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Abstract 

 The efficiency of energy storage systems is pivotal to the sustainability of energy production 

technologies in ensuring global energy security. Lithium-ion batteries (LIBs) have been widely 

used as an energy storage mechanism among all the types of rechargeable batteries owing to their 

high energy and power density. Because of the vast applications of LIBs in several dynamic 

operations which differs in energy and power requirements, the development of a robust model to 

simulate the battery’s dynamic behavior and performance for control and system design is 

paramount.  

Several modeling efforts have been invested into the development of electrochemical models for 

simulation of LIB systems ranging from a full-order model, the so-called Doyle-Fuller-Newman 

(DFN) model to several reduced-order models. Most of these reduced-order models are based on 

a single particle model with or without the inclusion of electrolyte dynamics. This thesis work 

involves the development of a reduced-order electrochemical model based on single particle 

approach with electrolyte dynamics (SPMe). The partial differential equations (PDEs) that capture 

the dynamic behavior and performance characteristics of the LIB systems were solved numerically 

through a finite difference method in MATLAB environment. For model reduction purpose, a 

constrained optimization problem was formulated to determine the optimal uneven discretization 

node points needed to numerically solve the battery PDEs for both solid and electrolyte phase 

concentration predictions. The optimization problem was solved using a particle swarm 

optimization (PSO) by minimizing the errors between the reference model, a SPMe with even 

discretization using a fine step size and the reduced model, a SPMe with uneven discretization.  



 xii 

The proposed approach is similar to that in [22], but different because of the inclusion of electrolyte 

dynamics. The battery voltage was computed based on the optimal uneven discretization nodes 

under three different charging/discharging conditions. The proposed model demonstrates that as 

the number of optimal uneven discretization nodes applied to the model increases, the fidelity of 

the model increase. However, no significant improvement of prediction accuracy is observed after 

a certain level of uneven discretization. The proposed model demonstrates that in comparison to 

the evenly discretized model, the complexity in terms of the number of states can be reduced by 7 

times without loss of physical interpretation of the diffusion and migration dynamics in the solid 

particles and electrolyte across the entire cell. This reduction in the number of discretization allows 

for faster computation for the purpose of control and system design.
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Chapter 1: Introduction 

Energy investment, according to International Energy Agency (IEA), is the exploration, 

production, distribution, transportation and storage of all forms of energy. Energy storage is as 

important as energy production in ensuring global energy security. Improvement of energy 

exploitation and production technologies without corresponding improvement in energy storage 

technologies will leads to poor energy management.  Since energy productions are mostly at the 

excess of what is needed momentarily, this demonstrate the importance of energy storage systems.   

Energy storage system is a depository medium for energy which is not needed at the time of 

production to serve future purposes, this involves converting energy from the source forms to 

forms more amenable to storage. There are several energy storage mechanisms, the most common 

and portable one being the electric battery. Battery stores chemical energy and delivers electrical 

energy to electrical appliances under usage. It produces direct current by converting chemical 

energy into electrical energy through certain electrochemical reactions.  

1.1  Electrochemical Battery 

The first electrochemical battery was built in 1800 by Alessandro Volta [1], this battery consists 

of copper and zinc plates, separated by a salt bridge called brine-soaked paper disks, to ensure 

electroneutrality of the system.
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Figure 1: Voltaic cell [2] 

Breathtaking developments in battery technology has occurred from the first electrochemical 

battery built to the latest battery technology available now, ranging from the battery size, material 

composition and the price. Fundamentally, a battery comprises of a positive electrode (cathode), a 

negative electrode (anode), a separator, and a flux of electrolyte as shown in Figure 2. 

 

Figure 2: Typical Electrochemical Battery 

The electrochemical battery can either be a rechargeable or non-rechargeable battery. The non-

rechargeable (primary) batteries undergo an irreversible chemical reaction, which makes them 

non-reusable once the stored chemical energy has been depleted. On the other hand, the 
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rechargeable (secondary) batteries undergo a reversible chemical reaction making them re-usable 

upon initial total depletion (discharge) of their stored energy.  The advantage of non-rechargeable 

batteries over rechargeable batteries, lies in their high energy density and high initial voltage, but 

they are only useful for application with low power demand and requires continuous replacement 

for operation once the stored energy is depleted. On the contrary, rechargeable batteries, are more 

economical, eco-friendly and help improve appliances performance. Therefore, they are widely 

used in several high-power demanding operations, due to their tendency to be quickly recharged. 

There are several types of rechargeable batteries and these include,  

● Lead-Acid Battery 

● Nickle Cadmium Battery 

● Nickel-Metal Hydride Battery 

● Lithium-Ion Battery (LIB) 

1.1.1 Lead-Acid Battery 

The first practical lead acid battery was developed by Raymond Plante in 1860 [3]. Lead-acid (Pb-

acid) batteries are manufactured in a variety of sizes and designs, from less than 1 to over 10,000 

Ah battery capacity. The average operating range of a Pb-acid battery is about 2.0 V [3]. In this 

form of rechargeable battery, lead oxide (PbO2) is used as the active material for the positive 

electrode, metallic lead (Pb) as the active material for negative electrode, while the electrolyte is 

made of sulphuric acid (H2SO4) as shown in Figure 2.  
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Figure 3: Schematic Diagram of Lead-Acid Battery [4] 

The main challenge confronting the usage of lead-acid batteries compared to other types of 

batteries is their limited energy density and relatively low life-cycle. 

1.1.2 Nickel Cadmium Battery 

Nickel cadmium battery was invented by Waldemar Jungner in 1899. The positive electrode of a 

nickel cadmium battery consists of nickel hydroxide (NiOOH) as the active material, cadmium as 

the negative active materials and potassium hydroxide as the electrolyte. This battery in 

comparison with other types of rechargeable batteries can deliver their rated energy and power 

capacity even at high discharge rate, with an optimal life-cycle and capable of operating in extreme 

temperatures. The main challenge with this battery is their high self-discharge rate, the 

environmental concern posed by cadmium disposal, and the high cost of production. 
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Figure 4: Schematic Diagram of Nickel-Cadmium Battery [4] 

1.1.3 Nickel-Metal Hydride Battery 

Nickel-Metal Hydride (Nickel-MH) battery is an extension of nickel-cadmium battery. The main 

difference between them is their respective negative electrode’s active material. During the 

charging process, the Nickel-MH battery has metal hydride (MH) as the active material for the 

negative electrode, which undergoes a reduction process into a metal alloy. The positive electrode 

has nickel oxide hydroxide (NiOOH) as the active material and it is reduced to nickel hydroxide 

(Ni(OH)2). The electrolyte contains a higher percentage of potassium hydroxide (KOH) and it has 

a ‘starved electrolyte’ designed to enhance the diffusion of oxygen in the negative electrode at the 

end of the charging cycle.  
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Figure 5: Schematic Diagram of Nickel-Metal Hydride Battery [5] 

Although Nickel-MH battery has better energy and power density compared to Nickel Cadmium 

battery, but its low energy and power density in comparison to lithium-ion battery (LIB) gives the 

later higher preference. Nickel-MH battery suffers from memory effect and its average operating 

voltage is around 1.35 V [6]. 

1.1.4 Lithium-Ion Battery 

Lithium-ion batteries (LIB) are the most widely used energy storage mechanism of all types of 

rechargeable batteries due to their high energy and power density, coupled with no memory effect 

capability and their high average operating cell voltage.  

 

Figure 6: Comparison of different batteries specific power and specific energy [33] 



7 
 
 

Lithium-ion battery consists of a negative electrode (anode) made of carbon, a positive electrode 

(cathode) composed of metal oxide such as LiCoO2, LiMn2O4, LiFePO4 and a lithium salt 

electrolyte. LIB being a porous electrode battery, enables the lithium salt electrolyte to diffuse and 

migrate from one electrode through the separator, to the other electrode while transporting lithium 

ion during this mass transport. The separator region consists of lithium-salt electrolyte, which is 

held basically in an organic solvent such as LiPF6, LiBF4 or LiClO4 or in some solid polymer 

composite [7].   

Lithium-ion batteries technology have gained astounding advancement over the last two decades. 

Its importance has grown in the past and demands keep increasing on an exponential rate because 

of their applications in electric vehicles (EVs), plug-in hybrid electric vehicles (PHEVs), hybrid 

electric vehicles (HEV), portable electronic devices and in most renewable energy generation 

stations. In the automotive industry, due to the high instantaneous electric power demand of 

electric propulsion systems, a reliable energy source like the lithium-ion battery is needed. As 

lithium-ion battery can be applied in several areas differing in power and energy requirements, 

modeling of this battery dynamics is expedient to enable accurate prediction of the battery 

performance and life-cycle. 

1.2 LIB Operational Principle 

Lithium ion cell consist of a negative electrode (anode during discharging), the separator which 

contains lithium-salt electrolyte solution and a positive electrode (cathode during discharging) as 

shown in Figure 7. The two electrodes are made of porous active materials. During discharging 

operation at the negative electrode, lithium ion de-intercalate from graphite solid particles (LixC6) 

at the solid-electrolyte interface (SEI) into the lithium-salt electrolyte, that is held either in the 
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solvent or polymer.  An ionic Li-ion (Li+) is formed which travels across the separator (which 

separates the anode and cathode spatially and electrically) to the positive electrode, where the ionic 

lithium ion (Li+) intercalates into metal oxide particles (Lithium Cobalt Oxide, LiCoO2). 

 

Figure 7: Schematic representation of lithium-ion battery during discharging 

The driving force for the electrochemical reaction at the SEI is the transfer current density (JLi). 

As ionic lithium ion diffuses into the electrolyte salt solution, since the separator is impermeable 

to electrons, the electrons from the chemical reaction are transferred to the current collectors and 

then onwards transferred as an electronic current through an externally connected load to the 

positive electrode. Hence, an electric current flow in the opposite direction to the electrons flow. 

The reverse reaction occurs during the charging operation. The mathematical representation of the 

chemical reaction taking place at the SEI layer in both electrodes are as below. It should be noted 

that the forward reaction represents the discharging operation and backward reaction is the 

charging operation:  



9 
 
 

Negative Electrode: 

    𝐿𝑖𝑥𝐶6   ⇌  6C  +  x𝐿𝑖+  +  x𝑒−   

Positive Electrode: 

           𝐿𝑖𝑦−𝑥Co𝑂2 + x𝐿𝑖+ + x𝑒− ⇌ 𝐿𝑖𝑦Co𝑂2   

Overall Reaction:    

 𝐿𝑖𝑦−𝑥Co𝑂2 + 𝐿𝑖𝑥𝐶6 ⇌ 𝐿𝑖𝑦Co𝑂2 + 6C  

The chemical reactions are modeled with mathematical expressions, employed to represent the 

working principles and behaviors of the battery during both the charging and discharging 

operations. The fidelity of the battery models is paramount for accurate prediction and 

investigation of the battery dynamic performance.  

1.3 Battery Modeling Approach 

The importance of battery modeling cannot be overstated during the design and run time stage of 

Li-ion battery systems. Accurate LIBs modeling is strategic for a better battery packs design and 

for embedded Battery Management Systems. During the design stage, modeling helps battery 

technology specialists in the development of a better and more reliable battery systems with 

minimal production costs. Likewise, during the run time stage of LIB systems, modeling helps in 

the investigation and study of important information, about the battery’s parameters of interest 

under any given operating condition. LIB modeling approach varies widely in terms of their 

complexity, and computational requirements. The models are evaluated according to their 

accuracy, complexity and physical interpretability. 



10 
 
 

 The two major modeling approaches are: 

• Equivalent Circuit Model (ECM) 

• Physic-based model (Electrochemical Model) 

1.3.1 Equivalent Circuit Model 

The equivalent circuit model (ECM) simply models the battery as a simple electrical circuit, 

comprising of a voltage source in series connection with resistors and capacitors, coupled with a 

component to model the output voltage from the battery. Diffusion processes inside both electrodes 

are modeled by using capacitors and resistors.  

ECMs are mostly preferred than other models, because of their simplicity and low computational 

requirements but they have low prediction fidelity compare to electrochemical models. 

1.3.2 Electrochemical Model 

Electrochemical models (EMs) are developed based on the physical laws governing the operation 

of the battery. The battery models based on electrochemical laws [8,9] are generally preferred to 

the equivalent circuit, or to other kinds of simplified models especially for automotive applications. 

This is because they capture all the dynamic operations taking place in the battery and predict the 

physical cells’ limitations, which are relevant in automotive application where the battery suffers 

charge stress of very high transient loads [10]. The magnitude of the instantaneous battery power 

available for usage depends on the electrochemical diffusion dynamic, the battery state of charge 

(SoC) and as well as the applied current [11]. Most of these important battery parameters can only 

be determined through an electrochemical model. 

The electrochemical models involve diffusion, intercalation and electrochemical kinetics in the 

formulation of the mathematical model consequently, providing insight into the internal state of 
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the battery, by capturing all the dynamic operations. These contribute to the complexity of the 

model. Micro-macroscopic electrochemical modeling relates to the hybrid electric vehicle design, 

scale-up, optimization, and control issues of HEV where the battery plays an important role in this 

area, as a high-rate transient power source [7]. 

However, because of the high complexity and computational requirements of the electrochemical 

model, most automotive applications of lithium-ion battery models prefer the equivalent circuit 

model, because of their fast computation capability and simplicity of their control design [12-15]. 

Although diffusion dynamics are not observable in the equivalent circuit models and this results 

in their low fidelity. Also, ECM has limited prediction capability, as it does not consider the 

fundamental electrochemical phenomena behind the battery’s operation. Consequently, 

continuous effort is being made toward reduction of electrochemical model complexity, to ensure 

high fidelity and fast computation for real-time online estimation technique which is the motivation 

for this work.  

1.4 Literature Review 

An equivalent circuit model (ECM) was developed by Shamsi et al. [49] in their work, in which 

their proposed model was designed based on an inclusion of dynamic characteristics for the battery 

systems, which include non-linear open circuit voltage, discharge current, and capacity. Their 

model was developed in MATLAB environment such that it is applicable to all lithium-ion 

chemistries and their model has a cooling system. The components of their ECM are a voltage 

source representing, the open circuit voltage of the battery, one internal resistance, two parallel 

circuits with one resistor and capacitor each. They conducted parameter estimations of the circuit 

through a pulse discharge test (PDT), by varying the pulse current levels to investigate its effect 

on the battery parameters. Likewise, a continuous discharge test (CDT) was carried out by 
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continuously discharging the battery to investigate its effect on the battery capacity. Their 

proposed model was simulation results agree well with the experimental results especially at low 

C-rate. 

Electrochemical modeling of lithium-ion batteries includes a range of models from the full-order 

model developed by Doyle et al. [8] to several reduced-order models which are the simplified 

forms of the full-order model developed to reduce the electrochemical model complexity and 

computational requirements. The Doyle-Fuller-Newman (DFN) model is a popular 

electrochemical-based lithium-ion battery model, expressing solid-phase and electrolyte-phase 

lithium-ion diffusion dynamics. It accurately predicts the cell performance (cell current/voltage), 

using the battery governing nonlinear partial differential equations (PDEs). Doyle et al. developed 

a galvanostatic charge and discharge of a lithium anode/solid polymer separator/insertion cathode 

cell model in 1993 [8] using the porous electrode theory. The developed model in their studies was 

generalized for a wide range of applications with different polymeric separator materials, lithium 

salts, and composite insertion cathodes. Simplification of numerical calculations for the cathode 

was implemented using the superposition principle. The battery governing PDEs were solved 

simultaneously using the subroutine BAND, while the time derivative parameters were evaluated 

using the Crank-Nicolson method. The designed model includes variable physical properties, and 

at the end, their presented results showed the charge and discharge behavior of the 

lithium/polymer/insertion cell. 

DFN model captures the battery performance dynamics with high fidelity, however, the 

implementation of this complex model involves a significantly high computation cost [16]. 

Another form of full-order model was developed referred to as Pseudo-2D (P2D) models. The P2D 
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model was developed based on porous electrode theory. This model describes lithium ion transport 

across the cell thickness, through a one-dimensional charge and mass conservation laws along the 

cell thickness (macroscopic level), and lithium-ion mass transfer across the radial direction of each 

active particle (microscopic level). The kinetic reaction at the solid-electrolyte interface is 

described by Butler-Volmer equation.  The P2D model comprises of ten coupled nonlinear partial 

differential equations (PDEs), expressing mass and charge balance in both solid and electrolyte 

phases [27, 28]. 

Although P2D is a high-fidelity model for capturing the dynamics behavior of LIBs, the 

complexity and high computational cost of solving the ten coupled nonlinear PDEs is its major 

challenge. The challenges posed by the full-order model necessitated the development of the 

reduced order model. The reduced order models are developed based on several approximations 

and assumptions to simplify the full-order model, ensuring its applicability for the real-time online 

estimation techniques.  Several research efforts had been directed to the development of the 

reduced order models. This includes assuming a uniform lithium-ion concentration at the 

macroscopic level (electrolyte-phase) and considering only the microscopic level (solid phase) 

lithium-ion concentration dynamics in the so-called Single Particle (SP) Model. The basic 

assumptions of SP model are that both electrodes are composed of spherical particles of the same 

shape, with a uniform current distribution over the single spherical particle. This simplified model 

strikes the needed balance between the electrochemical model (EM) and equivalent circuit model 

(ECM) by its simplification of the full order electrochemical model. This consequently reduces 

the computational cost of electrochemical models, while maintaining to a certain degree its fidelity 

the prime advantage of ECM over EM. The SP model comprises of a set of PDEs derived directly 

from the full-order electrochemical models, maintaining most of the battery characteristics 
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explicitly [10] and can describe the internal electrochemical states of the battery. However, this 

model become inadequate to capture accurately the battery dynamics at high current rates, due to 

the assumption of uniform electrolyte concentration and potential distribution across the cell 

length.  

Significant developments in SP model includes several model reduction approaches. Smith et al. 

[21] presented a generalized method, to numerically generate a fully observable/controllable 1D 

electrochemical model of a lithium ion battery. Their model was derived from the electrochemical 

kinetics, conservation of species and conservation of charge governing PDEs in the solid and liquid 

phases of the battery. Model order reduction method was applied to reduce the computational 

complexity of their model, by breaking the complex model into electrode sub model, electrolyte 

sub model and current/voltage sub model. The solid electrodes were modeled based on porous 

electrode theory as introduced by Doyle et al. [8], and electrode-averaging technique was applied 

to approximate the electrode surface concentration/reaction distribution coupling. The one-

dimensional domain was discretized into approximately 70 control volumes and each of the four 

governing PDEs were simultaneously solved in the x-direction. Their reduced order model was 

validated against a higher order nonlinear CFD model of a 6 Ah HEV cell, with a constant current 

profile varying up to 50C-rate between the discharge, charge, and rest cycles as shown in Figure 

8. 
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Figure 8: Voltage responses of various state variable models versus CFD model for constant 

current discharge for 1C- 50C rates initiated from 100% SOC [21]. 

