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Novelty and impact 

Polycomb group protein EZH2 is found to be elevated in multiple types of cancer and 

involved in the progression of malignant grading and staging. Our study revealed that 

EZH2 and EED play a critical role related to the androgen receptor pathway in prostate 

cancer. We also found astemizole to be a potent PRC2 disruptor that significantly 

represses EZH2 and AR expressions in prostate cancer cells and thus a potential 

medication for castration-resistant prostate cancer. 
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Abstract 

Polycomb group proteins are important epigenetic regulators for cell proliferation and 

differentiation, organ development, as well as initiation and progression of lethal 

diseases, including cancer. Upregulated Polycomb group proteins, including Enhancer 

of zeste homolog 2 (EZH2), promote proliferation, migration, invasion and metastasis of 

cancer cells, as well as self-renewal of cancer stem cells. In this study, we report that 

EZH2 and embryonic ectoderm development (EED) indicate respective direct 

interaction with androgen receptor (AR).  In the context of AR-positive prostate cancer, 

EZH2 and EED regulate AR expression levels and AR downstream targets. More 

importantly, we demonstrate that targeting EZH2 with the small-molecule inhibitor 

astemizole in cancer significantly represses the EZH2 and AR expression as well as the 

neoplastic capacities. These results collectively suggest that pharmacologically 

targeting EZH2 might be a promising strategy for advanced prostate cancer. 

 

Key words: EZH2, EED, androgen receptor, astemizole, prostate cancer 

 

Introduction 

Prostate cancer (PCa) is a major health concern and the second most common cause 

of cancer-related mortality among men worldwide, especially in developed countries.1 

After local therapy and hormone depletion therapy, most prostate cancer patients 

relapse and tumors become castration-resistant. For these castration-resistant prostate 

cancer (CRPC) patients, anti-AR or anti-androgen synthesis therapies, including 

enzalutamide (MDV3100), Apalutamide (ARN-509) and Zytiga (abiraterone acetate), 

are most commonly used.2 However, CRPC patients will soon develop drug-resistance 
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to these therapies. Hence, there is a pressing need of new therapeutic targets and 

reagents for CRPC. 

The Polycomb group proteins, which are considered paradigmatic epigenetic 

modulators, remodel the chromatin structure and subsequent transcriptional repression. 

Polycomb Repressive Complex 2 (PRC2), one of the two classes of Polycomb group 

proteins, catalyzes the trimethylation of lysine 27 on histone H3 (H3K27me3) on 

chromatin. The methylation requires physical interaction between EZH2 and EED, the 

two core catalytic subunits of PRC2.3, 4 

Recently, several EZH2 specific inhibitors that target the lysine methyltransferase 

activities of EZH2 have been developed, including the GSK126 by GSK, the EPZ5687 

and EPZ6438 by Epizyme, and the EI1 by Novartis.5-8 Even though these EZH2 

inhibitors successfully decrease the methylation marks on H3K27 at relatively low 

concentrations, they indicated limited utility to inhibit the progression of diffuse large B-

cell lymphoma (DLBCL) that harbors the gain-of-function EZH2 mutations, and fail to 

slow down the growth of solid tumors without EZH2 or other mutations.9-11 Since these 

inhibitors do not alter EZH2 expression levels, new drugs that decrease EZH2 protein 

levels might be helpful to resolve this paradox.  

It has been reported that EZH2 is a downstream target of AR in prostate cancer. AR 

directly binds to the upstream enhancer and promoter of EZH2 to activate EZH2 

expression.12 EZH2 may also bind directly to AR in CRPC to regulate AR functions.13 

However, the interaction between EZH2 and AR is not clearly understood. How 

EZH2/PRC2 regulates AR functions in CRPC also remains unknown. In this study, we 

elucidate how EZH2/PRC2 binds to AR to form a complex and alters AR functions by 

regulating AR expression levels. Furthermore, we newly discovered an EZH2 inhibitor, 

astemizole, an anti-histamine drug previously on the market as an allergy treatment. We 
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demonstrated that degrading EZH2 with astemizole successfully decreases tumor 

progression, providing a new therapeutic strategy for advanced CRPC. 

Materials and Methods  

Cell lines 

LNCaP, VCaP, 22Rv1, and HEK293T cells were purchased from ATCC. C4-2 was a gift 

from Dr. Leland W. Chang. All cell lines were cultured in DMEM (GenDEPOT) or RPMI-

1640 (GenDEPOT) supplemented with 10% FBS (GenDEPOT) and used within 20 

passages after receipt. The cells were cultured in a 37°C incubator and a humidified 

atmosphere with 5% CO2. All cell lines were authenticated by the University of Arizona 

Genetics Core using short tandem repeat (STR) profiling. Cell lines were mycoplasma 

negative as reported by routine lab tests. 

