/ : l = 1, : : : , L} is a set of random draws of size L from f k.Y |X, S;γk/. Step 4
calculates weights ŵi on complete cases i=1, : : : , m with

ĝL
3i.α̂, β̂L, γ̂/T =

(
π1

i .α̂1/− θ̂
1
.α̂1/, : : : ,πJ

i .α̂J /− θ̂
J
.α̂J /,

1
L

L∑
l=1

Xiψτ{Yl
i .γ̂

1/−XT
i β̂1

L}

− η̂1
L.β̂1

L, γ̂1/, : : : ,
1
L

L∑
l=1

Xiψτ{Yl
i .γ̂

K/−XT
i β̂K

L }− η̂K
L .β̂K

L , γ̂K/

)
,

where πj
i .αj/=πj.Xi, Si;αj/,

θ̂
j
.αj/= 1

n

n∑
i=1

π
j
i .αj/,

η̂k
L.β, γk/= 1

n

n∑
i=1

[
1
L

L∑
l=1

Xiψτ{Yl
i .γ

k/−XT
i β}

]
:

Step 5 calculates our proposed estimator β̂L
MR by solving

m∑
i=1

ŵiXiψτ .Yi −XT
i β/≈0:

In step 4, ĝL
3i.α̂, β̂L, γ̂/ is constructed by taking b.X, S/ in the equality E.π.X, S/−1[b.X, S/−
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E{b.X, S/}] |R = 1/ = 0 to be πj.X, S;αj/ and ak.X, S;γk/ = Ek{Xψτ .Y − XTβ0/ |X, S;γk}=
X{τ −Pk.Y< XTβ0 |X, S;γk/}, with α̂j, γ̂k and β̂k

L from steps 1, 2 and 3 plugged in.

2.5. Some remarks
The covariates X in scenario (a) for estimating marginal quantiles play the same role as the
auxiliary variables S in scenario (c). Although they are not the variables of main interest, they
help to explain the missingness mechanism and to build models for the distribution of the
response Y . In scenario (b), for simplicity, we did not consider any auxiliary variables when
describing the method proposed. The presence of auxiliary variables in this scenario pertains to
a direct application of the current method by adding those variables to all the models.

Although we have considered three scenarios only, the framework proposed covers other
practically important situations. For example, the application of our method to the case where
both the response of interest and part of the covariates are subject to missingness with or without
the presence of auxiliary variables is straightforward. A detailed coverage of this scenario is
omitted to avoid redundancy.

The method proposed is closely connected to the calibration idea in the survey sampling liter-
ature (e.g. Deville and Särndal (1992) and Wu and Sitter (2001)). The constraints in expression
(5) imply that

m∑
i=1

wiπ
j.Xi; α̂j/= θ̂

j
.α̂j/ .j =1, : : : , J/,

m∑
i=1

wi

[
1
L

L∑
l=1

ψτ{Yl
i .γ̂

k/− q̂k
L}

]
= η̂k

L.q̂k
L, γ̂k/ .k =1, : : : , K/:

Therefore, the weights wi introduce a calibration on the complete cases so that the weighted
average based on the complete cases matches the unweighted average based on the whole sam-
ple. Functions πj.X;αj/ and Ek{ψτ .Y − q0/ |X;γk} serve as the calibration variables here. In
survey sampling, calibration is used mainly to improve estimation efficiency by incorporating
known population information. In our case, the calibration mainly helps to achieve estima-
tion consistency if one model is correctly specified, with the unknown population information
consistently estimated by the unweighted sample average over the whole sample.

In scenarios (b) and (c) a possible issue is the compatibility between the model of interest
Qτ .Y |X/ = XTβ0.τ / and the working models for f.X2 |Y , X1/ or for f.Y |X, S/. The models
are incompatible if they do not correspond to a genuine distribution. Since f.Y |X/ is fully
determined by the quantitle process (Wei et al., 2012), the compatibility is actually between
f.Y |X/ and the working models. This issue is well known in the missing data literature (e.g.
Robins et al. (1995), Davidian et al. (2005) and Tsiatis (2006)). Tsiatis (2006) discussed some
methods to ensure model compatibility, but none of them seems to work very effectively here
for quantile estimation, unless the joint distribution of .Y , X1, X2/ in scenario (b) or .Y , X, S/

in scenario (c) is simple, such as a normal distribution. In practice, the compatibility issue
usually does not lead to a very serious consequence, because the models for f.X2 |Y , X1/ or
for f.Y |X, S/ are working models and do not have to be correctly specified. Our simulation
studies in Section 4 show that the method proposed still has a good numerical performance
when no working model is correct, consistent with existing findings for MR estimators for mean
regression (e.g. Han (2014b) and Chen and Haziza (2017)).

3. Asymptotic results

In this section, we establish the asymptotic properties of the estimators proposed, including
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consistency and asymptotic normality. We focus on scenario (a). Derivation for scenarios (b)
and (c) involves only straightforward modifications.

3.1. Scenario (a)
We impose the following regularity conditions.

Condition 1. The parameter space Q for q is compact and q0 is in the interior of Q.

Condition 2. P.Y � y/=∫ y
−∞ g.s/ds where 0 <g.·/<∞ in a neighbourhood of q0.

Condition 3. q0 is the unique τ th quantile.

Condition 4. E‖X‖4 <∞.

Condition 5. πj.X;αj/ has bounded derivatives in X up to the second order and is continu-
ously differentiable in αj; infX infαj πj.X;αj/> 0.

Conditions 1 and 2 are often assumed for quantile estimation; condition 3 guarantees the
identifiability; conditions 4 and 5 are needed when formulating Donsker classes for certain
sets of functions using empirical process theory. For commonly seen models for π.X/, such as
logistic regression, probit regression or other members of generalized linear models, a sufficient
condition for condition 5 is that the support for X is bounded and the parameter space for αj

is compact. Such a condition does not depend on the correctness of model specification and,
similarly to the positivity assumption for propensity score in the causal inference literature (e.g.
Rosenbaum and Rubin (1983)), does not impose a stringent restriction for implementation of
the proposed method in practice.

The following theorem states that the multiple robustness of the proposed estimator q̂L
MR:

q̂L
MR is consistent if any one of the working parametric models is correctly specified. The proof

is given in Appendix A.

Theorem 1. Under conditions 1–5, when P contains a correctly specified model for π.X/ or
F contains a correctly specified model for f.Y |X/, q̂L

MR →p q0 as n→∞.

We now derive the asymptotic distribution of q̂L
MR when P contains a correctly specified model

for π.X/, the typical setting for developing semiparametric theory for missing data analysis (e.g.
Tsiatis (2006)). We need further to impose the following regularity conditions.

Condition 6. Without loss of generality, we assume that π1.X;α1/ is the correct model for
π.X/ and

√
n.α̂1 −α1

Å/=n−1=2
n∑

i=1
E.Φ⊗2

1 /−1Φ1i +op.1/,

where Φ1 is the corresponding score function.

Condition 7. The matrix

GL
1 =E

{
gL

1 .αÅ, qÅ, γÅ/⊗2

π1.X;α1
Å/

}

is invertible, where gL
1 .αÅ, qÅ, γÅ/ is given by expression (9) in Appendix A.

Theorem 2. Under conditions 1–7,
√

n.q̂L
MR − q0/ has an asymptotic normal distribution

with mean 0 and variance var.Z1/, where
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Z1 =g.q0/−1{QL
1 .α1

0/−E.QL
1 ΦT

1 /E.Φ⊗2
1 /−1Φ1},

QL
1 .α1/= R

π1.α1/
{ψτ .Y −q0/−AL

1 .GL
1 /−1gL

1 .αÅ, qÅ, γÅ/},

AL
1 =E

{
ψτ .Y −q0/

π1.α1
0/

gL
1 .αÅ, gÅ, γÅ/T

}
:

3.2. Scenarios (b) and (c)
Because of the similarity between the regularity conditions that are needed for scenarios (b) and
(c) and those for scenario (a), we list only the conditions for scenario (b) and then the results for
scenarios (b) and (c). The sketched proofs for the results for scenario (b) are given in Appendix A
and the proofs for scenario (c) have been omitted.

