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Abstract

Background: Upstream open reading frames (uORFs) initiate translation within mRNA 5′ leaders, and have the
potential to alter main coding sequence (CDS) translation on transcripts in which they reside. Ribosome profiling
(RP) studies suggest that translating ribosomes are pervasive within 5′ leaders across model systems. However, the
significance of this observation remains unclear. To explore a role for uORF usage in a model of neuronal
differentiation, we performed RP on undifferentiated and differentiated human neuroblastoma cells.

Results: Using a spectral coherence algorithm (SPECtre), we identify 4954 consistently translated uORFs across 31%
of all neuroblastoma transcripts. These uORFs predominantly utilize non-AUG initiation codons and exhibit
translational efficiencies (TE) comparable to annotated coding regions. On a population basis, the global impact of
both AUG and non-AUG initiated uORFs on basal CDS translation were small, even when analysis is limited to
conserved and consistently translated uORFs. However, uORFs did alter the translation of a subset of genes,
including the Diamond-Blackfan Anemia associated ribosomal gene RPS24. With retinoic acid induced
differentiation, we observed an overall positive correlation in translational shifts between uORF/CDS pairs. However,
CDSs downstream of uORFs show smaller shifts in TE with differentiation relative to CDSs without a predicted
uORF, suggesting that uORF translation buffers cell state dependent fluctuations in CDS translation.

Conclusion: This work provides insights into the dynamic relationships and potential regulatory functions of uORF/
CDS pairs in a model of neuronal differentiation.

Keywords: Translation, Ribosome profiling, Upstream open reading frame, Near-cognate start codon, 5′
untranslated region, Neuronal differentiation

Background
Alterations in protein expression and abundance are re-
quired for successful and stable cellular differentiation
[1]. While changes in mRNA levels provide a partial
view of networks driving such cellular changes, differ-
ences in translational efficiency (TE) act as an independ-
ent contributor to this process [2]. Determining
ribosomal occupancy across the transcriptome through
ribosomal profiling (RP) provides us with a powerful tool
for assessing the relationship between mRNA abundance

and translational output [3]. In particular, RP in cells
and organisms has revealed a detailed picture of
condition-specific changes in mRNA translation rates in
multiple cellular processes from meiosis to development
[4, 5].
The 5′ leader (traditionally referred to as the 5′ un-

translated region) of mRNAs are one well-studied source
of protein synthesis regulation [6–9]. 5′ leaders can
regulate the synthesis of the main coding sequence
(CDS) product through a variety of mechanisms [6, 9].
RNA secondary structures can impede ribosomal scan-
ning, which decreases access of assembled 40S ribosomal
preinitiation complexes to CDS initiation sites. Transla-
tion can also initiate within 5′ leaders at upstream open
reading frames (uORFS). In the case of uORFs that ter-
minate after the CDS initiation site (overlapping uORFs
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or “oORFs”), initiation in the 5′ leader directly competes
with CDS initiation for scanning 40S ribosomes and is
thus predicted to be inhibitory on CDS translation. In
contrast, with uORFs that terminate within the 5′ leader
and before the CDS initiation site (contained uORFs or
“cORFs”), ribosomes can potentially reinitiate at the
CDS. Thus, cORFs sometimes bypass other 5′ leader
regulatory elements and can even provide stimulatory ef-
fects on CDS translation, but may be repressive as well.
uORF translation can also indirectly influence CDS
translation by influencing mRNA stability [10] or
through interactions of newly synthesized uORF protein
products with the translating ribosome [11, 12]. As such,
the relationship of each uORF to the translation of its
cognate CDS can be complex, making it difficult to de-
fine their specific functions and regulation across the
transcriptome based on position alone.
Early ribosome profiling reports demonstrated that

ribosome protected fragments (RPFs) are highly
enriched within 5′ leader regions of mRNAs [3–5]. Since
these first reports, there have been several studies that
investigated 5′ leader translation [13–18]. These studies
revealed potential roles for uORFs in circadian clock
regulation, organism development, and the cell cycle [4,
19–22]. For example, AUG initiated uORFs were de-
tected in the transcripts of key developmental signaling
proteins during murine development [22]. Homozygous
deletion of an AUG initiated uORF in the 5′ leader of
PTCH1—which encodes the major receptor for SHH sig-
naling—disrupted differentiation of mouse embryonic
stem cells into neural progenitors [22]. Interestingly,
ribosome profiling at various time points throughout
neuronal differentiation of human embryonic stem cells
revealed shifts in 5′ leader coverage on a number of tran-
scripts [23]. However, these data were not systematically
analyzed for active translation and characterization of
uORFs, and relied solely on RPF reads as a measure trans-
lation of the whole 5′ leader. Additionally, few studies to
date have included non-AUG initiated uORFs in their ana-
lysis [4, 24, 25] despite their potential to contribute signifi-
cantly to the pool of footprints within 5′ leaders.
Treatment of human neuroblastoma cells with retinoic

acid triggers their exit from the cell cycle and their dif-
ferentiation into a neuron-like cell type [26, 27]. While
many studies have sought to understand genetic changes
underlying this process, most have focused on
transcript-level changes, with evaluation of shifts in pro-
tein abundance only studied on a case-by-case basis
[28–31]. Here we used RP in this simple model system
to study the role of uORF activity in regulating protein
translation during retinoic acid induced neuronal differ-
entiation of neuroblastoma cells. Using a spectral coher-
ence algorithm (SPECtre) and stringent dataset filtering
we defined a set of translated uORFs, the majority of

which initiate at a near-cognate start codon [14]. The
presence of an AUG or conserved non-AUG uORF pre-
dicted lower CDS TE independent of cell state. Moreover,
there were significant shifts in uORF usage that occurred
with differentiation, suggesting a potential regulatory role.
We observe less of a differentiation-dependent shift in
translation of CDSs downstream of a uORF expressed
across conditions, suggesting that uORFs act as a transla-
tional buffer on the transcripts in which they reside. To-
gether this work provides important insights into how
uORFs may function to regulate the translation of their
associated CDS in a model of neuronal differentiation.

Results
Ribosome profiling detects conditionally regulated
translation with differentiation
We first confirmed the efficacy of RA treatment in dif-
ferentiating SH-SY5Y cells. Cells were propagated to
80% confluency prior to 10 μM RA treatment for six
days (Fig. 1a). RA treatment induces an exit from the
cell cycle and a change in cellular morphology. Previous
studies have used a similar protocol as a model for dopa-
minergic neuronal differentiation, although RA treat-
ment is thought to generate a more immature
neuron-like cell than what can be achieved from a
neural progenitor [26, 27, 30]. Cytoskeletal alterations
confirm a shift towards a more neuron-like state after 6
days of treatment. Cytoplasmic beta-actin immunofluor-
escence decreased and neurofilament labeled neurites in-
creased in length in the differentiated cells (Fig. 1b-d)
[32, 33]. We also observed an increase in expression of
FMRP, a protein involved in neuronal function and
translational control that is highly expressed in neurons
relative to other cell types and tissues (Fig. 1e-f ) [34].
Global mRNA sequencing (mRNA-Seq) demonstrated
the anticipated transcriptional differences in RA Differ-
entiated (“RA-Diff”) cells compared to in undifferenti-
ated (“Non-Diff”) cells (Fig. 1g, Additional file 1: Table
S1). Specifically, Gene ontology (GO) analysis revealed
downregulation of transcript networks associated with
mitotically active cells and upregulation of biological
pathways associated with cell communication and stimu-
lus response in the RA-Diff cells, consistent with exit
from the cell cycle and transition to a more neuron-like
state (Additional file 5: Figure S1).
Ribosome profiling can resolve the specific regions of

