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Abstract

Background: The likelihood ratio function (LR), the ratio of conditional probabilities of obtaining a specific marker
value among those with the event of interest over those without, provides an easily interpretable way to quantify the
update of the risk prediction due to the knowledge of the marker value. The LR has been explored for both binary and
continuous markers for binary events (e.g., diseased or not), however the use of the LR in censored data has not been
fully explored.

Methods: We extend the concept of LR to a time-dependent LR (TD-LR) for survival outcomes that are subject to
censoring. Estimation for the TD-LR is done using Kaplan-Meier estimation and a univariate Cox proportional hazards
(PH) model. A “scale invariant” approach based on marker quantiles is provided to allow comparison of predictive
values between markers with different scales. Relationships to time-dependent receiver-operator characteristic (ROC)
curves, area under the curve (AUC), and optimal cut-off values are considered.

Results: The proposed methods were applied to data from a bladder cancer clinical trial to determine whether the
neutrophil-to-lymphocyte ratio (NLR) is a valuable biomarker for predicting overall survival following surgery or
combined chemotherapy and surgery. The TD-LR method yielded results consistent with the original findings while
providing an easily interpretable three-dimensional surface display of how NLR related to the likelihood of event in
the trial data.

Conclusions: The TD-LR provides a more nuanced understanding of the relationship between continuous markers
and the likelihood of events in censored survival data. This method also allows more straightforward communication
with a clinical audience through graphical presentation.
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Background
Biomarkers aremeasurable characteristics that are used to
identify the likelihood of a future event. A common goal
of biomarker research is quantifying the ability of pro-
posed markers to predict the event of interest. Primary
interest often lies in determining whether, relative to exist-
ing knowledge of event likelihood, the marker improves
event predictions. Additionally, comparison of markers
with respect to predictive value is also of interest.
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Onemethod of summarizing predictive value is the like-
lihood ratio (LR), the ratio of conditional probabilities of
obtaining a specific marker value given event status (i.e.,
with and without event). The LR is a well-accepted and
valuable method of evaluating potential markers because
it can be shown that the value of the LR summarizes the
predictive value of a marker by quantifying the update to
the odds of event obtained by incorporating knowledge of
the new marker in question. An easily interpretable and
intuitive update to the “pre-test” probability of a diagno-
sis or clinical event obtained from examination findings
allows for swift and concise judgment of the value of a
specific test. For example, the Journal of the American
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Medical Association includes a long-running series of arti-
cles entitled “The Rational Clinical Exam” that focuses
on the LR as a measure of predictive value– and, sub-
sequently, a clinical decision making tool– in assorted
disease scenarios [1].
Methods of estimating and comparing LR for binary

events (e.g., diseased or not) for both binary and contin-
uous markers have been explored, but LR in the case of
survival data, where event status may change over time
and individuals may be censored, has not been estab-
lished. Thus we propose the time-dependent likelihood
ratio (TD-LR) as ameasure for the predictive value of con-
tinuous markers under a survival analysis framework. We
believe the TD-LR can provide a fuller understanding of
the relationship between a marker and the likelihood of
an event over time than is given by more common mea-
sures like the hazard ratio (HR) from a Cox proportional
hazards (PH) model. For example, in survival data analy-
sis, characterizing the probability of an event during short,
intermediate, or long timeframes based on present knowl-
edge of a specific biomarker could more intuitively be
done with separate values of the TD-LR than with a single
hazard ratio value.
Graphical presentations of the TD-LR prove useful in

communicating predictive value with clinical investigators
and non-statisticians. The TD-LR can also be estimated
using scale-invariant techniques, which can satisfy the
need to compare predictive value across markers. These
methods are illustrated in an application to evaluate the
predictive value of the neutrophil-lymphocyte ratio (NLR)
as a prognostic marker for overall survival (OS) using data
from the Southwest Oncology Group (SWOG) 8710 clini-
cal trial, a randomized phase III trial assessing radical cys-
tectomy (RC) with or without neoadjuvant chemotherapy
(NAC) for muscle-invasive bladder cancer [2, 3].

Likelihood ratio (LR) for binary event
Definition of LR
We first review the concept of the likelihood ratio (LR) for
a binary event D and a marker X. Let D = 1 if the event
occurs and D = 0 otherwise, and let X be a marker (either
binary or continuous). The LR for a given value of X is
defined as

P(X = x|D = 1)
P(X = x|D = 0)

. (1)

To understand the intuition behind using the LR as a
measure of predictive value, consider the conditional odds
of the event D given a marker value X = x:

P(D = 1|X = x)
P(D = 0|X = x)

. (2)

Using Bayes’ Theorem, these odds can be reexpressed as
a product of the LR as defind above and the prevalence-
based or marginal odds of D, P(D=1)

P(D=0) :

P(D = 1|X = x)
P(D = 0|X = x)

= P(X = x|D = 1)
P(X = x|D = 0)

× P(D = 1)
P(D = 0)

. (3)

Thus, the LR can be interpreted as the “update" to the
odds of event D obtained by incorporating knowledge of
the marker value. In other words, the initial likelihood of
an event is captured by the odds of the event based only
on the prevalence of the event in the population, P(D=1)

P(D=0) ,
before incorporating the marker values and P(X=x|D=1)