Condition 8. The parameter space B for β is compact and β0 is in the interior of B.

Condition 9. P.Y � y/=∫ y
−∞ g.s/ds where 0<g.XTβ/<∞ for β in a neighbourhood of β0.

Condition 10. β0 is the unique τ th quantile regression coefficient.

Condition 11. E‖X‖4 <∞ and E{g.XTβ0/XXT} is invertible.

Condition 12. πj.Y , X1;αj/ has bounded derivatives in .Y , X1/ up to the second order and
is continuously differentiable in αj; inf .Y ,X1/ infαj πj.Y , X1;αj/> 0.

Condition 13. Assume that π1.Y , X1;α1/ is the correct model for π.Y , X1/ and

√
n.α̂1 −α1

Å/=n−1=2
n∑

i=1
E.Φ⊗2

2 /−1Φ2i +op.1/,

where Φ2 is the corresponding score function.

Condition 14. The matrix

GL
2 =E

{
gL

2 .αÅ, βÅ, γÅ/⊗2

π1.Y , X1;α1
Å/

}

is invertible, where gL
2 .αÅ, βÅ, γÅ/ is given by equation (29) in Appendix A.

For scenario (b) we have the following theoretical results.

Theorem 3. Under conditions 8–12, when P contains a correctly specified model for π.Y , X1/

or F contains a correctly specified model for f.X2 |Y , X1/, β̂L
MR →p β0 as n→∞.

Theorem 4. Under conditions 8–14
√

n.β̂L
MR −β0/ has an asymptotic normal distribution

with mean 0 and variance var.Z2/, where

Z2 =E{g.XTβ0/XXT}−1{QL
2 .α1

0/−E.QL
2 ΦT

2 /E.Φ⊗2
2 /−1Φ2},

QL
2 .α1/= R

π1.α1/
{Xψτ .Y −XTβ0/−AL

2 .GL
2 /−1gL

2 .αÅ, βÅ, γÅ/},

AL
2 =E

{
Xψτ .Y −XTβ0/

π1.α1
0/

gL
2 .αÅ, βÅ, γÅ/T

}
:

For scenario (c) we have the following results.
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Theorem 5. Under conditions similar to conditions 8–12 when P contains a correctly specified
model for π.X, S/ or F contains a correctly specified model for f.Y |X, S/, β̂L

MR →p β0 as
n→∞.

Theorem 6. Under conditions similar to conditions 8–14
√

n.β̂L
MR −β0/ has an asymptotic

normal distribution with mean 0 and variance var.Z3/, where

Z3 =E{g.XTβ0/XXT}−1{QL
3 .α1

0/−E.QL
3 ΦT

3 /E.Φ⊗2
3 /−1Φ3},

QL
3 .α1/= R

π1.α1/
{Xψτ .Y −XTβ0/−AL

3 .GL
3 /−1gL

3 .αÅ, βÅ, γÅ/},

AL
3 =E

{
Xψτ .Y −XTβ0/

π1.α1
0/

gL
3 .αÅ, βÅ, γÅ/T

}
,

gL
3 .αÅ, βÅ, γÅ/T =

(
π1.α1

Å/−θ1
Å, : : : ,πJ .αJ

Å/−θJ
Å,

1
L

L∑
l=1

Xψτ{Yl.γ1
Å/−XTβ1

Å}−η1
Å,

: : : ,
1
L

L∑
l=1

Xψτ{Yl.γK
Å /−XTβK

Å }−ηK
Å

)
,

and Φ3 is the score function corresponding to the estimation of α1.

In all the asymptotic distributions we have kept L finite, where L is the number of random
draws from the data distribution models. The asymptotic distributions when L → ∞ can be
easily derived on the basis of the results presented in this section.

Compared with existing methods for quantile estimation with missing data, all of which allow
only one model for the probability of missingness and/or one model for the data distribution, the
consistency results in this section show that our proposed method by accommodating multiple
working models has more protection on estimation consistency and thus provides a highly
desirable alternative. No existing method can achieve the same level of robustness as ours.
Results on asymptotic distribution show how the asymptotic variance depends on the multiple
working models. Similarly to the mean regression case (e.g. Han (2014b)), the dependence
is rather complex, which makes a general comparison of efficiency between estimators using
different working models very difficult. But the derivations provide some guidance on how the
empirical process theory is applied, and the results give formulations of the asymptotic variance,
both of which are important for investigations of efficiency under some specific situations such
as those which were considered in Han (2018) for mean regression.

For mean regression with missing data, the MR estimators are locally efficient (Han and
Wang, 2013; Han, 2014b, 2016a), i.e. these estimators achieve the semiparametric efficiency
bound when both the probability of missingness and the data distribution are correctly modelled.
For quantile regression with non-identically distributed error terms that is considered in this
paper, as pointed out in Chen et al. (2015), the semiparametric efficiency bound has not been
derived in the literature, and thus it is unclear whether our proposed estimators are locally
efficient. Deriving the efficiency bound is an interesting yet challenging topic that deserves
future investigation.

4. Simulation studies

4.1. Quantile regression with missing responses
We first consider quantile regression with missing responses when the covariates and some
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auxiliary variables are fully observed: the scenario in Section 2.4. The simulation model has three
covariates: X1 ∼exponential.1/, X2 ∼N.0, 1/ and X3 ∼Bernoulli.0:5/. Given the covariates, the
response Y is generated as Y =−1 +X1 +X2 +X3 + .1 +X1/εY and, given the covariates and
response, the auxiliary variable S is generated as S =−1+X1 +X2 +X3 −Y + .1+X1/εS , where
εY ∼N.0, 1/, εS ∼N.0, 1/ and X1, X2, X3, εY and εS are mutually independent. Here, the error
distribution of Y is heteroscedastic. The missingness mechanism for Y is given by logit{P.R=
1 |Y , X, S/} = 0:5 + 0:25X1 + 0:5X2 + 0:25X3 + 0:25S, which leads to a rate of missingness of
approximately 33%. For this simulation model, we have Qτ .Y |X/= .1, XT/β0.τ / with β0.τ /=
.−1+Qτ .εY /, 1+Qτ .εY /, 1, 1/T. Also, it is easy to verify that Y |X, S has a normal distribution
with mean −1+X1 +X2 +X3 −0:5S and variance .1+X1/2=2.

The correct models for π.X, S/ and f.Y |X, S/ are given by logit{π1.α1/} =α1
1 +α1

2X1 +
α1

3X2 +α1
4X3 +α1

5S and

f 1.γ1/= 1√
.2π/.γ1

6 +γ1
7X1/

exp
[

− {Y − .γ1
1 +γ1

2X1 +γ1
3X2 +γ1

4X3 +γ1
5S/}2

2.γ1
6 +γ1

7X1/2

]

respectively. The following two incorrect models are also considered in our simulation studies:

logit{π2.α2/}=α2
1 +α2

2X1 +α2
3X3,

f 2.γ2/= 1√
.2π/γ2

3

exp
[

− {Y − .γ2
1 +γ2

2S/}2

2.γ2
3/2

]
:

Note that f 2.γ2/ corresponds to the normal density function with mean γ2
1 +γ2

2S and constant
variance .γ2

3/2. We consider two sample sizes n=200 and n=500 and the results are summarized
on the basis of 1000 replications. We have done simulations based on both L= 10 and L= 50
but we report only results based on L = 10 as L = 50 led to very similar results. Tables 1, 2
and 3 in the on-line supplementary material contain results for τ = 0:25, 0.5, 0.75 respectively.
The IPW estimator β̂IPW solving n−1Σn

i=1Riπ̂.Xi, Si/
−1Xiψτ .Yi −XT

i β/≈0 and the imputation
estimator β̂L

IM solving equation (6) are also calculated to serve as the benchmark for comparison.
When only one model for π.X, S/ is used, β̂L

MR (i.e. MR-1000 and MR-0100 in the tables) has
a performance that is very similar to the corresponding β̂IPW (IPW-1000 and IPW-0100): both
have negligible bias and similar root-mean-square error (RMSE) and median absolute error
(MAE) when the correct model π1.α1/ is used, and similar bias, RMSE and MAE when the
incorrect model π2.α2/ is used. When only the correct model f 1.γ1/ is used, β̂L

MR (MR-0010)
and β̂L

IM (IM-0010) both have negligible bias, but the former has slightly larger RMSE and
MAE. When only the incorrect model f 2.γ2/ is used, β̂L

IM (IM-0001) has large bias due to
its inconsistency, but β̂L

MR (MR-0001) has surprisingly small bias as if it was consistent. An
explanation of this small bias will be given below.

