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1. Introduction

Natural neurotoxins are the products of Nature’s most experi-

enced chemists and pharmacologists. These structurally com-
plex small molecules have been isolated from bacteria, plank-

ton, amphibians, plants, and even birds and serve as incredibly
potent weapons for self-defense and prey capture. Due to the

necessity of rapidly disabling potential predators and subduing
prey, natural neurotoxins have evolved to target membrane-

bound ion channels.[1] One such biological target is the focus

of this Minireview, voltage-gated sodium channels (VGSCs),
which are located in neurons and distributed throughout car-

diac, skeletal, and muscle tissues.
VGSCs are transmembrane protein complexes which facili-

tate cellular communication and regulate membrane potentials
in response to sodium ions.[2] Fundamental structural studies
on bacterial VGSCs[3] and recent cryo-EM studies on insect and

human VGSCs have revealed the architecture of the protein.[4]

VGSCs are composed of a large a-subunit containing the ion
conducting pore and smaller regulatory b-subunits. The a-sub-
unit is comprised of four homologous domains with each

domain consisting of six transmembrane segments (Figure 1).
These four domains are connected by flexible loops and to-

gether assemble the ion conducting channel, which is selective

for sodium ions. The passage of sodium ions into the excitable

cell is permissible when the pore is in its “open” state and not
permitted when the channel is in the “closed” conformational

state. Abnormal regulation of VGSCs by mutations or ligands
can result in extended depolarization by excessive flow of

sodium ions into the cell or loss of current.[2] Such phenotypes
can have significant physiological consequences.

Small-molecule neurotoxins are known to interact with

VGSCs at three distinct locations (Figure 1).[5] Receptor site I
on the flexible loops connecting segments 5 and 6 of each

domain is targeted by the guanidinium toxins: tetrodotoxin
(1), chiriquitoxin (2), saxitoxin (3), gonyautoxins (e.g. , gonyau-

toxin 3, 4), and zetekitoxin AB (5). These molecules have the
effect of blocking the pore and preventing ion conductance,

resulting in numbness, tingling, and paralysis.[6] Alkaloid toxins

such as aconitine (6), batrachotoxin (7), grayanotoxin (8), and
veratridine (9) are known to interact with receptor site II, locat-
ed at the top of segment 6 of domains I and IV.[7] Molecules
that interact with receptor site II bind to VGSCs while in the

open state, resulting in prolonged activation and cell depolari-
zation.[8] These alkaloid toxins have several modes of disrupt-

ing channel function, including reducing ion specificity and al-

tering the kinetics of activation and inactivation, leading to
overstimulation of the central nervous system.[9] Ladder poly-

ether compounds, including brevetoxin (10) and ciguatoxin
(11), bind at receptor site V, which bridges domain I segment 6

and domain IV segment 5 (Figure 1, shown in blue). These mol-
ecules primarily alter activation and inactivation kinetics of the

channel.[9]

The highly potent nature of neurotoxins for VGSC targets
has inspired numerous drug design campaigns to treat central

nervous system disorders, pain, and muscle spasms.[10] Small
molecule neurotoxins have the benefit of target specificity ob-

served with protein and peptide neurotoxins coupled with the
added advantage of an array of drug formulation options that
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are unsuitable for larger, more unstable molecules.[11] However,
constructing and diversifying the intricate scaffolds of natural

small molecule neurotoxins remains a significant challenge and
has hindered full exploration of these molecules’ therapeutic

potential. Understanding the biosynthetic pathways employed
by organisms to assemble these structurally complex mole-

cules can inform and inspire synthetic and biocatalytic ap-
proaches toward these small molecule neurotoxins and related

compounds. Here, we present the known elements and pro-

posals for the biosynthetic pathway that give rise to each
small molecule VGSC ligand.