Domenico et al. [7], developed an electrode-averaged model similar to the single particle 

assumptions. The solid concentration dynamics at the macroscopic level were neglected for 

simplification purpose in their model. Their assumption results to an average value for the solid 

concentration that can be related with the battery state of charge and critical surface concentration 

[21]. The battery PDEs capturing the battery electrochemical kinetics, conservation of species and 

charge, were solved numerically using a finite difference method in MATLAB. They presented a 

low order extended Kalman filter for the estimation of the average-electrode state of charge. Their 

model was validated against the simplified model results as in [22] shown in Figure 9. The 

assumptions behinds their simplified electrode-average model does not hold under high current 

charging/discharging operations which makes their simplified model inappropriate for high C-rate 

operation predictions.  
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Figure 9: Voltage response of average versus full order model for different constant 

current from 10 A to 300 A [7] 

Lee and Filipi [22] proposed a reduced order model which is based on the electrode-averaged 

model developed in Domenico et al. [7]. They developed a reduced order model, and solved the 

resulting ODEs numerically using a finite difference method. The FDM numerical solutions 

involves evenly discretized nodes and unevenly discretized nodes. The evenly discretized FDM 

model was used as a reference model to develop the reduced order model with uneven 

discretization. The reduced model allows for fast computation and accurate prediction of the 

lithium intercalation dynamics. An optimization problem was formulated based on the predictions 

error between the reference model and the reduced mode.  The constructed constrained nonlinear 

optimization problem was solved with sequential quadratic programming (SQP). Based on their 

optimization solution analysis, the accuracy of the unevenly discretized model for voltage 

prediction increases as the number of unevenly discretized nodes increases as shown in Figure 10. 

Although their proposed reduced order model with unevenly discretized FDM approach proves 

efficient in reducing the required computational efforts while maintaining the prediction accuracy 
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and depth of the physical interpretations. The assumption of uniform electrolyte concentration 

might not hold at discharging/charging c-rates and this will impact the model prediction accuracy. 

The impact of electrolyte dynamics inclusion to their proposed model for LIBs behavior prediction 

is the main motivation for this work. The influence of the electrolyte dynamics inclusion in the 

reduced order model is demonstrated in Figure 11. The assumption of a uniform electrolyte 

concentration distribution is shown by the red line while the blue line profile shows the actual 

behavior of the electrolyte dynamics during a 2C-rate discharging operation. This demonstrate 

why the fidelity of SP model reduces at high C-rate due to the uniform concentration assumption. 

 

Figure 10: Comparison of the terminal voltage profiles depending on the number of uneven 

discretization steps [22] 
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Figure 11: Electrolyte-phase concentration distribution with/without electrolyte 

Furthermore, several efforts have been made to resolve the main drawback of SP model, 

researchers in the past have proposed different techniques to couple electrolyte dynamics with the 

conventional SP model. Single particle model with electrolyte dynamics (SPMe) describes 

accurately the internal electrochemical states of the battery. The SPMe model allows for better 

model-based control design with less complexity and computational cost as compare to full-order 

model [17-18, 31-33]. Different simplification approaches have been developed for inclusion of 

electrolyte dynamics to the SP model. The methodology employed in solving the battery PDEs 

differs for most reduced order models. 

The battery PDEs can be solve analytically and numerically. Several analytical approaches have 

been used in previous studies to simplify the PDEs into more solvable ordinary differential 

equations (ODEs) which can then be easily solved numerically, some of these analytical 

simplification approaches include:  

• polynomial approximation 

● Padé approximation 
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● finite element method 

● finite difference method   

Polynomial approximation has been widely used to represent the solid and electrolyte-phases 

concentration profiles. This involve the introduction of several approximations using different 

polynomial equations with various order [18-20] including parabola and higher-order 

approximations. Higher-order polynomials gives a higher accuracy; but the computational cost of 

the coefficient identification for the model will increase accordingly [17]. 

Zhang et al. [18] proposed a single particle model with electrolyte dynamics. They modeled 

electrolyte concentration distribution with an approximate solution (AP-solution) to improve the 

model computational efficiency. The electrolyte concentration distributions were modeled as a 

parabolic polynomial function across the cell length. Their proposed model was developed based 

on the steady state solution obtained which depict that the concentration distribution at steady state 

at the two electrodes follows a parabolic profile and at the separator the dynamics can be modeled 

with a linear profile. Although the capability of their approximate solution model in accurately 

predicting the electrolyte concentration distribution was validated by comparing their model 

simulation result against that of an FDM based model at low discharge rate (up to 3C) as shown 

in Figure 12a. The author stated that at low discharge rate the AP-solution has some local error at 

both positive and negative electrode as shown in Figure 12b. Although their proposed approximate 

solution-based model has a higher computational efficiency, but its prediction accuracy at high 

charging/discharging rate is not guarantee due to the approximation technique used for the 

electrolyte dynamics representation. 
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Figure 12: Comparison of the electrolyte concentration distributions at different time under 1C 

rate discharge calculated from our approximate solution (AP-sol) and the numerical finite 

difference method (FDM-sol). (b) The errors between the two solutions. [11] 

Park et al. [17] in their work proposed a reduced order model based on SP model coupled with an 

electrolyte dynamic and stress induced diffusion. An approximated solution was derived for the 

electrolyte concentration distribution by solving the mass transport equation in the electrolyte of 

the cell. The electrolyte concentration profile was modeled as a quadratic function (second-order 

polynomial) in the two electrode and the separator. They developed the three quadratic equations 

to depict the concentration distribution across the cell which was solved analytically along the 

length of the cell under both steady and unsteady state condition. The contribution of electrolyte 

dynamics inclusion in the terminal voltage computation was investigated and the effect of stress 

induced diffusion which is due to developed mechanical expansion and contraction was also 

analysis and these increase the fidelity of their proposed model.  The predicted concentration 

profile from their proposed model was solved analytically and compared against a numerical 

solution of the governing PDEs of the battery itself as shown in Figure 13. 
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Their model was able to predict the cell terminate voltage with high accuracy as compare to the 

prediction of convectional SP model. The prediction capacity of their model was validated against 

a full-order model result. The accuracy of their model at any C-rates above 3C becomes reduces 

because of the approximated solution for the electrolyte dynamics. 

 

Figure 13: Comparison of the electrolyte concentration distribution at different times for 

a 1 C discharge rate [17] 

A computational efficient implementation of full-order electrochemical model was carried out by 

Donkers et al. [16]. They developed a model order reduction approach using orthogonal 

decomposition and discrete empirical interpolation for spatial and temporal discretization of the 

full-order model. The developed reduced order nonlinear algebraic equations were solved using 

damped Newton’s method. The simulation result of the implementation of their reduced order 

model shows the computation time is 3-5 times faster and model order reduced significantly by 18 

times as compared to full order model. The only concern is if the implementation of this model for 

real time online estimation will perform accordingly [16]. Their studies propose a numerical 

solution for the full-order model with higher accuracy and computational efficiency, this enhance 



22 
 
 

the application of full-order electrochemical model for battery control design and design 

optimization.  

Gu et al. [27] developed a two-dimensional model to simulate the discharging of a lithium/thionyl 

chloride primary battery. Their 2D model incorporates the conservation and transport of species 

and charge, and electrode porosity variations as well as electrolyte transport. In their proposed 

model, they determine the electrolyte flow occurring in the battery numerically. Numerical 

simulations of the PDEs solution were performed using a finite volume method. Their model was 

validated by comparing predicted discharge curves from their model for various temperatures 

against published experimental data which show good agreement and are essentially identical to 

the published results for a one‐dimensional model as shown in Figure 14. 

 

Figure 14: Comparison of experimental and predicted discharge curves for a 50 V load at 255, 

218, and 258C. The symbols represent the experimental data from Jain et al., while the solid 

lines are the predicted results [27] 

 Ye et al. [28] developed their simplified model by coupling electronic conduction, mass transfer, 

energy balance, and electrochemical mechanisms for LIB. Lithium ion diffusivity and chemical 

reaction rate in the cathode material are computed for different current charge and discharge rates 
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for different operating temperature conditions. Their model computations were performed using 

the finite element based commercial software COMSOL MULTIPHYSICS. As lithium-ion 

diffusivity increases with operating temperature, the lithium-ion concentration gradient decreases 

which can be seen in Figure 15.  

 

Figure 15: Lithium ion concentration distribution within liquid phase across the cell at different 

operation temperatures. 

The simulated results showed that the lithium ion concentration gradient in both liquid and solid 

phase are significantly affected by temperature variation; which according to the authors, lead to 

capacity losses and power losses under low temperatures application. Furthermore, they studied 

reversible and irreversible heat generation during charging and discharging processes and 

suggested that a proper cooling system should be added to keep the battery temperature within the 

safety range. 

Fathy et al. [51] improved the DFN model by making it more conducive and enabling for control 

design. They adaptively solved the DFN model’s algebraic equations through quasi-linearization 

and they reduced the model order through Padé approximation of Fick’s law of spherical diffusion. 

https://www.sciencedirect.com/topics/engineering/ion-concentration
https://www.sciencedirect.com/topics/engineering/operation-temperature
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They applied Padé approximation for model reduction purpose and the reduced model was solved 

numerically upon transforming the systems transfer function to state space form. According to the 

author, the analytic Padé approximation of spherical diffusion greatly decreases the number of 

diffusion states in the model while remaining very accurate which eventually reduced the model 

computational cost. 

4.3 Motivation and Contribution 

The limitations of ECM and SP model for accurate battery dynamics prediction motivates the 

inclusion of electrolyte dynamics to the conventional SP model, but the fidelity of this modified 

model depends on the methodology used in solving the PDEs capturing the battery behavior. Many 

different analytical approaches have been proposed for simplification of this single particle model 

with electrolyte dynamics. Approximation techniques and polynomial function representations 

have been applied in modeling the concentration profile both in solid and electrolyte phases. These 

approximations are done to reduce the computational cost of solving the battery PDEs. Although 

these analytical approximation techniques allow for a reduced computational effort for modeling 

and simulation purpose, but this simplification reduce the model’s accuracy.  

The motivation for this work is the application of a finite difference scheme to solve the battery 

PDEs based on a single particle model with electrolyte dynamics.  This will enable the 

development of a robust model, capable of accurately capturing the battery dynamics under any 

given charging/discharging operations without any assumptions or approximations for modeling 

the concentration profile. This work proposed an optimal model-reduction for lithium-ion battery 

systems based on single particle model with electrolyte dynamics for fast computation and accurate 

prediction of the lithium intercalation dynamics. 
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The proposed optimal model-reduction is similar to the one presented in [22] which was based on 

SP model without the inclusion of electrolyte dynamics. The optimal model reduction will be 

achieved using evenly discretization nodes based SPMe as a reference for developing uneven 

discretization nodes based SPMe. The model reduction will allow for faster computation and 

reduce model complexity without any loss of physical interpretation of the diffusion and migration 

dynamics in solid particles and electrolyte. 

4.3 Objectives 

The objective of this thesis work is as follows; 

• Modeling of lithium-ion single particle model with electrolyte dynamics (SPMe), using 

finite difference method with uneven discretization nodes to solve the battery governing 

PDEs for model reduction purpose. 

• Optimal selection of node points using particle swarm optimization for achieving model 

reduction. 

• Investigating the effect of increase number of node points on the performance of reduced-

order model.  

• Simulation of the SPMe model with three different discharging and charging operation 

conditions: 

➢ Constant Current Operation 

➢ Pulse Charge/Discharge Operation  

➢ Hybrid Pulse Power Characterization (HPPC) Operation
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Chapter 2: LIB Governing Equations 

Lithium-ion battery operations are captured through the governing equations which can be derived 

from the conservation laws for species and charge ratio, and electrochemical kinetic principle. The 

governing equations are expressed as a partial differential equations (PDEs) representing the 

conservation of mass in the solid and electrolyte phases, conservation of charge in the solid and 

electrolyte phases and Butler-Volmer kinetic equation describing the electro-kinetic reaction 

taking place at solid-electrolyte interface (SEI). 

2.1 Mass Conservation in Solid Phase 

From SP model assumptions, the electrodes are assumed to be composed of spherical particles and 

their behavior are modeled based on porous electrode theory. This theory stipulates that the solid 

particles are assumed to be uniformly distributed throughout the electrode and that the empty 

spaces between these particles are filled by electrolyte which are in liquid form. This help provides 

the needed environment for lithium ion intercalation and de-intercalation to take place at the 

interfacial surface of solid and electrolyte particles for electrochemistry process to occur. 

Electrochemical reaction being an interfacial phenomenon, occurs where at the surface where the 

liquid meets with solid because of the porous nature of the electrodes. Porous electrodes offer a 

high surface area, allowing a lot of reaction to be packed into a small space within both the positive 

and negative electrodes.  



27 
 
 

The solid phase lithium ion concentration in the solid particle is model by the diffusion equation 

according to Fick’s second law. Only one spherical particle is used to model negative and positive 

electrode respectively based on the single particle model assumptions which is used to simplify 

each electrode modelling procedure since all particles in the electrodes are uniform in size, and the 

current distribution is assumed to be uniform along the thickness of the porous electrode. The 

mathematical model capturing the concentration dynamics in the spherical coordinate system is 

given as,         

𝜕𝐶𝑠,𝑖

𝜕𝑡
=

𝐷𝑠

𝑟2

𝜕

𝜕𝑟
(𝑟2 𝜕𝐶𝑠,𝑖

𝜕𝑟
),              (1) 

where 𝐶𝑠 denote solid phase lithium ion concentration in the electrode, 𝐷𝑠  is the solid phase 

diffusivity coefficient which is a constant value, r is the particle radius under consideration and the 

subscript I denotes either positive or negative electrode. The two-boundary conditions for solid 

phase concentration dynamics exist at the particle core and surface. The mass flux of lithium ions 

at the center of the spherical particle at r =0 is zero due to the symmetry and the zero gradient 

boundary condition is expressed as;  

𝜕𝐶𝑠

𝜕𝑟
|𝑟=0 = 0,                        (2) 

while the mass flux of lithium ions at the surface of the spherical particle at r =Rs is expressed as; 

−𝐷𝑠
𝜕𝐶𝑠

𝜕𝑟
|𝑟=𝑅𝑠

=
𝐽𝐿𝑖

𝑎𝑠𝐹
 ,            (3) 

where F is the faradays constant, as is the interfacial surface area of the particles which is given 

as;    

    𝑎𝑠 =
3𝜖𝑠

𝑅𝑠
 .                          (4) 



 28 

The active interfacial surface area (𝑎𝑠) is the area to volume ratio of the active spherical 

particles. The lithium ion molar flux density JLi is the ratio of input current to volume, measured 

in Ampere per unit volume as given by, 

𝐽𝐿𝑖 =
𝐼(𝑡)

𝐴𝐿𝑖
                     (5) 

where I is the applied current which is a function of time, A is the area of the particle itself and Li 

is the length of the electrode with i=p/n, representing positive and negative electrode. It is noted 

that input current is negative for positive electrode and positive for negative electrode during 

discharging process. 

2.2 Mass Conservation in Electrolyte Phase 

Transportation of lithium-ion in the electrolyte occurs through molecular diffusion and electric 

migration. The electrolyte phase concentration distribution can be derived from the conservation 

of mass principle. The mass conservation principle is applied to the three regions through which 

the electrolyte flows; a negative electrode, a separator and a positive electrode. Transfer of 

electrolyte-phase lithium ion is governed by a porous electrode theory. At the separator, the 

transfer of lithium-ion in the electrolyte is governed by Fick’s first law since there is no 

intercalation/de-intercalation of lithium-ion in this region. The lithium-ions transfer in the two 

electrodes are governed by Fick’s second law [17]. The mathematical model of this transfer 

process is expressed as; 

Negative Electrode Region:      

𝜖𝑛
𝜕𝐶𝑒,𝑛

𝜕𝑡
=  

𝜕

𝜕𝑥
(𝐷𝑒,𝑛

𝑒𝑓𝑓 𝜕𝐶𝑒,𝑛

𝜕𝑥
) +  

(1−𝑡𝑓
+)

𝐹
 𝐽𝐿𝑖                         (6) 
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Separator Region:   

𝜖𝑠
𝜕𝐶𝑒,𝑠

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷𝑒,𝑠

𝑒𝑓𝑓 𝜕𝐶𝑒,𝑠

𝜕𝑥
)             (7) 

Positive Electrode Region:   

𝜖𝑝
𝜕𝐶𝑒,𝑝

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷𝑒,𝑝

𝑒𝑓𝑓 𝜕𝐶𝑒,𝑝

𝜕𝑥
)   +  

(1−𝑡𝑓
+)

𝐹
 𝐽𝐿𝑖            (8) 

where Ce,n/s/p  is the electrolyte phase concentration across each of the regions, ϵ𝑛/𝑠/𝑝 is the 

electrolyte phase volume fraction in the three regions,  𝐷𝑒,𝑛/𝑠/𝑝
𝑒𝑓𝑓

 is the effective diffusivity 

coefficient which is a function of electrolyte phase volume fraction and Bruggeman’s constant in 

each of the three region and it is expressed as 𝐷𝑒,𝑖 
𝑒𝑓𝑓

= 𝐷𝑒,𝑖 ϵ𝑖
𝑏𝑟𝑢𝑔

. The variable 𝐷𝑒,𝑖  is the 

electrolyte diffusion coefficient, 𝐽𝐿𝑖 is the transfer current density, i denoting each of the three 

regions, and 𝑡𝑓
+

 is the transference number which is assumed to be constant. This concentration 

distribution across the entire length of the cell is subject to the following boundary conditions; 

at the two-current collectors’ side,  

      
𝜕𝐶𝑒,𝑛

𝜕𝑥
|𝑥=0 = 0,                  (9) 

                   
𝜕𝐶𝑒,𝑝

𝜕𝑥
|𝑥=𝐿 = 0.          (10) 

Likewise, at the boundary of negative electrode-separator and separator-positive electrode there is 

a continuity boundary condition for both;   
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𝐷𝑒,𝑛
𝑒𝑓𝑓 𝜕𝐶𝑒,𝑛

𝜕𝑥
|𝑥=𝐿𝑛 = 𝐷𝑒,𝑠

𝑒𝑓𝑓 𝜕𝐶𝑒,𝑠

𝜕𝑥
|𝑥=𝐿𝑛 ,   𝐷𝑒,𝑠

𝑒𝑓𝑓 𝜕𝐶𝑒,𝑠

𝜕𝑥
|𝑥=𝐿𝑛+𝐿𝑠 = 𝐷𝑒,𝑝

𝑒𝑓𝑓 𝜕𝐶𝑒,𝑝

𝜕𝑥
|𝑥=𝐿𝑛+𝐿𝑠       (11)         

𝐶𝑒,𝑛(𝑥=𝐿𝑛) = 𝐶𝑒,s(𝑥=𝐿𝑛)  ,   𝐶𝑒,s(𝑥=𝐿𝑛+𝐿s) = 𝐶𝑒,p(𝑥=𝐿𝑛+𝐿s)         (12) 

2.3 Conservation of Charge in Solid Phase 

The charge conservation for solid phase is governed by the current conservation principle. The 

current conservation equation states that the partial derivative of electric potential divergent due 

to the electrons transfer with respect to spherical space is equal to the lithium-ion molar flux 

density JLi as given by, 

𝜕

𝜕𝑥
(𝜎𝑒𝑓𝑓𝛻𝜑𝑠) = 𝐽𝐿𝑖  ,                            (13) 

where 𝜎𝑒𝑓𝑓 is the electrical conductivity of the two electrodes which is dependent on 

Bruggeman’s constant and solid volume fraction value, 𝜑𝑠 is the solid electric potentials for each 

of the electrodes and 𝐽𝐿𝑖  is the molar flux which is dependent on the current density. The charge 

conservation equation above is solved for each electrode and subject to the boundary conditions 

that at the two current collectors’ side, the gradient of the solid electric potential (𝜑𝑠) are both 

equal but opposite in sign and equals to the current density measure in Ampere per square meter; 

−𝜎𝑒𝑓𝑓 𝜕𝜑𝑠,𝑛

𝜕𝑥
|𝑥=0 = 𝜎𝑒𝑓𝑓 𝜕𝜑𝑠,𝑝

𝜕𝑥
|𝑥=𝐿𝑛 = 

𝐼

𝐴
       (14) 

where I is input current, A is the area of each electrode which mostly are assumed to be the same 

for the two electrodes. Furthermore, there is a no-current flow boundary conditions at the interface 

of both negative electrode-separator and separator-positive electrode this is because no electronic 

lithium can follow across the electrode boundary into the separator;  
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𝜕𝜑𝑠