mRNA undergoing translation at nucleotide resolution
across the transcriptome within a cell population [3]. By
comparing ribosomal occupancy within a given tran-
script in Non-Diff to RA-Diff cells, we are able to gauge
translational differences. This can be accomplished by
normalizing RPF abundance in the CDS to mRNA ex-
pression in samples prepared in parallel as a measure of
TE (Fig. 1h). Inspection of biological processes by GO
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Fig. 1 Retinoic acid treatment induces differential translation in SH-SY5Y human neuroblastoma cells. a Schematic of experimental design and data
acquisition work-flow. b Immunocytochemistry performed on Non-Diff and RA-Diff SH-SY5Y cells with antibodies against neurofilament (red) and β-
actin (green). Nuclei were DAPI stained (blue). c β-actin expression was decreased in RA-Diff cells. Individual cell fluorescence was quantified and
represented as a corrected total cell fluorescence (CTCF) for β-actin; n = 119 for Non-Diff and n = 118 for RA-Diff. d Primary neurite length measured by
neurofilament staining; n = 109 for Non-Diff and n = 100 for RA-Diff. e FMRP expression by immunoblot before and after RA treatment, quantified in F);
n = 4 for both conditions. For panels C), D), and f Student’s t test, ****p≤ 0.0001. Graphs represent mean ± S.E.M. g Differential mRNA abundance
based on Non-Diff versus RA-Diff TPM. Transcripts were defined as significantly up-regulated (cyan) or down-regulated (gold) in the RA-Diff condition
based on rank-change in abundance compared to the Non-Diff condition. h Volcano plot of transcripts with differential translation by translational
efficiency (TE) by Riborex analysis. Significantly up-regulated genes (cyan) and down-regulated genes (gold) in RA-Diff cells are defined by an absolute
log2-normalized fold-change cutoff of ±1 (vertical lines), and a multiple testing corrected p-value cutoff of 0.1 (horizontal line). i Gene sets (biological
process) with significantly downregulated TE in RA-Diff cells. Genes upregulated in RA-Diff cells is shown in (j). The top five biological processes with
significant change using a multiple testing corrected p-value cutoff of 0.05 (vertical line) are shown on the graph. k Plot shows normalized mRNA
reads (grey) and RPF (cyan/gold) over the 5’leader (thin line, left), and CDS (thick line, middle). The axon guidance gene, PLXNA2, is representative of a
transcript with higher translational efficiency and RPF in the RA-Diff condition.
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analysis with significant translational efficiency changes
revealed mainly a downregulation of transcripts encod-
ing proteins involved in mitosis in the RA Diff cells (Fig.
1i). Transcripts involved in endoplasmic reticulum (ER)
function were significantly upregulated in the RA Diff
cells (Fig. 1j). Investigation of transcript groups associ-
ated with a specific molecular function or cellular com-
partment further clarify the translational changes
associated with differentiation (Additional file 5: Figure
S2A-D). A more complete view of translation on an in-
dividual transcript is exemplified by PLXNA2 which en-
codes a membrane-bound protein involved in nervous
system development and axon guidance [35]. Its mRNA
coverage is upregulated upon differentiation; however,
the increased expression is much greater at the RPF level
(Fig. 1k), producing a higher translational efficiency.
Other transcripts such as DAD1, a factor critical for
N-terminal glycosylation with roles in apoptosis and the
unfolded protein response, exhibit shifts at both the
mRNA and RPF level which produces no significant
change in translational efficiency (Additional file 5: Fig-
ure S2E) [36]. All mRNA, RPF, and TE changes are de-
tailed in Additional file 2: Table S2, and all GO analysis
results are detailed in Additional file 3: Table S3.

Characterization and experimental validation of SPECtre-
identified uORFs
To annotate uORF sequences within the 5′ leader of
mRNA, we utilized the SPECtre algorithm for classifying
active regions of translation [14]. SPECtre accounts for
the fundamental attribute of an actively translating ribo-
some to shift position three nucleotides at a time as it
synthesizes new peptides and the ability of ribosome
profiling to resolve this behavior with peaks in read
coverage. Our algorithm takes an unbiased approach to
scoring all potential uORFs from start site to the next
in-frame stop codon (Fig. 2). For each potential uORF,
the pattern of read coverage within this designated se-
quence is compared against the pattern of reads across
all known protein-coding regions in the experimental li-
brary. This analysis results in a set of experimentally de-
termined scores that are then subjected to a range of
transcript-level filters.
We established a translational threshold based on the

distribution of scores in known coding genes to establish
a minimum SPECtre score needed to classify a region as
actively coding with a 5% false discovery rate (FDR)
allowed. This results in a set of 3508 transcripts with
4954 unique uORFs (Fig. 2, Additional file 4: Table S4).
Of these transcripts, 1599 contained overlapping
upstream-initiated ORFs (specified as oORFs), 1438
uORFs fully contained in the 5′ leader (cORFs), and 471
transcripts had two or more uORFs of either of these
two categories (Fig. 3a). The median distance of the

uORF initiation site from the CDS is 99 nucleotides (Fig.
3b). uORFs have a median length of 78 nucleotides, but
can span upwards of 500 nucleotides in length (Fig. 3c).
Of note, reads in the 15 nt surrounding the CDS AUG
start codon were excluded to avoid errant signal attrib-
uted to uORF activation from CDS translation.
Previous work using harringtonine, a drug that stalls

ribosomes at initiation sites, revealed a surprising occur-
rence of near-AUG codons enriched in ribosome peaks
[5]. Though near-cognate initiation had been recognized
previously, this hinted that there may be a greater num-
ber of initiation events at these codons than previously
expected [3, 37–41]. When inspecting the translation
start site of each SPECtre-identified uORF in our data-
sets, the majority could not be mapped to an in-frame
AUG initiation codon. Translation start sites were plot-
ted to show the relative contribution of each in the final
dataset (Fig. 3d). It is important to note that this is the
breakdown of start sites within the constraint of our ini-
tial parameters, which limited potential start codons to
those with a preset identity. AUG initiation sites were
accounted for by two different methods: they were either
directly identified by SPECtre or factored into the total
count if they were present within 30 nucleotides up-
stream or downstream of the start of the SPECtre signal
without an intervening stop site. Due to the high poten-
tial translatability of ORFs with AUG start codons, these
were all annotated as AUG start sites. This constitutes
21.5% of the initiation sites used. In comparison, we de-
tected 21.4% of uORFs use CUG as their initiation
codon, consistent with previous reports [5, 38]. A typical
example of RPF and mRNA coverage of a uORF contain-
ing transcript is shown for ARF4, which encodes a small
guanine nucleotide-binding protein important for ves-
icular trafficking, reveals significant coverage across the
uORF in the Non-Diff state (Fig. 3e).
To confirm that SPECtre identified uORFs could sup-

port translation we created creating nanoluciferase
(nLuc) reporters for a small representative set of genes.
For each candidate evaluated, the complete 5′ leader up-
stream of the start site through the entire predicted cod-
ing region of the uORF was placed upstream of an nLuc
tag where the AUG start codon was mutated to GGG
(Fig. 3f ). GGG-nLuc alone, which exhibits very little
translational activity in isolation, was used as a nega-
tive control [42]. We confirmed SPECtre identified
uORFs residing in the 5′ leader of 4 genes: ARF4,
CALM2, PCBD1, and LAMB1. ARF4, PCBD1, and
LAMB1 are predicted to utilize near-cognate start
sites, while CALM2 utilizes an AUG (Fig. 3f ). Re-
porters were co-transfected into SH-SY5Y cells with
pGL4.13 which encodes firefly luciferase (FFluc) as a
transfection control. DAD1 and PSAP served as nega-
tive controls, as their 5′ leaders were filtered out
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early on in our analysis and they exhibited minimal
RPF footprints in their 5’UTRs despite robust CDS
translation. All 4 of our predicted uORFs showed a
significant level of translation above GGG-nLuc (Fig.
3g). One key feature of SPECtre is its ability to

discriminate reading frame [14]. To determine if
SPECtre correctly predicted the reading frame of
uORFs in 5′ leaders, we mutated the reporter for
PCBD1 so that the predicted uORF was out of frame.
Placing nLuc out of frame resulted in a significant