2. Receptor Site I

2.1. Saxitoxins and gonyautoxins

Saxitoxins and their sulfate-containing derivatives, gonyautox-
ins, belong to a larger class of molecules collectively referred

to as paralytic shellfish toxins (PSTs). Over 50 natural products
have been isolated, and these molecules share a 5-5-6 tricyclic

bisguanidinium ion-containing core and vary in oxygenation
pattern and incorporation of sulfate, carbamate, and acetate

groups (Figure 2).[12] A subset of these compounds have been

evaluated for VGSC affinity. These studies have shown that the
affinity is dependent on the decoration of the scaffold, where

saxitoxin (3) is often used as a benchmark with a Kd of 4.3 nm

in rat brain extracts.[12a, 13] Since the elucidation of its structure
in 1975,[14] saxitoxin (3) has become a fundamental tool for the

study of VGSCs where it is commonly used in a tritiated form
to assay the relative affinity of compounds to bind at receptor

site I.[15]

PSTs were first identified in the Alaskan butter clam, Saxido-

mus giganteus, which bioaccumulates these toxins produced
by cyanobacteria and dinoflagellates.[16] PST biosynthesis could
present a fascinating evolutionary convergence across phyla

which is not completely understood.[17] Studies investigating
the biosynthetic pathway toward PSTs have been conducted in
both cyanobacteria and dinoflagellates.[18] The biosynthetic
pathway has been studied in significantly more detail in cyano-

bacteria than the dinoflagellate pathway, although there is evi-
dence that some biosynthetic steps may be conserved. Specifi-

cally in the timing of sulfation events that convert saxitoxin

into gonyautoxins[19] and the formation of the first proposed
biosynthetic intermediate, 12.[20]

Several hypotheses on the biosynthetic route toward PSTs
have been reported.[21] Gene clusters encoding enzymes in-

volved in saxitoxin biosynthesis were first discovered by Neilan
and co-workers in Cylindrospermopsis raciborskii.[22] Since the

initial discovery, clusters have also been identified in Microseira

wollei,[23] Aphanizomenon sp. NH-5,[24] Aphanizomenon gracile,[25]

Dolichospermum circinale,[24] Raphidiopsis brookii[26] and Syctone-

ma crispum.[27] These gene clusters are relatively large, ranging
in size from 25.9 to 54 kb, and consist of genes encoding the

following core enzymes present in all clusters : sxtA, sxtB, sxtD,
sxtE, sxtG, sxtH, sxtI, sxtM, sxtP, sxtQ, sxtR, sxtS, sxtT, and sxtU

(Table 1). The complete biosynthetic pathway has not been

elucidated; however, in vitro characterization studies and inter-
mediate analysis have begun to define crucial steps.[27, 28]

Identification of putative biosynthetic intermediates present
in dinoflagellate and cyanobacterial culture extracts has also

contributed to hypotheses on the pathway that delivers PSTs.
Using mass spectrometry analysis in combination with synthet-

ically generated standards, Yotsu-Yamashita and co-workers

have identified several new potential biosynthetic intermedi-
ates, including 12 (Figure 3), and the identification of 16 in di-

noflagellate extracts (Figure 3 B, inset).[20, 29] Characterization of
SxtA supports 12 as a biosynthetic intermediate.[28a] However,
in vitro reactions with sxt oxygenases suggest that decarbamo-
yl 11-a-hydroxysaxitoxin (16) is not on the pathway to saxitox-

in (3) and that it is more likely a shunt product of this biosyn-
thetic pathway.[28b] The first and final steps in the pathway are
well supported thus far, but the critical oxidative cyclization of

the linear 12 to form the tricyclic common to the PSTs is yet to
be revealed.

In vitro characterization of the enzymes proposed to be in-
volved in PST biosynthesis, has been explored for five enzymes

to date: the polyketide-like synthase SxtA,[28a] Rieske oxygenas-

es SxtT, SxtH, and GxtA,[28b] and the sulfotransferase SxtN
(Figure 3 A, B).[27] SxtA performs the first set of reactions in the

saxitoxin biosynthetic pathway, assembling intermediate 12
from arginine, S-adenosylmethionine, and malonyl-CoA (Fig-

ure 3 A).[28a] Fragments of the gene encoding this enzyme have
also been identified in dinoflagellates and are often used as a
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method of detection for PST-producing capabilities in biologi-
cal samples.[30] The Rieske oxygenase SxtH was found to install

the C12 b-hydroxyl group prior tricycle formation while Rieske
oxygenases SxtT and GxtA perform site- and stereoselective C@
H hydroxylation reactions at the C12 a-position of b-saxitoxinol
(13) to form saxitoxin (3) and the C11 b-position of saxitoxin

(3) to form 11-b-hydroxysaxitoxin (14), respectively (Fig-

ure 3 B).[28b] The timing of installation of the C12 b-hydroxy
group present in saxitoxin (3) has not been precisely defined.