When two or more models are used to construct β̂L
MR, the results suggest that β̂L

MR has
negligible bias whenever one model is correctly specified, either for π.X, S/ or for f.Y |X, S/.
This is in full agreement with our theory that β̂L

MR is MR. In addition, when β̂L
MR is consistent,

the particular models that were used seem to have little effect on the RMSE and MAE. When
only the incorrect models π2.α2/ and f 2.γ2/ are used, β̂L

MR (MR-0101) has surprisingly small
bias as if it was consistent.

The surprisingly small bias of β̂L
MR in the cases of MR-0001 and MR-0101 may be ex-

plained as follows. The equation E.π.X, S/−1[b.X, S/ − E{b.X, S/}] |R = 1/ = 0 holds for an
arbitrary function b.X, S/, assuming that relevant expectations exist. When b.X, S/ is taken
to be E2{Xψτ .Y − XTβ/ |X, S;γ2}, the conditional expectation of the estimating function
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Xψτ .Y − XTβ/ under the incorrect working model f 2.γ2/, the ŵi that were used for calcu-
lating β̂L

MR are still derived on the basis of a legitimate empirical version of the above equation.
Although in this case consistency of β̂L

MR can no longer be theoretically established, the numer-
ical performance may still be reasonably good because, even being incorrect, the working model
for f.Y |X, S/ still captures a large degree of dependence of Y on .X, S/, and the resulting ŵi make
good use of this modelled dependence through calibration. It is the calibration of the estimating
functions of β that helps to reduce the bias of β̂L

MR. Calibrating moments of covariates alone
may not help much. The small bias of MR estimators using incorrectly specified data distribution
models has also been observed for mean regression (Han, 2014b, 2016a; Chen and Haziza, 2017).

4.2. Quantile regression with missing covariates
We now consider quantile regression with missing covariates: the scenario in Section 2.3. There
are two covariates: X1 ∼ exponential.0:2/ and X2 ∼N.0, 1/. Given the covariates, the response Y

is generated as Y =1+X1 +X2 + .1+X1/εY , where εY ∼N.0, 1/ and X1, X2 and εY are mutually
independent. Here the error distribution of Y is again heteroscedastic. The missingness mech-
anism for X2 is given by logit{P.R = 1 |Y , X/}=−2 + 0:5X1 + 0:25Y , under which the rate of
missingness is approximately 38%. For this simulation model, we have Qτ .Y |X/= .1, XT/β0.τ /

with β0.τ /= .1 +Qτ .εY /, 1 +Qτ .εY /, 1/T. It is easy to verify that X2 |Y , X1 has a normal dis-
tribution with mean .−1−X1 +Y/={1+ .1+X1/2} and variance .1+X1/2={1+ .1+X1/2}.

For π.X1, Y/ we consider two working models logit{π1.α1/} = α1
1 + α1

2X1 + α1
3Y and

logit{π2.α2/}=α2
1 +α2

2Y , where π2.α2/ is incorrectly specified. For f.X2 |Y , X1/, a correctly
specified model would replace all numbers in the mean and variance by unknown parameters,
but such a complex model would rarely, if ever, be considered in practice. Besides, estimation of
those parameters would be difficult because of the complex dependence on Y and X1 and that
the variance needs to be positive. Instead, in practice one would more probably specify a model
where the mean depends on Y and X1 linearly and the variance is constant. Therefore, in the
simulation we consider an incorrect model

f 2.γ2/= 1√
.2π/γ2

4

exp
[

− {X2 − .γ2
1 +γ2

2X1 +γ2
3Y/}2

2.γ2
4/2

]
,

which is an ordinary least square regression of X2 on Y and X1. To illustrate the multiple-
robustness property of the estimator proposed, we also consider a correct model f 1.γ1/ =
f.X2 |Y , X1/ with γ1 completely known. This correct model is also used for the imputation
estimator so it is still a fair comparison between our proposed estimator and the imputation
estimator.

Table 4 in the on-line supplementary material contains simulation results for τ = 0:25 and
τ = 0:75 summarized on the basis of 1000 replications with n = 500 and L = 10. It is seen
that, using the same incorrect model π2.α2/ or f 2.γ2/, the IPW estimator IPW-0100 or the
imputation estimator IM-0001 has a considerably worse performance than the MR estimator
MR-0100 or MR-0001 respectively. In other cases the MR estimators have small bias, even for
MR-0101 where only the two incorrect models π2.α2/ and f 2.γ2/ are used, which is consistent
with findings from the missing response setting and from existing literature on mean regression
with missing data.

5. Data application

As an application of the method proposed, we analyse the data that were collected on 2139
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human immunodeficiency virus infected subjects enrolled in ACTG protocol 175 (Hammer
et al., 1996). The ACTG 175 study evaluates treatment with either a single nucleoside or two
nucleosides in human immunodeficiency virus infected subjects whose CD4 cell counts (a mea-
sure of immunologic status) are from 200 to 500 mm−3. Following the analysis of Davidian et al.
(2005) and Zhang et al. (2008), we consider two arms for the treatment: the arm with standard
zidovudine, ZDV, monotherapy (ZDV only) and the arm with three newer treatments (ZDV+
didanosine, ddI, ZDV+ zalcitabine, ddC, and ddI only). The two arms have 532 and 1607 sub-
jects respectively. We study the treatment arm effect (trt, 0≡ZDV only) on the τ th quantile of
the CD4 cell count measured at 96 ± 5 weeks post baseline, CD496, adjusting for the baseline
CD4 cell count, CD40, and certain baseline characteristics, including continuous covariates age
(age, years) and weight (weight, kilograms) and binary covariates race (race; 0≡white), gender
(gender; 0≡ female), antiretroviral history (history; 0≡naive; 1≡ experienced) and whether the
subject is off treatment before 96 weeks (offtrt; 0 ≡ no). Therefore, we want to fit the linear
quantile regression model

Qτ .CD496 |X/=β1.τ /+β2.τ /trt+β3.τ /CD40 +β4.τ /age+β5.τ /weight+β6.τ /race

+β7.τ /gender+β8.τ /history+β9.τ /offtrt:

The data can be found in the R package speff2trial. The average age of the subjects is 35
years old with a standard deviation 8.7 years old. There are 1522 white subjects and 617 non-
whites, and 1171 males and 368 females. Among the patients, 1253 have antiretroviral history,
and 776 are off treatment before 96 weeks.

The variable CD496 is missing for approximately 37% of the subjects because of dropout
during the study. However, at baseline and during the follow-up, full measurements on additional
variables correlated with CD496 are obtained. These include the CD4 cell count at 20±5 weeks,
CD420, and the CD8 cell count, another measure of immunologic status, at both the baseline,
CD80, and 20 ± 5 weeks, CD820. We use these as the auxiliary variables. As argued by Davidian
et al. (2005), it is reasonable to assume that CD496 is missing at random.