𝜕𝑥
|𝑥=𝐿𝑛  =

𝜕𝜑𝑠

𝜕𝑥
|𝑥=𝐿𝑛+𝐿𝑠+𝐿𝑝 =  0         (15) 

2.4 Conservation of Charge in Electrolyte Phase 

The governing equation ensuring conservation of charge in the electrolyte phase is expressed as; 

             
𝜕

𝜕𝑥
(𝜅𝑒𝑓𝑓 𝜕

𝜕𝑥
𝜑𝑒) + 

𝜕

𝜕𝑥
(𝜅𝑑

𝑒𝑓𝑓 𝜕

𝜕𝑥
(𝐼𝑛  𝐶𝑒)) = −𝐽𝐿𝑖 ,                    (16) 

the variable Ce is the electrolyte phase lithium ion concentration, φe is the electrolyte phase 

electric potential and 𝜅𝑒𝑓𝑓 = 𝜅𝜖𝑒
𝑏𝑟𝑢𝑔 is the effective ionic conductivity which is concentration 

dependent. The first term in the equation above is the contribution of lithium ion transport due to 

electrical conductivity while the second term represent the contribution of diffusion of lithium ion 

in the electrolyte due to concentration gradient. The variable 𝑘𝑑
𝑒𝑓𝑓

 is the effective diffusional 

coefficient and is expressed as;  

𝜅𝑑
𝑒𝑓𝑓

=
2𝑅𝑇𝜅𝑒𝑓𝑓

𝐹
(𝑡+ − 1)(1 +

𝜕𝑙𝑛𝑓𝑐/𝑎

𝜕𝑙𝑛 𝐶𝑒
 ).   (17) 

The parameter 𝑓𝑐/𝑎 is the mean molar activity coefficient in electrolyte. The diffusional 

conductivity is dependent on the ionic conductivity κ and can be calculated by virtue of 

concentrated solution theory. The first term in equation (16) above is the contribution of lithium 

ion flux due to electrical conductivity and the second term is the contribution of lithium ion 

diffusion due to concentration gradient. The combined effect of these two processes results in the 

movement of solid phase lithium ion into electrolyte phase lithium ion and the migration of the 

electrolyte phase lithium ions. The only boundary condition for conservation of charge in the 
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electrolyte is due to the inability of electrolyte to flow pass the two current collectors at the extreme 

of the two electrodes, 

𝜕𝜑𝑒

𝜕𝑥
|𝑥=0  =

𝜕𝜑𝑒

𝜕𝑥
|𝑥=𝐿 =  0 .       (18) 

The current density per unit volume for both negative and positive electrode satisfies the 

conditions; 

∫ 𝐽𝐿𝑖,𝑛
𝐿𝑛

0
𝑑𝑥 =  

𝐼

𝐴𝛿𝑥
= 𝐽𝐿𝑖,𝑛 ,            ∫ 𝐽𝐿𝑖,𝑛

𝐿𝑛

0
𝑑𝑥 =  

𝐼

𝐴𝛿𝑥
= 𝐽𝐿𝑖,𝑛 .                 (19) 

 Equation (16) can be simplified analytically with Equations (17), (18) and (19) as; 

𝜑𝑒(𝐿, 𝑡) − 𝜑𝑒(0, 𝑡) =  (1 − 𝑡𝑓
+)

2𝑅𝑇

𝐹
 𝑙𝑛 (

𝐶𝑒,𝑝 (𝐿,𝑡)

𝐶𝑒,𝑛 (0,𝑡)
) – 

𝐼

2
 (

𝐿𝑛

𝜅𝑛
𝑒𝑓𝑓  +

2𝐿𝑠

𝜅𝑠
𝑒𝑓𝑓 +

𝐿𝑝

𝜅𝑝
𝑒𝑓𝑓)    (20) 

The electrical potential difference between the two electrode sides account for the overpotential 

due to electrolyte mass transfer (diffusion and migration) across the entire cell. The first term is 

the overpotential due to diffusion of lithium ion caused by concentration gradient in the electrolyte 

while the second term is known as Ohmic resistance and can be determined experimentally with 

the help of an electrochemical impedance spectroscopy. 

 2.5 Butler-Volmer Kinetic Equation 

Intercalation/de-intercalation reaction occurs at the solid-electrolyte interface and is governed by 

the Butler-Volmer kinetic equation which interconnects the solid-phase concentration dynamics 

to the electrolyte-phase concentration dynamics. The lithium-ion molar flux occurs at the interface 

of solid active particle and electrolyte and serve as the driving force responsible for the movement 

of lithium ion into and out of both particles.  The movement of ion within the solid-electrolyte 



33 
 
 

interface (SEI) is modeled by the diffusion equation which is controlled by the Butler-Volmer 

current density at the surface of the spherical particle; 

   𝐽𝐿𝑖,𝑝 = 𝑎𝑠,𝑝𝑖𝑜,𝑝 (𝑒𝑥𝑝(
𝐹

2𝑅𝑇
𝜂𝑝) –  𝑒𝑥𝑝(−

𝐹

2𝑅𝑇
𝜂𝑝))        (21) 

  𝐽𝐿𝑖,𝑛 = 𝑎𝑠,𝑛𝑖𝑜,𝑛 (𝑒𝑥𝑝(
𝐹

2𝑅𝑇
𝜂𝑛) –  𝑒𝑥𝑝(−

𝐹

2𝑅𝑇
𝜂𝑛))                         (22) 

where 𝑖𝑜,𝑛/𝑝 is the exchange current density in the electrodes.  For most battery models, the 

exchange current is assumed to be constant for model simplification but in this work, the exchange 

current density is computed for each time step as; 

𝑖𝑜,𝑝(𝑡) = 𝜅𝑝
0𝑐𝑒,𝑝 

𝛼𝑐 (𝑐𝑠,𝑝,𝑚𝑎𝑥 − 𝑐𝑠,𝑠𝑢𝑟𝑓,𝑝)
𝛼𝑐𝑐𝑠,𝑠𝑢𝑟𝑓,𝑝 

𝛼𝑐 , 

                          𝑖𝑜,𝑛(𝑡) = 𝜅𝑛
0𝑐𝑒,𝑛 

𝛼𝑎 (𝑐𝑠,𝑛,𝑚𝑎𝑥 − 𝑐𝑠,𝑠𝑢𝑟𝑓,𝑛)𝛼𝑎𝑐𝑠,𝑠𝑢𝑟𝑓,𝑛 
𝛼𝑎 ,                         (23) 

where 𝛼𝑎 𝑎𝑛𝑑 𝛼𝑐 are the anodic and cathodic charge transfer coefficients respectively and they are 

assumed to be 0.5, the exchange current density is dependent on the difference between the 

maximum possible concentration of the electrode and its surface concentration and the average 

electrolyte phase lithium-ion concentration across each of the electrodes. The variables  𝜅𝑝
0 and 𝜅𝑛

0 

are the kinetic reaction rate for both negative and positive electrode respectively. 

Furthermore, 𝜂𝑝
𝑘 𝑎𝑛𝑑 𝜂𝑛

𝑘  are positive and negative kinetic overpotentials respectively, and are the 

difference between the solid and electrolyte phase electrical potentials expressed as, 

𝜂𝑝 =
2𝑅𝑇

𝐹
 𝑙𝑛 (𝜉𝑝

2 + √1 + 𝜉𝑝
2)         (24) 

𝜂𝑛 =
2𝑅𝑇

𝐹
 𝑙𝑛 (𝜉𝑛

2 + √1 + 𝜉𝑛
2)         (25) 

where;       𝜉𝑝 = 
𝐽𝐿𝑖,𝑝

2𝑎𝑠,𝑝𝑖𝑜,𝑝
     and     𝜉𝑛 = 

𝐽𝐿𝑖,𝑛

2𝑎𝑠,𝑛𝑖𝑜,𝑛
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The voltage drop due to difference in kinetic overpotential for the two electrodes can be expressed 

as; 

𝜂𝑝 − 𝜂𝑛 = 
2𝑅𝑇

𝐹
𝑙𝑛 (

𝜉𝑝
2 + √1+𝜉𝑝

2

𝜉𝑛
2
 + √1+𝜉𝑛

2
)         (26) 

2.6 Cell Terminal Voltage 

The cell terminal voltage is expressed as the difference between the solid phase potential difference 

of the two electrodes. The potential difference result into a flow of current to an external connected 

load and it is the addition of open circuit potential (Up/n), electrolyte phase potential difference 

(𝜑𝑒,𝑝/𝑛) and kinetic overpotential (𝜂𝑝/𝑛) for each of the electrode. The open circuit potential is 

expressed as a function of normalized surface concentration for each of the two electrodes. The 

terminal voltage is determined by; 

𝑉(𝑡) = 𝜑𝑠,𝑝|𝑥=𝐿  − 𝜑𝑠,𝑛|𝑥=0        (27) 

where for positive electrode;  

𝜑𝑠,𝑝|𝑥=𝐿 = 𝑈𝑝 + 𝜂 𝑝 + 𝜑𝑒,𝑝         (28) 

And for negative electrode; 

         𝜑𝑠,𝑛|𝑥=0 = 𝑈𝑛 + 𝜂 𝑛 + 𝜑𝑒,𝑛          (29) 

Therefore, the cell voltage can be expressed as follows; 

                      𝑉(𝑡) =  (𝑈𝑝 + 𝜂 𝑝 + 𝜑𝑒,𝑝) – (𝑈𝑛 + 𝜂 𝑛 + 𝜑𝑒,𝑛)                    (30) 

          = (𝑈𝑝 − 𝑈𝑛) + (𝜂 𝑝 − 𝜂 𝑛) + (𝜑𝑒,𝑝− 𝜑𝑒,𝑛) – 
𝑅𝑓

𝐴
 𝐼(𝑡) 
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where 𝑅𝑓  is the resistance developed at the electrode-current collector interface. The cell open 

circuit voltage, (𝑈𝑝 − 𝑈𝑛) is dependent on the battery chemistry. The LIB systems considered in 

this work has a LiCoO2 positive electrode active material and graphite as its negative electrode 

active material. 

The equilibrium potentials for negative and positive electrodes are from [30] and are expressed 

as below; 

Un = 0.194+1.5*exp(-120.0* θx) + 0.0351*tanh((θx-0.286)/0.083) – 0.0045*tanh((θx -

0.849)/0.119)  -  0.035*tanh((θx -0.9233)/0.05) -  0.0147*tanh((θx – 0.5)/0.034) – 

0.102*tanh((θx -0.194)/0.142)  -  0.022*tanh((θx -0.9)/0.0164) –  0.011*tanh((θx -

0.124)/0.0226) + 0.0155*tanh((θx -0.105)/0.029).          (31) 

Up = 2.16216+0.07645*tanh(30.834-54.4806* θy)  + 2.1581*tanh(52.294–50.294* θy)  – 

0.14169*tanh(11.0923-19.8543* θy) + 0.2051*tanh(1.4684–5.4888* θy) + 

0.2531*tanh((–θy +0.56478)/0.1316) – 0.02167*tanh((θy –0.525)/0.006).       (32) 

The variable  𝜃𝑥 =
𝐶𝑠𝑒,𝑛

𝐶𝑠,𝑛,𝑚𝑎𝑥
    and  𝜃𝑦 =  

𝐶𝑠𝑒,𝑝

𝐶𝑠,𝑝,𝑚𝑎𝑥
  where  Cse,p/n is the solid-phase surface 

concentration for positive and negative electrodes respectively. 

Conclusively, the battery terminal voltage can be expressed in the simplified form as; 



36 
 
 

𝑉(𝑡) = (𝑈𝑝(𝜃𝑦) − 𝑈𝑛(𝜃𝑥)) +
2𝑅𝑇

𝐹
𝑙𝑛 (

𝜉𝑝
2 + √1+𝜉𝑝

2

𝜉𝑛
2 + √1+𝜉𝑛

2
) – 

𝑅𝑓

𝐴
𝐼 

+(1 − 𝑡𝑓
+)

2𝑅𝑇

𝐹
𝑙𝑛 (

𝐶𝑒,𝑝 (𝐿,𝑡)

𝐶𝑒,𝑛 (0,𝑡)
) – 

𝐼

2
 (

𝐿𝑛

𝜅𝑛
𝑒𝑓𝑓  +

2𝐿𝑠

𝜅𝑠
𝑒𝑓𝑓 +

𝐿𝑝

𝜅𝑝
𝑒𝑓𝑓)                  (33) 
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Chapter 3: Discretization Techniques 

Lithium-ion battery operations are governed by the partial differential equations as stated in 

Chapter two. The PDEs are further simplified for modeling and simulation purpose by applying 

Finite Difference Method (FDM) schemes to discretize the PDEs into a corresponding set of 

ordinary differential equations (ODEs) as applied [14]. The set of ordinary differential equations 

are thereafter solved numerically in MATLAB. In applying FDM a second order of approximation 

was employed for time and spatial domain quantity approximation. Second order forward 

difference approach was applied for time-variance quantity while second order central difference 

approach was applied for spatial-variance quantity. The numerical solutions to the ODEs are then 

used in computing the terminal voltage of the battery system under analysis. This chapter is 

structure such that the FDM applied to the governing equations is first described, followed by the 

description of numerical solution methodology employed in solving the ODEs, and the battery 

parameters used for this work is presented.  

3.1 Finite Difference Method (FDM) 

Finite difference method is used in converting the complex PDEs into a more numerical solution 

friendly ODEs. The FDM gives an approximated form of the differential equations as a difference 

equation. Hence, FDM is used in this modeling procedure to discretize the lithium-ion battery 

governing equations [1,6,7,8,12,20]. 



 28 

There are two approaches to FDM solutions, based on the grid size across the entire domain of 

interest. It can either be a uniform grid or non-uniform grid size FDM. For a uniform grid scheme, 

grid size is the same across the entire domain of interest while a non-uniform scheme has a varying 

grid size across the domain of interest as shown in Figure 16. Both uniform and non-uniform grid 

schemes are applied in this work to discretize the battery PDEs. From Taylor series expansion, we 

can write the expression for a dependent quantity as a function of an independent quantity, thus, 

for this work solid-phase and electrolyte-phase concentration are the dependent quantity changing 

with time, t, and position, r and x, being the independent quantities. 

 

Figure 16: Illustration of different discretization approaches: (a) even discretization; (b) uneven 

discretization [22] 

3.2 FDM Uniform Grid Size Scheme 

Uniform grid size FDM scheme entails the uniformity of the dimension of the grid into which the 

entirety of domain of interest is divided. The spherical particle radius representing each electrode 

are discretized evenly (uniform) from the core to the particle surface to compute solid-phase 

concentration distribution across each electrode. The same evenly discretized methodology will 
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be applied across the length of both electrode and separator in computing the electrolyte phase 

concentration distribution.   

The general Taylor series expansions with uniform grid size are given as;  

𝑓(𝑥𝑖+1)  = 𝑓(𝑥𝑖) + ∆𝑥𝑓′(𝑥𝑖) +
(∆𝑥)2

2!
𝑓′′(𝑥𝑖)  +

(∆𝑥)3

3!
𝑓′′′(𝑥𝑖)  +  𝐻𝑂𝑇  

𝑓(𝑥𝑖−1)  = 𝑓(𝑥𝑖) − ∆𝑥𝑓′(𝑥𝑖) +
(∆𝑥)2

2!
𝑓′′(𝑥𝑖) –

(∆𝑥)3

3!
𝑓′′′(𝑥𝑖)  +  𝐻𝑂𝑇       (34) 

From these equations, 𝑓′ 𝑎𝑛𝑑 𝑓′′ can be obtained as follows, 

𝑓′(𝑥𝑖) ≈  
𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖−1)

2∆𝑥
 

                              𝑓′′(𝑥𝑖) ≈  
𝑓(𝑥𝑖+1)−2𝑓(𝑥𝑖)+𝑓(𝑥𝑖−1)

(∆𝑥)2
                             (35) 

Equation (35) will be employed in solving the battery PDEs, the solid-phase or electrolyte phase 

concentration (Cs or Ce) can be substituted in place of function (f) in the simplified Taylor series 

expansion expression. 

3.2.1 Solid-Phase Concentration Solution 

The PDEs governing the concentration distribution in the solid-phase across the particle radius is 

solved through the FDM with even discretization by diving the particle radius into N-1 numbers 

of grids as shown in Figure 17, where each grid is of the size; 
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Figure 17 Evenly Discretized Particle Radius [22] 

∆𝑟 =
𝑅𝑠

𝑁
                  (36) 

the parameter 𝑅𝑠 is the particle radius, N is the total number of node points across the particle 

radius including the boundary. The particle radius is evenly discretized into  

r = [𝑟1 𝑟2 𝑟3 . . .  𝑟𝑁−2 𝑟𝑁−1 𝑟𝑁]T
 

∆𝑟𝑖 = 𝑟𝑖+1 – 𝑟𝑖  =  
𝑅𝑠

𝑁
               (37) 

by applying the state-space representation approach, Equation (1) can be represented as; 

𝐶𝑠̇ = 𝐴𝑐𝑠𝐶𝑠 + 𝐵𝑐𝑠𝐽𝐿𝑖        (38) 

Where 𝐴𝑐𝑠 is a constant tri-diagonal matrix which is computed from Equation (1) and (36) and it 

is solid-phase diffusion coefficient dependent. The matrix 𝐵𝑐𝑠 corresponds to the contribution of 

the boundary condition being the driving force for lithium ion flux across the particle. The state 𝐶𝑠 

is expressed as, 
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𝐶𝑠 = [𝐶𝑠,1 𝐶𝑠,2 𝐶𝑠,3 . . . 𝐶𝑠,𝑁−2 𝐶𝑠,𝑁−1]
𝑇              (39) 

Equation (32) can be simplify as; 

       
𝜕𝐶𝑠,𝑖

𝜕𝑡
 =  

𝐷𝑠

𝑟𝑖(∆𝑟𝑖)
2
 [(𝑟𝑖 − ∆𝑟𝑖)𝐶𝑠,𝑖−1  − 2𝑟𝑖𝐶𝑠,𝑖  +  (𝑟𝑖 + ∆𝑟𝑖)𝐶𝑠,𝑖+1]          (40) 

Applying the boundary conditions at r=0 and r=𝑅𝑠 to Equation (41) gives the boundary point 

concentration distribution a simplified expression. 

