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Key Points: 

• The difference between the global downscaled and bottom-up estimates for the whole-
city domain exceeds 10% in 3 of the 4 cities. 

• Average gridcell FFCO2 differences at 1 km2 range from 47% (Salt Lake City) to 84% 
(LA Basin) with spatial correlations of 0.34 to 0.68. 

• Average gridcell FFCO2 differences show diminishing agreement improvements when 
resolution is coarsened beyond 25 km2.  

• The largest gridcell differences were dominated by large point source and onroad FFCO2 
emissions. 
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Abstract 
Spatiotemporally-resolved urban fossil fuel CO2 (FFCO2) emissions are critical to urban carbon 
cycle research and urban climate policy. Two general scientific approaches have been taken to 
estimate spatiotemporally-explicit urban FFCO2 fluxes, referred to here as “downscaling” and 
“bottom-up”. Bottom-up approaches can specifically characterize the CO2-emitting infrastructure 
in cities but are labor-intensive to build and currently available in few U.S. cities. Downscaling 
approaches, often available globally, require proxy information to allocate or distribute 
emissions resulting in additional uncertainty. We present a comparison of a downscaled FFCO2 
emissions data product (ODIAC) to a bottom-up estimate (Hestia) in four US urban areas in an 
effort to better isolate and understand differences between the approaches. We find whole-city 
differences ranging from -1.5% (Los Angeles Basin) to +20.8% (Salt Lake City). At the 1 km x 1 
km spatial scale, comparisons reveal a low-emission limit in ODIAC driven by saturation of the 
nighttime light spatial proxy. At this resolution, the median difference between the two 
approaches ranged from 47% to 84% depending upon city with correlations ranging from 0.34 to 
0.68. The largest discrepancies were found for large point sources and the onroad sector, 
suggesting downscaled FFCO2 data products could be improved by incorporating independent 
large point-source estimates and estimating onroad sources with a relevant spatial surrogate. 
Progressively coarsening the spatial resolution improves agreement but greater than 
approximately 25 km2, there were diminishing returns to agreement suggesting a practical 
resolution when using downscaled approaches.  

1 Introduction 
Fossil fuel carbon dioxide (FFCO2) emissions, the dominant anthropogenic greenhouse gas 
(GHG), are not only the largest annual net flux of CO2 to the atmosphere but have been steadily 
increasing since the Industrial Revolution (LeQuere et al., 2013; Hartmann, 1998). A complete 
understanding of the key components of the global carbon budget and their interactions cannot 
be achieved without accurate estimation of FFCO2 emissions. Traditionally, quantification of 
FFCO2 emissions was accomplished at national spatial scales and annual temporal scales using 
statistics on energy consumption and trade (Marland et al., 1985; Andres et al., 1999; Boden et 
al., 1995; Macknick, 2011). However, as CO2 measurement and modeling systems increased in 
complexity and interest moved from global to national and regional understanding, there has 
been an increasing need for FFCO2 emissions data products at higher spatiotemporal resolution 
and in regularized or gridded formats (Andres et al., 1996; Olivier et al., 1999; Doll et al., 2000; 
Gregg and Andres, 2008; Erickson et al., 2008; Gregg et al., 2009; Gurney et al., 2009; Rayner et 
al., 2010; Ghosh et al., 2010; Oda and Maksyutov, 2011; Nassar et al., 2013; Wang et al., 2013; 
Asefi-Najafabady et al., 2014; Ou et al., 2015; Gately and Hutyra, 2017). For example, 
spatiotemporally-resolved FFCO2 emissions are a necessary additional constraint to atmospheric 
CO2 inversions/data assimilation systems which infer surface fluxes by integrating atmospheric 
CO2 measurements, atmospheric transport simulations and a priori flux estimates (e.g. Gurney et 
al., 2002, 2005; Enting 2002; Schuh et al., 2010; Liu et al., 2018). Furthermore, the emergence of 
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sub-national policy actors has also placed additional emphasis on quantifying FFCO2 emissions 
at finer space- and time-scales than traditional national/annual inventories (Bulkeley 2010; Hsu 
et al., 2017; Gurney et al., 2015; Hutyra et al., 2014). Examples of these global spatiotemporally-
resolved FFCO2 emission data products include the Carbon Dioxide Information and Analysis 
Center (CDIAC) data product (Boden et al., 2017), the Emission Database for Global 
Atmospheric Research (EDGAR) data product (Janssens-Maenhout, 2012), and the Open-source 
Data Inventory for Anthropogenic CO2 (ODIAC) data product (Oda & Maksyutov, 2011; 2018). 
Some of the estimation systems rely on optimization routines that solve a model of FFCO2 
emissions subject to remote-sensing constraints, such as the Fossil Fuel Data Assimilation 
System (FFDAS) (Rayner et al., 2010; Asefi-Najafabady et al., 2014). These efforts are typically 
resolved at spatial scales from 1 x 1 degrees down to 0.01 x 0.01 degrees and resolve time at 
annual to hourly timescales. 

In the last decade, the trend towards increased resolution has continued with research advancing 
FFCO2 emissions estimation able to resolve sub-city emissions and activity (Gurney et al., 2014; 
Hutyra et al., 2014). This owes in large part to the fact that about 70% of global CO2 emissions 
are produced in urban areas which occupy less than 1% of the Earth’s land area (Seto et al., 
2015). Motivated by these numerical realities and the recognition that low-emission development 
is consistent with a variety of other co-benefits (e.g. air quality improvement), cities are taking 
steps to mitigate their CO2 emissions (Rosenzweig et al., 2010; Hsu et al., 2015; Watts 2017). 
For example, 9120 cities representing over 770 million people (10.5% of global population) have 
committed to the Global Covenant of Mayors (GCoM) to promote and support action to combat 
climate change [GCM 2018].  

