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Summary

Panel count data arise in many applications when the event history of a recurrent event process
is only examined at a sequence of discrete time points. In spite of the recent methodological
developments, the availability of their software implementations has been rather limited. Focusing
on a practical setting where the effects of some time-independent covariates on the recurrent events
are of primary interest, we review semiparametric regression modelling approaches for panel count
data that have been implemented in R package spef. The methods are grouped into two categories
depending on whether the examination times are associated with the recurrent event process after
conditioning on covariates. The reviewed methods are illustrated with a subset of the data from a
skin cancer clinical trial.

Key words: Counting process; estimating equation; frailty; maximum likelihood; recurrent event.

1 Introduction

Panel count data are a special kind of event history data where the occurrence of recurrent
events is observed only at a sequence of discrete time points, as opposed to being observed
continuously in time. In contrast to conventional recurrent event data, where the exact occur-
rence times of the events are known, panel count data only have the count of events in each
‘panel’ between successive examination times points (Kalbfleisch & Lawless, 1985). Panel
count data frequently arise in many fields such as clinical trials, epidemiological studies and
engineering, when continuous follow-up to obtain exact event times of each subject is infea-
sible or too costly. The term ‘panel count’ in econometrics refers to longitudinal or clustered
count data (e.g. Riphahn et al., 2003;Croissant et al., 2008;Hsiao, 2014); although some-
what related, it is to be distinguished from the context of event history data as we focus
on here.

The goal of this article is to review regression analysis for panel count data with a focus on
methods that are available in the R environment (R Core Team, 2017). Many statistical methods
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have been developed to analyse panel count data, but quality controlled software implementa-
tion remains rather limited. In their recently published book on panel count data analysis, Sun
& Zhao (2013) noted the absence of actively maintained software packages at the time of writ-
ing their book (Sun & Zhao, 2013, p.222). Two R packages for panel count data are publicly
available at this time. Package spef (Chiou et al., 2017) provides multiple methods in a uni-
fied interface, with an earlier version presented in Wang & Yan (2011). Package PCDSpline
(Yao & Wang, 2014) is an implementation of the gamma frailty model of (Yao et al., 2016).
Instead of providing a comprehensive review of all existing methods, we focus on semiparamet-
ric regression models with time-independent covariates as implemented in the spef package;
methods and software for handling time-varying covariates have been much less developed
(Huang et al., 2010). Covariate effects on the recurrent events are of primary interest. Non-
parametric estimation is possible with spef package by specifying an intercept-only model.
We give more details on methods that are available in spef package and that were not treated
in detail in Sun & Zhao (2013). The illustration code will help readers who need to analyse a
panel count dataset to obtain some quick insights easily.

One challenge in practical panel count data analysis is that the examination process or
the follow-up time may be informative about the recurrent event process even after condi-
tioning on available covariates. For example, patients with higher tumour recurrence rates
may have more frequent clinical examinations as they may require more medical attention
(Li et al., 2011; Sun & Zhao, 2013). Another example is in labour progression of women
giving childbirth, if each 1 cm increment of cervical dilation is treated as a recurrent event,
then women with faster cervix dilation may have more frequent vaginal examinations (Ma
& Sundaram, 2018). Informative examination times are often encountered in panel count
data, and falsely treating informative examination times as noninformative could result in
biased regression coefficient estimation and misleading conclusions. Similar situations may
arise where the follow-up time is informative. Therefore, we grouped the methods into two
categories depending on whether or not informative examinations or follow-up times can be
accommodated.

This article is organised as follows. A subset of the data from a skin tumour clinical trial
is introduced in Section 2 to demonstrate the structure and graphical features of panel count
data. Notations of observed data and some of the most popular semiparametric models are
presented in Section 3. Methods under the assumption of noninformative and informative exam-
ination/censoring times are reviewed in Sections 4 and 5, respectively, illustrated with the
skin tumour data. The performances of the implemented methods under different settings in a
simulation study are reported in Section 6. A discussion concludes in Section 7.

2 Skin Cancer Chemoprevention Trail

We illustrate the usage of the spef package with a skin cancer prevention study (Bailey et
al., 2010). The whole dataset is available in Sun & Zhao (2013, Table A.3.) and is included in
the spef package under the name skinTumour. The study was a randomised, double-blind,
placebo-controlled phase-3 clinical trial conducted at the University of Wisconsin Compre-
hensive Cancer Center. The primary objective was to determine whether the application of
difluoromethylornithine (DFMO) as a chemoprevention agent would lead to a significant reduc-
tion in the occurrence of new skin tumours. The study consisted of 290 patients with a history
of skin tumour. These patients were randomly assigned into two groups: a treatment group
with oral DFMO at a daily dose of 0.5 gram/m2 and a placebo group with matching dosage.
At each examination time during the follow-up, the number of newly developed skin tumours
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were counted, measured and removed. Comprehensive analysis of the whole data can be found
in recent publications (e.g. Li et al., 2011;Sun & Zhao, 2013;Chiou et al., 2017).

For illustration propose, we only use a subset of skinTumour containing 73 patients who
enrolled in the study after the age of 70 years because some methods with bootstrapping are
computationally demanding for large samples. Of the 73 patients, 40 were male and 41 were
in the treatment group. The average number of examination times was 8.9 in this subset of
patients, with three quartiles being 7, 9 and 10. The average number of skin tumours developed
for each patient in this subset throughout the study was 2.9 (median = 3). We named this subset
skiTum and used this name in the sequel. To view the structure of panel count data, we show
the data for one patient (with id 10):

The patient with ID 10 was followed for 1 024 days from the enrollment, examined seven
times on days after enrollment as shown in variable time, with the corresponding number of
tumours in variable count. This patient was assigned to the placebo group (dfmo = 0) and
had 16 skin tumours prior to enrollment. Treatment indicator (dfmo) and prior tumour counts
(priorTumour) will be used as covariates in the regression model for the tumour occurrences
in this study. Following Wang & Yan (2011), we display the data in a tile plot that shows not
only the panel count but also the examination times of each subject using package ggplot2
(Wickham, 2009):

Figure 1 presents the resulting tile plot. It appears that patients in the treatment group have
slightly more examinations than those in the placebo group, which might indicate informative
examination times.