Reagents and antibodies 

GSK126 (406228, MedKoo), EPZ5687 (S7004, Selleckchem), EPZ6438 (S7128, 

Selleckchem), EED226 (S8496, Selleckchem), and astemizole (3489, Tocris) were 

dissolved in 100% ethanol or DMSO for cell treatment. Lipofectamine 3000 (Thermo 

Fisher Scientific) was used to perform the transfection of EZH2 shRNA and EED shRNA 

(Sigma). The following antibodies were used: AR (06-680, Millipore), EZH2 (5246, Cell 

Signaling), rabbit polyclonal anti-EED (09-774, Millipore), mouse monoclonal anti-EED 

(05-1320, Millipore), normal rabbit IgG (12-370, Millipore), normal mouse IgG (12-371, 

Millipore), GST (sc-138, Santa Cruz), FLAG (14793, Cell Signaling), PSA (A0562, 

Dako), GAPDH (sc-32233, Santa Cruz), H3K27me3 (9733, Cell Signaling), H3 (9715, 

Cell signaling), β-Actin (A2228, Sigma), LC3-A/B (12741, Cell Signaling). 

Immunoprecipitation 
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Whole-cell lysate IP was performed by lysing cells in 1× NP-40 lysis buffer (2×) 

(GenDEPOT) or Pierce RIPA Buffer (Thermo Fisher Scientific) with protease and 

phosphatase inhibitor (Thermo Fisher Scientific). The lysate was kept on ice for 15 min 

and sonicated for 2 sec on and 2 sec off for 30 sec and the insoluble pellet was 

removed after centrifugation. Lysates were pre-cleared using Dynabeads protein A 

(10002D, Invitrogen) or protein G (10004D, Invitrogen). Antibodies were added to 

lysates and incubated at 4 °C for 2 hours. The immune complexes were then mixed with 

Dynabeads protein A (10002D, Invitrogen) or protein G (10004D, Invitrogen) at 4 °C 

overnight, and beads were washed three times extensively with the corresponding lysis 

buffer.  

For in vitro immunoprecipitation, AR-FL (346101-5000U, EMD Millipore), EZH2 (50279, 

BPS Bioscience), EED (50280, BPS Bioscience), and AR-NTD (ab82124, Abcam) were 

purchased from the vendor listed. RING1B was produced and fused with a GST tag. 

The proteins were mixed and added into chilled PBS (1mL) with a protease and 

phosphatase inhibitor. 50μL of the solution was aspirated as input. The remaining 

protein mixture was incubated with anti-AR antibody at 4 °C for 2 hours. The immune 

complexes were then mixed with Dynabeads protein A (10002D, Invitrogen) at 4 °C 

overnight, and beads were washed three times extensively with NP-40 lysis buffer. 

The beads were eluted by 2× reducing SDS-sample buffer prepared by an equal volume 

of lysis buffer and 4× reducing SDS-sample buffer (BP-110R, Boston BioProducts) and 

heated to 95 °C for 15 min. 

Western blotting 

To denature proteins, lysates were added to 1× reducing SDS-sample buffer prepared 

by lysis buffer and 4× reducing SDS-sample buffer (BP-110R, Boston BioProducts) and 

heated to 95 °C for 10 min. Protein levels were assessed by standard SDS–
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polyacrylamide gel electrophoresis and transferred to PVDF membranes (162-0177, 

BIO-RAD). Images were captured using the ChemiDoc XRS+ Molecular Imager system 

(BIO-RAD). Primary antibodies used in western blot analyses are listed above. Blots 

were incubated overnight with primary antibodies at 4 °C, followed by detection with 

Clean-Blot IP Detection Reagent (HRP) (21230, Thermo Fisher Scientific), goat anti-

mouse IgG (H+L)-HRP (SA001-500, GenDEPOT), or goat anti-rabbit IgG (H+L)-HRP 

(SA002-500, GenDEPOT) secondary antibody.  

Mass Spectrum analysis 

The mass spectrum analysis was performed as previously described.14 

Lentiviral constructs 

Lentivirus was packaged by co-transfection of constructs with third-generation 

packaging plasmids pMD2.G, pRRE, and pRSV/REV with Fugene HD (Roche) into 10-

cm plates with HEK293T cells. The transfection mixture was replaced with growth 

medium 24 hours after transfection (2 μg of MDLG, 1 μg of VSVG, 1 μg of Rev, and 4 

μg of target plasmid). The supernatant was collected at 72 hours and 96 hours after 

transfection and centrifuged to remove the cells. Lentiviral titers were determined by 

p24 assay, in addition to functional titration to determine the multiplicity of infection 

(MOI) of 1 for each initial batch of virus. Expression was verified by western blotting.  