Spatiotemporally-resolved FFCO2 estimation systems have similarly transitioned to the urban 
scale to support the increased need of cities and to better-understand aspects of the urban carbon 
cycle and urban science (Duren & Miller, McKain et al., 2012; Brioude et al., 2013; Mitchell et 
al., 2018, Lauvaux et al., 2016; Feng et al., 2016; Wu et al., 2016; Turnbull et al., 2015). For 
example, urban estimation systems that combine atmospheric monitoring, transport models and 
bottom-up emission constraints, require information in a spatially-explicit format. Because 
atmospheric monitoring in cities is a direct reflection of specific upwind sources modified by 
spatially-dependent atmospheric transport, the constraint provided by bottom-up estimation must 
also be spatially-explicit and at scales of 1 km2 or finer to resolve in situ urban atmospheric CO2 
observations.  

Equally important, as urban GHG emissions mitigation policy migrates from long-term pledges 
to concrete action, policy effectiveness will mandate prioritizing emitting targets by magnitude 
and or reduction potential per unit effort expended (Gurney et al., 2015). This will require spatial 
and functional specificity. For example, knowing that a small portion of road surface accounts 
for a large share of total onroad FFCO2 emissions (a typical reflection of the distribution of 
emissions in cities) will be critical knowledge to guide reduction efforts to those places and 
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conditions where reductions can be achieved first with the least amount of cost or effort 
(Patarasuk et al., 2016). 

It is worth noting that there is a long history of whole-city carbon footprint estimation using a 
number of different methodological approaches and accounting frameworks (e.g. Ramaswami et 
al., 2008; Kennedy et al., 2009). In addition to the work described in the scientific literature, 
there are many estimates in the gray literature performed by city staff or non-governmental 
organizations (e.g. Goodfriend et al., 2017). While these efforts remain important for policy 
application, the focus in this study is on sub-city spatially-resolved efforts from the peer-
reviewed literature. This is driven, in part, by the need to focus on estimation approaches, such as 
the science-driven, spatio-temporal explicit FFCO2 emission data products discussed in this 
study, that can be linked to atmospheric observing systems.  

Spatiotemporally-resolved FFCO2 emissions data products from the global to the urban are 
developed using two general approaches which we refer to here as “bottom-up” and 
“downscaling”. Bottom-up approaches use direct flux monitoring and sectoral activity data 
gathered from various socioeconomic sources to develop spatiotemporally-explicit, mechanistic 
FFCO2 emissions (VandeWeghe and Kennedy, 2007; Parshall et al., 2010; Gurney et al., 2009; 
Zhou et al., 2010; Gately et al., 2013; Jones & Kammen, 2014; Porse et al., 2016; Gately and 
Hutyra, 2017; Patarasuk et al., 2016; Pincetl et al., 2014; Shu and Lam, 2011; Brondfield et al., 
2012). At the urban scale, this approach has been pioneered by the Hestia Project which 
estimates FFCO2 emissions for urban landscapes at the building/street spatial scale and hourly 
temporal scale with sectoral, fuel, and functional details (Gurney et al., 2012).  

Downscaling approaches, by contrast, use spatial surrogates such as population data and 
commercial business hours to distribute global or national total emissions over a defined space- 
and time-domain (Andres et al., 2012). For example, the CDIAC 1 x 1 degree inventory used 
population density to distribute national FFCO2 emissions to a gridded form (Andres et al., 
1996). Some emissions data products can be considered hybrids of these two approaches 
reflecting mixtures of bottom-up and downscaling elements. For example, FFDAS uses a 
database of powerplant FFCO2 emissions in combination with optimization procedures to 
downscale remaining emitting sectors using population and nighttime lights (Asefi-Najafabady et 
al., 2014). 

In comparison to downscaling approaches, bottom-up approaches usually have higher spatial 
resolution and explicit sectoral representation. Nevertheless, constructing a bottom-up data 
product requires lengthy development times, and thus are available only in a few U.S. cities. This 
means, outside of a few U.S. urban areas, downscaling-derived FFCO2 emissions data products 
are the only option available to urban carbon scientists and policy researchers.  

The uncertainty associated with spatiotemporally-resolved FFCO2 emissions data products is 
critical to both scientific and policy application. For example, when these uncertainties are 
included as part of the prior emissions constraint in atmospheric CO2 inversions, the uncertainties 
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will propagate and contribute to the posterior flux errors. Traditionally, prior FFCO2 emissions 
have been incorporated into inversions with no prior uncertainty, risking the aliasing of error 
(including biases) into posterior estimates of other components of the carbon cycle (Gurney et 
al., 2005; Engelen et al., 2002; Shiga et al., 2014; Zhang et al., 2015).  

Attempts have been made to quantify the uncertainty of global downscaled FFCO2 estimation 
approaches. The uncertainty is often divided into two distinct components: 1) magnitude 
uncertainty associated with the pre-downscaled emissions, such as provided by national fuel 
consumption accounts (Macknick, 2011); 2) disaggregation uncertainty such as that associated 
with the downscaling process in its reliance on imperfect or unrepresentative spatial proxies (e.g. 
Hogue et al., 2016). Uncertainty is estimated directly from elements or techniques used to 
generate the data product (Andres et al., 2016) and via intercomparison among different data 
products as a guide to estimation uncertainty (Hutchins et al., 2016). For example, Andres et al. 
(2016) estimated uncertainty associated with the CDIAC 1° x 1° FFCO2 emissions data product 
by examining multiple contributions (e.g. use of proxy spatialization, magnitude) to error finding 
an average gridcell uncertainty of ±120% (2σ). In a similar study using a slight modification to 
the CDIAC 1° x 1°data product, Hogue et al. (2016) estimated a larger uncertainty in the US of 
±120% (1σ) at the scale of an individual gridcell. Asefi-Najafabady et al. (2014) generated a 
formal Bayesian posterior uncertainty estimate associated with the 0.1° x 0.1° resolution Fossil 
Fuel Data Assimilation System (FFDAS) FFCO2 emissions data product, reporting an average 
gridcell-scale uncertainty of 30% (1σ). Gately and Hutyra (2017) compared a number of global 
gridded FFCO2 emissions data products to each other and a regional bottom-up FFCO2 emissions 
data product (ACES) finding differences exceeding 100% for half of the gridcells in the 
Northeastern US domain. These uncertainty estimates are difficult to compare in that they use 
different approaches, include different components of uncertainty and most importantly are 
reporting from uncertainty distributions that are not normally distributed making the estimation 
of an average an imprecise metric. 