P(X=x|D=0)
afterward. We expect useful or informative markers to be
those Xs that dramatically change these prevalence-based
odds by incorporating knowledge of the marker value x.
Therefore, the LR quantifies this update. It repre-

sents the degree to which the prevalence-based odds are
adjusted by a given marker value. When the LR is > 1,
the given marker value is more common in the population
experiencing the event (i.e., D = 1), so the odds based on
prevalence are adjusted upward to yield the conditional
odds of event given x. Similarly, if the LR is < 1, the given
marker value x is observed more frequently amongst the
population not experiencing the event (i.e., D = 0), so the
odds based on prevalence are adjusted downward. An LR
of 1 indicates that incorporating knowledge of the given
marker value provides no update to the prevalence-based
odds. Therefore, the marker would not be informative in
predicting the event. In this manner, the LR is similar in
interpretability to the Bayes factor, where the prevalence-
based odds of event are considered the “prior”, and the
adjusted odds given knowledge of themarker value are the
“posterior”. Kass et al. [4] note that interpretation of the
LR is the same for binary or continuous markers X.

Estimation of LR for binary events
For binary events, methods of estimating the LR have
been explored for several marker types [5, 6]. For binary
markers (positive or negative) and binary events, marker-
positive LR and marker-negative LR can be expressed
respectively in terms of true positive rate (TPR) and false
positive rate (FPR):

LR(X = +) = P(X = +|D = 1)
P(X = +|D = 0)

= TPR
FPR

,

LR(X = −) = P(X = −|D = 1)
P(X = −|D = 0)

= 1 − TPR
1 − FPR

.

These LRs are estimated with empirical estimators of
the TPR and FPR. Comparison of LRs between two dif-
ferent binary markers is straightforward because markers
can only be positive or negative, thus there are no con-
cerns of different marker scales.
Estimation of the LR for biomarkers measures on a con-

tinuous scale requires other approaches. Gu and Pepe



Smith et al. BMCMedical ResearchMethodology          (2019) 19:108 Page 3 of 14

[7] propose a fleet of methods for estimating continuous
marker LR values: one that uses the ratio of nonparametric
Gaussian kernel estimators for the density of the marker
in event and non-event populations, and one that mod-
els log LR(x) as the difference of logits. In case-control
data, logitP(D = 1) is fixed, so modeling logitP(D =
1|X = x) with conventional logistic regression yields an
easily obtainable estimator for log LR(x) with desirable
properties such as consistency and asymptotic normality.
Comparison of LR estimates across markers with different
scales is also explored through making transformation of
markers to a standardized scale.

Methods
The cases of binary or continuous markers for a binary
event encompass many applications, but fail to address
a common clinical setting. In survival analysis context,
interest lies not only in whether or not an event occurs,
but in how long it takes to occur. Individuals may also be
censored, such that they do not experience the event of
interest during the observation period. Existing estima-
tion methods for LR do not directly account for changing
event status over time or censoring, and thus require new
approaches.

Notation
Weuse the following notation throughout this section. Let
Ti and Ci denote failure time and censoring time for ith
individual. Let δi be an event indicator equal to 1 if Ti ≤
Ci and 0 otherwise. Denote the observed survival time as
Zi = min(Ti,Ci). Let the counting process Di(t) = 1 if
Ti ≤ t andDi(t) = 0 if Ti > t; that is, given time t,Di(t) =
1 if individual i has an event at or prior to t. Finally, let the
marker value for the ith individual be Xi.

Definition of TD-LR
Recall from (3) that the expression for the odds of a
general event D conditional on marker value x can be
expressed as a product of LR and the prevalence-based
odds. We can rearrange (3) to obtain an expression of the
LR function as a product of conditional event probabilities
and the prevalence-based odds:

LR(x) = P(X = x|D = 1)
P(X = x|D = 0)

= P(D = 1|X = x)
P(D = 0|X = x)

× P(D = 0)
P(D = 1)

. (4)

We then define the time-dependent likelihood ratio
(TD-LR) function at time t and marker value x,
TD-LR(x, t) by replacing D with D(t) in the above expres-
sion for LR(x) as follows:

TD-LR(x, t) = P(D(t) = 1|X = x)
P(D(t) = 0|X = x)

× P(D(t) = 0)
P(D(t) = 1)

. (5)

The notation D(t) = 1 denotes the event or the con-
dition of (T ≤ t) that is time-dependent. Similarly, the

notation of D(t) = 0 denotes event-free, (T > t). The
TD-LR function retains much of the same interpreta-
tion as the general LR described in previous sections.
It represents the update to the prevalence-based odds
of event at or before time t obtained through measure-
ment of the marker X. The above expression provides
appealing flexibility with respect to allowing event status
to change over time through D(t). The TD-LR function
allows a marker’s predictive value to change over time; for
example, some marker values may be more predictive of
events at or before later time points t than they are of
events at earlier t. Most importantly, the TD-LR function
can accommodate censoring through proper estimation of
D(t), allowing us to make use of information from individ-
uals censored before the time point of interest. Estimation
methods are described next.