Fig. 2 Computational prediction and filtering of upstream-initiated open-reading frames. ORFs were predicted from AUG and non-AUG, near-
cognate translation initiation sites in the 5′ leader of annotated protein-coding genes, and computationally extended to the first termination site
encountered in the 5′ leader (upstream-terminated ORFs) or CDS (overlapping ORFs). Predicted ORFs were then screened through a series of
heuristic filters including: 1) minimum RPF coverage in the 5′ leader, 2) minimum mRNA-seq coverage in CDS, 3) in-frame N-terminal extensions,
4) redundant isoforms, 5) minimum length with optimal RPF coverage, 6) sufficient SPECtre signal, and 7) removal of ambiguously annotated
protein-coding transcripts.
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drop in signal (Fig. 3h), suggesting that SPECtre cor-
rectly detected the indicated uORF reading frame.

uORF/CDS pairs exhibit positively correlated TE shifts
with differentiation
To determine whether RA induced differentiation might
impact uORF usage, we first performed k-means

clustering using the TE of uORFs in the Non-Diff and
RA-Diff datasets (Fig. 4a). This revealed that a subset of
approximately 14% of predicted uORFs that exhibited a
high degree of cell-state specificity (blue and gold) com-
pared to uORFs with consistent TE in both states (grey).
A similar relationship was observed for the SPECtre
score (Additional file 5: Figure S3A). If these shifts in
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Fig. 3 Characterization and validation of predicted uORFs. a The number of genes with at least one predicted ORF (bar plot) in the 5′ leader of
evaluated protein-coding genes. The number of genes with a predicted ORF terminated upstream in the 5′ leader only (orange), terminated in
the CDS only (blue), or with both a predicted upstream- and CDS-terminated ORF (overlap). b Distribution of predicted ORF translation initiation
position relative to the annotated protein-coding CDS start site. c Distribution of predicted ORF lengths. d Distribution of uORF translation start
sites (TIS). AUG represents all AUGs predicted by SPECtre, or upstream/downstream 30-nt from the SPECtre predicted start site if no intervening
stop codon is present. Near-cognate start codons are utilized in the majority of uORFs, while AUG is the single most common start site. e Plots
show mRNA reads (grey) and RPF counts (cyan/gold) for ARF4. The annotated uORF is characterized by the presence of consistent RPF coverage
in the 5′ leader. f Schematic of the uORF nanoluciferase (nLuc) reporters used in this study. GGG-nLuc serves as a negative control, as its AUG
initiation start codon is mutated to a GGG codon. This reporter supports very little translation. A table of the predicted start sites for each uORF
reporter. g nLuc assays performed in SH-SY5Y cells confirmed expression of these uORFs (teal). 5′ leaders not included in the uORF dataset (black)
are below the GGG-nLuc reporter activity and considered not translated. All values are normalized to the GGG-nLuc control performed in parallel,
data for individual reporters was collected in triplicate in multiple experiments. Student’s t test, all teal uORFs in panel F) have a p value ≤0.0001.
Graph represents mean ± S.E.M. h Frameshifting the uORF relative to nLuc decreases translation of the reporter. The reporter was cloned so that
the nLuc tag was frameshifted (f.s.) out of frame with the predicted uORF and the CDS start site. n = 3, Student’s t test, ****p≤ 0.0001. Graph
represents mean ± S.E.M.
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uORFs translation occur as a means of regulating CDS
translation, then we would predict an inverse relation-
ship between these shifts in uORF usage and the TE of
their cognate CDS. However, these clusters were not
predictive of an inverse directional change in CDS TE
(Fig. 4b). Instead, we observed a positive correlation be-
tween CDS TE and uORF TE in this dataset (Additional
file 5: Figure S3B) that was present regardless of whether
we considered all uORF, or cORFs and oORFs individu-
ally (Fig. 4c-d). These findings are consistent with a
number of previous RP studies [4, 43] and has been
interpreted as reflecting enhanced pre-initiation complex
loading leads to increases in both uORF and CDS trans-
lation, with leaky scanning past the uORF allowing for
enhanced initiation at both sites. While this positive re-
lationship does not preclude the potential for specific
uORFs to act as repressors, it suggests that global shifts

in uORF usage are not driving the majority of changes
in CDS TE observed with RA differentiation.

Even robustly translated uORFs exhibit only modest
inhibitory effects on CDS translation
As our a priori prediction from biochemical studies was
that uORFs should impair cognate CDS translation, we
were concerned that inclusion of all uORF containing
transcripts identified by SPECtre might mask effects elic-
ited by robustly translated uORFs, which we would pre-
dict to have stronger inhibitory effects. We therefore
repeated our analysis using a stringent dataset of tran-
scripts including only those transcripts with SPECtre
scores indicating highly robust and consistently trans-
lated uORFs. This filtering constrained the uORF tran-
scripts to a smaller group of 158 overlapping ORFs
(oORFs) and 137 contained ORFs (cORFs) that initiate

A B

C D

Fig. 4 uORFs shift translationally with Retinoic acid induced differentiation. a K-means clustering analysis of log2(uORF TE) in Non-Diff and RA-Diff
cells, reveals differentiation-associated shifts. Three clusters of uORF translation emerge: those that are up-regulated in RA-Diff cells (cyan), up-
regulated in Non-Diff cells (gold), and uORFs with no change in translational potential (gray). b Clustering in (A) does not correlate with
directional CDS changes. Kernel density estimation analysis of changes in TPM over annotated protein-coding CDS as a function of changes in
TPM over predicted upstream-initiated ORFs. Cluster identity of predicted ORF changed in translational potential as scored by SPECtre predicted
ORFs enriched for translation in RA-Diff cells (cyan), predicted ORFs with enriched translation in Non-Diff cells (gold), and those with static
translation across the two conditions (black) are annotated to protein-coding CDS with higher RPF abundance in Non-Diff cells (above horizontal
line), and those with higher RPF abundance in RA-Diff cells (below horizontal line). c Analysis of transcripts with a cORF reveals a positive
correlation of cORF TE and CDS TE. Pearson correlation, R2 = 0.13. d The same is true for oORFs with a Pearson correlation, R2 = 0.59.
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at either an AUG or near-cognate codon (Fig. 5a). The
cORFs and oORFs in this stringent dataset have compar-
able translational efficiencies (Fig. 5b) and both were
more robustly translated than uORFs identified by our
initial SPECtre analysis. These uORFs exhibited en-
hanced conservation at the codon level (comprised of
only the 5′ leader region for oORFs) compared to 5′
leader sequences overall (Fig. 5c) and their GC content
is lower than 5′ leaders overall, making them more simi-
lar to CDS sequences (Fig. 5d) [44, 45]. Somewhat sur-
prisingly, the translational efficiencies of AUG initiated
and non-AUG initiated uORFs were comparable in this
stringent dataset (Fig. 5e).
Using this constrained set of robustly translated

uORFs, we re-evaluated the impact of uORFs on cognate
CDS translation. On a population basis, AUG initiated
uORFs were nominally associated with less translation
from their cognate CDSs, but their effect on a popula-
tion level was very modest (Fig. 5f ), which is consistent
with published data [7, 20, 24, 43]. CDS downstream of
non-AUG initiated uORFs did not demonstrate any

influence on cognate CDS translation (Fig. 5f ), although
a subtle influence of non-AUG uORFs on cognate CDS
translation was observed based on their degree of con-
servation. For non-AUG uORFs in the top quartile of
conservation (conserved), the presence of non-AUG
uORFs was associated with CDS repression (Fig. 5g). In
contrast, for non-AUG initiated uORFs in the lowest
quartile of conservation (non-conserved) overall CDS
translation was higher compared to both the total CDS
population and the conserved non-AUG uORFs. This
difference associated with conservation is not due to dif-
ferences in the TE of conserved versus non-conserved
uORFs, as these were comparable (Fig. 5e). The con-
served group exhibited higher GC content, consistent
with prior findings demonstrating that 5′ leader second-
ary structure is a predictor of CDS repression and that
these features are conserved (Fig. 5h) [43, 46]. This
higher degree of conservation with these particular AUG
and non-AUG uORFs is also consistent with previous
work exploring the evolutionary constraint on AUG trip-
lets in 5′ leaders of mammalian and yeast transcripts