However, in vitro experiments have shown that SxtH mediates
this hydroxylation prior to tricycle formation.[28b] Additionally,

the native redox partners necessary for catalysis by the Rieske
oxygenases in cyanobacteria have not been identified; the re-

ported study uses a non-native redox partner, VanB, from the
vanillin O-demethylase Rieske oxygenase system in Pseudomo-

nas as a surrogate.[28b] Finally, the most recently characterized
enzyme, SxtN, was found to catalyze the sulfation of saxitoxin

(3) to form gonyautoxin 5 (15).[27] Enzymes involved in oxida-
tive cyclization to form the tricycle remain uncharacterized.

2.2. Zetekitoxin

Two rare saxitoxin analogues, zetekitoxin AB (5) and zetekitox-
in C (structure not known), were discovered in the Panamanian

golden frog, Atelopus zeteki, in 1969 (Figure 3 C).[31] LD50 values
were determined in mouse bioassays for the two toxins, re-

Figure 1. Diagram of voltage-gated sodium channel structure and binding sites of natural small molecule neurotoxins. Receptor site I is indicated in red and
is targeted by the guanidinium toxins. Receptor site II, indicated in green, interacts with alkaloid toxins and receptor site V, indicated in blue, is targeted by
the ladder polyethers.
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vealing that 5 and zetekitoxin C are significantly more potent

than saxitoxin (3) with LD50s of 1.5–3 and 80 mg kg@1, respec-
tively.[32] Direct comparison to 3 in Xenopus oocytes expressing

human heart, rat brain IIa, and rat skeletal muscle ion channels

revealed an incredible increase in potency with 5 binding with
picomolar affinity compared to the nanomolar affinity ob-

served with 3.[33] Unfortunately, the Panamanian golden frog,
which is classified as a toad, became critically endangered and

studies on the organism ceased.[33] Zetekitoxins have not been
isolated from any other biological source. The small quantity

of 5, 300 mg, from a single isolation has fueled structural stud-
ies that culminated in the elucidation of the structure of zete-
kitoxin AB in 2004. From extracts of toad skins that had been

stored at @20 8C from 1971 to 1986, the natural products was
isolated and stored at @80 8C until 1999 when the material

was used for detailed NMR studies that ultimately gave rise to
the structure.[33] These structural studies revealed that 5 was

an analogue of 3, with an added 1,2-oxazolidine ring-fused
lactam moiety unique to 5. This unprecedented structural

feature has not been observed in any other PST. However,

synthetic studies generating advanced precursors to 5 have re-
vealed potential stereochemical discrepancies at the carbonyl

carbon relative to the original 13C NMR characterization data.[34]

Further efforts to synthesize significant quantities of 5 will

likely resolve this debate.
Although Panamanian golden frogs are functionally extinct

in the wild, several zoos have developed exceptional programs

in efforts to repopulate the species in captivity, including the
San Diego, Detroit, and Smithsonian National Zoos. It is un-

known if these frogs still produce zetekitoxins in captivity. As 3
has only been found to be produced by microorganisms and

not by complex higher organisms,[35] it is very likely that zeteki-

Figure 2. Examples of saxitoxin and gonyautoxin analogues isolated from
natural sources.

Table 1. Enzymes encoded in cyanobacterial PST biosynthetic gene clusters. Those highlighted in gray are present in all gene clusters represented.

Enzyme M. wollei C. raciborskii D. circinale Aphanizomenon sp. R. brookii S. crispum Classification