Estimation Methods
To estimate the TD-LR function, we propose to use the
Kaplan-Meier nonparametric survival estimator [8] and
survival estimates dervied from Cox PH models [9]. For a
given t and marker value x, TD-LR(x, t) can be expressed
using survival probabilities because the event of D(t) = 0
or D(t) = 1 represents whether (T > t) or (T ≤ t):

TD-LR(x, t) = 1 − S(t|X = x)
S(t|X = x)

× S(t)
1 − S(t)

(6)

where S(t) = P(T > t) represents the survival function
and S(t|X = x) = P(T > t|X = x) the survival function
conditional on marker value x.
An estimator for the TD-LR function for a marker value

x at a given time t can be obtained by combining the sur-
vival probability estimates from KM, ŜKM(t), and Cox PH
models, ŜCox(t|X = x):

̂TD-LR(x, t) = 1 − ŜCox(t|X = x)
ŜCox(t|X = x)

× ŜKM(t)
1 − ŜKM(t)

. (7)

Let T be the set of observed failure times in a sam-
ple. The Kaplan-Meier (KM) estimator of S(t) can be
expressed as

ŜKM(t) =
∏

s∈T ,s≤t

(
1 −

∑
i I(Zi = s)δi∑
i I(Zi ≥ s)

)
.

The estimated survival function conditional on marker
value from the Cox PH model can be obtained [10] as:

ŜCox(t|X = x) = ̂S0(t)
exp(β̂x)

,

where ̂S0(t) = exp(−̂�0(t)) with ̂�0(t) is the esti-
mated baseline cumulative hazard function. The estimate
β̂ , a regression parameter relating the covariate x to the
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hazard, is obtained through partial likelihood maximiza-
tion and is in turn used to estimate ̂S0(t) by the method
outlined in Kalbfleisch and Prentice [10].
This estimator of TD-LR demonstrates some desirable

properties. As a function of two arguments, it can readily
be visualized as a three-dimensional surface, providing an
intuitive display of how different marker values are associ-
ated with updates to event risk over different time points.
The ability to construct these surfaces can provide clini-
cal investigators with a better understanding of a marker’s
relationship to an event than summary statistics such
as HRs.
Additionally, estimates of survival probabilities based on

Kaplan-Meier method and Cox PH model are appropri-
ate to use even if there is censoring. Moreover, Kalbfleisch
and Prentice Chapter 5.6 outline a proof that under certain
regularity conditions (most important that the number of
individuals at risk for any t becomes large as n → ∞),
ŜKM(t) is consistent for S(t) and asymptotically normally
distributed for any given t. Kalbfleisch and Prentice [10]
similarly, Tsiatis provides a proof that ŜCox(t|X = x)
is consistent for S(t|X = x) and asymptotically nor-
mally distributed [11]. Therefore, the proposed estima-
tor ̂TD-LR(x, t) at a given t and marker value x is thus
consistent for TD-LR(x, t) by the continuous mapping
theorem [12].
The asymptotic distribution of the proposed estimator

or its log-transformed version can also be established by
the fact that ŜKM(t) and ŜCox(t|X = x) can be rewritten as
sum of n independent empirical functions [11, 13]. Then
by applying the (multivariate) delta method [14], it can
be shown that, for example,

√
n(ŜKM(t)/ŜCox(t|X = x) −

SKM(t)/SCox(t|X = x)) yields two terms plus a remain-
der term that goes to 0 in probability; the terms either
involve (ŜKM(t)−SKM(t)) or (ŜCox(t)−SCox(t)) and there-
fore are asymptotically normal. Asymptotic normality of√
n log( ̂TD-LR(x, t)) is also demonstrated by simulation

studies (data not shown) with time points and/or marker
values associated with fewer number of events (e.g. early
or late t) requires larger sample size to achieve normality.
Asymptotic variance or standard errors are intractable to
derive analytically but can be obtained by using bootstrap.
In the “Results” section, we present pointwise bootstrap
percentile confidence intervals for the TD-LR surface.
Note that our estimate of the TD-LR function is valid

only if the assumptions underpinning the validity of the
Cox PHmodel aremet. Namely, the validity of ̂TD-LR(x, t)
depends on noninformative censoring, proportional haz-
ards, and linearity of the marker effect on the log hazard.
If this assumption does not hold, alternative estimates of

̂TD-LR(x, t)will be needed. For example, one can consider
parametric regression models for survival time or the use
of accelerated failure time models.

Scale-invariant estimation methods
Placement value
Comparing the TD-LR values from two different markers
is not intuitive, primarily because there are rarely natu-
ral mappings from the scale of one marker to another
that would invite comparison at specific points on those
scales. To solve the challenges of differing marker scales,
we extend the concept of the placement value from Gu
and Pepe [7] to standardize different markers to a single
scale. For a marker X and binary event D, the placement
value U(X) is calculated as

U(X) = 1 − FD=0(X), (8)

where FD=0 is the cumulative distribution function (CDF)
for the marker in the non-event population. That is, the
placement value represents the proportion of individuals
not experiencing the event that have higher marker val-
ues than X. Under the assumption that higher values of a
marker indicate higher risk of event, large marker values
correspond to small placement values, and small marker
values correspond to large placement values. Note that
this assumption that can always be met by transforming
marker values (e.g., by negating values).
The placement value is a common standardization

method. Its use is motivated by the concept of comparing
individuals with an event or condition to a “healthy” refer-
ence population, similar in principle to using percentiles
to describe certain measurements like height and weight
amongst infants [7, 15, 16].
In the binary event case, the reference group used to

standardize marker values is comprised of controls (i.e.
individuals who do not experience the event of interest).
In the survival analysis setting, the reference population
for placement value U(x, t) for marker value x at time t
in the context of the TD-LR is thus the set of individuals
surviving beyond t:

U(x, t) = 1 − FD(t)=0(x). (9)

Note, the distribution function FD(t)=0(x) for the marker x
is constructed based on the x values only for those D(t) =
0, that is, those are still risk set at time t. For those had the
event before time t (i.e., D(t′) = 1 for t′ < t) or those cen-
sored before time t are no longer in this risk set thus not
used for estimating FD(t)=0(x). Thusly defined, placement
value in the survival context is a time-dependent covari-
ate. As a result, estimating TD-LR for a given time and
marker value now requires estimating survival probabili-
ties from a Cox PH model that includes placement value
as a time-dependent covariate.

Time-dependent covariates
The concepts surrounding time-dependent covariates are
reviewed insightfully by many including Cortese and
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Andersen [17]. There are external and internal time-
dependent covariates. The manner in which external
covariates X(t) depend on time is not affected by failures
at time u for u ≤ t. External covariates may be defined,
in that their dependence on time can be fully specified
in advance for all individuals under study (e.g. age), or
ancillary, in that their time dependence relies on a process
external to the individuals under study and is unrelated to
the parameters in the model under study.
ŜCox(t|X = x) when X is an external time-dependent

covariate can be obtained in the same fashion as before.
Time-dependent covariates that are not external are inter-
nal. Internal covariates can typically be characterized as
measurements that depend on the individual under study
surviving and remaining uncensored, such as blood pres-
sure readings taken at certain intervals over the course of
follow-up. More generally, internal covariates are gener-
ated by the behavior of the individuals in the study over
time, thus the covariate “path” at t > u is influenced
by failures at u. As a consequence, the typical relation-
ship between the hazard and survival functions no longer
exists [10]. Indeed, it is frequently the case that the sur-
vival function for internal time dependent covariates is
trivially 1, since valid measurements of the covariate at
a given time point require the individual to be alive and
uncensored at that time.

Landmark analysis for scale-invariant TD-LR
The placement value U(x, t) as we have defined it is
considered an internal time-dependent covariate which
depends directly on the survival behavior of the individu-
als under study, and, assuming that higher marker values
are associated with higher likelihoods of event, conveys
some information about the failure time of the individual.
As such, we cannot employ the straightforward method
of estimating survival functions from the case of mark-
ers on their original scales. Instead, we adopt landmark
analysis proposed by van Houewelingen [18] and demon-
strated by Cortese and Andersen [17] to address internal
time-dependent covariates when survival probabilities (or
cumulative incidences, as is the case in Cortese) are of
interest.
In landmark analysis, a set of “landmark” times s of

interest are chosen, and simple Cox PH models are fit
for each using only the subset of individuals alive and
uncensored at s. Time-dependent covariates are fixed at
the “new baseline” s in each model. Survival probabilities
for different values of the now-fixed internal covariate can
be compared within a landmark subset, and trends across
landmark times are examined to provide insight into how
the internal covariate affects the risk of event.
To compute a scale-invariant TD-LR at a given t through

a landmark approach. Let u be the placement value of a
given marker value x at the given landmark time s. The

reference population for this placement value is all indi-
viduals alive and uncensored (i.e. at risk) at s. Within
the given landmark subset analysis, u remains fixed. The
scale invariant TD-LR estimate ̂TD-LRSI(u, t|s) can thus
be expressed as

̂TD-LRSI(u, t|s) = 1 − ŜCox(t|T ≥ s,u)

ŜCox(t|T ≥ s,u)
× ŜKM(t|T ≥ s)

1 − ŜKM(t|T ≥ s)
. (10)

Note that u is time independent. Often, u can be further
transformed as a standardization technique. The transfor-
mation is frequently �−1(1 − u) [7].
To examine the trend across landmark times, we can cal-

culate and compare values of this estimate at a fixed time
forward (e.g., two or three years) from each landmark s.
An illustration of this technique is provided in the next
section

Relationship to TD-ROC
ROC curves are commonly used to compare the predictive
ability of continuousmarkers for a binary event [19, 20]. In
the binary event case, the use of the scale-invariant LR and
placement value for standardizing marker values yields a
mathematical relationship between ROC curves and the
LR [7, 15, 16]. We can show the same relationship holds
for the TD-LR and the time-dependent ROC (TD-ROC)
introduced by Heagerty et al. [21, 22].
Let FD(t)=1(x) and FD(t)=0(x) be the cumulative dis-

tribution functions of the marker X in the subsets of
individuals experiencing the event D at or before t and
those not experiencing the event at or before t, respec-
tively, and fD(t)=1(x) and fD(t)=0(x) be the corresponding
probability density functions for the marker values. Then,
by definition,

TD-ROC(r, t) = 1 − FD(t)=1
(
(1 − FDt(·)=0(r))−1) , (11)

where r is a given false positive rate. Note that the distri-
bution function F(·), density function f (·) and the inverse
function of 1−F(·) are for the marker X within the subset
of D(t) = 1 or D(t) = 1, not as functions associated with
the survival time T. Differentiating this expression with
respect to t using chain rule yields