Fig. 1 contains histograms for both CD496 and its logarithm. Although the distribution of
CD496 is apparently right skewed, the log-transformation does not result in any better symmetry,
and thus both make the normality assumption inappropriate. For analysis, one could assume
either a left-truncated normal distribution for CD496 or a right-truncated normal distribution
for log.CD496/, and there is no apparent reason for favouring one of them. With these two
candidate models, the imputation method requires choosing one from them, but our proposed
method can simultaneously accommodate both. In our analysis, we assume that CD496 has a
normal distribution left truncated at 0 and log.CD496/ has a normal distribution right truncated
at the logarithm of the maximum of observed CD496, where both means depend on the main
effects of the eight covariates X and the three auxiliary variables S. The truncated regression
models are fitted by using the R package truncreg. The π.X, S/ is modelled by a logistic
regression containing all main effects of X and S.

Final data analysis results for τ =0:25, 0.50, 0.75 are summarized in Table 1. To make com-
parisons, results for the IPW estimator, the imputation estimators with truncated normal distri-
butions for CD496 (imputation estimator 1) and log.CD496/ (imputation estimator 2), and the
complete-case analysis are also included. For the two imputation estimators and our proposed
estimator, the number of random draws is taken to be L = 20. The standard errors of all the
estimators are calculated by using the bootstrap method with 200 resamplings.

From Table 1, for all three values of τ and all methods under comparison, patients receiving
the three newer treatments have a significantly higher CD4 cell count at 96±5 weeks adjusting
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Fig. 1. Histograms of (a) CD496 and (b) log(CD496) based on complete cases for the ACTG 175 data
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for the baseline CD4 cell count and other covariates. In other words, the three newer treatments
significantly slow the progression of human immunodeficiency virus disease compared with
the treatment of ZDV alone. Our proposed method and the IPW method produce very similar
estimates for the treatment arm effect, and the estimated effect is smaller for patients whose
CD4 cell count at 96±5 weeks is at the third quartile. Imputation estimator 1 fails to catch the
difference in treatment arm effect for different quantiles, and imputation estimator 2 gives an
increasing estimated effect as τ varies from 0.25 to 0.75: a trend that is opposite to what the
MR and the IPW methods reveal. In addition, the two imputation estimates for some regression
coefficients are quite different occasionally, showing the sensitivity of the imputation method to
the selection of working models. The complete-case analysis seems to overestimate the treatment
arm effect.

Given the disparity between the two imputation estimates and between them and the MR and
the IPW estimates, and also given the good performance of the MR estimator under complete
model misspecification as shown in our simulation studies, results based on our MR method
should be more trustworthy. The closeness between the MR and the IPW estimates indicates
the suitability of the logistic regression that we used to model π.X, S/. However, when τ =0:5,
the MR method detects significance in the effect of gender that the IPW method fails to detect.

6. Discussion

We have proposed a general framework for quantile estimation with missing data and have
investigated the estimation method in three scenarios covering both marginal quantile estimation
and quantile regression with missing response or covariates. The estimators proposed are robust
against possible model misspecifications. The method proposed can be easily generalized to
many other missing data scenarios that were not discussed here. As shown and explained in
Section 4, the estimators proposed still have relatively good performance when no model is
correctly specified due to the nature of calibration. This is very appealing in practice, as the true
data-generating process is usually unknown, which makes the conclusions drawn based on our
method more trustworthy compared with those based on methods that are sensitive to model
misspecifications.

It is well known that the IPW approach is sensitive to near-zero values of the estimated
missingness probability (e.g. Kang and Schafer (2007), Robins et al. (2007) and Cao et al.
(2009)). Our proposed estimators mitigate this issue. First, unlike the IPW approach where the
inverse of the estimated probability of missingness is used as the weight, our method uses the
probability of missingness as the calibration variable. Second, through maximizing Πm

i=1wi where
the wi are positive and sum to 1, the occurrence of extreme weights is prevented. This is because
Πm

i=1wi increases if the values of wi become more evenly distributed rather than concentrating
on a few subjects. Therefore, it is unlikely that some subjects receive extremely large weights that
dominate others. Han (2014b) provided a detailed numerical investigation of this property for
mean regression with missing responses.

Our method is more general than the recent methods in Wei et al. (2012) and Chen et al. (2015).
The method of Wei et al. (2012) deals with missing covariate problems where the missingness
depends only on the other fully observed covariates but not on the response, whereas our method
allows the dependence on both. The method of Chen et al. (2015) requires the fully observed
components of the data vector to have the same distribution across all subjects. This requirement
is not needed by our method. Because of these limitations, neither the method of Wei et al.
(2012) nor that of Chen et al. (2015) applies to the simulation settings that were considered in
Section 4.
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For the method proposed, the dimension of ρ̂ minimizing equation (3) is the same as the
number of working models used. The calculation of ρ̂ is affected when this number increases,
especially if some models are highly correlated. As a result, the numerical performance of β̂L

MR
may be affected. Therefore, although theoretically the method proposed can accommodate an
arbitrary number of models as long as this number does not increase with the sample size, for
the purpose of numerical performance, the models should still be carefully chosen so that only
the most reasonable are used. Detailed investigation on how the numerical performance changes
as the number of models increases will be a topic of future research.

In this paper, the working models were all parametric. As one referee pointed out, the ro-
bustness could be further improved by using working models that are non-parametric or built
on the basis of machine learning techniques. In this case, the final estimator should still be
consistent when one working model is correctly specified, but the rate of convergence for the
working models will affect the asymptotic distribution (e.g. Robins et al. (1995)). We shall make
a future investigation on this topic.
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Appendix A

A.1. Proof of theorem 1
Under condition 3, E{ψτ .Y −q/}=0 has q0 as the unique solution, which guarantees the identifiability of
q0. On the basis of theorem 5.9 in van der Vaart (1998), we need to check only the uniform convergence

sup
|q−q0|<ε

∣∣∣∣ m∑
i=1

ŵiψτ .Yi −q/−E{ψτ .Y −q/}
∣∣∣∣=op.1/: .7/

We first look at the case where P contains a correctly specified model forπ.X/. Without loss of generality, let
π1.X;α1/ be the correctly specified model, and let α1

0 denote the true value of α1 so that π1.X;α1
0/=π.X/.

It is easy to check that

1
m

m∑
i=1

ĝL
1i.α̂, q̂L, γ̂/

1+ρTĝL
1i.α̂, q̂L, γ̂/

= θ̂
1
.α̂1/

m

m∑
i=1

ĝL
1i.α̂, q̂L, γ̂/=π1

i .α̂1/

1+ .θ̂
1
.α̂1/ρ1 −1, θ̂

1
.α̂1/ρ2, : : : , θ̂

1
.α̂1/ρJ+K/T ĝL

1i.α̂, q̂L, γ̂/=π1
i .α̂1/

:

Therefore, if we define λ̂1 = θ̂
1
.α̂1/ρ̂1 −1 and λ̂t = θ̂

1
.α̂1/ρ̂t , t =2, : : : , J +K, then λ̂

T = .λ̂1, : : : , λ̂J+K/ solves

1
m

m∑
i=1

ĝL
1i.α̂, q̂L, γ̂/=π1

i .α̂1/

1+λTĝL
1i.α̂, q̂L, γ̂/=π1

i .α̂1/
=0, .8/

and
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ŵi = 1
m

θ̂
1
.α̂1/=π1

i .α̂1/

1+ λ̂
T

ĝL
1i.α̂, q̂L, γ̂/=π1

i .α̂1/
:

Now let α
j
Å, γk

Å, qk
Å, θj

Å and ηk
Å denote the probability limits of α̂j , γ̂k, q̂k

L, θ̂
j
.α̂j/ and η̂k

L.q̂k
L, γ̂k/ respec-

tively, as n →∞. Note that qk
Å and ηk

Å do not depend on L. It is clear that α1
Å =α1

0, θj
Å =E{πj.α

j
Å/} and

ηk
Å =E[ψτ{Yl.γk

Å/−qk
Å}]. Write αT

Å ={.α1
Å/T, : : : , .αJ

Å/T}, γT
Å ={.γ1

Å/T, : : : , .γK
Å/T}, qT

Å = .q1
Å, : : : , qK

Å/ and

gL
1 .αÅ, qÅ, γÅ/T =

(
π1.α1

Å/−θ1
Å, : : : ,πJ .αJ

Å/−θJ
Å,

1
L

L∑
l=1
ψτ{Yl.γ1

Å/−q1
Å}−η1

Å, : : : ,

1
L

L∑
l=1
ψτ{Yl.γK

Å/−qK
Å}−ηK

Å

)
: .9/

Since

E

{
R

π.X/
gL

1 .αÅ, qÅ, γÅ/

}
=0

and α1
Å =α1

0, 0 is the solution to

E

{
RgL

1 .αÅ, qÅ, γÅ/=π1.α1
Å/

1+λTgL
1 .αÅ, qÅ, γÅ/=π1.α1

Å/

}
=0

as an equation of λ. Thus, from the theory of empirical likelihood (e.g. Owen (2001)), λ̂=op.1/.
Note that

sup
|q−q0|<ε

∣∣∣∣ m∑
i=1

ŵiψτ .Yi −q/−E{ψτ .Y −q/}
∣∣∣∣� sup

|q−q0|<ε

∣∣∣∣ m∑
i=1

ŵiψτ .Yi −q/− 1
n

n∑
i=1

Ri

π1
i .α̂1/

ψτ .Yi −q/

∣∣∣∣ .10/

+ sup
|q−q0|<ε

∣∣∣∣ 1n
n∑

i=1

Ri

π1
i .α̂1/

ψτ .Yi −q/− 1
n

n∑
i=1

Ri

π1
i .α1

0/
ψτ .Yi −q/

∣∣∣∣
.11/

+ sup
|q−q0|<ε

∣∣∣∣ 1n
n∑

i=1

Ri

π1
i .α1

0/
ψτ .Yi −q/−E{ψτ .Y −q/}

∣∣∣∣ : .12/

Since θ̂
1
.α̂1/−m=n=op.1/, we have

ŵi = 1
n

1

π1
i .α̂1/

+op.1/;

therefore inequality (10) is op.1/, and

.11/� sup
|q−q0|<ε

∣∣∣∣ 1n
n∑

i=1

Riψτ .Yi −q/

π1
i .α1

0/
2

@π1
i .α/

@αT

∣∣∣∣
α=α1

0

∣∣∣∣∣ |α̂1 −α1
0|=op.1/:

For expression (12), we have

sup
|q−q0|<ε

∣∣∣∣ 1n
n∑

i=1

Riψτ .Yi −q/

π1
i .α1

0/
−E{ψτ .Y −q/}− 1

n

n∑
i=1

Riψτ .Yi −q0/

π1
i .α1

0/
+E{ψτ .Y −q0/}

∣∣∣∣=op.n−1=2/,

which is straightforward if we can prove two results: first,{
Ri

π1
i .α1

0/
ψτ .Yi −q/ : |q−q0|< ε

}

forms a Donsker class and, second,
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Ri

π1
i .α1

0/
ψτ .Yi −q0/

is L2 continuous at q0.
For the first result, we define E1 ={I.Y<q/, |q−q0 | < ε} and E2 ={πj.α

j
0/, ∀j, X∈X}, where X ={X :

E‖X‖4 � C} and C is a large positive number. Note that E1 is a Vapnik–Chervonenkis class of functions
(by theorem 2.6.4 of van der Vaart and Wellner (1996)) with bounded uniform entropy integral. So E1
belongs to the Donsker class. For E2, note that the set {X : X ∈X} can be covered by N1 balls with L2-
radius ε1 such that N1 � 1=ε1, where ‘� ’ means that the left-hand side of it is bounded by a positive
constant multiplying the right-hand side of it. Since πj.X;αj/ has bounded derivatives up to order 2, for
any X, there is an X̃ which belongs to the same L2-ball as X and ‖πj.X;αj/−πj.X̃;αj/‖L2 � ‖X − X̃‖L2 .
Therefore, N[].ε, E2, L2/ � 1=ε, and E2 has bounded uniform entropy integral and forms a Donsker class.
Since Ri is bounded, from the preservation of Donsker classes (corollary 9.32 of Kosorok (2008)),{

Ri

π1
i .α1

0/
ψτ .Yi −q/ : |q−q0|< ε

}

forms a Donsker class.
For the second result, note that

sup
|q−q0|<ε

E

{
Riψτ .Yi −q/

π1
i .α1

0/
− Riψτ .Yi −q0/

π1
i .α1

0/

}2

�2 sup
|q−q0|<ε

E{π1
i .α1

0/}−2g.q0/
2|q−q0|2 →0:

Therefore, we have shown that

Ri

π1
i .α1

0/
ψτ .Yi −q0/

is L2 continuous at q0. Combining with the fact that

1
n

n∑
i=1

Ri

π1
i .α1

0/
ψτ .Yi −q0/=Op.n−1=2/

and E{ψτ .Y −q0/}=0, we have that expression (12) is Op.n−1=2/ and we obtain the uniform convergence.
Now we consider the case where F contains a correctly specified model for f.Y |X/. Without loss of

generality, let f 1.Y |X;γ1/ be the correctly specified model, and let γ1
0 denote the true value of γ1 so that

f 1.Y |X;γ1
0/=f.Y |X/. We then have γ1

Å =γ1
0. In addition, we have γ̂1 →p γ1

0 and q̂1
L →p q0. Similarly to the

situation where P contains a correctly specified model for π.X/, we have ĝL
1 .α̂, q̂L, γ̂/→p gL

1 .αÅ, qÅ, γÅ/
and we denote ρÅ as the probability limit of ρ̂.

Note that one of the constraints in expression (5) is actually

m∑
i=1

ŵi

[
1
L

L∑
l=1
ψτ{Yl

i .γ̂
1/− q̂1

L}
]

= 1
n

n∑
i=1

[
1
L

L∑
l=1
ψτ{Yl

i .γ̂
1/− q̂1

L}
]

,

which leads the left-hand side in equation (7) to

sup
|q−q0|<ε

∣∣∣∣ m∑
i=1

ŵiψτ .Yi −q/−E{ψτ .Y −q/}
∣∣∣∣

� sup
|q−q0|<ε

∣∣∣∣ m∑
i=1

ŵi

[
ψτ .Yi −q/− 1

L

L∑
l=1
ψτ{Yl

i .γ̂
1/− q̂1

L}
]∣∣∣∣+ sup

|q−q0|<ε
|η̂1

L −E{ψτ .Y −q/}|

� sup
|q−q0|<ε

∣∣∣∣ m∑
i=1

ŵi

[
ψτ .Yi −q/− 1

L

L∑
l=1
ψτ{Yl

i .γ̂
1/− q̂1

L}
]

− 1
m

1
1+ρT

ÅgL
1 .αÅ, qÅ, γÅ/

n∑
i=1

Ri

[
ψτ .Yi −q/− 1

L

L∑
l=1
ψτ{Yl

i .γ̂
1/− q̂1

L}
]∣∣∣∣ .13/
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+
∣∣∣∣ 1
m

1
1+ρT

ÅgL
1 .αÅ, qÅ, γÅ/

n∑
i=1

Ri

1
L

L∑
l=1

[ψτ{Yl
i .γ̂

1/− q̂1
L}−ψτ{Yl

i .γ
1
0/−q0}]