All the models in the sequel have the same model formula specified via PanelSurv, which
is similar to the Surv function in the survival package (Therneau, 2015). We consider
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Figure 1. Tile plot of the skin tumour data. Each tile represents an examination time. Darker grays mean larger number of
tumour since the last visit.

models with two covariates: dfmo and priorTumour. For better interpretation of the baseline
function, we center priorTumour by its median 3:

The major function to fit regression models for panel count data in the spef package
is panelReg, which takes the model formula as an input and returns an object of class
panelReg.

3 Notation and Regression Models

For subject i , i D 1; : : : ; n, let Ni .t/ be counting process of recurrent events of interest.
Suppose that the event counts are only observable atKi discrete random time points, 0 D ti0 <
ti1 < ti2 < : : : < tiKi � � , where tij is the j th examination time, Ki is a positive integer-
valued random variable and � is the longest follow-up time in the data. Let G be the time grid
formed by all distinctive examination times: 0 < s1 < � � � < sg D � , where g is the number
of distinctive examination times. A subject-specific, time-independent covariate vector Xi is
observed and its effect on the occurrence of the events is or primary interest. The observed data
are independent and identically distributed copies of ¹tij ; Ki ; Ni .tij /; Xi I j D 1; : : : ; Kiº; i D
1; : : : ; n. Let nij D Ni .tij / � Ni .tij�1/ be the number of events in the time interval .tij�1; tij �
and mi D Ni .Yi / be the total number of events during the follow-up, where Yi D tiKi is the
last examination time. Additionally, there could be a censoring or follow up time Ci , which may
or may not equal to the last observation time Yi . As in recurrent event settings, the censoring
time Ci ’s are always observed unlike in the case of standard right-censored survival data. Both
the examination times and the follow-up time can potentially be informative about the event
process after conditioning on the covariates.

Earlier models for recurrent event processes characterise the intensity function (Gail et al.,
1980; Prentice et al., 1981; Andersen & Gill, 1982). To introduce the common models, we drop
the index i for ease of notation. Let dN.t/ D N ¹.t C dt/�º �N.t�/. The intensity function is
defined as the event occurrence rate conditional on the whole event history

�.t/ D lim
�!0C

1

�
PrŒdN.t/ D 1jH.t�/�;
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where H.t�/ D ¹N.u/ W 0 � u < tº is the event history up to t . The Cox-type intensity model
incorporates covariate X in the intensity function (Andersen & Gill, 1982)

�.t IX/ D �0.t/ exp.X>ˇ/; (1)

where �0.t/ is nonnegative baseline intensity function, and ˇ is a vector of regression
coefficients for covariate vector X .

In practice, the Cox-type intensity model in Model (1) might be inadequate and difficult
to verify (Lin et al., 2000). In contrast to Model (1), recent approaches characterise the rate
function r.t/ of N.t/ defined by E¹dN.t/º D r.t/dt and the mean function �.t/ D

R t
0 r.s/ds

(Nelson, 1988; Pepe & Cai, 1993; Lawless & Nadeau, 1995; Lin et al., 2000). Unlike the
intensity function, the rate or mean function does not completely specify the stochastic nature
of N.t/; they are, respectively, sometimes referred to as the marginal intensity and cumulative
intensity function. Covariates can be incorporated in the form of proportional rates model

r.t IX/ D r0.t/ exp.X>ˇ/; (2)

for some nonnegative baseline rate function r0.t/, or proportional means model

�.t IX/ D �0.t/ exp.X>ˇ/; (3)

for some nondecreasing baseline mean function �0.t/. Since we consider time-independent
covariate so far, Models (2) and (3) are equivalents.

A commonly used modification to Models (1) and (3) is to introduce a positive frailty
variable or random effect. Specifically, conditional on a frailty Z and covariate vector X , the
proportional intensity model becomes

�.t IX;Z/ D Z�0.t/ exp.X>ˇ/;

and the proportional means model becomes

�.t IX;Z/ D Z�0.t/ exp.X>ˇ/: (4)

For identification purpose, it is often assumed that E.ZjX/ D 1. The frailty is useful in
allowing over-dispersion in the count (e.g. Hua et al., 2014) or dependence between N.�/ and
the examination or censoring times (e.g. Huang et al., 2006;He et al., 2009).

The baseline intensity function �0.t/ and the baseline mean function�0.t/ are often left com-
pletely unspecified and estimated nonparametrically. Since �0.t/ and the cumulative baseline
intensity ƒ0.t/ D

R t
0 �0.s/ds are nondecreasing functions, they can be specified by monotone

splines (Ramsay, 1988). The motonone spline specification offers a good compromise between
flexibility and computational advantage, so it has been adopted by many authors in various set-
tings (Lu et al., 2009; Hua & Zhang, 2012; Deng et al., 2015; Hua et al., 2014; Yao et al., 2016).
An implementation of monotone splines is available in R package splines2 for this purpose.