Fusion protein induction and purification 

RING1B was cloned into pFN2K vector (Promega) in accordance to the manufacturer’s 

instructions. BL21 competent E. coli was used as bacterial host strain for the 

transformation. The transformed bacteria were added into 200 mL of LB medium 

containing 50 μg/mL of kanamycin. After shaking at 37°C for 2 hours, 100ul of 0.1M 

Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to induce the expression of 
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fusion protein. The culture was collected by centrifugation after further incubation by 

shaking overnight at 16°C. The bacterial pellets were lysed using PBS supplemented 

with 1%Triton X-100 (GenDEPOT) and protease and phosphatase inhibitor (1861280, 

Thermo Fisher Scientific). For protein purification, the cell lysates were sonicated. The 

cleared supernatants were collected and incubated with Glutathione-Sepharose beads 

(17-0756-01, GE healthcare). The system was rotated at 4°C for 12 hours. The beads 

were washed for three times and the proteins were eluted from the beads with PBS 

supplemented with 0.1% NP-40 and 50mM Glutathione (Sigma). The purified protein 

was collected and added with glycerol for preservation. 

Reporter Luciferase Assays 

The PSA and TMPRSS2 promoter luciferase constructs were gifts from Dr. J. Chad 

Brenner and sequenced to confirm its precision. The promoters were co-transfected 

together with pRL-TK at a ratio of 10:1 into stable cell lines LNCaP and VCaP. 

Lentivirus packaged with EZH2 or EED shRNA was added 24 hours after co-

transfection. Cells were lysed 24 hours later and conducted using the Dual-Luciferase 

Reporter Assay System (E1910, Promega). The bioluminescence was read on Synergy 

2 Multi-Mode Reader (BioTek). PSA and TMPRSS2 promoter luciferase activity was 

normalized with Renilla luciferase activity. Each experiment was performed in 

quadruplicate. 

RNA isolation and RT-qPCR 

Total RNA was isolated from cells to generate cDNA using the RNA MiniPrep kit (Direct-

zol, R2052, ZYMO Research) and amfiRivert cDNA Synthesis Platinum Master Mix 

(R5600-100, GenDEPOT). Each cDNA sample was amplified using iTaq Universal 

SYBR Green Supermix（172-5124，BioRad）on the QuantStudio 6 Flex Real-time 

PCR System (403115082, GE Healthcare). Briefly, the reaction conditions consisted of 
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2 μl of cDNA and 0.2 μM primers in a 10 μl total volume of super mix. The whole system 

was hold at 95 °C for 10 min to denature. Then each cycle consisted of denaturation at 

95 °C for 30 s and annealing/extension at 60 °C for 30 s. GAPDH was used as an 

endogenous control to normalize each sample. The primers are listed in Supporting 

Table 1. 

RNA-sequencing analysis 

The RNA-seq reads were mapped to the human reference genome version hg19 using 

TopHat (version 2.0.12) default parameters.15 The human reference gene set (RefSeq 

gene) was downloaded from https://www.ncbi.nlm.nih.gov/refseq/rsg/. Cuffdiff (v2.0.12) 

was used to calculate gene expression level and the significance of differential 

expression based on the classic-FPKM using default parameters.16 We used p 

value<0.05 as a threshold to select differentially expressed genes. For clustering 

analysis, we used hierarchical clustering method with Spearman correlation distance to 

cluster samples based on the log scaled FPKM, and used MORPHEUS 

(https://software.broadinstitute.org/morpheus/) to plot the heat map. We used Fisher’s 

exact test to calculate p values for significance of overlapping between two groups of 

genes. Gene set enrichment analysis (GSEA) was applied to assess the significance of 

associations between AR target genes and genes affected by astemizole treatment or 

EZH2 knockdown.17 To compare the expression level of EZH1 and EZH2, gene 

expression data for metastatic prostate tumor was collected from the Gene Expression 

Omnibus (GEO) database (accession no. GSE35988). Raw expression data was 

downloaded as a SOFT formatted family file. The expression value is the log2 ratio of 

prostate tissue (test) / pooled benign prostate tissue (reference). To analyze differential 

expression in different prostate tumor stage, gene expression data for EZH1 and EZH2 

and clinical data were obtained from The Cancer Genome Atlas (TCGA) database via 

cBioPortal (http://www.cbioportal.org). For gene expression data, the relative expression 
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(z score) of an individual gene comparing to the gene expression distribution in a 

reference population was analyzed. The reference population was all tumors that are 

diploid for the gene in question. Two-tailed Wilcox test was used to access the 

significance for differential expression when two groups were compared.  

Data accessibility 

The GEO accession number for the RNA-seq data sets reported in this paper is 

GSE124268. 

Cell growth assay 

Cells were seeded in 96-well plates and treated at concentration gradients for 72 hours. 