At the electrode core,      
𝜕𝐶𝑠

𝜕𝑟
|𝑟=0 =

𝐶𝑠,1−𝐶𝑠,0

∆𝑟1
= 0;  therefore substituting 𝐶𝑠,0 = 𝐶𝑠,1 into 

equation above gives; 

𝜕𝐶𝑠,1

𝜕𝑡
 =  

𝐷𝑠(𝑟1+∆𝑟1)

𝑟1(∆𝑟1)2
 [ −𝐶𝑠,1  +  𝐶𝑠,2]           (41) 

Also, at r=𝑅𝑠 the BC is  −𝐷𝑠
𝜕𝐶𝑠

𝜕𝑟
|𝑟=𝑅𝑠

=
𝐽𝐿𝑖 

𝑎𝑠𝐹
  where 𝐽𝐿𝑖 is as expressed in Equation (19a) and 

(19b) for the two electrodes.  Hence, 

−
𝜕𝐶𝑠

𝜕𝑟
|𝑟=𝑅𝑠

=
𝐶𝑆,𝑁−𝐶𝑆,𝑁−1

∆𝑟𝑁−1
= −

𝐼

𝐷𝑠𝑎𝑠𝐹𝐴𝐿𝑛
          (42) 

Equation (40) can be expressed in term of  𝐶𝑆,𝑁−1 and substituting this into Equation (38) gives; 

𝜕𝐶𝑆,𝑁−1

𝜕𝑡
 =  

𝐷𝑠(𝑟𝑁−1−∆𝑟𝑁−1)

𝑟𝑁−1(∆𝑟𝑁−1)2
 [ 𝐶𝑆,𝑁−2 – 𝐶𝑆,𝑁−1] −

(𝑟𝑁−1+∆𝑟𝑁−1)

𝑟𝑁−1∆𝑟𝑁−1

𝐼(𝑡)

𝑎𝑠𝐹𝐴𝐿𝑛

       (43)  

Therefore, the constant 𝐴𝑐𝑠 tri-diagonal matrix and input  𝐵𝑐𝑠 matrix are formulated as; 

𝐴𝑐𝑠 =

[
 
 
 
 
 
 
 
 −

𝐷𝑠(𝑟1 + ∆𝑟1)

𝑟1(∆𝑟1)
2

𝐷𝑠(𝑟1 + ∆𝑟1)

𝑟1(∆𝑟1)
2

0  ⋯ 0 0

𝐷𝑠(𝑟𝑖 − ∆𝑟𝑖)

𝑟𝑖(∆𝑟𝑖)
2

−2𝐷𝑠𝑟𝑖
𝑟𝑖(∆𝑟𝑖)

2

𝐷𝑠(𝑟𝑖 + ∆𝑟𝑖)

𝑟𝑖(∆𝑟𝑖)
2

0  ⋯ 0

0 ⋱ ⋱ ⋱ 0 ⋮
 ⋮ 0 ⋱ ⋱ ⋱ 0

0 0 ⋯ 0
𝐷𝑠(𝑟𝑁−1 − ∆𝑟𝑁−1)

𝑟𝑁−1(∆𝑟𝑁−1)
2

−
𝐷𝑠(𝑟𝑁−1 − ∆𝑟𝑁−1)

𝑟𝑁−1(∆𝑟𝑁−1)
2 ]
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           𝐵𝑐𝑠,𝑛 = [0  ⋯ 0 −
(𝑟𝑁−1+∆𝑟𝑁−1)

𝑟𝑁−1∆𝑟𝑁−1𝑎𝑠𝐹𝐴𝐿𝑛
]T   

  𝐵𝑐𝑠,𝑝 = [0  ⋯ 0
(𝑟𝑁−1+∆𝑟𝑁−1)

𝑟𝑁−1∆𝑟𝑁−1𝑎𝑠𝐹𝐴𝐿𝑝
]T         (44) 

The matrix 𝐴𝑐𝑠 has the same structure for both electrodes except their 𝐷𝑠 which differs. 

Simplification of Equation (38) gives; 

𝐶𝑠,𝑖+1−𝐶𝑠,𝑖

∆t
= 𝐴𝑐𝑠𝐶𝑠,𝑖 + 𝐵𝑐𝑠I(t) 

𝐶𝑠,𝑖+1  =  (1 + 𝐴𝑐𝑠∆𝑡) 𝐶𝑠,𝑖  +  ∆𝑡𝐵𝑐𝑠𝐼(𝑡)               (45) 

The solid-phase concentration distribution is computed from Equation (45) as a function of time 

and position. The concentration at any time step (i+1) is computed based on the concentration 

value of the present time step, I, the boundary condition, and the constant 𝐴𝑐𝑠 and 𝐵𝑐𝑠 matrix. 

3.2.2 Electrolyte-Phase Concentration Solution  

The PDEs representing the conservation of species for electrolyte-phase is used to model the 

electrolyte-phase concentration distribution across the entire length of the cell. These PDEs are 

evenly discretized for the two electrodes and the separator, since the concentration dynamics in 

negative electrode is monotonic to that of positive electrode, therefore the same analysis structure 

is applied to both electrodes and at such the ODEs that will be developed for the negative electrode 

will be similar to positive electrode ODEs with appropriate parameters substitution. Although 

some researchers have investigated the effect of electrolyte phase diffusion coefficient dependency 

(𝐷𝑒) on concentration and their results show the sensitivity of diffusion coefficient to the 

concentration dynamics. But for simplification purpose a constant diffusion coefficient (𝐷𝑒) 

computed based on the electrolyte average concentration is assumed in this work. Based on this 
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assumption of constant diffusion coefficient, the governing PDE in Equations (6), (7), and (8) can 

be simplified as follows;    

Negative Electrode Region:   0 ≤ 𝑥𝑛 ≤ 𝐿𝑛    

       𝜖𝑛
𝜕𝐶𝑒,𝑛

𝜕𝑡
= 𝐷𝑒,𝑛

𝑒𝑓𝑓
  

𝜕2𝐶𝑒,𝑛

𝜕𝑥2
 +  

(1−𝑡𝑓
+)

𝐹
 𝐽𝐿𝑖                           (46) 

Separator Region:   𝐿𝑛 ≤ 𝑥𝑠 ≤ 𝐿𝑛 + 𝐿𝑠    

𝜖𝑠
𝜕𝐶𝑒,𝑠

𝜕𝑡
= 𝐷𝑒,𝑠

𝑒𝑓𝑓
  

𝜕2𝐶𝑒,𝑠

𝜕𝑥2
          (47) 

Positive Electrode Region:  𝐿𝑛 + 𝐿𝑠 ≤ 𝑥𝑝 ≤ 𝐿𝑛 + 𝐿𝑠 + 𝐿𝑝    

𝜖𝑝
𝜕𝐶𝑒,𝑝

𝜕𝑡
= 𝐷𝑒,𝑝

𝑒𝑓𝑓 𝜕2𝐶𝑒,𝑝

𝜕𝑥2
 +  

(1−𝑡𝑓
+)

𝐹
 𝐽𝐿𝑖          (48) 

The length of each of the electrodes and separator were divided into N and Ns equal grid size 

respectively as expressed in Equation (49). The chosen number of nodes for each region is as 

presented in Table 1. 

∆𝑥𝑛 = ∆𝑥𝑝 =
𝐿𝑛/𝑝

𝑁
            

  ∆𝑥𝑠 =
𝐿𝑠

𝑁𝑠
               (49) 

    

From the state-space representation approach, Equation (6) can be represented as; 

𝐶𝑒̇ = 𝐴𝑐𝑒𝐶𝑒 + 𝐵𝑐𝑒𝐼                      (50) 

The parameter 𝐴𝑐𝑒  is a constant tri-diagonal matrix which is computed based on Equation (6), (7), 

(8) and (35) and it is dependent on electrolyte-phase diffusion coefficient (𝐷𝑒). The column 
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matrix 𝐵𝑐𝑒 corresponds to the contribution of the boundary condition in each of the three regions. 

The state variable 𝐶𝑒 is expressed as; 

   𝐶𝑒 = [𝐶𝑒,1
𝑛  𝐶𝑒,2

𝑛 . . . 𝐶𝑒,𝑁−1
𝑛 𝐶𝑒,2

𝑠  𝐶𝑒,3
𝑠 . . . 𝐶𝑒,𝑁−1

𝑠  𝐶𝑒,2
𝑝

 𝐶𝑒,3
𝑝

. . . 𝐶𝑒,𝑁−1
𝑝

]𝑇          (51) 

Applying Taylor series expansion to Equations (46), (47) and (48) above to simplify the PDEs 

yields; 

Negative Electrode Region:   0 ≤ 𝑥𝑛 ≤ 𝐿𝑛    

𝜕𝐶𝑒,𝑖
𝑛

𝜕𝑡
 =  

𝐷𝑒,𝑛,𝑖
𝑒𝑓𝑓

𝜉𝑛(∆ 𝑥𝑒,𝑖
𝑛 )2

 [ 𝐶𝑒,𝑖−1
𝑛  − 2𝐶𝑒,𝑖

𝑛 + 𝐶𝑒,𝑖+1
𝑛 ]  + 

(1−𝑡𝑓
+)

𝝃𝑛𝐹𝐿𝑛𝐴
 𝐼(𝑡)        (52) 

From the boundary condition, 𝐶𝑒,1
𝑛 = 𝐶𝑒,2

𝑛 ,  and hence  

𝜕𝐶𝑒,1
𝑛

𝜕𝑡
 =  

𝐷𝑒,𝑛,1
𝑒𝑓𝑓

𝜉𝑛(∆𝑥𝑒,1
𝑛 )2

 [−𝐶𝑒,1
𝑛 + 𝐶𝑒,2

𝑛 ] +
(1−𝑡𝑓

+)

𝝃𝑛𝐹𝐿𝑛𝐴
 𝐼(𝑡)           (53) 

From the boundary condition, the Nth-Node dynamics can be expressed as,  

          
𝜕𝐶𝑒,𝑁−1

𝑛

𝜕𝑡
 =  

𝐷𝑒,𝑛,𝑁−1
𝑒𝑓𝑓

𝝃𝑛(∆𝑥𝑒,𝑁−1
𝑛 )2

 [ 𝐶𝑒,𝑁−2
𝑛  − 2𝐶𝑒,𝑁−1

𝑛 + 𝐶𝑒,𝑁
𝑛 ]  + 

(1−𝑡𝑓
+)

𝝃𝑛𝐹𝐿𝑛𝐴
 𝐼(𝑡)             (54) 

Since 𝐷𝑒,𝑛
𝑒𝑓𝑓 𝜕𝐶𝑒,𝑛

𝜕𝑥
|𝑥=𝐿𝑛 = 𝐷𝑒,𝑠

𝑒𝑓𝑓 𝜕𝐶𝑒,𝑠

𝜕𝑥
|𝑥=𝐿𝑠, 𝐶𝑒,𝑁

𝑛  can be expressed in terms of 

𝐶𝑒,𝑁−2
𝑛 , 𝐶𝑒,𝑁−1

𝑛 , 𝐶𝑒,2
𝑠  and substituted into Equation (54). 

Separator Region:    𝐿𝑛 ≤ 𝑥𝑠 ≤ 𝐿𝑛 + 𝐿𝑠    

      
𝜕𝐶𝑒,𝑖

𝑠

𝜕𝑡
 =  

𝐷𝑒,𝑠,𝑖
𝑒𝑓𝑓

𝝃𝑠(∆𝑥𝑒,𝑖
𝑠 )2

 [ 𝐶𝑒,𝑖−1
𝑠  − 2𝐶𝑒,𝑖

𝑠 + 𝐶𝑒,𝑖+1
𝑠 ]  +  

(1−𝑡𝑓
+)

𝝃𝑠𝐹𝐿𝑠𝐴
 𝐼(𝑡)       (55) 
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Since at the first node, 𝐶𝑒,𝑁
𝑛 = 𝐶𝑒,1

𝑠  and 𝐶𝑒,1
𝑠  can be derived from the given boundary condition 

at 𝐿𝑛. Thus,  

   
𝜕𝐶𝑒,2

𝑠

𝜕𝑡
 =  

𝐷𝑒,𝑠,1
𝑒𝑓𝑓

𝝃𝑠(∆𝑥𝑒,1
𝑠 )2

 [𝐶𝑒,𝑁
𝑛 − 2𝐶𝑒,2

𝑠 + 𝐶𝑒,3
𝑠 ]        (56) 

The Nth-Node dynamics is expressed as,  

      
𝜕𝐶𝑒,𝑁−1

𝑠

𝜕𝑡
 =  

𝐷𝑒,𝑠,𝑁−1
𝑒𝑓𝑓

𝝃𝑠(∆𝑥𝑒,𝑁−1
𝑠 )2

 [ 𝐶𝑒,𝑁−2
𝑠  − 2𝐶𝑒,𝑁−1

𝑠 + 𝐶𝑒,𝑁
𝑠 ]               (57) 

since 𝐷𝑒,𝑛
𝑒𝑓𝑓 𝜕𝐶𝑒,𝑛

𝜕𝑥
|𝑥=𝐿𝑛 = 𝐷𝑒,𝑠

𝑒𝑓𝑓 𝜕𝐶𝑒,𝑠

𝜕𝑥
|𝑥=𝐿𝑠, this implies that 𝐶𝑒,𝑁

𝑠  can be expressed in terms 

𝐶𝑒,𝑁−2
𝑠 , 𝐶𝑒,𝑁−1

𝑠 , 𝐶𝑒,2
𝑝

 and substituted into Equation (57). 

Positive Electrode Region:   𝐿𝑛 + 𝐿𝑠 ≤  𝑥𝑝 ≤ 𝐿𝑛 + 𝐿𝑠 + 𝐿𝑝  

𝜕𝐶𝑒,𝑖
𝑝

𝜕𝑡
 =  

𝐷𝑒,𝑝,𝑖
𝑒𝑓𝑓

𝝃𝑝(∆ 𝑥𝑒,𝑖
𝑝

)2
 [ 𝐶𝑒,𝑖−1

𝑝
 − 2𝐶𝑒,𝑖

𝑝
+ 𝐶𝑒,𝑖+1

𝑝
]  + 

(1−𝑡𝑓
+)

𝝃𝑝𝐹𝐿𝑝𝐴
 𝐼(𝑡)                  (58) 

Since at the first node, 𝐶𝑒,𝑁
𝑠 = 𝐶𝑒,1

𝑝
 and 𝐶𝑒,1

𝑝
 can be derived from the given boundary condition 

at 𝐿𝑛 + 𝐿𝑠. Thus, 

𝜕𝐶𝑒,1
𝑝

𝜕𝑡
 =  

𝐷𝑒,𝑝,1
𝑒𝑓𝑓

𝝃𝑝(∆𝑥𝑒,1
𝑝

)2
 [𝐶𝑒,𝑁

𝑠 − 2𝐶𝑒,2
𝑝

+ 𝐶𝑒,3
𝑝

] +
(1−𝑡𝑓

+)

𝜉𝑝𝐹𝐿𝑝𝐴
 𝐼(𝑡)                  (59) 

At the Nth-Node point, there is a zero gradient boundary condition, Equation (55) can be expressed 

as, 
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𝜕𝐶𝑒,𝑁−1
𝑝

𝜕𝑡
 =  

𝐷𝑒,𝑝,𝑁−1
𝑒𝑓𝑓

𝝃𝑝(∆𝑥𝑒,𝑁−1
𝑝

)2
 [ 𝐶𝑒,𝑁−2

𝑝
 − 𝐶𝑒,𝑁−1

𝑝
]  + 

(1−𝑡𝑓
+)

𝜉𝑝𝐹𝐿𝑝𝐴
 𝐼(𝑡)       (60) 

Hence, the constant tri-diagonal matrix 𝐴𝑐𝑒  and input matrix 𝐵𝑐𝑒 are formulated as below; 

𝐴𝑐𝑒 = [

 𝐴𝑛𝑒𝑔  0  0

0 𝐴𝑠𝑒𝑝 0

0 0 𝐴𝑝𝑜𝑠

] 

where matrix 𝐴𝑛𝑒𝑔 , 𝐴𝑠𝑒𝑝 𝑎𝑛𝑑 𝐴𝑝𝑜𝑠 corresponds to the coefficient matrix for the negative 

electrode, separator, and positive electrode as expressed below; 

𝐴𝑛𝑒𝑔 =

[
 
 
 
 
 
 
 
 −

𝐷𝑒,𝑛,1
𝑒𝑓𝑓

𝜉𝑛(∆𝑥𝑒,1
𝑛 )2

𝐷𝑒,𝑛,1
𝑒𝑓𝑓

𝜉𝑛(∆𝑥𝑒,1
𝑛 )2

0  ⋯ 0 0

𝐷𝑒,𝑛,1
𝑒𝑓𝑓

𝜉𝑛(∆ 𝑥𝑒,𝑖
𝑛 )2

−2𝐷𝑒,𝑛,2
𝑒𝑓𝑓

𝜉𝑛(∆ 𝑥𝑒,𝑖
𝑛 )2

𝐷𝑒,𝑛,3
𝑒𝑓𝑓

𝜉𝑛(∆ 𝑥𝑒,𝑖
𝑛 )2

0  ⋯ 0

0 ⋱ ⋱ ⋱ 0 ⋮
 ⋮ 0 ⋱ ⋱ ⋱ 0

0 0 ⋯
𝐷𝑒,𝑛,𝑁−1

𝑒𝑓𝑓

𝜉𝑛(∆𝑥𝑒,𝑁−1
𝑛 )2

−2𝐷𝑒,𝑛,𝑁−1
𝑒𝑓𝑓

𝜉𝑛(∆𝑥𝑒,𝑁−1
𝑛 )2

𝐷𝑒,𝑛,𝑁−1
𝑒𝑓𝑓

𝜉𝑛(∆𝑥𝑒,𝑁−1
𝑛 )2]

 
 
 
 
 
 
 
 

  

𝐴𝑠𝑒𝑝 =

[
 
 
 
 
 
 
 
 
  

𝐷𝑒,𝑠,1
𝑒𝑓𝑓

𝜉𝑠(∆𝑥𝑒,1
𝑠 )2

 
−2𝐷𝑒,𝑠,1

𝑒𝑓𝑓

𝜉𝑠(∆𝑥𝑒,1
𝑠 )2

 
𝐷𝑒,𝑠,1

𝑒𝑓𝑓

𝜉𝑠(∆𝑥𝑒,1
𝑠 )2

0 ⋮ ⋯ 0

0
𝐷𝑒,𝑠,1

𝑒𝑓𝑓

𝜉𝑠(∆𝑥𝑒,𝑖
𝑠 )2

−2𝐷𝑒,𝑠,2
𝑒𝑓𝑓

𝜉𝑠(∆𝑥𝑒,𝑖
𝑠 )2

𝐷𝑒,𝑠,3
𝑒𝑓𝑓

𝜉𝑠(∆𝑥𝑒,𝑖
𝑠 )2

0 ⋯ ⋮

⋮ 0 ⋱ ⋱ ⋱ 0 ⋮
0 0 ⋱ ⋱ ⋱ 0 0

0 ⋯ ⋯ 0
𝐷𝑒,𝑠,𝑁−1

𝑒𝑓𝑓

𝜉𝑠(∆𝑥𝑒,𝑁−1
𝑠 )2

−2𝐷𝑒,𝑠,𝑁−1
𝑒𝑓𝑓

𝜉𝑠(∆𝑥𝑒,𝑁−1
𝑠 )2

𝐷𝑒,𝑠,𝑁−1
𝑒𝑓𝑓

𝜉𝑠(∆𝑥𝑒,𝑁−1
𝑠 )2]

 
 
 
 
 
 
 
 
 

 

𝐴𝑝𝑜𝑠 =

[
 
 
 
 
 
 
 
 
 𝐷𝑒,𝑝,1

𝑒𝑓𝑓

𝜉𝑝(∆𝑥𝑒,1
𝑝

)2

−2𝐷𝑒,𝑝,1
𝑒𝑓𝑓

𝜉𝑝(∆𝑥𝑒,2
𝑝

)2

𝐷𝑒,𝑝,1
𝑒𝑓𝑓

𝜉𝑝(∆𝑥𝑒,3
𝑝

)2
⋮ ⋮

0
𝐷𝑒,𝑝,𝑖

𝑒𝑓𝑓

𝜉𝑝(∆ 𝑥𝑒,𝑖
𝑝

)2

−2𝐷𝑒,𝑝,𝑖
𝑒𝑓𝑓

𝜉𝑝(∆ 𝑥𝑒,𝑖
𝑝

)2

𝐷𝑒,𝑝,𝑖
𝑒𝑓𝑓

𝜉𝑝(∆ 𝑥𝑒,𝑖
𝑝

)2
⋮

⋱ 0 ⋱ ⋱ ⋱

0 0 ⋱
𝐷𝑒,𝑝,𝑁−1

𝑒𝑓𝑓

𝜉𝑝(∆𝑥𝑒,𝑁−1
𝑝

)2

−𝐷𝑒,𝑝,𝑁−1
𝑒𝑓𝑓

𝜉𝑝(∆𝑥𝑒,𝑁−1
𝑝

)2]
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𝐵 = [
(1−𝑡𝑓

+)

𝜉𝑛𝐹𝐿𝑛𝐴
 ⋯

(1−𝑡𝑓
+)

𝜉𝑛𝐹𝐿𝑛𝐴
 0  ⋯ 0

(1−𝑡𝑓
+)

𝜉𝑝𝐹𝐿𝑝𝐴
 ⋯

(1−𝑡𝑓
+)

𝜉𝑝𝐹𝐿𝑝𝐴
 ]T      (61) 

Consequently, electrolyte-phase concentration distribution is computed by solving these ODEs. 