A recent accelerated mean model (Xu et al., 2017; Chiou et al., 2017) has rate function

r.t IX;Z/ D Zr0¹t exp.X>ˇ/º exp.X>ˇ/; (5)

where the distribution of frailty Z is unspecified beyond E.ZjX/ D 1. This model formula-
tion is different from the Cox-type specifications, and it connects to the accelerated failure time
models in that, unconditional on Z, �.t IX/ D E¹N.t/jXº D �0¹t exp.X>ˇ/º. The covariate
effects modify the time scale of the cumulative mean function and have a direct marginal inter-
pretation. For example, if X is a treatment indicator, then the expected number of events by
time t among the treated subjects (X D 1) equals the expected number of events by time teˇ

in the control group (X D 0).
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4 Noninformative Examination/Censoring Times

We, first, consider the situation where the examination times and the censoring time are
noninformative for the event process. That is, conditional on the covariates, the examina-
tion/censoring times and the event process are independent. The conditional independence
assumption allows one to treat the examination/censoring times as if they were fixed instead of
random.

4.1 Likelihood-Based Approaches

The non-homogeneous Poisson process has been studied first, in which case the Cox-type
intensity Model (1) and the proportional means Model (3) coincide. So we consider Model (3)
only. From the independent increments of Poisson processes, the log likelihood function is

L.ˇ;�0/ D

nX
iD1

KiX
jD1

®
nij log�0.tij /C nijX

>
i ˇ � �0.tij / exp.X>i ˇ/

¯
:

Parameter estimation of ˇ depends on the specification of �0.t/. If �0.t/ is unspecified, the
nonparametric maximum likelihood estimator (MLE) of �0.t/ is the non-decreasing step func-
tion that jumps only at the times of the grid G of distinct examination times (Wellner & Zhang,
2000). The MLE of ¹ˇ;�0.t/º, denoted by ¹ Ǒn; O�n.t/º, can be obtained from a computationally
intensive iterative procedure (Wellner & Zhang, 2007).

To reduce the computation complexity in obtaining MLE, Lu et al. (2009) specified log�0.t/
by monotone B-splines log�0.t/ D

P�
iD1 ˛iBi .t/; where Bi .t/, i D 1; : : : ; �, are the B-spline

basis functions with � degrees of freedom. The degrees of freedom, �, is typically chosen to
be dg1=3e C 1 where d�e is the ceiling function and g is the number of distinctive examination
times as defined in Section 3. The MLE of .ˇ; ˛/, denoted by . Ǒn; Ǫn/, can then be found
from a constrained optimisation for any given K. Lu et al. (2009) show that under certain
regularity conditions Ǒn is consistent, asymptotically normal, and asymptotically as efficient as
that obtained when �0.t/ is unspecified. For the skin tumour example, this method is called by
setting method = “MLs” in the panelReg function from spef package:

The standard errors of the regression coefficient estimates were obtained from bootstrap with
50 replicates by setting se = “Bootstrap” and, in control, "R = 50". The imple-
mentation of monotone splines in the spef package was based on the methods proposed in
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Ramsay (1988). The same model can also be fit with PCDReg.nf function from the
PCDSpline package (Yao & Wang, 2014). The PCDSpline package further allows a gamma
frailty to account for within-subject dependence (Yao et al., 2016).

A less efficient but simpler approach to obtain the regression coefficient estimate is to max-
imise the following pseudo-likelihood based on the Poisson distribution of eachN.tij / ignoring
within-subject dependence

Lp.ˇ; �0/ D

nX
iD1

KiX
jD1

N.tij / log�0.tij /CN.tij /X
>
i ˇ � �0.tij / exp.X>i ˇ/:

The estimator of ˇ with an unspecified �0.t/ (Zhang, 2002) can be obtained by setting
method = “MPL”:

The estimator of ˇ when �0.t/ is specified by monotone B-splines (Lu et al., 2009) can be
obtained by setting method = “MPLs”:

Hua et al. (2014) considered Model (4) with Z assumed to be a gamma variable with
mean 1 and variance �2. Under the working assumption that N.�/ is a non-homogeneous Pois-
son process, the full likelihood after integrating Z out has a closed-form in terms of ˇ and �0.
By approximating �0.t/ with monotone splines with parameter vector ˛, they estimate ˛ and
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ˇ after fixing �2 at a method of moment estimate based on pseudolikelihood estimator from
Zhang (2002) and Wellner & Zhang (2007).

The estimated baseline mean function for the aforementioned methods can be accessed from
the baseline component in the object returned from the panelReg call. The spef package
provides a utility function for its graphcial presentation through the generic function plot.
For example, the estimated baseline mean function from method = “MPL” and method =
“MPLs” can be plotted as follows:

Figure 2 shows the overlaid estimated curves from the two methods. They are interpreted as
the mean function for patients in the placebo group with three prior tumours. Baseline function
estimates from other methods in the sequel, if available, can be a accessed similarly.

4.2 Estimating Equation Approaches

Sun & Wei (2000) allow dependence among the event process, examination time pro-
cess and the censoring time through covariates if the latter two follow a proportinal means
model and a proportional hazards model, respectively. Define the examination time process
Hi .t/ D QHi¹min.t; Ci /º D

PKi
jD1 I.tij � t /. Assume that the mean function of QHi .t/ has

the form

�Hi .t/ D �
H
0 .t/ exp

�
X>i 	

�
; (6)

where �H0 .t/ is a completely unspecified function and 	 is a regression coefficient vector. Fur-
ther assume that covariate effects on the censoring time can be specified by a Cox proportional
hazards model for Ci ,

�Ci .t jXi / D �
C
0 .t/ exp

�
X>i 


�
; (7)

where �C0 .t/ is a completely unspecified baseline hazard function and 
 is a regression coeffi-
cient vector. The covariates are assumed to have been centred by their means in the derivation
of the method.