With these efforts as context, this paper takes another step towards uncertainty characterization 
through a comparison at the urban scale between a bottom-up FFCO2 emissions data product, 
represented by the Hestia Project, and a downscaled data product, ODIAC2013a. Both 
approaches used here do not include biosphere fluxes (also important to quantify in cities) and 
hence, focus on the fossil fuel combustion only. ODIAC is of particular interest among the 
available global data products because it is produced at high resolution and has been used in 
numerous urban emissions studies (Brioude et al., 2013; Lauvaux et al., 2016; Oda et al., 2017). 
Specifically, this paper asks three research questions: (1) What is a “proxy” (derived as a 
difference to the bottom-up emissions) uncertainty estimate of the downscaled FFCO2 emissions 
at the urban scale; both for whole-city and at the 1 km2 spatial scale? (2) At what spatial 
resolution do the bottom-up and downscaled FFCO2 emissions best agree; (3) What can be done 
to further improve global downscaled FFCO2 emissions data products within the urban carbon 
cycle context? 
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2 Data and Methods 
Multiple statistical metrics and graphical representations were employed to characterize the 
differences between the bottom-up and downscaled urban FFCO2 emissions estimation 
approaches. We start with an overview of the two data products with respect to their 
development methods and specifications, and then present the rationale for the choice of 
comparison metrics.  

2.1 Downscaled FFCO2 emissions 

The downscaled FFCO2 emissions data product used in this study, ODIAC2013a, is a 1 km x 1 
km global fossil fuel CO2 emission data product developed by assembling pre-existing datasets 
including a national total emissions database, a powerplant database, and the Defense 
Meteorological Satellite Program/Operational Linescane System (DMSP/OLS) nightlight 
imagery (Oda & Maksyutov, 2011). The ODIAC2013a methodology uses annual total emissions 
by country from the Carbon Dioxide Information Analysis Center (Boden et al., 2013) extended 
beyond the year 2009 using additional data from British Petroleum. The Carbon Monitoring for 
Action (CARMA) power plants database, providing information about the carbon dioxide 
emissions and location of more than 60,000 power plants in over 200 countries, a portion of 
which was used in ODIAC to characterize the emissions associated with large electricity 
producers (Ummel, 2012). To obtain national emissions for the sources other than electricity 
production, the powerplant emissions were subtracted from the national totals and the resulting 
emissions spatially distributed from country to gridcells in proportion to their nightlight radiance 
value. Hence, for the land-based US case we are considering in this study, the nightlight 
downscaling accounts for the majority (nationally, roughly 56%) of 2011 US FFCO2 emissions 
(USEPA, 2017). This is a minimum percentage as urban areas do not typically contain electricity 
production facilities within the urban boundary. For example, in the city of Indianapolis, the 
percentage that would rely on downscaling rises to 70% of the 2002 total (Gurney et al., 2012). 
The ODIAC 2013a data product did not provide uncertainty estimates with the emissions. 
However, more recent releases of the data product include national-scale uncertainty, but were 
not available at the time analysis was completed (Nov, 2015) in the current study. 

2.2 Bottom-up FFCO2 emissions 

The bottom-up FFCO2 emissions data product used here, Hestia, quantifies urban FFCO2 
emissions to the individual building/street segment spatial scales and hourly temporal scales 
(Gurney et al., 2012; Zhou et al., 2010). Begun in the mid-2000s, the Hestia Project has now 
made high-resolution FFCO2 estimates for the Los Angeles Basin (Newman et al., 2016), 
Indianapolis (Gurney et al., 2012; 2017), Salt Lake City (Patarasuk et al, 2016), and Baltimore 
(Gurney et al. 2012; see SI). These four urban areas are used for comparison with the 
ODIAC2013a FFCO2 emissions data product.  
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Hestia uses a large collection of data and modeling techniques to determine FFCO2 fluxes 
including regulated air pollution flux reporting, socioeconomic data, CO2 flux monitoring, 
building energy simulation and traffic monitoring. Hestia quantifies emissions at the spatial scale 
of individual emission stacks, buildings, land parcels, and roadways. Hence, it represents these 
emitting entities as points, polylines, and polygons. The Hestia FFCO2 emissions are also 
categorized by economic sector (e.g. residential, commercial, onroad, etc.) and the spatial 
representation and sector are coupled. For example, the onroad FFCO2 emissions are represented 
on poly-line segments while the commercial, residential and industrial sector emissions are 
represented as polygon-shaped sources (indicative of parcels of land or individual buildings). 
Hestia emissions can be gridded to various grid resolutions from 200m to 1000m to serve 
different applications.  

The Hestia methodology is provided in Gurney et al., (2012). Uncertainty estimation for the 
Hestia results are challenging owing to the fact that many of the datasets used to construct the 
flux results are not accompanied by uncertainty or traceable to transparent sources or methods. 
Hence, for the purposes here we use a combination of expert judgement and analysis from one of 
the four urban areas considered in this study. The only existing approach to analytical objective 
evaluation is in comparison to atmospheric CO2 inversion studies. Though not immune to biases 
itself (e.g. transport errors, misspecification of prior biosphere fluxes), atmospheric CO2 
inversion research has been accomplished in the city of Indianapolis and the results show 
agreement with the Hestia FFCO2 emissions within 3.3% (CI: -4.6% to +10.7%) (Gurney et al., 
2017). This suggests both potential bias (3.3%) and an estimation uncertainty (~7.5%). 

Further uncertainty considerations at the scale of an individual gridcell are based on a 
combination of existing analysis of sub-components of the FFCO2 emissions estimation and 
expert judgement. Gurney et al. (2016) compared two powerplant emission estimation datasets, 
finding that one-fifth of the facilities had monthly FFCO2 emission differences exceeding -
6.4%/+6.8% for the year 2009 (the closest analyzed year to the 2011 analysis examined here). 
Other component fluxes in the Hestia estimation procedure are strongly driven by the CO and 
CO2 emission factors specific to fuel and sector. Examination of the range of emission factors 
conservatively places the uncertainty at 20% based on our expert judgment (see SI).  