TD-ROC′(r, t) =
fD(t)=1

(
F−1
D(t)=0(1 − r)

)

fD(t)=0
(
F−1
D(t)=0(1 − r)

) . (12)

Thus, for a marker value x, time point t, take the false
positive rate r = U(x, t) = 1 − FD(t)=0(x):

TD-ROC′(U(x, t), t) =
fD(t)=1

(
F−1
D(t)=0

(
1 − (

1 − FD(t)=0(x)
)))

fD(t)=0
(
F−1
D(t)=0

(
1 − (

1 − FD(t)=0(x)
)))

= fD(t)=1(x)
fD(t)=0(x)

. (13)

Rewrite fD(t)=1(x) and fD(t)=0(x) as P(X = x|D(t) = 1)
and P(X = x|D(t) = 0) then the above expression becomes
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P(X=x|D(t)=1)
P(X=x|D(t)=0) which can be expressed as TD-LR(x, t) as
defined in (5) after applying Bayes’ rule.
That is, at a given time t andmarker value x, TD-LR(x, t)

represents the derivative of the corresponding TD-ROC
curve when the false positive rate takes the value at place-
ment value U(x, t). Suppose there are two markers X1
and X2, and that X1 is more informative than X2. Because
a more informative marker will have higher TD-LR for
small placement values (large marker values) and lower
TD-LR for large placement values (small marker values),
the above derived relationships imply that for the TD-
ROC derivatives for the markers (indexed as TD-ROC′

1
and TD-ROC′

2) are related as follows:

TD-ROC′
1(u, t) > TD-ROC′

2(u, t) u small
TD-ROC′

1(u, t) < TD-ROC′
2(u, t) u large

Because TD-ROC curves are always concave and “tied
down” at the corners (0,0) and (1,1), these conditions
imply AUC(t) for marker X1 is greater than AUC(t) for
marker X2, where AUC(t) represents area under the TD-
ROC curve for the given time t. Therefore, we can use
scale invariant TD-LR analysis together with the relation-
ship between the TD-LR and TD-ROC derivative to make
comparisons of the AUC for two different markers across
different time points.

Results
Simulation
As previously noted, TD-LR is a function of time t
and marker value x, thus the utility of TD-LR can be
understood by visualizing it as a three dimensional sur-
face. To illustrate this, we simulated n=100, 300, 500
exponentially-distributed survival times that are associ-
ated with a standard normally distributed marker X with
hazard ratios (HR) of 1.5 and 2 . Censoring times are also
assumed to follow exponential distribution with a maxi-
mum follow-up of five years. Baseline hazard parameters
for the event and censoring hazard functions were set
equal to 7 and 10 respectively, typically yielding censoring
proportions of between 20 and 30%. The log-transformed
TD-LR is then calculated over a grid from 1 to 36 months
in increments of 3 months and marker values from -2
to 2 in increments of 0.1. For each HR specification, 500
simulations are conducted.
Findings for simulations using three different sample

sizes are very similar. The results for n=300 are presented
in Fig. 1. Log-transformed TD-LR(x, t) value of 0 (gray
regions indicated on the color scale) correspond to raw
TD-LR(x, t) values of 1, indicating that at the given time
point t, the marker value x provides no update to the KM-
based estimate of the odds of event at or before t. A flat
surface at 0 thus represents a marker that is uninforma-
tive: incorporating marker values into event risk estimates

yields no update relative to previous KM-based estimates
that do not incorporate marker information.
Positive (red colors) and negative (green colors)

logTD-LR(x, t) respectively correspond to upward and
downward adjustments of the KM-based estimate of odds
of event at or before t due to the marker value x. A sloped
surface with color changes (e.g., Fig. 1a, b) indicates that
incorporating marker values does update KM-based esti-
mates of event odds, and thus the marker is informative.
Additionally, the larger HR yields a more steeply sloped
surface with more curvature than does the smaller HR.
More specifically, examining cross-sections of the TD-

LR surface at points on the t- and x-axes can further
characterize the marker’s update to the odds of the event.
At a fixed t, a positive slope for increasing x with color
changes from cool (green) to warm (red) indicates that rel-
ative to the KM estimate of odds, individuals with lower
marker values have lower odds of event at or before t and
individuals with higher marker values have higher odds of
event at or before t. A TD-LR surface with drastic changes
in its color suggests a more informative marker.
When a marker value x is fixed, a positive slope (rep-

resented with a change from cooler to warmer colors) for
increasing t indicates that the update from the marker
value x is larger for later events, i.e., the likelihood of expe-
riencing the event for individuals with this marker value
increases with time. Similarly, a negative slope for increas-
ing t at a fixed x indicates that the likelihood of event for
individuals with this marker value decreases with time as
seen for extreme marker values in Fig. 1a such that for
(extreme) large marker values (e.g., x ≈ 2), the surface
bends upward for increasing t while for (extreme) small
marker values (e.g. x ≈ −2), the surface bends down-
ward. Markers exhibiting these patterns in log TD-LR
values will yield surfaces that torque at later time points
t. Alternatively, one can also present TD-LR as a contour
plot to potentially to simplify observing subsections of the
three-dimensional surface. See Fig. 1c and d.
To explore how much TD-LR estimates relied on the