Figure 2. Estimated baseline mean function from the MPL method and the MPLs method.
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Sun & Wei (2000) proposed estimating equations by considering
R
Ni .t/dHi .t/. Under the

model specifications for �Hi .t/ and �Ci .t/,

E

²Z
Ni .t/dHi .t/

³
D exp¹X>i .ˇ C 	/º

Z
�0.t/Si .t/d�

H
0 .t/;

where Si .t/ D exp¹�
R t

0 �
C
0 .s/dsCX

>
i 
º. Therefore, if 	 and 
 are known, ˇ can be estimated

from the following estimating equation
nX
iD1

Xi exp¹�X>i .ˇ C 	/º
Z
Ni .t/

Si .t/
dHi .t/ D 0: (8)

The unknown quantities in the equation can be replaced with their estimates: 	 can be esti-
mated from estimating equations for proportional rates models (Lawless & Nadeau, 1995); 

can be estimated from partial score equations (Kalbfleisch & Prentice, 2011); and the baseline
hazard �C0 .t/ can be estimated as in a standard survival analysis. Sun & Wei (2000) established
the consistency and asymptotic normality of the resulting estimator requiring the correct speci-
fication of the models for the examination times and the censoring time. The estimator of ˇ can
be obtained by setting method = “EE.SWc”:

When 
 D 0, in which case the censoring time does not depend on covariates, the estimator can
be obtained by setting method = "EE.SWb":
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An even simpler version of Sun & Wei (2000) assuming independent examination and
censoring by setting 	 D 
 D 0 can be obtained by setting method = "EE.SWa".

Hu et al. (2003) proposed a more efficient estimating equation that extends the method of
Lawless & Nadeau (1995) for recurrent event analysis. Define hi .t/ D Hi .t/ � Hi .t

�/ for
each i so that hi .t/ D 1 if t is an examination time of subject i and hi .t/ D 0 otherwise.
Assume that E¹hi .t/º > 0 for each t 2 T where T � .0; � � is the collection of all observed
examination times on a grid. Conditioning on the examination times, Hu et al. (2003) proposed
a natural estimating equation for ˇ

nX
iD1

KiX
jD1

w.tij /

´
Xi �

Pn
kD1 I.Ck � tij /Xk exp.X>

k
ˇ/ok.tij /Pn

kD1 I.Ck � tij / exp.X>
k
ˇ/ok.tij /

μ
nij D 0; (9)

where w.�/ is a known, possibly data dependent weight function and ok.t/ indicates whether
subject k has an observation at time t . The estimating equation (9) was constructed under the
assumption that there is more than one subject with the same examination time. Thus, this
method cannot be applied to scenarios where all examination times are distinct, which implies
ok.tij / D 1 when k D i and 0 otherwise. Solution to the conditional estimating equations (9)
with w.t/ D 1 can be obtained by setting method = "EE.HSWc":

To allow covariate effects on the examination times in a proportional means Model (6), Hu
et al. (2003) proposed an estimating equation unconditional on the examination times

nX
iD1

KiX
jD1

w.tij /

"
Xi �

Pn
kD1 I.Ck � tij /Xi exp¹X>

k
.ˇ C 	/ºPn

kD1 I.Ck � tij / exp¹X>
k
.ˇ C 	/º

#
nij D 0; (10)

where 	 needs to be replaced with an estimate as in solving (8). In contrast to (8), this equation
does not require model specification of the censoring time. See Section 5.4.3 of Sun & Zhao
(2013) for more discussion on comparison of the estimating equation approaches. Solution to
the marginal estimating equations (10) can be obtained by setting method = "EE.HSWm":
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Because panel counts are similar to longitudinal data, Hua & Zhang (2012) applied gen-
eralised estimating equations (Liang & Zeger, 1986) to marginal Model (3) with log�.t/
approximated by monotone splines with parameters ˛ as in Lu et al. (2009). The panel
counts from subject i form a vector Ni D ¹Ni .ti1/; : : : ; Ni .ti;Ki /º

>, with mean vector
�i D ¹�.ti1IXi /; : : : ; �.tiKi IXi /º

>. The generalised estimating equation has the form
nX
iD1

@�>i
@�

V �1
i .Ni � �i / D 0; (11)

where �> D .ˇ>; ˛>/, and Vi is a Ki � Ki working covariance matrix of Ni . Hua & Zhang
(2012) used a two-iterative algorithm to solve for � . First, a Newton–Raphson update is applied
to solve (11); second, the estimate of ˛ is projected to a legitimate space via quadratic pro-
gramming such that the resulting splines is monotone nondecreasing. Flexible choices of the
working covariance matrix Vi ’s can lead to higher efficiency in estimation and robustness to
overdispersion.

5 Informative Examination/Censoring Times

5.1 Frailty Methods

One way to allow informative examination times after conditioning on covariates is to intro-
duce a frailty, or random effect that is shared by both the recurrent event process and the
examination time process. Huang et al. (2006) considered Model (4), which allows the exam-
ination times to be associated with the event process through the frailty after conditioning on
the covariates. The approach of Huang et al. (2006) is especially appealing in that there is
no need to specify the distribution of the frailty, or models for the examination process and
the censoring time. The estimation procedure takes advantage of the fact that, conditional on
¹Zi ; Xi ; Ki ; Yiº, the unobserved Ki examination times are order statistics of independent and
identically distributed random variables with distribution function

Fi .t/ D
�.t IXi ; Zi /

�.Yi IXi ; Zi /
D

�0.t/

�0.Yi /
:

This formulation suggests that the estimation of F.t/ does not involve Xi and Zi . Let ˆ.t/ D
�0.t/=�0.�/, where � is still the longest follow-up time. A nonparametric estimator of F.t/ is
obtained by maximising
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nY
iD1

KiY
jD1

�
ˆ.Ti;j / �ˆ.Ti;j�1/

ˆ.Yi /

�nij
;

which is mathematically equivalent to the likelihood constructed from a set of independently
interval-censored and right-truncated data. Therefore, the maximisation of the likelihood can
be implemented by the Turnbull’s self-consistency algorithm (Turnbull, 1976). When compu-
tational performance is of concern, the squared extrapolation method of Varadhan & Roland
(2008) can be adopted to accelerate the maximisation. Then, ƒ.�/ and ˇ are obtained from
solving

n�1
nX
iD1

wi

�
1
Xi

� �
miˆ.Yi /

�1 � �0.�/ exp.X>i ˇ/
	
D 0;

wherewi is a weight function andˆ.�/ is replaced with its estimate. This approach withwi D 1
is requested by setting method = “HWZ”:

A warning message indicates that not all of the 50 bootstrap converged. The reported
bootstrap standard errors are based on those that converged.

Alternative approaches specify models for the examination times and the censoring time.
Extending the estimation strategies of Sun & Wei (2000), Sun et al. (2007) investigated a sim-
ilar semiparametric model with Z˛i in place of Zi in Model (4), where Zi is an unobserved
multiplicative frailty introduced into Model (6) for the examination times. He et al. (2009)
used two frailties to introduce dependence among the three Models (3), (6) and (7) beyond
covariate effects. Specifically, one frailty enters all three models while the other enters Mod-
els (3) and (7). Model parameters are estimated through a three-step estimation procedure.
This method imposes a distributional assumption on the underlying random effect and requires
the examination process to be a nonhomogeneous Poisson process, which is needed in an EM
algorithm in handling the parameters and frailties in the model for the examination process.
Zhao et al. (2013) proposed a more general model which replaces Z in Model (4) with f .Z/,
where Z is a multiplicative frailty introduced into Model (6) as in Sun et al. (2007), and f is
a positive, completely unspecified link function. They relaxed the Poisson assumption for the
examination process. The methods of He et al. (2009) and Zhao et al. (2013) are presented in
detail in Sun and Zhao (2013, Sections 6.2–6.3).

5.2 Augmented Estimating Equations

Wang et al. (2013) approached the problem by treating the unobserved event times as missing
data. Consider the time grid G in Section 3, let Nij D Ni .sj / � Ni .sj�1/ be the number of
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events occurred in .sj�1; sj �. Only summations of Nij ’s over those subintervals whose union
coincides with an observation window are observed. Regardless of the examination times, if
Nij ’s were observed, under conditional independent censoring, Model (3) suggests a set of
complete-data estimating equations:

nX
iD1

�
Nij � �j exp.X>i ˇ/

	
rij D 0; j D 1; : : : ; G;

nX
iD1

GX
jD1

�
Nij � �j exp.X>i ˇ/

	
Xirij D 0;

where �j D ƒ.sj / � ƒ.sj�1/ is the baseline mean number of events occurring in interval
.sj�1; sj �, and rij D I.sj � Ci / is the at-risk indicator. The model parameters are estimated
by an Expectation-Solving algorithm (Elashoff & Ryan, 2004), an analog of the EM algorithm
for estimating equations without specifying the full likelihood. The algorithm iterates between
imputing the values of Nij ’s and solving the conditional expected version of the complete-data
estimating equations given the observed data. This method is called by setting method =
“AEE”:

In the case of informative censoring, the number of events between the last examination time
Yi and � is also treated as missing and imputed using a working model; see (Wang et al., 2013)
for more details. This method is requested by setting method = “AEEX”:
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5.3 Accelerated Mean Model

Chiou et al. (2017) estimated the parameters of the accelerated mean model (5) by a
profile estimating equation approach. Specifically, consider the transformed times t�ij .ˇ/ D
tij exp.X>i ˇ/ and censoring time Y �i .ˇ/ D Yi exp.X>i ˇ/, i D 1; : : : ; n. Conditional on
.Zi ; Xi ; Ki ; Yi /, the unobservedKi examination times on the transformed scale t�ij .ˇ/ are order
statistics of independent and identically distributed random variables with distribution function
�0.t/=�0.Y

�
i .ˇ//. Let ˆ.t/ D �0.t/=�0.�ˇ /, where �ˇ D � supi exp.X>i ˇ/. For given ˇ, ˆ

can be estimated with the same method of Huang et al. (2006) except that the estimate depends
on ˇ. Define Ô n.t Iˇ/ as the resulting estimator. Then, ˇ is estimated by solving the estimating
equation

nX
iD1

Xi

2
4mi Ô �1

n ¹Y
�
j .ˇ/Iˇº �

1

n

nX
jD1

mj Ô
�1
n ¹Y

�
j .ˇ/Iˇº

3
5 D 0:

In our implementation, this equation is solved with a gradient-free spectral method (Barzilai
& Borwein ; 1988;La Cruz et al. ; 2006). The accelerated mean model is called by setting
method = “AMM”. Because fitting this model is much more computing intensive than other
methods, we timed this call:

The standard errors was obtained from a smoothed bootstrap procedure proposed in Chiou
et al. (2017) by setting se = “smBootstrap”. The standard bootstrap procedure to obtain
the standard errors is still available by setting se = “Bootstrap”.