∣∣∣∣ .14/

+ sup
|q−q0|<ε

∣∣∣∣ 1
m

1
1+ρT

ÅgL
1 .αÅ, qÅ, γÅ/

n∑
i=1

Ri

[
ψτ .Yi −q/− 1

L

L∑
l=1
ψτ{Yl

i .γ
1
0/−q0}

]

− n

m

1
1+ρT

ÅgL
1 .αÅ, qÅ, γÅ/

E[R{ψτ .Y −q/−ψτ .Y −q0/}]

∣∣∣∣ .15/

+ sup
|q−q0|<ε

∣∣∣∣ n

m

1
1+ρT

ÅgL
1 .αÅ, qÅ, γÅ/

E[R{ψτ .Y −q/−ψτ .Y −q0/}]

∣∣∣∣ .16/

+
∣∣∣∣ 1n

n∑
i=1

1
L

L∑
l=1
ψτ{Yl

i .γ̂
1/− q̂1

L}− 1
n

n∑
i=1

1
L

L∑
l=1
ψτ{Yl

i .γ
1
0/−q0}

∣∣∣∣ .17/

+
∣∣∣∣ 1n

n∑
i=1

1
L

L∑
l=1
ψτ{Yl

i .γ
1
0/−q0}−E{ψτ .Y −q0/}

∣∣∣∣ .18/

+ sup
|q−q0|<ε

|E{ψτ .Y −q0/}−E{ψτ .Y −q/}|: .19/

We can show that expression (13) is op.1/ by using the idea of proving result (11) and the derivatives and
subderivatives (He and Shao, 1996); expression (14) is op.1/ and expression (17) is op.1/ by using the idea
of proving result (11) and subderivatives; expression (16) is op.1/ and expression (19) is op.1/ by condition
3; expression (18) is op.1/ by the weak law of large numbers. For expression (15), similarly to the techniques
that were used for proving result (12), it follows that expression (15) is Op.n−1=2/ by noting that{

Ri[ψτ .Yi −q/− 1
L

L∑
l=1
ψτ{Yl

i .γ
1
0/−q0}]; |q−q0|< ε

}

forms a Donsker class and that

Ri

[
ψτ .Yi −q0/− 1

L

L∑
l=1
ψτ{Yl

i .γ
1
0/−q0}

]

is L2 continuous at q0. This completes the proof.

A.2. Proof of theorem 2
First, from expression (8) we have

0 = 1
n

n∑
i=1

Ri

ĝL
1i.α̂, q̂L, γ̂/=π1

i .α̂1/

1+λTĝL
1i.α̂, q̂L, γ̂/=π1

i .α̂1/
− 1

n

n∑
i=1

Ri

ĝL
1i.α̂, q̂L, γ̂/

π1
i .α̂1/

.20/

+ 1
n

n∑
i=1

Ri

ĝL
1i.α̂, q̂L, γ̂/

π1
i .α̂1/

− 1
n

n∑
i=1

Ri

ĝL
1i.αÅ, q̂L, γ̂/

π1
i .α1

Å/
.21/

+ 1
n

n∑
i=1

Ri

ĝL
1i.αÅ, q̂L, γ̂/

π1
i .α1

Å/
− 1

n

n∑
i=1

Ri

ĝL
1i.αÅ, qÅ, γ̂/

π1
i .α1

Å/
.22/

+ 1
n

n∑
i=1

Ri

ĝL
1i.αÅ, qÅ, γ̂/

π1
i .α1

Å/
− 1

n

n∑
i=1

Ri

ĝL
1i.αÅ, qÅ, γÅ/

π1
i .α1

Å/
.23/

+ 1
n

n∑
i=1

Ri

ĝL
1i.αÅ, qÅ, γÅ/

π1
i .α1

Å/
:
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Note that a regular Taylor series expansion can be applied to expressions (20) and (21). For expression
(20), we have

.20/=− 1
n

n∑
i=1

Ri

ĝL
1i.α̂, q̂L, γ̂/⊗2

π1
i .α̂1/2

λ̂+op.n−1=2/:

For expression (21), denote Ti.α, q, γ/= ĝL
1i.α, q, γ/=π1

i .α1/. Note that

@Ti.αÅ, q̂L, γ̂/

@α1
= π1

i .α1
Å/@ĝL

1i.αÅ, q̂L, γ̂/=@α1 − ĝL
1i.αÅ, q̂L, γ̂/.@π1

i .α1
Å/=@α1/T

π1
i .α1

Å/2
,

where @ĝL
1i.0, αÅ, q̂L, γ̂/=@α1 has non-zero values only in the first row, and

@Ti.αÅ, q̂L, γ̂/

@αj
= 1
π1

i .α1
Å/

@ĝL
1i.αÅ, q̂L, γ̂/

@αj
,

where @ĝL
1i.αÅ, q̂L, γ̂/=@αj has non-zero values only in the jth row, j =2, : : : , J , we have

.21/=− 1
n

n∑
i=1

Ri

ĝL
1i.αÅ, q̂L, γ̂/.@π1

i .α1
Å/=@α1/T

π1
i .α1

Å/2
.α̂1 −α1

Å/+op.n−1=2/:

For expression (22), similarly to result (12), we can show that {RiTi.αÅ, q, γ̂/ : ‖q − qÅ‖ < ε} forms a
Donsker class and RiTi.αÅ, qÅ, γ̂/ is L2 continuous at qÅ. Therefore, we have

.22/= 1
n

n∑
i=1

@E{RiTi.αÅ, qÅ, γ̂/}
@q

.q̂ −qÅ/+op.n−1=2/:

For expression (23), we can show that {RiTi.αÅ, qÅ, γ/ :‖γ −γÅ‖< ε} forms a Donsker class and RiTi.αÅ,
qÅ, γÅ/ is L2 continuous at γÅ. Therefore, we have

.23/= 1
n

n∑
i=1

@E{RiTi.αÅ, qÅ, γÅ/}
@γ

.γ̂ −γÅ/+op.n−1=2/:

It is straightforward to see that both E[RiTi.αÅ, qÅ, γ̂/] and E[RiTi.αÅ, qÅ, γÅ/] are 0. Therefore, both
expression (22) and expression (23) are 0s. Hence, by defining

ML
1 =E

{
gL

1 .αÅ, qÅ, γÅ/.@π1.α1
Å/=@α1/T

π1.α1
Å/

}

and from condition 7 we have

√
nλ̂= .GL

1 /−1

{
n−1=2

n∑
i=1

Ri −π1
i .α1

Å/

π1
i .α1

Å/
gL

1i.αÅ, qÅ, γÅ/−n−1=2
n∑

i=1
ML

1 E.Φ⊗2
1 /−1Φ1i

}
+op.1/:

Next, note that

0= 1
n

n∑
i=1

Ri=π
1
i .α̂1/

1+ λ̂
T

ĝL
1i.α̂, q̂L, γ̂/=π1

i .α̂1/
ψτ .Yi − q̂L

MR/

= 1
n

n∑
i=1

Ri=π
1
i .α̂1/

1+ λ̂
T

ĝL
1i.α̂, q̂L, γ̂/=π1

i .α̂1/
ψτ .Yi − q̂L

MR/− 1
n

n∑
i=1

Ri

π1
i .α̂1/

ψτ .Yi − q̂L
MR/ .24/

+ 1
n

n∑
i=1

Ri

π1
i .α̂1/

ψτ .Yi − q̂L
MR/− 1

n

n∑
i=1

Ri

π1
i .α1

Å/
ψτ .Yi − q̂L

MR/ .25/

+ 1
n

n∑
i=1

Ri

π1
i .α1

Å/
ψτ .Yi − q̂L

MR/− 1
n

n∑
i=1

Ri

π1
i .α1

Å/
ψτ .Yi −q0/ .26/

+ 1
n

n∑
i=1

Ri

π1
i .α1

Å/
ψτ .Yi −q0/:
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It can be shown that