A B C D
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Fig. 5 Impact of highly translated uORFS on coding sequence translation. a SPECtre identified uORFs were filtered to include only uORFs that
have significant coverage in all four Non-Diff and RA-Diff libraries; these are considered highly translated. b Average TE values for cORFs and
oORFs in the Non-Diff (left) and RA-Diff (right) conditions. c Conservation analysis of annotated 5′ leaders in all three reading frames (orange),
annotated CDS regions over all three frames (grey), predicted AUG-initiated uORFs (dark blue), and predicted non-AUG uORFs (light blue). d
Average GC nucleotide content is shown for 5′ leader regions (orange), CDSs (grey), AUG uORFs (dark blue), and non-AUG uORFs (light blue). For
oORFs, only the 5′ leader region of the oORF is included. 5′ leaders are significantly more GC rich than both AUG uORFs and non-AUG uORFs, p
= 5.72e-12 and 1.54e-07, respectively. Non-AUG uORFs are significantly more GC rich than CDSs and AUG uORFs, p = 7.92e-18 and 2.16e-06. e
Average TE for AUG uORFs and non-AUG uORFs reveals no difference between the two subtypes. f Empirical cumulative distribution of TE in all
CDSs (black) versus CDSs from transcripts with two subsets of uORFs: those with an AUG initiation site (red) and those with a non-AUG initiation
site (Blue). g Empirical cumulative distribution of TE in all CDSs (black) versus CDSs from transcripts with two subsets of non-AUG uORFs: those in
the highest quartile of conservation (Conserved, red) and those in the lowest quartile of conservation (Non-Conserved, Blue). Distributions are
significantly different with p-values annotated on graph. h GC content of non-AUG uORFs grouped by conservation. All versus conserved: p =
5.89e-08, all versus non-conserved: p = 2.54e-06, conserved versus non-conserved: p = 1.62e-18.
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that suggests that uORFs with larger effect are either re-
moved via purifying selection or are heavily conserved
[47]. Thus, we can identify both AUG and non-AUG ini-
tiated uORFs that inhibit downstream translation. How-
ever, the effect sizes are small and they represent a
minority (41.4%) of the uORFs detected by ribosome
profiling in our datasets.

Ribosomal transcripts are enriched for uORFs
To explore the potential functional consequences of
uORF activity, we performed a GO analysis of tran-
scripts with highly translated uORFs (Additional file 5:
Figure S4). These transcripts were significantly enriched
in ribonucleoprotein assembly and organization both of
which GO categories include the ribosomal proteins.
Interestingly, there is a significant enrichment for ribo-
somal protein transcripts in particular in the full pre-
dicted set of uORFs, with 59 uORF containing
transcripts, with 19 bearing oORFs and 4 bearing cORFs
(Fig. 6a, Additional file 5: Figure S4). Most uORF/CDS
pairs in this group of transcripts exhibit a positive cor-
relation in the directionality of changes in translational
efficiency in response to differentiation, and in 20 of the
23 ribosomal transcripts, the CDS is more highly trans-
lated in the Non-Diff state. We validated the expression
of three uORFs from ribosomal protein transcripts:
RPS8, RPS18, and RPS24 by nanoluciferase assay (Fig.
6b). These show robust reporter expression, which was
validated by immunoblotting (Fig. 6c). As mutations in
the small ribosomal subunit protein RPS24 cause
Diamond-Blackfan Anemia (DBA) [48], we explored this
uORF further. In our ribosome profiling data, RPS24
had a strikingly oppositional relationship to its CDS,
with the uORF increasing and the CDS decreasing with
differentiation (Additional file 5: Figure S5). The RPS24
uORF overlaps the CDS and is predicted to initiate at an

AAG codon. We constructed RPS24 CDS nLuc reporters
with (WT) and without the uORF (ΔuORF) (Fig. 6d).
Removing the uORF resulted in a 1.7 fold increase in re-
porter expression in non-differentiated cells and a 3-fold
increase in RPS24 signal in RA-differentiated conditions
(Fig. 6d).

uORFs buffer against differentiation-induced shifts in CDS
TE
Given that we observed a modest inhibitory effect of
uORFs within our highly translated dataset on CDS
translation, we revisited the relationship between shifts
in uORF translation and cognate CDS translation with
RA induced differentiation in this smaller group of tran-
scripts. However, we again observed an overall positive
correlation between conditional translation of uORFs
(cORFs and oORFs) and cognate CDS translation be-
tween the two conditions (RA-Diff: Non-Diff ) with re-
gression coefficients of 0.08 and 0.18 for cORF and
oORF transcripts (Fig. 7a-b). A complete list of TE
changes with differentiation (TE RA-Diff/TE Non-Diff )
in uORF/CDS pairs is shown in Additional file 5: Figure
S5. One hundred eighteen transcripts did reliably exhibit
inverse relationships between uORF and CDS TE across
cell states. We therefore determined if these uORFs had
any defining characteristics. A greater percentage of
uORFs with this inverse relationship had a predicted
AUG initiation site and a higher average TE (Fig. 7e-f ).
We also observed that there was a greater proportion of
cORFs in the inverse group than oORFs (Fig. 7c), and
these are shorter in length (Fig. 7d), although these ef-
fects are driven predominantly by the co-association of
these features with AUG initiated uORFs [7, 49].
As the majority of uORF/CDS pairs exhibited a posi-

tive correlation in translational efficiency, we explored
potential models whereby uORF activity could influence

A B C D

Fig. 6 Ribosomal transcripts are enriched in uORF datasets. a Top: Chart shows the percent of total actively translated ribosomal protein transcripts (n
= 70) with a predicted uORF (n = 59). Bottom: Chart shows the percent of ribosomal transcripts with uORFs that are in the highly translated dataset (n
= 23). Ribosomal transcripts are enriched in both sets by Fisher’s exact test, ****p > 0.0001. b nLuc assay in SH-SY5Y cells transfected with uORF
reporters for ribosomal transcripts: RPS8 and RPS18. c Immunoblot of RPS8 and RPS18 reporters show an increase in molecular weight relative to AUG-
nLuc control, confirming translation initiation within the 5′ leader of these ribosomal transcripts. d Removal of the 5′ leader portion of the RPS24 uORF
from nLuc reporters for the RPS24 CDS increased nLuc signal relative to reporters with the WT RPS24 5′ leader.
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CDS translation but still exhibit this relationship. One
alternative model would be that persistently translated
uORFs could limit condition-dependent shifts in CDS
translation to act as a homeostatic buffer in the setting
of changes in global translational initiation factor activ-
ities [50–52]. To test this idea, we analyzed the distribu-
tion and relative TE ratio (RA-Diff/Non-Diff ) on

transcripts with no uORF or with a uORF. The range of
TE ratios exhibited significantly increased variance in
transcripts without uORFs compared to those with
uORFs (Fig. 7g). In addition, transcripts without a uORF
showed a significantly lower TE ratio relative to those
with a uORF in the highly translated uORF set, suggest-
ing a larger relative increase in TE with differentiation in