6 Simulation

We extended the simulation studies in Huang et al. (2006) and Wang et al. (2013) to provide
a thorough comparison among the estimators discussed in this paper. Because the regression
coefficient in the accelerated mean model is interpreted differently than those in the propor-
tional means model, we focus here on the comparison of the regression coefficient estimates
in the proportional means model. We generated recurrent events from a Poisson process with
mean model specified in Model (4) for t 2 Œ0; � � with � D 10. The baseline mean function
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Table 1. Simulation results for Scenario 1 where the examination times and the recurrent events are
independent with n D 100. Column bias is the average bias; ESE is the empirical standard error; ASE
is the average standard error based on the standard bootstrap; CP is the empirical coverage proba-
bility (%); time is the average time in seconds used in both point estimation and bootstrap variance
estimation.

bias ESE ASE CP (%) Time

ˇ1 ˇ2 ˇ1 ˇ2 ˇ1 ˇ2 ˇ1 ˇ2

Z D 1
MLs �0.001 0.001 0.037 0.019 0.038 0.021 95.3 96.9 588.7
MPL �0.001 0.002 0.043 0.023 0.043 0.024 94.9 96.5 237.9
MPLs �0.001 0.001 0.042 0.023 0.044 0.023 96.3 96.4 543.9
EE.SWc �0.007 0.005 0.205 0.101 0.202 0.103 96.2 96.6 72.1
EE.SWb 0.005 0.006 0.149 0.087 0.159 0.087 96.1 96.1 47.7
EE.SWa 0.005 0.007 0.129 0.078 0.137 0.076 96.4 95.2 3.4
EE.HSWm �0.005 0.011 0.241 0.135 0.242 0.128 95.2 93.8 65.6
HWZ �0.001 0.001 0.046 0.022 0.046 0.023 94.0 93.8 1227.9
AEE �0.001 0.002 0.037 0.019 0.039 0.021 95.7 96.8 176.3
AEEX �0.002 �0.002 0.044 0.021 0.046 0.024 95.1 95.8 375.4

Z � gamma distribution
MLs 0.007 �0.007 0.206 0.126 0.195 0.107 94.7 90.3 676.0
MPL 0.010 �0.007 0.215 0.127 0.198 0.107 93.8 90.4 264.8
MPLs 0.009 �0.007 0.216 0.129 0.202 0.110 93.8 90.3 578.4
EE.SWc �0.002 0.010 0.310 0.148 0.297 0.148 94.0 95.9 66.3
EE.SWb 0.012 0.007 0.216 0.113 0.227 0.121 95.5 96.0 43.7
EE.SWa 0.004 0.007 0.205 0.108 0.210 0.113 94.9 96.4 3.0
EE.HSWm 0.013 �0.010 0.304 0.179 0.310 0.166 95.9 92.8 60.9
HWZ 0.007 �0.007 0.201 0.124 0.190 0.113 93.3 91.3 1053.2
AEE 0.007 �0.007 0.205 0.125 0.194 0.110 94.8 91.2 237.1
AEEX �0.005 �0.011 0.200 0.122 0.192 0.112 94.6 91.5 362.5

Z � uniform distribution
MLs �0.008 �0.005 0.177 0.106 0.171 0.096 94.1 90.6 674.3
MPL �0.009 �0.008 0.183 0.110 0.175 0.097 94.4 90.8 266.5
MPLs �0.008 �0.007 0.187 0.118 0.179 0.099 95.2 90.2 581.7
EE.SWc �0.006 0.004 0.305 0.139 0.274 0.139 92.4 95.6 66.8
EE.SWb �0.007 0.001 0.195 0.111 0.210 0.112 96.3 95.1 44.1
EE.SWa �0.014 0.002 0.174 0.105 0.194 0.103 97.0 94.9 3.1
EE.HSWm 0.002 0.001 0.308 0.176 0.297 0.163 94.7 93.4 61.3
HWZ �0.010 �0.005 0.177 0.109 0.164 0.098 92.6 90.1 1070.1
AEE �0.009 �0.005 0.176 0.111 0.169 0.095 93.7 90.4 235.0
AEEX �0.013 �0.009 0.173 0.107 0.168 0.095 94.6 90.1 366.7

was set to be �0.t/ D 2t . Two mutually independent covariates, Xi1 and Xi2, were generated
from the Bernoulli distribution with rate 0.5 and the standard normal distribution, respectively.
The regression coefficients were set to be ˇ D .ˇ1; ˇ2/

> D .0:5; 1/>. The subject-specific
frailty Zi had three configurations: (a) fixed at constant 1; (b) generated from a gamma distri-
bution with mean 1 and variance 0.5; or (c) generated from a uniform distribution over Œ0; 2�.
The sample size n had two levels, 100 and 200.

We considered three scenarios depending on how examination times associate with recurrent
events:

� Scenario 1: Examination times and recurrent events are independent. The number of exami-
nations,Ki , was generated from a district uniform distribution on ¹1; : : : ; 6º; and the distinct
examination times, ti1; : : : ; tiKi , were the order statistics of Ki independent and identically
distributed uniform distribution over Œ0; 10�.
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� Scenario 2: Examination times and recurrent events are independent conditioning on the
covariates. If Xi1Xi2 > 0, then the number of examinations, Ki , was generated from a dis-
trict uniform distribution on ¹1; : : : ; 8º and the distinct examination times were the order
statistics of Ki independent and identically distributed exponential distribution with mean 2;
otherwise, Ki and ti1; : : : ; tiKi were generated in the same fashion as in Scenario 1.
� Scenario 3: Examination times are informative about the recurrent events after conditioning

on the covariates. If Xi1Xi2 > 0 and Zi > 1, then Ki and ti1; : : : ; tiKi were generated as in
the case of Xi1Xi2 > 0 in Scenario 2; otherwise, they were generated in the same fashion as
in Scenario 1.

