
Commentary

Phenological and structural
linkages to seasonality inform
productivity relationships in the
Amazon Rainforest

The Amazon Rainforest accounts for c. 15% of global terrestrial
photosynthesis (Malhi et al., 2008). Yet, estimates of primary
productivity in these forests carry the greatest uncertainties due to
the seasonality of productivity as a function of dry season length,
and interannual climate variability – including responses to El
Ni~no Southern Oscillation (ENSO). Empirical observations and
model predictions diverge concerning the seasonality of photosyn-
thesis (Restrepo-Coupe et al., 2017). Vegetation models show
declines in gross primary productivity (GPP) during the dry season,
while field and satellite observations show increases (Albert et al.,
2018). It has been hypothesized that these differencesmay be due to
environmental cues such as change in day length or solar zenith
angle (i.e. ‘phenological clock’); however, there are indications that
seasonal changes in vegetation structure and function within the
canopy, as well as leaf demography, exert strong controls on carbon
and water fluxes (Albert et al., 2018).Within the Amazon, leaf area
(measured as leaf area index or LAI) may remain fairly constant
across the year (Wu et al., 2016) yet show seasonal differences in its
vertical distribution within the canopy (Tang & Dubayah, 2017).
In this issue of New Phytologist, Smith et al. (pp. 1284–1297) link
these seasonal changes in the vertical distribution of LAI to the
seasonality of Amazonian forest productivity. This is done using
terrestrial LiDAR (light detection and ranging) data collected in the
Tapaj�os National Forest (2°510S, 54°580W) from three different
time periods spanning from 2010 to 2017, including three non-El
Ni~no years (2010, 2012, and 2016–2017) and one El Ni~no
drought year (2015–2016). Importantly, this study shows differ-
ences in vegetation structure, both within and across seasons, that
have been obscured in previous studies, thus highlighting the
importance of fine-scale canopy measurements through time to
address structure–function relationships.

In Smith et al., vegetation structure is quantified using a ground-
based LiDAR system that samples a vertical plane of the canopy
along a transect. LiDAR pulse returns are converted to estimates of
leaf area density (LAD) and LAI (Stark et al., 2012) allowing for
characterization of the vertical and horizontal distribution of
vegetation. This method creates more integrated descriptors of the
canopy that have been linked to productivity (Hardiman et al.,
2011; Stark et al., 2012), resource use efficiencies (Hardiman et al.,
2011), and light acquisition (Stark et al., 2015; Atkins et al., 2018b).

Smith et al. linked canopy structure to productivity by comparing
annual ranges of total LAI, as well as LAI in upper and lower canopy
strata (e.g. where LAI occurs vertically), among seasons and years, and
found that LAI increased during the dry season but decreased
following the onset of the wet season. The upper canopy gained leaf
area during the dry season,while the lower canopy lost leaf area.These
relationships reversed during the wet season – an inverse correlation
between canopy strata that has not been shown previously. The
ENSO drought year further enhanced these seasonal differences.

‘The question arises then by what mechanism does leaf area

seasonality differ in synchronicity between lower and upper

canopy strata?’

The question arises then by what mechanism does leaf area
seasonality differ in synchronicity between lower and upper canopy
strata? Smith et al. detail two possibilities. That a phenological
clock determines patterns in the upper canopy, while light
limitation, as a function of shading from the upper canopy, drive
slower canopy stratum patterns. However, relationships among all
strata and solar zenith angle are similar, indicating that all strata
may be ‘following a phenological clock’. Conversely, it is
hypothesized that tree size and functional differences may drive
seasonal patterns between layers. Smith et al. note: ‘The upper
canopy likely corresponds to late successional, well illuminated
emergent and tall trees . . . the lower canopy surface to light-
demanding early and mid-successional trees, and the understory
comprises short shade tolerants, canopy sub-adults . . . . Our results
thus support the hypothesis that tree size and functional groups
exhibit divergent phenological responses arrayed over environ-
mental heterogeneity spanning light gaps to deep shade.’

The enhanced seasonality of canopy structure due to water
limitation informs a multitude of future research avenues. With
basin-wide drying and more frequent and severe droughts projected
across Amazonia (Malhi et al., 2008), it is critical to understand root-
to-canopy structural and functional responses to water limitation.
This is non-trivial as understanding how forest structure, demog-
raphy, and water and light availability interact to influence
productivity requires a multi-pronged approach (Leitold et al.,
2018; Brum et al., 2019). As Smith et al. suggest, complex linkages
between a diversity of hydrological and phenological strategies may
mediate forest drought response. This work illustrates the different
temporal scales of the drought response – that canopy strata may be
affected independently both in time andmagnitude.While previous
work has generally focused on the vulnerability of larger canopy trees
to water limitation, these effects are first observed in lower-strataThis article is a Commentary on Smith et al., 222: 1284–1297.
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individuals. Trees with roots in shallow soil layers experience the
early onset of water limitation, and as such, require means to avoid
complete hydraulic failure and mortality. While some species favor
xylem structural integrity (e.g. resistance to cavitation), others
potentially compensate by dropping leaves to becomemore drought
tolerant. Conversely, large canopy trees are typically more hydrauli-
cally vulnerable over the long-termbut compensate in the short-term
by accessing deeper soil water reserves. Changing patterns of
evapotranspiration andprecipitation in theAmazon (Xu et al., 2019)
point towards the necessity for understanding linkages among
structure, phenology, and hydraulic strategies to mediate drought
response.

Smith et al. also show that satellite-derived vegetation indices, such
as enhanced vegetation index (EVI) or near-infrared (NIR)
reflectance, are more strongly correlated to leaf demography than
leaf area – indicating that these measures may not fully infer
productivity or biomass. This highlights the necessity to harmonize
ground-based measurements of vegetation structure to those
estimated from airborne and satellite platforms to adequately scale,
model, and understand productivity and function across Amazonia
and the globe. Yet, this is an exciting time. New methodologies are
being created to better use LiDAR and remote sensing data (Atkins
et al., 2018a; Shao et al., 2019; Silva, 2019) while technological
advances such as NASA’s Global Ecosystem Dynamics Investigation
(GEDI) create unique opportunities to view forest structure from
space. GEDI, a full waveform LiDAR system mounted on the
International Space Station, will provide highly detailed, consistent
measurements of forest canopy height and structure for a wide swath
of the globe – particularly for equatorial regions such as Amazonia
where optical remote sensing (e.g. Landsat) use has been hindered by
dense cloud cover. These advances are critical as forecasting the future
response of the Amazon Rainforest to changing drought regimes will
require mesoscale and macroscale remote sensing coupled with
fundamental understanding of the linkages among structure,
phenology, and plant hydraulic strategies including coupling below-
ground and aboveground processes from the roots to the canopy.
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