Bioluminescence was measured to quantify cell viability by using CellTiter-Glo® 

Luminescent Cell Viability Assay Kit (Promega) and was read on Synergy 2 Multi-Mode 

Reader (BioTek). The cell proliferation curve was drawn and fit by the bioluminescence 

to drug concentration. Half-maximum inhibitory concentration (IC50) was calculated with 

non-linear fitting. 

Wound healing assay 

Cell migration capacities were detected using wound healing assay. C4-2 cells were 

plated with 80-90% confluence in 6-well plates. Wounds were created across the 

monolayer of cell culture using a bio-clean pipette tip. The cells were incubated in 

serum-free medium supplemented with 5 μM or 10 μM of astemizole after rinsed with 

PBS. Wound closure were captured at 0 hour, 24 hours, and 72 hours. 

Boyden Chamber invasion assay  

Polycarbonate membrane cell culture inserts (CLS3422, Corning) were applied with 

Basement Membrane Matrix (Cultrex). After the matrix condensed at 37°C in cell 
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incubator, the inserts were added with 1×105 of C4-2 cells in RPMI-1640 without FBS. 

The outside wells were added with RPMI-1640 with FBS. Astemizole or ethanol was 

added to keep the same concentration inside and outside of the inserts. The inserts 

were fixed with methanol and cells that permeated through the membrane were stained 

with 0.5% crystal violet. Images were captured and cell count was calculated. 

Autophagy assay 

C4-2 cells were seeded in 6-well plates and treated with astemizole at dose gradients 

for 72 hours. Cells were lysed for western blotting to detect LC3-A/B. Densitometry 

measurements of bands were quantitated and calculated in ImageJ. In another set of 

plates, autophagosome activity was detected with specific dye using an autophagy 

assay kit (MAK138, Sigma). The pictures were captured under fluorescence 

microscopy, and bioluminescence was read on Synergy 2 Multi-Mode Reader (BioTek). 

Apoptosis assay 

C4-2 cells were plated and treated with astemizole at dose gradients in 6 well plates for 

72 hours. Apoptosis was detected using FITC annexin V apoptosis detection kit 

(556547, BD Biosciences). The staining was analyzed by flow cytometry (LX200 

Luminex Multiplexing Assay system). 

Murine prostate tumor xenograft model 

CB17SCID mice were purchased from Charles River. Animal care and conditions were 

followed in accordance with institutional and National Institutes of Health protocols and 

guidelines, and all studies were approved by Houston Methodist Institution Animal Care 

and Use Committee. Tumor xenograft model was induced as previously described.18 

Mice were anesthetized using 2% isoflurane (inhalation), and 2 × 106 of VCaP prostate 

cancer cells suspended in 100 μl of PBS with 50% Basement Membrane Matrix 
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(Cultrex) were implanted subcutaneously into the dorsal flank on the right side of each 

mouse. Tumor volumes were measured by length (a), width (b), and calculated as 

tumor volume = MIN(a)2 × MAX(b)/2. For VCaP castration-resistant prostate tumor 

model, VCaP tumor-bearing mice were castrated when tumors grew to approximately 

200–300mm3 in size (approximately 5 weeks after implantation of tumor cells) and once 

tumors started to relapse, mice were randomized and treated with vehicle or astemizole 

(50 mg·kg−1) daily (5 days per week), and terminated 28 days later. A total of 20 mice 

were utilized, with 12 mice in vehicle-treated group and 8 mice in astemizole-treated 

group. Body weight of mice was also monitored during the course of the study. Kaplan-

Meier analysis of tumor volume doubling time was performed as previously described.19, 

20 

Immunohistochemistry 

Mice were sacrificed for tumor tissues. Part of tumor tissues were fixed in 10% neutral-

buffered formalin, processed, and embedded in paraffin. EZH2（1:1000, AR（1:600) 

and PSA (1:2000) staining were developed using DAB (Vector Laboratories, 

Burlingame, CA) followed by Hematoxylin counterstaining (Sigma, St. Louis, MO). 

Detection was developed by Alexa 594nm conjugated secondary antibodies (Molecular 

Probes, Eugene, OR) and visualized with microscopes (Daco). The slides were 

scanned and then quantitated using ImageJ to determine the proportion of stained cells. 

The results were normalized with the vehicle control group. 

Statistical analysis 

No statistical method was used to predetermine sample size. Mice were assigned at 

random to treatment groups and, where possible, mixed among cages. There were no 

inclusion or exclusion criteria. Whenever possible, the investigators were blinded to 

group allocation during the experiments and when assessing outcomes. Experiments 
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were repeated two to three times. Data were analyzed using Prism 6.0 software 

(GraphPad) and presented as mean ± SEM. The p values were assessed using a two-

tailed unpaired Student’s t-test or a two-way analysis of variance (ANOVA), with 

significance considered as follows: *p < 0.05; **p < 0.01; and ***p < 0.001. For tumor-

free mice frequency, statistics were done with log-rank (Mantel–Cox) test. 