Under the study designs, Scenario 3 reduces to Scenario 1 when Zi was fixed at 1, but the
two scenarios are different otherwise. In Scenario 2 when the examination times and recurrent
events are independent conditioning on covariate, subjects with Xi1 D 1 and Xi2 > 0 are

Table 2. Simulation results for Scenario 2 where the examination times and the recurrent events are
conditionally independent given covariates with n D 100. Column bias is the average bias; ESE is the
empirical standard error; ASE is the average standard error based on the standard bootstrap; CP is the
empirical coverage probability (%); time is the average time in seconds used in both point estimation
and bootstrap variance estimation.

bias ESE ASE CP (%) Time

ˇ1 ˇ2 ˇ1 ˇ2 ˇ1 ˇ2 ˇ1 ˇ2

Z D 1
MLs �0.001 0.001 0.043 0.022 0.045 0.023 96.0 96.4 600.9
MPL �0.002 0.002 0.052 0.026 0.053 0.028 95.1 96.7 243.4
MPLs �0.004 0.001 0.050 0.025 0.052 0.027 95.8 96.5 599.5
EE.SWc �0.229 �0.193 0.372 0.164 0.362 0.158 79.1 68.5 65.8
EE.SWb �0.833 �0.347 0.195 0.097 0.197 0.105 1.7 8.9 43.5
EE.SWa �0.338 �0.139 0.147 0.080 0.149 0.081 39.7 59.6 3.1
EE.HSWm �1.527 �0.399 0.291 0.164 0.292 0.158 0.0 29.8 60.8
HWZ �0.008 0.000 0.060 0.028 0.059 0.029 94.6 95.7 1120.5
AEE �0.001 0.001 0.043 0.022 0.045 0.024 95.2 96.5 236.7
AEEX �0.020 �0.007 0.055 0.027 0.056 0.029 94.3 96.8 474.5

Z � gamma distribution
MLs 0.010 �0.007 0.202 0.119 0.192 0.104 94.4 90.9 728.1
MPL 0.025 �0.002 0.200 0.122 0.195 0.105 94.5 90.9 282.0
MPLs 0.004 �0.006 0.203 0.124 0.199 0.108 94.7 90.5 684.1
EE.SWc �0.277 �0.202 0.464 0.207 0.405 0.187 79.3 71.4 66.9
EE.SWb �0.828 �0.346 0.247 0.127 0.256 0.134 10.5 27.1 43.9
EE.SWa �0.333 �0.139 0.216 0.110 0.221 0.115 68.1 77.5 3.1
EE.HSWm �1.500 �0.409 0.349 0.207 0.340 0.198 1.5 40.4 61.4
HWZ 0.010 �0.006 0.212 0.128 0.198 0.115 92.9 91.7 1081.3
AEE 0.014 �0.006 0.199 0.119 0.190 0.103 94.4 90.9 341.3
AEEX �0.007 �0.016 0.203 0.123 0.192 0.108 94.8 90.8 512.6

Z � gamma distribution
MLs �0.007 0.001 0.177 0.109 0.168 0.094 94.5 91.1 673.2
MPL 0.014 0.007 0.185 0.110 0.171 0.093 94.8 90.4 264.8
MPLs �0.003 0.004 0.187 0.112 0.176 0.098 94.9 90.7 638.4
EE.SWc �0.272 �0.192 0.442 0.205 0.392 0.188 80.2 75.4 61.7
EE.SWb �0.808 �0.345 0.239 0.128 0.242 0.128 8.8 25.4 40.9
EE.SWa �0.327 �0.138 0.202 0.103 0.204 0.109 64.6 77.1 3.5
EE.HSWm �1.492 �0.400 0.349 0.209 0.332 0.183 0.8 41.2 57.3
HWZ �0.017 0.001 0.179 0.117 0.172 0.094 93.0 89.7 989.9
AEE �0.002 0.002 0.174 0.108 0.166 0.090 94.5 89.5 301.4
AEEX �0.030 �0.009 0.168 0.112 0.169 0.096 95.0 90.2 463.4
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Table 3. Simulation results for Scenario 3 where the examination times are informative about the
recurrent events after conditioning on covariates with n D 100. Column bias is the average bias; ESE
is the empirical standard error; ASE is the average standard error based on the standard bootstrap;
CP is the empirical coverage probability (%); time is the average time in seconds used in both point
estimation and bootstrap variance estimation.

bias ESE ASE CP (%) Time

ˇ1 ˇ2 ˇ1 ˇ2 ˇ1 ˇ2 ˇ1 ˇ2

Z � gamma distribution
MLs �0.147 �0.038 0.199 0.117 0.188 0.102 86.7 87.7 594.9
MPL �0.164 �0.048 0.210 0.115 0.190 0.101 84.5 87.3 221.6
MPLs �0.172 �0.048 0.208 0.118 0.192 0.103 85.5 86.6 496.9
EE.SWc �0.248 �0.110 0.318 0.153 0.290 0.147 81.6 85.8 64.9
EE.SWb �0.379 �0.155 0.215 0.113 0.225 0.119 59.9 74.7 42.6
EE.SWa �0.206 �0.078 0.192 0.100 0.208 0.109 86.1 88.7 2.9
EE.HSWm �0.723 �0.191 0.314 0.186 0.309 0.166 38.5 70.6 58.8
HWZ �0.003 �0.006 0.212 0.125 0.199 0.112 91.7 91.2 990.9
AEE �0.144 �0.038 0.198 0.116 0.189 0.100 88.8 90.7 225.6
AEEX �0.015 �0.014 0.206 0.122 0.191 0.105 92.6 89.9 419.1