Hence, we combine these uncertainty values and estimate an 95% confidence interval at the 
whole-city scale of 11% and an individual gridcell uncertainty of 25%. These would be 
equivalent to standard errors of 5.5% and 10% at the whole-city and gridcell-scale, respectively. 
Work is underway that includes a complete input parameter range for the Hestia emissions data 
results to more formally assign uncertainty at multiple scales and for each urban domain 
individually. 
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2.3 Methods 

For each of the four urban areas, the Hestia total emissions including all sectors were gridded at 
1 km x 1 km spatial resolution (0.0083° x 0.0083°) in conformance with the ODIAC spatial grid 
(Figure 1).  
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Figure 1. Spatial distribution of 1 km x 1 km FFCO2 emissions in the four US cities included in 
this study. The rows list the cities as Los Angeles Basin, Baltimore, Indianapolis, Salt Lake City. 
The columns represent Hestia FFCO2 emissions (left); ODIAC2013a FFCO2 emissions (right). 
Units: natural logarithm Kg C/gridcell. 

Six comparison metrics were used to quantify differences between the two data products (Table 
1). These measures of difference include whole-city and gridcell-scale metrics in addition to 
differences in spatial distribution. The whole-city total relative difference, TRD, is calculated as 
(ODIAC-Hestia)/Hestia×100%. The summed absolute difference, SAD, is the sum of the 
gridcell-scale absolute differences integrated over the entire city. This is also normalized to the 
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whole-city emissions to achieve the SAD as a fraction of total emissions, SADFD, using the 
Hestia total in the denominator. We include the spatial correlation, SC, a metric independent of 
magnitude (Rayner et al. 2010). This is calculated as the Pearson’s R across all paired gridcells 
in the two data products. As spatial correlations are sensitive to extreme values, the two data 
products were subjected to an extreme value removal process in which values greater than the 
sum of the mean and three standard deviations were excluded prior to spatial correlation 
estimation. In order to maintain alignment between the two data products, if a value in either was 
removed, its counterpart was also removed resulting in the removal of 79 matching gridcells 
(across the four urban domains). 

Similar to the whole-city total relative difference, we define the gridcell-scale relative difference 
(GRD). The gridcell absolute median percent difference, GAMRD, is the median of a set of 
individual paired gridcell relative differences, where the differences are represented in absolute 
units (i.e. so all GRD values are positive). This metric, in particular, will be used to generate a 
“proxy” uncertainty measure for the ODIAC data product.  

Table 1. List of statistical metrics used to compare a downscaled to bottom-up FFCO2 emissions 
data product in the four urban areas. Table/Figure where results can be found are included. 
No. Metric 
1 Whole-city relative difference (TRD) in %                       (Table 2) 
2 Summed absolute difference (SAD)                                (Table 2) 
3 SAD as fraction of total emissions (SADFD) in %           (Table 2) 
4 Spatial correlation coefficient (SC)                                  (Table 2) 
5 Gridcell relative difference (GRD) in %                           (Figure 3) 
6 Gridcell absolute median percent difference (GAMRD)  (Figure 3) 

3 Results 
The whole-city relative emissions difference (TRD) between the ODIAC and Hestia FFCO2 
emissions estimates across the four urban areas range from -1.52% (Los Angeles Basin) to 
+20.82% (Salt Lake City) (Table 2). In all but the Los Angeles Basin, the difference is positive 
indicating that the ODIAC result is larger than the Hestia whole-city estimate. Furthermore, 
other than for the Los Angeles Basin, the difference between the two approaches exceeds the 
95% confidence internal assigned to the Hestia whole-city estimates implying that these whole-
city differences are statistically significant at two standard errors.  

In addition to differences at the whole-city scale, there are differences in spatial distribution. The 
spatial correlation (SC) value for Salt Lake City is the largest among the four urban areas 
suggesting the greatest agreement in spatial distribution. However, it also has the largest TD 
value combined with a relatively moderate SADFD value, suggesting that there is a whole-city 
offset between the two data products though the spatial distribution is similar. Baltimore, by 
contrast, exhibits a low SC value but a relatively large SADFD, suggesting poor spatial 
correspondence overall. The Los Angeles Basin shows the largest SADFD value with a relatively 
large SC value among the four cities. This suggests reasonable spatial agreement but likely a 
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small number of gridcells with large differences. Given the agreement in TRD, this suggests that 
these gridcell differences are of both positive and negative magnitude, canceling in the 
estimation of the total (but not in the SADFD). 

Table 2. Total 2011 urban emissions, whole-city relative difference (TRD), summed absolute 
difference (SAD), SAD as fraction of whole-city Hestia emissions (SADFD), and spatial 
correlation (SC) across four urban areas when comparing a global downscaled (ODIAC2013a) 
data product to a bottom-up (Hestia) data product. Values in parentheses represent the 95% 
confidence interval from the bottom-up (Hestia) results. 
Urban Area Area 

(km2) 
ODIAC total 

(Tg C/yr) 
Hestia total 
(Tg C/yr) 

TRD (%) SAD  (Tg C/yr) SADFD SC 

Los Angeles 
Basin  

17795 32.89 33.39 (29.8, 37.0) -1.52% 21.3 (19,0, 23.6) 0.63 0.51 (0.48, 0.54) 

Salt Lake City 3190 3.83 3.17 (2.83, 3.51) 20.8% 1.54 (1.37, 1.71) 0.49 0.68 (0.62, 0.72) 
Indianapolis  1681 3.53 4.03 (3.60, 4.46) 12.5% 1.85 (1.65, 2.05) 0.46 0.34 (0.19, 0.46) 
Baltimore  404 1.43 1.29 (1.15, 1.43) 10.7% 0.70 (0.62, 0.78) 0.54 0.34 (0.23, 0.45) 

At the individual gridcell spatial scale, Hestia exhibits a larger range of values across all urban 
areas (Figure 2). Regressing the two gridcell-scale datasets results in positive slope values 
ranging from a minimum of 0.15 (Baltimore) to a maximum of 0.61 (Salt Lake City) with 
coefficients of determination (R) values ranging from 0.41 (CI: 0.306, 0.512, Baltimore) to 0.78 
(CI: 0.764, 0.799, Salt Lake City). This suggests broad agreement in the directionality of small to 
large emitting gridcells but a difference in emission range. 
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Figure 2. Comparison of annual ODIAC and Hestia FFCO2 emissions at 1 km x 1 km spatial 
resolution in the four U.S. urban areas: a) Baltimore; b) Indianapolis; c) the Los Angeles Basin; 
d) Salt Lake City. Units: natural logarithm KgC/gridcell/yr.  