The boundary concentrations were computed based on boundary condition given in Equation (3), 

(7), and (8). 

3.3 FDM Non-Uniform Grid Size Scheme 

FDM non-uniform (uneven) grid size scheme was developed to achieve the model reduction 

objective of this work. The concentration gradient within each of the region in the battery varies 

across the region. The gradient is usually steeper at the boundary point due to the applied transfer 

current through the boundary conditions and smoother for point further away from the boundary. 

Hence, more discretization points are required at the boundaries to capture the dynamics 

accurately, and less discretization points are required to capture the dynamics for points further 

away from the boundary for both solid and electrolyte phase concentration distribution. The 

unevenly discretized nodes will be determined optimally using a particle swarm optimization 

which will be discuss in chapter 4. Numerical approximation to the derivatives for this uneven 

discretized FDM is presented below. 

𝑓(𝑥𝑖+1)  = 𝑓(𝑥𝑖) + ∆𝑥𝑖𝑓
′(𝑥𝑖) +

(∆𝑥𝑖)
2

2!
𝑓′′(𝑥𝑖)  +

(∆𝑥𝑖)
3

3!
𝑓′′′(𝑥𝑖)  +  𝐻𝑂𝑇       (62) 

𝑓(𝑥𝑖−1)  = 𝑓(𝑥𝑖) − ∆𝑥𝑖−1𝑓
′(𝑥𝑖) +

(∆𝑥𝑖−1)2

2!
𝑓′′(𝑥𝑖) –

(∆𝑥𝑖−1)3

3!
𝑓′′′(𝑥𝑖)  +  𝐻𝑂𝑇      (63) 

Simplification of Equation (62) and (63) gives the expression for 𝑓′′ as, 

𝑓′′(𝑥𝑖) =
2

∆𝑥𝑖−1(∆𝑥𝑖−1+∆𝑥𝑖)∆𝑥𝑖
[∆𝑥𝑖𝑓(𝑥𝑖−1) − (∆𝑥𝑖−1 + ∆𝑥𝑖)𝑓(𝑥𝑖) + ∆𝑥𝑖−1𝑓(𝑥𝑖+1)]      (64) 
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3.3.1 Solid-Phase Concentration Solution  

The PDEs governing the concentration distribution in the solid-phase across the particle radius is 

solved through the FDM with uneven discretization scheme by diving the particle radius into N-1 

numbers of grids based on the optimal node points generated by the optimization scheme as shown 

in Figure 18.  

∆𝑟 =
𝑅𝑠

𝑁
         (65) 

where  𝑅𝑠 is the particle radius, N is the total number of evenly discretized nodes which is used as 

a reference for the uneven discretized scheme.  𝑁𝑢𝑛 is the number of uneven discretized nodes. 

The particle unevenly discretized radius, 𝑟𝑖 is computed based on the current node location to the 

particle core. 

 

Figure 18: Unevenly Discretized Particle Radius [22] 

r = [𝑟1 𝑟2 𝑟3 . . .  𝑟𝑁−2 𝑟𝑁−1 𝑟𝑁]T
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∆𝑟𝑢𝑛  = ∆𝑟(𝑟𝑖+1 – 𝑟𝑖)                 (66) 

 From the state-space representation approach, Equation (1) can be represented as; 

𝐶𝑠̇ = 𝐴𝑢𝑠𝐶𝑠 + 𝐵𝑢𝑠𝐼 

       𝐶𝑠 = [𝐶𝑠,1 𝐶𝑠,2 𝐶𝑠,3. . . 𝐶𝑠,𝑁−2 𝐶𝑠,𝑁−1]
𝑇                         (67) 

where  𝐴𝑢𝑠 is a constant tri-diagonal matrix computed from Equation (60) and 𝐵𝑢𝑠 is the 

column matrix corresponding to the boundary conditions. 

𝜕𝐶𝑠,𝑖

𝜕𝑡
 =  

2𝐷𝑠,𝑛

𝑟𝑖∆𝑟𝑖−1(∆𝑟𝑖+∆𝑟𝑖−1)∆𝑟𝑖
 [(𝑟𝑖∆𝑟𝑖 − ∆𝑟𝑖

2)𝐶𝑠,𝑖−1 – (𝑟𝑖(∆𝑟𝑖−1 + ∆𝑟𝑖) + ∆𝑟𝑖−1
2 −

∆𝑟𝑖
2)𝐶𝑠,𝑖  +  (𝑟𝑖∆𝑟𝑖−1 − ∆𝑟𝑖−1

2)𝐶𝑠,𝑖+1]              (68) 

Applying the boundary conditions at r=0 and r=𝑅𝑠 to Equation (68) gives the boundary point 

concentration distribution expressed as, 

From the boundary conditions,    
𝜕𝐶𝑠

𝜕𝑟
|𝑟=0 =

𝐶𝑠,1−𝐶𝑠,0

∆𝑟1
= 0;  hence  𝐶𝑠,0 = 𝐶𝑠,1, Equation (68) 

is simplified as expressed below, 

𝜕𝐶𝑠,1

𝜕𝑡
 =  

2𝐷𝑠,𝑛

𝑟2∆𝑟1(∆𝑟2+∆𝑟1)∆𝑟2
  [ −(𝑟2∆𝑟1 − ∆𝑟1

2)𝐶𝑠,1  +  (𝑟2∆𝑟1 − ∆𝑟1
2)𝐶𝑠,2] .     (69) 

At r=𝑅𝑠,  −𝐷𝑠
𝜕𝐶𝑠

𝜕𝑟
|𝑟=𝑅𝑠

=
𝐽𝐿𝑖

𝑎𝑠𝐹
  where 𝐽𝐿𝑖 is as expressed in Equation (15a) and (15b).  

−
𝜕𝐶𝑠

𝜕𝑟
|𝑟=𝑅𝑠

=
𝐶𝑆,𝑁−𝐶𝑆,𝑁−1

∆𝑟𝑁−1
= −

𝐼

𝐷𝑠𝑎𝑠𝐹𝐴𝐿𝑛
         (70) 

Expressing the Equation (70) in term of  𝐶𝑆,𝑁−1 and plugging this into Equation (68) gives; 
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𝜕𝐶𝑆,𝑁−1

𝜕𝑡
 =

2𝐷𝑠,𝑛

𝑟𝑁−1∆𝑟𝑁−2(∆𝑟𝑁−1+∆𝑟𝑁−2)∆𝑟𝑁−1
 [(𝑟𝑁−1∆𝑟𝑁−1 − ∆𝑟𝑁−1

2) 𝐶𝑆,𝑁−2 – (𝑟𝑁−1∆𝑟𝑁−1 −

∆𝑟𝑁−1
2)𝐶𝑆,𝑁−1] −

2(𝑟𝑁−1+∆𝑟𝑁−1)

𝑟𝑁−1∆𝑟𝑁−2(∆𝑟𝑁−1+∆𝑟𝑁−2)∆𝑟𝑁−1

𝐼(𝑡)

𝑎𝑠𝐹𝐴𝐿𝑛
              (71) 

The constant tri-diagonal matrix  𝐴𝑢𝑠and input matrix 𝐵𝑢𝑠 are expressed as, 

𝐴𝑢𝑠 =

[
 
 
 
 
 
 
 −

2𝐷𝑠,𝑛(𝑟2∆𝑟1−∆𝑟1
2)

𝑟2∆𝑟1(∆𝑟2+∆𝑟1)∆𝑟2

2𝐷𝑠,𝑛(𝑟2∆𝑟1−∆𝑟1
2)

𝑟2∆𝑟1(∆𝑟2+∆𝑟1)∆𝑟2
0  ⋯ 0 0

2𝐷𝑠,𝑛(𝑟𝑖∆𝑟𝑖−∆𝑟𝑖
2)

𝑟𝑖∆𝑟𝑖−1(∆𝑟𝑖+∆𝑟𝑖−1)∆𝑟𝑖

−2𝐷𝑠,𝑛(𝑟𝑖(∆𝑟𝑖−1+∆𝑟𝑖)+∆𝑟𝑖−1
2−∆𝑟𝑖

2)

𝑟𝑖∆𝑟𝑖−1(∆𝑟𝑖+∆𝑟𝑖−1)∆𝑟𝑖

2𝐷𝑠,𝑛(𝑟𝑖∆𝑟𝑖−1−∆𝑟𝑖−1
2)

𝑟𝑖∆𝑟𝑖−1(∆𝑟𝑖+∆𝑟𝑖−1)∆𝑟𝑖
0  ⋯ 0

0 ⋱ ⋱ ⋱ 0 ⋮
 ⋮ 0 ⋱ ⋱ ⋱ 0

0 0 ⋯ 0
2𝐷𝑠,𝑛(𝑟𝑁−1∆𝑟𝑁−1−∆𝑟𝑁−1

2)

𝑟𝑁−1∆𝑟𝑁−2(∆𝑟𝑁−1+∆𝑟𝑁−2)∆𝑟𝑁−1
−

2𝐷𝑠,𝑛(𝑟𝑁−1∆𝑟𝑁−1−∆𝑟𝑁−1
2)

𝑟𝑁−1∆𝑟𝑁−2(∆𝑟𝑁−1+∆𝑟𝑁−2)∆𝑟𝑁−1]
 
 
 
 
 
 
 

  

𝐵𝑢𝑠
𝑛 =[0  ⋯ 0 −

2(𝑟𝑁−1+∆𝑟𝑁−1)

𝑟𝑁−1∆𝑟𝑁−2(∆𝑟𝑁−1+∆𝑟𝑁−2)∆𝑟𝑁−1𝐹𝑎𝑠𝐴𝐿𝑛
]T 

      𝐵𝑢𝑠
𝑝 =[ 0  ⋯ 0 −

2(𝑟𝑁−1+∆𝑟𝑁−1)

𝑟𝑁−1∆𝑟𝑁−2(∆𝑟𝑁−1+∆𝑟𝑁−2)∆𝑟𝑁−1𝐹𝑎𝑠𝐴𝐿𝑝
 ]T

      (72) 

the matrix 𝐴𝑢𝑠  has the same structure for both electrodes but different 𝐷𝑠. Simplifying Equation 

(67) gives 

𝐶𝑠,𝑖+1−𝐶𝑠,𝑖

∆t
= 𝐴𝑢𝑠𝐶𝑠,𝑖  + 𝐵𝑢𝑠I 

𝐶𝑠,𝑖+1  =  (1 + ∆𝑡𝐴𝑢𝑠) 𝐶𝑠,𝑖  +  ∆𝑡𝐵𝑢𝑠𝐼                (73) 

The solid-phase concentration distribution is computed using Equation (73), as a function of time 

and position in a similar manner to FDM evenly discretized solution approach. 
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3.3.2 Electrolyte-Phase Concentration Solution  

For electrolyte-phase concentration dynamics, the uneven discretized FDM scheme is expressed 

as, 

Negative Electrode Region:   0 ≤ 𝑥𝑛 ≤ 𝐿𝑛    

𝜕𝐶𝑒,𝑖
𝑛

𝜕𝑡
 =  

2𝐷𝑒,𝑛,𝑖
𝑒𝑓𝑓

𝜉𝑛∆𝑥𝑖−1(∆𝑥𝑖+∆𝑥𝑖−1)∆𝑥𝑖
 [ ∆𝑥𝑖𝐶𝑒,𝑖−1

𝑛  − (∆𝑥𝑖 + ∆𝑥𝑖−1)𝐶𝑒,𝑖
𝑛 + ∆𝑥𝑖−1𝐶𝑒,𝑖+1

𝑛 ]  +

                                                                         
(1−𝑡𝑓

+)

𝜉𝑛𝐹𝐿𝑛𝐴
 𝐼(𝑡)         (74) 

Applying a no zero gradient boundary condition at i=1,  𝐶𝑒,1
𝑛 = 𝐶𝑒,2

𝑛 ,  hence, 

         
𝜕𝐶𝑒,1

𝑛

𝜕𝑡
 =  

2𝐷𝑒,𝑛,1
𝑒𝑓𝑓

𝜉𝑛∆𝑥1(∆𝑥2+∆𝑥1)∆𝑥2
 [−∆𝑥1𝐶𝑒,1

𝑛 + ∆𝑥1𝐶𝑒,2
𝑛 ] +

(1−𝑡𝑓
+)

𝜉𝑛𝐹𝐿𝑛𝐴
 𝐼(𝑡)                    (75) 

For the Nth-Node point from the boundary relation,  

𝜕𝐶𝑒,𝑁−1
𝑛

𝜕𝑡
 =  

2𝐷𝑒,𝑛,𝑁−1
𝑒𝑓𝑓

𝜉𝑛∆𝑥𝑁−1(∆𝑥𝑁−1+∆𝑥𝑁−2)∆𝑥𝑁−2
 [∆𝑥𝑁−1 𝐶𝑒,𝑁−2

𝑛 − (∆𝑥𝑁−1 + ∆𝑥𝑁−2)𝐶𝑒,𝑁−1
𝑛 +

 ∆𝑥𝑁−2𝐶𝑒,𝑁
𝑛 ]  +  

(1−𝑡𝑓
+)

𝜉𝑛𝐹𝐿𝑛𝐴
 𝐼(𝑡)                           (76) 

Since 𝐷𝑒,𝑛
𝑒𝑓𝑓 𝜕𝐶𝑒,𝑛

𝜕𝑥
|𝑥=𝐿𝑛 = 𝐷𝑒,𝑠

𝑒𝑓𝑓 𝜕𝐶𝑒,𝑠

𝜕𝑥
|𝑥=𝐿𝑠, 𝐶𝑒,𝑁

𝑛  can be expressed in terms of 𝐶𝑒,𝑁−2
𝑛 , 𝐶𝑒,𝑁−1

𝑛 , 𝐶𝑒,2
𝑠  and 

substituted into Equation (76).  

Separator Region:    𝐿𝑛 ≤ 𝑥𝑠 ≤ 𝐿𝑛 + 𝐿𝑠    

𝜕𝐶𝑒,𝑖
𝑠

𝜕𝑡
 =  

2𝐷𝑒,𝑠,𝑖
𝑒𝑓𝑓

𝜉𝑠∆𝑥𝑖−1(∆𝑥𝑖+∆𝑥𝑖−1)∆𝑥𝑖
 [∆𝑥𝑖  𝐶𝑒,𝑖−1

𝑠  − (∆𝑥𝑖 + ∆𝑥𝑖−1)𝐶𝑒,𝑖
𝑠 + ∆𝑥𝑖−1𝐶𝑒,𝑖+1

𝑠 ]  +

                                                        
(1−𝑡𝑓

+)

𝜉𝑠𝐹𝐿𝑠𝐴
 𝐼(𝑡)                                 (77) 
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Since at the first node, 𝐶𝑒,𝑁
𝑛 = 𝐶𝑒,1

𝑠  and 𝐶𝑒,1
𝑠  can be derived from the given boundary condition 

at 𝐿𝑛. Thus, 

      
𝜕𝐶𝑒,2

𝑠

𝜕𝑡
 =  

2𝐷𝑒,𝑠,1
𝑒𝑓𝑓

𝜉𝑠∆𝑥1(∆𝑥2+∆𝑥1)∆𝑥2
 [∆𝑥2𝐶𝑒,𝑁

𝑛 − (∆𝑥2 + ∆𝑥1)𝐶𝑒,2
𝑠 + ∆𝑥2𝐶𝑒,3

𝑠 ]              (78) 

For the Nth-Node point from the boundary relation,  

𝜕𝐶𝑒,𝑁−1
𝑠

𝜕𝑡
 =  

2𝐷𝑒,𝑠,𝑁−1
𝑒𝑓𝑓

𝜉𝑠∆𝑥𝑁−1(∆𝑥𝑁−1+∆𝑥𝑁−2)∆𝑥𝑁−2
 [∆𝑥𝑁−1 𝐶𝑒,𝑁−2

𝑠  − (∆𝑥𝑁−1 + ∆𝑥𝑁−2)𝐶𝑒,𝑁−1
𝑠 +

 ∆𝑥𝑁−2𝐶𝑒,𝑁
𝑠 ]                (79) 

From 𝐷𝑒,𝑛
𝑒𝑓𝑓 𝜕𝐶𝑒,𝑛

𝜕𝑥
|𝑥=𝐿𝑛 = 𝐷𝑒,𝑠

𝑒𝑓𝑓 𝜕𝐶𝑒,𝑠

𝜕𝑥
|𝑥=𝐿𝑠, 𝐶𝑒,𝑁

𝑠  can be expressed in terms of 𝐶𝑒,𝑁−2
𝑠 , 𝐶𝑒,𝑁−1

𝑠 , 𝐶𝑒,2
𝑝

 and 

substituted into Equation (79). 