Z � uniform distribution
MLs �0.143 �0.032 0.181 0.113 0.173 0.096 86.7 89.7 633.3
MPL �0.169 �0.039 0.186 0.114 0.177 0.097 83.3 88.8 246.3
MPLs �0.175 �0.040 0.189 0.115 0.180 0.099 83.0 89.3 547.7
EE.SWc �0.258 �0.130 0.318 0.150 0.292 0.147 79.1 83.2 64.7
EE.SWb �0.453 �0.183 0.218 0.104 0.216 0.115 45.2 66.5 43.9
EE.SWa �0.221 �0.087 0.185 0.099 0.193 0.103 80.6 87.9 3.1
EE.HSWm �0.861 �0.229 0.323 0.179 0.303 0.165 21.0 65.7 59.8
HWZ �0.008 0.001 0.181 0.123 0.171 0.112 93.4 91.5 1010.1
AEE �0.142 �0.032 0.181 0.112 0.171 0.105 86.6 90.6 241.7
AEEX �0.022 �0.010 0.174 0.116 0.167 0.097 94.6 90.9 434.9

more likely to be examined more frequently. In Scenario 3 when the examination times are
informative about the recurrent events, the design implies a positive association between the
underlying recurrent event process and the examination time process; subjects with Xi1 D 1,
Xi2 > 0 and Zi > 1 have a higher event rate and tend to be examined more frequently.
Since examination times were generated from continuous probability distributions for all three
scenarios, EE.HSWc estimator was excluded from the study as the EE.HSWc estimator is not
applicable to scenarios when there are no ties in examination times. The standard errors were
estimated using the standard bootstrap procedure by setting se = “Bootstrap” with R =
200 bootstrap samples. For each configuration, 1 000 datasets were generated and analysed.
The timing results were obtained on a Linux machine with 2 GHz CPU.

Table 1 presents the results under Scenario 1. All estimators are virtually unbiased. The
empirical standard errors and the estimated standard errors from the standard bootstrap pro-
cedure agree closely for all estimators, suggesting that the bootstrap procedure provides valid
inference. The estimating-equation-based estimators were fastest to compute, but they appear
to have higher standard errors than other estimators. All estimators had higher standard errors
in the case of gamma frailty, which has high variance than the case of uniform frailty. The
empirical coverage percentages are mostly reasonably close to the nominal level of 95%, with
a closer agreement with larger sample size (results for n D 200 not shown).

Table 2 summarises the results under Scenario 2. No estimator except those based on estimat-
ing equations show noticeable bias. The substantial bias and, consequently, the low coverage
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rate of the confidence intervals from the estimating equation approaches are due to their mis-
specification of the examination time process. The other estimators do not require specification
of the examination time process, which might not be of primary interest. They appear to have
similar results regarding bias and standard errors. Among them, the AEE estimator is the fastest
and has the smallest standard errors, albeit the advantage in standard error is small.

Table 3 summarises the results under Scenario 3. Under this setting of informative examina-
tion times, the only unbiased estimators appear to be the HWZ estimator and the AEEX estimator,
with comparable standard errors. This is explained by the rationals on which they are derived.
Their coverage rates of the confidence intervals were a bit lower than the nominal rate for
the continuous regression coefficient, and the agreement improves as the sample size becomes
n D 200 (results not shown). The AEEX estimator is twice as fast as the HWZ estimator.

7 Discussion

Nonparametric estimation of the mean cumulative function or mean rate function (e.g. Sun
& Zhao, 2013, Chapters 3 and 4) plays an important role in many methods for semiparametric
regression models. Estimation of semiparametric approaches often involves an alternate itera-
tion between updating the estimate of ˇ and updating the estimate of �0.t/, the latter of which
is often based on nonparametric estimation given ˇ. For example, the MLE and MPLE of
Wellner & Zhang (2007) are based on the one-sample nonparametric MLE and MPLE of Well-
ner & Zhang (2000). The method of Huang et al. (2006) does not require alternate iteration in
estimating the parameters of Model (4) because of the special structure of this model. When the
idea is adapted to the accelerated mean Model (5) of Chiou et al. (2017), nonparametric esti-
mation given the parametric part becomes necessary in an alternate iteration procedure. Some
nonparametric estimation methods with self-consistent algorithm (Hu et al., 2009a, 2009b) have
not been but could be combined with a parametric estimation procedure to form a semipara-
metric approach. For methods implemented in the spef package, nonparametric estimation
can be requested by setting right hand of the model formula to be intercept only; for example,
PanelSurv(id, time, count) ˜ 1. In addition, the baseline function estimates can
be plotted with the generic plot function as illustrated in Sections 4 and 5.

The scope of this review is limited to available implementations of semiparametric regres-
sion models with time-independent covariates. A wide range of topics on panel count data have
been studied, many of which have been reviewed by Sun & Zhao (2013). Examples are non-
parametric comparison (Zhang, 2006), semiparametric transformation models (Li et al., 2010),
multivariate panel count data analysis (He et al., 2008; Li et al., 2011; Zhang et al., 2013;
Li et al., 2015), measurement errors (Kim, 2007), mixed recurrent event and panel count data
analysis (Zhu et al., 2013), varying-coefficient models (He et al., 2017), incorporation of obser-
vation history in regression (Li et al., 2010; Deng et al., 2015) and so on. Some topics are
worth investigating; for example, adapting the semiparametric regression with time-dependent
covariates for recurrent event data (Huang et al., 2010) to panel count data. The unavailabil-
ity of cutting-edge methods to practitioners calls for user-friendly, quality controlled software
implementation as reproductive statistical research gains sharpened focus.
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