Results 

EZH2 and EED directly interact with AR in prostate cancer 

Our previous mass spectrometry analysis14 indicated that Polycomb Group protein EED 

interacts with AR (Supporting Fig. 1). To confirm this finding, we performed 

immunoprecipitation with the anti-EED antibody, followed by immunoblot analysis using 

lysates from prostate cancer cell line VCaP. Two distinct anti-EED antibodies pulled 

down AR successfully (Fig. 1a). In addition, we used anti-EZH2 and anti-AR antibodies 

to perform immunoprecipitation in 22Rv1, C4-2, LNCaP, and VCaP, and discovered that 

EZH2 and AR were able to pull down each other in all four AR-positive prostate cancer 

cell lines (Fig. 1b). 

AR has three functional domains: N-Terminal Domain (NTD), DNA Binding Domain 

(DBD), and Ligand Binding Domain (LBD) (Supporting Fig. 2). To determine which AR 

domain is involved in AR-EED interaction, we first overexpressed halo-tagged full-length 

AR (AR-FL), AR-NTD, AR-DBD and AR-LBD in HEK293T cells. Pulldown assays 

demonstrated that EED interacted with AR-NTD as well as AR-FL, whereas EZH2 

interacted with AR-DBD and AR-FL (Fig. 1c).  

Next, we performed in vitro interaction assay using the purified proteins. As expected, 

EED was detected to directly interact with AR and AR-NTD, and EZH2 was also 

detected to interact with AR-FL (Fig. 1d&1e). Our discoveries collectively reveal the 
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intense interaction between PRC2 and AR, which implies the significant function of 

PRC2 in the progression of prostate cancer. 

PRC2 regulates AR and AR pathway 

When we knocked down EED by EED specific shRNA packaged in lentivirus, AR and 

PSA were significantly decreased along with EED (Fig. 2a). Similarly, knocking down 

EZH2 by shRNA also decreased AR and PSA levels (Fig. 2b). To confirm that EED and 

EZH2 regulate AR signaling, we transfected firefly luciferase reporters, which have PSA 

and TMPRSS2 upstream region promoter and enhancer regions, containing AR binding 

sites, into EED and EZH2 stable knockdown cells. As shown in Fig. 2c, in both LNCaP 

and VCaP cells, PSA and TMPRSS2 promoter activities were significantly decreased by 

knocking down EED or EZH2. These results collectively confirmed that PRC2 regulates 

the AR pathway in prostate cancer. 

Astemizole, a newly identified PRC2 inhibitor, represses both EZH2 and AR 

Since EZH2 and EED are found to be profoundly involved in the epigenetic aberrations 

of prostate cancer progression, tremendous efforts have been made to develop PRC2 

inhibitors. GSK126, EPZ5687, and EPZ6438, which suppress EZH2 methyltransferase 

activities, were successfully developed. EED226 is a newly discovered PRC2 inhibitor, 

which targets the H3K27me3 binding site of EED.21 Intriguingly, these inhibitors failed to 

alter AR and AR downstream targets (Fig. 3a). However, astemizole22, a newly 

identified PRC2 inhibitor which can disrupt the EZH2-EED interaction and then induce 

the degradation of EED and EZH2 proteins, successfully decreased EZH2, AR, and 

PSA levels (Fig. 3a). The expression levels of EZH1, a paralog of EZH2 in mammals 

and the other known H3K27 methyltransferase, are very weak or not detectable in 

prostate cancer tissues, and much lower than the levels of EZH2 in prostate cancer 

(Supporting Fig 3a & 3b). Because EZH1 expression levels are not altered in prostate 
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cancer, while EZH2 is significantly upregulated in high-grade prostate cancer tissues 

(Supporting Fig 3c-3f), we focused on investigating the effect of astemizole on EZH2 in 

this study. We tested astemizole in different AR-positive prostate cell lines, and similar 

results were observed (Fig 3b-3d). The data suggest that EZH2 regulates AR 

independently of its methyltransferase activity. Moreover, astemizole is a PRC2 inhibitor 

with promising inhibitory effects targeting both EZH2 and AR. 