A B C

D E

F G

Fig. 7 uORFs buffer against differentiation-induced shifts in CDS TE. a Analysis of the relationship between cORF and CDS translation (log10TE
Non-Diff/RA-Diff) for the highly translated dataset reveals that the translational efficiency of these two regions positively correlate in response to
RA-Differentiation, R2 = 0.08. Regression coefficients were calculated from untransformed TE ratios. b This was also seen for oORFs, R2 = 0.18. C-E)
40% (118/295, see Additional file 5: Figure S5) of uORF/CDS pairs in the highly translated dataset exhibit TE shifts in the opposite direction for the
uORF and the CDS with differentiation (“inverse”), while 60% of uORF/CDS pairs exhibit TE shifts in the same direction with differentiation
(“positive”). c Relative proportion of “positive” or “inverse” oORFs and cORFs. Chi-square, p = 0.038. d Distribution of uORFs by length. e Start site
codon distribution for “positive” or “inverse” uORFs. f uORFs with an “inverse” relationship to their associated CDS have a higher average TE than
those with a “positive” relationship, p = 0.00923. g Histograms of log2(CDS TE, RA-Diff/TE Non-Diff) for transcripts with a uORF in the highly
translated set (uORF) or no uORF (none). ANOVA, p = 0.000389.
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those transcripts (Fig. 7g). This finding was also ob-
served in for transcripts in the full set of uORFs (Add-
itional file 5: Figure S6). These data support a potential
role for uORFs in limiting conditional fluctuations in
CDS translation [53].

Discussion
In this study, we show that application of a spectral co-
herence algorithm (SPECtre) to RP data and stringent
filtering allows for categorization of high confidence
uORFs translated in human neuroblastoma cells. The
majority of identified uORFs utilize near-cognate start
sites, are highly translated, and we were able to experi-
mentally validate a subset of these uORFs using reporter
assays. As others have described, AUG initiated uORFs
are weakly associated with a repressed CDS [20, 24, 43].
We find a similar relationship occurs with a conserved
and highly translated set of non-AUG uORFs, but these
effects are quite modest. For a minority (118) of uORF/
CDS pairs, exemplified by the ribosomal transcript
RPS24, we observed that differentiation induced shifts in
TE in opposite directions, as would be predicted by the
classic model of uORF usage where upregulation of
uORF translation leads to a concomitant decrease in
translation of the downstream CDS [53, 54]. Yet, for the
majority of uORF events, this predicted inverse relation-
ship is not observed. Instead, our data suggests that
these uORFs act to buffer state-dependent changes in
CDS translation, as state-dependent changes in CDS TE
were smaller on uORF containing transcripts. Together,
these data support a model whereby uORFs can act as
both direct regulators of downstream CDS translation
and as homeostatic buffers that constrain changes in
translation rates associated with cell state changes.
Past biochemical studies predict that uORFs that do

not allow for re-initiation must be bypassed in order to
de-repress expression of the downstream CDS, as has
been observed on GCN4 in yeast in a process termed de-
layed reinitiation [54–58]. There are two determining
cORFs upstream of the GCN4 CDS, with the first show-
ing persistent translation, and the second acting under
normal conditions to preclude the scanning ribosome
from reaching the CDS with a ternary complex for initi-
ation [54]. In delayed reinitiation, under conditions of
starvation, the second uORF is bypassed due to limiting
ternary complexes which allows scanning ribosomes to
continue on and load ternary complexes prior to reach-
ing the CDS [9]. Hence, GCN4 protein is upregulated in
response to cellular stress and eIF2α phosphorylation.
This traditional model of uORF mediated regulation is

not borne out in our own data for the majority of
uORFs. Instead, our data is more consistent with previ-
ous ribosome profiling reports in yeast and mammalian
cells suggesting a positive relationship between uORF

translation and CDS translation [4, 43, 59]. One pro-
posed mechanism for this positive correlation is the low
efficiency of most uORF translation and a reliance on
whole transcript activity to increase in order to detect
such rare events. The scanning model of translation ini-
tiation predicts that if uORF usage at suboptimal codons
is an inefficient event, that it would increase as the num-
ber of loaded preinitiation complexes increase on a tran-
script [6, 39]. Thus, cap binding and initiation of
scanning would be the rate limiting steps for both the
uORF and CDS translation. Our data are largely consist-
ent with this model. Even after a priori filtering and add-
itional constraining of our dataset, we still observe a
clear positive correlation of shifts in translational effi-
ciency (TE RA-Diff/TE Non-Diff ) for uORF/CDS pairs,
and this positive relationship is maintained even for
overlapping uORFs which should preclude CDS
re-initiation.
If uORFs are not strongly repressive of CDS transla-

tion, then what purpose might they serve? One hint
comes from earlier studies that used ribosome profiling
on cells treated with stressors such as arsenite and tuni-
camycin, and showed that CDSs on transcripts with
uORFs either increase in TE or remained resistant rela-
tive to global decreases in translation [50, 52]. This in-
cluded transcripts with known uORFs as well as
transcripts that were later found to support uORF trans-
lation. Differentiation was associated with an increase in
CDS TE on transcripts without a uORF but not on tran-
scripts with a uORF, which showed significantly smaller
shifts with differentiation overall. These data are consist-
ent with uORFs acting not as on/off switches to control
CDS translation, but instead as buffers to changes in TE
of their associated CDS that occur with cell state shifts
[60–62].
We identified ribosomal protein encoding transcripts

as being particularly enriched for uORFs. A decrease in
translation complex-related transcripts was previously
detailed in neuronal differentiation and attributed to a
decrease in mTORC1 activity [23]. However, uORFs are
another potential candidate for the regulation of this
class of proteins. Most ribosomal transcripts, including
all transcripts in this subset, have a 5′ terminal oligopyr-
imidine (5′ TOP) motif which implements translational
control mediated by stress and the mTOR signaling
pathway [63]. As the majority of uORF/CDS pairs on
ribosomal transcripts were co-repressed with retinoic
acid induced differentiation, these 5′ TOP motifs may
exert similar effects on both the uORF and CDS transla-
tion. An important exception to this relationship was
observed for the small ribosomal subunit transcript
RPS24, where a robustly translated non-AUG initiated
uORF exhibited a strong inverse relationship to the
RPS24 CDS with differentiation. Mutations in RPS24,
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which lower the levels of this small ribosomal subunit
protein, cause Diamond-Blackfan Anemia (DBA) [48].
Levels of this protein can also affect the abundance of
another key ribosomal protein mutated in DBA, RPS19,
and its altered production has the potential to disturb
ribosomal stoichiometry necessary for proper translation
[48, 64–66]. Thus, this uORF has the potential to con-
tribute to RPS24 expression in patient cells.

Conclusions
We utilized ribosomal profiling to detect uORFs in a hu-
man neuroblastoma cell based model and defined how
their expression changed with cellular differentiation.
This work provides insights into the dynamic relation-
ships and potential regulatory functions of uORF/CDS
pairs in a model of neuronal differentiation and suggest
a specific role for uORFs in constraining gene expression
changes that occur with shifts in cell state. Future stud-
ies will be needed to define how individual uORF/CDS
relationships are regulated and how they influence spe-
cific steps in neuronal differentiation.