Positive Electrode Region:   𝐿𝑛 + 𝐿𝑠 ≤ 𝑥𝑝 ≤ 𝐿𝑛 + 𝐿𝑠 + 𝐿𝑝  

𝜕𝐶𝑒,𝑖
𝑝

𝜕𝑡
 =  

2𝐷𝑒,𝑝,𝑖
𝑒𝑓𝑓

𝜉𝑝∆𝑥𝑖−1(∆𝑥𝑖+∆𝑥𝑖−1)∆𝑥𝑖
 [ ∆𝑥𝑖𝐶𝑒,𝑖−1

𝑝
 − (∆𝑥𝑖 + ∆𝑥𝑖−1)𝐶𝑒,𝑖

𝑝
+

 ∆𝑥𝑖−1𝐶𝑒,𝑖+1
𝑝

]  + 
(1−𝑡𝑓

+)

𝜉𝑝𝐹𝐿𝑝𝐴
 𝐼(𝑡)           (80) 

Since at the first node, 𝐶𝑒,𝑁
𝑠 = 𝐶𝑒,1

𝑝
 and 𝐶𝑒,1

𝑝
 can be derived from the given boundary condition 

at 𝐿𝑛 + 𝐿𝑠 thus, 

𝜕𝐶𝑒,1
𝑝

𝜕𝑡
 =  

2𝐷𝑒,𝑝,1
𝑒𝑓𝑓

𝜉𝑝∆𝑥1(∆𝑥2+∆𝑥1)∆𝑥2
 [∆𝑥2𝐶𝑒,𝑁

𝑠 − (∆𝑥2 + ∆𝑥1)𝐶𝑒,2
𝑝

+ ∆𝑥1𝐶𝑒,3
𝑝

] +
(1−𝑡𝑓

+)

𝜉𝑝𝐹𝐿𝑝𝐴
 𝐼(𝑡)     (81) 

The last node dynamics can be formulated using the boundary relation, and subsisting the zero 

gradient boundary condition and expressed as, 
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𝜕𝐶𝑒,𝑁−1

𝑝

𝜕𝑡
 =  

2𝐷𝑒,𝑝,𝑁−1
𝑒𝑓𝑓

𝜉𝑝∆𝑥𝑁−1(∆𝑥𝑁−1+∆𝑥𝑁−2)∆𝑥𝑁−2
 [ ∆𝑥𝑁−1𝐶𝑒,𝑁−2

𝑝
 − ∆𝑥𝑁−1𝐶𝑒,𝑁−1

𝑝
]  + 

(1−𝑡𝑓
+)

𝜉𝑝𝐹𝐿𝑝𝐴
 𝐼(𝑡) (82) 

Therefore, the constant tri-diagonal matrix Aue and input matrix Bue are formulated as below; 

𝐴𝑢𝑒 = [

 𝐴𝑛  0  0
0 𝐴𝑠 0
0 0 𝐴𝑝

] 

where matrix 𝐴𝑛 , 𝐴𝑠 𝑎𝑛𝑑 𝐴𝑝 corresponds to the coefficient matrix for the negative electrode, 

separator, and positive electrode as expressed below; 

𝐴𝑛 =

[
 
 
 
 
 
 
 −

2𝐷𝑒,𝑛,1
𝑒𝑓𝑓

∆𝑥1

𝜉𝑛∆𝑥1(∆𝑥2+∆𝑥1)∆𝑥2

2𝐷𝑒,𝑛,1
𝑒𝑓𝑓

∆𝑥1

𝜉𝑛∆𝑥1(∆𝑥2+∆𝑥1)∆𝑥2
0  ⋯ 0 0

2𝐷𝑒,𝑛,𝑖
𝑒𝑓𝑓

∆𝑥𝑖

𝜉𝑛∆𝑥𝑖−1(∆𝑥𝑖+∆𝑥𝑖−1)∆𝑥𝑖

−2𝐷𝑒,𝑛,𝑖
𝑒𝑓𝑓 (∆𝑥𝑖+∆𝑥𝑖−1)

𝜉𝑛∆𝑥𝑖−1(∆𝑥𝑖+∆𝑥𝑖−1)∆𝑥𝑖

2𝐷𝑒,𝑛,𝑖
𝑒𝑓𝑓

∆𝑥𝑖−1

𝜉𝑛∆𝑥𝑖−1(∆𝑥𝑖+∆𝑥𝑖−1)∆𝑥𝑖
0  ⋯ 0

0 ⋱ ⋱ ⋱ 0 ⋮
 ⋮ 0 ⋱ ⋱ ⋱ 0

0 0 ⋯
2𝐷𝑒,𝑛,𝑁−1

𝑒𝑓𝑓
∆𝑥𝑁−1

𝜉𝑛∆𝑥𝑁−1(∆𝑥𝑁−1+∆𝑥𝑁−2)∆𝑥𝑁−2

−2𝐷𝑒,𝑛,𝑁−1
𝑒𝑓𝑓 (∆𝑥𝑁−1+∆𝑥𝑁−2)

𝜉𝑛∆𝑥𝑁−1(∆𝑥𝑁−1+∆𝑥𝑁−2)∆𝑥𝑁−2

2𝐷𝑒,𝑛,𝑁−1
𝑒𝑓𝑓

∆𝑥𝑁−2

𝜉𝑛∆𝑥𝑁−1(∆𝑥𝑁−1+∆𝑥𝑁−2)∆𝑥𝑁−2]
 
 
 
 
 
 
 

  

𝐴𝑠 =

[
 
 
 
 
 
 
 

0 0 ⋯ ⋯ ⋯ ⋯
2𝐷𝑒,𝑠,1

𝑒𝑓𝑓
∆𝑥2

𝜉𝑠∆𝑥1(∆𝑥2+∆𝑥1)∆𝑥2

−2𝐷𝑒,𝑠,1
𝑒𝑓𝑓 (∆𝑥2+∆𝑥1)

𝜉𝑠∆𝑥1(∆𝑥2+∆𝑥1)∆𝑥2

2𝐷𝑒,𝑠,1
𝑒𝑓𝑓

∆𝑥1

𝜉𝑠∆𝑥1(∆𝑥2+∆𝑥1)∆𝑥2
0 0 0

⋯
2𝐷𝑒,𝑠,𝑖

𝑒𝑓𝑓
∆𝑥𝑖

𝜉𝑠∆𝑥𝑖−1(∆𝑥𝑖+∆𝑥𝑖−1)∆𝑥𝑖

−2𝐷𝑒,𝑠,𝑖
𝑒𝑓𝑓(∆𝑥𝑖+∆𝑥𝑖−1)

𝜉𝑠∆𝑥𝑖−1(∆𝑥𝑖+∆𝑥𝑖−1)∆𝑥𝑖

2𝐷𝑒,𝑠,𝑖
𝑒𝑓𝑓

∆𝑥𝑖−1

𝜉𝑠∆𝑥𝑖−1(∆𝑥𝑖+∆𝑥𝑖−1)∆𝑥𝑖
0 0

⋯ 0 ⋱ ⋱ ⋱ 0

⋱ ⋱ 0
2𝐷𝑒,𝑠,𝑁−1

𝑒𝑓𝑓
∆𝑥𝑁−1

𝜉𝑠∆𝑥𝑁−1(∆𝑥𝑁−1+∆𝑥𝑁−2)∆𝑥𝑁−2

−2𝐷𝑒,𝑠,𝑁−1
𝑒𝑓𝑓 (∆𝑥𝑁−1+∆𝑥𝑁−2)

𝜉𝑠∆𝑥𝑁−1(∆𝑥𝑁−1+∆𝑥𝑁−2)∆𝑥𝑁−2

2𝐷𝑒,𝑠,𝑁−1
𝑒𝑓𝑓

∆𝑥𝑁−2

𝜉𝑠∆𝑥𝑁−1(∆𝑥𝑁−1+∆𝑥𝑁−2)∆𝑥𝑁−2]
 
 
 
 
 
 
 

  

𝐴𝑝 =

[
 
 
 
 
 
 
 
 

0 0 0 0 0
2𝐷𝑒,𝑝,1

𝑒𝑓𝑓
∆𝑥2

𝜉𝑝∆𝑥1(∆𝑥2+∆𝑥1)∆𝑥2

−2𝐷𝑒,𝑝,1
𝑒𝑓𝑓 (∆𝑥2+∆𝑥1)

𝜉𝑝∆𝑥1(∆𝑥2+∆𝑥1)∆𝑥2

2𝐷𝑒,𝑝,1
𝑒𝑓𝑓

∆𝑥1

𝜉𝑝∆𝑥1(∆𝑥2+∆𝑥1)∆𝑥2
0 0

⋯
2𝐷𝑒,𝑝,𝑖

𝑒𝑓𝑓
∆𝑥𝑖

𝜉𝑝∆𝑥𝑖−1(∆𝑥𝑖+∆𝑥𝑖−1)∆𝑥𝑖

−2𝐷𝑒,𝑝,𝑖
𝑒𝑓𝑓 (∆𝑥𝑖+∆𝑥𝑖−1)

𝜉𝑝∆𝑥𝑖−1(∆𝑥𝑖+∆𝑥𝑖−1)∆𝑥𝑖

2𝐷𝑒,𝑝,𝑖
𝑒𝑓𝑓

∆𝑥𝑖−1

𝜉𝑝∆𝑥𝑖−1(∆𝑥𝑖+∆𝑥𝑖−1)∆𝑥𝑖
0

⋯ 0 ⋱ ⋱ ⋱

⋱ ⋱ 0
2𝐷𝑒,𝑝,𝑁−1

𝑒𝑓𝑓
∆𝑥𝑁−1

𝜉𝑝∆𝑥𝑁−1(∆𝑥𝑁−1+∆𝑥𝑁−2)∆𝑥𝑁−2

−2𝐷𝑒,𝑝,𝑁−1
𝑒𝑓𝑓

∆𝑥𝑁−1

𝜉𝑝∆𝑥𝑁−1(∆𝑥𝑁−1+∆𝑥𝑁−2)∆𝑥𝑁−2]
 
 
 
 
 
 
 
 

  

𝐵𝑢𝑒 = [
(1−𝑡𝑓

+)

𝜉𝑛𝐹𝐿𝑛𝐴
  ⋯

(1−𝑡𝑓
+)

𝜉𝑛𝐹𝐿𝑛𝐴
 0  ⋯ 0

(1−𝑡𝑓
+)

𝜉𝑝𝐹𝐿𝑝𝐴
 ⋯

(1−𝑡𝑓
+)

𝜉𝑝𝐹𝐿𝑝𝐴
 ]T 



54 
 
 

The electrolyte-phase concentration distribution is computed by solving these ODEs and the 

boundary concentrations were computed based on boundary condition given in Equation (9), (10) 

and (11). The solid-phase and electrolyte-phase concentration distribution are computed as a 

function of locations and time. Based on the concentrations’ computation, the kinetic 

overpotential, equilibrium potential and overpotential due to both diffusion and migration can be 

computed. The battery terminal voltage as expressed in Equation (33) is computed based on the 

solution of these ODEs derived. The battery model parameters used for this work is given in Table 

1.  
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Table 1: Model parameters for a 52.9Ah lithium-ion battery simulated in this work [30]. 

Parameters 

Negative electrode Separator Positive electrode 

Thickness (L) in μm 

Particle Radius (Rs) in μm 

Number of even discretization 

Active particle volume fraction 

Electrolyte phase volume fraction 

Max solid phase conc. In (mol/m3) 

Average electrolyte concentration 

(Ce) in (mol/m3) 

Bruggeman Constant 

Reaction Rate (k) 

Li-ion diffusion coefficient in solid 

phase (Ds) in (m2/s) 

Li-ion diffusion coefficient in 

electrolyte phase (De) in (m2/s) 

Resistance I at electrode-current 

collector surface 

Transference number (t+) 

Electrode plate area (A) in (m2) 

100 

10 

50 

0.6 

0.3 

24984 

1000 

 

1.5 

1e-5 

3.9e-14 

 

 

2.79e-10 

 

1e-3 

0.5 

1 

25 

- 

10 

- 

1 

- 

1000 

 

1.5 

- 

- 

 

 

2.79e-10 

100 

10 

50 

0.5 

0.3 

51219 

1000 

 

1.5 

3e-7 

1e-13 

 

 

2.79e-10 

 

0 

0.5 

1 

Universal gas constant I in 

(J/mol/K) 
8.3145 

Faraday’s constant (F) in (C/mol) 

96485.33 

Ambient Temperature (T) in K 

 
298.15 
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Chapter 4: Optimal Node Selection 

4.1  Particle Swarm Optimization 

Particle swarm optimization (PSO) is a population based stochastic search technique developed by 

Kennedy and Eberhartin in 1995 [39]. The concept of PSO was inspired by social behavior of bird 

flocking or fish schooling. This stochastic optimization search technique was developed based on 

two important concepts:  

• Understanding of animals (birds and fish) tendency to swarm towards a particular direction 

in search for food and comfort  

• The knowledge of evolutionary computation field such as genetic algorithms.  

PSO is an effective optimization technique to search for global optimization solution within the 

search space. According to [40], a simple illustration for understanding the operation of PSO is 

that of a group of birds randomly searching food in an area. If there is only one piece of food in 

the area being searched. Assuming all the birds do not know where the food is, but they know how 

far the food is in each iteration. The effective strategy to search for the food is to follow the bird 

nearest to the food and update other birds position accordingly. Each bird referred to a particle, 

here a particle refers to a point in the design space that changes its position from one iteration to 

another based on velocity updates and the best solution. Each particle is a possible solution to the 

optimization problem. 
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Hence, Particle Swarm Optimization is a numerical search algorithm which is used to find global 

parameters that minimize a given objective, or fitness function. The objective function can be non-

linear and can be subject to any number of linear and non-linear constraints [40]. The objective 

function is evaluated in each iteration based on the present position of each particles (solutions) 

and the particle which gives the minimal cost become the global best. Each particles position is 

updated based on a pre-determined velocity which draws the particle towards the global particle. 

Over the years, PSO has gained significant popularity because of its simple structure and high 

performance. Many publications, such as [41-43], demonstrate the merit of PSO in a diverse range 

of applications [40]. 

 

Figure 19: Fitness function showing different particles [46] 

PSO is similar to other evolutionary computation techniques like Genetic Algorithm (GA) in the 

sense that they are both population-based search approaches. They both depend on information 

sharing among their population members to enhance their search processes using a combination 
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of deterministic and probabilistic rules [40]. Although PSO have some similarities with 

evolutionary computation techniques like generic algorithm, the advantages of PSO as a global 

optimizer over other evolutionary-based optimization techniques include; 

• Easy implementation because it does not have genetic operators such as crossover and 

mutation 

• Less turning parameters 

• Low computational cost and better computational efficiency compared to other EC 

techniques specifically GA [45]. 

4.2 PSO Internal Structure 

PSO is structured in such a way that the entire optimization technique can be summarized into 

three main steps: 

• Evaluating objective function based on each particle 

• Updating personal best (pbest) and global best (gbest) based on the objective function 

evaluation. 

• Updating velocity and position of each particle based on pbest and gbest. 

PSO involves the determination of the best particle which minimizes the objective function among 

all possible particles. The search techniques start with an initialization procedure for N-possible 

solution (particles) set with which the objective function is evaluated and the particle that gives 

the minimal cost is taken as the global best (gbest) solution and each particle still retains their 

position stored as individual personal best (pbest). The initialization of particle is done in such a 

way that, the particles are randomly distributed through the entire design space for PSO to explore 

the entire design space in finding the best particle. Based on the stored pbest and gbest, the required 
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velocity for individual particle to converge towards the gbest with reference to pbest is computed 

and this is used in updating the position of each particle. The objective function is re-evaluated 

based on the new position of the particles, to ensure the new solution minimizes the objective 

function otherwise the new position is ignored and the previous pbest is still retain in the memory 

of the optimizer. These optimization procedures are repeated until a set criterion is satisfied. The 

change in direction and velocity of each individual particle is the effect of cognitive, social and 

stochastic influences. The common goal of all group members is to find the most favorable location 

within a specified search space [40] as shown in Figure 20. The particle swarm optimization 

procedure for solving any minimization problems is formulated as:  

𝑣𝑖
𝑘+1 = 𝑤𝑘𝑣𝑖

𝑘 + 𝑟1[ϓ1(𝑃𝑖 − 𝑥𝑖
𝑘)]  +  𝑟2[ϓ2(𝐺𝑖 − 𝑥𝑖

𝑘)]         (83) 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1         (84) 

 

Figure 20: Graphical interpretation of the PSO algorithm [46] 
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where subscript i= [1,2,3…N] is the number of possible solutions in the swarm, and k= [1,2,3…Nit] 

where k is the number of iterations. Thus,  𝑣𝑖
𝑘  𝑎𝑛𝑑 𝑥𝑖

𝑘  are the present velocity and position of the 

i-th particle during k-th iteration count, 𝑣𝑖
𝑘+1 𝑎𝑛𝑑 𝑥𝑖

𝑘+1 are the new velocity and position of the i-

th particle during k+1-th iteration count respectively. Likewise, 𝑟1 𝑎𝑛𝑑 𝑟2 are randomly generated 

numbers between 0 and 1, ϓ1 , 𝑎𝑛𝑑ϓ2 are acceleration factor which are typically assumed to be 

2 respectively. 𝑃𝑖  𝑎𝑛𝑑 𝐺𝑖  are the present pbest and gbest respectively. The entire second term of 

Equation (83) is defined as the cognitive term which ensure the particles explore the entire design 

space while the third term of Equation (83) is the social term which ensure that the particles exploit 

the entire design space.   

The parameter 𝑤𝑘 is the inertia weight which is imposed on the velocity to ensure certain 

momentum of the particles, and it is a function of iteration counts expressed as [42]: 

     𝑤𝑘 = 𝑤𝑚𝑖𝑛 +
(𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛)(𝑁𝑖𝑡−𝑘)

𝑁𝑖𝑡
         (85) 

 𝑤𝑚𝑖𝑛= constant minimum inertia weight  

𝑤𝑚𝑎𝑥= constant maximum inertia weight 

𝑁𝑖𝑡= maximum total number of iterations and k= present iteration count 

Lower value of inertia weight increases the convergent rate of the PSO algorithm while higher 

inertia weight encourages exploring the design space in finding the optimal solution [46]. 
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4.3 PSO Algorithm Formulation for Optimal Node Selections  

The PSO is employed for determining the global optimal nodes that serve as an input parameter to 

the constructed FDM uneven discretized model. Based on the structure of the general PSO, the 

algorithm will search for optimal nodes for both electrolyte-phase and solid-phase concentration 

prediction and the PSO parameters applied are also declared. 

4.3.1 Solid-Phase Minimization Problem Formulation 

The objective function for solid-phase concentration minimization problem is constructed to 

include the standard deviation of the error between surface and bulk concentrations predicted by 

the unevenly discretized model (proposed model) and the evenly discretized model (reference 

model). The objective function is formulated in this manner because of the significance of solid-

phase surface concentrations in the cell terminal voltage computation. The surface concentration 

directly influences the cell terminal voltage, thus determination of the optimal unevenly nodes 

which will ensure close predictions between the reference model and the proposed model is 

paramount. Likewise, the contribution of standard deviation of solid-phase bulk concentration 

error is included in the objective function to ensure high fidelity of the proposed model. The battery 

state of charge is bulk concentration dependent. 

Hence, the objective function is constructed based on these two important battery parameters (cell 

voltage and SoC) and the PSO is applied to minimize the formulated objective function with a 

non-negative constraint.  

The optimization formulation is;  

𝑚𝑖𝑛
𝑟

 𝐹(𝑟) = 𝛼1𝐽1 + 𝛼2𝐽2          (86) 

Subject to     0 <  𝑟𝑘 < 𝑅𝑠 
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where 𝛼1 𝑎𝑛𝑑 𝛼2 are the weighting factor used in tuning the contribution of both standard error 

due to solid-phase surface concentration (𝐽1), and solid-phase bulk concentration (𝐽2) respectively. 

This is done to minimize the offset and magnitude of error between the unevenly discretized model 

prediction and evenly discretized model prediction. The standard error 𝐽1 and 𝐽2 are expressed as,  

𝐽1 = √
∑ (𝐶𝑠,𝑘

𝑠𝑢𝑟𝑓,𝑟𝑒𝑓
−𝐶𝑠,𝑘

𝑠𝑢𝑟𝑓,𝑟𝑒𝑑
)2𝑁

𝑘=1

𝑁
                         (87) 

𝐽2 = √
∑ (𝐶𝑠,𝑘

𝑏𝑢𝑙𝑘,𝑟𝑒𝑓
−𝐶𝑠,𝑘

𝑏𝑢𝑙𝑘,𝑟𝑒𝑑)2𝑁
𝑘=1

𝑁
         (88) 

where N is the total number of solution set which is a function of discharge/charge operation 

duration, t, 𝐶𝑠,𝑘
𝑠𝑢𝑟𝑓,𝑟𝑒𝑓

 𝑎𝑛𝑑  𝐶𝑠,𝑘
𝑠𝑢𝑟𝑓,𝑟𝑒𝑑

 are the solid-phase surface concentration predicted by the 

reference model and reduced model respectively. The variables  𝐶𝑠,𝑘
𝑏𝑢𝑙𝑘,𝑟𝑒𝑓

 𝑎𝑛𝑑 𝐶𝑠,𝑘
𝑏𝑢𝑙𝑘,𝑟𝑒𝑓

 are the 

solid-phase bulk concentration predicted by the reference model and proposed model respectively 

which are both computed based on the average bulk concentration expression given in [21]. 

𝐶𝑠
𝑏𝑢𝑙𝑘 = 

3

𝑅3 ∫ 𝑅2𝐶𝑠(𝑟, 𝑡)𝑑𝑟
𝑅𝑠

0
                    (89) 

A sub-optimization problem is formulated to determine the optimal 𝛼1 𝑎𝑛𝑑 𝛼2 , where 𝛼1 + 𝛼2 =

1. Thus, both weighting factors range from 0 to 1, with an indirect proportional relationship 

between them. The optimal weighting factor was determined to be 𝛼1 = 0.8 𝑎𝑛𝑑 𝛼2 = 0.2 and 

this will be discussed further in Chapter 5. Because of the slow dynamic nature at the negative 

electrode, in comparison to that in the positive electrode, the optimal nodal solution for the 

negative electrode is sufficient to capture the concentration distribution in the positive electrode. 