Astemizole has EZH2 and AR inhibitory effects similar to EZH2 shRNA 

To investigate EZH2 inhibitory effects, we performed RNA-seq for C4-2 cells treated 

with astemizole, GSK126, and EZH2 shRNA. We retrieved 1571 (top 10%) genes that 

display the largest expression variation across these samples, and clustered the 

samples based on the expression values for these genes. This unbiased comparison 

revealed that astemizole-treated samples were the closest to the shRNA-treated 

samples, whereas the GSK126-treated samples had a larger distance to the shRNA-

treated sample (Fig. 4a).  We further defined genes that were up or down regulated 

after shRNA treatment, and found that the expression profile of these genes was closer 

between astemizole-treated and shRNA-treated samples than between GSK126-treated 

and shRNA-treated samples (Fig. 4b). We observed a 67.89% overlap of down-

regulated genes from the astemizole-treated and shRNA-treated C4-2 cells. Notably, 

the number of overlapped differential genes was significantly larger than the number of 

genes overlapped by chance (Fig. 4c), and the overlap was even more significant 

between astemizole-treated and shRNA-treated samples (Fisher’s exact test P <1e-

300) than between GSK126-treated and shRNA-treated samples (P=1.16e-166)   

Expression changes of AR target genes in response to astemizole treatment also had a 

pattern analogous to that in response to EZH2 knockdown. Upon analyzing 426 AR-

induced genes,23 we found that the expression patterns of both AR upregulated and 

downregulated genes were similar between astemizole-treatment and EZH2-knockdown 
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samples (Fig. 4d). Further, 113 AR target genes defined by another independent data 

resource19 also showed similar patterns (Supporting Fig. 4). Manual inspection on PSA 

and TMPRSS2, two known downstream targets of AR, revealed that astemizole and 

EZH2 shRNA induced the same pattern of RNA expression change (Fig. 4e and 4f). 

Gene set enrichment analysis (GSEA) also confirmed that AR target genes were 

significantly enriched in genes downregulated by EZH2 knockdown as well as 

astemizole treatment. In conclusion, astemizole is a promising inhibitor of EZH2 and AR 

pathway (Fig. 4g and 4h). 

Astemizole inhibits prostate cancer tumor growth 

To further investigate if inhibiting EZH2 and AR by astemizole has any effect on the 

phenotypes of prostate cancer cells, we first performed cell growth assay for AR-

positive prostate cancer cell lines LNCaP, VCaP, C4-2, and 22Rv1 (Fig. 5a, Supporting 

Fig. 5), and analyzed the antiproliferative effect of astemizole treatment at different 

doses. As expected, astemizole was effective on inhibiting the proliferation of each cell 

line at low dose (Fig. 5a). Next, we performed the wound healing assay for C4-2 cells 

and demonstrated that astemizole impaired migration capacities (Fig. 5b). Furthermore, 

we detected thwarted invasive abilities following astemizole treatment in C4-2 cells by 

performing Boyden Chamber invasion assay (Fig. 5c).  

Recently, a study reported that EZH2 regulates autophagy via the mTOR signaling 

pathway and EZH2 knockdown would significantly induce autophagy.24  We observed 

that the ratio of LC3-A/B-II to LC3-A/B-I was significantly elevated due to astemizole 

treatment (Fig. 5d). We also detected induced autophagy by staining a proprietary 

fluorescent autophagosome marker and observed that astemizole treatment 

significantly promoted the formation of autophagosome (Supporting Information Fig. 6). 

These results suggest that astemizole functions as a potent EZH2 inhibitor and induces 

autophagy in prostate cancer cells. However, astemizole treatment did not alter induced 
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apoptosis (Supporting Information Fig. 7), which implies autophagy might be a major 

phenotypic alteration as a result of astemizole treatment. 

To evaluate the therapeutic efficacy of astemizole in CRPC, we utilized castration-

resistant mouse xenograft models with implanted VCaP cells. We observed that 

astemizole significantly inhibited tumor growth when compared to vehicle treatment 

(Fig. 5e and Supporting Information Fig. 8a). The survival analysis also revealed the 

anti-tumor effects of astemizole (Fig. 5f) without effect on body weight in the mice 

xenograft models (Supporting Information Fig. 8b). Furthermore, we extracted protein 

and RNA from the harvested tumor tissue from mice xenograft models. By immunoblot 

analysis with anti-EZH2 and anti-AR, we found that EZH2 and AR were decreased in 

astemizole-treated tumors compared to vehicle-treated tumors (Fig. 5g). We also 

utilized the formalin-fixed tumor tissues assayed for immunochemistry. We observed 

that astemizole inhibited the expression of EZH2 and AR, which further validated that 

astemizole had therapeutic effects by targeting EZH2 and AR in tumor (Fig. 5h). 

Furthermore, real-time qPCR analysis showed that the well-known AR targets were also 

decreased by astemizole treatment in xenograft tumors (Supporting Fig. 9). 

Collectively, our results suggest that astemizole may be repurposed as a feasible 

treatment for castration-resistant prostate cancer with less adverse effects. 