proportional hazard (PH) assumption. We have con-
ducted additional simulation studies to examine the
impacts of sample size, censoring percentage and PH
assumption on the performance of TD-LR estimates in
terms of bias and mean squared error (MSE) where the
true TD-LR is computed using the theoretical values (for
the marginal odds of S(t)) and numeric integration (for
the conditional odds of S(t | x)). The results of those sim-
ulation studies are summarized in Table 1. Briefly, under
the PH situation, TD-LR estimates perform well and with
a larger sample size, smaller censoring proportions in gen-
eral are associated with smaller bias and MSE but the per-
formance of TD-LR estimates at later time point (E.g., t =
8) and/or at larger covariate values (e.g., x = 1) are asso-
ciated with much greater bias and MSE. This is expected
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Fig. 1 Simulated log TD-LR surfaces (1a, 1b) and contour plots (1c, 1d). Simulated log TD-LR surfaces or contours for covariates with HRs of 2 (1a and
1c) and 1.5 (1b and 1d)

because there are significantly fewer data points avail-
able either because many already had the event or have
been censored for estimation at those (t, x) combinations
even more so when the censoring percentage is high. This
phenomenon is more exacerbated in the case when PH
assumption is violated as we have expected. Furthermore,
as shown by the histograms in “Appendix” section, simu-
lations with sample sizes increasing up to 1000 suggested
the asymptotic distribution of TD-LR is approximately
normal at varying marker values and time points.

SWOG 8710 Example
The data from SWOG 8710 comprise 231 individuals, of
whom 172 died while under study. A secondary analysis
of the SWOG 8710 data was interested in the neutrophil-
lymphocyte ratio (NLR) as a prognostic marker for overall

survival (OS), as the NLR is particularly easy to mea-
sure and had been found to be an independent prognostic
factor in some studies [23–25].
Previous work had focused on treating the continu-

ous NLR as a binary variable dichotomized as being
above or below a certain cutoff, above which individuals
were more likely to experience events and below which
they were less likely to experience events. We sought to
adhere to recommendations in analysis guidelines such
as REMARK which cautions against the common clinical
research practice of dichotomizing continuous markers
due to the potential for bias and loss of information
[26, 27]. Thus, we analyze NLR as a continuous marker in
the current analysis.
We illustrate the TD-LR surface estimation and visu-

alization techniques using data from the SWOG 8710
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Table 1 Performance of TD-LR under the proportional and non-proportional hazards situations with various sample sizes, censoring
percentage, time points, and marker values

Proportional Hazard (PH)

x=-1 x=0 x=1

N Censoring 2 yr 8 yr 2 yr 8 yr 2 yr 8 yr

100 10-15% Bias -0.0034 -0.0218 -0.0118 -0.1755 -0.0410 -6.747

MSE 0.0053 0.0060 0.0103 1.757 1.031 5.6 × 107

60-80% Bias -0.0061 -0.0074 -0.0085 -0.0098 -0.0434 -0.0444

MSE 0.0164 0.0141 0.0132 0.0102 0.0448 0.1669

500 10-15% Bias -0.0023 -0.0035 -0.0029 -0.0226 -0.0126 2.729

MSE 0.0010 0.0010 0.0016 0.1587 0.1275 3634

60-80% Bias 0.0066 0.005 0.0028 0.0010 -0.0084 -0.0177

MSE 0.0033 0.0028 0.0026 0.0019 0.0082 0.0315

1000 10-15% Bias 0.0013 -0.0021 -0.0006 -0.0248 -0.0169 -2.286

MSE 0.0005 0.0005 0.0009 0.0760 0.0654 1042

60-80% Bias 0.0030 0.0030 0.0013 0.0013 -0.0071 -0.0116

MSE 0.0015 0.0013 0.0012 0.0009 0.0041 0.0156

Non-Proportional Hazard (PH), γ=0.2

x=-1 x=0 x=1

N Censoring 2 yr 8 yr 2 yr 8 yr 2 yr 8 yr

100 10-15% Bias 0.0257 0.1984 -0.0749 -5.774 -2.542 −2.01 × 1013

MSE 0.0036 0.0430 0.0198 33.84 11.16 4.02 × 1026

60-80% Bias 0.0324 0.0949 -0.0020 0.1766 -27.64 −2.95 × 1064

MSE 0.0018 0.0103 0.0103 0.0509 766.8 8.72 × 10128

500 10-15% Bias 0.0275 0.2080 -0.0669 -5.744 -2.87 −2.01 × 1013

MSE 0.0013 0.0439 0.0068 33.06 8.664 4.02 × 1026

60-80% Bias 0.0324 0.0984 0.0046 0.2033 -27.98 −2.95 × 1064

MSE 0.0012 0.0099 0.0021 0.045 783.2 8.72 × 10128

1000 10-15% Bias 0.0263 0.2082 -0.069 -5.742 -2.89 −2.01 × 1013

MSE 0.0010 0.0437 0.0060 33.01 8.597 4.02 × 1026

60-80% Bias 0.0328 0.0997 0.0076 0.2128 -27.99 −2.95 × 1064

MSE 0.0012 0.0101 0.0014 0.0474 783.8 8.72 × 10128

*γ as the coefficient for the interaction between time and marker value x. The summary was based on 500 simulation replicates