Hence, the optimization operations were only performed for the negative electrode and the optimal 

solutions applied for the positive electrode concentration distribution predictions. 
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4.3.2 Electrolyte-Phase Minimization Problem Formulation 

The importance of electrolyte-phase concentration distribution in computing the overpotential due 

to electrolyte-transport across the cell length which causes cell voltage drop, demonstrate the 

impact of any possible error between the predictions of the reference model and the proposed 

model on the cell voltage prediction accuracy for our optimal model reduction purpose. 

Consequently, the optimization objective function is formulated to minimize the magnitude of the 

concentration error, between the reference model and proposed model, by determining the global 

optimal nodes using the PSO for the proposed model prediction. 

Although the electrolyte-phase Li-ion concertation distribution occurred across the three regions 

of the negative electrode, separator and positive electrode, only the extreme concentration of both 

electrodes is needed in the diffusion overpotential computations. Hence, the objective function 

was formulated to minimize the concentration predictions error of these two important nodes as 

they both impact the performance of the proposed model for voltage prediction.  The optimization 

problem is formulated is expressed as, 

      𝑚𝑖𝑛
𝑥

 𝐹(𝑥) = 𝐽𝑒           (90) 

Subject to     0 <  𝑥𝑘 < L 

where    𝐽𝑒 = √∑ (𝐶𝑒,𝑘
𝑥0,𝑟𝑒𝑓

−𝐶𝑒,𝑘
𝑥0,𝑟𝑒𝑑

)2𝑁
𝑘=1

𝑁
 +

∑ (𝐶𝑒,𝑘

𝑥𝐿,𝑟𝑒𝑓
−𝐶𝑒,𝑘

𝑥𝐿,𝑟𝑒𝑑
)2𝑁

𝑘=1

𝑁
       (91) 

The parameter L is the length of the cell, the first term of the objective function is the standard 

deviation of the error between the electrolyte-phase concentration of the reference  (𝐶𝑒,𝑘
𝑥0,𝑟𝑒𝑓

)  and 

proposed model at the extreme node of negative electrode  (𝐶𝑒,𝑘
𝑥0,𝑟𝑒𝑑

) and the second term of the 
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objective function is the standard deviation of the error between the electrolyte-phase 

concentration of the reference  (𝐶𝑒,𝑘
𝑥𝐿,𝑟𝑒𝑓

) and proposed model at the extreme node of positive 

electrode  (𝐶𝑒,𝑘
𝑥𝐿,𝑟𝑒𝑑

) over the entire discharge/charge duration. 

4.3.3 PSO Parameters Setting 

The following parameters are applied for the PSO algorithm simulation both for solid-phase and 

electrolyte-phase optimization problem. 

N=100    Number of particles/solutions 

M=Varies    Number of variables in each particle 

Nit =1000    Number of Iteration  

Wmin = 0.4   Minimum Inertia Weight 

Wmax = 0.9   Minimum Inertia Weight 

 ϓ1 = ϓ2 = 2   Acceleration Coefficients 

PSO algorithm was set up in a way for optimal nodes determination with certain constrains on the 

velocity update, to ensure that the position update does not violate the nodal boundary conditions, 

by setting a velocity range between maximum velocity and minimum velocity. With respect to the 

boundary conditions for each of the three regions, at least two node points are needed excluding 

the boundaries to successfully predict the electrolyte-phase concentration distribution, therefore a 

constraint was set based on the structural requirement for the minimum number of variables for 

the minimum number of variable choices. The minimum number of variables is 6variable 

comprising of 2 variables from each of the three regions and the optimization operation was run 
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for different number of variables to determine the optimal number of discretization nodes and 

investigate the influence of increase in number of variables on the proposed model performance. 
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Chapter 5: Simulation Results and Discussion 

This chapter presents the results from the optimal nodes selection problem and the performance of 

the reduced-order model in term of voltage prediction for each of the three operations: 

• Constant Current Discharge Operation 

• Pulse Charge/Discharge Operation  

• Hybrid Pulse Power Characterization (HPPC) Operation 

Furthermore, the comparison of reference model results with the reduced-order model results to 

validate the capabilities of the proposed model were presented and discussed. 

5.1 Constant Current Discharge Operation  

A constant current profile is applied to discharge the battery based on its capacity of 1C=52.89A 

based on the LCO battery parameters presented in [26]. As stated in Chapter four, the optimization 

problem was formulated both for solid and electrolyte phases to minimize the error between the 

concentration predictions of the reduced order model and the reference model. The evenly 

discretized FDM model is employed as a reference to develop a reduced order model based on the 

unevenly discretized FDM scheme developed in Chapter 3. As stated in Chapter four, the 

optimization problem was formulated for solid and electrolyte phase, to minimize the error 

between the concentration predictions from the reduced order model and the reference model. 
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5.1.1 Solid Phase Optimization Results 

The PSO algorithm was run for 1000 iteration counts for solid and electrolyte-phase optimal nodes 

selection, based on the minimization of the objective functions as stated in Equations (86) and 

(90). The optimization algorithm was run with initial 100 solutions, with each solution 

corresponding to a set of possible unevenly discretized nodes which serve as an input to the 

proposed reduced-order model. Based on the objective function evaluations during each iteration, 

the optimal solution is determined, stored, and used in updating other solutions set until the global 

minimizer for the objective function is achieved. 

As mentioned in Chapter 4, two objective functions, 𝐽1 and 𝐽2, were considered for the solid 

particle optimal nodes selection. To determine the optimal weighting factor (𝛼1 𝑎𝑛𝑑 𝛼2) used in 

Equation (86), Pareto’s curve was constructed by simply finding the optimal solutions with 

different values of 𝛼1 𝑎𝑛𝑑 𝛼2, where 𝛼1  + 𝛼2 = 1. The set of weighting factors used are 𝛼1=[1, 

0.8, 0.6 0.5, 0.4, 0.2, 0] and 𝛼2=[0,0.2,0.4,0.5,0.6,0.8,1] respectively. The optimal nodes selected 

by the PSO based on each set of the weighting factors were used in evaluating the objective 

functions 𝐽1 and  𝐽2 separately and these values were plotted on a Pareto’s curve as shown in Figure 

21.  From the curve, the closest weighting factor set to the asymptote point, which is the point 

where the line of 𝛼1=1 and 𝛼2=0 solution meet with the line of 𝛼1=0 and 𝛼2=1 solution is the 

optimal weighting factor according to pareto principle. The optimal weighting factor was found to 

be 𝛼1 = 0.8  𝑎𝑛𝑑 𝛼2 = 0.2. 
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Figure 21: Pareto Curve for Optimal Weighting Factor Determination 

Two minimization problems were considered for the solid-phase optimization scheme: the first 

problem is formulated to minimize 𝐽1 only and the other is based on the contribution of both 𝐽1 

and 𝐽2 using the optimal weighting factors. 

For the constant current operation, as show in Figure 22(a) and 22(b), the solutions converged after 

400 iteration counts, and this demonstrates the capability of the developed PSO to determine the 

optimal solution for the optimization problem in Equation (86) for both objective functions.  
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Figure 22: PSO Convergence Profile for Solid-phase Optimization for CC Operation based on 

(a) 𝐽1 only (b) 𝐽1 and 𝐽2.  

Different number of nodes were considered to investigate the accuracy of the proposed model. As 

shown in Figure 23a, for the optimization based only on 𝐽1 error minimization, the selected optimal 

nodes are more closely packed toward the surface of the particle. As the number of discretization 
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nodes increase, the selected nodes spread toward the core of the particle. Although some nodes in 

the four and five variables scheme does not follow the trend of other optimal solutions, this might 

be due to the number of selected nodes being not sufficient to capture the concentration dynamics 

for a constant current operation. In Figure 23b, for the optimization problem with the inclusion of 

bulk concentration error contribution in the minimization problem, the optimal nodes are spread 

across the radius of the particle and become more closely packed towards the surface of the particle 

as the number of selected nodes increases. From Table 2, it can be observed that the magnitude of 

the objective function reduces as the number of variable increases, this implies an improvement in 

the accuracy of the proposed model in predicting the solid-phase concentration as the order of the 

proposed model increases.  
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Figure 23: Optimal Solid-phase Discretization Steps selected based on (a) 𝐽1 only (b) 𝐽1and 𝐽2 

Error Minimization for CC Operation 

These two cases demonstrate that the higher the number of discretization nodes selected for the 

proposed model, the higher the accuracy of the model in voltage prediction achieved. It is noted 

that first and last nodes are not considered as a state variable through the analysis in this work. 

5.1.2 Electrolyte Phase Optimization Results 

The minimization problem for electrolyte phase as stated in Equation (78) is based on the 

prediction error of the first and last nodes electrolyte-phase concentration. As can be observed in 

Figure 25 at least two nodes from each of the three regions (separator, positive and negative 

electrode) of the cell are needed for electrolyte-phase concentration predictions. The PSO optimal 

solutions converged after 500 iteration counts as shown in Figure 24, this demonstrates the ability 

of the optimization scheme in solving the proposed minimization problem effectively. 
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Figure 24: PSO Convergence Profile for Electrolyte-phase Optimization for CC Operation 

The number of variables was increased from 6-11variables and PSO determines the optimal 

solution for each case from the three regions. The same two optimal nodes were selected in the 

separator and positive electrode, on the other hand at the negative electrode the number of optimal 

nodes increases as the number of variables increases, and they are spread across the length of this 

electrode as can be observed in Figure 25. The slow nature of the negative electrode diffusion 

dynamics makes the electrode prediction more influential on the overall electrolyte concentration 

predictions accuracy.  As the number of variable increases from 6 variables to 11 variables, the 

magnitude of the error reduced, and the model prediction accuracy increases as can be observed 

in Table 2. 
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Table 2: Solid and Electrolyte-Phase Concentration Prediction Error 

 

Figure 25: Optimal Electrolyte-phase Discretization Steps for CC Operation 

 

 

 

Number of 

Variables 

Objective Function 

J1 only 

Objective Function 

𝛼1𝐽1 + 𝛼2𝐽2  

Number of 

Variables 

Electrolyte-phase 

Objective Function 

4 21.97 2892 6 5.52 

5 27.32 2600 7 4.95 

6 26.05 2397 8 4.64 

7 18.57 2265 9 4.20 

8 13.70 2183 10 4.20 

9 10.54 2171 11 4.20 
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5.1.3 Voltage and Concentration Simulation Results 

Based on the optimal solutions for solid and electrolyte-phases minimization problems, the optimal 

nodes selected were applied to the proposed model algorithm for concentration and voltage 

simulations. The solid phase concentration predictions from the proposed model for different 

number of uneven discretized nodes were plotted against that of the reference model as shown in 

Figure 26. It is observed that the root mean square (rms) error between each cases and reference 

model decreases as the number of variables increases is as shown in Table 2.  
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Figure 26: Solid Phase Surface Concentration for Different Discretization Nodes 

The optimal number of uneven discretization nodes were determined from the predicted battery 

voltage, solid and electrolyte-phases concentration as shown in Tables 2, 3 and 4. Tables 3 and 4 

show the root mean square voltage error between the reference model voltage predictions and the 

proposed model predictions for different numbers of solid and electrolyte phase optimal nodes.  It 

can be observed from the tables that as the number of optimal nodes increase in solid phase the 

rms voltage error and maximum absolute error reduces gradually.  But the rms voltage error and 

maximum absolute error reduces exponentially as the number of optimal nodes increases for the 

electrolyte phase predictions. The maximum rms and absolute voltage error for the model 

predictions based on 𝐽1 minimization only as shown in Table 3 is around 30mV and 40mV 

respectively. The model prediction based on 𝐽1 and 𝐽2 minimization as shown in Table 4, are 4mV 

and 12mV respectively. For both models as the number of variables increases, these two error 

values reduce to approximately 0.5mv and 1.0mV for the first model and 0.8mV and 3.0mV for 

the other model. 
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From this result it can be concluded that the model developed based solely on 𝐽1 seems more 

accurate in terminal voltage prediction compare to the other model developed based on both 𝐽1 and 

𝐽2. Since the state of charge of the proposed model was not investigate in this work, hence the first 

model is more efficient for voltage prediction and requires low computational effort compared to 

the second model. 

Table 3: Voltage Prediction Error Based on J1 Alone for CC Operation 

Solid 

Phase 

Nodes 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

Electrolyte 

Phase 

Nodes 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

6 3.4 4.4 3.3 4.4 3.2 4.1 3.2 3.8 3.1 3.7 3.1 3.6 

7 2.4 3.2 2.3 3.2 2.2 3.0 2.1 2.7 2.1 2.6 2.1 2.5 

8 1.4 2.6 1.3 2.6 1.2 2.0 1.2 1.7 1.1 1.6 1.1 1.5 

9 1.1 2.6 1.1 2.6 0.92 1.8 0.87 1.4 0.83 1.3 0.84 0.12 

10 1.0 2.6 0.96 2.6 0.85 1.7 0.79 1.3 0.75 1.2 0.75 0.11 

11 0.76 2.6 0.71 2.6 0.63 1.8 0.53 1.3 0.48 1.1 0.48 0.96 

Table 4: Voltage Prediction Error Based on J1 and J2 for CC Operation 

Solid Phase 

Nodes 

4 

 

5 6 7 8 9 

Electrolyte 

Phase Nodes 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

6 3.6 12.3 3.8 7.4 3.5 4.5 3.4 3.9 3.4 3.9 3.4 3.9 

7 2.8 8.4 2.8 7.3 2.5 4.4 2.4 3.3 2.3 3.3 2.3 3.1 

8 2.7 7.0 1.9 7.0 1.5 4.2 1.4 2.9 1.4 2.9 1.4 2.9 

9 3.5 9.6 1.7 7.0 1.3 4.2 1.1 2.9 1.1 2.9 1.1 2.9 

10 3.6 9.8 1.6 7.0 1.1 4.2 0.96 3.0 0.96 3.0 0.95 2.9 

11 3.8 9.9 1.4 7.0 1.0 4.2 0.82 3.0 0.79 3.0 0.82 2.9 

From the prediction result, it is observed that from 7 or higher unevenly discretized nodes upward, 

the predicted terminal voltage and li-ion concentration profiles from the proposed model follows 

closely that of the reference model respectively. There are little, or no significant error as 

demonstrated in Tables 3 and 4 between the reference and proposed model predictions. Likewise, 

for electrolyte phase predictions, the magnitude of the rms and maximum absolute voltage error 

are approximately the same from 9 variables model upward. Conclusively, 7 and 9 unevenly 
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discretized nodes are sufficient for accurate prediction of solid and electrolyte phase concentration 

dynamics.  Above this number of optimal nodes in both phases, there is no significant improvement 

in the accuracy of the proposed model. The proposed model achieved about 7 times complexity 

reduction in terms of the number of nodes compared to the evenly discretized model. 

The prediction performance of the proposed model (SPMe) was compared with the voltage 

prediction of single particle model without electrolyte as shown in Figure 27 (a) and (b).  It can be 

observed from Figure 27 (a) that the rms and maximum absolute error between the reference model 

(SPMe with even discretization) predictions and the SPM with even discretization prediction is 

74mV and 77mV respectively. Likewise, the rms and maximum absolute error between the 

predictions of SP model with uneven discretization based on the optimal solution from PSO and 

the proposed model prediction is 74mV and 76mV respectively. The magnitude of these prediction 

errors highlights the importance of electrolyte dynamics inclusion to the conventional single 

particle model. 
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Figure 27: Voltage Predictions for Single particle model without/with electrolyte dynamics 

(SPM/SPMe) (a) for reference model (b) for proposed model and reference model. 
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The voltage predictions of the reference model and the proposed model based on 𝐽1 objective 

function as shown in Figures 28 (a), (b) and (c) are presented as a case study.  Different number 

of solid-phase optimal nodes were applied to the proposed model with 9 electrolyte-phase nodes. 

The prediction errors between the two models reduced from 2.6millivolts for 4 nodes to 

0.12millivolt for 9 nodes. The trend of the voltage prediction by the proposed model shows that 

the prediction capacity of the proposed model from 7 nodes upwards are approximately the same. 

This demonstrate that 7 optimally selected nodes for solid phase concentration profile is sufficient 

to predict the battery terminal voltage accurately. 
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Figure 28: (a)Voltage prediction of the proposed model for different number of discretization 

steps in solid phase for 𝐽1 only (b) Magnified voltage prediction results (c) Voltage prediction 

error for each number of variaboles model for CC Operation 
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Figure 29 shows the prediction results of the proposed model based on 𝐽1 and 𝐽2 objective function 

with respect to the reference model. The magnified figure of the predicted voltage, and the 

prediction error shows that 7 nodes model upward gives a predicted voltage close to the reference 

model prediction, and the maximum prediction error of 10millivolts from 4 optimal nodes model 

reduces to 2millivolts for 9 optimal nodes model.  
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Figure 29: (a)Voltage prediction of the proposed model for different number of discretization 

steps in solid phase for 𝐽1 and 𝐽2 (b) Magnified voltage prediction results (c) Voltage prediction 

error for each number of variaboles model for CC Operation 
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5.2 Pulse Charge/Discharge Operation  

A pulse charge and discharge operation as shown in Figure 30 was applied to the proposed model 

to investigate its capability and performance under different applied current profile. 

 

Figure 30: Pulse Charge/Discharge Current Operation 

 The structure of the proposed model and the optimization algorithm are the same as for the 

constant current operation. The PSO algorithm show a great convergence rate as shown in Figures 

31 (a) and (b), the optimal solution converged after 300 and 400 iteration counts for the two solid 

phase objective functions respectively.  
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Figure 31: PSO Convergence Profile for Solid-phase Optimization for Pulse charge/Discharge 

Operation based on (a) 𝐽1 only (b) 𝐽1 and 𝐽2. 
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5.2.1 Solid Phase Optimization Results 

The solid phase PSO comprises of two objectives functions as developed for constant current 

operation: one based on surface concentration error (𝐽1) only and the other based on surface and 

bulk concentration (𝐽1 and 𝐽2). The optimal nodes selected for both cases are as shown in Figure 

32 (a) and (b). Figure 32a show the node selected based on 𝐽1 alone, the selected optimal nodes are 

close to the surface of the particles because of the strong gradient at the surface resulting from the 

applied boundary conditions. The trend of the optimal nodes selected is similar to the one present 

in [16]. For the second objective function, Figure 32b show that the optimal selected nodes are 

disperse across the entire radius of the particles as the number of the nodes increases. This trend 

is attributed to the inclusion of bulk concentration in the structure of the objective function. As the 

number of uneven discretization nodes increases, the accuracy of the proposed model in 

concentration prediction increases with respect to the reference model, as can be observed in Table 

5. 
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Figure 32: Optimal Solid-phase Discretization Steps selected based on (a) 𝐽1 only (b) 𝐽1 and 𝐽2 

Error Minimization for Pulse Operation 
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5.2.2 Electrolyte Phase Optimization Results 

The structure of the electrolyte phase optimization algorithm under pulse operation is the same as 

that of constant current operation and the optimal nodes selected for the different number of cases 

is as shown in Figure 33. The same two nodes were selected in the positive electrode and separator 

for all the different number of states investigated, indicating the sensitivity of the proposed model 

to the concentration dynamics in the negative electrode. This correspond to the observations under 

the constant current operation. Negative electrode is the most contributive region due to its slow 

dynamic to the overall concentration dynamics prediction capability of this proposed model. It can 

be observed that as the number of optimal nodes increases, more nodes were selected in the 

negative electrode and they become denser towards surface of the particle. 