Discussion 

EZH2 and other PRC2 components are well-known transcriptional repressors that 

methylate H3K27 and condense chromatin conformation. We previously reported that 

EZH2 directly represses multiple downstream targets, including ADRB2, CDH1, 

rap1GAP, SLIT2 and miRNAs (miR-203, miR-200 family and miR-181 family) by binding 

to their promoter regions.12, 25-28 Other groups also reported that tumor suppressors, 

such as DAB2IP and miRNAs let-7 family, are EZH2 and PRC2 downstream targets.29, 
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30 The majority of previous reports suggest that EZH2 and PRC2 perform their 

oncogenic function by repressing these tumor suppressors. However, several groups 

have recently reported that EZH2 might perform its oncogenic functions by interacting 

with novel binding partners, such as RELA and RELB, and regulating the NF-κB 

pathway, and these functions are independent of its lysine methyltransferase 

activities.31 Besides histone H3, EZH2 can methylate several non-histone proteins, 

including GATA4, STAT3, RORα and JARID2, and also regulates the transcriptional 

activities of these transcriptional factors.32-35 In this study, we discovered that, in 

prostate cancer, EZH2 and EED directly interact with AR. Intriguingly, knocking down 

EZH2 remarkably decreased AR at both transcript and protein levels, and then reduced 

the expression levels of AR activated genes, such as PSA and TMPRSS2. RNA-Seq 

also supported the activation of AR targets via EZH2. Our data support the idea that in 

addition to functioning as a transcriptional repressor, EZH2 is also an AR co-activator 

and activates many downstream targets in prostate cancer. 

Targeting EZH2 for advanced cancer patients has been proposed for many years.  

DZNep was the first discovered EZH2 inhibitor that decreases protein levels but not 

transcript levels.36 However, it was demonstrated that DZNep is a pan-inhibitor for 

several histone lysine methyltransferases.37 In addition, many reports showed that 

DZNep lacks therapeutic specificity. Since 2012, several other EZH2 inhibitors targeting 

its enzymatic activities have been developed by pharmaceutical companies. These 

EZH2 specific inhibitors successfully remove the methyl-groups from histone H3K27 at 

low concentrations. However, many studies revealed that targeting enzymatic activities 

of EZH2 failed to inhibit tumor progression of most solid tumors, except in those 

harboring EGFR or ARID1A mutants.10, 11 Recently, a study reported a new EZH2 

inhibitor, astemizole, which could disrupt the interaction between EZH2 and EED, to 

degrade EZH2 proteins.22 In this study, we compared the effects of astemizole and 

GSK126 in treating prostate cancer. We demonstrated that astemizole treatment could 
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mimic the effect of knocking down EZH2 by siRNAs. Our RNA-Seq analyses revealed 

that most dysregulated genes by EZH2 siRNAs were also altered by astemizole 

treatment, but not altered by GSK126. In comparison to the enzymatic inhibitors of 

EZH2, only astemizole decreased EZH2 protein levels, AR, and AR signaling (Fig. 4a). 

More importantly, we demonstrated that astemizole significantly inhibits the cell growth 

and tumor growth of CRPC, even though these tumors do not harbor previously known 

mutations. The EZH2 protein itself is more important than its enzymatic activity for 

cancer initiation and progression. Therefore, EZH2 degraders, rather than EZH2 

enzyme inhibitors, are more potent for advanced cancers. Furthermore, our murine 

xenografts provide a rationale for repurposing the previously approved anti-histamine 

drug for treating CRPC patients, for which there is a pressing need to develop more 

treatment options. For CRPC patients resistant to available anti-AR and/or anti-

androgen drugs, astemizole could be one of the available last options. 
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Figures 

 

Figure 1. PRC2 protein EED and EZH2 interact with AR 

a. Immunoprecipitation of VCaP cell lysates with the indicated mouse monoclonal anti-

EED antibody (05-1320, Millipore), rabbit polyclonal anti-EED antibody (09-774, 

Millipore), control IgG and anti-AR antibody was followed by immunoblot analysis. 

Representative graph from at least three independent experiments is shown. b. 
Immunoprecipitation of 22Rv1, C4-2, LNCaP, and VCaP cell lysates with anti-EZH2, 

anti-AR antibody, and control IgG was followed by immunoblot analysis. c. HEK293T 

cells transfected with Halo-AR (full length), Halo-DBD, Halo-LBD, Halo-NTD plasmids 

and empty vector were lysed and subjected to pull-down assay using HaloLink resin 

(Promega), followed by immunoblot analysis. d. Purified EZH2 and EED were 

respectively mixed with AR (full length) and pulled down with anti-AR antibody and 

protein A beads. RING1B served as a negative control. e. Purified EED was mixed with 

AR N-terminal fragment and pulled down with anti-AR antibody and protein A beads. 

RING1B served as a negative control. 