The Los Angeles Basin comparison shows a somewhat non-linear relationship or two different 
correlated relationships at the larger and smaller end of the emissions distribution in a fashion 
similar to the comparison in Salt Lake City. A large number of emitting gridcells at the upper 
and lower extremes of the range of values deviate from the general agreement between the two 
emissions data products. These instances are particularly evident in the Los Angeles Basin and 
Salt Lake City and to a lesser degree in Indianapolis. There appears to be better agreement for 
the larger values across all the urban areas with greater disagreement for the smaller emitting 
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gridcells. It is worth noting that Figure 2 reveals a conspicuous lower threshold value in the 
ODIAC data product, possibly related to the nightlight saturation effect (Levin and Duke 2012) 
which suppresses the range of values. This is particularly notable in the Los Angeles Basin and 
Salt Lake City where the lower values are cut off at approximately 22000 kgC/gridcell/yr (the 
natural logarithm of 22000 = 10). In Baltimore, the ODIAC data product shows few emission 
values toward the low end of the numerical distribution, which could be partially responsible for 
the shallow regression slope. The ODIAC FFCO2 emissions in the other three urban areas, by 
contrast, tend to have a wider range of values from 10-20 Tg C/gridcell/yr, which could have led 
to the steeper slopes.  
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Figure 3. Annual gridcell FFCO2 emissions relative difference (GRD) between the Hestia and 
ODIAC emissions at 1 km x 1 km spatial resolution (GRD: ODIACi-Hestiai)/Hestiai×100%) in 
four U.S. urban areas: a) Baltimore; b) Indianapolis; c) the Los Angeles Basin; d) Salt Lake City. 
Yellow circles denote 79 large individual difference values.  

To highlight the spatial differences, Figure 3 shows the relative difference calculated at the scale 
of individual 1 km x 1 km gridcells (GRD: ODIACi-Hestiai)/Hestiai×100%). Large positive and 
negative values occupy a significant proportion of the space in each of the urban area difference 
maps. In Indianapolis, the Los Angeles Basin, and Salt Lake City, large negative GRD values are 
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coincident with the road network. These large negative GRD values suggest higher emissions 
intensities along roads in the Hestia versus ODIAC emissions. In Salt Lake City, there is a 
cluster of large negative GRD values in the northwestern corner bordering the Great Salt Lake. 
This is likely due to the Hestia distribution of nonroad FFCO2 emissions which, in the Salt Lake 
City case, are evenly distributed within a census block group versus ODIAC’s use of  nighttime 
lights for all emissions other than power plants. Nevertheless, it should be noted that the FFCO2 
emissions in this area of SLC are small in magnitude, as seen in Figure 1. The Southeastern 
portion of Baltimore also exhibits a cluster of large negative GRD values. This is coincident with 
commercial marine vessels (CMV) activity in the Hestia results. Large positive GRD values 
appear clustered in the lower density or suburban regions across all four urban areas. As ODIAC 
emissions are allocated to artificial light intensity during nighttime hours when building fuel 
combustion (i.e. for heating) is at a minimum but lighting at a maximum (for which Hestia 
emissions are located at electricity production facilities), ODIAC overestimation may be 
occurring. The 79 extreme difference values removed prior to the Pearson R correlation 
calculation individually noted in Figure 3. 
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Figure 4. Probability density function of annual 1 km x 1 km FFCO2 emissions for the ODIAC 
(blue line) and Hestia (red line) approaches in four U.S. urban areas: a) Baltimore; b) 
Indianapolis; c) the Los Angeles Basin; d) Salt Lake City. Units: natural logarithm 
kgC/gridcell/yr.  

Figure 4 shows the frequency distribution of the gridded 1 km x 1 km FFCO2 emissions for the 
two emission data products across the four urban areas. The ODIAC FFCO2 emission values 
have a narrower range than the Hestia results, largely limited to 2.2x104 to 8.8x106 Kg 
C/gridcell/yr, consistent with Figure 2. The peak values across the four urban areas in the Hestia 
emissions are generally associated with smaller emission magnitudes. In Baltimore, Indianapolis, 
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and the Los Angeles Basin, the ODIAC results show roughly twice the occurrence of the 
maximum emission values. In Salt Lake City, by contrast, both emission data products show a 
bimodal distribution in which Hestia shows a greater frequency of the small maxima while 
ODIAC shows a greater frequency of the large maxima. This is consistent with the bimodal 
distribution noted in Figure 2 for Salt Lake City. The distribution for Los Angeles Basin also 
shows a bimodal distribution in both data products though the magnitude of the secondary 
maxima is less prominent and the two centers of agreement less distinct.  

 
Figure 5. The gridcell median absolute percentage difference (GAMRD) versus the Hestia 
FFCO2 emissions cumulative distribution function across the four urban areas at a resolution of 1 
km x 1 km. Baltimore (blue); Indianapolis (green); Los Angeles (red); Salt Lake City (black). X-
axis bins represent sampling the results in 5% increments.  

Because mean values of the gridcell-scale comparison (i.e. the GRD values) are sensitive to large 
percent differences comprised of small absolute gridcell emissions (and vice-versa) and sign-
cancelation of those same GRD values, the gridcell absolute median relative difference 
(GAMRD) statistic attempts to isolate a single metric of the gridcell ensemble differences. We 
examined the GAMRD as a function of the Hestia FFCO2 cumulative distribution function using 
a descending rank-order of emitting gridcells (Figure 5) exploring whether or not the GAMRD 
shows sensitivity to the extreme ends of the magnitude distribution. Between 10% and 90% of 
the accumulated FFCO2 emissions, the GAMRD values, across all four urban areas, have lesser 
variance. In all but Salt Lake City, the GAMRD value is between 40 and 75% with Salt Lake 
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City varying between 30% and 60%. The gridcells in the last 10% of the accumulation (large 
percent difference but small magnitude emissions) show unstable GAMRD values, especially in 
Salt Lake City and the Los Angeles Basin, due to a large number of small-emitting gridcells with 
GAMRD values exceeding 100%. These are not representative of the general gridcell-scale 
differences between the two data products but reflect the influence of the tails of the distribution 
of percent differences between the two approaches. This suggests that at accumulations at or 
below 90%, the general mean differences can be encapsulated in a somewhat consistent 
GAMRD value. In the four cities examined here, the GAMRD ranges from 45% (Salt Lake City) 
to 67% (Los Angeles Basin) at the 90% threshold value. 