Methods
SH-SY5Y cell maintenance and differentiation
SH-SY5Y cells were acquired from ATCC (CRL-2266).
Cells were grown in DMEM:F12 media (Invitrogen) sup-
plemented with 10% FBS, .01 mgmL− 1 Gentamicin and
.25μg mL− 1 Amphoreticin B. Cells were plated on 150
mm plates that were either coated with .1 mg/mL
poly-D lysine (Millipore) for differentiation or uncoated.
Cells were allowed to propagate to 80% confluency for
1–2 days prior to lysing for ribosome profiling or induc-
tion of differentiation. SH-SY5Y cells were differentiated
for 6 days in 10 μM retinoic acid (all-trans, Sigma), with
media changed every 24 h.

Construction of the ribosome profiling libraries
Ribosome profiling libraries were prepared as in Ingolia
et al., 2010 and Ingolia et al., 2012. Cells were washed
with ice cold PBS with CHX at 100μg mL− 1. Plates were
immediately flash frozen in liquid nitrogen, moved to
dry ice, and lysed (in the presence of CHX) to prevent
ribosome loading and runoff. Additional lysates were
processed in parallel for poly(A) mRNA purification and
mRNA-sequencing library preparation. Polysomes were
isolated from the ribosome footprinting lysates on a 1M
sucrose cushion with high speed centrifugation using a
70.1Ti rotor (Beckman) at 55,000 r.p.m. for 4 h at 4 °C.
rRNA was eliminated prior to linker ligation using
Ribo-Zero Gold rRNA Removal Kit (Illumina). Ribosome
Profiling libraries were barcoded and multiplexed with
2–4 libraries per lane, and sequenced on a HiSeq 2000
(Illumina) using 50 cycles of single end reads. mRNA li-
braries were multiplexed on a single lane. All sequencing

was conducted at the University of Michigan DNA Se-
quencing Core.

Plasmid construction
pcDNA 3.1 plasmid was modified to encode NanoLuc
and GGG-NanoLuc as previously published [42].
gBlocks® (IDT) were ordered of the 5′ leader sequence
to the last codon before the in-frame stop of selected
genes flanked by restriction sites. These were restriction
cloned upstream of GGG-nLuc using PacI and XhoI
(NEB) with 12 nucleotides between the start of the 5′
leader and the T7 promoter sequence to reduce spurious
initiation in sequences specific to the plasmid. Frame-
shifts were accomplished by PCR cloning with primers
that inserted one or two nucleotides between the uORF
and the nanoluciferase sequence. PCR products were
cloned in place of nanoluciferase in the original uORF
plasmid using XbaI and SacII (NEB). Restriction digest
and Sanger Sequencing were used to confirm plasmid
sequence.

SH-SY5Y transfection and Nanoluciferase assay
SH-SY5Y cells were seeded on 6-well culture plates at
3 × 105 cells per well. 24 h post seeding, each well was
transfected using 7.5 μL FUGENE HD (Promega) and
1.25 μg nanoluciferase reporter plasmid along with
1.25 μg pGL4.13 (internal transfection control that en-
codes firefly luciferase [FFluc]) in 300 μL of OptiMEM
(Invitrogen). Transfections of differentiated cells were
performed on day 5 in RA supplemented media. Cul-
tures were allowed to grow for 24 h after transfection.
Cells were lysed in 250 μL Glo Lysis Buffer (Promega)
for 5 min at room temperature. 50 μL lysate was mixed
with 50 μL prepared Nano-GLO or ONE-Glo (Promega)
for 2 min, and bioluminescence was detected using a
GloMax® 96 Microplate Luminometer. Nanoluciferase
signal was normalized to FFluc signal in each sample.
pcDNA 3.1 encoding nLuc the AUG start codon mu-
tated to a GGG (GGG-nanoLuc) was run in parallel with
each experimental nLuc plasmid and subjected to both
conditions to serve as a control for normalization.

Immunocytochemistry and microscopy
Cells were fixed at 37 °C with 4% PFA/4% sucrose in
PBS with 1 mM MgCl2 and .1 mM CaCl2 (PBS-MC),
permeabilized for 5 min in .1% Triton-X in PBS-MC,
and blocked for 1 h with 5% bovine serum albumin in
PBS-MC. Cells were incubated in blocking buffer and
primary antibodies against β-actin (Santa Cruz Biotech-
nology, cat# sc-130,656, 1:1000) and neurofilament
(Abcam, Ab8135, 1:1000) for 1 h at room temperature.
Following 3 × 10 minute washes in PBS-MC, cells were
incubated in PBS-MC with Alexa Flour 488 conjugated
goat anti-rabbit IgG and Alexa Flour 635 conjugated

Rodriguez et al. BMC Genomics          (2019) 20:391 Page 12 of 18



goat anti-mouse IgG to achieve secondary detection
(Thermo Fisher, 1:1000). Cells were washed again, and
placed in ProLong™ Gold antifade reagent with DAPI
(Invitrogen).
Imaging was performed on an inverted Olympus

FV1000 laser-scanning confocal microscope using a 40x
objective. Acquisition parameters were identical for each
condition and optimized to eliminate signal bleed-
through between channels. Images were converted to
average-intensity z-projections in ImageJ. Cytoplasmic
β-actin was quantified by averaging the integrated dens-
ity corrected for background signal of the cells in each
condition. The length of one main neurofilament-labeled
primary neurite per cell was determined in ImageJ and
converted from pixels to μm, and averaged for each
condition.

Western blotting
Cells were maintained as described above. Cells were
washed 2X in PBS, and RIPA buffer was added to a sin-
gle well of a 12-well dish either at 80% confluency or
after 6 days of retinoic acid differentiation. Cells were ag-
itated for 40 min at 4 °C to ensure complete lysis. Lysates
were clarified by centrifugation, and the supernatant was
mixed with reducing SDS sample buffer and boiled for 5
min at 90 °C. Equal amounts of lysate were loaded on an
SDS-PAGE gel and subsequent western blotting was car-
ried out with primary antibodies against FMRP (1:1000,
cat# 6B8, BioLegend), GAPDH (1:1000, cat# sc-32,233,
Santa Cruz Biotechnology), total eIF2α (1:1000, cat#
9722, Cell Signaling Technology), phospho-eIF2α (1:500,
cat#: 44-728G, Invitrogen) or E7 Tubulin (1:1000,
DSHB)—in 5% (wt/vol) non-fat dry milk in TBS-T
(NFDM). An HRP conjugated goat antibody to mouse
IgG or to rabbit IgG was used for secondary detection
(1:5000, Jackson ImmunoResearch Laboratories) in 5%
NFDM. SuperSignal™ West Femto Maximum Sensitivity
Substrate (Thermo Scientific) was used for HRP detec-
tion of phospho-eIF2α levels. Western Lightening®
Plus-ECL (PerkinElmer, Inc.) was usedfor all other anti-
body detection.

Alignment to the human genome and transcriptome
(GRCh38 Ensembl version 78)
Ribosome profiling and mRNA-Seq reads were trimmed
of adapters, and then by quality using fasqt-mcf from the
ea-utils package (Aronesty, 2011). Ribosome profiling
and mRNA-Seq reads in FASTQ format were trimmed
based on quality if four consecutive nucleotides were ob-
served with Phred scores of 10 or below. The minimum
read length required after trimming was 25 nucleotides.
Trimmed sequences were then aligned to a ribosomal

RNA sequence index using Bowtie v1.1.2 (Langmead, et.
al., 2009) to deplete them of contaminant sequences.