 

Figure 2. EZH2 and EED knockdown decreases AR and downstream targets 

a. EZH2 was depleted by shRNA in C4-2 cells. After 48 hours, cells were lysed and 

blotted by EZH2, EED (rabbit polyclonal anti-EED antibody, 09-774, Millipore), AR, 

PSA, and GAPDH. b. EED was depleted by shRNA in C4-2 cells. After 48 hours, cells 
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were lysed and blotted by EZH2, EED (rabbit polyclonal anti-EED antibody, 09-774, 

Millipore), AR, PSA, and GAPDH. c. LNCaP and VCaP cells were subjected to co-

transfection of PSA or TMPRSS2 firefly luciferase reporter constructs and pRL-TK 

(Renilla luciferase). Lentivirus packaged with two distinct shRNAs of EZH2 or EED were 

added 24 hours after the co-transfection to knockdown EZH2 or EED. The luciferase 

activity was normalized using Renilla bioluminescence. 

 

Figure 3. Astemizole functions as a better PRC2 inhibitor by degrading PRC2 and 
AR 

a. C4-2 cells were treated with GSK126 (2 μM), EPZ5687 (5 μM & 10 μM), EPZ6438 

(20 μM & 40 μM), EED226 (10 μM & 20 μM), astemizole (10 μM) as well as vehicle and 

lysed for immunoblot analysis 72 hours after drug treatment. b-d. C4-2, LNCaP and 

VCaP cells treated with astemizole at dose gradients and lysed for immunoblot analysis 

72 hours after treatment. 

 

Figure 4. EZH2 knockdown and astemizole treatment demonstrate similar 
inhibition patterns of AR signaling blockage 

a. EZH2 knockdown and astemizole-treated samples cluster together based on log 

expression of 1571 (top 10%) high variation genes. b. Heat maps for the expression 

level of genes down- or up-regulated by EZH2 knockdown, GSK126, and astemizole 

treatment. c. The number of overlapped differential genes in each paired group is 

significantly larger than the number of genes overlapped by chance. d. 426 AR-induced 

genes were compared and the expression is similar between EZH2 knockdown and 

astemizole-treated samples. e. Comparison of PSA gene track between groups. f. 
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Comparison of PSA gene track between groups. g. GSEA shows that AR target genes 

are significantly enriched (Q value=0.0429) in downregulated genes due to EZH2 

knockdown. h. GSEA shows that AR target genes are significantly enriched (Q 

value=0.0413) in downregulated genes due to astemizole treatment. 

 

Figure 5. Astemizole has potent therapeutic effects on prostate cancer 

a. Astemizole critically thwarts cell proliferation in C4-2 and other AR-positive prostate 

cancer cell lines. b. The wound healing assay indicates that astemizole compromises 

the migration of C4-2 cells. c. Astemizole decreases the invasive abilities of C4-2 cells 

compared to vehicle treatment. Cell count was analyzed and the difference was 

statistically significant. d. C4-2 cells were treated with 2.5 μM, 5 μM, and 7.5 μM of 

astemizole. Cells were lysed 48 hours after treatment and blotted with anti-LC3-A/B 

antibody. The ratio of LC3-A/B-II/I to GAPDH was elevated as dose increased, which 

indicates that astemizole induces autophagy in prostate cancer cells. e. Castration-

resistant VCaP xenograft mouse models were generated. Castrated mice bearing 

CPRC xenografts received vehicle or astemizole treatment (50 mg·kg−1) daily (5 days 

per week). Caliper measurements were taken every 4 days to determine tumor volume. 

Mean tumor volume ± SEM, *P<0.05, **P<0.01 vs. vehicle was marked. f. Kaplan-Meier 

survival plot compares progression-free survival. g. Upper panel: Proteins were blotted 

and quantitated to compare the protein levels of EZH2 and AR in astemizole-treated 

group (n=8) compared to vehicle-treated group (n=12). Lower panel: The expression of 

EZH2 and AR was decreased in response to astemizole treatment. h. The proportion of 

the cells stained with EZH2/AR/PSA in astemizole-treated group (n=6) were significantly 

lower than that in vehicle-treated group (n=6). 
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Figure 6. Model for the regulation of EZH2/EED on androgen receptor. EZH2 and 

EED directly bind to AR and regulate its downstream targets. Astemizole is a newly 

identified PRC2 disruptor, which degrades EZH2 and AR. 
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Polycomb group proteins are epigenetic regulators with important roles in cancer 
initiation and progression. Among them, EZH2 is a downstream target of androgen 
receptor (AR) in prostate cancer. How EZH2 regulates AR functions in castration-
resistant prostate cancer (CRPC) however remains unclear. This study reveals that 
EZH2 and EED--the two core catalytic subunits of the PRC2 class of Polycomb group 
proteins--play a critical role related to the AR pathway in prostate cancer. Moreover, 
astemizole was a potent PRC2 disruptor that significantly represses EZH2 and AR 
expression in prostate cancer cells, thus representing a potential medication for 
castration-resistant prostate cancer. 
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