.24/=−
{

1
n

n∑
i=1

Ri

ψτ .Yi − q̂L
MR/

π1
i .α̂1/2

ĝL
1i.α̂, q̂L, γ̂/T

}
λ̂+op.n−1=2/,

.25/=−
{

1
n

n∑
i=1

Riψτ .Yi − q̂L
MR/

π1
i .α1

Å/2

(
@π1

i .α1
Å/

@α1

)T}
.α̂1 −α1

Å/+op.n−1=2/

and

.26/=−g.q0/.q̂
L
MR −q0/+op.n−1=2/:

Write

BL
1 =E

{
ψτ .Y −q0/

π1.α1
0/

(
@π1.α1

0/

@α1

)T}
;

we then have

g.q0/
√

n.q̂L
MR −q0/=−AL

1

√
nλ̂−BL

1

√
n.α̂1 −α1

Å/+n−1=2
n∑

i=1

Riψτ .Yi −q0/

π1
i .α1

0/
+op.1/

=n−1=2
n∑

i=1
[QL

1i.α
1
0/−{BL

1 −AL
1 .GL

1 /−1ML
1 }E.Φ⊗2

1 /−1Φ1i]+op.1/:

From the generalized information equality (Newey, 1990), we can show that

BL
1 −AL

1 .GL
1 /−1ML

1 =−E

{
@QL

1 .α1
0/

@α1

}
=E.Q1ΦT

1 /,

and finally that

g.q0/
√

n.q̂L
MR −q0/=n−1=2

n∑
i=1

{QL
1i.α

1
0/−E.QL

1 Φ
T
1 /E.Φ⊗2

1 /−1Φ1i}+op.1/:

This completes the proof.

A.3. Sketched proof of theorem 3
On the basis of theorem 5.9 of van de Vaart (1998), it is enough to check the uniform convergence

sup
‖β−β0‖<ε

∣∣∣∣ m∑
i=1

ŵiXiψτ .Yi −XT
i β/−E{Xψτ .Y −XTβ/}

∣∣∣∣=op.1/: .27/

For the case where P contains a correctly specified model for π.Y , X1/, let π1.Y , X1;α1/ be the correctly
specified model, and let α1

0 denote the true value of α1 so that π1.Y , X1;α1
0/=π.Y , X1/. Let α

j
Å, γk

Å, βk
Å,

θ
j
Å and ηk

Å denote the probability limits of α̂j , γ̂k, β̂k
L, θ̂

j
.α̂j/ and η̂k

L.β̂k
L, γ̂k/ respectively, as n →∞. Note

that βk
Å and ηk

Å do not depend on L. It is clear that α1
Å =α1

0, θj
Å =E{πj.α

j
Å/} and ηk

Å =E[Xl.γk
Å/ψτ{Y −

Xl.γk
Å/Tβk

Å}]. Define λ̂1 = θ̂
1
.α̂1/ρ̂1 −1 and λ̂t = θ̂

1
.α̂1/ρ̂t , t =2, : : : , J +K. Then λ̂

T = .λ̂1, : : : , λ̂J+K/ solves

1
m

m∑
i=1

ĝL
2i.α̂, β̂L, γ̂/=π1

i .α̂1/

1+λTĝL
2i.α̂, β̂L, γ̂/=π1

i .α̂1/
=0 .28/

and

ŵi = 1
m

θ̂
1
.α̂1/=π1

i .α̂1/

1+ λ̂
T

ĝL
2i.α̂, β̂L, γ̂/=π1

i .α̂1/
:
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Write αT
Å ={.α1

Å/T, : : : , .αJ
Å/T}, γT

Å ={.γ1
Å/T, : : : , .γK

Å/T}, βT
Å = ..β1

Å/T, : : : , .βK
Å/T/ and

gL
2 .αÅ, βÅ, γÅ/T =

(
π1.α1

Å/−θ1
Å, : : : ,πJ .αJ

Å/−θJ
Å,

1
L

L∑
l=1

Xl.γ1
Å/ψτ{Y −Xl.γ1

Å/Tβ1
Å}−η1

Å, : : : ,

1
L

L∑
l=1

Xl.γK
Å/ψτ{Y −Xl.γK

Å/TβK
Å}−ηK

Å

)
: .29/

From the theory of empirical likelihood (e.g. Owen (2001)) we have λ̂=op.1/. Observe that

sup
‖β−β0‖<ε

∣∣∣∣ m∑
i=1

ŵiXiψτ .Yi −XT
i β/−E{Xψτ .Y −XTβ/}

∣∣∣∣
� sup

‖β−β0‖<ε

∣∣∣∣ m∑
i=1

ŵiXiψτ .Yi −XT
i β/− 1

n

n∑
i=1

Ri

π1
i .α̂1/

Xiψτ .Yi −XT
i β/

∣∣∣∣ .30/

+ sup
‖β−β0‖<ε

∣∣∣∣ 1n
n∑

i=1

Ri

π1
i .α̂1/

Xiψτ .Yi −XT
i β/− 1

n

n∑
i=1

Ri

π1
i .α1

0/
Xiψτ .Yi −XT

i β/

∣∣∣∣ .31/

+ sup
‖β−β0‖<ε

∣∣∣∣ 1n
n∑

i=1

Ri

π1
i .α1

0/
Xiψτ .Yi −XT

i β/−E{Xψτ .Y −XT
i β/}

∣∣∣∣ : .32/

Similarly to the arguments for expressions (10) and (11), we have that expression (30) is op.1/ and that
expression (31) is op.1/. Similarly to the techniques that were used for proving result (12), it follows that
expression (32) is Op.n−1=2/ by the facts that{

Ri

π1
i .α1

0/
Xiψτ .Yi −XT

i β/ :‖β−β0‖< ε

}

forms a Donsker class and that

Ri

π1
i .α1

0/
Xiψτ .Yi −XT

i β/

is L2 continuous at β0. Therefore, result (27) holds.
For the case where F contains a correctly specified model for f.X2 |Y , X1/, let f 1.X2 |Y , X1;γ1/ be the

correctly specified model, and let γ1
0 denote the true value of γ1 so that f 1.X2 |Y , X1;γ1

0/=f.X2 |Y , X1/.
We obtain γ̂1 →p γ1

0, γ1
Å =γ1

0, β̂1
L →p β0 and ĝL

2 .α̂, β̂L, γ̂/→p gL
2 .αÅ, βÅ, γÅ/. Denote ρÅ as the probability

limit of ρ̂ and Å =ρT
ÅgL

2 .αÅ, βÅ, γÅ/. We have

sup
‖β−β0‖<ε

∣∣∣∣ m∑
i=1

ŵiXiψτ .Yi −XT
i β/−E{Xψτ .Y −XTβ/}

∣∣∣∣
� sup

‖β−β0‖<ε

∣∣∣∣ m∑
i=1

ŵi

[
Xiψτ .Yi −XT

i β/− 1
L

L∑
l=1

Xl
i.γ̂

1/ψτ{Yi −Xl
i.γ̂

1/Tβ̂
1
L}
]

− 1
m

1
1+Å

n∑
i=1

Ri

[
Xiψτ .Yi −XT

i β/− 1
L

L∑
l=1

Xl
i.γ̂

1/ψτ{Yi −Xl
i.γ̂

1/Tβ̂
1
L}
]∣∣∣∣ .33/

+
∣∣∣∣ 1
m

1
1+Å

n∑
i=1

Ri

L

L∑
l=1

[Xl
i.γ̂

1/ψτ{Yi −Xl
i.γ̂

1/Tβ̂
1
L}−Xl

i.γ
1
0/ψτ{Yi −Xl

i.γ
1
0/

Tβ0}]