Alignment to the rRNA sequence contaminant index
was performed using the following parameters: seed
alignment length of 22 nucleotides, no mismatches in
the seed alignment were allowed, with the unmapped
reads written to a separate FASTQ file.
bowtie -l 22 -n 0 -S --un /path/to/deple-

ted_reads.fq \
/path/to/rRNA_index \
/path/to/trimmed_reads.fq
Ribosome profiling and mRNA-Seq reads depleted of

rRNA contaminant sequences were aligned to the hu-
man genome and transcriptome (Ensembl, version 78)
using TopHat v.2.0.10 (Trapnell, et. al., 2009). The
trimmed and rRNA-deplete reads were aligned to the
human genome and transcriptome with the parameters
specifying standard Illumina reads, with un-gapped Bow-
tie 1 alignment (using a seed alignment length of 22 nu-
cleotides, with no mismatches in the seed alignment
allowed), to annotated junctions only, using Solexa qual-
ity scores:
tophat2 -p 4 –bowtie1 \
–-no-novel-juncs \
--library-type fr-unstranded \
--solexa-quals \
-G /path/to/ensemble.gtf \
/path/to/bowtie_index \
/path/to/depleted_reads.fq

Sequence alignment quality filtering and merging
Ribosome profiling and mRNA-Seq reads aligned to the
human genome and transcriptome by TopHat2 were
output to BAM format, and then sorted by chromo-
somal coordinate. Reads were then filtered by mapping
quality using SAMtools (Li, et. al., 2009); read align-
ments were required to have minimum mapping quality
of 10, or higher, to be retained for subsequent analyses.
Unique read group identifiers were assigned to each
technical and biological replicate, and then the align-
ments were merged by technical replicates and subse-
quently as biological replicates using Picard (http://
broadinstitute.github.io/picard/).

Metagene profile generation and alignment offset
calculation
For counting reads over transcript isoforms, metagene
profiles were generated from the Ensembl (version 78)
transcript annotation database using Plastid (Dunn, et.
al., 2016). A- and P-site offsets for harringtonine and cy-
cloheximide ribosome profiling reads, respectively, were
determined by pooling all reads that overlapped canon-
ical AUG translation initiation start sites from annotated
protein-coding genes. The most common (mode) dis-
tance from the 5′ ends of reads of a given length to the
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position of the AUG in those reads was accepted as the
A- or P-site offset distance.

Calculation of transcript abundance
Read counts over each transcript isoform, or region
(5’UTR, CDS, and 3’UTR), were normalized by length,
summed, and reported as transcripts per million (TPM)
as described previously (Li, et. al., 2011). At the time of
analysis, Cufflinks (Trapnell, et. al., 2010) was required
for initial transcript quality control, and was run with
the following parameters:
cufflinks -p 8 -o /path/to/output \
-G /path/to/ensemble.gtf \
/path/to/tophat/alignments

SPECtre analysis of transcripts in non-differentiated and
RA-differentiated libraries
SPECtre profiling (Chun, et. al., 2016) measures the
strength of the tri-nucleotide periodicity inherent to the
alignment of ribosome protected fragments to
protein-coding genes in a reference transcriptome.
SPECtre analysis was applied in two stages: 1) to score
the translational potential of annotated transcripts to
build a background protein-coding reference model, and
2) to score the translational potential of predicted
upstream-initiation ORFs. In this way, the translational
potential of predicted upstream and overlapping ORFs
are score against a background model of translation de-
rived from annotated protein-coding transcripts. Anno-
tated protein-coding transcripts were profiled by
SPECtre using the following parameters:
python /path/to/SPECtre.py \
--input /path/to/tophat/alignments \
--output /path/to/output \
--log /path/to/logfile \
--gtf /path/to/ensemble.gtf \
--fpkm /path/to/cufflinks/iso-

forms.fpkm_tracking \
--len 30 \
--fdr 0.05
--min 3.0 \
--nt 8 \
--type mean \
--target <chromosome_id>
Where the minimum FPKM required for a transcript

to be considered as translated for generation of the
background model was specified as 3.0, and the length
of the sliding SPECtre windows was set to encompass 30
nucleotides. The SPECtre score for a transcripts was de-
fined as the mean of the scores over these sliding win-
dows, and a 5% false discovery rate was established to
set the minimum SPECtre translational score threshold.
In addition, SPECtre profiling was split by chromosome
to speed computation, and the results were merged

afterwards using a custom Python script. Finally, prior to
analysis of predicted upstream-initiated ORFs by
SPECtre profiling, the minimum SPECtre translational
threshold was re-calculated using TPM instead of FPKM
using a minimum cutoff of 10 transcripts per million.

Computational prediction of upstream-initiated open
reading frames
Open reading frames were computationally predicted
from annotated 5’UTR sequences (Ensembl, version 78)
using AUG, and near-cognate non-AUG translation ini-
tiation site sequences. Open reading frame sequences
were generated based on these predicted initiation site
sequences and read through to the first in-frame termin-
ation codon encountered in the annotated CDS. These
predicted ORFs were then used to generate coordinates
over which they would be profiled and scored by
SPECtre. Identical parameters to the annotated tran-
script SPECtre analysis were employed for consistency
across analyses:
python /path/to/SPECtre-uORFs.py \
--input /path/to/alignments \
--output /path/to/output
--results /path/to/spectre/transcrip-

t_results \
--log /path/to/logfile \
--fpkm /path/to/cufflinks/iso-

forms.fpkm_tracking \
--len 30 \
--fdr 0.05
--min 3.0 \
--nt 8 \
--type mean \
--target <chromosome_id>
Three alternative inputs are required for the SPECtre

analysis of predicted ORFs: 1) the annotated transcript
GTF database was not required and removed, 2) the re-
sults of the annotated transcript analysis, and 3) a gen-
omic sequence file in FASTA format. The results of the
annotated transcript analysis were used to identify the set
of transcripts from which to predict upstream-initiated
ORFs, and the FASTA sequence file was used to generated
the ORF sequences for output.

Supplemental annotation of non-AUG translation
initiation sites
Upstream sequences of predicted non-AUG translation
initiation sites were examined for possible in-frame
AUG initiation start sites; 5’UTR sequences of predicted
non-AUG sites were extracted, and then searched for
the presence of in-frame AUG sites. These non-AUG
sites were then re-annotated according to the proximity
of upstream AUG initiation sites: those with an in-frame
AUG site within 30 nucleotides of the predicted TIS,
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and those with an in-frame AUG site in-frame, but be-
yond 30 nucleotides upstream of the predicted site.

Kernel density estimation of differential uORF translation
on CDS translational efficiency
To further differentiate those uORFs with differential
translation and identify those that contribute to the
regulation of downstream CDS, the log-change in pre-
dicted ORF TPM was compared against the log-change
in downstream CDS TPM across the conditions. The
differential translational identity of each predicted ORF
was retained from the SPECtre clustering analysis, and
kernel density estimation was performed using R.

Heuristic filtering of predicted uORFs
Candidate uORFs were filtered based on a series of
heuristic criteria, including: 1) the removal of predicted
uORFs with no RPF coverage in the 5’UTR of the tran-
script, 2) the removal of uORFs predicted to initiate
within 15-nt of the annotated CDS start site, and 3) the
removal of predicted uORFs without matching
mRNA-Seq coverage in the 5’UTR of the transcript. Fol-
lowing these initial minimal coverage filters, the candi-
date uORFs were further stratified by quality of
coverage. First, identical uORF isoforms in overlapping
transcripts within the same protein-coding gene annota-
tion set were merged into a single candidate. Next, over-
lapping uORF candidates were prioritized by the extent
of RPF coverage to their 5′ end, as well as by overall
coverage. Finally, any remaining overlapping uORF can-
didates were prioritized by the magnitude of their calcu-
lated SPECtre score, with higher scored candidates
preferred. R code for the functions to execute the heur-
istic filtering of uORF candidates is replicated in Supple-
mental Methods.