The precision of gridded FFCO2 emissions can be systematically related to the spatial resolution 
(Liang et al., 2017). Given the heterogeneity of the urban emissions landscape, aggregating from 
fine to coarse resolution may smooth or average over the spatial variation potentially leading to 
fewer differences between the bottom-up and downscaled emission approaches. We examine the 
three spatial metrics (SC, SAD, GAMRD) across a gradient of spatial resolution considering 
only those gridcells below the 90% cumulative distribution threshold described in Figure 5. Of 
the four urban domains, only the Los Angeles Basin is of sufficient size to offer an adequate 
range to highlight the changes in spatial difference as the spatial resolution of ODIAC is 
coarsened (Figure 6). As the spatial resolution is coarsened from 1 km x 1 km to 13 km x 13 km 
(169 km2), the SAD and GAMRD metrics decline and the SC value increases in a near-inverse 
manner. For example, the SC increases from 0.61 at the 1 km2 spatial resolution to 0.93 at a 
spatial resolution of 13 km x 13 km, whereas the SAD decreases from 16.7 to 6.1, respectively 
(Figure 6b). The GAMRD value declines from 55% at 1 km2 to roughly 20% at 13 km x 13 km. 
There is asymptotic behavior in all three metrics as the spatial resolution is coarsened and a 
calculation of the first derivative (|dy/dx|) of each metric suggests diminishing returns to 
agreement when coarsening the resolution. The initial turnover point (minimum first derivative) 
is at 5 km x 5 km (25 km2) in all three metrics. Though there is continued improvement in 
agreement, further improvements proportionately decline at coarser resolutions. 
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Figure 6. Three spatial difference metrics between ODIAC and Hestia FFCO2 emissions versus 
spatial resolution in the Los Angeles Basin urban area. a) spatial correlation (SC); b) Summed 
absolute difference (SAD); c) gridcell median absolute percentage difference (GAMRD). All are 
calculated for emissions accumulations less than 90% of city total (see Figure 5). 

Correlation between the ODIAC and Hestia FFCO2 emissions data products is sensitive to a 
small set of extreme difference values. We paired the extreme values (greater than 3 standard 
deviations from the mean), in each of the four urban areas by visually inspecting these extreme 
values against street maps and high-resolution satellite imagery. We linked each ODIAC gridcell 
with a Hestia gridcell counterpart (when not obviously coincident) in an attempt to isolate the 
potential source of difference. Point sources in the Hestia estimate were geocoded via self-
reported air quality reporting and further inspected and corrected with manual inspection. These 
locations, therefore, can serve as ground-truth positions. These 79 pairs of extreme values were 
placed into one of four categories: (1) the values in the two data products share the same gridcell; 
(2) the values are within three gridcells of each other; (3) the value in the Hestia data product has 
no nearby partner in the ODIAC data product; (4) vice-versa.  

Of all the extreme difference values identified, 35.4% were associated with category (1) and had 
mean GRD values as high as 87%. For the gridcells associated with category (2), electricity 
production was the predominant emitting sector. This suggests that there may be issues of data 
quality related to the global power plant database used by ODIAC2013a which are mostly 
magnitude related but also related to incorrect geolocation in a few cases. For the category (3) 
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and (4) cases, which respectively account for 50.6% and 8.9% outliers, the dominant emitters 
consist of a mixture of industrial facilities, airports and power plants. 

There are a number of cases in which large GRD values are associated with large FFCO2 
emissions in both approaches. For example, the grid cell associated with the West Valley 
Generation Project Powerplant (40.66, -112.03) in Salt Lake City, shows emissions of 9.73 x 107 
Kg C/yr in the ODIAC results (which relied upon the CARMA database), more than three times 
larger than the Hestia emissions of 2.96 x 107 Kg C/yr (retrieved from the United States 
Environmental Protection Agency continuous emissions monitoring records). Similar 
inconsistencies appear to be present in gridcells dominated by airport emissions. For example, 
the gridcell that contains the Los Angeles International Airport (LA Basin: 33.94, -118.41) emits 
3.37 x 108 Kg C/yr according to the Hestia results, 69 times the value reported by ODIAC (4.87 
x 106 Kg C/yr).  

There are also occurrences in which a grid cell with a large GRD value contained large emissions 
for only one of the two approaches, resulting in order-of-magnitude differences. Examples 
associated with this type of difference include the Citizens Thermal facility, (Indianapolis: -
86.16, 39.76), in which Hestia reports a gridcell value (2.14 x 108 Kg C/yr) 56 times the 
magnitude reported by ODIAC (3.81 x 106 Kg C/yr). Given that no large emitting gridcells were 
identified in the vicinity of the paired ODIAC gridcell, this suggests that the Citizens Thermal 
facilities was missing in the ODIAC FFCO2 emission results.   