∣∣∣∣ .34/

+ sup
‖β−β0‖<ε

∣∣∣∣ 1
m

1
1+Å

n∑
i=1

Ri

[
Xiψτ .Yi −XT

i β/− 1
L

L∑
l=1

Xl
i.γ

1
0/ψτ{Yi −Xl

i.γ
1
0/

Tβ0}
]

− n

m

1
1+Å

E[RX{ψτ .Y −XTβ/−ψτ .Y −XTβ0/}]

∣∣∣∣ .35/

+ sup
‖β−β0‖<ε

∣∣∣∣ n

m

1
1+Å

E[RX{ψτ .Y −XTβ/−ψτ .Y −XTβ0/}]

∣∣∣∣ .36/
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+
∣∣∣∣ 1n

n∑
i=1

1
L

L∑
l=1

[Xl
i.γ̂

1/ψτ{Yi −Xl
i.γ̂

1/Tβ̂
1
L}−Xl

i.γ0/ψτ{Yi −Xl
i.γ

1
0/

Tβ0}]

∣∣∣∣ .37/

+
∣∣∣∣ 1n

n∑
i=1

1
L

L∑
l=1

Xl
i.γ0/ψτ{Yi −Xl

i.γ
1
0/

Tβ0}−E{Xψτ .Y −XTβ0/}
∣∣∣∣ .38/

+ sup
‖β−β0‖<ε

∣∣E{Xψτ .Y −XTβ0/}−E{Xψτ .Y −XTβ/}∣∣ : .39/

Using similar arguments to those for expressions (13), (14) and (17), we can show that expression (33) is
op.1/, expression (34) is op.1/ and expression (37) is op.1/. In addition, we have that expression (36) is op.1/
and expression (39) is op.1/ by condition 10, expression (38) is op.1/ by the weak law of large numbers and
expression (35) is Op.n−1=2/ by observing that{

Ri

[
Xiψτ .Yi −XT

i β/− 1
L

L∑
l=1

Xl
i.γ

1
0/ψτ{Yi −Xl

i.γ
1
0/

Tβ0}
]

: sup
‖β−β0‖<ε

}

forms a Donsker class and that

Ri

[
Xiψτ .Yi −XT

i β/− 1
L

L∑
l=1

Xl
i.γ

1
0/ψτ{Yi −Xl

i.γ
1
0/

Tβ0}
]

is L2 continuous at β0. Thus, result (27) holds. This completes the proof.

A.4. Sketched proof of theorem 4
By expression (28), we have

0 = 1
n

n∑
i=1

Ri

ĝL
2i.α̂, β̂L, γ̂/=π1

i .α̂1/

1+λTĝL
2i.α̂, β̂L, γ̂/=π1

i .α̂1/
− 1

n

n∑
i=1

Ri

ĝL
2i.α̂, β̂L, γ̂/

π1
i .α̂1/

.40/

+ 1
n

n∑
i=1

Ri

ĝL
2i.α̂, β̂L, γ̂/

π1
i .α̂1/

− 1
n

n∑
i=1

Ri

ĝL
2i.αÅ, β̂L, γ̂/

π1
i .α1

Å/
.41/

+ 1
n

n∑
i=1

Ri

ĝL
2i.αÅ, β̂L, γ̂/

π1
i .α1

Å/
− 1

n

n∑
i=1

Ri

ĝL
2i.αÅ, βÅ, γ̂/

π1
i .α1

Å/
.42/

+ 1
n

n∑
i=1

Ri

ĝL
2i.αÅ, βÅ, γ̂/

π1
i .α1

Å/
− 1

n

n∑
i=1

Ri

ĝL
2i.αÅ, βÅ, γÅ/

π1
i .α1

Å/
.43/

+ 1
n

n∑
i=1

Ri

ĝL
2i.αÅ, βÅ, γÅ/

π1
i .α1

Å/
:

We can show that

.40/=− 1
n

n∑
i=1

Ri

ĝL
2i.α̂, β̂L, γ̂/⊗2

π1
i .α̂1/2

λ̂+op.n−1=2/;

.41/=− 1
n

n∑
i=1

Ri

ĝL
2i.αÅ, β̂L, γ̂/.@π1

i .α1
Å/=@α1/T

π1
i .α1

Å/2
.α̂1 −α1

Å/+op.n−1=2/;

expression (42) is op.n−1=2/ and expression (43) is op.n−1=2/. Write

ML
2 =E

{
gL

2 .αÅ, βÅ, γÅ/

(
@π1.α1

Å/

@α1

)T/
π1.α1

Å/

}
:
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Together with condition 13, we have

√
nλ̂= .GL

2 /−1

√
n

{
n∑

i=1

Ri

π1
i .α1

Å/
gL

2i.αÅ, βÅ, γÅ/−
n∑

i=1
ML

2 E.Φ⊗2
2 /−1Φ2i

}
+op.1/:

Meanwhile, note that

0= 1
n

n∑
i=1

Ri=π
1
i .α̂1/

1+ λ̂
T

ĝL
2i.α̂, β̂L, γ̂/=π1

i .α̂1/
Xiψτ .Yi −XT

i β̂L
MR/

= 1
n

n∑
i=1

{Ri=π
1
i .α̂1/}Xiψτ .Yi −XT

i β̂L
MR/

1+ λ̂
T

ĝL
2i.α̂, β̂L, γ̂/=π1

i .α̂1/
− 1

n

n∑
i=1

RiXiψτ .Yi −XT
i β̂L

MR/

π1
i .α̂1/

.44/

+ 1
n

n∑
i=1

Ri

π1
i .α̂1/

Xiψτ .Yi −XT
i β̂L

MR/− 1
n

n∑
i=1

Ri

π1
i .α1

Å/
Xiψτ .Yi −XT

i β̂L
MR/ .45/

+ 1
n

n∑
i=1

Ri

π1
i .α1

Å/
Xiψτ .Yi −XT

i β̂L
MR/− 1

n

n∑
i=1

Ri

π1
i .α1

Å/
Xiψτ .Yi −XT

i β0/ .46/

+ 1
n

n∑
i=1

Ri

π1
i .α1

Å/
Xiψτ .Yi −XT

i β0/:

We can show that

.44/=−
{

1
n

n∑
i=1

Ri

Xiψτ .Yi −XT
i β̂L

MR/

π1
i .α̂1/2

ĝL
2i.α̂, β̂L, γ̂/T

}
λ̂+op.n−1=2/,

.45/=−
{

1
n

n∑
i=1

Ri

Xiψτ .Yi −XT
i β̂L

MR/

π1
i .α1

Å/2

(
@π1

i .α1
Å/

@α1

)T}
.α̂1 −α1

Å/+op.n−1=2/,

.46/=−
{

1
n

n∑
i=1

Ri

π1.α1
Å/
g.XT

i β0/XiXT
i

}
.β̂L

MR −β0/+op.n−1=2/:

Write

BL
2 =E

{
Xψτ .Y −XTβ0/

π1.α1
0/

(
@π1.α1

0/

@α1

)T}

and

QL
2i.α

1
0/= Ri

π1
i .α1

0/
{Xiψi.Yi −XT

i β0/−AL
2 .GL

2 /−1gL
2i.αÅ, βÅ, γÅ/}:

From the generalized information equality we have

BL
2 −AL

2 .GL
2 /−1ML

2 =−E

{
@QL

2 .α1
0/

@α1

}
=E.QL

2 Φ
T
2 /,

and then

E{g.XTβ0/XXT}√
n.β̂L

MR −β0/=n−1=2
n∑

i=1
{QL

2i.α
1
0/−E.QL

2 Φ
T
2 /E.Φ⊗2

2 /−1Φ2i}+op.1/:

This leads to the result.
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