SxtA x x x x x x polyketide synthase-like
SxtB x x x x x cytidine deaminase
SxtC x x x x x x unknown
SxtD x x x x x x non-heme diiron
SxtE x x x x x x unknown
SxtF x x “toxic compound extrusion protein”
SxtG x x x x x x amidinotransferase
SxtH x x x x x x Rieske oxygenase
SxtI truncated x x x x x carbamoyltransferase
SxtJ x x x x x unknown
SxtK x x x x x unknown
SxtL x x x x x unknown
SxtM 3 proteins x x x x x export protein
SxtN 2 proteins x x x x x sulfotransferase
SxtO x x x x adenylylsulfate kinase
SxtP x x x x x x regulator/pilli formation
SxtQ x x x x x x unknown
SxtR x x x x x x unknown
SxtS x x x x x x non-heme iron, 2-oxoglutarate dependent
SxtT x x x x x x Rieske oxygenase
SxtU x x x x x x NADP+-dependent dehydrogenase
SxtV x x x x x FAD-dependent succinate dehydrogenase
SxtW x x x x 2[4Fe-4S] ferredoxin
SxtX x x x x methyltransferase
SxtY x phosphate uptake regulator
SxtZ x histidine kinase
GxtA x x x Rieske oxygenase
SxtACT x acyltransferase
SxtSUL x x sulfotransferase
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toxins are also derived from microbial sources on the skin. Evi-
dence of cyanobacteria, the same class of organisms known to

produce 3, have been identified on the skin of both wild and
captive populations of A. zeteki.[36] If captive toads still produce
zetekitoxins, conducting metagenomic analysis on the microbi-

al communities on the toads’ skin using saxitoxin biosynthetic
gene clusters as a guide could help identify the enzymes re-
sponsible for the unique modification to the scaffold. These
enzymes could be used to complement existing synthetic ef-

forts in accessing the scaffold of 5 for further VGSC binding
studies.[34, 37]

2.3. Tetrodotoxin and chiriquitoxin

The name tetrodotoxin (1) is based on the animals it is fa-
mously isolated from, the Tetraodontidae family, including puf-

ferfish, globefish, blowfish, and porcupine fish.[38] Tetrodotoxin
is known for its high toxicity, with an estimated human LD50 of

10.2 mg kg@1.[39] Poisoning by 1 is well recognized as a risk in

consuming Japanese fugu, the pufferfish delicacy that must be
harvested at certain times of the year and carefully prepared

by a skilled chef to avoid poisoning the recipient.[40] The struc-
ture of the molecule was determined in 1964, which revealed

a remarkable 2,4-dioxa-adamantane structure appended to a
cyclic guanidine which is decorated with hydroxy groups

(Figure 4, 1).[41] Since its initial isolation from pufferfish, 1 and
derivatives have also been isolated from other animals includ-

ing octopuses[42] and several amphibians including populations
of frogs and newts.[39] A selection of observed 1 derivatives,
including chiriquitoxin (2), an analogue observed in frogs,[43]

are shown in Figure 4. Some of these toxins are epimers, such

Figure 3. Characterized biosynthetic steps in paralytic shellfish toxin biosynthesis. A) Substrates required for the SxtA reaction. B) Characterized late-stage
steps in paralytic shellfish toxin biosynthesis. Inset : In vitro evidence for order of hydroxylation events in saxitoxin (3) biosynthesis. C) Structure of zetekitoxin
AB (5).

Figure 4. Structures of tetrodotoxin (1) and chiriquitoxin (2) and commonly
observed derivatives 4-epi-tetrodotoxin (17), 11-deoxytetrodotoxin (18), and
6-epi-tetrodotoxin (19).
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as 4-epi-tetrodotoxin (17) and 6-epi-tetrodotoxin (19), and are
typically not isolated from the same organisms as tetrodotoxin

(1).[39] This evidence of stereodivergence in isolations among
different organisms implies the necessity of selective oxidation

in the biosynthetic pathway, as is mirrored by enzymes the 3
biosynthetic pathway.[28b] The presence of these toxins across
classes of organisms as well as their unique toxin profiles has
drawn attention to the biosynthetic pathway, which is yet to
be solved.

A leading hypothesis on the biosynthesis of 1 and related
compounds proposes that microorganisms are the true pro-

ducers, synthesizing these compounds as a part of their symbi-
otic relationship with eukaryotic partners.[38] The most convinc-

ing evidence supporting this hypothesis is the variability of
toxicity from tetrodotoxin-producing organisms held in captivi-

ty, implying that some unspecified external stimulant is neces-

sary to elicit toxin production.[44] Studies on the frog Atelopus
varius[45] and the fire-bellied newt Cynops pyrrhogaster[46] indi-

cated that toxin levels were non-detectable in captive-raised
organisms, whereas studies on the rough-skinned newt, Tari-