clinical trial. Figure 2a and b present the estimated TD-LR
surfaces for NLR (mean (SD) 3.3 (2.02), range 0.8–15.4)
and age at randomization (mean (SD) 62.6 (9.04), range
36.9–84.1) . We select age in this analysis because age was
previously found to be an independent prognostic factor
for overall survival in this data [2, 3]. In addition, nei-
ther NLR nor age (nor any other covariates considered in
a subsequent analysis) were found to violate the propor-
tional hazards assumption. Ojerholm et al. [28] Fig. 3a and
b present the same surfaces with overlaid 95% bootstrap
confidence intervals constructed from 1000 bootstrap
resamplings.
The TD-LR surface for age is shown to have a mod-

erate positive slope for both increasing marker value x
and increasing t. After incorporating age, younger indi-
viduals (aged 40–50) have lower odds of death at or

before t across all t relative to “baseline” or prevalence-
based odds as captured by KM-based estimates. For 1 <

t < 6 years, log TD-LR estimates for these younger
individuals range between -1.5 and -0.9, which amount
to multiplicative updates to KM-based odds of death
at or before t of approximately 0.22 to 0.41. Similarly,
TD-LR values for older individuals (aged 70–80) in the
same time range vary between 0.3 and 1.5, amounting to
multiplicative updates to KM-based odds of 1.4 to 4.5.
For later t and older age, these multiplicative updates
increase.
In contrast, the surface for NLR is close to zero across

all marker values and time points (log TD-LR rang-
ing from approximately -0.14 to 0.07), indicating the
NLR provided little or no update to KM estimates of
odds of death at or before t at any t in the range
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Fig. 2 SWOG data TD-LR surfaces. Real data log TD-LR surfaces for age
(2a) and NLR (2b)

examined. The NLR marker does not appear to provide
any informative update to existing estimates of odds
of death.
To determine how much better age is than NLR at

updating the KM-based odds estimates or to make direct
comparisons at certain marker values, we implement the
scale-invariant TD-LR, as the scales of age and NLR differ
dramatically. The following analysis used landmark times
s = 0, 1, 2, 5, and 10, and scale-invariant TD-LR estimates
are calculated for t = s + 2. We selected these time
points because they are standardly used for bladder cancer
research given its known natural history, e.g., 1 year cap-
tures very aggressive tumor related and treatment related
mortality, 2 year captures about half tumor relatedmortal-
ity, 5 year captures almost all, 10 year captures non-tumor
related mortality.
Figure 4 presents overlaid cross-sections of scale-

invariant TD-LR surfaces for age and NLR at the first

Fig. 3 SWOG data TD-LR surfaces with bootstrap CIs. Real data log
TD-LR surfaces for age (3a) and NLR (3b) with overlaid 95% bootstrap
CIs

landmark time s = 0 and t = 2. The curvature of the
cross-section for age suggests that for all marker values
(on the placement value scale, or, equivalently, percentile
scale), age provides larger (upward or downward) adjust-
ment to odds of death at or before two years after the
landmark time than do NLR values of the same per-
centiles. Thus, age is a more informative marker than
NLR. Therefore, under the first landmark time s =
0, based on all patients at risk for the following two
years, age at its 75th percentile for example is associ-
ated with a scale-invariant TD-LR of exp(0.269) = 1.309
compared to exp(0.098) = 1.103 for NLR at its 75th
percentile.
Figure 5 presents similar cross sections for the other

landmark times (s = 1, 2, 5, 10). Similar to the observa-
tions at s = 0, for small placement values, corresponding
to high percentiles of age and NLR at the landmark times,
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Fig. 4 Scale-invariant TD-LR for age and NLR at s = 0, t = 2. Scale-invariant log TD-LR surface cross sections for age and NLR at landmark time 0 and
time equal to +2 years

the scale-invariant log(TD-LR) for age at 2 years after
the landmark time is more positive than it is for NLR.
For large placement values, corresponding to low per-
centiles of age and NLR at the landmark times s, the
scale-invariant log(TD-LR) at 2 years after the landmark
time for age is more negative than it is for NLR. Thus,
age provides larger updates to KM-based odds of death
than does NLR. Indeed, for later landmarks (Figure 5c and
d), NLR appears to provide no update at all. NLR may
not be a valuable marker for determining risk of death at
these landmark times. We can also examine different time
points after selected landmark times (e.g., 3 or 5 years
after) to obtain a fuller understanding of trends in the
scale-invariant TD-LR.
To illustrate the relationships between TD-ROC and

TD-LR, we computed the area under the TD-ROC using
the R package survival ROC for SWOG 8710 data. As
shown in Fig. 6b, area under the TD-ROC for age is con-
sistently higher than NLR for all t. We then plotted in
Fig. 6b the smoothed curve for the derivative of TD-ROC
at t = 2 showing the value of ROC′(t = 2) for age
is greater than that of NLR for small placement values
(FPR), and lower for large placement values. Thus based
on our discussion on page 6, such pattern also implied

that AUC(t = 2) for age is greater than AUC(t = 2)
for NLR.