4 Discussion 
The whole-city differences between the global gridded downscaled and bottom-up FFCO2 
emissions data products compared here range from less than 2% in the Los Angeles Basin to 
over 20% in Salt Lake City. Given the areal extent of the Los Angeles Basin (17795 km2) 
relative to the other three cities (405 km2 to 3190 km2), this may be consistent with the increased 
agreement as resolution is coarsened and countervailing differences averaged. As US cities are 
concerned, however, Los Angeles is an outlier in terms of size, ranking as the 7th largest 
metropolitan area by areal extent and 2nd by population 
(https://en.wikipedia.org/wiki/List_of_United_States_urban_areas). Hence, cities of smaller areal 
extent, not unlike Baltimore, Salt Lake City and Indianapolis, are the norm rather than the 
exception in the U.S.. The whole-city differences in these more common city sizes, ranging from 
the 10%-20% found here imply that, while mid-century CO2 reduction goals pledged by many 
U.S. cities may be amenable to scientific assessment, near-term “course-correction” or individual 
policy assessment, will be challenging. The utility of the two approaches in policy application 
will rest on the balance between the cost of development and the benefits of accuracy. It is worth 
noting that the cost and labor-intensiveness of the bottom-up approaches will continue to be 
reduced as more learning and automation are achieved or more scientifically-driven 
methodologies are adopted by cities in place of self-reported efforts. Similarly, with more 
comparison studies and incorporation of a more diverse set of downscaling proxies or hybrid 
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methods, global data products may see improvements in accuracy. Nevertheless, the differences 
found in this study at the whole-city scale leaves one optimistic as they are far less than the 
differences identified at smaller spatial scales. 

The differences in spatial distribution at the sub-city scales are much larger and raise greater 
concern given the importance of high-resolution spatially-explicit estimates of urban FFCO2 
emissions to both science and policy. The most pronounced sector-specific spatial difference 
found in this study, aside from individual point source discrepancies, is that associated with 
onroad FFCO2 emissions (Figure 3). This is best exemplified by the emission differences in 
Indianapolis, particularly associated with the interstate circling the city of Indianapolis (I-465). 
Gridcells in which onroad emissions account for more than 90% of the gridcell total were 
identified and the percent relative difference of these accumulated emissions calculated (table in 
the Supporting Information). The Hestia onroad FFCO2 emissions in these instances were larger 
than ODIAC in three out of four cities. For example, in the Los Angeles Basin, Indianapolis, and 
Salt Lake City, the Hestia emissions are 51.6%, 57.3%, and 8.1% larger than ODIAC, 
respectively. In Baltimore, by contrast, Hestia emissions are 166.8% smaller than ODIAC, 
although only 24 onroad-dominated gridcells were identified in this city.  

The Hestia FFCO2 emissions estimation approach explicitly quantifies the spatial distribution of 
onroad FFCO2 emissions using roadway basemap information and traffic monitoring. The 
ODIAC distribution of FFCO2 emissions by nighttime lights does not specifically allocate 
emissions to roads unless they have significant proximal lighting such as associated with dense 
building clusters (e.g. commercial hubs). Therefore, it is not surprising that gridcells containing 
significant onroad emissions have larger values than the counterpart ODIAC gridcells for which 
lighting is a sub-optimal roadway spatial proxy. The exception in Baltimore is likely due to 
urban boundary encompassing only the most populated and commercially-dense portions of the 
larger urban area and hence, the roads are proximal to greater levels of lighting. 

Similarly, the narrower range of FFCO2 emission values across the entirety of the urban areas 
(Figures 2 and 4) in the ODIAC versus Hestia results, reflects a limitation of both the low-end 
sensitivity and saturation of nighttime lights restricting the lower and upper extent of radiance 
values. Hence, downscaling national/regional total emissions in proportion to nightlight radiance 
values, will be restricted by nightlight saturation effects (Levin and Duke, 2012) and this will be 
imputed to the FFCO2 emissions estimation.  

As point sources constitute a large proportion of the global FFCO2 emissions budget, they are 
critical to mitigation policymaking. In the US, for example, power plant emissions, alone, 
represents roughly 40% of the national FFCO2 emissions budget (Petron et al., 2008) and have 
been the target of national policy (FR 2015). Point sources such as industrial facilities and 
airports can also be major contributors to FFCO2 emissions. For example, industrial facilities and 
airports, respectively, contributed 3.1% and 4.8% of the total FFCO2 emissions in Indianapolis 
(Gurney et al., 2012). Large point source emitters, other than those supplied with bottom-up 
databases (i.e. the CARMA database used by ODIAC), are currently difficult to characterize 
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comprehensively using downscaling techniques because of their small areal footprint. 
Furthermore, many point sources do not have lighting intensity commensurate with their FFCO2 
emission magnitude. The comparison of large emissions with large GRD values support this 
argument.  

The large GRD values that occur in Baltimore's Inner Harbor area (occupying about 10% of the 
total Baltimore city area) are associated with commercial marine vessel FFCO2 emissions and 
account for 8.4% of the Baltimore FFCO2 emission total. The Hestia emissions explicitly place 
CMV FFCO2 emissions into a combination of a port polygon and polyline shipping lanes spatial 
entities. Nighttime lights will not capture the magnitude or spatial distribution of these CMV 
emissions associated with the port activity, particularly the shipping lane delineation, to the 
extent that they are not accompanied by lighting intensity commensurate with their FFCO2 
emissions.   

Though differences are readily evident at the finest spatial resolution available in the two 
approaches (1 km2), agreement steadily improves as the resolution is coarsened. Furthermore, 
though there is no single threshold beyond which agreement can be stated unequivocally, the 
improvement in agreement slows beyond roughly 25 km2 (5 km x 5 km) to 100 km2 (10 km x 10 
km), depending upon the metric of agreement used. This suggests the spatial scale at which the 
distribution error, incurred with downscaling approaches is minimized. However, additional 
work is needed to examine this relationship beyond the four US cities included in this study.  

The application of FFCO2 emissions data products in science and policy place a burden on 
generating the most accurate space/time-resolved FFCO2 emissions with an objectively informed 
uncertainty. Both of these goals remain challenging. Though accuracy can be assessed through 
comparison to independent methods, notably atmospheric CO2 inversions, quantification of 
uncertainty remains difficult owing to the nature of the data sources typically relied upon in 
constructing space/time resolved FFCO2 emissions data products. Comparisons, such as carried 
out here, offer a form of uncertainty assessment. 