Calculation of translational efficiency
Ribosome profiling or mRNA-Seq reads were counted
over each region (5’UTR, CDS, and 3’UTR), transcript,
or uORF and then normalized to length and library size
as transcripts per million [67]. To calculate translational
efficiency over a region, transcript or uORF, ribosome
profiling TPM in each biological replicate across each
condition was quantile normalized (Amaratunga, et. al.,
2001) and then divided by the quantile normalized TPM
in mRNA-Seq. Read and RPF counts from mRNA-Seq
and ribosome profiling libraries does not include those
that overlap the 5’UTR and 3’UTR. Furthermore, to
limit the boundary effects due to translation initiation
and termination, RPF and read counts do not include
those reads whose A- or P-site adjusted position for
harringtonine and cycloheximide libraries, respect-
ively, overlap the first or last 15 nucleotides of an an-
notated CDS.

Differential expression analysis and gene set enrichment
testing in mRNA-Seq
As described previously, the read abundance over anno-
tated protein-coding transcripts was calculated as TPM,
then quantile normalized across conditions using the
preprocessCore package (Bolstad, 2016) in R (R Core
Team, 2017), and then ranked. The change in rank for
each gene was calculated across the non-differentiated
and RA-differentiated conditions, and the significance of
the up- or down-regulation of these rang-changes across
conditions was classified using an extreme outlier cutoff
[68]. Functional characterization of these significantly
rank-changed genes across the non-differentiated and
RA-differentiated conditions was analyzed using the
goseq package [69] in R, and corrected for multiple test-
ing using Benjami-Hochberg adjusted p-values.

Differential translation analysis and gene set enrichment
testing in ribosome profiling
Ribosome profiling read fragments were A- or P-site ad-
justed, and then counted over annotated protein-coding
CDS regions in each biological replicate using the meta-
gene profiles generated by Plastid [70]. As described pre-
viously, ribosome-protected fragments with A- or P-site
adjusted positions that overlapped the first or last 15 nu-
cleotides of the boundaries defined by the annotated
CDS region were masked from the analysis. DESeq2 [71]
was used to identify those genes with differential transla-
tion across the two states of cellular differentiation.
Genes were annotated as significantly up- or
down-regulated using a Benjamini-Hochberg adjusted
p-value cutoff of 0.1, and fold-change in counts greater
than 1, or less than 1, respectively. Functional
characterization of these significantly up- and
down-regulated genes was analyzed by goseq using pa-
rameters specified previously.

Differential translational efficiency and gene set
enrichment testing in ribosome profiling
For each biological replicate, ribosome profiling read
fragments were A- or P-site adjusted, and then counted
over annotated protein-coding CDS regions using the
metagene profiles generated by Plastid. As above, read
counts over the first and last 15 nucleotides of
protein-coding CDS regions were masked for subse-
quent analyses. In addition, mRNA-Seq read counts
were extracted from each condition, with the proximal
and terminal 15 nucleotide ends of the CDS masked for
consistency with the RPF counts. The DESeq2 wrapper
for differential translational efficiency analysis, Riborex
[72], was used to identify those genes with significant
changes in translational efficiency. Genes were annotated
as significantly up- or down-regulated using a
Benjamini-Hochberg adjusted p-value cutoff of 0.1, and
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absolute fold-change of 1. Functional characterization of
the sets of genes enriched in each condition by transla-
tional efficiency was analyzed by goseq using parameters
described previously.

Conservation analysis
To assess the conservation of the various regions, tran-
scripts and uORFs, the PhyloCSF scores [73] over each
target region was extracted. For uORFs, the PhyloCSF
score was extracted according to its predicted phase. In
order to de-convolute the contribution of regional con-
servation due to overlap with annotated CDS regions,
predicted uORFs that did not initiate and terminate
wholly upstream of a CDS were also scored according to
the subset of their coordinates defined by the 5’UTR
alone. The mean PhyloCSF over each of these regions
and uORFs was calculated, and then mean-shifted to the
canonical (+ 0) reading frame of the annotated CDS for
comparison.

GC nucleotide content analysis
Similar to the conservation scores, the ratio of GC nu-
cleotide content in each reading frame of 5’UTRs, and
CDS. GC content over the predicted phase of each
uORF was calculated, with the 5’UTR overlapping region
of CDS-terminated uORFs deconvoluted from the region
overlapping the CDS as described above.

Cluster analysis of differential uORF translation by
SPECtre score
In order to identify subsets of uORFs with differential
translation in one state of cell differentiation compared
to the other, the SPECtre score for each predicted uORF
was calculated (described in Supplemental Materials and
Methods). The SPECtre score of each predicted uORF
was classified by k-means clustering in R to define sets
of uORFs with differential translation in one of the con-
ditions, and those with no difference in translational po-
tential between the two conditions.

Additional filtering of candidate uORFs
Additional replicate-based filtering was applied to the
set of predicted uORFs to identify a set of highly
confident candidates. As a form of internal validation, a
predicted uORF was required to meet a minimal
translational threshold in at least one of the biological
replicate samples across both conditions. This thresh-
old was determined on a conditional basis dependent
on the 5% FDR cutoff required for translational activ-
ity according to the distribution of SPECtre scores in
protein-coding genes.

Additional files

Additional file 1: Table S1. Reads mapped by Bowtie. This table outlines
the breakdown of sequencing reads for each individual replicate. (XLSX 12 kb)

Additional file 2: Table S2. Analysis of mRNA sequencing and
Ribosome Profiling. All mRNA, RPF, and TE changes are listed in this table
for all transcripts. (XLSX 2581 kb)

Additional file 3: Table S3. Full GoSeq analysis. Results from gene
ontology analysis by mRNA, RPF, and TE measures. (XLSX 10 kb)

Additional file 4: Table S4. Full dataset of uORFs. All uORFs detected by
SPECtre are listed and scored alongside their associated CDS. (XLSX 2835 kb)

Additional file 5: Figure S1. Gene sets with significantly
downregulated or upregulated mRNA transcripts in RA-Diff cells. Genes
sets for Biological Process are shown in (A) and (B), sets for Molecular
Function are shown in (C) and (D), and sets for Cellular Compartment are
shown in (E) and (F). The top five groups with significant change using a
multiple testing corrected p-value cutoff of 0.05 (vertical line) are shown
on the graph. Figure S2. Gene sets with significantly downregulated or
upregulated Translational Efficiency in RA-Diff cells. Genes sets for Mo-
lecular Function are shown in (A) and (B), and sets Cellular Compartment
are shown in (C) and (D). The top five groups with significant change
using a multiple testing corrected p-value cutoff of 0.05 (vertical line) are
shown on the graph. E) Plot shows normalized mRNA reads (grey) and
RPF (cyan/gold) over the 5’leader (thin line, left), and CDS (thick line, mid-
dle). DAD1 is an example of a transcript with an increase in both mRNA
reads and RPFs, leading to no overall change in TE. Figure S3. A) K-
means clustering analysis of log2(uORF SPECtre Score) in Non-Diff and
RA-Diff cells. Three clusters emerge: uORFs with an up-regulated TE in
RA-Diff cells (cyan), uORFs with an up-regulated TE in Non-Diff cells
(gold), and uORFs with no change in TE (gray). B) Analysis of the full
uORF-containing transcript set reveals a positive correlation of uORF TE
and CDS TE. Pearson correlation, r = 0.41. Figure S4. cORF and oORF tran-
scripts are graphed separately to show the direction of CDS and uORF TE
shifts (RA-Diff/Non-Diff). Significant TE changes are represented as colors
specified by the heat-map. ***denotes ribosomal transcripts. Figure S5.
Histograms of log2(CDS TE, RA-Diff/TE Non-Diff) for transcripts with a
uORF in the full set (uORF) or no uORF (none). ANOVA, p = 0.0322. Figure
S6 (PDF 6057 kb)
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