 

Figure 33: Optimal Electrolyte-phase Discretization Steps for Pulse Operation 
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The error between the proposed model and reference model, for electrolyte phase concentration 

predictions reduces as the number of discretization nodes increases as can be observed in Table 5. 

The inclusion of 𝐽2 in the solid phase objective function cause a great increment in the error 

between the proposed model and reference model prediction. Also, as can be seen from Table 7, 

there is no improvement in the proposed model voltage predictions accuracy with the inclusion of 

𝐽2. 

Table 5: Solid and Electrolyte-Phase Concentration Prediction Errors for Pulse Operation 

Number of 

Variables 

Objective Function 

𝐽1 only 

Objective Function 

𝛼1𝐽1 + 𝛼2𝐽2 

Number of 

Variables 

Electrolyte phase 

Objective function 

4 18.93 1255.1 6 16.23 

5 11.03 964.06 7 12.23 

6 7.29 781.97 8 11.30 

7 5.48 659.51 9 10.87 

8 3.74 572.57 10 10.77 

9 3.40 505.99 11 10.77 

 

5.2.3 Voltage and Concentration Simulation Results 

Tables 6 and 7 shows the rms and maximum absolute voltage prediction errors between the 

proposed model prediction and the reference model based on pulse charge/discharge operations. 

The concentration profiles for both solid and electrolyte phase were computed based on the optimal 

discretized nodes selected by the PSO and applied for terminal voltage predictions. Tables 6 

depicts the prediction error based on 𝐽1 alone and it can be observed that the maximum rms and 

absolute prediction error of 1.2mV and 5.8mV for 4 variables based proposed model reduced to 

0.4mV and 4.3mV respectively as the number of states were increased. Tables 7 show the 
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prediction error based on 𝐽1 𝑎𝑛𝑑 𝐽2 and it can be observed that the maximum rms and absolute 

prediction error of 2.1mV and 25.2mV reduced to 1.1mV and 7.0mV respectively as the number 

of states were increased. Comparing the prediction errors for the proposed model based on the two 

objective function shows that the inclusion of solid-phase bulk concentration in the objective 

function does not improve the model voltage prediction capability but it might be influential in the 

model capability for state of charge estimations. Therefore, only surface concentration error 

minimization is essential in the determination of the optimal nodes for the pulse operation. 

Furthermore, it can be observed that the proposed model accuracy become less sensitive to any 

increment in the number of nodes above 7 and 9 nodes for solid and electrolyte phase predictions 

respectively.  

Table 6: Voltage Prediction Error Based on 𝐽1 Alone for Pulse Operation 

Solid phase 

Nodes (J1) 

4 

 

5 6 7 8 9 

Electrolyte 

phase Nodes 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

6 1.2 5.8 0.95 5.3 0.68 5.2 0.56 5.1 0.57 5.1 0.56 5.1 

7 1.1 5.5 0.89 5.0 0.61 4.5 0.49 4.3 0.49 4.2 0.49 4.3 

8 1.1 5.5 0.88 5.0 0.60 4.5 0.46 4.3 0.46 4.2 0.45 4.2 

9 1.1 5.5 088 5.0 0.59 4.5 0.44 4.3 0.43 4.3 0.42 4.3 

10 1.1 5.6 0.88 5.0 0.59 4.6 0.44 4.3 0.43 4.3 0.42 4.3 

11 1.1 5.6 0.88 5.1 0.59 4.6 0.44 4.4 0.43 4.3 0.42 4.3 

Table 7: Voltage Prediction Error Based on 𝐽1 and 𝐽2 for Pulse Operation 

Solid phase 

Nodes (J1 J2) 
4 

 

 

5 6 7 8 9 

Electrolyte 

phase Nodes 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

6 2.1 25.2 1.5 21.4 1.1 17.5 1.1 14.3 1.1 13.9 1.3 8.3 

7 2.0 24.8 1.5 21.1 1.1 17.2 1.1 14.0 1.1 13.5 1.1 7.8 

8 2.0 24.8 1.4 20.9 1.1 17.0 1.1 13.8 1.1 13.3 1.1 7.5 

9 2.0 24.6 1.4 20.8 1.1 16.9 1.1 13.8 1.1 13.3 1.1 7.3 

10 2.0 24.6 1.4 20.8 1.1 16.9 1.1 13.7 1.2 13.3 1.2 7.2 

11 2.0 24.6 1.4 20.8 1.1 16.9 1.1 13.7 1.2 13.3 1.1 7.0 
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Based on the optimal nodes selected by the optimization algorithm for solid phase concentration 

prediction based on 𝐽1, and 9 electrolyte phase optimal nodes, the cell terminal voltage was 

investigated as a case study. The maximum errors were determined as shown in Figure 34, and 

from the magnified voltage predictions plot, it is observed that as the number of nodes increase, 

the prediction error decrease and the predicted voltage from 7 optimal nodes model upward follows 

closely the reference model predicted voltage as established earlier in the error tables. 
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Figure 34: (a)Voltage prediction of the proposed model for different number of discretization 

steps in solid phase for 𝐽1 only (b) Magnified voltage prediction results for pulse operation. 

Figure 35 shows the voltage prediction of the proposed model with respect to the reference model 

for different number of solid phase state based on both 𝐽1 and 𝐽2.The predicted voltage by the 

proposed model follows closely with that of the reference model with an increase in maximum 

prediction error as the c-rate increases. The maximum prediction error of 25millivolts for a 4 

optimal nodes model reduced to 7millivolts for 9 optimal nodes model. 
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Figure 35: (a)Voltage prediction of the proposed model for different number of discretization 

steps in solid phase for 𝐽1 and 𝐽2 (b) Magnified voltage prediction results (c) Voltage prediction 

error for each number of variaboles model for Pulse Operation 

5.3 Hybrid Pulse Power Characterization (HPPC) Operation 

Electric vehicles operate with an HPPC current profile, the capability of the proposed model in 

predicting battery dynamics under HPPC operating condition is investigated in this section. The 

HPPC current profile applied to the proposed model is as shown in Figure 36 where the battery is 

discharge with a constant current 1C operation and experience 4C occasional charge and 

discharge current.  
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Figure 36: HPPC Current Operation 

5.3.1 Solid Phase Optimization Results 

The PSO for optimal nodes selection is as constructed for CC operation for solid phase nodes 

optimization. The PSO solution converges after 400 iteration counts for both constructed solid 

phase objective functions as shown in Figures 37a and 37b.   
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Figure 37: PSO Convergence Profile for Solid-phase Optimization for HPPC Operation based on 

(a) 𝐽1 (b) 𝐽1 𝑎𝑛𝑑 𝐽2 

Figure 38a show the optimal nodes selected based on the model with 𝐽1 objective function and the 

nodes are closely packed towards the particles surface and more scattered towards the particles 
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core. This can be attributed to the contribution of both constant current and pulse current operations 

involvement in HHPC operations. The optimal nodes selected based on the model with 

𝐽1 𝑎𝑛𝑑 𝐽2  objective function is as shown in Figure 38b, the selected nodes are more dispersed 

across the particle’s radius. As shown in Table 8, the cost of objective function reduces rapidly as 

the number of optimal nodes increase for both cases. The reduction in the prediction error as the 

number of nodes increases are insignificant compare to the improvement achieved under CC and 

pulse operation, and this serve as a motivation for performing sensitive analysis for the proposed 

model with respect to each current operation results. 
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Figure 38: Optimal Solid-phase Discretization Steps selected based on (a) 𝐽1only (b) 𝐽1 and 𝐽2 

Error Minimization for HPPC Operation 

5.3.2 Electrolyte Phase Optimization Results 

The electrolyte phase optimal nodes selected are as shown in Figure 39, the selected nodes are 

closely packed in the negative electrode due to its importance in the overall concentration dynamic 

predictions. The same sets of nodes were selected in the separator and positive electrode for all the 

number of cases considered. It can be observed from Table 8 that as the number of variables 

increase, the reduction in the prediction error are insignificant compared to the prediction 

improvement achieved under CC and pulse operations. 
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Figure 39: Optimal Solid-phase Discretization Nodes for HPPC Operation 

Table 8: Solid and Electrolyte-Phase Concentration Prediction Error for HPPC Operation 

Number of 

Variables 

Objective Function 

𝐽1 only 

Objective Function 

𝛼1𝐽1 + 𝛼2𝐽2 

Number of 

Variables 

Electrolyte phase 

Objective function 

4 265.54 2071.7 6 132.02 

5 240.04 1772.4 7 132.00 

6 230.67 1585.9 8 125.06 

7 228.75 1537.2 9 122.06 

8 225.50 1426.6 10 118.65 

9 223.23 1354.1 11 118.65 
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5.3.3 Voltage and Concentration Simulation Results 

Tables 9 and 10 shows the errors between voltage predictions of the reference model and the 

proposed model. Table 9 present the prediction errors for the proposed model based on objective 

function with only 𝐽1, the maximum rms and absolute error reduced from 3.3mV and 20.0mV for 

4 variables model to 0.79mV and 5.2mV for 9 variables model respectively. Likewise, the other 

model with a 𝐽1 𝑎𝑛𝑑 𝐽2 solid phase objective function has the same predictions as the first model 

results, with little or no improvement in the prediction capacity with the inclusion of bulk 

concentration error minimization. Hence, for the proposed model there is no justification for 

including bulk concentration in the voltage computation for this operation. HPPC operation result 

also demonstrate that for solid and electrolyte phase concentration prediction, 7 and 9 unevenly 

discretized nodes are enough to accurately predict their respective concentration dynamics above 

which there is no model prediction improvement but higher computational cost which are in 

concordant with the two previous operations results.  

Figure 40 and 41 shows the voltage profile of the proposed model with different number of optimal 

solid-phase nodes with respect to the reference model predictions.  
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Figure 40: (a)Voltage prediction of the proposed model for different number of discretization 

steps in solid phase for 𝐽1 (b) Magnified voltage prediction results (c) Voltage prediction error 

for each nuber of variaboles model for Pulse Operation 

Table 9: Voltage Prediction Error Based on 𝐽1 Alone for HPPC Operation 

Solid phase 

Nodes (J1) 

4 5 6 7 8 9 

Electrolyte 

phase 

Nodes 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

6 3.3 20.0 2.8 18.5 2.5 17.5 2.5 17.5 2.4 16.5 2.3 16.4 

7 3.0 18.6 2.5 16.9 2.3 15.9 2.2 15.9 2.1 14.9 2.1 14.8 

8 2.4 13.4 1.9 11.7 1.6 10.6 1.5 10.6 1.3 9.7 1.3 9.6 

9 2.2 11.3 1.7 9.7 1.3 8.6 1.3 8.6 1.1 7.6 1.1 7.5 

10 2.1 9.9 1.5 8.3 1.1 7.2 1.1 7.2 0.90 6.2 0.89 6.1 

11 2.0 9.1 1.5 7.4 1.0 6.3 1.1 6.3 0.80 5.4 0.79 5.2 
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Figure 41: (a)Voltage prediction of the proposed model for different number of discretization 

steps in solid phase for 𝐽1 and 𝐽2 (b) Magnified voltage prediction results (c) Voltage prediction 

error for each number of variaboles model for HPPC Operation 

Table 10: Voltage Prediction Error Based on J1 and J2 Alone for HPPC Operation 

Solid phase 

Nodes (J1 J2) 

4 

 

5 6 7 8 9 

Electrolyte 

phase Nodes 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

Rms 

(mV) 

Max 

(mV) 

6 3.3 20.2 2.8 18.5 2.5 17.5 2.5 17.5 2.4 16.5 2.3 16.4 

7 3.0 18.6 2.5 16.9 2.3 15.8 2.2 15.9 2.1 14.9 2.1 14.8 

8 2.4 13.4 1.9 11.7 1.6 10.6 1.5 10.7 1.3 9.7 1.3 9.6 

9 2.2 11.3 1.7 9.7 1.3 8.6 1.3 8.6 1.1 7.6 1.1 7.5 

10 2.1 10.6 1.6 8.9 1.2 7.8 0.97 6.9 0.97 6.9 0.95 6.7 

11 2.0 8.6 1.4 6.9 1.0 5.8 1.0 5.9 0.75 4.9 0.74 4.7 

5.4 Nodal Point Sensitivity Analysis 

The sensitivity of the prediction capability of the proposed model was investigated under this 

section to investigate the impact of applying the constant current optimal nodes to pulse and hybrid 

operations model and vice versa. Table 11 shows the surface concentration prediction errors (𝐽1) 

of the proposed model with respect to reference model when CC optimal nodal results are applied 
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to the other two models. The prediction results for the proposed model under pulse 

charge/discharge operation based on the application of CC optimal nodes shows 20times error 

magnitude with respect to CC operation prediction error, and 5times error magnitude under HPPC 

operation. Under HPPC operation, as the number of nodes increases, the magnitude of error 

between this operation and that of CC operation reduces. From 7 optimal nodes upward the two-

model prediction capability based on CC optimal nodal solution became close.   

Table 11: Solid-phase Concentration Prediction Error Based on CC Optimal Result Applied to 

other Current Profile Models 

Number of 

Variables   

CC Optimal Solution 

CC  Pulse HPPC 

4 21.97 385.79 83.32 

5 27.32 349.25 57.72 

6 26.05 285.87 36.69 

7 18.57 233.07 29.12 

8 13.70 187.28 18.94 

9 10.54 149.87 15.46 

Table 12 shows the result based on the application of pulse operation optimal nodes to the proposed 

model with CC and HPPC operations. The prediction results in the table shows that the 

discrepancies between the pulse prediction errors is approximately halve of HPPC prediction 

errors whereas the is a huge difference between the prediction error results of pulse operation in 

comparison to that of CC operation. Hence, the proposed model with pulse charge/discharge is 

highly sensitive to CC optimal solution and vice versa. 
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Table 12: Solid-phase Concentration Prediction Error Based on Pulse Optimal Result Applied to 

other Current Profile Models 

Number of 

Variables 

Pulse Optimal Solution 

CC Pulse HPPC 

4 116 18.93 45.69 

5 115.93 11.03 22.70 

6 45.09 7.29 17.89 

7 44.52 5.48 11.20 

8 22.38 3.74 9.00 

9 18.74 3.40 6.02 

The sensitivity of the proposed model using HPPC optimal nodal solutions, with the other two 

current operation as shown in Table 13 demonstrate that applying HPPC optimal nodal solution to 

the other model operations does not have any significant effect on the prediction capability of the 

proposed model. 

Table 13: Solid-phase Concentration Prediction Error Based on HPPC Optimal Result Applied to 

other Current Profile Models 

Number of 

Variables 

HPPC Optimal Solution 

CC Pulse HPPC 

4 241.82 268.34 265.54 

5 242.00 254.28 240.04 

6 249.51 239.42 230.67 

7 243.02 229.54 228.75 

8 233.47 222.54 225.50 

9 226.70 220.00 223.23 

Conclusively, an HPPC operation-based model can be designed to use an optimal nodal solution 

of either constant current or pulse operation without any significant trade off with the model 
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accuracy making HPPC operation less sensitive to the other two operation optimal solutions. 

Likewise, for higher number of nodes, the optimal nodal solutions of both CC and pulse operations 

can be apply for HPPC operation prediction purpose without much reduction in model accuracy. 

In contrast, CC and pulse operations have high sensitivity towards each other solutions, hence 

neither can CC optimal nodal solutions be applied for pulse operation predictions without 

reduction in the model accuracy nor can pulse optimal nodal solution be applied for CC operation 

predictions. The proposed model with CC and pulse operations are sensitive to the optimal nodal 

solution applied, and for HPPC operation the proposed model is less sensitive to optimal nodal 

solution applied.   
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Chapter 6: Conclusion and Future Work 

6.1 Conclusion 

The objective of this work was to develop an optimal model reduction of LIB systems for control 

and system design purpose. The LIB systems partial differential equations which governs the 

battery operations and performance, were obtained from the conservation laws for both species 

and charge, coupled with the electrochemical kinetic Butler-Volmer’s equation. These PDEs were 

converted into ordinary differential equations (ODE) through finite difference method and solved 

numerically.  The objective of this work was met by using particle swarm optimization to 

determine the optimal uneven discretization nodes, necessary for accurately prediction of solid and 

electrolyte phase concentrations.  Evenly discretized nodes model was used as a reference model 

in the development of the proposed reduced order model.  

A minimization problem was formulated based on the surface and bulk concentrations errors at 

the solid-phase level, and at the two sides of the electrodes for electrolyte-phase concentration 

errors between the reference model and the proposed model. The PSO algorithm was employed to 

determining the global minimizer for the optimization problem. The solutions converged mostly 

after 500 iteration counts for the two phases. 

Three current profiles were applied to the proposed model, and their simulation results were 

presented. The presented results demonstrate that, the proposed model can predict the 

electrochemical behavior of lithium-ion batteries for a wide range of applied current conditions. 

MATLAB 
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computer code was written for referenced model and the proposed model, the proposed model was 

validated by computing the rms and absolute maximum error with respect to the reference model. 

The proposed model simulation results demonstrate a close prediction to that of the reference 

model. Based on the voltage rms error computed between the two models for the three current 

profiles analyzed, it was observed that inclusion of bulk concentration in the solid-phase objective 

formulation does not improve the accuracy of the proposed model, specifically under pulse and 

HPPC operations. Since the proposed model is developed mainly for battery terminal voltage 

prediction, then surface concentration error minimization will suffice for solid-phase objective 

formulation to ensure high concentration and voltage prediction accuracy.  

The accuracy of the proposed model increases as the order of the model increase for both solid and 

electrolyte phase concentration predictions, until a saturation point of 7 variables for solid phase 

concentration predictions and 9 variables for electrolyte-phase predictions was reached. Above 

these saturation points there was no significant improvement in the accuracy of the proposed 

model. The proposed reduced order model was able to achieve a good prediction accuracy with 

respect to the reference model with 7 and 9 unevenly discretized steps for solid and electrolyte 

phase concentration prediction respectively.  

The full order model has 100 nodes for solid phase discretization, and 60 nodes for electrolyte 

phase discretization, and these have been successfully reduced by the proposed model reduction 

scheme to 14 nodes for solid phase uneven discretization, and 9 nodes for electrolyte phase uneven 

discretization. Hence the proposed optimal model reduction scheme, reduced the order of the full 

model by 7 times, without loss of physical interpretation of the diffusion and migration dynamics 

in the solid particles and electrolyte across the entire cell. This reduction in the number of 

discretization will allows faster computation for the purpose of control and systems design. 
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The proposed model was simulated with a constant current operation based on the optimal number 

of nodes. The model prediction has a rms voltage error of 0.9mV, and a maximum absolute voltage 

error of 1mV. The pulse operation prediction has a rms voltage error of 0.4mV, and a maximum 

absolute voltage error of 4mV. The HPPC operation prediction has a rms voltage error of 1mV, 

and a maximum absolute voltage error of 9mV. Thus, the computational effort required to model 

and simulate the full order model have been reduced 7 seven times by the proposed optimal model 

reduction scheme. The proposed model embodies high precision, and fast simulation of battery 

performance for a range of working conditions. 

In the future, further investigation on the impact of bulk concentration inclusion in the solid phase 

objective function formulation, on the accuracy of the proposed reduced order model in estimating 

the battery state of charge (SoC) will be carried out. In developing the proposed model reduction 

scheme, a constant electrolyte diffusivity coefficient was assumed for simplification purpose. The 

implementation of concentration dependent electrolyte diffusivity coefficient will be included in 

the proposed model in the future. Furthermore, the optimal model reduction scheme methodology 

will be applied in developing a reduced order model for solid state battery modeling and state 

estimations. 
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