cha granulosa,[47] have demonstrated an increase in toxin pro-
duction while held in captivity. This ambiguity and irreproduci-

bility has motivated efforts to pursue the isolation of tetrodo-

toxin-producing bacteria from the skin and tissues of host or-
ganisms.[39, 48] While microorganisms from producing organisms

have been successfully cultured on many occasions, the
common result has been inconsistent production of 1 or relat-

ed metabolites in isolated culture.[49] Most notably, studies by
Noguchi have unequivocally demonstrated bacterial origins for

tetrodotoxin production in the intestines pufferfish and xan-

thid crab by isolating gut microbes in pure culture and assess-
ing them for production of 1.[50] Despite reports of many tetro-

dotoxin-producing bacteria, a gene cluster linked to tetrodo-
toxin biosynthesis has not been identified. The involvement of

a non-ribosomal peptide synthetase (NRPS) specific to arginine
is hypothesized initiate tetrodotoxin biosynthesis, and candi-

date genes have been identified, but no specific activity has

been confirmed.[51] Interestingly, one study in Aeromonas sp.
suggested the involvement of a plasmid in the production of
1, which could account for the inconsistencies observed in
tetrodotoxin-containing organisms held in captivity and the

distribution of the toxin among various species, as bacterial
plasmids are easily transferrable.[49]

Several biosynthetic hypotheses for the assembly of 1 have
been proposed. Shimizu and co-workers initially proposed two
potential building blocks to combine with arginine, an apiose-

type C5 sugar or isopentenyl pyrophosphate (Figure 5 A).[52] In
evaluating this biosynthetic hypothesis, Yotsu-Yamashita and

co-workers proposed that a C10 monoterpene starter unit, ger-
anyl guanidine (20) might be a biosynthetic precursor to the

intermediate isolated from newts, 4,9-anhydro-10-hemiketal-5-

deoxytetrodotoxin (21).[53] Intermediate 21 is just one oxidation
state lower than 4,9-anhydrotetrodotoxin (22), which is in equi-

librium with 1 in solution (Figure 5 B). However, this intermedi-
ate has only been observed in samples from terrestrial animals

and not the marine tetrodotoxin producers, bringing into
question its validity as a biosynthetic intermediate that is

universal to all producers. Conversely, Yotsu-Yamashita and co-
workers also identified potential biosynthetic intermediates

that were unique to marine producers.[54] Seven novel spirocy-
clic intermediates were extracted from pufferfish, five of which

(23–27) were used to bolster a revised biosynthetic proposal
requiring several additional oxidation events to achieve the

complete structure of 1 (Figure 5 C). Intermediates 28 and 29
are predicted structures that have not been observed in the

pufferfish extracts.

Additional work is necessary to identify and link a gene clus-
ter to tetrodotoxin biosynthesis. The elucidation of the biosyn-

thetic pathway will provide new avenues for production of
these compounds, relieving the strain on amphibian and

marine sources as the sole sources for 1 and will complement
synthetic techniques.

3. Receptor Site II

3.1. Grayanotoxin

Grayanotoxins are produced by honey-producing plants like

Rhododendron sp. and Leucothoe grayana.[55] The most abun-
dant analogues isolated are grayanotoxin 1 (8) and grayano-

toxin 3 (32).[56] Grayanotoxins have also been referred to as an-
dromedotoxin, rhodotoxin, and asebotoxin in early studies and

are often referenced as grayanane diterpenoids and grayanoids
in current literature.[57] Grayanotoxins in Rhododendron honey

are the primary agent of mad honey poisoning, a disease char-
acterized by dizziness, hypotension, and bradycardia.[58] While

the effects of this poisoning are serious, it is rarely fatal to

humans.[59] The grayanotoxins share a characteristic 5-7-6-5
ring system bearing hydroxyl and acetate groups which modu-

late the compounds’ biological activity.[60]

Preliminary exploration of the grayanotoxin biosynthetic

pathway has been carried out in L. grayana.[61] In 1981, Ueda
and co-workers reported the incorporation of 14C-labeled me-

valonic acid (31) into 32 when fed at the stems of the plant,

consistent with a terpene-derived biosynthetic pathway (Fig-
ure 6).[61] The group also attempted 14C-labeling studies with

(@)-kaurene (33), a molecule containing a 6-6-6-5 ring core,
and observed low levels of incorporation (&0.0005–0.0007 %)
into 32. It is rationalized that this could be due to low uptake
of 33 by the plant; however, it is still unclear whether 33 is a

true biosynthetic precursor to 32, as no further studies have
been reported. Genes responsible for the production of graya-
notoxins have not been identified, likely due to the difficulty
of identifying relevant genes in plant genomes. Further work is
warranted, as understanding the biosynthetic machinery nec-

essary to assemble grayanotoxins will likely highlight potential
biosynthetic genes for other important alkaloids in other plant

sources.