Discussion and Conclusion
This work extends existing LR measures to under-
stand the predictive ability of continuous markers
from binary event data to survival data. The pro-
posed time-dependent LR is estimated by a function of
Cox PH and KM survival estimates. We chose these
estimation methods for their ease of handling cen-
soring, implementation, and desirable properties with
respect to consistency. Additional work would be to
more fully characterize the asymptotic distribution
of ̂TD-LR(x, t).
The use of Cox PH and KM survival estimates means

that the updates quantified by TD-LR(x, t) here are with
respect to a prevalence-based estimate of odds of event
at or before t. However, our estimation approach could
easily be modified to define the “baseline” estimate of
odds of event at or before t using survival probability
estimates from a Cox PH model that incorporates exist-
ing or known prognostic factors. The TD-LR in this
extended case would represent the update to the exist-
ing estimate of odds of event at or before t obtained
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Fig. 5 Scale-invariant TD-LR for age and NLR at various landmarks. Scale-invariant log TD-LR surface cross sections for age and NLR at landmark
times 1,2,5,10 and time equal to +2 years

from incorporating a new marker X in addition to the
other factors. To present the TD-LR as a three dimen-
sional surface, one would first need to fix every predictor
other than the marker at specific values, and the TD-LR
surface would thus be estimated for a specific covari-
ate profile. Potentially, the proposed approach can be
extended to consider more than one new markers at the
same time, although the TD-LR surface will be difficult to
interpret.
Comparison of markers with respect to the esti-

mated TD-LR values is accomplished by standardiz-
ing the markers through the placement value. Survival
probability estimates needed for the TD-LR estimates
for placement values cannot be calculated directly
because placement value is considered as an internal
time-dependent covariate. Our current solution is to

apply landmark analysis methods. The landmark analysis
method, though simple, does not provide a complete
picture of the relationship between placement value
and survival probabilities. Potential solutions include
redefining the reference population used to calculate
placement value, such that its calculation does not
depend on the survival behavior of the individuals under
study.
The candidate marker itself may be time-dependent. For

internal time-dependent markers, landmark analysis, or
other techniques that allow survival probability estimation
conditional on values of internal time-dependent covari-
ates, will be required. For external time-dependent
markers, regular time-dependent covariate estimation
techniques can be used. Similarly, the effect of the can-
didate marker on hazard of event obtained in the Cox
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Fig. 6 The relationships between TD-ROC and TD-LR. Estimates of
TD-AUC(t) for age and NLR over time (6a) and derivatives of TD-ROC
versus false positive rate

PH estimation may be time-dependent. In this case,
techniques for estimating time-dependent coefficients
in Cox PH regression could be employed to estimate
the TD-LR.
We note the relationship between the TD-LR and the

derivative of the TD-ROC curve to illustrate comparison
of time-dependent AUC can also be achieved by using the
TD-LR. While many guidelines such as REMARK cau-
tion against the dichotomization of continuous markers,
if the determination of an “optimal cutoff” for clinical

use is desired, TD-LR can also be used for this purpose.
For example, one commonly used approach to identify
an optimal cut-off is to find the marker value that gives
the shortest distance from a ROC or TD-ROC curve to
the top left corner of (0,1) (i.e., 0% false positive rate
and 100% true positive rate). The concave nature of ROC
or TD-ROC curves suggests that the point on the curve
that minimizes this distance should occur where the TD-
ROC’ is approximately equal to 1. Therefore, a cutoff
point for a given TD-ROC curve could also be deter-
mined through TD-LR alone. The optimal cutoff value
(or ranges of possible cut-off values) across different
time points could be determined by finding the marker
value that yields a TD-LR of approximately 1 across
the most time points that relevant to specific clinical
applications.
Current challenges for TD-LR estimation center around

incorporating more complex time dependence to both
markers and other predictors, as well as adapting the
estimation methods to the case of competing events.
Future work might readily address the latter issue by using
cause-specific Cox models or Fine-Gray models, though
extending these methods to the TD-LR will require care
to ensure correct consideration of individuals who do not
experience the event of interest or who have a competing
event.
The LR is an extant method for measuring updates

to risk prediction due to the knowledge of a (binary
or continuous) marker value, but its use has not been
explored in censored survival data. The TD-LR described
in this work can provide a richer understanding of how
continuous markers relate to the likelihood of events
in censored survival data contexts through the use of
an easily interpretable three-dimensional surface. This
graphical display may aid in communication with clinical
audiences that, despite being accustomed to using mea-
sures like the HR, may appreciate the simplicity of the
TD-LR. Comparison of predictive ability across contin-
uous markers, even when marker scales differ greatly,
is also enabled by the proposed techniques. One point
to keep in mind is that the calculation of TD-LR is
relied on proportional hazards assumption to be valid in
order to use Cox model to estimate the conditional
odds at a time point and a marker value, and have
enough observations available for the time points and
marker values that one wish to explore. Thus we
recommend to check the proportional hazard (PH)
assumption first and the ranges of the data values
before proceeding with the estimation. If PH assump-
tion is not appropriate, alternative models such as
parametric regression can be used instead of a Cox
model.

Appendix
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Fig. 7 Histograms of estimated TD-LR. Sample sizes (100, 500, 1000), time points (t = 6, 12), and marker values (x = −1.5,−1, 1, 1.5). The hazard ratio
for the marker value is assumed to be 2
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