The demand for accuracy and uncertainty quantification in FFCO2 emissions data products will 
only increase as sub-national governments increase their involvement in climate change GHG 
emissions mitigation. For example, 9120 cities representing over 770 million people (10.5% of 
global population) have committed to the Global Covenant of Mayors (GCoM) to promote and 
support action to combat climate change [GCM 2018]. Over 90 megacities, as part of the C40 
network, have similarly committed to mitigation actions with demonstrable progress. In the U.S., 
over 400 cities have pledged to meet or exceed the US target under the Paris Accords of the 
United Nations Climate Change Negotiation (Watts, 2017; Madhani, 2017; climatemayors.org/). 
cities have set specific emissions reduction targets including specific timelines and sector-
specific regulatory policies (Trencher et al., 2016; U�rge-Vorsatz et al., 2018). For example, the 
City of New York has committed under the Greener, Greater Buildings Plan to reduce emissions 
to 80% below 2005 levels by 2050. The City of San Francisco has committed to the same 
reduction target under the Existing Commercial Buildings Energy Performance Ordinance.  
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These reduction targets will have to be operationalized through specific policies that direct 
resources to specific instruments such as retrofitting building envelopes, adding high-occupancy 
vehicle lanes, or adding/improving mass transit infrastructure. In nearly all of these instances, 
there is a need for spatially- and temporally-resolved information to most efficiently target those 
elements within the emitting landscape that account for the largest share of emissions. In the 
typically logarithmically-distributed FFCO2 emissions in a city (few emitters account for a large 
share of emissions), identifying these emitters and understanding their spatial and temporal 
relationship to each other and other important attributes such as income or traffic congestion is 
critical to policy efficiency. The space and time-scales relevant are down to the individual 
building and road segment for every hour (to resolve, for example, rush hours). Policy efficiency 
will soon emerge as a critical need as cities approach their reduction target time horizons and 
resources are allocated to mitigate emissions, such as is now occurring in the state of California 
(NYT, 2017).  

Both the downscaling and bottom-up urban FFCO2 estimation approaches face challenges in 
quantifying their respective emissions uncertainty and one must exercise caution in interpreting 
the differences between the two approaches compared here as a definitive form of uncertainty. It 
offers a rough guide and rests, to a certain extent, on the veracity of the bottom-up Hestia FFCO2 
emissions data product. It appears reasonable to assume that the Hestia FFCO2 emissions 
approach represents urban-scale emissions spatial distribution more accurately due to the more 
accurate spatio-physical representation of emitting elements (e.g. roads, industrial facilities, 
buildings). The Hestia FFCO2 emissions magnitude may also represent a more accurate estimate 
based on close agreement between the Hestia emissions in Indianapolis and an urban-scale 
atmosphere CO2 inversion estimate (Gurney et al., 2017). However, acknowledging the internal 
uncertainty and the fact that there has been limited comparison to independent methods, suggests 
that an assumption that Hestia provides an unbiased quantification of FFCO2 emissions, be 
adopted with caution.  

Both approaches will continue to be valuable to the increasing scientific and policy needs 
associated with quantification of urban FFCO2 fluxes. Both approaches have strengths and 
weaknesses which make them alternatively useful in differing contexts. While the bottom-up 
approach may offer a great amount of information with more location accuracy, it comes at a 
cost in terms of data gathering, data analysis, and idiosyncratic conditions in individual cities. 
Downscaling efforts, by contrast, can generate resolved FFCO2 estimates across the planet in a 
single effort but must use spatial proxies which can fail, to varying degrees, to match the 
emitting processes estimated. The tradeoff is the cost versus emissions estimation accuracy at 
scales considered effective for the increasingly important question of policy efficiency.  

With these caveats in mind, we can return to the questions posed at the outset of this study. 
Given the differences found here, a “proxy” uncertainty of the downscaled approach, using the 
ODIAC data product as the example effort, ranges from 47% to 84%, depending upon city, at the 
1 km2 spatial resolution. At the whole-city scale, agreement is much improved, particularly for 
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the Los Angeles Basin (-1.52%). For the three remaining cities, we find differences of 10.7% 
(Baltimore), 12.5% (Indianapolis), and 20.8% (Salt Lake city). Agreement between the two 
approaches compared here improves when the resolution is lessened via aggregation and there 
appears to be a diminishing return to resolution coarsening in the 25 km2 to 100 km2 range. 
Opportunities for improving agreement between the downscaling and bottom-up approaches are 
most significant in better representing the spatial and magnitude characteristics of onroad FFCO2 
emissions in the downscaled approaches for which roads remain poorly represented spatially by 
coarse proxies. Furthermore, improvement in the representation of point sources, whose 
emissions do not scale linearly with proxies such as lighting or population, offer similar 
opportunities for improvement and may be available for large portions of the world via national 
databases on local air pollution or even the use of high-resolution visible/thermal imagery. 

5 Conclusions 
This comparison of a simple downscaled (ODIAC) fossil fuel CO2 (FFCO2) emissions data 
product to a bottom-up (Hestia) FFCO2 emissions data product in four U.S. cities shows 
differences in terms of whole-city emissions magnitude, gridcell-scale estimates and spatial 
distribution. Whole-city differences range from a minimum of -1.5% in the Los Angeles Basin to 
a maximum of 20.8% in Salt Lake City. Given the range of city size and characteristics, this 
constitutes good agreement at these scales. At the scale of individual 1 km2 gridcells, the relative 
differences were larger, ranging from 47%-84% for the four cities and spatial correlations 
ranging from 0.34 to 0.68. Among the reasons for the gridcell differences, the nightlight low-end 
sensitivity and saturation effects are likely large contributors. Limited sectoral separation in 
applying spatial proxies in the downscaling approach leads to inaccurate spatial distribution in 
emissions, particularly in the case of onroad FFCO2 emissions, often a dominant portion of urban 
FFCO2. Finally, uncertainty in the geolocation of large point sources can lead to large biases in 
the gridcell-scale FFCO2 estimation and account for a significant proportion of the spatial 
differences. The two approaches to estimating urban FFCO2 have unique strengths and 
weaknesses. Downscaling approaches typically estimate emissions for regional to global scales 
efficiently, offering quantification for many cities. Bottom-up approaches, by contrast, are more 
labor intensive and are incrementally produced, city-by-city. By aggregating the resolution of the 
downscaling emissions data product used in this study, reasonable agreement was achieved 
between the two approaches at a spatial resolution beyond 25 km2. This may offer guidance to 
practical use of downscaling approaches when applied to urban FFCO2 scientific or policy 
problems. 
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