3.2. Aconitine

The roots and tubers of Aconitum plants are commonly used

as traditional medicine in China to treat fever, inflammation, di-
arrhea, asthma, and certain tumors.[62] The desired pharmaco-
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logical properties of Aconitum species are due to a collection
of C20, C19, and C18 diterpene alkaloids.[62] The C19 diterpene

aconitine (6) was the first alkaloid identified from Aconitum
plants in 1833 by Geiger.[63] The aconitine core scaffold is con-
served over 70 structurally unique bioactive alkaloids.[64] De-

spite its widespread use in China as a topical and oral analge-
sic, Acontium extracts containing the aconitine alkaloids have
the potential to be fatally toxic.[62]

Although the specific genes for the initial processes have
not been identified in Aconitum, it is understood that the bio-

synthesis of diterpene alkaloids typically begins via an estab-
lished route to form geranylgeranyl pyrophosphate (GGPP, 34 ;

Figure 7).[65] GGPP is cyclized by ent-copalyl diphosphate syn-

thase to form ent-copalyl diphosphate (35) which undergoes a
rearrangement to form 33, similar to the proposed pathway

for grayanotoxins.[66] Candidate genes for enzymes responsible
for the diversification of the aconitine scaffold have been iden-

tified through transcriptome analysis of Aconitum carmichaelii
flowers, buds, leaves, and roots, revealing the possible involve-

Figure 5. Prominent biosynthetic proposals for tetrodotoxin (1) biosynthesis. A) General biosynthetic proposal by Shimizu for all producing organisms,
B) Yotsu-Yamashita proposal for terrestrial tetrodotoxin (1) producers, C) Yotsu-Yamashita proposal for marine tetrodotoxin (1) producers.

Figure 6. Possible biosynthetic precursors obtained by labeling studies.
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ment of cytochrome P450s, methyltransferases, and acyltrans-
ferases.[66, 67] Zhao and co-workers proposed a putative biosyn-

thetic pathway based on the proposed function of each gene
product assigned through BLAST analysis.[66] It is proposed that

33 is further modified by cyclases capable of a simultaneous
ring expansion and contraction form the putative core inter-

mediate (36).[66] Finally, intermediate 36 could be modified by

oxygenases and acyltransferases to form 6. Knowledge of puta-
tive genes invites additional feeding studies and functional

characterization of the corresponding enzymes.

3.3. Veratridine

The alkaloid veratridine (9) is isolated from the rhizomes of

plants of the family Liliaceae, specifically Veratrum album,
known as white hellebore.[68] Veratridine is one of several alka-
loids produced by V. album which confer toxicity to the medici-
nal plant.[69] The mode of action of 9 is the same as grayano-

toxins (8, 32) and aconitine where binding to receptor site II
results in VGSC opening, allowing an influx of sodium into the

cell.[9] The biosynthesis of veratridine has not been interrogat-

ed through feeding studies or gene analyses and no biosyn-
thetic proposals have been reported. However, its alkaloid

architecture suggests that it likely stems from similar linear ter-
pene starting units as proposed for grayanotoxins and aconi-

tine.

3.4. Batrachotoxin

Batrachotoxin (7) is the most potent non-protein natural prod-

uct neurotoxin discovered to date.[70] Its remarkable affinity for
VGSCs led to its development as a tool to probe VGSCs in ex-

citable membranes, as demonstrated by the Narahashi’s semi-
nal study in giant squid axons.[71] The biosynthesis of this

potent molecule is particularly interesting due to its variety of
sources of isolation. In addition to being isolated from Colum-

bian poison dart frogs,[70b] 7 has also been isolated from two
genera of passerine birds, Pitohui and Ifrita, in Papua New

Guinea.[72] Interestingly, the most abundant analogues
(Figure 8) are observed in both classes of organisms, suggest-

ing a possible common biosynthetic source.[73]

Diet has been proposed as the source of 7 found in amphib-
ians and birds on different continents.[74] In 2004, Dumbacher

and co-workers discovered 7 in Choresine beetles in New
Guinea, a likely food source for the Pitohui and Ifrita birds.[75]

These same beetles are also a likely supplier of toxin for the
poison dart frogs, because frogs raised in captivity do not
carry 7. However, the Choresine beetles are not suspected to

possess the biosynthetic machinery necessary to form the ba-
trachotoxin alkaloid structure.[75] Instead, Dumbacher proposes

the beetles may construct alkaloids using plant phytosterols
from their own diet or using a microbial symbiont. Interesting-

ly, the poison dart frogs which carry 7 have batrachotoxin-re-

Figure 7. Proposed biosynthesis of aconitine (6) with geranylgeranyl pyrophosphate (34) as a precursor.

Figure 8. Structures of common batrachotoxin (7) products in poison dart
frogs and birds.
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sistant VGSCs and are therefore able to consume the toxic bee-
tles without side effects.[76] It is unknown if Pitohui and Ifrita

also have this adaptation. The mystery of batrachotoxin bio-
synthesis is still yet to be solved as no biosynthetic intermedi-

ates have been identified. In terms of identifying new biosyn-
thetic intermediates toward 7, feeding studies could be benefi-

cial. The possibilities of symbionts and plant sources of 7 have
not been ruled out and present considerable work for future

studies.

4. Receptor Site V

4.1. Brevetoxins and ciguatoxins

Brevetoxins (e.g. , brevetoxin 1, 10) and ciguatoxins (e.g. , cigua-
toxin 1, 11) are referred to as ladder polyether toxins for their

unique structures and are produced by the dinoflagellates Kar-

enia brevis and Gambierdiscus species, respectively.[77] Ciguatox-
ins bioaccumulated by fish cause ciguatera fish poisoning, a

disease characterized by a myriad of neurological and gastro-
intestinal symptoms.[78] Although ciguatera is rarely fatal, its

effects can become chronic and persist for over a year. By
contrast, brevetoxins cause similar symptoms, but the effects

are rarely chronic or fatal.[79]

The biosynthesis of the brevetoxins and ciguatoxins are an-
ticipated to be similar due to their homologous structures.

Since both are produced by dinoflagellates, the genes associat-
ed with biosynthesis have not been completely identified due

to the complexity of dinoflagellate genomes. However, biosyn-
thetic routes have been proposed for ladder polyethers follow-

ing the general scheme outlined in Figure 9 for 11.[80] Although
outside of the scope of this Minireview, the biosynthetic en-

zymes required for the assembly of polyether ionophore anti-
biotics with similar structural features to brevetoxins and ci-

guatoxins are known and could be used to guide biosynthetic

hypotheses.[81] Murray and co-workers revealed the most com-
prehensive collection of polyketide synthase genes in dinofla-
gellates so far from the genomes of Gambierdiscus polynesien-
sis and Gambierdiscus excentricus, some of which could be
associated with the production of ciguatoxins.[80] Concurrently,
Murray and co-workers published a transcriptome from

K. brevis which revealed several single and multidomain poly-

ketide synthases potentially involved in the production of bre-
vetoxins.[82] This cutting edge work by Murray provides new

clues toward understanding the enzymes involved in assem-
bling the complex polyether ladder scaffolds.

5. Conclusions

The natural neurotoxins discussed herein are remarkable mole-

cules that have demonstrated significant utility to the study of
VGSCs, whether they are used to probe structural features,

Figure 9. Proposed biosynthesis of ciguatoxin 1 (11).
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modulate cell potential on demand, or identify new drugs. Un-
derstanding the biosynthetic pathways of these complex small

molecules has the potential to provide a wealth of information
for synthetic and biocatalytic efforts to avoid exploiting natural

sources, such as toxin producing amphibians, insects, and
plants. Further work elucidating biosynthetic pathways of

small molecule neurotoxins is warranted to develop innovative
new methods for the production of valuable probes and drug

targets for VGSCs.
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